Compare commits

...

294 Commits

Author SHA1 Message Date
Mason Daugherty
bc1291c9f3 Merge branch 'master' into bagatur/add_tool_call_metadata 2025-11-07 15:44:32 -05:00
Mohammad Mohtashim
8e31a5d7bd fix(core): Fix tool name check in name_dict for PydanticToolsParser (#33479)
- **Description:** The root cause of this issue is that when a user
defines `model_config` in a `BaseModel`, the `{"type": <tool_name>}`
value is derived from the title specified in `model_config` when the
results are parsed
[here](https://vscode.dev/github/keenborder786/langchain/blob/fix/tool_name_dict/libs/core/langchain_core/output_parsers/openai_tools.py#L199).
However,
[tool.__name__](https://vscode.dev/github/keenborder786/langchain/blob/fix/tool_name_dict/libs/core/langchain_core/output_parsers/openai_tools.py#L331)
uses the class name (in uppercase) of the `BaseModel`, resulting in a
`KeyError` when a custom title is provided in `model_config`.
 

The Best Solution will be to use the title provided in `model_config`
attribute if provided one since that is what `type` will be parsed to,
if not then use `tool.__name__`. But need to make sure that this works
only for Pydantic V2.

  - **Issue:** #27260

---------

Co-authored-by: Mason Daugherty <mason@langchain.dev>
2025-11-07 15:39:47 -05:00
Sydney Runkle
ee630b4539 fix: bump up default recursion limit (#33881)
Fixes https://github.com/langchain-ai/langchain/issues/33740

We don't want to depend on recursion limit here, model call limit
middleware is more appropriate
2025-11-07 13:49:12 -06:00
Jacob Lee
46971447df fix(core): Filter empty content blocks from formatted prompts (#32519)
Co-authored-by: Mason Daugherty <mason@langchain.dev>
Co-authored-by: Copilot <175728472+Copilot@users.noreply.github.com>
2025-11-07 14:39:25 -05:00
Azibek
d8b94007c1 fix(huggingface): pass llm params to ChatHuggingFace (#32368)
This PR fixes #32234 and improves HuggingFace chat model integration by:

Ensuring ChatHuggingFace inherits key parameters (temperature,
max_tokens, top_p, streaming, etc.) from the underlying LLM when not
explicitly set.
Adding and updating unit tests to verify property inheritance.
No breaking changes; these updates enhance reliability and
maintainability.

---------

Co-authored-by: Mason Daugherty <mason@langchain.dev>
Co-authored-by: Copilot <175728472+Copilot@users.noreply.github.com>
Co-authored-by: Mason Daugherty <github@mdrxy.com>
2025-11-07 14:29:15 -05:00
Mohammad Mohtashim
cf595dcc38 chore(langchain): Support for SystemMessage in create_agent (#33640)
- **Description:** Updated Function Signature of `create_agent`, the
system prompt can be both a list and string. I see no harm in doing
this, since SystemMessage accepts both.
- **Issue:** #33630

---------

Co-authored-by: Sydney Runkle <54324534+sydney-runkle@users.noreply.github.com>
2025-11-07 13:00:38 -06:00
Copilot
d27211cfa7 fix(core): context preservation in shielded async callbacks (#32163)
The `@shielded` decorator in async callback managers was not preserving
context variables, breaking OpenTelemetry instrumentation and other
context-dependent functionality.

## Problem

When using async callbacks with the `@shielded` decorator (applied to
methods like `on_llm_end`, `on_chain_end`, etc.), context variables were
not being preserved across the shield boundary. This caused issues with:

- OpenTelemetry span context propagation
- Other instrumentation that relies on context variables
- Inconsistent context behavior between sync and async execution

The issue was reproducible with:

```python
from contextvars import copy_context
import asyncio
from langgraph.graph import StateGraph

# Sync case: context remains consistent
print("SYNC")
print(copy_context())  # Same object
graph.invoke({"result": "init"})
print(copy_context())  # Same object

# Async case: context was inconsistent (before fix)
print("ASYNC") 
asyncio.run(graph.ainvoke({"result": "init"}))
print(copy_context())  # Different object than expected
```

## Root Cause

The original `shielded` decorator implementation:

```python
async def wrapped(*args: Any, **kwargs: Any) -> Any:
    return await asyncio.shield(func(*args, **kwargs))
```

Used `asyncio.shield()` directly without preserving the current
execution context, causing context variables to be lost.

## Solution

Modified the `shielded` decorator to:

1. Capture the current context using `copy_context()`
2. Create a task with explicit context using `asyncio.create_task(coro,
context=ctx)` for Python 3.11+
3. Shield the context-aware task
4. Fallback to regular task creation for Python < 3.11

```python
async def wrapped(*args: Any, **kwargs: Any) -> Any:
    # Capture the current context to preserve context variables
    ctx = copy_context()
    coro = func(*args, **kwargs)
    
    try:
        # Create a task with the captured context to preserve context variables
        task = asyncio.create_task(coro, context=ctx)
        return await asyncio.shield(task)
    except TypeError:
        # Python < 3.11 fallback
        task = asyncio.create_task(coro)
        return await asyncio.shield(task)
```

## Testing

- Added comprehensive test
`test_shielded_callback_context_preservation()` that validates context
variables are preserved across shielded callback boundaries
- Verified the fix resolves the original LangGraph context consistency
issue
- Confirmed all existing callback manager tests still pass
- Validated OpenTelemetry-like instrumentation scenarios work correctly

The fix is minimal, maintains backward compatibility, and ensures proper
context preservation for both modern Python versions and older ones.

Fixes #31398.

<!-- START COPILOT CODING AGENT TIPS -->
---

💬 Share your feedback on Copilot coding agent for the chance to win a
$200 gift card! Click
[here](https://survey.alchemer.com/s3/8343779/Copilot-Coding-agent) to
start the survey.

---------

Co-authored-by: copilot-swe-agent[bot] <198982749+Copilot@users.noreply.github.com>
Co-authored-by: mdrxy <61371264+mdrxy@users.noreply.github.com>
Co-authored-by: Mason Daugherty <github@mdrxy.com>
Co-authored-by: Mason Daugherty <mason@langchain.dev>
2025-11-07 13:09:47 -05:00
Swastik-Swarup-Dash
ca1a3fbe88 fix(core): RunnablePick may not return a dict if keys is a string (#31321)
Change made From:
```python
class RunnablePick(RunnableSerializable[dict[str, Any], dict[str, Any]]):
```
To:
```python
class RunnