Compare commits

...

74 Commits

Author SHA1 Message Date
Mason Daugherty
ca137bfe62 . 2025-07-22 16:25:02 -04:00
Mason Daugherty
fa487fb62d fix(perplexity): temp xfail int tests (#32191)
It appears the API has changes since the 2025-04-15 release, leading to
failed integration tests.
2025-07-22 16:20:51 -04:00
ccurme
053fb16a05 revert: drop anthropic from core test matrix (#32190)
Reverts langchain-ai/langchain#32185
2025-07-22 20:13:02 +00:00
ccurme
3672bbc71e fix(anthropic): update integration test models (#32189)
Multiple models were
[retired](https://docs.anthropic.com/en/docs/about-claude/model-deprecations#model-status)
yesterday.

Tests remain broken until we figure out what to do with the legacy
Anthropic LLM integration— currently uses their (legacy) text
completions API, for which there appear to be no remaining supported
models.
2025-07-22 19:51:39 +00:00
Mason Daugherty
a02ad3d192 docs: formatting cleanup (#32188)
* formatting cleaning
* make `init_chat_model` more prominent in list of guides
2025-07-22 15:46:15 -04:00
ccurme
0c4054a7fc release(core): 0.3.71 (#32186) 2025-07-22 15:44:36 -04:00
ccurme
75517c3ea9 chore(infra): drop anthropic from core test matrix (#32185) 2025-07-22 19:38:58 +00:00
ccurme
ebf2e11bcb fix(core): exclude api_key from tracing metadata (#32184)
(standard param)
2025-07-22 15:32:12 -04:00
ccurme
e41e6ec6aa release(chroma): 0.2.5 (#32183) 2025-07-22 15:24:03 -04:00
itaismith
09769373b3 feat(chroma): Add Chroma Cloud support (#32125)
* Adding support for more Chroma client options (`HttpClient` and
`CloundClient`). This includes adding arguments necessary for
instantiating these clients.
* Adding support for Chroma's new persisted collection configuration (we
moved index configuration into this new construct).
* Delegate `Settings` configuration to Chroma's client constructors.
2025-07-22 15:14:15 -04:00
ccurme
3fc27e7a95 docs: update feature table for Chroma (#32182) 2025-07-22 18:21:17 +00:00
ccurme
8acfd677bc fix(core): add type key when tracing in some cases (#31825) 2025-07-22 18:08:16 +00:00
Mason Daugherty
af3789b9ed fix(deepseek): release openai version (#32181)
used sdk version instead of langchain by accident
2025-07-22 13:29:52 -04:00
Mason Daugherty
a6896794ca release(ollama): 0.3.6 (#32180) 2025-07-22 13:24:17 -04:00
Copilot
d40fd5a3ce feat(ollama): warn on empty load responses (#32161)
## Problem

When using `ChatOllama` with `create_react_agent`, agents would
sometimes terminate prematurely with empty responses when Ollama
returned `done_reason: 'load'` responses with no content. This caused
agents to return empty `AIMessage` objects instead of actual generated
text.

```python
from langchain_ollama import ChatOllama
from langgraph.prebuilt import create_react_agent
from langchain_core.messages import HumanMessage

llm = ChatOllama(model='qwen2.5:7b', temperature=0)
agent = create_react_agent(model=llm, tools=[])

result = agent.invoke(HumanMessage('Hello'), {"configurable": {"thread_id": "1"}})
# Before fix: AIMessage(content='', response_metadata={'done_reason': 'load'})
# Expected: AIMessage with actual generated content
```

## Root Cause

The `_iterate_over_stream` and `_aiterate_over_stream` methods treated
any response with `done: True` as final, regardless of `done_reason`.
When Ollama returns `done_reason: 'load'` with empty content, it
indicates the model was loaded but no actual generation occurred - this
should not be considered a complete response.

## Solution

Modified the streaming logic to skip responses when:
- `done: True`
- `done_reason: 'load'` 
- Content is empty or contains only whitespace

This ensures agents only receive actual generated content while
preserving backward compatibility for load responses that do contain
content.

## Changes

- **`_iterate_over_stream`**: Skip empty load responses instead of
yielding them
- **`_aiterate_over_stream`**: Apply same fix to async streaming
- **Tests**: Added comprehensive test cases covering all edge cases

## Testing

All scenarios now work correctly:
-  Empty load responses are skipped (fixes original issue)
-  Load responses with actual content are preserved (backward
compatibility)
-  Normal stop responses work unchanged
-  Streaming behavior preserved
-  `create_react_agent` integration fixed

Fixes #31482.

<!-- START COPILOT CODING AGENT TIPS -->
---

💡 You can make Copilot smarter by setting up custom instructions,
customizing its development environment and configuring Model Context
Protocol (MCP) servers. Learn more [Copilot coding agent
tips](https://gh.io/copilot-coding-agent-tips) in the docs.

---------

Co-authored-by: copilot-swe-agent[bot] <198982749+Copilot@users.noreply.github.com>
Co-authored-by: mdrxy <61371264+mdrxy@users.noreply.github.com>
Co-authored-by: Mason Daugherty <github@mdrxy.com>
2025-07-22 13:21:11 -04:00
Mason Daugherty
116b758498 fix: bump deps for release (#32179)
forgot to bump the `pyproject.toml` files
2025-07-22 13:12:14 -04:00
Mason Daugherty
10996a2821 release(perplexity): 0.1.2 (#32176) 2025-07-22 13:02:19 -04:00
Mason Daugherty
2aed07efb6 release(deepseek): 0.1.4 (#32178) 2025-07-22 13:01:54 -04:00
Mason Daugherty
64dac1faf7 release(huggingface): 0.3.1 (#32177) 2025-07-22 13:01:34 -04:00
Mason Daugherty
58768d8aef release(xai): 0.2.5 (#32174) 2025-07-22 13:01:26 -04:00
Mason Daugherty
d65da13299 docs(ollama): add validate_model_on_init note, bump lock (#32172) 2025-07-22 10:58:45 -04:00
Kanav Bansal
c14bd1fcfe fix(docs): update RAG tutorials link to point to correct path (#32169)
## **Description:** 
This PR updates the internal documentation link for the RAG tutorials to
reflect the updated path. Previously, the link pointed to the root
`/docs/tutorials/`, which was generic. It now correctly routes to the
RAG-specific tutorial page for the following text-embedding models.

1. DatabricksEmbeddings
2. IBM watsonx.ai
3. OpenAIEmbeddings
4. NomicEmbeddings
5. CohereEmbeddings
6. MistralAIEmbeddings
7. FireworksEmbeddings
8. TogetherEmbeddings
9. LindormAIEmbeddings
10. ModelScopeEmbeddings
11. ClovaXEmbeddings
12. NetmindEmbeddings
13. SambaNovaCloudEmbeddings
14. SambaStudioEmbeddings
15. ZhipuAIEmbeddings

## **Issue:** N/A
## **Dependencies:** None
## **Twitter handle:** N/A
2025-07-22 10:24:50 -04:00
Byeongjin Kang
a1ccabf85d docs: add documentation about how to use extended thinking with ChatBedrockConverse (#32168) 2025-07-22 08:44:08 -04:00
Copilot
2104cf0d9a fix: replace deprecated Pydantic .schema() calls with v1/v2 compatible pattern (#32162)
This PR addresses deprecation warnings users encounter when using
LangChain tools with Pydantic v2:

```
PydanticDeprecatedSince20: The `schema` method is deprecated; use `model_json_schema` instead. 
Deprecated in Pydantic V2.0 to be removed in V3.0.
```

## Root Cause

Several LangChain components were still using the deprecated `.schema()`
method directly instead of the Pydantic v1/v2 compatible approach. While
users calling `.schema()` on returned models will still see warnings
(which is correct), LangChain's internal code should not generate these
warnings.

## Changes Made

Updated 3 files to use the standard compatibility pattern:

```python
# Before (deprecated)
schema = model.schema()

# After (compatible with both v1 and v2) 
if hasattr(model, "model_json_schema"):
    schema = model.model_json_schema()  # Pydantic v2
else:
    schema = model.schema()  # Pydantic v1
```

### Files Updated:
- **`evaluation/parsing/json_schema.py`**: Fixed `_parse_json()` method
to handle Pydantic models correctly
- **`output_parsers/yaml.py`**: Fixed `get_format_instructions()` to use
compatible schema access
- **`chains/openai_functions/citation_fuzzy_match.py`**: Fixed direct
`.schema()` call on QuestionAnswer model

## Verification

 **Zero breaking changes** - all existing functionality preserved  
 **No deprecation warnings** from LangChain internal code  
 **Backward compatible** with Pydantic v1  
 **Forward compatible** with Pydantic v2  
 **Edge cases handled** (strings, plain objects, etc.)

## User Impact

LangChain users will no longer see deprecation warnings from internal
LangChain code. Users who directly call `.schema()` on schemas returned
by LangChain should adopt the same compatibility pattern:

```python
# User code should use this pattern
input_schema = tool.get_input_schema()
if hasattr(input_schema, "model_json_schema"):
    schema_result = input_schema.model_json_schema()
else:
    schema_result = input_schema.schema()
```

Fixes #31458.

<!-- START COPILOT CODING AGENT TIPS -->
---

💬 Share your feedback on Copilot coding agent for the chance to win a
$200 gift card! Click
[here](https://survey.alchemer.com/s3/8343779/Copilot-Coding-agent) to
start the survey.

---------

Co-authored-by: copilot-swe-agent[bot] <198982749+Copilot@users.noreply.github.com>
Co-authored-by: mdrxy <61371264+mdrxy@users.noreply.github.com>
Co-authored-by: Mason Daugherty <github@mdrxy.com>
2025-07-21 21:19:53 -04:00
Copilot
18c64aed6d feat(core): add sanitize_for_postgres utility to fix PostgreSQL NUL byte DataError (#32157)
This PR fixes the PostgreSQL NUL byte issue that causes
`psycopg.DataError` when inserting documents containing `\x00` bytes
into PostgreSQL-based vector stores.

## Problem

PostgreSQL text fields cannot contain NUL (0x00) bytes. When documents
with such characters are processed by PGVector or langchain-postgres
implementations, they fail with:

```
(psycopg.DataError) PostgreSQL text fields cannot contain NUL (0x00) bytes
```

This commonly occurs when processing PDFs, documents from various
loaders, or text extracted by libraries like unstructured that may
contain embedded NUL bytes.

## Solution

Added `sanitize_for_postgres()` utility function to
`langchain_core.utils.strings` that removes or replaces NUL bytes from
text content.

### Key Features

- **Simple API**: `sanitize_for_postgres(text, replacement="")`
- **Configurable**: Replace NUL bytes with empty string (default) or
space for readability
- **Comprehensive**: Handles all problematic examples from the original
issue
- **Well-tested**: Complete unit tests with real-world examples
- **Backward compatible**: No breaking changes, purely additive

### Usage Example

```python
from langchain_core.utils import sanitize_for_postgres
from langchain_core.documents import Document

# Before: This would fail with DataError
problematic_content = "Getting\x00Started with embeddings"

# After: Clean the content before database insertion
clean_content = sanitize_for_postgres(problematic_content)
# Result: "GettingStarted with embeddings"

# Or preserve readability with spaces
readable_content = sanitize_for_postgres(problematic_content, " ")
# Result: "Getting Started with embeddings"

# Use in Document processing
doc = Document(page_content=clean_content, metadata={...})
```

### Integration Pattern

PostgreSQL vector store implementations should sanitize content before
insertion:

```python
def add_documents(self, documents: List[Document]) -> List[str]:
    # Sanitize documents before insertion
    sanitized_docs = []
    for doc in documents:
        sanitized_content = sanitize_for_postgres(doc.page_content, " ")
        sanitized_doc = Document(
            page_content=sanitized_content,
            metadata=doc.metadata,
            id=doc.id
        )
        sanitized_docs.append(sanitized_doc)
    
    return self._insert_documents_to_db(sanitized_docs)
```

## Changes Made

- Added `sanitize_for_postgres()` function in
`langchain_core/utils/strings.py`
- Updated `langchain_core/utils/__init__.py` to export the new function
- Added comprehensive unit tests in
`tests/unit_tests/utils/test_strings.py`
- Validated against all examples from the original issue report

## Testing

All tests pass, including:
- Basic NUL byte removal and replacement
- Multiple consecutive NUL bytes
- Empty string handling
- Real examples from the GitHub issue
- Backward compatibility with existing string utilities

This utility enables PostgreSQL integrations in both langchain-community
and langchain-postgres packages to handle documents with NUL bytes
reliably.

Fixes #26033.

<!-- START COPILOT CODING AGENT TIPS -->
---

💬 Share your feedback on Copilot coding agent for the chance to win a
$200 gift card! Click
[here](https://survey.alchemer.com/s3/8343779/Copilot-Coding-agent) to
start the survey.

---------

Co-authored-by: copilot-swe-agent[bot] <198982749+Copilot@users.noreply.github.com>
Co-authored-by: mdrxy <61371264+mdrxy@users.noreply.github.com>
Co-authored-by: Mason Daugherty <github@mdrxy.com>
2025-07-21 20:33:20 -04:00
Copilot
fc802d8f9f docs: fix vectorstore feature table - correct "IDs in add Documents" values (#32153)
The vectorstore feature table in the documentation was showing incorrect
information for the "IDs in add Documents" capability. Most vectorstores
were marked as  (not supported) when they actually support extracting
IDs from documents.

## Problem

The issue was an inconsistency between two sources of truth:
- **JavaScript feature table** (`docs/src/theme/FeatureTables.js`):
Hardcoded `idsInAddDocuments: false` for most vectorstores
- **Python script** (`docs/scripts/vectorstore_feat_table.py`):
Correctly showed `"IDs in add Documents": True` for most vectorstores

## Root Cause

All vectorstores inherit the base `VectorStore.add_documents()` method
which automatically extracts document IDs:

```python
# From libs/core/langchain_core/vectorstores/base.py lines 277-284
if "ids" not in kwargs:
    ids = [doc.id for doc in documents]
    
    # If there's at least one valid ID, we'll assume that IDs should be used.
    if any(ids):
        kwargs["ids"] = ids
```

Since no vectorstores override `add_documents()`, they all inherit this
behavior and support IDs in documents.

## Solution

Updated `idsInAddDocuments` from `false` to `true` for 13 vectorstores:
- AstraDBVectorStore, Chroma, Clickhouse, DatabricksVectorSearch
- ElasticsearchStore, FAISS, InMemoryVectorStore,
MongoDBAtlasVectorSearch
- PGVector, PineconeVectorStore, Redis, Weaviate, SQLServer

The other 4 vectorstores (CouchbaseSearchVectorStore, Milvus, openGauss,
QdrantVectorStore) were already correctly marked as `true`.

## Impact

Users visiting
https://python.langchain.com/docs/integrations/vectorstores/ will now
see accurate information. The "IDs in add Documents" column will
correctly show  for all vectorstores instead of incorrectly showing 
for most of them.

This aligns with the API documentation which states: "if kwargs contains
ids and documents contain ids, the ids in the kwargs will receive
precedence" - clearly indicating that document IDs are supported.

Fixes #30622.

<!-- START COPILOT CODING AGENT TIPS -->
---

💬 Share your feedback on Copilot coding agent for the chance to win a
$200 gift card! Click
[here](https://survey.alchemer.com/s3/8343779/Copilot-Coding-agent) to
start the survey.

---------

Co-authored-by: copilot-swe-agent[bot] <198982749+Copilot@users.noreply.github.com>
Co-authored-by: mdrxy <61371264+mdrxy@users.noreply.github.com>
2025-07-21 20:29:34 -04:00
Mason Daugherty
b4d87c709c chore: update copilot-instructions.md (#32159) 2025-07-21 20:17:41 -04:00
ccurme
383bc8f2ef revert: drop anthropic from core test matrix (#32152)
Reverts langchain-ai/langchain#32146
2025-07-21 20:15:27 +00:00
Christophe Bornet
64261449b8 feat(langchain): add ruff rules TRY (#32047)
See https://docs.astral.sh/ruff/rules/#tryceratops-try

* TRY004 (replace by TypeError) in main code is escaped with `noqa` to
not break backward compatibility. The rule is still interesting for new
code.
* TRY301 ignored at the moment. This one is quite hard to fix and I'm
not sure it's very interesting to activate it.

Co-authored-by: Mason Daugherty <mason@langchain.dev>
2025-07-21 13:41:20 -04:00
Christophe Bornet
8b8d90bea5 feat(langchain): add ruff rules PT (#32010)
See https://docs.astral.sh/ruff/rules/#flake8-pytest-style-pt
2025-07-21 13:15:05 -04:00
Mohammad Mohtashim
095f4a7c28 fix(core): fix parse_resultin case of self.first_tool_only with multiple keys matching for JsonOutputKeyToolsParser (#32106)
* **Description:** Updated `parse_result` logic to handle cases where
`self.first_tool_only` is `True` and multiple matching keys share the
same function name. Instead of returning the first match prematurely,
the method now prioritizes filtering results by the specified key to
ensure correct selection.
* **Issue:** #32100

---------

Co-authored-by: Mason Daugherty <github@mdrxy.com>
Co-authored-by: Mason Daugherty <mason@langchain.dev>
2025-07-21 12:50:22 -04:00
Mason Daugherty
ddaba21e83 chore: copilot instructions (#32075)
https://docs.github.com/en/copilot/how-tos/custom-instructions/adding-repository-custom-instructions-for-github-copilot
2025-07-21 12:50:07 -04:00
diego-coder
8e4396bb32 fix(ollama): robustly parse single-quoted JSON in tool calls (#32109)
**Description:**
This PR makes argument parsing for Ollama tool calls more robust. Some
LLMs—including Ollama—may return arguments as Python-style dictionaries
with single quotes (e.g., `{'a': 1}`), which are not valid JSON and
previously caused parsing to fail.
The updated `_parse_json_string` method in
`langchain_ollama.chat_models` now attempts standard JSON parsing and,
if that fails, falls back to `ast.literal_eval` for safe evaluation of
Python-style dictionaries. This improves interoperability with LLMs and
fixes a common usability issue for tool-based agents.

**Issue:**
Closes #30910

**Dependencies:**
None

**Tests:**
- Added new unit tests for double-quoted JSON, single-quoted dicts,
mixed quoting, and malformed/failure cases.
- All tests pass locally, including new coverage for single-quoted
inputs.

**Notes:**
- No breaking changes.
- No new dependencies introduced.
- Code is formatted and linted (`ruff format`, `ruff check`).
- If maintainers have suggestions for further improvements, I’m happy to
revise!

Thank you for maintaining LangChain! Looking forward to your feedback.
2025-07-21 12:11:22 -04:00
ccurme
6794422b85 chore(infra): drop anthropic from core test matrix (#32146)
Stricter JSON schema validation broke a test. Test was fixed in
https://github.com/langchain-ai/langchain/pull/32145. Core release runs
old tests (i.e., last released version of langchain-anthropic) against
new core. So we bypass anthropic for release. Will revert after.
2025-07-21 15:06:52 +00:00
ccurme
2ef9465893 fix(anthropic): fix test (#32145) 2025-07-21 14:49:40 +00:00
ccurme
0355da3159 release(core): 0.3.70 (#32144) 2025-07-21 10:49:32 -04:00
Ziafat Majeed
6c18073fe6 docs(core): fix grammar from 'as an bonus' to 'as a bonus (#32143) 2025-07-21 10:48:34 -04:00
Kanav Bansal
38581f31dd docs(docs): update RAG tutorials link to point to correct path in Google Vertex AI Embeddings (#32141) 2025-07-21 09:17:54 -04:00
Kanav Bansal
8246b5b660 docs(docs): update RAG tutorials link to point to correct path in AzureOpenAI (#32131) 2025-07-21 09:17:35 -04:00
astraszab
668c084520 docs(core): move incorrect arg limitation in rate limiter's docstring (#32118) 2025-07-20 14:28:35 -04:00
ccurme
cc076ed891 fix(huggingface): update model used in standard tests (#32116) 2025-07-20 01:50:31 +00:00
Yoshi
6d71bb83de fix(core): fix docstrings and add sleep to FakeListChatModel._call (#32108) 2025-07-19 17:30:15 -04:00
Kanav Bansal
f7d1b1fbb1 docs(docs): update RAG tutorials link to point to correct path (#32113) 2025-07-19 17:27:31 -04:00
Isaac Francisco
98bfd57a76 fix(core): better error message for empty var names (#32073)
Previously, we hit an index out of range error with empty variable names
(accessing tag[0]), now we through a slightly nicer error

---------

Co-authored-by: Mason Daugherty <mason@langchain.dev>
2025-07-18 17:00:02 -04:00
Gurram Siddarth Reddy
427d2d6397 fix(core): implement sleep delay in FakeMessagesListChatModel _generate (#32014)
implement sleep delay in FakeMessagesListChatModel._generate so the
sleep parameter is respected, matching the documented behavior. This
adds artificial latency between responses for testing purposes.

Issue: closes
[#31974](https://github.com/langchain-ai/langchain/issues/31974)
following
[docs](https://python.langchain.com/api_reference/core/language_models/langchain_core.language_models.fake_chat_models.FakeMessagesListChatModel.html#langchain_core.language_models.fake_chat_models.FakeMessagesListChatModel.sleep)

Dependencies: none

Twitter handle: [@siddarthreddyg2](https://x.com/siddarthreddyg2)

---------

Signed-off-by: Siddarthreddygsr <siddarthreddygsr@gmail.com>
2025-07-18 15:54:28 -04:00
Kanav Bansal
50a12a7ee5 fix(docs): fix broken link in VertexAILLM and NVIDIA LLM integrations (#32096)
## **Description:**   
This PR updates the `link` values for the following integration metadata
entries:

1. **VertexAILLM**  
   - Changed from: `google_vertexai`  
   - To: `google_vertex_ai_palm`  
2. **NVIDIA**  
   - Changed from: `NVIDIA`  
   - To: `nvidia_ai_endpoints`  

These changes ensure that the documentation links correspond to the
correct integration paths, improving documentation navigation and
consistency with the integration structure.

## **Issue:** N/A
## **Dependencies:** None
## **Twitter handle:** N/A

Co-authored-by: Mason Daugherty <mason@langchain.dev>
2025-07-18 14:00:49 +00:00
Kanav Bansal
72a0f425ec docs(docs): correct package name from langchain-google_vertexai to langchain-google-vertexai for VertexAILLM (#32095)
- **Description:** This PR updates the `package` field for the VertexAI
integration in the documentation metadata. The original value was
`langchain-google_vertexai`, which has been corrected to
`langchain-google-vertexai` to reflect the actual package name used in
PyPI and LangChain integrations.
  - **Issue:** N/A
  - **Dependencies:** None
  - **Twitter handle:** N/A
2025-07-18 09:45:28 -04:00
Sarah Guthals
22535eb4b3 docs: add tensorlake provider (#32046) 2025-07-17 19:28:14 -04:00
open-swe[bot]
5da986c3f6 fix(core): JSON Schema reference resolution for list indices (#32088)
Fixes #32042

## Summary
Fixes a critical bug in JSON Schema reference resolution that prevented
correctly dereferencing numeric components in JSON pointer paths,
specifically for list indices in `anyOf`, `oneOf`, and `allOf` arrays.

## Changes
- Fixed `_retrieve_ref` function in
`libs/core/langchain_core/utils/json_schema.py` to properly handle
numeric components
- Added comprehensive test function `test_dereference_refs_list_index()`
in `libs/core/tests/unit_tests/utils/test_json_schema.py`
- Resolved line length formatting issues
- Improved type checking and index validation for list and dictionary
references

## Key Improvements
- Correctly handles list index references in JSON pointer paths
- Maintains backward compatibility with existing dictionary numeric key
functionality
- Adds robust error handling for out-of-bounds and invalid indices
- Passes all test cases covering various reference scenarios

## Test Coverage
- Verified fix for `#/properties/payload/anyOf/1/properties/startDate`
reference
- Tested edge cases including out-of-bounds and negative indices
- Ensured no regression in existing reference resolution functionality

Resolves the reported issue with JSON Schema reference dereferencing for
list indices.

---------

Co-authored-by: open-swe-dev[bot] <open-swe-dev@users.noreply.github.com>
Co-authored-by: Mason Daugherty <github@mdrxy.com>
Co-authored-by: Mason Daugherty <mason@langchain.dev>
2025-07-17 15:54:38 -04:00
Mason Daugherty
6d449df8bb chore: update PR lint (#32091)
remove regex
2025-07-17 15:33:48 -04:00
ccurme
3f4d27fe21 fix(infra): update some notebook cassettes (#32087) 2025-07-17 13:57:29 -04:00
Mason Daugherty
59407338dd docs: remove AI21 embeddings section (#32084)
// no longer exists
2025-07-17 11:32:34 -04:00
Mason Daugherty
a1519af513 fix(docs): fix broken links (#32083) 2025-07-17 10:38:51 -04:00
Christophe Bornet
b61ce9178c refactor(langchain): remove model_rebuild (#32080)
Since #29963 BaseCache and Callbacks are imported in BaseLanguageModel
so there's no need to import them and rebuild the models.
Note: fix is available since `langchain-core==0.3.39` and the current
langchain dependency on core is `>=0.3.66` so the fix will always be
there.
2025-07-17 10:34:41 -04:00
Mason Daugherty
9165cde538 feat(docs): add Slack community link to footer (#32053) 2025-07-17 10:12:09 -04:00
Kanav Bansal
2c0e8dce0d docs(docs): fix broken link in Google Gemini text embedding integration (#32082)
- **Description:** Corrected the `link` path in the Google Gemini
integration entry from
`/docs/integrations/text_embedding/google-generative-ai` to
`/docs/integrations/text_embedding/google_generative_ai` to align with
actual directory structure and prevent broken documentation links.
  - **Issue:** N/A
  - **Dependencies:** None
  - **Twitter handle:** N/A
2025-07-17 09:58:07 -04:00
Mason Daugherty
491f63ca82 release(ollama): release 0.3.5 (#32076) 2025-07-16 18:45:32 -04:00
Mason Daugherty
587c213760 bump lcok 2025-07-16 18:44:56 -04:00
Copilot
98c3bbbaf0 fix(ollama): num_gpu parameter not working in async OllamaEmbeddings method (#32074)
The `num_gpu` parameter in `OllamaEmbeddings` was not being passed to
the Ollama client in the async embedding method, causing GPU
acceleration settings to be ignored when using async operations.

## Problem

The issue was in the `aembed_documents` method where the `options`
parameter (containing `num_gpu` and other configuration) was missing:

```python
# Sync method (working correctly)
return self._client.embed(
    self.model, texts, options=self._default_params, keep_alive=self.keep_alive
)["embeddings"]

# Async method (missing options parameter)
return (
    await self._async_client.embed(
        self.model, texts, keep_alive=self.keep_alive  #  No options!
    )
)["embeddings"]
```

This meant that when users specified `num_gpu=4` (or any other GPU
configuration), it would work with sync calls but be ignored with async
calls.

## Solution

Added the missing `options=self._default_params` parameter to the async
embed call to match the sync version:

```python
# Fixed async method
return (
    await self._async_client.embed(
        self.model,
        texts,
        options=self._default_params,  #  Now includes num_gpu!
        keep_alive=self.keep_alive,
    )
)["embeddings"]
```

## Validation

-  Added unit test to verify options are correctly passed in both sync
and async methods
-  All existing tests continue to pass
-  Manual testing confirms `num_gpu` parameter now works correctly
-  Code passes linting and formatting checks

The fix ensures that GPU configuration works consistently across both
synchronous and asynchronous embedding operations.

Fixes #32059.

<!-- START COPILOT CODING AGENT TIPS -->
---

💡 You can make Copilot smarter by setting up custom instructions,
customizing its development environment and configuring Model Context
Protocol (MCP) servers. Learn more [Copilot coding agent
tips](https://gh.io/copilot-coding-agent-tips) in the docs.

---------

Co-authored-by: copilot-swe-agent[bot] <198982749+Copilot@users.noreply.github.com>
Co-authored-by: mdrxy <61371264+mdrxy@users.noreply.github.com>
Co-authored-by: Mason Daugherty <github@mdrxy.com>
2025-07-16 18:42:52 -04:00
efj-amzn
d3072e2d2e feat(core): update _import_utils.py to not mask the thrown exception (#32071) 2025-07-16 17:11:56 -04:00
Lauren Hirata Singh
b49372595e docs: update LangSmith links (#32070) 2025-07-16 16:31:28 -04:00
Mason Daugherty
16664d3b68 fix(docs): make docs link absolute (#32068) 2025-07-16 20:15:28 +00:00
Inácio Nery
ea8f2a05ba feat(perplexity): expose search_results in chat model (#31468)
Description
The Perplexity chat model already returns a search_results field, but
LangChain dropped it when mapping Perplexity responses to
additional_kwargs.
This patch adds "search_results" to the allowed attribute lists in both
_stream and _generate, so downstream code can access it just like
images, citations, or related_questions.

Dependencies
None. The change is purely internal; no new imports or optional
dependencies required.


https://community.perplexity.ai/t/new-feature-search-results-field-with-richer-metadata/398

---------

Co-authored-by: Copilot <175728472+Copilot@users.noreply.github.com>
Co-authored-by: Mason Daugherty <github@mdrxy.com>
2025-07-16 15:16:35 -04:00
zygimantas-jac
2df05f6f6a docs: add oxylabs to web browsing table (#31931)
Added Oxylabs to the web browsing table

Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
Co-authored-by: Mason Daugherty <mason@langchain.dev>
2025-07-16 14:00:14 -04:00
nikk0o046
b1c7de98f5 fix(deepseek): convert tool output arrays to strings (#31913)
## Description
When ChatDeepSeek invokes a tool that returns a list, it results in an
openai.UnprocessableEntityError due to a failure in deserializing the
JSON body.

The root of the problem is that ChatDeepSeek uses BaseChatOpenAI
internally, but the APIs are not identical: OpenAI v1/chat/completions
accepts arrays as tool results, but Deepseek API does not.

As a solution added `_get_request_payload` method to ChatDeepSeek, which
inherits the behavior from BaseChatOpenAI but adds a step to stringify
tool message content in case the content is an array. I also add a unit
test for this.

From the linked issue you can find the full reproducible example the
reporter of the issue provided. After the changes it works as expected.

Source: [Deepseek
docs](https://api-docs.deepseek.com/api/create-chat-completion/)


![image](https://github.com/user-attachments/assets/a59ed3e7-6444-46d1-9dcf-97e40e4e8952)

Source: [OpenAI
docs](https://platform.openai.com/docs/api-reference/chat/create)


![image](https://github.com/user-attachments/assets/728f4fc6-e1a3-4897-b39f-6f1ade07d3dc)


## Issue
Fixes #31394

## Dependencies:
No new dependencies.

## Twitter handle:
Don't have one.

---------

Co-authored-by: Mason Daugherty <github@mdrxy.com>
Co-authored-by: Mason Daugherty <mason@langchain.dev>
2025-07-16 12:19:44 -04:00
Mohammad Mohtashim
96bf8262e2 fix: fixing missing Docstring Bug if no Docstring is provided in BaseModel class (#31608)
- **Description:** Ensure that the tool description is an empty string
when creating a Structured Tool from a Pydantic class in case no
description is provided
- **Issue:** Fixes #31606

---------

Co-authored-by: Mason Daugherty <mason@langchain.dev>
2025-07-16 11:56:05 -04:00
Mason Daugherty
15103b0520 chore: add closing keyword to PR template (#32065) 2025-07-16 11:54:26 -04:00
Casi
686a6b754c fix: issue a warning if np.nan or np.inf are in _cosine_similarity argument Matrices (#31532)
- **Description**: issues a warning if inf and nan are passed as inputs
to langchain_core.vectorstores.utils._cosine_similarity
- **Issue**: Fixes #31496
- **Dependencies**: no external dependencies added, only warnings module
imported

---------

Co-authored-by: Mason Daugherty <mason@langchain.dev>
2025-07-16 11:50:09 -04:00
Michael Li
12d370a55a fix(cli): exception to prevent swallowing unexpected errors (#31983) 2025-07-16 10:23:43 -04:00
Michael Li
5a4c0c0816 fix(cli): handle exception in remove() (#31982) 2025-07-16 10:23:02 -04:00
Krishna Somani
e2dc36b126 chore: update SECURITY.md (#32060)
Made minor changes, making it neat
2025-07-16 10:20:59 -04:00
Kanav Bansal
c133eff6c8 docs(docs): fix product name in Google SQL for MySQL description (#32062)
- **Description:** Corrected the service name from "Cloud Cloud SQL" to
"Google Cloud SQL" to accurately reflect the official product branding.
2025-07-16 10:17:59 -04:00
Ahmad Elmalah
1892a67eef docs: adding context for Textract linearization-config param (#32064)
Before jumping into tech implementation, I added a context for
linearization-config param, and explained what's linealization in this
context.
I also linked an AWS blog for more advanced use cases, as this single
example doesn't cover all use cases.

---------

Co-authored-by: Mason Daugherty <mason@langchain.dev>
2025-07-16 10:17:20 -04:00
Ahmad Elmalah
2ab2cab203 docs: update titles for Textract examples (#32063)
**On this PR I am doing two things:**

1. Adding titles to the 4 example we have, to allow the reader to
capture the essence of the paragraph quickly
2. Replacing 'samples' with 'examples', for more clarity, 

**Why 'examples' could be a better terminology over 'samples' here?**
1. On the page, we were using both 'samples' and 'examples'
interchangeably which lead to confusion, now 'examples' are the use
cases, while 'samples' are the the sample data being used
2. This is consistent with the rest of the docs, we typically use
'examples' for examples, for example
https://python.langchain.com/docs/integrations/callbacks/fiddler/
2025-07-16 10:17:02 -04:00
234 changed files with 10551 additions and 8822 deletions

View File

@@ -14,7 +14,7 @@ Thank you for contributing to LangChain! Follow these steps to mark your pull re
- [ ] **PR message**: ***Delete this entire checklist*** and replace with
- **Description:** a description of the change. Include a [closing keyword](https://docs.github.com/en/issues/tracking-your-work-with-issues/using-issues/linking-a-pull-request-to-an-issue#linking-a-pull-request-to-an-issue-using-a-keyword) if applicable to a relevant issue.
- **Issue:** the issue # it fixes, if applicable
- **Issue:** the issue # it fixes, if applicable (e.g. Fixes #123)
- **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a mention, we'll gladly shout you out!

151
.github/copilot-instructions.md vendored Normal file
View File

@@ -0,0 +1,151 @@
### 1. Avoid Breaking Changes (Stable Public Interfaces)
* Carefully preserve **function signatures**, argument positions, and names for any exported/public methods.
* Be cautious when **renaming**, **removing**, or **reordering** arguments — even small changes can break downstream consumers.
* Use keyword-only arguments or clearly mark experimental features to isolate unstable APIs.
Bad:
```python
def get_user(id, verbose=False): # Changed from `user_id`
```
Good:
```python
def get_user(user_id: str, verbose: bool = False): # Maintains stable interface
```
🧠 *Ask yourself:* “Would this change break someone's code if they used it last week?”
---
### 2. Simplify Code and Use Clear Variable Names
* Prefer descriptive, **self-explanatory variable names**. Avoid overly short or cryptic identifiers.
* Break up overly long or deeply nested functions for **readability and maintainability**.
* Avoid unnecessary abstraction or premature optimization.
* All generated Python code must include type hints and return types.
Bad:
```python
def p(u, d):
return [x for x in u if x not in d]
```
Good:
```python
def filter_unknown_users(users: List[str], known_users: Set[str]) -> List[str]:
return [user for user in users if user not in known_users]
```
---
### 3. Ensure Unit Tests Cover New and Updated Functionality
* Every new feature or bugfix should be **covered by a unit test**.
* Test edge cases and failure conditions.
* Use `pytest`, `unittest`, or the projects existing framework consistently.
Checklist:
* [ ] Does the test suite fail if your new logic is broken?
* [ ] Are all expected behaviors exercised (happy path, invalid input, etc)?
* [ ] Do tests use fixtures or mocks where needed?
---
### 4. Look for Suspicious or Risky Code
* Watch out for:
* Use of `eval()`, `exec()`, or `pickle` on user-controlled input.
* Silent failure modes (`except: pass`).
* Unreachable code or commented-out blocks.
* Race conditions or resource leaks (file handles, sockets, threads).
Bad:
```python
def load_config(path):
with open(path) as f:
return eval(f.read()) # ⚠️ Never eval config
```
Good:
```python
import json
def load_config(path: str) -> dict:
with open(path) as f:
return json.load(f)
```
---
### 5. Use Google-Style Docstrings (with Args section)
* All public functions should include a **Google-style docstring**.
* Include an `Args:` section where relevant.
* Types should NOT be written in the docstring — use type hints instead.
Bad:
```python
def send_email(to, msg):
"""Send an email to a recipient."""
```
Good:
```python
def send_email(to: str, msg: str) -> None:
"""
Sends an email to a recipient.
Args:
to: The email address of the recipient.
msg: The message body.
"""
```
📌 *Tip:* Keep descriptions concise but clear. Only document return values if non-obvious.
---
### 6. Propose Better Designs When Applicable
* If there's a **cleaner**, **more scalable**, or **simpler** design, highlight it.
* Suggest improvements, even if they require some refactoring — especially if the new code would:
* Reduce duplication
* Make unit testing easier
* Improve separation of concerns
* Add clarity without adding complexity
Instead of:
```python
def save(data, db_conn):
# manually serializes fields
```
You might suggest:
```python
# Suggest using dataclasses or Pydantic for automatic serialization and validation
```
### 7. Misc
* When suggesting package installation commands, use `uv pip install` as this project uses `uv`.
* When creating tools for agents, use the @tool decorator from langchain_core.tools. The tool's docstring serves as its functional description for the agent.
* Avoid suggesting deprecated components, such as the legacy LLMChain.
* We use Conventional Commits format for pull request titles. Example PR titles:
* feat(core): add multitenant support
* fix(cli): resolve flag parsing error
* docs: update API usage examples
* docs(openai): update API usage examples

View File

@@ -99,14 +99,10 @@ jobs:
prompty
qdrant
xai
infra
requireScope: false
disallowScopes: |
release
[A-Z]+
subjectPattern: ^(?![A-Z]).+$
subjectPatternError: |
The subject "{subject}" found in the pull request title "{title}"
didn't match the configured pattern. Please ensure that the subject
doesn't start with an uppercase character.
ignoreLabels: |
ignore-lint-pr-title

View File

@@ -31,15 +31,13 @@ LangChain is partnered with [huntr by Protect AI](https://huntr.com/) to provide
a bounty program for our open source projects.
Please report security vulnerabilities associated with the LangChain
open source projects by visiting the following link:
[https://huntr.com/bounties/disclose/](https://huntr.com/bounties/disclose/?target=https%3A%2F%2Fgithub.com%2Flangchain-ai%2Flangchain&validSearch=true)
open source projects [here](https://huntr.com/bounties/disclose/?target=https%3A%2F%2Fgithub.com%2Flangchain-ai%2Flangchain&validSearch=true).
Before reporting a vulnerability, please review:
1) In-Scope Targets and Out-of-Scope Targets below.
2) The [langchain-ai/langchain](https://python.langchain.com/docs/contributing/repo_structure) monorepo structure.
3) The [Best practices](#best-practices) above to
3) The [Best Practices](#best-practices) above to
understand what we consider to be a security vulnerability vs. developer
responsibility.
@@ -64,7 +62,7 @@ All out of scope targets defined by huntr as well as:
bounties. This includes the following directories
- libs/langchain/langchain/tools
- libs/community/langchain_community/tools
- Please review the [best practices](#best-practices)
- Please review the [Best Practices](#best-practices)
for more details, but generally tools interact with the real world. Developers are
expected to understand the security implications of their code and are responsible
for the security of their tools.

File diff suppressed because one or more lines are too long

View File

@@ -1 +1 @@
eNqdVX1sE+cZTxS12la1o4KVFKZy9aa2Yzn7PuyLz643EueDkA97cXA+Jhq9vnvtO+e+cnd2bKOwAduqCQo7xtZqGqyAE4PJAlnCx2hpV6ZqUCbaratoaEUnUbGubAsboKnsI3vPcWgi+Gsnf9zd87y/93l+v+d53i2FNNQNUVUqx0TFhDrgTPRgWFsKOhxMQcP8zqgMTUHl8+FQpOtAShenVwumqRk+lwtoolPVoAJEJ6fKrjTp4gRgutC9JsESTD6m8tlLlU9tdMjQMEACGg7fNzc6OBVtpZgOn2MtlCTVUePQVQmix5QBdcfwhhqHrPJQQi8Smom7VVwWFRF5GaYOgezwxYFkwBqHqarSHKCZ1ezl8ZRSCh+53rn1bXQoQLatOjR1EaYhsvLQ4HRRm3NwdJYNmKjEVV0G9mtMhxIwIY+ZKgYwxISedaKFGtARGOLJsIE1HaWvmyIsPZWc7JtyNChaUUk4hodReohLUYc8CrbshnIsu6mxJORM5Da8YbggQMAj8J15QTVMa3wxw0cAx0FECFQ4lUfQ1s8TOVGrwXgYt2MtIloVWMraKg5AqOFAEtNwdG6VdRRomiRypexcSUNVxsoy4HYgd5uLthg40kwxrakQCqKuxRXOolJQMNLJME7qaAY3TCAqEpIWlwCKZ1Qr2V9aaNAAN4BA8HKZWaNzi8cX+qiGNdIOuFBkESTQOcEaAbrMuCcXvtdTiinK0CoEw3dvVzbe2a5AO0kSfSYWIRtZhbNGSmV0YtFqVAlZnFMRiLWPGJ8nSIJKwhSsAxTLHNShoaHKhltH0TIzZWzJIzHgb88WyhW+P9Q6r+LliuX5BiSMdToCzBqMorB2oGMUQXkwkvHRtI+msOb2rrFgeZuue+ow0aUDxYgjLRrndS9wQkoZgHwxeE/FT9uKo2zs8FFj4TCjqQbEy1FZYz1451xv4y0Nk3Plhat6AihirrStdbok/VAuM8RzKZ4X0kMywebctBiDKS4+VV6Cqt/eBgWEy4Z1gGaZ8bJlnvwiypXASQInyFMZXEdUSKIsIj5Lv+UBY1h5D0EQJ+92MNUBiEZRwU2UrlcWeuhQRqLZe38K42ZZ9uV7O81D0ax9eU4t9jLgwmhISjZO3u1QhthPGGOZeW9c5K3pL6OHfj7m4WM0ZN2AomMMx/AsSXo9EPI0wcVjdO0v7WnAIRRbTE3VTdyAHJqmZtaarpFBxm60AE16aAZl6keTiJNSPIykYg2qnYPhxzQ0kVTAH+HiOAc4AeJz9WcVGno76tpbgsUICjKoqgMi3HWpsrq/n4v3x+TAuvVUQvV2s/G14a5kk8gEBba+qS+irQ8yjZoCRVqT3ZnmhgTUEzhZ66YYhqRICiedhBP1Dd4Y68vEpXqDBx6qtUPpVcgs2aaTcTrJ9Aw2JshWRalfRzPpgbZ+dn1YVOtz1ECUTHka0+5mZ39LJCszfK4u0zsUVenWcJOXjMqiVBsWhhKhlqbMIAjXO3sHmyhvrtmNUgSmEHD5MVSwaFoagXLb4KhtcLtpan3EfNP4Mb5ETMC5eEb6sbXodAopUtaPRWyGIfpHIzsimjDQoSpwejciJpUW+UDyG8mM1i2AyAAEdan2ru6oJ9YIhnrDvOLNCDLb3t+QbusksmanuoAZhmBxokwOQ7i9pdL8NPT/M6rjPfjCKYCHtLljuKCohiLG46MRqKOusoqcpKZ4NO51OBpswjvreq0plnLXkrWeOMt6WW/c68Hr0SCdR7szM/L2WVEAEiq8NGdNCnTA4XO7aYcfk0HAy6AeKx3Wm0fnjq3XK4+t2vaZitJVhb6zs9t3hXa+TSx5feaTZVvffHDdfnP25i86j9Xf99fNVcvXHD47+MSh1/5evbH+UPQ/fzvbcuLcGcfgObDpxhMzz/3pK5VLTj28cknS1XvrQv69fwU/uXL08ImZ45+/feM37ycat6369/Pvhb72rSWHD754e+XqTdHT6//g3zp2rqMnu3v7YHLThke6u7PW8i99dKhuKdxzZSo/dTFaaIzuFtN7rtYmbu2dOoMx1z2VFZkVr/6uIF9//t01x3PjN6u3/CUsOdsrzvzw+194PPjW5hE48ZN9jvNC8zW/+3uXf7XjoRfz3/0n8dk/rq0iPP/InFiWk57FDmT91ZMVv++LPfrrnT9e9eaHJikeNPZ+fP3ZrqlLHx898vQba5gVn2vr2H5zd8XTO85XP/Ph0guRmZOx2zuuzLyhr3jy6pMvgL0/e3xpK33x4rV3vvp28f7e5NJHzi9bVwwwk/rll7+4ov2BH9RQs/LVY9MRRX5p9tGvV428RTI/uvGucIu6/v5V8rGPXr3k9D/24LZv/7cQ7ZloWvXBvteiD8V9Kx/esXniSJ/sv3nh2p/Tfd3v1B47teF822rrp7s+KGlTVXF/3x6tBQn1P0jA3k8=
eNqdVWtsFNcVtnEDDaKpqhC1jYuYTm3ktp71zL68683SENsYGz/W3rV3bYKsuzN3dseeF/NYdm1cpSSqkhCVDIpIWuFAYnuXGMvBtUtIqBMiEqCPtKVJkexISd/QR6SmLWmjBOiZ3TXYgl+92se995x77jnn+865e3MprOmCIpdOCbKBNcQasNCtvTkN7zKxbjySlbCRVLjxUEc4MmZqwsI3koah6nU1NUgVHIqKZSQ4WEWqSTE1bBIZNTBXRZw3Mx5XuMxiadUwKWFdRwmsk3U7hklWgatkg6wjt2FRVMhqUlNEDEtTxxo5srOalBQOi7CRUA3KrVCSIAugpRsaRhJZxyNRx9WkoShiwaCRUe3jvCnn3QfVG9O6YVJGki3VsKEJOIVBymGd1QS1oEB2FQWEIPOKJiF7m9CwiAzMEYZCIAIyoWUccFBFGhiDPOm2YVWD8DVDwPlVXsmeFL0BbwU5QY6MQHiQS0HDHDhbVIMYi2pKfACzBqiN7BzJJTHiwPj+8aSiG9b0ygy/iFgWQ0KwzCocmLZmE0OCWk1wmLd9rSaGdIObhOTKOB+7NTmIsUohUUjhbOGsdRypqiiw+RhrBnRFniqCQdnu3CqetCGhADnZsOY6wJUtzTWhDBBCJhiHz+egj6cp3UCCLALAlIjAq6yal59aLlAROwhGqCLZrGzh8PRyHUW3JtoQ2xFeYRJpbNKaQJrkdc8u39dM2RAkbOXqQ7deVxTeuC7ncjAMfGZWWNYzMmtN5Mn00orTwIcMxSpgxHqOnl5KkIjlhJG0xpx+71EN6yrwGz+chWOGqe8dB0jwz8/nijx/vmP7EpbvlXx5vAHgseYjSbOaYGqJFlMknLTTQzCeOsZX52aIprbIVH3xmshtcZiJaEjWecCicQn9HJs05UHMTdbfFvF5G3GIxnYfyovCaVXRMVX0ypqKUV2FCqeaG2YLJKMULYFkYSh/rfWCjSZUtCDPFcXAd9skXE5JujXmqaWnb0psFlvz9qS/mVdTQnu9M5X2DLQJvVsb3cl4o6hnlrSXYJmELNAUQ1M0M58GWqeUDGWqhSqngHcpgcVUHmW4y/1KmtIgj6IgCQBG/rfYo4A4LhrGyVs1DGUQQzt7gfHQhfHqch0NSxCeHc9NS04/jB/fXuuGNbc/P7yvrNTT8TKfxpySfvJWedHG87Q+lV5SpgTOWqiART/tYTGuddNxvwc76VpgiTvudmOa5f1e2Im/bHcVFqzYdFAVzYA8sdCVjYy1UC2htF2qQRfjcXkh1gB0NFY0ORw24w2KHYQeIFTobAriXmR5ikVsElMFBlu5ht72LW3N9ZNhcLJeUQYFfGCx9Ev9/SzfH5eCrDMcjwmJRGe/GXVudyaTfQ3bU61pxPHdYu9ApMHvHIj2RSIuzTtIMbUeZ63X43EyFOOgHVB5VE8r19AtJ+OqudvVt6svEXmgZxfvibobfXLa40Btu7raRdfAgIaT0VATH+repummb/fuHildG9IH2hvSLV7ULnODTZFQqFn2qGJoCxtzxRjFETbbeSMW1VLNPi2cUrshahUZyWBNgADKQ9fVg8XCo6DwqELZuZfKLkBw+cQEHSt7bYDYBq9chyxmAkTYzjCGf2j9YcHAwXZFxgtPQWLMlMAFOxuFHr6vuXeINmqllozAtrT2R4TIYNTX7/RGW5VWVeIbTJbrcrcty4yf8VN0MTle2u3Lk/Om6/+nVydi1PI+QnWohec8Jyu6LPB8NgxVhTVrkhUVk4NnQ8PZ+q1U15Zea87vpVHc6/e7eFTL+DCiGqNdx5es3eg64/abk0MiEC/FWrNJV5Csc7tdZICQUNDnddN0/tH/Trbw/L1Zemzjvs+W5EcZfK9ff6Lrdfldet38J9/0jf7hq3cemHhr4v7OddTQebncu/675IXv9fSurxjaEfrj+2t+0vz3ufJf7btrz553hvfv+XrJIxfin3vgg4pjF9/954nhqdfOXU182qW8c2X01NWPrshvv/HWn/+a+dubFUzyk7vvORzbeM+P3iPLteDUqpazbvNE3y+ihw/+7OPqMkqYe+xi2vHFyImz39c2j9b89C+Th3ZuWAg4147FzuxfVfLbyteac2//t2kK1fm7+57o9FZdvLSp5Avns48/yfzg/K9nnll3hDx3+Yf/Hp47uPl08Orqyg333d/xUNA8Pf6na3zrutjuzk0fTs+mPrPt0qPYebjyWxusM73jE2fXLJ6NRjrLE7+fXlv1tZcrqpwZ60J96T+eOnPZ8emdG49eeZAJstfkmcvnHkN3lPkCqyufiS0+9+p9liPbfW/vveVNaG3lb+66cvorB54e9bpXPW5deil+zXPqP9KD/3r2w7Ij64e27vz4ocWj28/U7zhtHLk+GEgcumPfo797ujM28/qTHx2ZOTj6wS+3vjHCiccWT65++POb3m9fZHdVXVtlI1JW8u01h2Y2Azz/A3nj8PY=

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

View File

@@ -1 +1 @@
eNqdVWtwE9cVtgemdBpCX3nUbV02miTNJF55pV1JSK4mMfIDAXqr8iNDndXdK2vR7t71PmRLxlOgpJMQJnQT0o4bhjbYSK1wHBy7IXUKTEmYUCalJUxoDBP3R1rSMCTUpT9oJwm9qwexB351Z6Xdu+dxv3O+c87dXsxCReWRVD/BSxpUWKDhhWpsLypwQIeqtqMgQi2NuPFwKBYf0xV+7sG0psmqp7mZlXkrkqHE8laAxOasrRmkWa0Zv8sCLLsZTyIud77+gWGLCFWV7YeqxfPosAUgvJWkWTyWdVAQkKXJoiAB4qWuQsUysqnJIiIOCvhDv6yRDCJFXuKxlqopkBUtnhQrqLDJoiEkVBxqOdk0T+lSGT5WvfHqGbZIrGhKFagpPMxCLOWgChRerihYolUBwUsppIis+ZlQoMBqkCM0RLAEzoSSs2JDmVWwM5wn1XQsKzh8ReNheVVWMl+qaDBaXuq3jIzg8HAueQVyGGxVDcdYVUPJzRBoWG1k00gxDVkOO989nkaqZkwuzfBLLAAQJwRKAHHYtfFif56XmwgOpkysJZxWCZajNkoZCGWSFfgsLFSsjEOsLAs8KEfXvFlF0kSVBtIEcrO4ZJJBYs4kzZgJYRCt/uZwDpeCRNisTqfVfmiIVDWWlwRMLSmwGE9BLstfWyyQWZDBTshqmRmFivHkYh2kGgcCLAjFlrhkFZA2DrCK6GSmF39XdEnjRWgUfeGbt6sKb2xXpK02G76nlnhWcxIwDpTL6PASa1wJORIg7MR4gZqsJUiAUr+WNsbsbuevFKjKuLLhjwrYTNPV7eOYDPjWyWK1wveHNtRYnK+7e7wNE2McibFaE2G3EwFWIeyU3UHYnB7ahW+iMxCf8FW3id+Sh6m4wkpqCnPRXuO9CNK6lIFcyXdLxo+YjONoTPi4sUg4JCMVklVUxkQ3Ga30Nulvm66UF4mUflbi8+VtjSNl6gfzQ4Mc0DkunR0UKXeeofkk1EFqpmqCq9/cBgMiRdUYc9psk1VJLfklHCtF2iiSss0OkQpOhcCLPM5n+b86YFRj3EFR1Ks3K2goA/EoKjJU+Tq6WEOBIibN3PtzN4zb7f7drZVqrmi3eTlml2qpcDEam11UX71ZoepiP6VODNW0SZ4z5u7Fiz6GAzTltrscbofbRTPJNa6Ug4b4kUw63S4O/NacBgB7McmUkaKRKgR4mmo5Y65JZIfMRvPSNgftxJG24EkEBJ2DMT3ZhswY1BZCxhMJsdxLIEUCFqQhWak/o9jWE2wN+H2lGAbpQyjDw2fO13+jrw+k+pKiN5lQOyFHBTYHab2L6drAyKFoJNjT1RuB6UB4IDTgSAE2FxwcSGZIm4uxO502xuEibVbKivuGdPp62qSNyTTrttlla1pL9m0Yas37Y628VeoKMEzCQUXXu3q5lFVQkmKYbk/0ZiJBuq0dMHJaifiRNZKXsyGuryeTCzrDGg06rF3ieocjAeLWfhRPBSi+py8S72AADpHV0t7mFgIXLJ6WqrfaNiRuG9JsGpeHqjVNC8GVE+O1Lp2RLcQ6fDqFJCHXQsTMDEP8xCM7xmvQG0QSnNuDE6Nnec7bJ4L2pCB0CszafIJx5ZS4P+P0A5++1iqEYoFgaKNKDUUVF6V/f1FmnBRDUrXkUMyacml+Dv3/RPVKN7l4CpAhuXIMFyWkSnwqVYhBBXeVUQIC0jk87hVY8HWQ0dYeY8ZtZ1w2zuF2sna7m3Jw5Fo8SGvebsyMcfOsKLICLrwsMKbTtNfiYRja0kKIrHeNE/dY+bDeVqgcWyfqp1c/9cW68rUM/65f3/VMK7pArXz8ymd37j298NiK7LMXozPv3uO77TJ1mbnjx01nn/b03HFvflP4b8e+/PLZd9/zPHb36msLZ65EtvjrdkhvrNrhWZc4Qn/4XvGDF0+c3/L74dOnPv3oddfR6Z6Pj83Pv7ZiaueXSr8ILxy8NLZ/voELZI+fGuN2xa4Gpo7OnnpKobfv+yYTOecO3rZ+WNRnT59r/7n49pbhxOp1D61Mrvjr1+u2/mzhWyPnv/DDJxu5g39Zv/uek6tOfPz2cuJ7o91ftS9v7O6962DDgy/vys4c7QT/WHb5w4Y9M/9suL/+23xdoeM76Kdrd3/0FY5BK8Bdj/RuaALXzvzr/dG91vtv10/HGj/7yc7Eo42rnutsONnh2/aHJ419X9v65kDD689vOZ671Ni18WH5k02Rje+/8cly+q2rNJfkL+Z7JudHE46T0ecPdRfC0cZDo89dvfj3P6d7t3LGfxB95Y/7lMyFT/90reGBx5+e+vXeNzsOHt72gXP3wiPX38nOLaS7l//74d8c3+n477VVt7+iUGfnnpBX7hp5Z/OFFwZ/EDp8drY0f+7S7J7RuMV937F6k5lldb+MfveMH9P0P8WT3G8=
eNqdVWtsHFcVtnFaaGkDtDRQQekwVFVVdtYzuzP7sFmn9saP9WtX9jquE6LN7Mxdz9gzc8fz2HodDE2KCmlSwpTSFhUJGj822bhOk1jBaesKAk3S0qQiRUgxAlVJRECplRKIBVLTcmZ3ndhKfnHlx8ycc797zvm+c+62fBYZpoy1yilZs5DBCxa8mM62vIGGbGRa359UkSVhcTwR706O2YZ85mHJsnSzprqa12Uv1pHGy14Bq9VZplqQeKsannUFFWHG01jMzVc+tIVUkWny/cgkazZuIQUMR2kWWUO2IEXBpIc0sILg1TaRQY5u8pAqFpECH/p1i2IxpcqaDF6mZSBeJWsyvGIiD2lhrJQArZzubs/YWjF8cL32WLOF1HjVtRrIMmSURWAVkSkYsl5yILvKBkLWMthQefczYSCFt5BIWJjgCaiEkfPCRp03AAzqZLrAugHpG5aMim9FJ/ehHA1EK2v95OgopAe1lA0kQrBlN8ix7IbTA0iwwG1002heQrwI4LvGJWxazvTKCu/nBQFBQZAmYBGgnUP9I7LuIUSUcWP1ECOmJRaguBoq5u4UBhHSKV6Rs2iytNd5hdd1RRaKOVYPmFibKpNBueHcaC64lFDAnGY5M3EIpT5WnciBIDSC8YZCXvqVYcq0eFlTgGBK4SGqSb1of225QeeFQQChymJzJkubp5f7YNOZ6OCFePcKSN4QJGeCN9QAe2j5d8PWLFlFTj6auPG4svHacXm/l2Hg58AKZDOnCc5EUUy/WrEb9JCjBAwgzkv09FKBFKT1W5Iz5gsH9hjI1EHf6IlJ2GbZ5rZxoAS9cyJf1vnueNsSl3+tuHd8HdDjzCUl20MwQaLVVggf7eMIhqvx0TVciGjuSE5Fy8ckb8rDgaTBa2YGuGhcYj8vSLY2iMRC9KaMz7mMQzZu+NBeFBrWsYmoclTO1KNUV6nDqdi6QyWRUdjo5zV5pHiss9dlEzpa1mbKZtC7CwmHU6rpjHGsf/q6xVWxM+c+pGIZPSt3Rn3ZYW6gQ+5ramSldKNi5pa8l2gpQBVoiqEpmpkbBllncY6y9VKXU6C7rCwgqsjyGMcFXh2mDKijIqsykFH8W55RIBw/DWv2Rg8LDyIYZ3sZji6tN5b7GEiF9Nx8riP5wrBev7nXNTQ2XFwrYwJRoGUxjflUc/ZGexljN21ODS85U7LonHkAXlI+NpjxsT6RQ0LQJ/rYAJ9mQwLyhQU6k6bDoSPuVBEAxZWDjg0L6iTAVLZyzhmPyg+7rRrxM5w/ALnWwkQTFFtE3XZ6HXaTMGsJHSYb5sX9QoYSeEFCVEnBTn5dX2d9Ryxa6IYgoxgPyuiZ+covp1JCJpVWI/Wg6+BIpjFk0X1ie7Il14PD7TGLV5uDPdlWtn+gnull5A1xmjcpJsj5ggEuwIUoxkt7ofOonqgWT4ihFN2hSk1qPNbZnsKxRDOvJ+ykFWsYsTpjCdy5IZlqHGoKMiirp6IN4VYxYfTTfVZftrEzG4tbWbNvyN+c1PmWnvV2S4Mp2bFUTnlMDAZTXYHu9YMjyCfbjZAib0mR6loCJA9T14yUG4+CxqNKbccttV0tIRYLE/GunLW1RAvccnFNydUS3W6FEfyH0d8tWyjSiTV05lkojJ2VxYgYHRhsSMm93f6srWWGWKk5HWxTuGYk6HG2PSAxbG9DAGmtQlhYVhmaZSi6XJwAzYaK4rwe+v8Z1eFHqeVzhIrrpes8r2FTkzOZyW7oKmQ4BUHBtgjXhoEmo01UV32fMxMO0Hw6jBAX5lhWpBHVAKN4Ce3a1Bl375w8r4DwsoJzSPJHyBqW9ZO1hMpHQgGWpouX/tbJ0vX3ZuXU/Ts+U1FcVfD7ySc7u37zo/foz89d+Oatv/jKH5873Hdl28xdUuVtq3/4WemeI4vsP6fPMYur9qy/+piYV0/f8oC37p0Xg9+9dPJb91QclQ7c8tKGtwr/Ovz6wtqZxYvPvzj72tV/L57cFx7df/7clvnvfPv0b/uZtjvmI7886784sfvURjGqPd7zyFsvTHoLVw7OTwUvPlx1nzyz/U/D3t5k9tjPjHBq+u1cj1fr/OC5nUcfOvzhyxUVw2/j0/9gP75r4wvvnvrpauHZO59amLjtkVUH95LizgcPWp7MN/acYF71XF398sSX9Oa19bFPX9pM/HrryObTlz8cab1j9tJY+9lNeGHVj0994fdiXdsba79+fEdL29Ofm9nx7p40/vl29b5EkxFLiJfJseOfer/uB39I/ffuusSFI5mR3330lwFu593nbm/Sh25vpQ/MCKOjD27q2McdZAOdR7/YWlhz5cRXf/L8XICtfGr7hbVvfqQuvv/n2b9979iux7v+fq+9UDUwNn3nLrXyva0f71t4ZmiNh3zy/ib+5K3R+SeOzX2woAfIr5FC76WnB+n/bL68MB5Zc/xssEhJVUXP+fNVdcDP/wBFIfTx

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

View File

@@ -1 +1 @@
eNp9Vn9wFFcdTxpmlKYBQfzRFNvlZETq7d3t/cxdDDS5/OBIrgm5C/kBMb7bfXe7uf2VfXvJ3cXIFFpqC526Hf2jWlDLkWtDSKD8aCGCdjoWigpIh47BqTpWq05KO8MwFWklvt27CxeTcWdnZ9/7/vp8f763MzsIFcRJYuk4J6pQAbSKF0jbmVXgQAIi9fFRAaqsxGTaWkPhAwmFm36YVVUZ+axWIHMWSYYi4Cy0JFgHKSvNAtWK/2UeGmoyEYlJXSvbNWwSIEIgBpHJt23YREvYlKiafKZOLEDUKRwQ1yGChVyMVTduFwn85L4hKaHQ0EdQuWVAjEqKAHTdPiKUSKcIDhHudfbtpsWE7IsIbYYKFDjA6oIRXhIZuJikYxFJA6Uu5iA4kWYhIhArKThkhMpigo7GZDYpEg+xXwkEFdNIr9kkSAzk8UZMVkmnRAqcyOlcEMk4PLAvp9/kGzapKVkX7EeS2IewegFgvuIV5rn7x0BEK5ysI8NCtSIaMnBAQjdMGInDJCICEGQISeRT+GPQY9wgFAlk+InMBBAZguZUaNDyu7oOxoKtywrOrqJyetaGTcAwstB4GEuCPABpIQYzMcRydC7e/x+NblLlVCN+OY/0jVxYkKpwYsw0YjZhtEZC0OJI9CKOYfOBekRIUcNIqK3BH2gM+Of8ywHqT2B80ZTBksOvA8CxEFBRPvL6dMsFbP45BHPwgKKAlGlkRM/sQIJTIIPrvBCxYsy989RA5n/9lCL9kFbxGjAMp4sAvq0oC1HAI4itiEBYqEKPEZb1qUoC6lDwGgKhIJRlIWBwq/+xZEWGlZCqTcxv30lA0xAXKRRpicGx1g7H0pxsJhgY5YEKx3DPitAYDtpYHEKZBDxO3mhOSjsCZJnnaMNLq1614/keJ3XHFpLH9Boh8UAQVe14KwZRG7C2pfCcEQnK4nZb7EeSJFIBJ/J4bpA8wHhGZYM+VUyQAR3HSsj8DNNGc8ITxTwS0g4GAd0amqcSKDSrHQSK4HYeK95XEqLKCVDL+tsWmssT58xlHRaKwu/ReZpRSqS1g0bUTxUTWMjjRJK5capNRaAKLPrAtBQNTIsMFARfnWcUqkqKpCVsW/uZbZSWpDgHtWuln+nro6N9EaGmvotLDVlsdXE23dwzyDfUbelMyVvi3T1+TyAW3jIUqHVzoD7WBltiJOVx2t1uymW3k5TFZsHgSfcm3uYVkp3hlH+wMS76ORjpo6h4Sg42D7QmOzoRGGyJ2RJNg2JdZ4s3GXTHGkFXi2OzJdno6W7oCHscTcFWO9ftckpbAaWiTeGG9p5aiulo87CgJ+Ia6O/o49Oon5WrqgkMOTHIMTXpONNuqwu29qD6uqZQl9ITdYF4dMjRKVL+TaFUjJEa0nRLqnVz2FaE2e31kLYCbJuzyqY/E4VK46EYU1ntQJXX+1JhwO4axYFUE2hnBlc1/M35bP4cerG1+W5DfDFTjytcOxMCqpmw24kgUAi7ze4iKLfPUeVzOoimYHjcnzcTXrSgj4YV3O5RnN+GQgNlaTYhxiEz5l+0dc7orYPzq8PHpwYJk7KEIJlHpY13ke25E5gM1B/L9SkpKTEgcmnDrHbG6KGhdHKIoRMMww4OCTZv2ungIjBBR4/nRfAQ181gQKSAtAMup3ciTylU8Rj2FUfZRtqo00lSwaHgOYHD8TS++WsA0jIuHOzXFjKoUhziC0PWaWTDdraYA5+1uIx123fVOL1e788XZyqocmAWr9N7ej4XgsVoKLuAXlvIkFfxog2NJwvcJMdo02vxog8Cj91G4Q+sckSdjJf2VgH80pSdomhXxHsqN0NJVU+mjE93EkEa33nUlDZtFkBSn1g1DsrlcGNPq/V7AJ9gYCgRqZd0H1A1ISuQlwAzSUdJGuDjmszVn5at7360Nhjwn+wiiwuJbJVz962sKCGRi0ZHQ1DBidHGaF5KMHj0KnDU30i213Zrx712p4eCUZcr4nZ4bU6GrMNDraBtruwy+tzOAh5jH6S1Y6yjxuRzOh2makIANVVunCbjVvbYaO5M/VXp+Yf2fLbEeMr2PheUXrB9bvdHn94bt5x6ZIm68ZXVndrtgZeu+a/6u9ZM3v/tSrr6ZKDn8Me/6Ix6ygOh9V9a9t33R54fii5bQT/iWnVf/bkz/3im5eSrrT9+cnL5jT+c++Shn5zlN85+Kna+/PqaHTfX165elZ4tf2LH1t7ydx94av9xHwDa8H0T02ltcuu0/VLT5ZlK+P0Tb64r33cz8/W33v6OlplZO+U9VB285yurPrBE9h5941bFyFjlDv/rV279+2DT35N72rY//eWyQzBZ+uFq76UfPpncWfeNZ/v5/7Td0/nhUmFpw9Jtzdt7ve+sObEv9tff33j41xdeeXxm5V9WLkk9uPL0yqenzHeOVF8USPeu99b8qDLzQunEDzaU+3/67vOrrSsy4jNXh/+1+d6K9Uov1KoP101djJd9taZx7/U3t1RYr+w6etpz9sbtB8/9Cc5cfWv5aEXQeeni5filv7Wc6D4n3epwpR+98tvdFTv3LJsJ+ITdy13/vP970Zdnr79PfhRS2q8Pf7COWFL5bAKa31n7ra/tv2DeXXanbxpeoN/48+UNz/3ywuevHXmq8oEN59/ufuyT9775cYd/rCFu3iceoq7eiVrdzfuV0t9Rt8tLSmZny0q2zdz8AldWUvJfxWqIYQ==
eNp9VglsFNcZxiKoqUTURIkEFSmZbEmiEM96jt317hrT2utrfeC1vQ6YQpe3M292xp4r82Y2u0YQrlYECGTUQ23TRICNN2wNAcxtnKoHEW0OIaIiAQUapWlJCUoVSNUqVdw3s2t7XRNG9mre/P/7/u8/39uUS0MDSZpaNiypJjQAZ+IFsjflDPicBZG5ZUiBpqjxg7H2rviAZUiXFoumqaNwRQXQJa+mQxVIXk5TKtJ0BScCswK/6zJ0YQaTGp+9PDu31qNAhEAKIk/4e2s9nIZNqaYn7FmONxC1hgTUpxAhQiklmt9ZpRLFZ+qtS7MMDoYJeupTVBU0QwGOnTDRZfVnCQkRgaeYVZ57ATBfAdAMDahIQHRAkrKm8vBeKOxXoLieOBAsIamcCBGBRM3AYSVMEQsclp5yj6HJEPtuIWh41q0u9ygaD2X8IaWbpE8jFUmVHC2IdBxCmCjge8JrPWZWdzb2Ik1NIAyvAKxXusI6U288RJwh6Q4zvKlGRc+7PCDhGCbc5GIRkQQI8oSmyln848pTUhqqBHJ9ReUEUHmCk0zoyopfHQzei63rBq4Aw5SczK71ANfITONxvBMUCWgzOZQTz4sSV4j9vdk4Jk3JdONX8Mj5UAgLMg1JTXnWlXswWzch6O5MnEJPYfPROkRogmukK1YfiTZEI5P+FQj1WpifkHVVCvwdAjgWCirJRxHPsTzBLTLJYJIeMAyQ9axb52T2OUsyII97YSJipZxXT4OB/P/7qSV7IWfiNeB5ydkC5FhJFgQgI4itqECZCeHECO8Nm4YFHSp4DYEysSknQsDjcXBt1kODooZM++D0Fn8DcBzERQpVTuNxrO2RVL+klxM8FGRgwnKiH5l8Hne3Ct0xYuf7INRJIOMUDhX22oeArssS5/pa4dTucHEakI57M8V5p1JIPDpU0z7ajqnURCtiWTyRVIL2BoNe6lCGRCaQVBlPGFIGmNWQ7spHSwU64PowCFmcdvZQYfPBUh0N2fvaANfeNQ0SGJxo7wOGEvCNlH43LNWUFGjnIrGZ5orCSXM51kvT+O/wNGSUVTl7nxv7U6UCEco4nWRh8NqjSWgCrzNavSWj1asDA8ET04xC08iSnIZt23uoIU7T+iRoXy77WiLBCYmkUp3uTNU30L5nrVhlQ7+QMpO6ZWq9fdFMUwcDmnxtXhCKgN4E313ZQ9KVfqYy4A/6QyTtpbyYPNnZ44s1tgUoUaHMjBXt96Nlz2bYZc1WM82KKN0TZVrYZFwWNa2TE1tjQncj11WTCmUygrc9lIyjmNkSEJqbOjq6fcujEVZqkZuCeqaDX86ujNQwXUxznO3TvaoS6OqoIjBlKy3x1QIf6uPame7KNN+/0qrNNtf3dtehWGMipmqtDcuiahvbv8Ib4rTuVAlnhmVJqkg7QPmClPMcnKg0GaopU7QHQqz/9Ykxu3kIB9K00KZBXNvwnXO54om1t71lqi3mD9bhOrfH4qJVTtCVRLMlEwzF+AnaH2Z8YYYiGtviw5GimfhdC/pw3MBNL+D81k+0UY4TLbUP8vnIXVtnzGkdnF+HPj47SJjRNQTJIit7eAXZWTiryWjdSKFbSc1IAVXqd83a+522wAUkqUeLYjy2HUhsnFSQPRCkQgenJM54scecl0RU0NPSsgiTzvh726SehnqfmKyXUXZCe6K+8zgKFElTJEWPZfB8SGtZ0tIL04XEDZyWOEi67TIQZIOnM6SB4yhLioST4f4Wbxu4A1knVSdnaphaH8QXk/20nyo8b5bq4NMbu+f4M4XEhPBz5u5ak2g+Rynko05P10OwhNMAo6CTM+VFjL0UGs5MKJMSb19ahBcJEEgGGVoQKlkfmwR+iuZpJsiCQIgVGMhR8FRhFpOmUw46viXgOHH4fmVm7UvlCsg4M6+apf1sAPta5dwnZIuHXVayTnOcQFWEbkBZA/wbnEByAB/7ZKGC7Vxdz7Katmjk+AqytBTJdr1wt8upGlIlQRjqwomBhp3nZM3i8Qg34FCkgeys6bGPhgIUSEKeSyYFNigkg2QtHosTaJOFO+jM/xyQMfc0Z4+IbLUn7POxnipCAdXBgI+i3BvgxqHC2Xy27PePbb9/lvvMxv/j4zs631avUA+eufnM1rG/eub8dMGVF3fWnG+x71zYO6c2svsPx44+XX9k0Z8a546vrfnP46e+sXvewnT6h+zo6NvzZ3fG6JcPbD2CTp/89PrHF7ad2PWP2zc3k9dvrr/d9NjS9f0rl46t/8ES+pO/zYFLDh/cd+uXbzVdfHTNxx11rfmPeukEOe/E9tGyG8O1r4ovbT/7Ehlm4u+kbr+SPL74j1e+PXpsEf3ds6+xb82/8oD2mfTIlxu2vftZ177fPVi3OfbqK/Nna1Z+w/0bax95snbppgu/2CocevNDovXfO1+LnP3g2o+o5RuPNbUt+Oac4ycXt7wXWoXOhZq2eZ6Y+2j+78wLI9faYbX6BdHpe7+vumwL/a+m1o0XG/kXdu5WPjxzdcv11w89EdlzoHrbmrYjC/Za1O4vdhz+nMp/6akOalXzboq//ss/V59aufDOmj+f3/reLrRFHDj/8MWrL1p7lj+zY5P5s7kLBl8m83ZYbbiz7ZP7zj25f9y8XXkrYjDvjp/bteHHNzz5y9n4ooqHdykL3y8b/9WtJR/9hrrvzvWm5Le+vu7ylt8euPH5B8PEf+c+NNrfMlTz6ZIHTvwk8PNbIwk3VbNnVT1+4er3cd7+BxYmsIY=

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

View File

@@ -1 +0,0 @@
eNrVVk9vG0UU58+NI59gtEJCQl577V3bjVEOUajaQqMW1VRFbbUazz7vDtmd2c7MxnEjHyg9Iy2foCVRXEUtRQVxgUocOfAFwoHPwpu1nbZO2pReEJYt2/P+zG/e+73f7J3pFijNpXj7IRcGFGUG/+jv7kwV3CpAm7v7GZhERrvnzvZ3C8UPP0iMyXWv0aA5r+uMm6SeUhGzhHJRZzJrcDGUewMZjX+fJkAjTH/34AsNyl2LQZjyZ+tdxbn5uOHVm/Vm0H28xhjkxj0rmIy4iMtH8W2e10gEw5Qa2J+Zyx9pnqecUYux8ZWW4mBdCgEV5vJgEyB3acq34IECneMx4Jt9bagp9J09zAt//jHNQGsaw/eXPluA+/ut9x9fc+0GqXt2O+cYWt73HmJig3Dd/jiH4/v+sDBfBBGbpNztdFv7lxWNM1o+ENJllCXwm02qtWt9lUzdtTSVI/f8bNvy/keH5ESHdQURpuY01eWeUQVM11LjXtli5WE98VedXhD4zscko6ut9krL87xa4rutlRMMJwPYqPppAex9grUtn16hpkZaLbJBFWl5rTZpdnr+Sq/tkXMb/SfXXPSikYzdPrID3AtReUgCGjHw/DPeANrtM34TvKDrddvRwPMhiFr+7lVOywNsLYmljFP49UQklxSPuSjvPV2yYhukhucq9Wjd1nNhL5/kxQDbUcOjbrvYzdWO98tSig20IN+wMZ43XbT1aT8pasRrkk+pIM2Vrkc8r1e97Un3rlI1LvdnoH7q8wx5uAS0ovXXyCmFtr/eubfjzKfH6TlefaXe7To1hwvknGAQInVj7fR2nEEqB6E2EvkBIQg6SCFyera1tWUbbgOY7IqPiSKsuwYTwjbN8hR0mBWp4TlVZjnJ6R44ejjcBkLKQ5xrNV52kCoOmYKK4mHE9dw4RBaiNafjDDm5HJTj6aWgaYjR+niU9l92ag1UseTYaiJHoTFpWPDFkrGcCw0HFUaFmqOj46qsqRSxnXaMD3AKbLgy84VmMKk5I6k2dW4TaCZzsChDLra4AX2E8bY2UYiylSNBbCdfxIRJBtQgUuw3iiE6iiGP7eaFhheqHeUSBfToJIymEBZ5eEvz24gf+RODQlheBXRhFSbBkkc6TJFtGNzsLIyRHIlQQJab8bPoAK023cK7ynW0EA7G1cFa3kq32W55k8l7L1fx1dNUHD+4qhsqzRrYQTdXWCPTsGqszf9I3r89JtVnguA/V+Z9LBhKRzkttjiTSjyqLgyXzQXulCvkmYL/O53di16l98GKVcGHbF4uc+LFd6pUnyycr5LnF0X13Ys7zox7YUJ1glrY9oKgRYdN34dOs93tQDdo+x3Wabc7DIbQHFKGFGM08vzWMPC73UHHY4HfgQ6L2KADqKQZFXyIvLWDy3G0rztHZEfrjNoaf+GKwa91/LpcLfZxAi1DnZs1J2U4cqhIWBdEhWVCxAVDfcOIzRFVM62fMxB/X3+tvc4XCG5jFvSme86Snna4uVfNedNtzCKi53wpC0IVELxHKcqmvfAMGUpFKrVBsrhU6BHYjhK8xDZ1naBGEJMAellmWEPOAUlB5JAowOYDCjep2LdtiJFklqGKWWStkwtDMsa9Iyk+NGRTyFFln7nWyFeFNkTTMS5Ss+S4QKAAiAbLcbs5PkHwrMgwQ0SswDyXzmJhXEP9hvh8vn+P7CygTMgNsT4Di6tz2HZxrQruVQ8CeWHCLaq4vVEsI5xFtO3/LMSWf1HYECuYISt6ztCdjYMzwdfN1041mTx7FkCfm5N/AJjRbLE=

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

View File

@@ -1 +0,0 @@
eNrVVk9v3EQU58+NI59gZCEhofWud9e7bhb1EIWqLTRqUUNV1FbW7PjZnsaecWfGSbbRHig9I5lP0JIoqaKWooK4QCWOHPgC4cBn4Y13nbbblFTlAlGi3bx/85v3fu9n39nfAKW5FG8/5MKAoszgP/rbO/sKbpWgzd29HEwqo52zZ9Z2SsUPP0iNKfSo06EFb+ucm7SdUZGwlHLRZjLvcBHL3bGMJr/tp0AjLH/34AsNyl1OQJjqJxtd57nFpOO1u+2uHzxeZgwK454RTEZcJNWj5DYvWiSCOKMG9mbu6gdaFBln1GLs3NRSHKxIIaDGXB2sAxQuzfgGPFCgC7wGfL2nDTWlvrOLdeGP3/dz0Jom8N3Fzxpwf731/pOr7ifU0Egm7hp2ANzzUXVIuv0oGPtR7I0DFvS84FTEguBUwOIx+AMPxr9aUFq7CMEombnLWSY33XOzqtX9j54u+M9sFVLDcwGPVihLofFXT4pyjJdrkZxuuYjx9NDbucJpdYAdIomUSQa7V6iaVHsXFU+42LukaJLT6oGQLrOVHl917ZH1SRw7UN339puvT9fSskW8LvmUCtJdCjzieaP6l5xdXdvF60P19DI1LdLrkVWqSM/rDUh3OPK9kd+1MYfk2PuuKIhwrJxmuto1qoSfF8JW8TY4+Wpn6HkPrRGj3bVJAS9P8/iOrtb8sw37cY3nSI65fdaF6t7+cmbcyxusOmyn/dPOyPf7zsfYxNO9wVLP87xW2nd7S8c4fjn2uKbs9w3WCyASkyL+oFfT+ivklEIYf75zb9uZb48zcrz2UjsInJbDBXJOMAiRuol2RtvOOJPjUBuJ84IQBB1nEDkj26zWog+PBix2uY+FIuSkBhPCFs2LDHSYl5nhBVVmscjJEbh6uNwGQspD3Gs1WQyQKgmZgnoYYcT13BnjXNFb0EmOvVhMKvD2UtAsxGz9cpbuv+rWGqhi6UvWVG6GxmRhyRuTsfsYGg4qjEo1R0cndVszKRK77Zjv45htujJzQ9eftpxNqdZ1YQtoJguwKEMuNrgBfYTxtjZRiLJV4JbYSb6ICYuMqUGkOG8UQwwUMU/s4aWGF7odFRIF9OgmjGYQlkV4S/PbiB85lYBCWF4NtPEKk2LLIx1mSGxM7g4bZyQ3RSggL8zkWbaPXluuia5rHRnC8aS+WM9bCrqDnjedvvdqFT99korjH1p1R2V5ByfoFgp7ZDpWjbX5H8n7N/9epmtxddlcpo/kdlGc97AJKAfVfrnBmVTidQXzIZsLjTlWFP9JT3ejk3X7vy2qp3z/RVF998K2M+NemFKdohYOPN/v0bjb78OwOwiGEPiD/pANB4Mhgxi6MWVIMUYjr9+L/X4QjIce8/tDGLKIjYeASppTwWPkrV1cjqt9zTkiO3pn1Nb4DS0GP1bw41JtXMMNtAx1brScjOHKoSLhlBAVDg0Rlwz1DTPWN6maaf2cgfj92mudda5EcKuzpDc9c1b0pMvNo1rOmx5jmoyR86UsCVVA8GWComzaB54hsVSkVhukrkuF3gQ7UYIPsXXdJqgRxKSAUZYR1lFwQKoQGRMFOHxA4Sb1LmwZYiSZVahzmqptcj4mEzw7kuJDQ9aF3Kz9s9AWuVlqQzSdoJGahcAGgQIgGiwL7eH4rsXzMscKEbEC81w5i4VxDe3r4vP5+SOy3UCZkutiZQYWrXPY1rhcJ4/qF4GiNOEGVdw+USwjnCbbzn+WYtvfNDbEDubIipETu7N1cKb4c+O1S02nz94FMObG9G9f2m1A

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

View File

@@ -1 +0,0 @@
eNrVVt2O20QU5ueOS55gZCEhoThx7Px0g/ZitVRtoasWNVRFbWVN7GN7WHvGnRlvNl3lgtJrJPMELbvaVKuWooK4gUpccsELLBc8C2eceNtmt91ScUOUKMmcn/nOme984zuzLZCKCf72Q8Y1SBpo/KO+uzOTcKsApe/uZ6ATEe6eOzvcLSQ7/CDROleDVovmrKkyppNmSnkcJJTxZiCyFuOR2BuJcPL7LAEaYvq7B18okPZaDFyXPxvvKs7OJy2n2W62O/3Ha0EAubbP8kCEjMflo/g2yxskhCilGvbn5vJHmucpC6jB2PpKCX6wLjiHCnN5sAmQ2zRlW/BAgsqxDPhmX2mqC3VnD/PCn3/MMlCKxvD9pc9qcH+/9f5vJr1SNibTUqT2WpqKsX1+bi/vf3RITnRYlxBiRYymqtzTsoCfhixD8AvzJclixst7+5cljTNaPuDCDmiQwGwt1faVraA8bCbeqjXodDzrY5LRVbe74jqO00g82105wbB3lcpJuT9PPDu7nTOss3w6TIoGcdrkU8pJe6XvEMcZVG9ybmP4+JptwKd27X7feXLN/oRqGorYHuKBg30hLA+Je8aLekEP2p6He9FRt70y6rtuP/Jo5PSdcPcqo+UBnhaJhYhT+PXEntRFn9zSjYpKpqU/GAM2z74IPNZJudvru78sxWzQbcMZtGHpiBjKp1eobhDXJRtUEtdxu6TdG3jtgbNiSn1Y5xxOcjjOlUfrpvl19vJJXozQ3sD+bttIidWe83QJALZMKHiOCBWtv0ZOSTzmv965t2MtpscaWE5zpdnvWw2LceQcD8BH6sbKGuxYo1SMfKUF8gB84HSUQmgNDGMayzZsHmCyKx4mCvGQFGgftmmWp6D8rEg1y6nUy0lO98DRw+HW4FPm41zLybKDkLEfSKja5YdMLYwRkhutOZ1k2NnloByrF5ymPkar41HKe1nVCqgMkmOriRj7Wqd+weolbQjqawbSDwu5QEcnVVtTwWMz7Rjfwakx4VIvFtqdacMaC7mpcpNABSIHg9JnfItpUEcYbysd+ihbOc6GOckXMWGSEdWIFM8bxRAdecRis3mh4IVuh7lAAT2qJKAp+EXu31LsNuLHqYhBIiynAlpbuU6w5aHyUxQODG73amMoxtznkOV68iy6g1aTrvauch0t+KNJVZjrrPTbXdeZTt97uYqvnqbi+MFV1ZJp1sITtHOJPdIto8ZK/4/k/duHwUIV9Imq8BLNxoJwtMtZscUCIflpcrYsjq+SsjeX//B0DXy1Kh9T3TOdzqPqTrKDhSwe3VL/1aX4L0X13Ys71px7fkJVglrYdTodl0Z4L0Gv3e33oN/penhTdbu9ACJoRzRAigU0dDw36nj9/qjnBB2vB70gDEY9QCXNKGcR8tYMLsPRvm4dkR2tc2or/IUrGr/W8etytTjECTQMtW42rDTAkUNFQhohKuwXIi4C1DeM2BxTOdf6BQPx9/XX2ut8geA25kFvuuc86WnFLbwa1ptuo+uIgfWlKAiVQPCJg6JsmgtPk0hIUqkNzpZNuRqDOVGCl9imahLUCKITQC/DE2PIGSAziIiIBDx8QOEm1bBua6IFmWeoYuqsTXIhIhPcOxT8Q002uRhX9rlrg3xVKE0UneAi1UuONQIJQBSYMTCb4+XPsiLDDCExAvNcOoMlYAqaN/jni/0HZKeGMiU3+PocLK4uYJvFtSp4UD0I5IX2t6hk5kYxjLDqaHP+8xDT/rqxPnYwQ1YMrMiej4M1xdfN1041nT57FkCfm9N/AE7ebHI=

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

View File

@@ -1 +1 @@
eNrtmAtUE1cagMEX3ZajaH2gtRqjrdUykEmGkATjlvfL8BaQlnImMzdkYDITZiYJQVsV7NqtUhuxuuoRFZBQfBfQWlCrFqUVX109iCBoqV0R8dnWZ3UvAVqs9uzprp5T9zjAhJn73//+z3u/kxy7GXA8xTLOGyhGABxOCPCBz8+xcyDTBHhhXokBCHqWLI6OiosvMnFUw2S9IBh5lZcXbqQ8WSNgcMqTYA1eZtSL0OOCF/zfSAOHmmItS1obVswUGwDP42mAF6venCkmWLgSI4hV4kSOEoAIF8E3BMUDEW8yGHDOKmJ1IkEPRDqWplkLxaSpRH5GqJMX4RwQcYAUe4g5lgZQg4kHnPidFA+xgSUBDV+kGQUEYxEDxVBQihc4gBvEKh1O88BDLACDEfoomDg4V+IpeceuBzgJA7CoWM/ygm3Tgy5txgkCQH2AIVgSmmHbmJZNGT1EJNDRuADKoNkMcATMVpYBgBHBacoMSrpm2bbg0GaKwDvHvdJ5ltnQ7TgiWI3g4eGyTl8QGCVGsO3w460MEQUt8QvzirbCBDAi1FMu95RuyUJ4AacYGA0eoXFoVInRMV7Ve8CIExlQE9KdXFtJ1+RNvWVY3rZOgxNRcQ+oxDlCb1uHcwY5Vt77PWdiBMoAbPaA6IeX6x78ZTm7zBNF4e/WBzR3umTb6PhQOe4Uu/0BLUDgrAjBQmW2tZJNPdGiAZMm6G1FqDdWygHeCOsK5JbAaYKJzymGmQF1tfbuAiuMiuhJabPTiOJAmCXbzjhc8BBJpSINzomkEqm3CJWrMEwlVYhCNPEbArqXiX9kUrbGczjD62BignqKwE7oTUwGIMsCHpn+nZ3ph950mg+LFAFZRpYHSLdVtg1JSGxXZyFhgeVdtYawXBrOUNmOZW07HXVgyc6ykISJJPVmi0GizMZklBaYCF1F9xQjx3YuAw1CDLytSKb03tQ90pOEMuirBEEliAT9PAuBVQ9oykDBeDru3e3N24q9JRLJZw8LCGwGYHibHZM4rl29JThggEnrXPtXNZhSqax+tFCPKhkUUSqwzx+U4kFva1Cpgf/sYYFuFYUSfkNWjzRCkbaGCfAhVSIFKEqgSgnmjcowH4VCopMrMFymwHVAQnrLd8B9gCKgls5kGllOQHhAwL1MsNoaPAx4VmfXqWWot0wOPfUVUQxBm0gQZ9IGsp0+8L4iIwdoFic3EzqEwAk9QLrqz2YPnBHppwkLKIuDRgawbAYFFp9ydk9NJXSpWoPa2y+ZNgbLZIHmMEsmhZKJAAPpcotVb5RjiYn+EenSCGNGMsWGUSyC+mBSuRxVyBUI6inxhP2DBCVpgk1MDCCUxlgq05idFKr1jCbN/qbp1oDg8NRgf395FBNLyBnam06T6mmD4B+gxAhvE+tDE4lRmZ7SCGw6GZsRLIRykVh2Km3Q6IMysyISSSI9xlPGhweQmVmmZCmR5gddxAW92stXBAuWgkFXd7cNAtsG6WwaHxXa0zS+ItIRGLXngxumrygUng1RDG31FcV1RhjAT9wA4uA2r45kGdCwBAbGZKZIdURqQEgCF6aXahKn6xQR8XItGZBtDQ8IkEuz6HAuTebn5x/vJ50RGjajV2R8UAUi6Q6OXIIpHKX5q+n/pVXbkpDeuwASZXScXjY7w/IMpdOVxAEOdpWtjKBZEwn3fg6UBAQjsX4zbBVKKeYj9ZFjGIFLMVLijfjDDbVH2y97RnHnwWHHaVh4ZsJWrpepxXALkol9RQZcrZDDHnMclXNLOguVSatxrhi74Dknx9UX/t2/v3CxH9socX3v8r1hOYczbf1mfPv9tsI2vMrji88PRrsvDPRNBzEfnffws92fWhtJWNrnpMw6cyBkd8hV7xf9RyH1/mXqLenVhy5fmq2mz14pShKxKw60Jq73adk1dnvq8dbTCZGLc8xHSm9qTEWlV4c3fNS+9fnnFlIX6Mp/eC0r184Q1ozLk3+VfuRWzrX9ivwj9utBU1POlX9b2Jwf434u+W7dPLdvK++8ujqyNWZTjXAtgZIEl8Zs2qzxr31DPn3Cl3pxLqEcuUZ84LyqffXO7e79+w2ddS14buXEwdEvtM4TR5zVebgmVQ5ebK1P9u1zZjRafGXVOfsLylRNctk7a1LuBkx+vXVa0zLncYsj/ibOX/ayOs1/iumgvuVc/tTo1h1k9p5LlvLCsRPnT3Q/0/Eeip5cOyVVM9U9IZ2UyD80TxpWqr7gp/QYk2zQ9/s05rvdO2dhVYsMb/3811aXNUOzg1NuzzlVesM6f9uctqn3T5hTMtOSgl1diraQuePUufufT25MzVtorz255ONM7wFjp81WfexlqYk8/W7OpNeWrypvcaSmr9ORPQf7h8I8PUZoOuWc+bvU9BYjglc0x5ImopOedBSD0z3s5Nk12nUPyqJ4AdbTL2BlMooEFrIVxYuMLAQ+VZdcL7qCbALPP5q2dnIW3Akhm9Es94DWSGAROazJ6pmP9Lq63vjTJqAFHEd1q9XC59+T7bqHwLOTcWAf86t+D2gFdA843rMclfYIVx87DDY7uT3DwT8bDpYQjsPVdsrZ5Wk8XJ/AsfcQIMvkyj8GyMP/AyAr/48AGcOUTwkgy2T/AyAXoYZHE7ISk2JKrRaXyDBUhgJUIlOgGIorSUKCSQn0yRPyY4AsH6CV4Y8Rsvb9FrJiNRlNEreddxJdVY14h6rqYHNs+F/XRGefX/eK+0Zsm93m7b843xO/P9NmKTef6sehWc3V9hu679G+bsU1A+ddAPG5spo7gwaN3b2y+eVdP7QwN/nzs99e1FofdTWk5oZFHOXafD942OqkxA9c0iRDGl/cMOXr98Mqm46fyE5h6hv/4p5UFFZxuKbwe60oIqiy7IK2ctLXHctPyya5al12S53mHGhbOSs5b/aXAxNuxYEv3Mj5WgvVx61AU/bcyD7vvWYYest18rbBHeTP+5W5zsUh77uEhI/inRaNqs3R7ps6f36B697mhZ+FXG5rWnVv89LCMY1o7dC6D/d7OFFIyPIBspod6vEHIpz2rbpePeh+dFDEUv+WrCVzDdKXxL7o2gOuZ8yjjt/0qDIWuIxYWWtRqLd7RnHat4+4Lv1x5MLR65a3r2y/278ymFhC7tUe9Q87UVSw/HrCd6V/H/HGttq7u5cvq4ja8ZWZta12Xnc06Hje9dIw9aAp263TDtxJbgT78/HBR1vy97465HaFS97G0YfaigMV894P+OfijqO+Ufaq9JRc0+sthoSPmSBz3b0+XcxlaUv0BY+buT74MzGXh8iip+gudPotSv1xHsMZ+NOlwAob1fIMxp7B2DMYe4IwpsSewdjvwpjiafm2UurzBGAM91H6aFESkyuBTAcwOUH6oHJCCSCWSQmcfDpgTKtUSrDHCGOHfwtjcXvSHTD2+oBVHVuqTGafmRGvret45ejwPsieheuubkqeMX7CjrYhP7UsoNM6iid9pz1abS260Vy7aOSco+EX36jtG9ygimuqnn3zSv93Ru7y3JX67u0sy0Gf0PaqxvVHLr051Ko1/pxPztKmhDKr1pY2DNzywzzbN8fPlby1sf5gx+0yl+QEcojhsjaGO5a+fsEJ7fThCzRbmz682DcjzO/imZABTldOzs6PXH9+0ck94tllFUP7XAq7eFjjtLc8bNjccefdjg1cERL9aR45s63+8Mjn5xSIxqxaqq8bPGXS0eETXvpJebykaEV1PZGq+tecBL+84cjAE+NH7hs04nrGFO+UL8gT5v11ThVLx5eUZufeGM+p3pRWWwrar+RMHmUwKeILJFs01wLIidk/LHFuunHMdOQbt8N8u3bYrRE/1m/02adAEbrPssbBC0cfm/ZjB7j3dUV4TKBhr0f2uJgxoZo6KurkpEMy0UrrvcS6jHKXllOXWqTv9imeMCJs+uH8b67tOPvJobjsw/czfNOaXhg+9y6LfPLBilmncgsH+MruuZ91F1dOL+ooqL6enUXlrS+lr5zWbY3Nq41sSO3+LuwrarPcAjP4b+ZKJy4=
eNrtmAlUE9cagOFZ0Wp9tC4tWqvT1K2WgZnsgYICgoAGwg5qH04mN8lAMhNnJpAE8bm1LnWLtXX3iWBQBNTiUhXsETcQte4VN9q61gXrw32p7yaA4NOenvdKe/QcL1kmc+/891/v/x3G52cAlqMY2r2QonnAEiQPf3BfjM9nwSgz4PiJDiPg9YwmTxUdF59rZqnq/nqeN3F+vr6EifJhTIAmKB+SMfpm4L6knuB94bXJAFxi8tSMxlq9IEtgBBxH6AAn8BueJSAZuBPNC/wESSzFA4RA4B2S4gDCmY1GgrUijBbh9QDRMgYDk0nROj8kyARlcgjBAoQFGoG3gGUMAEowc4AVZH/iLTAyGmCAN3QmHhUzqJGiKbiK41lAGAV+WsLAAW8BD4wmaCNvZuGzmA+Wna8HhAY6YGaenuF4e/HTJq0mSBJAeYAmGQ1Uw16is1Emb0QDtAaCB96IjeM1BVB5GrjcZi9IB8CEEgYqAzjqn7WvIaDmFEk4533TOIYubDAf5a0m8Ox0gdMiFPqK5u2bgjgrTUZDfYIifFVWGAYawX3kch9sjQXleIKioU841EBA1Rwm1/yW5hMmgkyHktCGENsd9Q8XN1/DcPblSoKMjntKJMGSevtygjVKxSXN77NmmqeMwJ4fonp2u4bJJ9vli3xwHL7WPiXZaZK9yPXl5/qkmI1PSQE8a0VJBgqz52DFjd4yAFrH6+25uES8ggWcCWYXmOCAj/FmbnwejA/YW5HfkGbLooc0BvaMW9e8QTBW9rJ4vdkbwWVIpNmACDGhBMGlfrjcT4wjg5XxhSEN28Q/Nyhr41mC5rQwMKGNqZBP6s10OtAUhDw3/GXO8ENrnOrDVEWBxcRwAG3Qyl6YjMbW1xcaMaikPuNQhtURNGVzbWtf6YwqrCeKXtcwbWIZp0i4OWrk7LlSoby4aSYNqmAvc16kRmhNGVRUiDDDIklTUilhoWK9OtTAWRtXN4anAHoBQ3EMxfAyC8zxDMaKmk31FYPCJMygSIC6op0rlWKbLSgsHGCgjBQMhuuz4YSACSTC4Pjm2RU8kw5ozr4Sl2D1Y2vzNSwwQvOc9jRJEirgKH3+qifSxM5FCrl489PrONBMp1yhkfvm2fkGGcswrtDSuBilNPbqXvBHKsBkUhGpUeBABIBULlVrNBIpKcflGKFViKSiTdA7FAmlONPBxLA89BMJz0Teaq/2NhIWZ90GiHCJSApt9UcomjSYNSDOrB7EOI3g/BETCwwMoVlNalGSIPUArc9ge/6glKggZURIQRxUMoRh0ikw+4S7V2oqqU1VGwOGirRKLmlIkjRRQsptOu2w+Gg+KokgMvW6TCnMx/A0A59GJ3JYCofiMolQJlXgQhzFfTAfWIFoKGWK9VEybOiwZDZcJstMS4jSMHqSVWCjqKi0aGu8IsmKMRFJZiHBYVxk8mDKxtiUehpnZTqAR9g01KBYHtNHG4dIWGtyAg308UnKoKiEIUEmIlacnioHg9Rh5nBz0mA5NJHg9QG+/ghMeQo6PaCh8FBYeGh92Ykby84f0bgcE+Dz9MHrj4TDHhNNG6z+SJzTwwB+E0YQB9tFQBRDg+o50DHmDEoTwMptMoVYMswiiQjHTXprZrLKR6kcrEtUGOO4SIUlTRgp1ki1NmNwTDPPyOQ4ijU4R4qJ5a7kbFL9/9RqQzLa/BxBo02uLmjPpxmOprRaRxysKsDaC0gDY9bAHsICR0gYGhuUYl+nkGJqDMiASCuWiUmNHA2GR3KjtCenTp6zAeUTBph4GaS9RC8KEPiJxSKBP2IkAuRSMYa5Wu44hzNRad1O94Ken7d1c41W8P348bTYbVGnsDfLLn4UFsgc6KN6+7ZHaHDwzSO3D7ULnRGwcJ5fDzK6wEf/uOzruacnfhVZdhdjztRliepi3drm7uw28XLvVdtO/ttWytyqO737Rh31qGjjtbrvb1dm3+OzMuvkZyaHqlUPJk/1LOwUOmFjxWeneiS69yZjixJ7Xj56DyQkdfUKz1Wu289Zw86PXPThFZCd6JMEzDf21Fb2m6buUNPebezch33+FXXWd+1n539SdcXCqnOSey50G4Qs7B+8Sy8YsluNj5vaPbfq2OrSjV5BHq+dseXmrR/edsU2uUrz4aK9U9xl5JzK0neLFrsfUqjnl+uqPFdX1OoPxV5stf6GZ8FxL5265rU59hHCzvNLKy4Vu1kqtnvVnOsUeOCHTcT9cfe2XFb79nV0GfqDO6mm8tnsrZbBhQcrDh2XL1yuir21ou8FsUWRFiJaOi/015NVWSceHN9lfvzBAPfIHN2R6Z4rptsWZqa1n1dbl2rc/ZZuu0B9l+osNWB5Ev2pioO1q8N2GDXdF0wf9Z5Hz6GBi9ftUic99HAGpJVbm8neugAYnRZErhPuOb/JXCNopGGoWEZjJp38paVowtBIXz5NK5quQi0Ux8OMeoJoZhPCM5DSKA4xMRAd/ZrWNmM1yDiwjxoMVie1wfMQkp6BYZ+7QxTIRFxaWprLQpuNprvBBjNQA5alGrZRw9+/90zT1WDYn2kXYNJNe3pDDaEbgOs+w1K633BJi6PnGbc3X8HniwmfDtLViO0n3Nu8jI34T2iRz+C4GJf9bzju9Ts4LnxJcVwsUfxlOC6WCl88HBdiLY7jalxOQFtkClKLiwgg0UjkCgIjCbiXWgww6Z+P43+c6OQiiRaTtCDRlT5LdPRJ7I2yBx+1XXxNEFWi2Vd0euw11UivY9s/y8E0U9ZWV85GDp4eL3gcGB5BZl4Z+8kb82Ze/zlgdnTrsQi6AYn3TelwJl521rjqzun8O1d2z/TcWBM4euvw7LIto++0bhOM7tlhutaq/xjtJ/1klglD9/cguqiEfY7a6rSbUlKPVvm1mnBY37GobkTRCMms5WmbkosLdjoKapYcL/vg0xjDj1nubr/M+bYy/+jdIQYiJjDJY1pMRr8NF/u4vbUoosv7ZF7Foa/79VUpqvQlt9Kvdwib5T7uzpI5Yq2nu2RW6/PT2vd+eLUSWafd8XbI0rjM+9/O+9zj1PQYx8gMsdYjPP29KvG87hd/ndh9v/u0K6NNxocT+mdoPrytHNh1sVL7gb+v0NbPrbZu6a53qj/1pH85tebBuHubzNlzOh229Vmz9eNxV5MXrNya8uXqFZJuKbOnlAS1750w06aOGm7P7SNrNTXlwrf7Sh3Ze5UbHvS897qqXUAuPXqg8jL4YSU60u/MP9cv1i3q8PnkH+2dpUO9DvUQ157Tz+jb+6dA4d/3zTBM2tZmT+aXt5O7T61xq2c8BGwuHdbSjLf5RWY8byRTTxnq0ey/Ue2P8x9Bw796gVZYwZmv4O8V/L2Cv78c/sTCloU/0UsKf9DDfxn8wVi8ePCHS1oc/rRqIUlqcAxI1CKNRKqViOELiEk5JhJKxFL8pYA/mUwjFLYg/JU/A3/KmYed/85LmjY6KtF45LR32Th5sCcy8bVhoZ2yTnTrPhNEJ5cXPH5P8Sj8nbenDMnbu1A25vq+j7u47em23mP5nX6bPYttotIrK8aUPrprLbGenLQvMuzXQxUXDk+q/T4rQeuRWRNeNd+cu8lzxo6vB5T7dWx3fmXVhQ107T/QK7a/2aTnhMZ38oaNOjqcWWWLWV0QGodej74aMFwZUfRjOiQ/cXZJFHMpf9j2ZR8n2SJfz8w7NrePW5fq81PL5xg63ly2p+uRq58+7PXI3HZGx5G9ZuHJ0/dPf7Ny7K2l1aO8c7hW5s65AbfOP+544N1LB3J3k+ZeF+/euHB/fvjJ94kNl9tcLHa7uaQ1F//Ftkmd2G+S2dL29i032yQYizZSNWHlOwKrosuDlJdy3Czzlr27ZHlO8LnA8I8eLnZcrF1wVi7xNXjM1amSD+y79SDhXvm6Y7OWmn/ub1sec71y715rtNyrKmngqPP3GNx3X+D9DWPuDDirG5jeLtjRwT7t6HcdvjPa/614vOra7Bu9kntPHVDoSPTeWdomZHj3Uzcq4rt9oaqhi2pi3jgYNferO80Q8GB7R64BRu0/BO9/TA==

File diff suppressed because one or more lines are too long

View File

@@ -20,8 +20,7 @@ LangChain is a framework that consists of a number of packages.
This package contains base abstractions for different components and ways to compose them together.
The interfaces for core components like chat models, vector stores, tools and more are defined here.
No third-party integrations are defined here.
The dependencies are very lightweight.
**No third-party integrations are defined here.** The dependencies are kept purposefully very lightweight.
## langchain

View File

@@ -25,7 +25,7 @@
"metadata": {},
"outputs": [],
"source": [
"%pip install -qU langchain>=0.2.8 langchain-openai langchain-anthropic langchain-google-vertexai"
"%pip install -qU langchain langchain-openai langchain-anthropic langchain-google-genai"
]
},
{
@@ -38,7 +38,7 @@
},
{
"cell_type": "code",
"execution_count": 2,
"execution_count": 5,
"id": "79e14913-803c-4382-9009-5c6af3d75d35",
"metadata": {
"execution": {
@@ -49,38 +49,15 @@
}
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/var/folders/4j/2rz3865x6qg07tx43146py8h0000gn/T/ipykernel_95293/571506279.py:4: LangChainBetaWarning: The function `init_chat_model` is in beta. It is actively being worked on, so the API may change.\n",
" gpt_4o = init_chat_model(\"gpt-4o\", model_provider=\"openai\", temperature=0)\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"GPT-4o: I'm an AI created by OpenAI, and I don't have a personal name. How can I assist you today?\n",
"\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"GPT-4o: Im called ChatGPT. How can I assist you today?\n",
"\n",
"Claude Opus: My name is Claude. It's nice to meet you!\n",
"\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Gemini 1.5: I am a large language model, trained by Google. \n",
"\n",
"I don't have a name like a person does. You can call me Bard if you like! 😊 \n",
"\n",
"Gemini 2.5: I do not have a name. I am a large language model, trained by Google.\n",
"\n"
]
}
@@ -88,6 +65,10 @@
"source": [
"from langchain.chat_models import init_chat_model\n",
"\n",
"# Don't forget to set your environment variables for the API keys of the respective providers!\n",
"# For example, you can set them in your terminal or in a .env file:\n",
"# export OPENAI_API_KEY=\"your_openai_api_key\"\n",
"\n",
"# Returns a langchain_openai.ChatOpenAI instance.\n",
"gpt_4o = init_chat_model(\"gpt-4o\", model_provider=\"openai\", temperature=0)\n",
"# Returns a langchain_anthropic.ChatAnthropic instance.\n",
@@ -96,13 +77,13 @@
")\n",
"# Returns a langchain_google_vertexai.ChatVertexAI instance.\n",
"gemini_15 = init_chat_model(\n",
" \"gemini-1.5-pro\", model_provider=\"google_vertexai\", temperature=0\n",
" \"gemini-2.5-pro\", model_provider=\"google_genai\", temperature=0\n",
")\n",
"\n",
"# Since all model integrations implement the ChatModel interface, you can use them in the same way.\n",
"print(\"GPT-4o: \" + gpt_4o.invoke(\"what's your name\").content + \"\\n\")\n",
"print(\"Claude Opus: \" + claude_opus.invoke(\"what's your name\").content + \"\\n\")\n",
"print(\"Gemini 1.5: \" + gemini_15.invoke(\"what's your name\").content + \"\\n\")"
"print(\"Gemini 2.5: \" + gemini_15.invoke(\"what's your name\").content + \"\\n\")"
]
},
{
@@ -117,7 +98,7 @@
},
{
"cell_type": "code",
"execution_count": 3,
"execution_count": null,
"id": "0378ccc6-95bc-4d50-be50-fccc193f0a71",
"metadata": {
"execution": {
@@ -131,7 +112,7 @@
"source": [
"gpt_4o = init_chat_model(\"gpt-4o\", temperature=0)\n",
"claude_opus = init_chat_model(\"claude-3-opus-20240229\", temperature=0)\n",
"gemini_15 = init_chat_model(\"gemini-1.5-pro\", temperature=0)"
"gemini_15 = init_chat_model(\"gemini-2.5-pro\", temperature=0)"
]
},
{
@@ -146,7 +127,7 @@
},
{
"cell_type": "code",
"execution_count": 4,
"execution_count": 7,
"id": "6c037f27-12d7-4e83-811e-4245c0e3ba58",
"metadata": {
"execution": {
@@ -160,10 +141,10 @@
{
"data": {
"text/plain": [
"AIMessage(content=\"I'm an AI created by OpenAI, and I don't have a personal name. How can I assist you today?\", additional_kwargs={'refusal': None}, response_metadata={'token_usage': {'completion_tokens': 23, 'prompt_tokens': 11, 'total_tokens': 34}, 'model_name': 'gpt-4o-2024-05-13', 'system_fingerprint': 'fp_25624ae3a5', 'finish_reason': 'stop', 'logprobs': None}, id='run-b41df187-4627-490d-af3c-1c96282d3eb0-0', usage_metadata={'input_tokens': 11, 'output_tokens': 23, 'total_tokens': 34})"
"AIMessage(content='Im called ChatGPT. How can I assist you today?', additional_kwargs={'refusal': None}, response_metadata={'token_usage': {'completion_tokens': 13, 'prompt_tokens': 11, 'total_tokens': 24, 'completion_tokens_details': {'accepted_prediction_tokens': 0, 'audio_tokens': 0, 'reasoning_tokens': 0, 'rejected_prediction_tokens': 0}, 'prompt_tokens_details': {'audio_tokens': 0, 'cached_tokens': 0}}, 'model_name': 'gpt-4o-2024-08-06', 'system_fingerprint': 'fp_07871e2ad8', 'id': 'chatcmpl-BwCyyBpMqn96KED6zPhLm4k9SQMiQ', 'service_tier': 'default', 'finish_reason': 'stop', 'logprobs': None}, id='run--fada10c3-4128-406c-b83d-a850d16b365f-0', usage_metadata={'input_tokens': 11, 'output_tokens': 13, 'total_tokens': 24, 'input_token_details': {'audio': 0, 'cache_read': 0}, 'output_token_details': {'audio': 0, 'reasoning': 0}})"
]
},
"execution_count": 4,
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
@@ -178,7 +159,7 @@
},
{
"cell_type": "code",
"execution_count": 5,
"execution_count": 8,
"id": "321e3036-abd2-4e1f-bcc6-606efd036954",
"metadata": {
"execution": {
@@ -192,10 +173,10 @@
{
"data": {
"text/plain": [
"AIMessage(content=\"My name is Claude. It's nice to meet you!\", additional_kwargs={}, response_metadata={'id': 'msg_01Fx9P74A7syoFkwE73CdMMY', 'model': 'claude-3-5-sonnet-20240620', 'stop_reason': 'end_turn', 'stop_sequence': None, 'usage': {'input_tokens': 11, 'output_tokens': 15}}, id='run-a0fd2bbd-3b7e-46bf-8d69-a48c7e60b03c-0', usage_metadata={'input_tokens': 11, 'output_tokens': 15, 'total_tokens': 26})"
"AIMessage(content=\"My name is Claude. It's nice to meet you!\", additional_kwargs={}, response_metadata={'id': 'msg_01VDGrG9D6yefanbBG9zPJrc', 'model': 'claude-3-5-sonnet-20240620', 'stop_reason': 'end_turn', 'stop_sequence': None, 'usage': {'cache_creation_input_tokens': 0, 'cache_read_input_tokens': 0, 'input_tokens': 11, 'output_tokens': 15, 'server_tool_use': None, 'service_tier': 'standard'}, 'model_name': 'claude-3-5-sonnet-20240620'}, id='run--f0156087-debf-4b4b-9aaa-f3328a81ef92-0', usage_metadata={'input_tokens': 11, 'output_tokens': 15, 'total_tokens': 26, 'input_token_details': {'cache_read': 0, 'cache_creation': 0}})"
]
},
"execution_count": 5,
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
@@ -394,9 +375,9 @@
],
"metadata": {
"kernelspec": {
"display_name": "poetry-venv-2",
"display_name": "langchain",
"language": "python",
"name": "poetry-venv-2"
"name": "python3"
},
"language_info": {
"codemirror_mode": {
@@ -408,7 +389,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.9"
"version": "3.10.16"
}
},
"nbformat": 4,

View File

@@ -18,7 +18,7 @@
"\n",
"Wrapping your LLM with the standard [`BaseChatModel`](https://python.langchain.com/api_reference/core/language_models/langchain_core.language_models.chat_models.BaseChatModel.html) interface allow you to use your LLM in existing LangChain programs with minimal code modifications!\n",
"\n",
"As an bonus, your LLM will automatically become a LangChain [Runnable](/docs/concepts/runnables/) and will benefit from some optimizations out of the box (e.g., batch via a threadpool), async support, the `astream_events` API, etc.\n",
"As a bonus, your LLM will automatically become a LangChain [Runnable](/docs/concepts/runnables/) and will benefit from some optimizations out of the box (e.g., batch via a threadpool), async support, the `astream_events` API, etc.\n",
"\n",
"## Inputs and outputs\n",
"\n",

View File

@@ -34,6 +34,8 @@ These are the core building blocks you can use when building applications.
[Chat Models](/docs/concepts/chat_models) are newer forms of language models that take messages in and output a message.
See [supported integrations](/docs/integrations/chat/) for details on getting started with chat models from a specific provider.
- [How to: init any model in one line](/docs/how_to/chat_models_universal_init/)
- [How to: work with local models](/docs/how_to/local_llms)
- [How to: do function/tool calling](/docs/how_to/tool_calling)
- [How to: get models to return structured output](/docs/how_to/structured_output)
- [How to: cache model responses](/docs/how_to/chat_model_caching)
@@ -48,8 +50,6 @@ See [supported integrations](/docs/integrations/chat/) for details on getting st
- [How to: few shot prompt tool behavior](/docs/how_to/tools_few_shot)
- [How to: bind model-specific formatted tools](/docs/how_to/tools_model_specific)
- [How to: force a specific tool call](/docs/how_to/tool_choice)
- [How to: work with local models](/docs/how_to/local_llms)
- [How to: init any model in one line](/docs/how_to/chat_models_universal_init/)
- [How to: pass multimodal data directly to models](/docs/how_to/multimodal_inputs/)
### Messages
@@ -362,14 +362,14 @@ relevant to LangChain below:
Evaluating performance is a vital part of building LLM-powered applications.
LangSmith helps with every step of the process from creating a dataset to defining metrics to running evaluators.
To learn more, check out the [LangSmith evaluation how-to guides](https://docs.smith.langchain.com/how_to_guides#evaluation).
To learn more, check out the [LangSmith evaluation how-to guides](https://docs.smith.langchain.com/evaluation/how_to_guides).
### Tracing
<span data-heading-keywords="trace,tracing"></span>
Tracing gives you observability inside your chains and agents, and is vital in diagnosing issues.
- [How to: trace with LangChain](https://docs.smith.langchain.com/how_to_guides/tracing/trace_with_langchain)
- [How to: add metadata and tags to traces](https://docs.smith.langchain.com/how_to_guides/tracing/trace_with_langchain#add-metadata-and-tags-to-traces)
- [How to: trace with LangChain](https://docs.smith.langchain.com/observability/how_to_guides/trace_with_langchain)
- [How to: add metadata and tags to traces](https://docs.smith.langchain.com/observability/how_to_guides/add_metadata_tags)
You can see general tracing-related how-tos [in this section of the LangSmith docs](https://docs.smith.langchain.com/how_to_guides/tracing).
You can see general tracing-related how-tos [in this section of the LangSmith docs](https://docs.smith.langchain.com/observability/how_to_guides#tracing-configuration).

View File

@@ -13,15 +13,15 @@
"\n",
"This has at least two important benefits:\n",
"\n",
"1. `Privacy`: Your data is not sent to a third party, and it is not subject to the terms of service of a commercial service\n",
"2. `Cost`: There is no inference fee, which is important for token-intensive applications (e.g., [long-running simulations](https://twitter.com/RLanceMartin/status/1691097659262820352?s=20), summarization)\n",
"1. **Privacy**: Your data is not sent to a third party, and it is not subject to the terms of service of a commercial service\n",
"2. **Cost**: There is no inference fee, which is important for token-intensive applications (e.g., [long-running simulations](https://twitter.com/RLanceMartin/status/1691097659262820352?s=20), summarization)\n",
"\n",
"## Overview\n",
"\n",
"Running an LLM locally requires a few things:\n",
"\n",
"1. `Open-source LLM`: An open-source LLM that can be freely modified and shared \n",
"2. `Inference`: Ability to run this LLM on your device w/ acceptable latency\n",
"1. **Open-source LLM**: An open-source LLM that can be freely modified and shared \n",
"2. **Inference**: Ability to run this LLM on your device w/ acceptable latency\n",
"\n",
"### Open-source LLMs\n",
"\n",
@@ -29,8 +29,8 @@
"\n",
"These LLMs can be assessed across at least two dimensions (see figure):\n",
" \n",
"1. `Base model`: What is the base-model and how was it trained?\n",
"2. `Fine-tuning approach`: Was the base-model fine-tuned and, if so, what [set of instructions](https://cameronrwolfe.substack.com/p/beyond-llama-the-power-of-open-llms#%C2%A7alpaca-an-instruction-following-llama-model) was used?\n",
"1. **Base model**: What is the base-model and how was it trained?\n",
"2. **Fine-tuning approach**: Was the base-model fine-tuned and, if so, what [set of instructions](https://cameronrwolfe.substack.com/p/beyond-llama-the-power-of-open-llms#%C2%A7alpaca-an-instruction-following-llama-model) was used?\n",
"\n",
"![Image description](../../static/img/OSS_LLM_overview.png)\n",
"\n",
@@ -51,8 +51,8 @@
"\n",
"In general, these frameworks will do a few things:\n",
"\n",
"1. `Quantization`: Reduce the memory footprint of the raw model weights\n",
"2. `Efficient implementation for inference`: Support inference on consumer hardware (e.g., CPU or laptop GPU)\n",
"1. **Quantization**: Reduce the memory footprint of the raw model weights\n",
"2. **Efficient implementation for inference**: Support inference on consumer hardware (e.g., CPU or laptop GPU)\n",
"\n",
"In particular, see [this excellent post](https://finbarr.ca/how-is-llama-cpp-possible/) on the importance of quantization.\n",
"\n",
@@ -679,11 +679,17 @@
"\n",
"In general, use cases for local LLMs can be driven by at least two factors:\n",
"\n",
"* `Privacy`: private data (e.g., journals, etc) that a user does not want to share \n",
"* `Cost`: text preprocessing (extraction/tagging), summarization, and agent simulations are token-use-intensive tasks\n",
"* **Privacy**: private data (e.g., journals, etc) that a user does not want to share \n",
"* **Cost**: text preprocessing (extraction/tagging), summarization, and agent simulations are token-use-intensive tasks\n",
"\n",
"In addition, [here](https://blog.langchain.dev/using-langsmith-to-support-fine-tuning-of-open-source-llms/) is an overview on fine-tuning, which can utilize open-source LLMs."
]
},
{
"cell_type": "markdown",
"id": "14c2c170",
"metadata": {},
"source": []
}
],
"metadata": {

View File

@@ -237,6 +237,157 @@
" print(chunk.text(), end=\"|\")"
]
},
{
"cell_type": "markdown",
"id": "a009400a",
"metadata": {},
"source": [
"## Extended Thinking \n",
"\n",
"This guide focuses on implementing Extended Thinking using AWS Bedrock with LangChain's `ChatBedrockConverse` integration.\n",
"\n",
"### Supported Models\n",
"\n",
"Extended Thinking is available for the following Claude models on AWS Bedrock:\n",
"\n",
"| Model | Model ID |\n",
"|-------|----------|\n",
"| **Claude Opus 4** | `anthropic.claude-opus-4-20250514-v1:0` |\n",
"| **Claude Sonnet 4** | `anthropic.claude-sonnet-4-20250514-v1:0` |\n",
"| **Claude 3.7 Sonnet** | `us.anthropic.claude-3-7-sonnet-20250219-v1:0` |\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "abc790ca",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"AIMessage(content=[{'type': 'reasoning_content', 'reasoning_content': {'text': 'The user wants me to translate \"I love programming\" from English to French.\\n\\n\"I love\" translates to \"J\\'aime\" or \"J\\'adore\" in French\\n\"Programming\" translates to \"la programmation\" in French\\n\\nSo the translation would be \"J\\'aime la programmation\" or \"J\\'adore la programmation\"\\n\\nBoth are correct, but \"J\\'aime\" is more commonly used for expressing love/liking something.', 'signature': 'EpgECkgIBRABGAIqQDub6nRpiusjbxZONXVlGXg5ZjUY1Eka1Yp4oBBHmRqGjId+StTBPuwD3CXLyb2rUDRhSc3hTpTM4krVqlFZrIsSDI/WLa1mu38DDqt1HRoMUjm+jF+03MZFD+WQIjBZtHaYiqgY0JQgU0NdXDwwBSZX44gXwuX9EDekh12VM1ysq+WxVtkp0WMU0dKCJo4q/QKpguFFlZtEZjF9PftzOgTIyy+1H5pY+Dsb2pnrGtfAgwTR7PuZ/d8ibY0A8ywjVEZtGm+PtcnCJiK53BWxhGYOtxnfN/RRKtuZhvPQj+QQOWeRWqH+GcbeISCgyTYn5WG75fmVL707byjQZ3IuhMfyZWmiTFE2fc4Jn/bxX7OsU+DbTWv2K1a+g7eW+dvQwYzCBO1hfEn4699/CHII8UAcHh1L3bnxOWGKkeVQ0KMfgfwVb0vuGG4QBYKIDs87QL414i69D68DxqCTZAHK4lMA6Xs7zW+m0MMCct4iHRnJI8kat1mlBEpMz6NRo9KacZJXpLJxofIU4ho7R5/QHccdni0IidNkUtrLBSB3toNJoQEcStts2UR67NHTxn47zk1/hi4v4Ahtw9OEQFONaH6XaG1wjpqEdjQ8/Tmg9eB6ZLoQ4sQfhcMF8Uo3hHbBY8jA3jZ+9pa9VbuVbO6Eup8NX3XXZm2nk50OMWX7hBwgBmlZbEew6pWFu7+13EkYAQ=='}}, {'type': 'text', 'text': \"J'aime la programmation.\"}], additional_kwargs={}, response_metadata={'ResponseMetadata': {'RequestId': '169ca92f-19c9-480c-9fc3-4e5284507e67', 'HTTPStatusCode': 200, 'HTTPHeaders': {'date': 'Tue, 22 Jul 2025 04:40:22 GMT', 'content-type': 'application/json', 'content-length': '1498', 'connection': 'keep-alive', 'x-amzn-requestid': '169ca92f-19c9-480c-9fc3-4e5284507e67'}, 'RetryAttempts': 0}, 'stopReason': 'end_turn', 'metrics': {'latencyMs': [2839]}, 'model_name': 'us.anthropic.claude-sonnet-4-20250514-v1:0'}, id='run--42e05e5d-ba86-4dce-9e29-2a4ba32c5804-0', usage_metadata={'input_tokens': 58, 'output_tokens': 122, 'total_tokens': 180, 'input_token_details': {'cache_creation': 0, 'cache_read': 0}})"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from langchain_aws import ChatBedrockConverse\n",
"\n",
"llm = ChatBedrockConverse(\n",
" model_id=\"us.anthropic.claude-sonnet-4-20250514-v1:0\",\n",
" region_name=\"us-west-2\",\n",
" max_tokens=4096,\n",
" additional_model_request_fields={\n",
" \"thinking\": {\"type\": \"enabled\", \"budget_tokens\": 1024},\n",
" },\n",
")\n",
"\n",
"ai_msg = llm.invoke(messages)\n",
"ai_msg"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "7fb27b941602401d91542211134fc71a",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[{'type': 'reasoning_content', 'reasoning_content': {'text': 'The user wants me to translate \"I love programming\" from English to French.\\n\\n\"I love\" translates to \"J\\'aime\" or \"J\\'adore\" in French\\n\"Programming\" translates to \"la programmation\" in French\\n\\nSo the translation would be \"J\\'aime la programmation\" or \"J\\'adore la programmation\"\\n\\nBoth are correct, but \"J\\'aime\" is more commonly used for expressing love/liking something.', 'signature': 'EpgECkgIBRABGAIqQDub6nRpiusjbxZONXVlGXg5ZjUY1Eka1Yp4oBBHmRqGjId+StTBPuwD3CXLyb2rUDRhSc3hTpTM4krVqlFZrIsSDI/WLa1mu38DDqt1HRoMUjm+jF+03MZFD+WQIjBZtHaYiqgY0JQgU0NdXDwwBSZX44gXwuX9EDekh12VM1ysq+WxVtkp0WMU0dKCJo4q/QKpguFFlZtEZjF9PftzOgTIyy+1H5pY+Dsb2pnrGtfAgwTR7PuZ/d8ibY0A8ywjVEZtGm+PtcnCJiK53BWxhGYOtxnfN/RRKtuZhvPQj+QQOWeRWqH+GcbeISCgyTYn5WG75fmVL707byjQZ3IuhMfyZWmiTFE2fc4Jn/bxX7OsU+DbTWv2K1a+g7eW+dvQwYzCBO1hfEn4699/CHII8UAcHh1L3bnxOWGKkeVQ0KMfgfwVb0vuGG4QBYKIDs87QL414i69D68DxqCTZAHK4lMA6Xs7zW+m0MMCct4iHRnJI8kat1mlBEpMz6NRo9KacZJXpLJxofIU4ho7R5/QHccdni0IidNkUtrLBSB3toNJoQEcStts2UR67NHTxn47zk1/hi4v4Ahtw9OEQFONaH6XaG1wjpqEdjQ8/Tmg9eB6ZLoQ4sQfhcMF8Uo3hHbBY8jA3jZ+9pa9VbuVbO6Eup8NX3XXZm2nk50OMWX7hBwgBmlZbEew6pWFu7+13EkYAQ=='}}, {'type': 'text', 'text': \"J'aime la programmation.\"}]\n"
]
}
],
"source": [
"print(ai_msg.content)"
]
},
{
"cell_type": "markdown",
"id": "f1eb1ce1",
"metadata": {},
"source": [
"### How extended thinking works\n",
"\n",
"When extended thinking is turned on, Claude creates thinking content blocks where it outputs its internal reasoning. Claude incorporates insights from this reasoning before crafting a final response. The API response will include thinking content blocks, followed by text content blocks."
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "951d8206",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[('system',\n",
" 'You are a helpful assistant that translates English to French. Translate the user sentence.'),\n",
" ('human', 'I love programming.'),\n",
" ('ai',\n",
" [{'type': 'reasoning_content',\n",
" 'reasoning_content': {'text': 'The user wants me to translate \"I love programming\" from English to French.\\n\\n\"I love\" translates to \"J\\'aime\" or \"J\\'adore\" in French\\n\"Programming\" translates to \"la programmation\" in French\\n\\nSo the translation would be \"J\\'aime la programmation\" or \"J\\'adore la programmation\"\\n\\nBoth are correct, but \"J\\'aime\" is more commonly used for expressing love/liking something.',\n",
" 'signature': 'EpgECkgIBRABGAIqQDub6nRpiusjbxZONXVlGXg5ZjUY1Eka1Yp4oBBHmRqGjId+StTBPuwD3CXLyb2rUDRhSc3hTpTM4krVqlFZrIsSDI/WLa1mu38DDqt1HRoMUjm+jF+03MZFD+WQIjBZtHaYiqgY0JQgU0NdXDwwBSZX44gXwuX9EDekh12VM1ysq+WxVtkp0WMU0dKCJo4q/QKpguFFlZtEZjF9PftzOgTIyy+1H5pY+Dsb2pnrGtfAgwTR7PuZ/d8ibY0A8ywjVEZtGm+PtcnCJiK53BWxhGYOtxnfN/RRKtuZhvPQj+QQOWeRWqH+GcbeISCgyTYn5WG75fmVL707byjQZ3IuhMfyZWmiTFE2fc4Jn/bxX7OsU+DbTWv2K1a+g7eW+dvQwYzCBO1hfEn4699/CHII8UAcHh1L3bnxOWGKkeVQ0KMfgfwVb0vuGG4QBYKIDs87QL414i69D68DxqCTZAHK4lMA6Xs7zW+m0MMCct4iHRnJI8kat1mlBEpMz6NRo9KacZJXpLJxofIU4ho7R5/QHccdni0IidNkUtrLBSB3toNJoQEcStts2UR67NHTxn47zk1/hi4v4Ahtw9OEQFONaH6XaG1wjpqEdjQ8/Tmg9eB6ZLoQ4sQfhcMF8Uo3hHbBY8jA3jZ+9pa9VbuVbO6Eup8NX3XXZm2nk50OMWX7hBwgBmlZbEew6pWFu7+13EkYAQ=='}},\n",
" {'type': 'text', 'text': \"J'aime la programmation.\"}]),\n",
" ('human', 'I love AI')]"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"next_messages = messages + [(\"ai\", ai_msg.content), (\"human\", \"I love AI\")]\n",
"next_messages"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "9d8c506c",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"AIMessage(content=[{'type': 'reasoning_content', 'reasoning_content': {'text': 'The user wants me to translate \"I love AI\" from English to French. \\n\\n\"I love\" translates to \"J\\'aime\" in French.\\n\"AI\" stands for \"Artificial Intelligence\" which in French is \"Intelligence Artificielle\" or abbreviated as \"IA\".\\n\\nSo the translation would be \"J\\'aime l\\'IA\" (using the abbreviation) or \"J\\'aime l\\'intelligence artificielle\" (using the full term).\\n\\nI think using the abbreviation \"IA\" would be more natural and commonly used, similar to how we use \"AI\" in English.', 'signature': 'EoMFCkgIBRABGAIqQOwp9d0YWm8NctfL9lf1MeWR1OxeAKB3Es19Lei2bdHQ4W0ezTK4wVcm/VLM+7kICX2aB9RAmUD5sJxoKHfdX38SDIR/aSJhHZifGOHqwBoMhzNsyPmB7FFNvNESIjBMVRpRUDTFGn5+nL0x5CjWhKA8H/XFnKYRrUyMYb1n7lCQA7BeEjsaWwxZ3YV9rZsq6APuaXaA40Bt+KnpPOo06r72L/DceliRAw1a6cuT5E0Dv0eIAOYblbXaKYn0jy8UzTUuctOP3As/zT5pK5yC+Rx0d2l9kuP3+COERM98u0R04bWn6qh0HcyE+zNc7c4YWkncjdmOxF/j6OxhcMhZEoX2035v9eUJ9+O/u1xaff08YAEfg7TGWrSIwalpjs1mzWA9ijKg8YyjmXjWnMeFn0z6LDqLaaKc+nC8IN9SLwA/eHpf/ayoEgmogn7gWzijW8MDbnlwpQDS75wK7An3RMEcpWD/OXrKb1EhWKEmOBro5BOTGsfK3ZDveRL0aCBINdOu+AHMQDFXJ04cRDEjs9GE3YC218UcFtS42TFO7/Ct5CYCTknETPx93zcGTOM2VPOZ02Uem1A7Nda/Fa4l2b03EUEtwlgske5K1RbeohN9sclxYsxX5nGJ5sSZurVCk9plkyTG3aiPvbohfVVarVgukKoKwoMDYz5rHVscWlUe+qeqJE/H+KKlhtzO+lWWDN4knqeYsZ55flO5Hq4vT20QCYnF8hcUx07ngGKXuGID9n5kFnLsP8sBUHYKm7bmopFFZvfPcmsqiV9yvG/8Ly9DHbmY5ZwxyrbdJCFT6HD6kq/mEBDftZ6dhmyKMimJBfbTj7d3VAILbRgB'}}, {'type': 'text', 'text': \"J'aime l'IA.\"}], additional_kwargs={}, response_metadata={'ResponseMetadata': {'RequestId': '023799d6-7ed5-4e49-8ad7-7460a49a9a45', 'HTTPStatusCode': 200, 'HTTPHeaders': {'date': 'Tue, 22 Jul 2025 04:40:34 GMT', 'content-type': 'application/json', 'content-length': '1737', 'connection': 'keep-alive', 'x-amzn-requestid': '023799d6-7ed5-4e49-8ad7-7460a49a9a45'}, 'RetryAttempts': 0}, 'stopReason': 'end_turn', 'metrics': {'latencyMs': [3473]}, 'model_name': 'us.anthropic.claude-sonnet-4-20250514-v1:0'}, id='run--ca8abc92-60a9-4bd1-93b4-7788496eda7a-0', usage_metadata={'input_tokens': 75, 'output_tokens': 153, 'total_tokens': 228, 'input_token_details': {'cache_creation': 0, 'cache_read': 0}})"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"ai_msg = llm.invoke(next_messages)\n",
"ai_msg"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "e53e3ebb",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[{'type': 'reasoning_content', 'reasoning_content': {'text': 'The user wants me to translate \"I love AI\" from English to French. \\n\\n\"I love\" translates to \"J\\'aime\" in French.\\n\"AI\" stands for \"Artificial Intelligence\" which in French is \"Intelligence Artificielle\" or abbreviated as \"IA\".\\n\\nSo the translation would be \"J\\'aime l\\'IA\" (using the abbreviation) or \"J\\'aime l\\'intelligence artificielle\" (using the full term).\\n\\nI think using the abbreviation \"IA\" would be more natural and commonly used, similar to how we use \"AI\" in English.', 'signature': 'EoMFCkgIBRABGAIqQOwp9d0YWm8NctfL9lf1MeWR1OxeAKB3Es19Lei2bdHQ4W0ezTK4wVcm/VLM+7kICX2aB9RAmUD5sJxoKHfdX38SDIR/aSJhHZifGOHqwBoMhzNsyPmB7FFNvNESIjBMVRpRUDTFGn5+nL0x5CjWhKA8H/XFnKYRrUyMYb1n7lCQA7BeEjsaWwxZ3YV9rZsq6APuaXaA40Bt+KnpPOo06r72L/DceliRAw1a6cuT5E0Dv0eIAOYblbXaKYn0jy8UzTUuctOP3As/zT5pK5yC+Rx0d2l9kuP3+COERM98u0R04bWn6qh0HcyE+zNc7c4YWkncjdmOxF/j6OxhcMhZEoX2035v9eUJ9+O/u1xaff08YAEfg7TGWrSIwalpjs1mzWA9ijKg8YyjmXjWnMeFn0z6LDqLaaKc+nC8IN9SLwA/eHpf/ayoEgmogn7gWzijW8MDbnlwpQDS75wK7An3RMEcpWD/OXrKb1EhWKEmOBro5BOTGsfK3ZDveRL0aCBINdOu+AHMQDFXJ04cRDEjs9GE3YC218UcFtS42TFO7/Ct5CYCTknETPx93zcGTOM2VPOZ02Uem1A7Nda/Fa4l2b03EUEtwlgske5K1RbeohN9sclxYsxX5nGJ5sSZurVCk9plkyTG3aiPvbohfVVarVgukKoKwoMDYz5rHVscWlUe+qeqJE/H+KKlhtzO+lWWDN4knqeYsZ55flO5Hq4vT20QCYnF8hcUx07ngGKXuGID9n5kFnLsP8sBUHYKm7bmopFFZvfPcmsqiV9yvG/8Ly9DHbmY5ZwxyrbdJCFT6HD6kq/mEBDftZ6dhmyKMimJBfbTj7d3VAILbRgB'}}, {'type': 'text', 'text': \"J'aime l'IA.\"}]\n"
]
}
],
"source": [
"print(ai_msg.content)"
]
},
{
"cell_type": "markdown",
"id": "a77519e5-897d-41a0-a9bb-55300fa79efc",
@@ -379,7 +530,7 @@
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"display_name": ".venv",
"language": "python",
"name": "python3"
},
@@ -393,7 +544,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.4"
"version": "3.12.9"
}
},
"nbformat": 4,

View File

@@ -240,6 +240,65 @@
"response.content"
]
},
{
"cell_type": "markdown",
"id": "382335a6",
"metadata": {},
"source": [
"### Accessing the search results metadata\n",
"\n",
"Perplexity often provides a list of the web pages it consulted (“search_results”).\n",
"You don't need to pass any special parameter — the list is placed in\n",
"`response.additional_kwargs[\"search_results\"]`.\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "2b09214a",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The tallest mountain in South America is Aconcagua. It has a summit elevation of approximately 6,961 meters (22,838 feet), making it not only the highest peak in South America but also the highest mountain in the Americas, the Western Hemisphere, and the Southern Hemisphere[1][2][4].\n",
"\n",
"Aconcagua is located in the Principal Cordillera of the Andes mountain range, in Mendoza Province, Argentina, near the border with Chile[1][2][4]. It is of volcanic origin but is not an active volcano[4]. The mountain is part of Aconcagua Provincial Park and features several glaciers, including the large Ventisquero Horcones Inferior glacier[1].\n",
"\n",
"In summary, Aconcagua stands as the tallest mountain in South America at about 6,961 meters (22,838 feet) in height.\n"
]
},
{
"data": {
"text/plain": [
"[{'title': 'Aconcagua - Wikipedia',\n",
" 'url': 'https://en.wikipedia.org/wiki/Aconcagua',\n",
" 'date': None},\n",
" {'title': 'The 10 Highest Mountains in South America - Much Better Adventures',\n",
" 'url': 'https://www.muchbetteradventures.com/magazine/highest-mountains-south-america/',\n",
" 'date': '2023-07-05'}]"
]
},
"execution_count": null,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"chat = ChatPerplexity(temperature=0, model=\"sonar\")\n",
"\n",
"response = chat.invoke(\n",
" \"What is the tallest mountain in South America?\",\n",
")\n",
"\n",
"# Main answer\n",
"print(response.content)\n",
"\n",
"# First two supporting search results\n",
"response.additional_kwargs[\"search_results\"][:2]"
]
},
{
"cell_type": "markdown",
"id": "13d93dc4",

View File

@@ -13,7 +13,7 @@
"\n",
"`Textract` supports `JPEG`, `PNG`, `PDF`, and `TIFF` file formats; more information is available in [the documentation](https://docs.aws.amazon.com/textract/latest/dg/limits-document.html).\n",
"\n",
"The following samples demonstrate the use of `Amazon Textract` in combination with LangChain as a DocumentLoader."
"The following examples demonstrate the use of `Amazon Textract` in combination with LangChain as a DocumentLoader."
]
},
{
@@ -41,7 +41,7 @@
"id": "400b25c6-befa-4730-a201-39ff112c8858",
"metadata": {},
"source": [
"## Sample 1\n",
"## Example 1: Loading from a local file\n",
"\n",
"The first example uses a local file, which internally will be sent to Amazon Textract sync API [DetectDocumentText](https://docs.aws.amazon.com/textract/latest/dg/API_DetectDocumentText.html). \n",
"\n",
@@ -100,8 +100,8 @@
"id": "4cf7f19c-3635-453a-9c76-4baf98b8d7f4",
"metadata": {},
"source": [
"## Sample 2\n",
"The next sample loads a file from an HTTPS endpoint. \n",
"## Example 2: Loading from a URL\n",
"The next example loads a file from an HTTPS endpoint. \n",
"It has to be single page, as Amazon Textract requires all multi-page documents to be stored on S3."
]
},
@@ -150,7 +150,7 @@
"id": "3a9cd8ec-e663-4dc7-9db1-d2f575253141",
"metadata": {},
"source": [
"## Sample 3\n",
"## Example 3: Loading multi-page PDF documents\n",
"\n",
"Processing a multi-page document requires the document to be on S3. The sample document resides in a bucket in us-east-2 and Textract needs to be called in that same region to be successful, so we set the region_name on the client and pass that in to the loader to ensure Textract is called from us-east-2. You could also to have your notebook running in us-east-2, setting the AWS_DEFAULT_REGION set to us-east-2 or when running in a different environment, pass in a boto3 Textract client with that region name like in the cell below."
]
@@ -214,9 +214,15 @@
}
},
"source": [
"## Sample 4\n",
"## Example 4: Customizing the output format\n",
"\n",
"You have the option to pass an additional parameter called `linearization_config` to the AmazonTextractPDFLoader which will determine how the text output will be linearized by the parser after Textract runs."
"When Amazon Textract processes a PDF, it extracts all text, including elements like headers, footers, and page numbers. This extra information can be \"noisy\" and reduce the effectiveness of the output.\n",
"\n",
"The process of converting a document's 2D layout into a clean, one-dimensional string of text is called linearization.\n",
"\n",
"The AmazonTextractPDFLoader gives you precise control over this process with the `linearization_config` parameter. You can use it to specify which elements to exclude from the final output.\n",
"\n",
"The following example shows how to hide headers, footers, and figures, resulting in a much cleaner text block, for more advanced use cases see this [AWS blog post](https://aws.amazon.com/blogs/machine-learning/amazon-textracts-new-layout-feature-introduces-efficiencies-in-general-purpose-and-generative-ai-document-processing-tasks/)."
]
},
{
@@ -248,7 +254,7 @@
"## Using the AmazonTextractPDFLoader in a LangChain chain (e.g. OpenAI)\n",
"\n",
"The AmazonTextractPDFLoader can be used in a chain the same way the other loaders are used.\n",
"Textract itself does have a [Query feature](https://docs.aws.amazon.com/textract/latest/dg/API_Query.html), which offers similar functionality to the QA chain in this sample, which is worth checking out as well."
"Textract itself does have a [Query feature](https://docs.aws.amazon.com/textract/latest/dg/API_Query.html), which offers similar functionality to the QA chain in this example, which is worth checking out as well."
]
},
{

View File

@@ -9,7 +9,7 @@
"source": [
"# Google SQL for MySQL\n",
"\n",
"> [Cloud Cloud SQL](https://cloud.google.com/sql) is a fully managed relational database service that offers high performance, seamless integration, and impressive scalability. It offers `MySQL`, `PostgreSQL`, and `SQL Server` database engines. Extend your database application to build AI-powered experiences leveraging Cloud SQL's Langchain integrations.\n",
"> [Google Cloud SQL](https://cloud.google.com/sql) is a fully managed relational database service that offers high performance, seamless integration, and impressive scalability. It offers `MySQL`, `PostgreSQL`, and `SQL Server` database engines. Extend your database application to build AI-powered experiences leveraging Cloud SQL's Langchain integrations.\n",
"\n",
"This notebook goes over how to use `Google Cloud SQL for MySQL` to store chat message history with the `MySQLChatMessageHistory` class.\n",
"\n",

View File

@@ -42,11 +42,6 @@ from langchain_ai21 import AI21LLM
from langchain_ai21 import AI21ContextualAnswers
```
### AI21 Embeddings
```python
from langchain_ai21 import AI21Embeddings
```
## Text splitters
### AI21 Semantic Text Splitter

View File

@@ -0,0 +1,96 @@
# Tensorlake
Tensorlake is the AI Data Cloud that reliably transforms data from unstructured sources into ingestion-ready formats for AI Applications.
The `langchain-tensorlake` package provides seamless integration between [Tensorlake](https://tensorlake.ai) and [LangChain](https://langchain.com),
enabling you to build sophisticated document processing agents with enhanced parsing features, like signature detection.
## Tensorlake feature overview
Tensorlake gives you tools to:
- Extract: Schema-driven structured data extraction to pull out specific fields from documents.
- Parse: Convert documents to markdown to build RAG/Knowledge Graph systems.
- Orchestrate: Build programmable workflows for large-scale ingestion and enrichment of Documents, Text, Audio, Video and more.
Learn more at [docs.tensorlake.ai](https://docs.tensorlake.ai/introduction)
---
## Installation
```bash
pip install -U langchain-tensorlake
```
---
## Examples
Follow a [full tutorial](https://docs.tensorlake.ai/examples/tutorials/real-estate-agent-with-langgraph-cli) on how to detect signatures in unstructured documents using the `langchain-tensorlake` tool.
Or check out this [colab notebook](https://colab.research.google.com/drive/1VRWIPCWYnjcRtQL864Bqm9CJ6g4EpRqs?usp=sharing) for a quick start.
---
## Quick Start
### 1. Set up your environment
You should configure credentials for Tensorlake and OpenAI by setting the following environment variables:
```
export TENSORLAKE_API_KEY="your-tensorlake-api-key"
export OPENAI_API_KEY = "your-openai-api-key"
```
Get your Tensorlake API key from the [Tensorlake Cloud Console](https://cloud.tensorlake.ai/). New users get 100 free credits.
### 2. Import necessary packages
```python
from langchain_tensorlake import document_markdown_tool
from langgraph.prebuilt import create_react_agent
import asyncio
import os
```
### 3. Build a Signature Detection Agent
```python
async def main(question):
# Create the agent with the Tensorlake tool
agent = create_react_agent(
model="openai:gpt-4o-mini",
tools=[document_markdown_tool],
prompt=(
"""
I have a document that needs to be parsed. \n\nPlease parse this document and answer the question about it.
"""
),
name="real-estate-agent",
)
# Run the agent
result = await agent.ainvoke({"messages": [{"role": "user", "content": question}]})
# Print the result
print(result["messages"][-1].content)
```
*Note:* We highly recommend using `openai` as the agent model to ensure the agent sets the right parsing parameters
### 4. Example Usage
```python
# Define the path to the document to be parsed
path = "path/to/your/document.pdf"
# Define the question to be asked and create the agent
question = f"What contextual information can you extract about the signatures in my document found at {path}?"
if __name__ == "__main__":
asyncio.run(main(question))
```
## Need help?
Reach out to us on [Slack](https://join.slack.com/t/tensorlakecloud/shared_invite/zt-32fq4nmib-gO0OM5RIar3zLOBm~ZGqKg) or on the
[package repository on GitHub](https://github.com/tensorlakeai/langchain-tensorlake) directly.

View File

@@ -1,270 +0,0 @@
{
"cells": [
{
"cell_type": "raw",
"id": "afaf8039",
"metadata": {},
"source": [
"---\n",
"sidebar_label: AI21\n",
"---"
]
},
{
"cell_type": "markdown",
"id": "9a3d6f34",
"metadata": {},
"source": [
"# AI21Embeddings\n",
"\n",
":::caution This service is deprecated. :::\n",
"\n",
"This will help you get started with AI21 embedding models using LangChain. For detailed documentation on `AI21Embeddings` features and configuration options, please refer to the [API reference](https://python.langchain.com/api_reference/ai21/embeddings/langchain_ai21.embeddings.AI21Embeddings.html).\n",
"\n",
"## Overview\n",
"### Integration details\n",
"\n",
"import { ItemTable } from \"@theme/FeatureTables\";\n",
"\n",
"<ItemTable category=\"text_embedding\" item=\"AI21\" />\n",
"\n",
"## Setup\n",
"\n",
"To access AI21 embedding models you'll need to create an AI21 account, get an API key, and install the `langchain-ai21` integration package.\n",
"\n",
"### Credentials\n",
"\n",
"Head to [https://docs.ai21.com/](https://docs.ai21.com/) to sign up to AI21 and generate an API key. Once you've done this set the `AI21_API_KEY` environment variable:"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "36521c2a",
"metadata": {},
"outputs": [],
"source": [
"import getpass\n",
"import os\n",
"\n",
"if not os.getenv(\"AI21_API_KEY\"):\n",
" os.environ[\"AI21_API_KEY\"] = getpass.getpass(\"Enter your AI21 API key: \")"
]
},
{
"cell_type": "markdown",
"id": "c84fb993",
"metadata": {},
"source": "To enable automated tracing of your model calls, set your [LangSmith](https://docs.smith.langchain.com/) API key:"
},
{
"cell_type": "code",
"execution_count": 3,
"id": "39a4953b",
"metadata": {},
"outputs": [],
"source": [
"# os.environ[\"LANGSMITH_TRACING\"] = \"true\"\n",
"# os.environ[\"LANGSMITH_API_KEY\"] = getpass.getpass(\"Enter your LangSmith API key: \")"
]
},
{
"cell_type": "markdown",
"id": "d9664366",
"metadata": {},
"source": [
"### Installation\n",
"\n",
"The LangChain AI21 integration lives in the `langchain-ai21` package:"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "64853226",
"metadata": {},
"outputs": [],
"source": [
"%pip install -qU langchain-ai21"
]
},
{
"cell_type": "markdown",
"id": "45dd1724",
"metadata": {},
"source": [
"## Instantiation\n",
"\n",
"Now we can instantiate our model object and generate chat completions:"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "9ea7a09b",
"metadata": {},
"outputs": [],
"source": [
"from langchain_ai21 import AI21Embeddings\n",
"\n",
"embeddings = AI21Embeddings(\n",
" # Can optionally increase or decrease the batch_size\n",
" # to improve latency.\n",
" # Use larger batch sizes with smaller documents, and\n",
" # smaller batch sizes with larger documents.\n",
" # batch_size=256,\n",
")"
]
},
{
"cell_type": "markdown",
"id": "77d271b6",
"metadata": {},
"source": [
"## Indexing and Retrieval\n",
"\n",
"Embedding models are often used in retrieval-augmented generation (RAG) flows, both as part of indexing data as well as later retrieving it. For more detailed instructions, please see our [RAG tutorials](/docs/tutorials/).\n",
"\n",
"Below, see how to index and retrieve data using the `embeddings` object we initialized above. In this example, we will index and retrieve a sample document in the `InMemoryVectorStore`."
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "d817716b",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'LangChain is the framework for building context-aware reasoning applications'"
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Create a vector store with a sample text\n",
"from langchain_core.vectorstores import InMemoryVectorStore\n",
"\n",
"text = \"LangChain is the framework for building context-aware reasoning applications\"\n",
"\n",
"vectorstore = InMemoryVectorStore.from_texts(\n",
" [text],\n",
" embedding=embeddings,\n",
")\n",
"\n",
"# Use the vectorstore as a retriever\n",
"retriever = vectorstore.as_retriever()\n",
"\n",
"# Retrieve the most similar text\n",
"retrieved_documents = retriever.invoke(\"What is LangChain?\")\n",
"\n",
"# show the retrieved document's content\n",
"retrieved_documents[0].page_content"
]
},
{
"cell_type": "markdown",
"id": "e02b9855",
"metadata": {},
"source": [
"## Direct Usage\n",
"\n",
"Under the hood, the vectorstore and retriever implementations are calling `embeddings.embed_documents(...)` and `embeddings.embed_query(...)` to create embeddings for the text(s) used in `from_texts` and retrieval `invoke` operations, respectively.\n",
"\n",
"You can directly call these methods to get embeddings for your own use cases.\n",
"\n",
"### Embed single texts\n",
"\n",
"You can embed single texts or documents with `embed_query`:"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "0d2befcd",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[0.01913362182676792, 0.004960147198289633, -0.01582135073840618, -0.042474791407585144, 0.040200788\n"
]
}
],
"source": [
"single_vector = embeddings.embed_query(text)\n",
"print(str(single_vector)[:100]) # Show the first 100 characters of the vector"
]
},
{
"cell_type": "markdown",
"id": "1b5a7d03",
"metadata": {},
"source": [
"### Embed multiple texts\n",
"\n",
"You can embed multiple texts with `embed_documents`:"
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "2f4d6e97",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[0.03029559925198555, 0.002908500377088785, -0.02700909972190857, -0.04616579785943031, 0.0382771529\n",
"[0.018214847892522812, 0.011460083536803722, -0.03329407051205635, -0.04951060563325882, 0.032756105\n"
]
}
],
"source": [
"text2 = (\n",
" \"LangGraph is a library for building stateful, multi-actor applications with LLMs\"\n",
")\n",
"two_vectors = embeddings.embed_documents([text, text2])\n",
"for vector in two_vectors:\n",
" print(str(vector)[:100]) # Show the first 100 characters of the vector"
]
},
{
"cell_type": "markdown",
"id": "98785c12",
"metadata": {},
"source": [
"## API Reference\n",
"\n",
"For detailed documentation on `AI21Embeddings` features and configuration options, please refer to the [API reference](https://python.langchain.com/api_reference/ai21/embeddings/langchain_ai21.embeddings.AI21Embeddings.html).\n"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.6"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -131,7 +131,7 @@
"source": [
"## Indexing and Retrieval\n",
"\n",
"Embedding models are often used in retrieval-augmented generation (RAG) flows, both as part of indexing data as well as later retrieving it. For more detailed instructions, please see our [RAG tutorials](/docs/tutorials/).\n",
"Embedding models are often used in retrieval-augmented generation (RAG) flows, both as part of indexing data as well as later retrieving it. For more detailed instructions, please see our [RAG tutorials](/docs/tutorials/rag).\n",
"\n",
"Below, see how to index and retrieve data using the `embeddings` object we initialized above. In this example, we will index and retrieve a sample document in the `InMemoryVectorStore`."
]

View File

@@ -1,265 +1,267 @@
{
"cells": [
{
"cell_type": "raw",
"id": "afaf8039",
"metadata": {},
"source": [
"---\n",
"sidebar_label: Cohere\n",
"---"
]
},
{
"cell_type": "markdown",
"id": "9a3d6f34",
"metadata": {},
"source": [
"# CohereEmbeddings\n",
"\n",
"This will help you get started with Cohere embedding models using LangChain. For detailed documentation on `CohereEmbeddings` features and configuration options, please refer to the [API reference](https://python.langchain.com/api_reference/cohere/embeddings/langchain_cohere.embeddings.CohereEmbeddings.html).\n",
"\n",
"## Overview\n",
"### Integration details\n",
"\n",
"import { ItemTable } from \"@theme/FeatureTables\";\n",
"\n",
"<ItemTable category=\"text_embedding\" item=\"Cohere\" />\n",
"\n",
"## Setup\n",
"\n",
"To access Cohere embedding models you'll need to create a/an Cohere account, get an API key, and install the `langchain-cohere` integration package.\n",
"\n",
"### Credentials\n",
"\n",
"\n",
"Head to [cohere.com](https://cohere.com) to sign up to Cohere and generate an API key. Once youve done this set the COHERE_API_KEY environment variable:"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "36521c2a",
"metadata": {},
"outputs": [],
"source": [
"import getpass\n",
"import os\n",
"\n",
"if not os.getenv(\"COHERE_API_KEY\"):\n",
" os.environ[\"COHERE_API_KEY\"] = getpass.getpass(\"Enter your Cohere API key: \")"
]
},
{
"cell_type": "markdown",
"id": "c84fb993",
"metadata": {},
"source": "To enable automated tracing of your model calls, set your [LangSmith](https://docs.smith.langchain.com/) API key:"
},
{
"cell_type": "code",
"execution_count": 9,
"id": "39a4953b",
"metadata": {},
"outputs": [],
"source": [
"# os.environ[\"LANGSMITH_TRACING\"] = \"true\"\n",
"# os.environ[\"LANGSMITH_API_KEY\"] = getpass.getpass(\"Enter your LangSmith API key: \")"
]
},
{
"cell_type": "markdown",
"id": "d9664366",
"metadata": {},
"source": [
"### Installation\n",
"\n",
"The LangChain Cohere integration lives in the `langchain-cohere` package:"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "64853226",
"metadata": {},
"outputs": [],
"source": [
"%pip install -qU langchain-cohere"
]
},
{
"cell_type": "markdown",
"id": "45dd1724",
"metadata": {},
"source": [
"## Instantiation\n",
"\n",
"Now we can instantiate our model object and generate chat completions:"
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "9ea7a09b",
"metadata": {},
"outputs": [],
"source": [
"from langchain_cohere import CohereEmbeddings\n",
"\n",
"embeddings = CohereEmbeddings(\n",
" model=\"embed-english-v3.0\",\n",
")"
]
},
{
"cell_type": "markdown",
"id": "77d271b6",
"metadata": {},
"source": [
"## Indexing and Retrieval\n",
"\n",
"Embedding models are often used in retrieval-augmented generation (RAG) flows, both as part of indexing data as well as later retrieving it. For more detailed instructions, please see our [RAG tutorials](/docs/tutorials/).\n",
"\n",
"Below, see how to index and retrieve data using the `embeddings` object we initialized above. In this example, we will index and retrieve a sample document in the `InMemoryVectorStore`."
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "d817716b",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'LangChain is the framework for building context-aware reasoning applications'"
]
},
"execution_count": 11,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Create a vector store with a sample text\n",
"from langchain_core.vectorstores import InMemoryVectorStore\n",
"\n",
"text = \"LangChain is the framework for building context-aware reasoning applications\"\n",
"\n",
"vectorstore = InMemoryVectorStore.from_texts(\n",
" [text],\n",
" embedding=embeddings,\n",
")\n",
"\n",
"# Use the vectorstore as a retriever\n",
"retriever = vectorstore.as_retriever()\n",
"\n",
"# Retrieve the most similar text\n",
"retrieved_documents = retriever.invoke(\"What is LangChain?\")\n",
"\n",
"# show the retrieved document's content\n",
"retrieved_documents[0].page_content"
]
},
{
"cell_type": "markdown",
"id": "e02b9855",
"metadata": {},
"source": [
"## Direct Usage\n",
"\n",
"Under the hood, the vectorstore and retriever implementations are calling `embeddings.embed_documents(...)` and `embeddings.embed_query(...)` to create embeddings for the text(s) used in `from_texts` and retrieval `invoke` operations, respectively.\n",
"\n",
"You can directly call these methods to get embeddings for your own use cases.\n",
"\n",
"### Embed single texts\n",
"\n",
"You can embed single texts or documents with `embed_query`:"
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "0d2befcd",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[-0.022979736, -0.030212402, -0.08886719, -0.08569336, 0.007030487, -0.0010671616, -0.033813477, 0.0\n"
]
}
],
"source": [
"single_vector = embeddings.embed_query(text)\n",
"print(str(single_vector)[:100]) # Show the first 100 characters of the vector"
]
},
{
"cell_type": "markdown",
"id": "1b5a7d03",
"metadata": {},
"source": [
"### Embed multiple texts\n",
"\n",
"You can embed multiple texts with `embed_documents`:"
]
},
{
"cell_type": "code",
"execution_count": 13,
"id": "2f4d6e97",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[-0.028869629, -0.030410767, -0.099121094, -0.07116699, -0.012748718, -0.0059432983, -0.04360962, 0.\n",
"[-0.047332764, -0.049957275, -0.07458496, -0.034332275, -0.057922363, -0.0112838745, -0.06994629, 0.\n"
]
}
],
"source": [
"text2 = (\n",
" \"LangGraph is a library for building stateful, multi-actor applications with LLMs\"\n",
")\n",
"two_vectors = embeddings.embed_documents([text, text2])\n",
"for vector in two_vectors:\n",
" print(str(vector)[:100]) # Show the first 100 characters of the vector"
]
},
{
"cell_type": "markdown",
"id": "98785c12",
"metadata": {},
"source": [
"## API Reference\n",
"\n",
"For detailed documentation on `CohereEmbeddings` features and configuration options, please refer to the [API reference](https://python.langchain.com/api_reference/cohere/embeddings/langchain_cohere.embeddings.CohereEmbeddings.html).\n"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.4"
}
"cells": [
{
"cell_type": "raw",
"id": "afaf8039",
"metadata": {},
"source": [
"---\n",
"sidebar_label: Cohere\n",
"---"
]
},
"nbformat": 4,
"nbformat_minor": 5
{
"cell_type": "markdown",
"id": "9a3d6f34",
"metadata": {},
"source": [
"# CohereEmbeddings\n",
"\n",
"This will help you get started with Cohere embedding models using LangChain. For detailed documentation on `CohereEmbeddings` features and configuration options, please refer to the [API reference](https://python.langchain.com/api_reference/cohere/embeddings/langchain_cohere.embeddings.CohereEmbeddings.html).\n",
"\n",
"## Overview\n",
"### Integration details\n",
"\n",
"import { ItemTable } from \"@theme/FeatureTables\";\n",
"\n",
"<ItemTable category=\"text_embedding\" item=\"Cohere\" />\n",
"\n",
"## Setup\n",
"\n",
"To access Cohere embedding models you'll need to create a/an Cohere account, get an API key, and install the `langchain-cohere` integration package.\n",
"\n",
"### Credentials\n",
"\n",
"\n",
"Head to [cohere.com](https://cohere.com) to sign up to Cohere and generate an API key. Once youve done this set the COHERE_API_KEY environment variable:"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "36521c2a",
"metadata": {},
"outputs": [],
"source": [
"import getpass\n",
"import os\n",
"\n",
"if not os.getenv(\"COHERE_API_KEY\"):\n",
" os.environ[\"COHERE_API_KEY\"] = getpass.getpass(\"Enter your Cohere API key: \")"
]
},
{
"cell_type": "markdown",
"id": "c84fb993",
"metadata": {},
"source": [
"To enable automated tracing of your model calls, set your [LangSmith](https://docs.smith.langchain.com/) API key:"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "39a4953b",
"metadata": {},
"outputs": [],
"source": [
"# os.environ[\"LANGSMITH_TRACING\"] = \"true\"\n",
"# os.environ[\"LANGSMITH_API_KEY\"] = getpass.getpass(\"Enter your LangSmith API key: \")"
]
},
{
"cell_type": "markdown",
"id": "d9664366",
"metadata": {},
"source": [
"### Installation\n",
"\n",
"The LangChain Cohere integration lives in the `langchain-cohere` package:"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "64853226",
"metadata": {},
"outputs": [],
"source": [
"%pip install -qU langchain-cohere"
]
},
{
"cell_type": "markdown",
"id": "45dd1724",
"metadata": {},
"source": [
"## Instantiation\n",
"\n",
"Now we can instantiate our model object and generate chat completions:"
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "9ea7a09b",
"metadata": {},
"outputs": [],
"source": [
"from langchain_cohere import CohereEmbeddings\n",
"\n",
"embeddings = CohereEmbeddings(\n",
" model=\"embed-english-v3.0\",\n",
")"
]
},
{
"cell_type": "markdown",
"id": "77d271b6",
"metadata": {},
"source": [
"## Indexing and Retrieval\n",
"\n",
"Embedding models are often used in retrieval-augmented generation (RAG) flows, both as part of indexing data as well as later retrieving it. For more detailed instructions, please see our [RAG tutorials](/docs/tutorials/rag).\n",
"\n",
"Below, see how to index and retrieve data using the `embeddings` object we initialized above. In this example, we will index and retrieve a sample document in the `InMemoryVectorStore`."
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "d817716b",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'LangChain is the framework for building context-aware reasoning applications'"
]
},
"execution_count": 11,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Create a vector store with a sample text\n",
"from langchain_core.vectorstores import InMemoryVectorStore\n",
"\n",
"text = \"LangChain is the framework for building context-aware reasoning applications\"\n",
"\n",
"vectorstore = InMemoryVectorStore.from_texts(\n",
" [text],\n",
" embedding=embeddings,\n",
")\n",
"\n",
"# Use the vectorstore as a retriever\n",
"retriever = vectorstore.as_retriever()\n",
"\n",
"# Retrieve the most similar text\n",
"retrieved_documents = retriever.invoke(\"What is LangChain?\")\n",
"\n",
"# show the retrieved document's content\n",
"retrieved_documents[0].page_content"
]
},
{
"cell_type": "markdown",
"id": "e02b9855",
"metadata": {},
"source": [
"## Direct Usage\n",
"\n",
"Under the hood, the vectorstore and retriever implementations are calling `embeddings.embed_documents(...)` and `embeddings.embed_query(...)` to create embeddings for the text(s) used in `from_texts` and retrieval `invoke` operations, respectively.\n",
"\n",
"You can directly call these methods to get embeddings for your own use cases.\n",
"\n",
"### Embed single texts\n",
"\n",
"You can embed single texts or documents with `embed_query`:"
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "0d2befcd",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[-0.022979736, -0.030212402, -0.08886719, -0.08569336, 0.007030487, -0.0010671616, -0.033813477, 0.0\n"
]
}
],
"source": [
"single_vector = embeddings.embed_query(text)\n",
"print(str(single_vector)[:100]) # Show the first 100 characters of the vector"
]
},
{
"cell_type": "markdown",
"id": "1b5a7d03",
"metadata": {},
"source": [
"### Embed multiple texts\n",
"\n",
"You can embed multiple texts with `embed_documents`:"
]
},
{
"cell_type": "code",
"execution_count": 13,
"id": "2f4d6e97",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[-0.028869629, -0.030410767, -0.099121094, -0.07116699, -0.012748718, -0.0059432983, -0.04360962, 0.\n",
"[-0.047332764, -0.049957275, -0.07458496, -0.034332275, -0.057922363, -0.0112838745, -0.06994629, 0.\n"
]
}
],
"source": [
"text2 = (\n",
" \"LangGraph is a library for building stateful, multi-actor applications with LLMs\"\n",
")\n",
"two_vectors = embeddings.embed_documents([text, text2])\n",
"for vector in two_vectors:\n",
" print(str(vector)[:100]) # Show the first 100 characters of the vector"
]
},
{
"cell_type": "markdown",
"id": "98785c12",
"metadata": {},
"source": [
"## API Reference\n",
"\n",
"For detailed documentation on `CohereEmbeddings` features and configuration options, please refer to the [API reference](https://python.langchain.com/api_reference/cohere/embeddings/langchain_cohere.embeddings.CohereEmbeddings.html).\n"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.6"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -125,7 +125,7 @@
"source": [
"## Indexing and Retrieval\n",
"\n",
"Embedding models are often used in retrieval-augmented generation (RAG) flows, both as part of indexing data as well as later retrieving it. For more detailed instructions, please see our [RAG tutorials](/docs/tutorials/).\n",
"Embedding models are often used in retrieval-augmented generation (RAG) flows, both as part of indexing data as well as later retrieving it. For more detailed instructions, please see our [RAG tutorials](/docs/tutorials/rag).\n",
"\n",
"Below, see how to index and retrieve data using the `embeddings` object we initialized above. In this example, we will index and retrieve a sample document in the `InMemoryVectorStore`."
]
@@ -264,7 +264,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.5"
"version": "3.9.6"
}
},
"nbformat": 4,

View File

@@ -1,265 +1,267 @@
{
"cells": [
{
"cell_type": "raw",
"id": "afaf8039",
"metadata": {},
"source": [
"---\n",
"sidebar_label: Fireworks\n",
"---"
]
},
{
"cell_type": "markdown",
"id": "9a3d6f34",
"metadata": {},
"source": [
"# FireworksEmbeddings\n",
"\n",
"This will help you get started with Fireworks embedding models using LangChain. For detailed documentation on `FireworksEmbeddings` features and configuration options, please refer to the [API reference](https://python.langchain.com/api_reference/fireworks/embeddings/langchain_fireworks.embeddings.FireworksEmbeddings.html).\n",
"\n",
"## Overview\n",
"\n",
"### Integration details\n",
"\n",
"import { ItemTable } from \"@theme/FeatureTables\";\n",
"\n",
"<ItemTable category=\"text_embedding\" item=\"Fireworks\" />\n",
"\n",
"## Setup\n",
"\n",
"To access Fireworks embedding models you'll need to create a Fireworks account, get an API key, and install the `langchain-fireworks` integration package.\n",
"\n",
"### Credentials\n",
"\n",
"Head to [fireworks.ai](https://fireworks.ai/) to sign up to Fireworks and generate an API key. Once youve done this set the FIREWORKS_API_KEY environment variable:"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "36521c2a",
"metadata": {},
"outputs": [],
"source": [
"import getpass\n",
"import os\n",
"\n",
"if not os.getenv(\"FIREWORKS_API_KEY\"):\n",
" os.environ[\"FIREWORKS_API_KEY\"] = getpass.getpass(\"Enter your Fireworks API key: \")"
]
},
{
"cell_type": "markdown",
"id": "c84fb993",
"metadata": {},
"source": "To enable automated tracing of your model calls, set your [LangSmith](https://docs.smith.langchain.com/) API key:"
},
{
"cell_type": "code",
"execution_count": 2,
"id": "39a4953b",
"metadata": {},
"outputs": [],
"source": [
"# os.environ[\"LANGSMITH_TRACING\"] = \"true\"\n",
"# os.environ[\"LANGSMITH_API_KEY\"] = getpass.getpass(\"Enter your LangSmith API key: \")"
]
},
{
"cell_type": "markdown",
"id": "d9664366",
"metadata": {},
"source": [
"### Installation\n",
"\n",
"The LangChain Fireworks integration lives in the `langchain-fireworks` package:"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "64853226",
"metadata": {},
"outputs": [],
"source": [
"%pip install -qU langchain-fireworks"
]
},
{
"cell_type": "markdown",
"id": "45dd1724",
"metadata": {},
"source": [
"## Instantiation\n",
"\n",
"Now we can instantiate our model object and generate chat completions:"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "9ea7a09b",
"metadata": {},
"outputs": [],
"source": [
"from langchain_fireworks import FireworksEmbeddings\n",
"\n",
"embeddings = FireworksEmbeddings(\n",
" model=\"nomic-ai/nomic-embed-text-v1.5\",\n",
")"
]
},
{
"cell_type": "markdown",
"id": "77d271b6",
"metadata": {},
"source": [
"## Indexing and Retrieval\n",
"\n",
"Embedding models are often used in retrieval-augmented generation (RAG) flows, both as part of indexing data as well as later retrieving it. For more detailed instructions, please see our [RAG tutorials](/docs/tutorials/).\n",
"\n",
"Below, see how to index and retrieve data using the `embeddings` object we initialized above. In this example, we will index and retrieve a sample document in the `InMemoryVectorStore`."
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "d817716b",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'LangChain is the framework for building context-aware reasoning applications'"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Create a vector store with a sample text\n",
"from langchain_core.vectorstores import InMemoryVectorStore\n",
"\n",
"text = \"LangChain is the framework for building context-aware reasoning applications\"\n",
"\n",
"vectorstore = InMemoryVectorStore.from_texts(\n",
" [text],\n",
" embedding=embeddings,\n",
")\n",
"\n",
"# Use the vectorstore as a retriever\n",
"retriever = vectorstore.as_retriever()\n",
"\n",
"# Retrieve the most similar text\n",
"retrieved_documents = retriever.invoke(\"What is LangChain?\")\n",
"\n",
"# show the retrieved document's content\n",
"retrieved_documents[0].page_content"
]
},
{
"cell_type": "markdown",
"id": "e02b9855",
"metadata": {},
"source": [
"## Direct Usage\n",
"\n",
"Under the hood, the vectorstore and retriever implementations are calling `embeddings.embed_documents(...)` and `embeddings.embed_query(...)` to create embeddings for the text(s) used in `from_texts` and retrieval `invoke` operations, respectively.\n",
"\n",
"You can directly call these methods to get embeddings for your own use cases.\n",
"\n",
"### Embed single texts\n",
"\n",
"You can embed single texts or documents with `embed_query`:"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "0d2befcd",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[0.01666259765625, 0.011688232421875, -0.1181640625, -0.10205078125, 0.05438232421875, -0.0890502929\n"
]
}
],
"source": [
"single_vector = embeddings.embed_query(text)\n",
"print(str(single_vector)[:100]) # Show the first 100 characters of the vector"
]
},
{
"cell_type": "markdown",
"id": "1b5a7d03",
"metadata": {},
"source": [
"### Embed multiple texts\n",
"\n",
"You can embed multiple texts with `embed_documents`:"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "2f4d6e97",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[0.016632080078125, 0.01165008544921875, -0.1181640625, -0.10186767578125, 0.05438232421875, -0.0890\n",
"[-0.02667236328125, 0.036651611328125, -0.1630859375, -0.0904541015625, -0.022430419921875, -0.09545\n"
]
}
],
"source": [
"text2 = (\n",
" \"LangGraph is a library for building stateful, multi-actor applications with LLMs\"\n",
")\n",
"two_vectors = embeddings.embed_documents([text, text2])\n",
"for vector in two_vectors:\n",
" print(str(vector)[:100]) # Show the first 100 characters of the vector"
]
},
{
"cell_type": "markdown",
"id": "3fba556a-b53d-431c-b0c6-ffb1e2fa5a6e",
"metadata": {},
"source": [
"## API Reference\n",
"\n",
"For detailed documentation of all `FireworksEmbeddings` features and configurations head to the [API reference](https://python.langchain.com/api_reference/fireworks/embeddings/langchain_fireworks.embeddings.FireworksEmbeddings.html)."
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.4"
}
"cells": [
{
"cell_type": "raw",
"id": "afaf8039",
"metadata": {},
"source": [
"---\n",
"sidebar_label: Fireworks\n",
"---"
]
},
"nbformat": 4,
"nbformat_minor": 5
{
"cell_type": "markdown",
"id": "9a3d6f34",
"metadata": {},
"source": [
"# FireworksEmbeddings\n",
"\n",
"This will help you get started with Fireworks embedding models using LangChain. For detailed documentation on `FireworksEmbeddings` features and configuration options, please refer to the [API reference](https://python.langchain.com/api_reference/fireworks/embeddings/langchain_fireworks.embeddings.FireworksEmbeddings.html).\n",
"\n",
"## Overview\n",
"\n",
"### Integration details\n",
"\n",
"import { ItemTable } from \"@theme/FeatureTables\";\n",
"\n",
"<ItemTable category=\"text_embedding\" item=\"Fireworks\" />\n",
"\n",
"## Setup\n",
"\n",
"To access Fireworks embedding models you'll need to create a Fireworks account, get an API key, and install the `langchain-fireworks` integration package.\n",
"\n",
"### Credentials\n",
"\n",
"Head to [fireworks.ai](https://fireworks.ai/) to sign up to Fireworks and generate an API key. Once youve done this set the FIREWORKS_API_KEY environment variable:"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "36521c2a",
"metadata": {},
"outputs": [],
"source": [
"import getpass\n",
"import os\n",
"\n",
"if not os.getenv(\"FIREWORKS_API_KEY\"):\n",
" os.environ[\"FIREWORKS_API_KEY\"] = getpass.getpass(\"Enter your Fireworks API key: \")"
]
},
{
"cell_type": "markdown",
"id": "c84fb993",
"metadata": {},
"source": [
"To enable automated tracing of your model calls, set your [LangSmith](https://docs.smith.langchain.com/) API key:"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "39a4953b",
"metadata": {},
"outputs": [],
"source": [
"# os.environ[\"LANGSMITH_TRACING\"] = \"true\"\n",
"# os.environ[\"LANGSMITH_API_KEY\"] = getpass.getpass(\"Enter your LangSmith API key: \")"
]
},
{
"cell_type": "markdown",
"id": "d9664366",
"metadata": {},
"source": [
"### Installation\n",
"\n",
"The LangChain Fireworks integration lives in the `langchain-fireworks` package:"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "64853226",
"metadata": {},
"outputs": [],
"source": [
"%pip install -qU langchain-fireworks"
]
},
{
"cell_type": "markdown",
"id": "45dd1724",
"metadata": {},
"source": [
"## Instantiation\n",
"\n",
"Now we can instantiate our model object and generate chat completions:"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "9ea7a09b",
"metadata": {},
"outputs": [],
"source": [
"from langchain_fireworks import FireworksEmbeddings\n",
"\n",
"embeddings = FireworksEmbeddings(\n",
" model=\"nomic-ai/nomic-embed-text-v1.5\",\n",
")"
]
},
{
"cell_type": "markdown",
"id": "77d271b6",
"metadata": {},
"source": [
"## Indexing and Retrieval\n",
"\n",
"Embedding models are often used in retrieval-augmented generation (RAG) flows, both as part of indexing data as well as later retrieving it. For more detailed instructions, please see our [RAG tutorials](/docs/tutorials/rag).\n",
"\n",
"Below, see how to index and retrieve data using the `embeddings` object we initialized above. In this example, we will index and retrieve a sample document in the `InMemoryVectorStore`."
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "d817716b",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'LangChain is the framework for building context-aware reasoning applications'"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Create a vector store with a sample text\n",
"from langchain_core.vectorstores import InMemoryVectorStore\n",
"\n",
"text = \"LangChain is the framework for building context-aware reasoning applications\"\n",
"\n",
"vectorstore = InMemoryVectorStore.from_texts(\n",
" [text],\n",
" embedding=embeddings,\n",
")\n",
"\n",
"# Use the vectorstore as a retriever\n",
"retriever = vectorstore.as_retriever()\n",
"\n",
"# Retrieve the most similar text\n",
"retrieved_documents = retriever.invoke(\"What is LangChain?\")\n",
"\n",
"# show the retrieved document's content\n",
"retrieved_documents[0].page_content"
]
},
{
"cell_type": "markdown",
"id": "e02b9855",
"metadata": {},
"source": [
"## Direct Usage\n",
"\n",
"Under the hood, the vectorstore and retriever implementations are calling `embeddings.embed_documents(...)` and `embeddings.embed_query(...)` to create embeddings for the text(s) used in `from_texts` and retrieval `invoke` operations, respectively.\n",
"\n",
"You can directly call these methods to get embeddings for your own use cases.\n",
"\n",
"### Embed single texts\n",
"\n",
"You can embed single texts or documents with `embed_query`:"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "0d2befcd",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[0.01666259765625, 0.011688232421875, -0.1181640625, -0.10205078125, 0.05438232421875, -0.0890502929\n"
]
}
],
"source": [
"single_vector = embeddings.embed_query(text)\n",
"print(str(single_vector)[:100]) # Show the first 100 characters of the vector"
]
},
{
"cell_type": "markdown",
"id": "1b5a7d03",
"metadata": {},
"source": [
"### Embed multiple texts\n",
"\n",
"You can embed multiple texts with `embed_documents`:"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "2f4d6e97",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[0.016632080078125, 0.01165008544921875, -0.1181640625, -0.10186767578125, 0.05438232421875, -0.0890\n",
"[-0.02667236328125, 0.036651611328125, -0.1630859375, -0.0904541015625, -0.022430419921875, -0.09545\n"
]
}
],
"source": [
"text2 = (\n",
" \"LangGraph is a library for building stateful, multi-actor applications with LLMs\"\n",
")\n",
"two_vectors = embeddings.embed_documents([text, text2])\n",
"for vector in two_vectors:\n",
" print(str(vector)[:100]) # Show the first 100 characters of the vector"
]
},
{
"cell_type": "markdown",
"id": "3fba556a-b53d-431c-b0c6-ffb1e2fa5a6e",
"metadata": {},
"source": [
"## API Reference\n",
"\n",
"For detailed documentation of all `FireworksEmbeddings` features and configurations head to the [API reference](https://python.langchain.com/api_reference/fireworks/embeddings/langchain_fireworks.embeddings.FireworksEmbeddings.html)."
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.6"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -173,7 +173,7 @@
"source": [
"## Indexing and Retrieval\n",
"\n",
"Embedding models are often used in retrieval-augmented generation (RAG) flows, both as part of indexing data as well as later retrieving it. For more detailed instructions, please see our [RAG tutorials](/docs/tutorials/).\n",
"Embedding models are often used in retrieval-augmented generation (RAG) flows, both as part of indexing data as well as later retrieving it. For more detailed instructions, please see our [RAG tutorials](/docs/tutorials/rag).\n",
"\n",
"Below, see how to index and retrieve data using the `embeddings` object we initialized above. In this example, we will index and retrieve a sample document in the `InMemoryVectorStore`."
]

View File

@@ -167,7 +167,7 @@
"source": [
"## Indexing and Retrieval\n",
"\n",
"Embedding models are often used in retrieval-augmented generation (RAG) flows, both as part of indexing data as well as later retrieving it. For more detailed instructions, please see our [RAG tutorials](/docs/tutorials/).\n",
"Embedding models are often used in retrieval-augmented generation (RAG) flows, both as part of indexing data as well as later retrieving it. For more detailed instructions, please see our [RAG tutorials](/docs/tutorials/rag).\n",
"\n",
"Below, see how to index and retrieve data using the `embeddings` object we initialized above. In this example, we will index and retrieve a sample document in the `InMemoryVectorStore`."
]

View File

@@ -203,7 +203,7 @@
"source": [
"## Indexing and Retrieval\n",
"\n",
"Embedding models are often used in retrieval-augmented generation (RAG) flows, both as part of indexing data as well as later retrieving it. For more detailed instructions, please see our [RAG tutorials](/docs/tutorials/).\n",
"Embedding models are often used in retrieval-augmented generation (RAG) flows, both as part of indexing data as well as later retrieving it. For more detailed instructions, please see our [RAG tutorials](/docs/tutorials/rag).\n",
"\n",
"Below, see how to index and retrieve data using the `embeddings` object we initialized above. In this example, we will index and retrieve a sample document in the `InMemoryVectorStore`."
]
@@ -327,7 +327,7 @@
],
"metadata": {
"kernelspec": {
"display_name": "langchain_ibm",
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
@@ -341,9 +341,9 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.12"
"version": "3.9.6"
}
},
"nbformat": 4,
"nbformat_minor": 2
"nbformat_minor": 4
}

View File

@@ -132,7 +132,7 @@
"source": [
"## Indexing and Retrieval\n",
"\n",
"Embedding models are often used in retrieval-augmented generation (RAG) flows, both as part of indexing data as well as later retrieving it. For more detailed instructions, please see our [RAG tutorials](/docs/tutorials/).\n",
"Embedding models are often used in retrieval-augmented generation (RAG) flows, both as part of indexing data as well as later retrieving it. For more detailed instructions, please see our [RAG tutorials](/docs/tutorials/rag).\n",
"\n",
"Below, see how to index and retrieve data using the `embeddings` object we initialized above. In this example, we will index and retrieve a sample document in the `InMemoryVectorStore`."
]
@@ -286,7 +286,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.5"
"version": "3.9.6"
}
},
"nbformat": 4,

View File

@@ -1,264 +1,266 @@
{
"cells": [
{
"cell_type": "raw",
"id": "afaf8039",
"metadata": {},
"source": [
"---\n",
"sidebar_label: MistralAI\n",
"---"
]
},
{
"cell_type": "markdown",
"id": "9a3d6f34",
"metadata": {},
"source": [
"# MistralAIEmbeddings\n",
"\n",
"This will help you get started with MistralAI embedding models using LangChain. For detailed documentation on `MistralAIEmbeddings` features and configuration options, please refer to the [API reference](https://python.langchain.com/api_reference/mistralai/embeddings/langchain_mistralai.embeddings.MistralAIEmbeddings.html).\n",
"\n",
"## Overview\n",
"### Integration details\n",
"\n",
"import { ItemTable } from \"@theme/FeatureTables\";\n",
"\n",
"<ItemTable category=\"text_embedding\" item=\"MistralAI\" />\n",
"\n",
"## Setup\n",
"\n",
"To access MistralAI embedding models you'll need to create a/an MistralAI account, get an API key, and install the `langchain-mistralai` integration package.\n",
"\n",
"### Credentials\n",
"\n",
"Head to [https://console.mistral.ai/](https://console.mistral.ai/) to sign up to MistralAI and generate an API key. Once you've done this set the MISTRALAI_API_KEY environment variable:"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "36521c2a",
"metadata": {},
"outputs": [],
"source": [
"import getpass\n",
"import os\n",
"\n",
"if not os.getenv(\"MISTRALAI_API_KEY\"):\n",
" os.environ[\"MISTRALAI_API_KEY\"] = getpass.getpass(\"Enter your MistralAI API key: \")"
]
},
{
"cell_type": "markdown",
"id": "c84fb993",
"metadata": {},
"source": "To enable automated tracing of your model calls, set your [LangSmith](https://docs.smith.langchain.com/) API key:"
},
{
"cell_type": "code",
"execution_count": 2,
"id": "39a4953b",
"metadata": {},
"outputs": [],
"source": [
"# os.environ[\"LANGSMITH_TRACING\"] = \"true\"\n",
"# os.environ[\"LANGSMITH_API_KEY\"] = getpass.getpass(\"Enter your LangSmith API key: \")"
]
},
{
"cell_type": "markdown",
"id": "d9664366",
"metadata": {},
"source": [
"### Installation\n",
"\n",
"The LangChain MistralAI integration lives in the `langchain-mistralai` package:"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "64853226",
"metadata": {},
"outputs": [],
"source": [
"%pip install -qU langchain-mistralai"
]
},
{
"cell_type": "markdown",
"id": "45dd1724",
"metadata": {},
"source": [
"## Instantiation\n",
"\n",
"Now we can instantiate our model object and generate chat completions:"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "9ea7a09b",
"metadata": {},
"outputs": [],
"source": [
"from langchain_mistralai import MistralAIEmbeddings\n",
"\n",
"embeddings = MistralAIEmbeddings(\n",
" model=\"mistral-embed\",\n",
")"
]
},
{
"cell_type": "markdown",
"id": "77d271b6",
"metadata": {},
"source": [
"## Indexing and Retrieval\n",
"\n",
"Embedding models are often used in retrieval-augmented generation (RAG) flows, both as part of indexing data as well as later retrieving it. For more detailed instructions, please see our [RAG tutorials](/docs/tutorials/).\n",
"\n",
"Below, see how to index and retrieve data using the `embeddings` object we initialized above. In this example, we will index and retrieve a sample document in the `InMemoryVectorStore`."
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "d817716b",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'LangChain is the framework for building context-aware reasoning applications'"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Create a vector store with a sample text\n",
"from langchain_core.vectorstores import InMemoryVectorStore\n",
"\n",
"text = \"LangChain is the framework for building context-aware reasoning applications\"\n",
"\n",
"vectorstore = InMemoryVectorStore.from_texts(\n",
" [text],\n",
" embedding=embeddings,\n",
")\n",
"\n",
"# Use the vectorstore as a retriever\n",
"retriever = vectorstore.as_retriever()\n",
"\n",
"# Retrieve the most similar text\n",
"retrieved_documents = retriever.invoke(\"What is LangChain?\")\n",
"\n",
"# show the retrieved document's content\n",
"retrieved_documents[0].page_content"
]
},
{
"cell_type": "markdown",
"id": "e02b9855",
"metadata": {},
"source": [
"## Direct Usage\n",
"\n",
"Under the hood, the vectorstore and retriever implementations are calling `embeddings.embed_documents(...)` and `embeddings.embed_query(...)` to create embeddings for the text(s) used in `from_texts` and retrieval `invoke` operations, respectively.\n",
"\n",
"You can directly call these methods to get embeddings for your own use cases.\n",
"\n",
"### Embed single texts\n",
"\n",
"You can embed single texts or documents with `embed_query`:"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "0d2befcd",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[-0.04443359375, 0.01885986328125, 0.018035888671875, -0.00864410400390625, 0.049652099609375, -0.00\n"
]
}
],
"source": [
"single_vector = embeddings.embed_query(text)\n",
"print(str(single_vector)[:100]) # Show the first 100 characters of the vector"
]
},
{
"cell_type": "markdown",
"id": "1b5a7d03",
"metadata": {},
"source": [
"### Embed multiple texts\n",
"\n",
"You can embed multiple texts with `embed_documents`:"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "2f4d6e97",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[-0.04443359375, 0.01885986328125, 0.0180511474609375, -0.0086517333984375, 0.049652099609375, -0.00\n",
"[-0.02032470703125, 0.02606201171875, 0.051605224609375, -0.0281982421875, 0.055755615234375, 0.0019\n"
]
}
],
"source": [
"text2 = (\n",
" \"LangGraph is a library for building stateful, multi-actor applications with LLMs\"\n",
")\n",
"two_vectors = embeddings.embed_documents([text, text2])\n",
"for vector in two_vectors:\n",
" print(str(vector)[:100]) # Show the first 100 characters of the vector"
]
},
{
"cell_type": "markdown",
"id": "98785c12",
"metadata": {},
"source": [
"## API Reference\n",
"\n",
"For detailed documentation on `MistralAIEmbeddings` features and configuration options, please refer to the [API reference](https://python.langchain.com/api_reference/mistralai/embeddings/langchain_mistralai.embeddings.MistralAIEmbeddings.html).\n"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.4"
}
"cells": [
{
"cell_type": "raw",
"id": "afaf8039",
"metadata": {},
"source": [
"---\n",
"sidebar_label: MistralAI\n",
"---"
]
},
"nbformat": 4,
"nbformat_minor": 5
{
"cell_type": "markdown",
"id": "9a3d6f34",
"metadata": {},
"source": [
"# MistralAIEmbeddings\n",
"\n",
"This will help you get started with MistralAI embedding models using LangChain. For detailed documentation on `MistralAIEmbeddings` features and configuration options, please refer to the [API reference](https://python.langchain.com/api_reference/mistralai/embeddings/langchain_mistralai.embeddings.MistralAIEmbeddings.html).\n",
"\n",
"## Overview\n",
"### Integration details\n",
"\n",
"import { ItemTable } from \"@theme/FeatureTables\";\n",
"\n",
"<ItemTable category=\"text_embedding\" item=\"MistralAI\" />\n",
"\n",
"## Setup\n",
"\n",
"To access MistralAI embedding models you'll need to create a/an MistralAI account, get an API key, and install the `langchain-mistralai` integration package.\n",
"\n",
"### Credentials\n",
"\n",
"Head to [https://console.mistral.ai/](https://console.mistral.ai/) to sign up to MistralAI and generate an API key. Once you've done this set the MISTRALAI_API_KEY environment variable:"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "36521c2a",
"metadata": {},
"outputs": [],
"source": [
"import getpass\n",
"import os\n",
"\n",
"if not os.getenv(\"MISTRALAI_API_KEY\"):\n",
" os.environ[\"MISTRALAI_API_KEY\"] = getpass.getpass(\"Enter your MistralAI API key: \")"
]
},
{
"cell_type": "markdown",
"id": "c84fb993",
"metadata": {},
"source": [
"To enable automated tracing of your model calls, set your [LangSmith](https://docs.smith.langchain.com/) API key:"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "39a4953b",
"metadata": {},
"outputs": [],
"source": [
"# os.environ[\"LANGSMITH_TRACING\"] = \"true\"\n",
"# os.environ[\"LANGSMITH_API_KEY\"] = getpass.getpass(\"Enter your LangSmith API key: \")"
]
},
{
"cell_type": "markdown",
"id": "d9664366",
"metadata": {},
"source": [
"### Installation\n",
"\n",
"The LangChain MistralAI integration lives in the `langchain-mistralai` package:"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "64853226",
"metadata": {},
"outputs": [],
"source": [
"%pip install -qU langchain-mistralai"
]
},
{
"cell_type": "markdown",
"id": "45dd1724",
"metadata": {},
"source": [
"## Instantiation\n",
"\n",
"Now we can instantiate our model object and generate chat completions:"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "9ea7a09b",
"metadata": {},
"outputs": [],
"source": [
"from langchain_mistralai import MistralAIEmbeddings\n",
"\n",
"embeddings = MistralAIEmbeddings(\n",
" model=\"mistral-embed\",\n",
")"
]
},
{
"cell_type": "markdown",
"id": "77d271b6",
"metadata": {},
"source": [
"## Indexing and Retrieval\n",
"\n",
"Embedding models are often used in retrieval-augmented generation (RAG) flows, both as part of indexing data as well as later retrieving it. For more detailed instructions, please see our [RAG tutorials](/docs/tutorials/rag).\n",
"\n",
"Below, see how to index and retrieve data using the `embeddings` object we initialized above. In this example, we will index and retrieve a sample document in the `InMemoryVectorStore`."
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "d817716b",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'LangChain is the framework for building context-aware reasoning applications'"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Create a vector store with a sample text\n",
"from langchain_core.vectorstores import InMemoryVectorStore\n",
"\n",
"text = \"LangChain is the framework for building context-aware reasoning applications\"\n",
"\n",
"vectorstore = InMemoryVectorStore.from_texts(\n",
" [text],\n",
" embedding=embeddings,\n",
")\n",
"\n",
"# Use the vectorstore as a retriever\n",
"retriever = vectorstore.as_retriever()\n",
"\n",
"# Retrieve the most similar text\n",
"retrieved_documents = retriever.invoke(\"What is LangChain?\")\n",
"\n",
"# show the retrieved document's content\n",
"retrieved_documents[0].page_content"
]
},
{
"cell_type": "markdown",
"id": "e02b9855",
"metadata": {},
"source": [
"## Direct Usage\n",
"\n",
"Under the hood, the vectorstore and retriever implementations are calling `embeddings.embed_documents(...)` and `embeddings.embed_query(...)` to create embeddings for the text(s) used in `from_texts` and retrieval `invoke` operations, respectively.\n",
"\n",
"You can directly call these methods to get embeddings for your own use cases.\n",
"\n",
"### Embed single texts\n",
"\n",
"You can embed single texts or documents with `embed_query`:"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "0d2befcd",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[-0.04443359375, 0.01885986328125, 0.018035888671875, -0.00864410400390625, 0.049652099609375, -0.00\n"
]
}
],
"source": [
"single_vector = embeddings.embed_query(text)\n",
"print(str(single_vector)[:100]) # Show the first 100 characters of the vector"
]
},
{
"cell_type": "markdown",
"id": "1b5a7d03",
"metadata": {},
"source": [
"### Embed multiple texts\n",
"\n",
"You can embed multiple texts with `embed_documents`:"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "2f4d6e97",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[-0.04443359375, 0.01885986328125, 0.0180511474609375, -0.0086517333984375, 0.049652099609375, -0.00\n",
"[-0.02032470703125, 0.02606201171875, 0.051605224609375, -0.0281982421875, 0.055755615234375, 0.0019\n"
]
}
],
"source": [
"text2 = (\n",
" \"LangGraph is a library for building stateful, multi-actor applications with LLMs\"\n",
")\n",
"two_vectors = embeddings.embed_documents([text, text2])\n",
"for vector in two_vectors:\n",
" print(str(vector)[:100]) # Show the first 100 characters of the vector"
]
},
{
"cell_type": "markdown",
"id": "98785c12",
"metadata": {},
"source": [
"## API Reference\n",
"\n",
"For detailed documentation on `MistralAIEmbeddings` features and configuration options, please refer to the [API reference](https://python.langchain.com/api_reference/mistralai/embeddings/langchain_mistralai.embeddings.MistralAIEmbeddings.html).\n"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.6"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -128,7 +128,7 @@
"source": [
"## Indexing and Retrieval\n",
"\n",
"Embedding models are often used in retrieval-augmented generation (RAG) flows, both as part of indexing data as well as later retrieving it. For more detailed instructions, please see our [RAG tutorials](/docs/tutorials/).\n",
"Embedding models are often used in retrieval-augmented generation (RAG) flows, both as part of indexing data as well as later retrieving it. For more detailed instructions, please see our [RAG tutorials](/docs/tutorials/rag).\n",
"\n",
"Below, see how to index and retrieve data using the `embeddings` object we initialized above. In this example, we will index and retrieve a sample document in the `InMemoryVectorStore`."
]
@@ -277,7 +277,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.16"
"version": "3.9.6"
}
},
"nbformat": 4,

View File

@@ -112,7 +112,7 @@
"source": [
"## Indexing and Retrieval\n",
"\n",
"Embedding models are often used in retrieval-augmented generation (RAG) flows, both as part of indexing data as well as later retrieving it. For more detailed instructions, please see our [RAG tutorials](/docs/tutorials/).\n",
"Embedding models are often used in retrieval-augmented generation (RAG) flows, both as part of indexing data as well as later retrieving it. For more detailed instructions, please see our [RAG tutorials](/docs/tutorials/rag).\n",
"\n",
"Below, see how to index and retrieve data using the `embeddings` object we initialized above. In this example, we will index and retrieve a sample document in the `InMemoryVectorStore`."
]
@@ -249,7 +249,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.3"
"version": "3.9.6"
}
},
"nbformat": 4,

View File

@@ -37,6 +37,7 @@
},
{
"cell_type": "code",
"execution_count": 1,
"id": "36521c2a",
"metadata": {
"ExecuteTime": {
@@ -44,15 +45,14 @@
"start_time": "2025-03-20T01:53:27.764291Z"
}
},
"outputs": [],
"source": [
"import getpass\n",
"import os\n",
"\n",
"if not os.getenv(\"NETMIND_API_KEY\"):\n",
" os.environ[\"NETMIND_API_KEY\"] = getpass.getpass(\"Enter your Netmind API key: \")"
],
"outputs": [],
"execution_count": 1
]
},
{
"cell_type": "markdown",
@@ -64,6 +64,7 @@
},
{
"cell_type": "code",
"execution_count": 2,
"id": "39a4953b",
"metadata": {
"ExecuteTime": {
@@ -71,12 +72,11 @@
"start_time": "2025-03-20T01:53:32.141858Z"
}
},
"outputs": [],
"source": [
"# os.environ[\"LANGCHAIN_TRACING_V2\"] = \"true\"\n",
"# os.environ[\"LANGCHAIN_API_KEY\"] = getpass.getpass(\"Enter your LangSmith API key: \")"
],
"outputs": [],
"execution_count": 2
]
},
{
"cell_type": "markdown",
@@ -90,6 +90,7 @@
},
{
"cell_type": "code",
"execution_count": 3,
"id": "64853226",
"metadata": {
"ExecuteTime": {
@@ -97,22 +98,21 @@
"start_time": "2025-03-20T01:53:36.171640Z"
}
},
"source": [
"%pip install -qU langchain-netmind"
],
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\r\n",
"\u001B[1m[\u001B[0m\u001B[34;49mnotice\u001B[0m\u001B[1;39;49m]\u001B[0m\u001B[39;49m A new release of pip is available: \u001B[0m\u001B[31;49m24.0\u001B[0m\u001B[39;49m -> \u001B[0m\u001B[32;49m25.0.1\u001B[0m\r\n",
"\u001B[1m[\u001B[0m\u001B[34;49mnotice\u001B[0m\u001B[1;39;49m]\u001B[0m\u001B[39;49m To update, run: \u001B[0m\u001B[32;49mpip install --upgrade pip\u001B[0m\r\n",
"\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m A new release of pip is available: \u001b[0m\u001b[31;49m24.0\u001b[0m\u001b[39;49m -> \u001b[0m\u001b[32;49m25.0.1\u001b[0m\r\n",
"\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m To update, run: \u001b[0m\u001b[32;49mpip install --upgrade pip\u001b[0m\r\n",
"Note: you may need to restart the kernel to use updated packages.\n"
]
}
],
"execution_count": 3
"source": [
"%pip install -qU langchain-netmind"
]
},
{
"cell_type": "markdown",
@@ -126,6 +126,7 @@
},
{
"cell_type": "code",
"execution_count": 4,
"id": "9ea7a09b",
"metadata": {
"ExecuteTime": {
@@ -133,15 +134,14 @@
"start_time": "2025-03-20T01:54:30.146876Z"
}
},
"outputs": [],
"source": [
"from langchain_netmind import NetmindEmbeddings\n",
"\n",
"embeddings = NetmindEmbeddings(\n",
" model=\"nvidia/NV-Embed-v2\",\n",
")"
],
"outputs": [],
"execution_count": 4
]
},
{
"cell_type": "markdown",
@@ -150,13 +150,14 @@
"source": [
"## Indexing and Retrieval\n",
"\n",
"Embedding models are often used in retrieval-augmented generation (RAG) flows, both as part of indexing data as well as later retrieving it. For more detailed instructions, please see our [RAG tutorials](/docs/tutorials/).\n",
"Embedding models are often used in retrieval-augmented generation (RAG) flows, both as part of indexing data as well as later retrieving it. For more detailed instructions, please see our [RAG tutorials](/docs/tutorials/rag).\n",
"\n",
"Below, see how to index and retrieve data using the `embeddings` object we initialized above. In this example, we will index and retrieve a sample document in the `InMemoryVectorStore`."
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "d817716b",
"metadata": {
"ExecuteTime": {
@@ -164,6 +165,18 @@
"start_time": "2025-03-20T01:54:34.500805Z"
}
},
"outputs": [
{
"data": {
"text/plain": [
"'LangChain is the framework for building context-aware reasoning applications'"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Create a vector store with a sample text\n",
"from langchain_core.vectorstores import InMemoryVectorStore\n",
@@ -183,20 +196,7 @@
"\n",
"# show the retrieved document's content\n",
"retrieved_documents[0].page_content"
],
"outputs": [
{
"data": {
"text/plain": [
"'LangChain is the framework for building context-aware reasoning applications'"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"execution_count": 5
]
},
{
"cell_type": "markdown",
@@ -216,6 +216,7 @@
},
{
"cell_type": "code",
"execution_count": 6,
"id": "0d2befcd",
"metadata": {
"ExecuteTime": {
@@ -223,10 +224,6 @@
"start_time": "2025-03-20T01:54:45.196528Z"
}
},
"source": [
"single_vector = embeddings.embed_query(text)\n",
"print(str(single_vector)[:100]) # Show the first 100 characters of the vector"
],
"outputs": [
{
"name": "stdout",
@@ -236,7 +233,10 @@
]
}
],
"execution_count": 6
"source": [
"single_vector = embeddings.embed_query(text)\n",
"print(str(single_vector)[:100]) # Show the first 100 characters of the vector"
]
},
{
"cell_type": "markdown",
@@ -250,6 +250,7 @@
},
{
"cell_type": "code",
"execution_count": 7,
"id": "2f4d6e97",
"metadata": {
"ExecuteTime": {
@@ -257,14 +258,6 @@
"start_time": "2025-03-20T01:54:52.468719Z"
}
},
"source": [
"text2 = (\n",
" \"LangGraph is a library for building stateful, multi-actor applications with LLMs\"\n",
")\n",
"two_vectors = embeddings.embed_documents([text, text2])\n",
"for vector in two_vectors:\n",
" print(str(vector)[:100]) # Show the first 100 characters of the vector"
],
"outputs": [
{
"name": "stdout",
@@ -275,7 +268,14 @@
]
}
],
"execution_count": 7
"source": [
"text2 = (\n",
" \"LangGraph is a library for building stateful, multi-actor applications with LLMs\"\n",
")\n",
"two_vectors = embeddings.embed_documents([text, text2])\n",
"for vector in two_vectors:\n",
" print(str(vector)[:100]) # Show the first 100 characters of the vector"
]
},
{
"cell_type": "markdown",
@@ -291,12 +291,12 @@
]
},
{
"metadata": {},
"cell_type": "code",
"outputs": [],
"execution_count": null,
"source": "",
"id": "adb9e45c34733299"
"id": "adb9e45c34733299",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
@@ -315,7 +315,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.5"
"version": "3.9.6"
}
},
"nbformat": 4,

View File

@@ -1,285 +1,287 @@
{
"cells": [
{
"cell_type": "raw",
"id": "afaf8039",
"metadata": {},
"source": [
"---\n",
"sidebar_label: Nomic\n",
"---"
]
},
{
"cell_type": "markdown",
"id": "9a3d6f34",
"metadata": {},
"source": [
"# NomicEmbeddings\n",
"\n",
"This will help you get started with Nomic embedding models using LangChain. For detailed documentation on `NomicEmbeddings` features and configuration options, please refer to the [API reference](https://python.langchain.com/api_reference/nomic/embeddings/langchain_nomic.embeddings.NomicEmbeddings.html).\n",
"\n",
"## Overview\n",
"### Integration details\n",
"\n",
"import { ItemTable } from \"@theme/FeatureTables\";\n",
"\n",
"<ItemTable category=\"text_embedding\" item=\"Nomic\" />\n",
"\n",
"## Setup\n",
"\n",
"To access Nomic embedding models you'll need to create a/an Nomic account, get an API key, and install the `langchain-nomic` integration package.\n",
"\n",
"### Credentials\n",
"\n",
"Head to [https://atlas.nomic.ai/](https://atlas.nomic.ai/) to sign up to Nomic and generate an API key. Once you've done this set the `NOMIC_API_KEY` environment variable:"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "36521c2a",
"metadata": {},
"outputs": [],
"source": [
"import getpass\n",
"import os\n",
"\n",
"if not os.getenv(\"NOMIC_API_KEY\"):\n",
" os.environ[\"NOMIC_API_KEY\"] = getpass.getpass(\"Enter your Nomic API key: \")"
]
},
{
"cell_type": "markdown",
"id": "c84fb993",
"metadata": {},
"source": "To enable automated tracing of your model calls, set your [LangSmith](https://docs.smith.langchain.com/) API key:"
},
{
"cell_type": "code",
"execution_count": 3,
"id": "39a4953b",
"metadata": {},
"outputs": [],
"source": [
"# os.environ[\"LANGSMITH_TRACING\"] = \"true\"\n",
"# os.environ[\"LANGSMITH_API_KEY\"] = getpass.getpass(\"Enter your LangSmith API key: \")"
]
},
{
"cell_type": "markdown",
"id": "d9664366",
"metadata": {},
"source": [
"### Installation\n",
"\n",
"The LangChain Nomic integration lives in the `langchain-nomic` package:"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "64853226",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Note: you may need to restart the kernel to use updated packages.\n"
]
}
],
"source": [
"%pip install -qU langchain-nomic"
]
},
{
"cell_type": "markdown",
"id": "45dd1724",
"metadata": {},
"source": [
"## Instantiation\n",
"\n",
"Now we can instantiate our model object and generate chat completions:"
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "9ea7a09b",
"metadata": {},
"outputs": [],
"source": [
"from langchain_nomic import NomicEmbeddings\n",
"\n",
"embeddings = NomicEmbeddings(\n",
" model=\"nomic-embed-text-v1.5\",\n",
" # dimensionality=256,\n",
" # Nomic's `nomic-embed-text-v1.5` model was [trained with Matryoshka learning](https://blog.nomic.ai/posts/nomic-embed-matryoshka)\n",
" # to enable variable-length embeddings with a single model.\n",
" # This means that you can specify the dimensionality of the embeddings at inference time.\n",
" # The model supports dimensionality from 64 to 768.\n",
" # inference_mode=\"remote\",\n",
" # One of `remote`, `local` (Embed4All), or `dynamic` (automatic). Defaults to `remote`.\n",
" # api_key=... , # if using remote inference,\n",
" # device=\"cpu\",\n",
" # The device to use for local embeddings. Choices include\n",
" # `cpu`, `gpu`, `nvidia`, `amd`, or a specific device name. See\n",
" # the docstring for `GPT4All.__init__` for more info. Typically\n",
" # defaults to CPU. Do not use on macOS.\n",
")"
]
},
{
"cell_type": "markdown",
"id": "77d271b6",
"metadata": {},
"source": [
"## Indexing and Retrieval\n",
"\n",
"Embedding models are often used in retrieval-augmented generation (RAG) flows, both as part of indexing data as well as later retrieving it. For more detailed instructions, please see our [RAG tutorials](/docs/tutorials/).\n",
"\n",
"Below, see how to index and retrieve data using the `embeddings` object we initialized above. In this example, we will index and retrieve a sample document in the `InMemoryVectorStore`."
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "d817716b",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'LangChain is the framework for building context-aware reasoning applications'"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Create a vector store with a sample text\n",
"from langchain_core.vectorstores import InMemoryVectorStore\n",
"\n",
"text = \"LangChain is the framework for building context-aware reasoning applications\"\n",
"\n",
"vectorstore = InMemoryVectorStore.from_texts(\n",
" [text],\n",
" embedding=embeddings,\n",
")\n",
"\n",
"# Use the vectorstore as a retriever\n",
"retriever = vectorstore.as_retriever()\n",
"\n",
"# Retrieve the most similar text\n",
"retrieved_documents = retriever.invoke(\"What is LangChain?\")\n",
"\n",
"# show the retrieved document's content\n",
"retrieved_documents[0].page_content"
]
},
{
"cell_type": "markdown",
"id": "e02b9855",
"metadata": {},
"source": [
"## Direct Usage\n",
"\n",
"Under the hood, the vectorstore and retriever implementations are calling `embeddings.embed_documents(...)` and `embeddings.embed_query(...)` to create embeddings for the text(s) used in `from_texts` and retrieval `invoke` operations, respectively.\n",
"\n",
"You can directly call these methods to get embeddings for your own use cases.\n",
"\n",
"### Embed single texts\n",
"\n",
"You can embed single texts or documents with `embed_query`:"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "0d2befcd",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[0.024642944, 0.029083252, -0.14013672, -0.09082031, 0.058898926, -0.07489014, -0.0138168335, 0.0037\n"
]
}
],
"source": [
"single_vector = embeddings.embed_query(text)\n",
"print(str(single_vector)[:100]) # Show the first 100 characters of the vector"
]
},
{
"cell_type": "markdown",
"id": "1b5a7d03",
"metadata": {},
"source": [
"### Embed multiple texts\n",
"\n",
"You can embed multiple texts with `embed_documents`:"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "2f4d6e97",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[0.012771606, 0.023727417, -0.12365723, -0.083740234, 0.06530762, -0.07110596, -0.021896362, -0.0068\n",
"[-0.019058228, 0.04058838, -0.15222168, -0.06842041, -0.012130737, -0.07128906, -0.04534912, 0.00522\n"
]
}
],
"source": [
"text2 = (\n",
" \"LangGraph is a library for building stateful, multi-actor applications with LLMs\"\n",
")\n",
"two_vectors = embeddings.embed_documents([text, text2])\n",
"for vector in two_vectors:\n",
" print(str(vector)[:100]) # Show the first 100 characters of the vector"
]
},
{
"cell_type": "markdown",
"id": "98785c12",
"metadata": {},
"source": [
"## API Reference\n",
"\n",
"For detailed documentation on `NomicEmbeddings` features and configuration options, please refer to the [API reference](https://python.langchain.com/api_reference/nomic/embeddings/langchain_nomic.embeddings.NomicEmbeddings.html).\n"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.6"
}
"cells": [
{
"cell_type": "raw",
"id": "afaf8039",
"metadata": {},
"source": [
"---\n",
"sidebar_label: Nomic\n",
"---"
]
},
"nbformat": 4,
"nbformat_minor": 5
{
"cell_type": "markdown",
"id": "9a3d6f34",
"metadata": {},
"source": [
"# NomicEmbeddings\n",
"\n",
"This will help you get started with Nomic embedding models using LangChain. For detailed documentation on `NomicEmbeddings` features and configuration options, please refer to the [API reference](https://python.langchain.com/api_reference/nomic/embeddings/langchain_nomic.embeddings.NomicEmbeddings.html).\n",
"\n",
"## Overview\n",
"### Integration details\n",
"\n",
"import { ItemTable } from \"@theme/FeatureTables\";\n",
"\n",
"<ItemTable category=\"text_embedding\" item=\"Nomic\" />\n",
"\n",
"## Setup\n",
"\n",
"To access Nomic embedding models you'll need to create a/an Nomic account, get an API key, and install the `langchain-nomic` integration package.\n",
"\n",
"### Credentials\n",
"\n",
"Head to [https://atlas.nomic.ai/](https://atlas.nomic.ai/) to sign up to Nomic and generate an API key. Once you've done this set the `NOMIC_API_KEY` environment variable:"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "36521c2a",
"metadata": {},
"outputs": [],
"source": [
"import getpass\n",
"import os\n",
"\n",
"if not os.getenv(\"NOMIC_API_KEY\"):\n",
" os.environ[\"NOMIC_API_KEY\"] = getpass.getpass(\"Enter your Nomic API key: \")"
]
},
{
"cell_type": "markdown",
"id": "c84fb993",
"metadata": {},
"source": [
"To enable automated tracing of your model calls, set your [LangSmith](https://docs.smith.langchain.com/) API key:"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "39a4953b",
"metadata": {},
"outputs": [],
"source": [
"# os.environ[\"LANGSMITH_TRACING\"] = \"true\"\n",
"# os.environ[\"LANGSMITH_API_KEY\"] = getpass.getpass(\"Enter your LangSmith API key: \")"
]
},
{
"cell_type": "markdown",
"id": "d9664366",
"metadata": {},
"source": [
"### Installation\n",
"\n",
"The LangChain Nomic integration lives in the `langchain-nomic` package:"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "64853226",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Note: you may need to restart the kernel to use updated packages.\n"
]
}
],
"source": [
"%pip install -qU langchain-nomic"
]
},
{
"cell_type": "markdown",
"id": "45dd1724",
"metadata": {},
"source": [
"## Instantiation\n",
"\n",
"Now we can instantiate our model object and generate chat completions:"
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "9ea7a09b",
"metadata": {},
"outputs": [],
"source": [
"from langchain_nomic import NomicEmbeddings\n",
"\n",
"embeddings = NomicEmbeddings(\n",
" model=\"nomic-embed-text-v1.5\",\n",
" # dimensionality=256,\n",
" # Nomic's `nomic-embed-text-v1.5` model was [trained with Matryoshka learning](https://blog.nomic.ai/posts/nomic-embed-matryoshka)\n",
" # to enable variable-length embeddings with a single model.\n",
" # This means that you can specify the dimensionality of the embeddings at inference time.\n",
" # The model supports dimensionality from 64 to 768.\n",
" # inference_mode=\"remote\",\n",
" # One of `remote`, `local` (Embed4All), or `dynamic` (automatic). Defaults to `remote`.\n",
" # api_key=... , # if using remote inference,\n",
" # device=\"cpu\",\n",
" # The device to use for local embeddings. Choices include\n",
" # `cpu`, `gpu`, `nvidia`, `amd`, or a specific device name. See\n",
" # the docstring for `GPT4All.__init__` for more info. Typically\n",
" # defaults to CPU. Do not use on macOS.\n",
")"
]
},
{
"cell_type": "markdown",
"id": "77d271b6",
"metadata": {},
"source": [
"## Indexing and Retrieval\n",
"\n",
"Embedding models are often used in retrieval-augmented generation (RAG) flows, both as part of indexing data as well as later retrieving it. For more detailed instructions, please see our [RAG tutorials](/docs/tutorials/rag).\n",
"\n",
"Below, see how to index and retrieve data using the `embeddings` object we initialized above. In this example, we will index and retrieve a sample document in the `InMemoryVectorStore`."
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "d817716b",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'LangChain is the framework for building context-aware reasoning applications'"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Create a vector store with a sample text\n",
"from langchain_core.vectorstores import InMemoryVectorStore\n",
"\n",
"text = \"LangChain is the framework for building context-aware reasoning applications\"\n",
"\n",
"vectorstore = InMemoryVectorStore.from_texts(\n",
" [text],\n",
" embedding=embeddings,\n",
")\n",
"\n",
"# Use the vectorstore as a retriever\n",
"retriever = vectorstore.as_retriever()\n",
"\n",
"# Retrieve the most similar text\n",
"retrieved_documents = retriever.invoke(\"What is LangChain?\")\n",
"\n",
"# show the retrieved document's content\n",
"retrieved_documents[0].page_content"
]
},
{
"cell_type": "markdown",
"id": "e02b9855",
"metadata": {},
"source": [
"## Direct Usage\n",
"\n",
"Under the hood, the vectorstore and retriever implementations are calling `embeddings.embed_documents(...)` and `embeddings.embed_query(...)` to create embeddings for the text(s) used in `from_texts` and retrieval `invoke` operations, respectively.\n",
"\n",
"You can directly call these methods to get embeddings for your own use cases.\n",
"\n",
"### Embed single texts\n",
"\n",
"You can embed single texts or documents with `embed_query`:"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "0d2befcd",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[0.024642944, 0.029083252, -0.14013672, -0.09082031, 0.058898926, -0.07489014, -0.0138168335, 0.0037\n"
]
}
],
"source": [
"single_vector = embeddings.embed_query(text)\n",
"print(str(single_vector)[:100]) # Show the first 100 characters of the vector"
]
},
{
"cell_type": "markdown",
"id": "1b5a7d03",
"metadata": {},
"source": [
"### Embed multiple texts\n",
"\n",
"You can embed multiple texts with `embed_documents`:"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "2f4d6e97",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[0.012771606, 0.023727417, -0.12365723, -0.083740234, 0.06530762, -0.07110596, -0.021896362, -0.0068\n",
"[-0.019058228, 0.04058838, -0.15222168, -0.06842041, -0.012130737, -0.07128906, -0.04534912, 0.00522\n"
]
}
],
"source": [
"text2 = (\n",
" \"LangGraph is a library for building stateful, multi-actor applications with LLMs\"\n",
")\n",
"two_vectors = embeddings.embed_documents([text, text2])\n",
"for vector in two_vectors:\n",
" print(str(vector)[:100]) # Show the first 100 characters of the vector"
]
},
{
"cell_type": "markdown",
"id": "98785c12",
"metadata": {},
"source": [
"## API Reference\n",
"\n",
"For detailed documentation on `NomicEmbeddings` features and configuration options, please refer to the [API reference](https://python.langchain.com/api_reference/nomic/embeddings/langchain_nomic.embeddings.NomicEmbeddings.html).\n"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.6"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -1,270 +1,272 @@
{
"cells": [
{
"cell_type": "raw",
"id": "afaf8039",
"metadata": {},
"source": [
"---\n",
"sidebar_label: OpenAI\n",
"keywords: [openaiembeddings]\n",
"---"
]
},
{
"cell_type": "markdown",
"id": "9a3d6f34",
"metadata": {},
"source": [
"# OpenAIEmbeddings\n",
"\n",
"This will help you get started with OpenAI embedding models using LangChain. For detailed documentation on `OpenAIEmbeddings` features and configuration options, please refer to the [API reference](https://python.langchain.com/api_reference/openai/embeddings/langchain_openai.embeddings.base.OpenAIEmbeddings.html).\n",
"\n",
"\n",
"## Overview\n",
"### Integration details\n",
"\n",
"import { ItemTable } from \"@theme/FeatureTables\";\n",
"\n",
"<ItemTable category=\"text_embedding\" item=\"OpenAI\" />\n",
"\n",
"## Setup\n",
"\n",
"To access OpenAI embedding models you'll need to create a/an OpenAI account, get an API key, and install the `langchain-openai` integration package.\n",
"\n",
"### Credentials\n",
"\n",
"Head to [platform.openai.com](https://platform.openai.com) to sign up to OpenAI and generate an API key. Once youve done this set the OPENAI_API_KEY environment variable:"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "36521c2a",
"metadata": {},
"outputs": [],
"source": [
"import getpass\n",
"import os\n",
"\n",
"if not os.getenv(\"OPENAI_API_KEY\"):\n",
" os.environ[\"OPENAI_API_KEY\"] = getpass.getpass(\"Enter your OpenAI API key: \")"
]
},
{
"cell_type": "markdown",
"id": "c84fb993",
"metadata": {},
"source": "To enable automated tracing of your model calls, set your [LangSmith](https://docs.smith.langchain.com/) API key:"
},
{
"cell_type": "code",
"execution_count": 7,
"id": "39a4953b",
"metadata": {},
"outputs": [],
"source": [
"# os.environ[\"LANGSMITH_TRACING\"] = \"true\"\n",
"# os.environ[\"LANGSMITH_API_KEY\"] = getpass.getpass(\"Enter your LangSmith API key: \")"
]
},
{
"cell_type": "markdown",
"id": "d9664366",
"metadata": {},
"source": [
"### Installation\n",
"\n",
"The LangChain OpenAI integration lives in the `langchain-openai` package:"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "64853226",
"metadata": {},
"outputs": [],
"source": [
"%pip install -qU langchain-openai"
]
},
{
"cell_type": "markdown",
"id": "45dd1724",
"metadata": {},
"source": [
"## Instantiation\n",
"\n",
"Now we can instantiate our model object and generate chat completions:"
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "9ea7a09b",
"metadata": {},
"outputs": [],
"source": [
"from langchain_openai import OpenAIEmbeddings\n",
"\n",
"embeddings = OpenAIEmbeddings(\n",
" model=\"text-embedding-3-large\",\n",
" # With the `text-embedding-3` class\n",
" # of models, you can specify the size\n",
" # of the embeddings you want returned.\n",
" # dimensions=1024\n",
")"
]
},
{
"cell_type": "markdown",
"id": "77d271b6",
"metadata": {},
"source": [
"## Indexing and Retrieval\n",
"\n",
"Embedding models are often used in retrieval-augmented generation (RAG) flows, both as part of indexing data as well as later retrieving it. For more detailed instructions, please see our [RAG tutorials](/docs/tutorials/).\n",
"\n",
"Below, see how to index and retrieve data using the `embeddings` object we initialized above. In this example, we will index and retrieve a sample document in the `InMemoryVectorStore`."
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "d817716b",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'LangChain is the framework for building context-aware reasoning applications'"
]
},
"execution_count": 11,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Create a vector store with a sample text\n",
"from langchain_core.vectorstores import InMemoryVectorStore\n",
"\n",
"text = \"LangChain is the framework for building context-aware reasoning applications\"\n",
"\n",
"vectorstore = InMemoryVectorStore.from_texts(\n",
" [text],\n",
" embedding=embeddings,\n",
")\n",
"\n",
"# Use the vectorstore as a retriever\n",
"retriever = vectorstore.as_retriever()\n",
"\n",
"# Retrieve the most similar text\n",
"retrieved_documents = retriever.invoke(\"What is LangChain?\")\n",
"\n",
"# show the retrieved document's content\n",
"retrieved_documents[0].page_content"
]
},
{
"cell_type": "markdown",
"id": "e02b9855",
"metadata": {},
"source": [
"## Direct Usage\n",
"\n",
"Under the hood, the vectorstore and retriever implementations are calling `embeddings.embed_documents(...)` and `embeddings.embed_query(...)` to create embeddings for the text(s) used in `from_texts` and retrieval `invoke` operations, respectively.\n",
"\n",
"You can directly call these methods to get embeddings for your own use cases.\n",
"\n",
"### Embed single texts\n",
"\n",
"You can embed single texts or documents with `embed_query`:"
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "0d2befcd",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[-0.019276829436421394, 0.0037708976306021214, -0.03294256329536438, 0.0037671267054975033, 0.008175\n"
]
}
],
"source": [
"single_vector = embeddings.embed_query(text)\n",
"print(str(single_vector)[:100]) # Show the first 100 characters of the vector"
]
},
{
"cell_type": "markdown",
"id": "1b5a7d03",
"metadata": {},
"source": [
"### Embed multiple texts\n",
"\n",
"You can embed multiple texts with `embed_documents`:"
]
},
{
"cell_type": "code",
"execution_count": 13,
"id": "2f4d6e97",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[-0.019260549917817116, 0.0037612367887049913, -0.03291035071015358, 0.003757466096431017, 0.0082049\n",
"[-0.010181212797760963, 0.023419594392180443, -0.04215526953339577, -0.001532090245746076, -0.023573\n"
]
}
],
"source": [
"text2 = (\n",
" \"LangGraph is a library for building stateful, multi-actor applications with LLMs\"\n",
")\n",
"two_vectors = embeddings.embed_documents([text, text2])\n",
"for vector in two_vectors:\n",
" print(str(vector)[:100]) # Show the first 100 characters of the vector"
]
},
{
"cell_type": "markdown",
"id": "98785c12",
"metadata": {},
"source": [
"## API Reference\n",
"\n",
"For detailed documentation on `OpenAIEmbeddings` features and configuration options, please refer to the [API reference](https://python.langchain.com/api_reference/openai/embeddings/langchain_openai.embeddings.base.OpenAIEmbeddings.html).\n"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.4"
}
"cells": [
{
"cell_type": "raw",
"id": "afaf8039",
"metadata": {},
"source": [
"---\n",
"sidebar_label: OpenAI\n",
"keywords: [openaiembeddings]\n",
"---"
]
},
"nbformat": 4,
"nbformat_minor": 5
{
"cell_type": "markdown",
"id": "9a3d6f34",
"metadata": {},
"source": [
"# OpenAIEmbeddings\n",
"\n",
"This will help you get started with OpenAI embedding models using LangChain. For detailed documentation on `OpenAIEmbeddings` features and configuration options, please refer to the [API reference](https://python.langchain.com/api_reference/openai/embeddings/langchain_openai.embeddings.base.OpenAIEmbeddings.html).\n",
"\n",
"\n",
"## Overview\n",
"### Integration details\n",
"\n",
"import { ItemTable } from \"@theme/FeatureTables\";\n",
"\n",
"<ItemTable category=\"text_embedding\" item=\"OpenAI\" />\n",
"\n",
"## Setup\n",
"\n",
"To access OpenAI embedding models you'll need to create a/an OpenAI account, get an API key, and install the `langchain-openai` integration package.\n",
"\n",
"### Credentials\n",
"\n",
"Head to [platform.openai.com](https://platform.openai.com) to sign up to OpenAI and generate an API key. Once youve done this set the OPENAI_API_KEY environment variable:"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "36521c2a",
"metadata": {},
"outputs": [],
"source": [
"import getpass\n",
"import os\n",
"\n",
"if not os.getenv(\"OPENAI_API_KEY\"):\n",
" os.environ[\"OPENAI_API_KEY\"] = getpass.getpass(\"Enter your OpenAI API key: \")"
]
},
{
"cell_type": "markdown",
"id": "c84fb993",
"metadata": {},
"source": [
"To enable automated tracing of your model calls, set your [LangSmith](https://docs.smith.langchain.com/) API key:"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "39a4953b",
"metadata": {},
"outputs": [],
"source": [
"# os.environ[\"LANGSMITH_TRACING\"] = \"true\"\n",
"# os.environ[\"LANGSMITH_API_KEY\"] = getpass.getpass(\"Enter your LangSmith API key: \")"
]
},
{
"cell_type": "markdown",
"id": "d9664366",
"metadata": {},
"source": [
"### Installation\n",
"\n",
"The LangChain OpenAI integration lives in the `langchain-openai` package:"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "64853226",
"metadata": {},
"outputs": [],
"source": [
"%pip install -qU langchain-openai"
]
},
{
"cell_type": "markdown",
"id": "45dd1724",
"metadata": {},
"source": [
"## Instantiation\n",
"\n",
"Now we can instantiate our model object and generate chat completions:"
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "9ea7a09b",
"metadata": {},
"outputs": [],
"source": [
"from langchain_openai import OpenAIEmbeddings\n",
"\n",
"embeddings = OpenAIEmbeddings(\n",
" model=\"text-embedding-3-large\",\n",
" # With the `text-embedding-3` class\n",
" # of models, you can specify the size\n",
" # of the embeddings you want returned.\n",
" # dimensions=1024\n",
")"
]
},
{
"cell_type": "markdown",
"id": "77d271b6",
"metadata": {},
"source": [
"## Indexing and Retrieval\n",
"\n",
"Embedding models are often used in retrieval-augmented generation (RAG) flows, both as part of indexing data as well as later retrieving it. For more detailed instructions, please see our [RAG tutorials](/docs/tutorials/rag).\n",
"\n",
"Below, see how to index and retrieve data using the `embeddings` object we initialized above. In this example, we will index and retrieve a sample document in the `InMemoryVectorStore`."
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "d817716b",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'LangChain is the framework for building context-aware reasoning applications'"
]
},
"execution_count": 11,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Create a vector store with a sample text\n",
"from langchain_core.vectorstores import InMemoryVectorStore\n",
"\n",
"text = \"LangChain is the framework for building context-aware reasoning applications\"\n",
"\n",
"vectorstore = InMemoryVectorStore.from_texts(\n",
" [text],\n",
" embedding=embeddings,\n",
")\n",
"\n",
"# Use the vectorstore as a retriever\n",
"retriever = vectorstore.as_retriever()\n",
"\n",
"# Retrieve the most similar text\n",
"retrieved_documents = retriever.invoke(\"What is LangChain?\")\n",
"\n",
"# show the retrieved document's content\n",
"retrieved_documents[0].page_content"
]
},
{
"cell_type": "markdown",
"id": "e02b9855",
"metadata": {},
"source": [
"## Direct Usage\n",
"\n",
"Under the hood, the vectorstore and retriever implementations are calling `embeddings.embed_documents(...)` and `embeddings.embed_query(...)` to create embeddings for the text(s) used in `from_texts` and retrieval `invoke` operations, respectively.\n",
"\n",
"You can directly call these methods to get embeddings for your own use cases.\n",
"\n",
"### Embed single texts\n",
"\n",
"You can embed single texts or documents with `embed_query`:"
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "0d2befcd",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[-0.019276829436421394, 0.0037708976306021214, -0.03294256329536438, 0.0037671267054975033, 0.008175\n"
]
}
],
"source": [
"single_vector = embeddings.embed_query(text)\n",
"print(str(single_vector)[:100]) # Show the first 100 characters of the vector"
]
},
{
"cell_type": "markdown",
"id": "1b5a7d03",
"metadata": {},
"source": [
"### Embed multiple texts\n",
"\n",
"You can embed multiple texts with `embed_documents`:"
]
},
{
"cell_type": "code",
"execution_count": 13,
"id": "2f4d6e97",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[-0.019260549917817116, 0.0037612367887049913, -0.03291035071015358, 0.003757466096431017, 0.0082049\n",
"[-0.010181212797760963, 0.023419594392180443, -0.04215526953339577, -0.001532090245746076, -0.023573\n"
]
}
],
"source": [
"text2 = (\n",
" \"LangGraph is a library for building stateful, multi-actor applications with LLMs\"\n",
")\n",
"two_vectors = embeddings.embed_documents([text, text2])\n",
"for vector in two_vectors:\n",
" print(str(vector)[:100]) # Show the first 100 characters of the vector"
]
},
{
"cell_type": "markdown",
"id": "98785c12",
"metadata": {},
"source": [
"## API Reference\n",
"\n",
"For detailed documentation on `OpenAIEmbeddings` features and configuration options, please refer to the [API reference](https://python.langchain.com/api_reference/openai/embeddings/langchain_openai.embeddings.base.OpenAIEmbeddings.html).\n"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.6"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -133,7 +133,7 @@
"source": [
"## Indexing and Retrieval\n",
"\n",
"Embedding models are often used in retrieval-augmented generation (RAG) flows, both as part of indexing data as well as later retrieving it. For more detailed instructions, please see our [RAG tutorials](/docs/tutorials/).\n",
"Embedding models are often used in retrieval-augmented generation (RAG) flows, both as part of indexing data as well as later retrieving it. For more detailed instructions, please see our [RAG tutorials](/docs/tutorials/rag).\n",
"\n",
"Below, see how to index and retrieve data using the `embeddings` object we initialized above. In this example, we will index and retrieve a sample document in the `InMemoryVectorStore`."
]
@@ -244,7 +244,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.5"
"version": "3.9.6"
}
},
"nbformat": 4,

View File

@@ -141,7 +141,7 @@
"source": [
"## Indexing and Retrieval\n",
"\n",
"Embedding models are often used in retrieval-augmented generation (RAG) flows, both as part of indexing data as well as later retrieving it. For more detailed instructions, please see our [RAG tutorials](/docs/tutorials/).\n",
"Embedding models are often used in retrieval-augmented generation (RAG) flows, both as part of indexing data as well as later retrieving it. For more detailed instructions, please see our [RAG tutorials](/docs/tutorials/rag).\n",
"\n",
"Below, see how to index and retrieve data using the `embeddings` object we initialized above. In this example, we will index and retrieve a sample document in the `InMemoryVectorStore`."
]
@@ -252,7 +252,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.5"
"version": "3.9.6"
}
},
"nbformat": 4,

View File

@@ -1,275 +1,277 @@
{
"cells": [
{
"cell_type": "raw",
"id": "afaf8039",
"metadata": {},
"source": [
"---\n",
"sidebar_label: Together AI\n",
"---"
]
},
{
"cell_type": "markdown",
"id": "9a3d6f34",
"metadata": {},
"source": [
"# TogetherEmbeddings\n",
"\n",
"This will help you get started with Together embedding models using LangChain. For detailed documentation on `TogetherEmbeddings` features and configuration options, please refer to the [API reference](https://python.langchain.com/api_reference/together/embeddings/langchain_together.embeddings.TogetherEmbeddings.html).\n",
"\n",
"## Overview\n",
"### Integration details\n",
"\n",
"import { ItemTable } from \"@theme/FeatureTables\";\n",
"\n",
"<ItemTable category=\"text_embedding\" item=\"Together\" />\n",
"\n",
"## Setup\n",
"\n",
"To access Together embedding models you'll need to create a/an Together account, get an API key, and install the `langchain-together` integration package.\n",
"\n",
"### Credentials\n",
"\n",
"Head to [https://api.together.xyz/](https://api.together.xyz/) to sign up to Together and generate an API key. Once you've done this set the TOGETHER_API_KEY environment variable:"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "36521c2a",
"metadata": {},
"outputs": [],
"source": [
"import getpass\n",
"import os\n",
"\n",
"if not os.getenv(\"TOGETHER_API_KEY\"):\n",
" os.environ[\"TOGETHER_API_KEY\"] = getpass.getpass(\"Enter your Together API key: \")"
]
},
{
"cell_type": "markdown",
"id": "c84fb993",
"metadata": {},
"source": "To enable automated tracing of your model calls, set your [LangSmith](https://docs.smith.langchain.com/) API key:"
},
{
"cell_type": "code",
"execution_count": 2,
"id": "39a4953b",
"metadata": {},
"outputs": [],
"source": [
"# os.environ[\"LANGSMITH_TRACING\"] = \"true\"\n",
"# os.environ[\"LANGSMITH_API_KEY\"] = getpass.getpass(\"Enter your LangSmith API key: \")"
]
},
{
"cell_type": "markdown",
"id": "d9664366",
"metadata": {},
"source": [
"### Installation\n",
"\n",
"The LangChain Together integration lives in the `langchain-together` package:"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "64853226",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m A new release of pip is available: \u001b[0m\u001b[31;49m24.0\u001b[0m\u001b[39;49m -> \u001b[0m\u001b[32;49m24.2\u001b[0m\n",
"\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m To update, run: \u001b[0m\u001b[32;49mpython -m pip install --upgrade pip\u001b[0m\n",
"Note: you may need to restart the kernel to use updated packages.\n"
]
}
],
"source": [
"%pip install -qU langchain-together"
]
},
{
"cell_type": "markdown",
"id": "45dd1724",
"metadata": {},
"source": [
"## Instantiation\n",
"\n",
"Now we can instantiate our model object and generate chat completions:"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "9ea7a09b",
"metadata": {},
"outputs": [],
"source": [
"from langchain_together import TogetherEmbeddings\n",
"\n",
"embeddings = TogetherEmbeddings(\n",
" model=\"togethercomputer/m2-bert-80M-8k-retrieval\",\n",
")"
]
},
{
"cell_type": "markdown",
"id": "77d271b6",
"metadata": {},
"source": [
"## Indexing and Retrieval\n",
"\n",
"Embedding models are often used in retrieval-augmented generation (RAG) flows, both as part of indexing data as well as later retrieving it. For more detailed instructions, please see our [RAG tutorials](/docs/tutorials/).\n",
"\n",
"Below, see how to index and retrieve data using the `embeddings` object we initialized above. In this example, we will index and retrieve a sample document in the `InMemoryVectorStore`."
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "d817716b",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'LangChain is the framework for building context-aware reasoning applications'"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Create a vector store with a sample text\n",
"from langchain_core.vectorstores import InMemoryVectorStore\n",
"\n",
"text = \"LangChain is the framework for building context-aware reasoning applications\"\n",
"\n",
"vectorstore = InMemoryVectorStore.from_texts(\n",
" [text],\n",
" embedding=embeddings,\n",
")\n",
"\n",
"# Use the vectorstore as a retriever\n",
"retriever = vectorstore.as_retriever()\n",
"\n",
"# Retrieve the most similar text\n",
"retrieved_documents = retriever.invoke(\"What is LangChain?\")\n",
"\n",
"# show the retrieved document's content\n",
"retrieved_documents[0].page_content"
]
},
{
"cell_type": "markdown",
"id": "e02b9855",
"metadata": {},
"source": [
"## Direct Usage\n",
"\n",
"Under the hood, the vectorstore and retriever implementations are calling `embeddings.embed_documents(...)` and `embeddings.embed_query(...)` to create embeddings for the text(s) used in `from_texts` and retrieval `invoke` operations, respectively.\n",
"\n",
"You can directly call these methods to get embeddings for your own use cases.\n",
"\n",
"### Embed single texts\n",
"\n",
"You can embed single texts or documents with `embed_query`:"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "0d2befcd",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[0.3812227, -0.052848946, -0.10564975, 0.03480297, 0.2878488, 0.0084609175, 0.11605915, 0.05303011, \n"
]
}
],
"source": [
"single_vector = embeddings.embed_query(text)\n",
"print(str(single_vector)[:100]) # Show the first 100 characters of the vector"
]
},
{
"cell_type": "markdown",
"id": "1b5a7d03",
"metadata": {},
"source": [
"### Embed multiple texts\n",
"\n",
"You can embed multiple texts with `embed_documents`:"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "2f4d6e97",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[0.3812227, -0.052848946, -0.10564975, 0.03480297, 0.2878488, 0.0084609175, 0.11605915, 0.05303011, \n",
"[0.066308185, -0.032866564, 0.115751594, 0.19082588, 0.14017, -0.26976448, -0.056340694, -0.26923394\n"
]
}
],
"source": [
"text2 = (\n",
" \"LangGraph is a library for building stateful, multi-actor applications with LLMs\"\n",
")\n",
"two_vectors = embeddings.embed_documents([text, text2])\n",
"for vector in two_vectors:\n",
" print(str(vector)[:100]) # Show the first 100 characters of the vector"
]
},
{
"cell_type": "markdown",
"id": "98785c12",
"metadata": {},
"source": [
"## API Reference\n",
"\n",
"For detailed documentation on `TogetherEmbeddings` features and configuration options, please refer to the [API reference](https://python.langchain.com/api_reference/together/embeddings/langchain_together.embeddings.TogetherEmbeddings.html).\n"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.4"
}
"cells": [
{
"cell_type": "raw",
"id": "afaf8039",
"metadata": {},
"source": [
"---\n",
"sidebar_label: Together AI\n",
"---"
]
},
"nbformat": 4,
"nbformat_minor": 5
{
"cell_type": "markdown",
"id": "9a3d6f34",
"metadata": {},
"source": [
"# TogetherEmbeddings\n",
"\n",
"This will help you get started with Together embedding models using LangChain. For detailed documentation on `TogetherEmbeddings` features and configuration options, please refer to the [API reference](https://python.langchain.com/api_reference/together/embeddings/langchain_together.embeddings.TogetherEmbeddings.html).\n",
"\n",
"## Overview\n",
"### Integration details\n",
"\n",
"import { ItemTable } from \"@theme/FeatureTables\";\n",
"\n",
"<ItemTable category=\"text_embedding\" item=\"Together\" />\n",
"\n",
"## Setup\n",
"\n",
"To access Together embedding models you'll need to create a/an Together account, get an API key, and install the `langchain-together` integration package.\n",
"\n",
"### Credentials\n",
"\n",
"Head to [https://api.together.xyz/](https://api.together.xyz/) to sign up to Together and generate an API key. Once you've done this set the TOGETHER_API_KEY environment variable:"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "36521c2a",
"metadata": {},
"outputs": [],
"source": [
"import getpass\n",
"import os\n",
"\n",
"if not os.getenv(\"TOGETHER_API_KEY\"):\n",
" os.environ[\"TOGETHER_API_KEY\"] = getpass.getpass(\"Enter your Together API key: \")"
]
},
{
"cell_type": "markdown",
"id": "c84fb993",
"metadata": {},
"source": [
"To enable automated tracing of your model calls, set your [LangSmith](https://docs.smith.langchain.com/) API key:"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "39a4953b",
"metadata": {},
"outputs": [],
"source": [
"# os.environ[\"LANGSMITH_TRACING\"] = \"true\"\n",
"# os.environ[\"LANGSMITH_API_KEY\"] = getpass.getpass(\"Enter your LangSmith API key: \")"
]
},
{
"cell_type": "markdown",
"id": "d9664366",
"metadata": {},
"source": [
"### Installation\n",
"\n",
"The LangChain Together integration lives in the `langchain-together` package:"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "64853226",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m A new release of pip is available: \u001b[0m\u001b[31;49m24.0\u001b[0m\u001b[39;49m -> \u001b[0m\u001b[32;49m24.2\u001b[0m\n",
"\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m To update, run: \u001b[0m\u001b[32;49mpython -m pip install --upgrade pip\u001b[0m\n",
"Note: you may need to restart the kernel to use updated packages.\n"
]
}
],
"source": [
"%pip install -qU langchain-together"
]
},
{
"cell_type": "markdown",
"id": "45dd1724",
"metadata": {},
"source": [
"## Instantiation\n",
"\n",
"Now we can instantiate our model object and generate chat completions:"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "9ea7a09b",
"metadata": {},
"outputs": [],
"source": [
"from langchain_together import TogetherEmbeddings\n",
"\n",
"embeddings = TogetherEmbeddings(\n",
" model=\"togethercomputer/m2-bert-80M-8k-retrieval\",\n",
")"
]
},
{
"cell_type": "markdown",
"id": "77d271b6",
"metadata": {},
"source": [
"## Indexing and Retrieval\n",
"\n",
"Embedding models are often used in retrieval-augmented generation (RAG) flows, both as part of indexing data as well as later retrieving it. For more detailed instructions, please see our [RAG tutorials](/docs/tutorials/rag).\n",
"\n",
"Below, see how to index and retrieve data using the `embeddings` object we initialized above. In this example, we will index and retrieve a sample document in the `InMemoryVectorStore`."
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "d817716b",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'LangChain is the framework for building context-aware reasoning applications'"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Create a vector store with a sample text\n",
"from langchain_core.vectorstores import InMemoryVectorStore\n",
"\n",
"text = \"LangChain is the framework for building context-aware reasoning applications\"\n",
"\n",
"vectorstore = InMemoryVectorStore.from_texts(\n",
" [text],\n",
" embedding=embeddings,\n",
")\n",
"\n",
"# Use the vectorstore as a retriever\n",
"retriever = vectorstore.as_retriever()\n",
"\n",
"# Retrieve the most similar text\n",
"retrieved_documents = retriever.invoke(\"What is LangChain?\")\n",
"\n",
"# show the retrieved document's content\n",
"retrieved_documents[0].page_content"
]
},
{
"cell_type": "markdown",
"id": "e02b9855",
"metadata": {},
"source": [
"## Direct Usage\n",
"\n",
"Under the hood, the vectorstore and retriever implementations are calling `embeddings.embed_documents(...)` and `embeddings.embed_query(...)` to create embeddings for the text(s) used in `from_texts` and retrieval `invoke` operations, respectively.\n",
"\n",
"You can directly call these methods to get embeddings for your own use cases.\n",
"\n",
"### Embed single texts\n",
"\n",
"You can embed single texts or documents with `embed_query`:"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "0d2befcd",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[0.3812227, -0.052848946, -0.10564975, 0.03480297, 0.2878488, 0.0084609175, 0.11605915, 0.05303011, \n"
]
}
],
"source": [
"single_vector = embeddings.embed_query(text)\n",
"print(str(single_vector)[:100]) # Show the first 100 characters of the vector"
]
},
{
"cell_type": "markdown",
"id": "1b5a7d03",
"metadata": {},
"source": [
"### Embed multiple texts\n",
"\n",
"You can embed multiple texts with `embed_documents`:"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "2f4d6e97",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[0.3812227, -0.052848946, -0.10564975, 0.03480297, 0.2878488, 0.0084609175, 0.11605915, 0.05303011, \n",
"[0.066308185, -0.032866564, 0.115751594, 0.19082588, 0.14017, -0.26976448, -0.056340694, -0.26923394\n"
]
}
],
"source": [
"text2 = (\n",
" \"LangGraph is a library for building stateful, multi-actor applications with LLMs\"\n",
")\n",
"two_vectors = embeddings.embed_documents([text, text2])\n",
"for vector in two_vectors:\n",
" print(str(vector)[:100]) # Show the first 100 characters of the vector"
]
},
{
"cell_type": "markdown",
"id": "98785c12",
"metadata": {},
"source": [
"## API Reference\n",
"\n",
"For detailed documentation on `TogetherEmbeddings` features and configuration options, please refer to the [API reference](https://python.langchain.com/api_reference/together/embeddings/langchain_together.embeddings.TogetherEmbeddings.html).\n"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.6"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -1,277 +1,279 @@
{
"cells": [
{
"cell_type": "raw",
"id": "afaf8039",
"metadata": {},
"source": [
"---\n",
"sidebar_label: ZhipuAI\n",
"keywords: [zhipuaiembeddings]\n",
"---"
]
},
{
"cell_type": "markdown",
"id": "9a3d6f34",
"metadata": {},
"source": [
"# ZhipuAIEmbeddings\n",
"\n",
"This will help you get started with ZhipuAI embedding models using LangChain. For detailed documentation on `ZhipuAIEmbeddings` features and configuration options, please refer to the [API reference](https://bigmodel.cn/dev/api#vector).\n",
"\n",
"## Overview\n",
"### Integration details\n",
"\n",
"| Provider | Package |\n",
"|:--------:|:-------:|\n",
"| [ZhipuAI](/docs/integrations/providers/zhipuai/) | [langchain-community](https://python.langchain.com/api_reference/community/embeddings/langchain_community.embeddings.zhipuai.ZhipuAIEmbeddings.html) |\n",
"\n",
"## Setup\n",
"\n",
"To access ZhipuAI embedding models you'll need to create a/an ZhipuAI account, get an API key, and install the `zhipuai` integration package.\n",
"\n",
"### Credentials\n",
"\n",
"Head to [https://bigmodel.cn/](https://bigmodel.cn/usercenter/apikeys) to sign up to ZhipuAI and generate an API key. Once you've done this set the ZHIPUAI_API_KEY environment variable:"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "36521c2a",
"metadata": {},
"outputs": [],
"source": [
"import getpass\n",
"import os\n",
"\n",
"if not os.getenv(\"ZHIPUAI_API_KEY\"):\n",
" os.environ[\"ZHIPUAI_API_KEY\"] = getpass.getpass(\"Enter your ZhipuAI API key: \")"
]
},
{
"cell_type": "markdown",
"id": "c84fb993",
"metadata": {},
"source": "To enable automated tracing of your model calls, set your [LangSmith](https://docs.smith.langchain.com/) API key:"
},
{
"cell_type": "code",
"execution_count": 2,
"id": "39a4953b",
"metadata": {},
"outputs": [],
"source": [
"# os.environ[\"LANGSMITH_TRACING\"] = \"true\"\n",
"# os.environ[\"LANGSMITH_API_KEY\"] = getpass.getpass(\"Enter your LangSmith API key: \")"
]
},
{
"cell_type": "markdown",
"id": "d9664366",
"metadata": {},
"source": [
"### Installation\n",
"\n",
"The LangChain ZhipuAI integration lives in the `zhipuai` package:"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "64853226",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Note: you may need to restart the kernel to use updated packages.\n"
]
}
],
"source": [
"%pip install -qU zhipuai"
]
},
{
"cell_type": "markdown",
"id": "45dd1724",
"metadata": {},
"source": [
"## Instantiation\n",
"\n",
"Now we can instantiate our model object and generate chat completions:"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "9ea7a09b",
"metadata": {},
"outputs": [],
"source": [
"from langchain_community.embeddings import ZhipuAIEmbeddings\n",
"\n",
"embeddings = ZhipuAIEmbeddings(\n",
" model=\"embedding-3\",\n",
" # With the `embedding-3` class\n",
" # of models, you can specify the size\n",
" # of the embeddings you want returned.\n",
" # dimensions=1024\n",
")"
]
},
{
"cell_type": "markdown",
"id": "77d271b6",
"metadata": {},
"source": [
"## Indexing and Retrieval\n",
"\n",
"Embedding models are often used in retrieval-augmented generation (RAG) flows, both as part of indexing data as well as later retrieving it. For more detailed instructions, please see our [RAG tutorials](/docs/tutorials/).\n",
"\n",
"Below, see how to index and retrieve data using the `embeddings` object we initialized above. In this example, we will index and retrieve a sample document in the `InMemoryVectorStore`."
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "d817716b",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'LangChain is the framework for building context-aware reasoning applications'"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Create a vector store with a sample text\n",
"from langchain_core.vectorstores import InMemoryVectorStore\n",
"\n",
"text = \"LangChain is the framework for building context-aware reasoning applications\"\n",
"\n",
"vectorstore = InMemoryVectorStore.from_texts(\n",
" [text],\n",
" embedding=embeddings,\n",
")\n",
"\n",
"# Use the vectorstore as a retriever\n",
"retriever = vectorstore.as_retriever()\n",
"\n",
"# Retrieve the most similar text\n",
"retrieved_documents = retriever.invoke(\"What is LangChain?\")\n",
"\n",
"# show the retrieved document's content\n",
"retrieved_documents[0].page_content"
]
},
{
"cell_type": "markdown",
"id": "e02b9855",
"metadata": {},
"source": [
"## Direct Usage\n",
"\n",
"Under the hood, the vectorstore and retriever implementations are calling `embeddings.embed_documents(...)` and `embeddings.embed_query(...)` to create embeddings for the text(s) used in `from_texts` and retrieval `invoke` operations, respectively.\n",
"\n",
"You can directly call these methods to get embeddings for your own use cases.\n",
"\n",
"### Embed single texts\n",
"\n",
"You can embed single texts or documents with `embed_query`:"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "0d2befcd",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[-0.022979736, 0.007785797, 0.04598999, 0.012741089, -0.01689148, 0.008277893, 0.016464233, 0.009246\n"
]
}
],
"source": [
"single_vector = embeddings.embed_query(text)\n",
"print(str(single_vector)[:100]) # Show the first 100 characters of the vector"
]
},
{
"cell_type": "markdown",
"id": "1b5a7d03",
"metadata": {},
"source": [
"### Embed multiple texts\n",
"\n",
"You can embed multiple texts with `embed_documents`:"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "2f4d6e97",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[-0.022979736, 0.007785797, 0.04598999, 0.012741089, -0.01689148, 0.008277893, 0.016464233, 0.009246\n",
"[-0.02330017, -0.013916016, 0.00022411346, 0.017196655, -0.034240723, 0.011131287, 0.011497498, -0.0\n"
]
}
],
"source": [
"text2 = (\n",
" \"LangGraph is a library for building stateful, multi-actor applications with LLMs\"\n",
")\n",
"two_vectors = embeddings.embed_documents([text, text2])\n",
"for vector in two_vectors:\n",
" print(str(vector)[:100]) # Show the first 100 characters of the vector"
]
},
{
"cell_type": "markdown",
"id": "98785c12",
"metadata": {},
"source": [
"## API Reference\n",
"\n",
"For detailed documentation on `ZhipuAIEmbeddings` features and configuration options, please refer to the [API reference](https://python.langchain.com/api_reference/community/embeddings/langchain_community.embeddings.zhipuai.ZhipuAIEmbeddings.html).\n"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.3"
}
"cells": [
{
"cell_type": "raw",
"id": "afaf8039",
"metadata": {},
"source": [
"---\n",
"sidebar_label: ZhipuAI\n",
"keywords: [zhipuaiembeddings]\n",
"---"
]
},
"nbformat": 4,
"nbformat_minor": 5
{
"cell_type": "markdown",
"id": "9a3d6f34",
"metadata": {},
"source": [
"# ZhipuAIEmbeddings\n",
"\n",
"This will help you get started with ZhipuAI embedding models using LangChain. For detailed documentation on `ZhipuAIEmbeddings` features and configuration options, please refer to the [API reference](https://bigmodel.cn/dev/api#vector).\n",
"\n",
"## Overview\n",
"### Integration details\n",
"\n",
"| Provider | Package |\n",
"|:--------:|:-------:|\n",
"| [ZhipuAI](/docs/integrations/providers/zhipuai/) | [langchain-community](https://python.langchain.com/api_reference/community/embeddings/langchain_community.embeddings.zhipuai.ZhipuAIEmbeddings.html) |\n",
"\n",
"## Setup\n",
"\n",
"To access ZhipuAI embedding models you'll need to create a/an ZhipuAI account, get an API key, and install the `zhipuai` integration package.\n",
"\n",
"### Credentials\n",
"\n",
"Head to [https://bigmodel.cn/](https://bigmodel.cn/usercenter/apikeys) to sign up to ZhipuAI and generate an API key. Once you've done this set the ZHIPUAI_API_KEY environment variable:"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "36521c2a",
"metadata": {},
"outputs": [],
"source": [
"import getpass\n",
"import os\n",
"\n",
"if not os.getenv(\"ZHIPUAI_API_KEY\"):\n",
" os.environ[\"ZHIPUAI_API_KEY\"] = getpass.getpass(\"Enter your ZhipuAI API key: \")"
]
},
{
"cell_type": "markdown",
"id": "c84fb993",
"metadata": {},
"source": [
"To enable automated tracing of your model calls, set your [LangSmith](https://docs.smith.langchain.com/) API key:"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "39a4953b",
"metadata": {},
"outputs": [],
"source": [
"# os.environ[\"LANGSMITH_TRACING\"] = \"true\"\n",
"# os.environ[\"LANGSMITH_API_KEY\"] = getpass.getpass(\"Enter your LangSmith API key: \")"
]
},
{
"cell_type": "markdown",
"id": "d9664366",
"metadata": {},
"source": [
"### Installation\n",
"\n",
"The LangChain ZhipuAI integration lives in the `zhipuai` package:"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "64853226",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Note: you may need to restart the kernel to use updated packages.\n"
]
}
],
"source": [
"%pip install -qU zhipuai"
]
},
{
"cell_type": "markdown",
"id": "45dd1724",
"metadata": {},
"source": [
"## Instantiation\n",
"\n",
"Now we can instantiate our model object and generate chat completions:"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "9ea7a09b",
"metadata": {},
"outputs": [],
"source": [
"from langchain_community.embeddings import ZhipuAIEmbeddings\n",
"\n",
"embeddings = ZhipuAIEmbeddings(\n",
" model=\"embedding-3\",\n",
" # With the `embedding-3` class\n",
" # of models, you can specify the size\n",
" # of the embeddings you want returned.\n",
" # dimensions=1024\n",
")"
]
},
{
"cell_type": "markdown",
"id": "77d271b6",
"metadata": {},
"source": [
"## Indexing and Retrieval\n",
"\n",
"Embedding models are often used in retrieval-augmented generation (RAG) flows, both as part of indexing data as well as later retrieving it. For more detailed instructions, please see our [RAG tutorials](/docs/tutorials/rag).\n",
"\n",
"Below, see how to index and retrieve data using the `embeddings` object we initialized above. In this example, we will index and retrieve a sample document in the `InMemoryVectorStore`."
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "d817716b",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'LangChain is the framework for building context-aware reasoning applications'"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Create a vector store with a sample text\n",
"from langchain_core.vectorstores import InMemoryVectorStore\n",
"\n",
"text = \"LangChain is the framework for building context-aware reasoning applications\"\n",
"\n",
"vectorstore = InMemoryVectorStore.from_texts(\n",
" [text],\n",
" embedding=embeddings,\n",
")\n",
"\n",
"# Use the vectorstore as a retriever\n",
"retriever = vectorstore.as_retriever()\n",
"\n",
"# Retrieve the most similar text\n",
"retrieved_documents = retriever.invoke(\"What is LangChain?\")\n",
"\n",
"# show the retrieved document's content\n",
"retrieved_documents[0].page_content"
]
},
{
"cell_type": "markdown",
"id": "e02b9855",
"metadata": {},
"source": [
"## Direct Usage\n",
"\n",
"Under the hood, the vectorstore and retriever implementations are calling `embeddings.embed_documents(...)` and `embeddings.embed_query(...)` to create embeddings for the text(s) used in `from_texts` and retrieval `invoke` operations, respectively.\n",
"\n",
"You can directly call these methods to get embeddings for your own use cases.\n",
"\n",
"### Embed single texts\n",
"\n",
"You can embed single texts or documents with `embed_query`:"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "0d2befcd",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[-0.022979736, 0.007785797, 0.04598999, 0.012741089, -0.01689148, 0.008277893, 0.016464233, 0.009246\n"
]
}
],
"source": [
"single_vector = embeddings.embed_query(text)\n",
"print(str(single_vector)[:100]) # Show the first 100 characters of the vector"
]
},
{
"cell_type": "markdown",
"id": "1b5a7d03",
"metadata": {},
"source": [
"### Embed multiple texts\n",
"\n",
"You can embed multiple texts with `embed_documents`:"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "2f4d6e97",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[-0.022979736, 0.007785797, 0.04598999, 0.012741089, -0.01689148, 0.008277893, 0.016464233, 0.009246\n",
"[-0.02330017, -0.013916016, 0.00022411346, 0.017196655, -0.034240723, 0.011131287, 0.011497498, -0.0\n"
]
}
],
"source": [
"text2 = (\n",
" \"LangGraph is a library for building stateful, multi-actor applications with LLMs\"\n",
")\n",
"two_vectors = embeddings.embed_documents([text, text2])\n",
"for vector in two_vectors:\n",
" print(str(vector)[:100]) # Show the first 100 characters of the vector"
]
},
{
"cell_type": "markdown",
"id": "98785c12",
"metadata": {},
"source": [
"## API Reference\n",
"\n",
"For detailed documentation on `ZhipuAIEmbeddings` features and configuration options, please refer to the [API reference](https://python.langchain.com/api_reference/community/embeddings/langchain_community.embeddings.zhipuai.ZhipuAIEmbeddings.html).\n"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.6"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

Some files were not shown because too many files have changed in this diff Show More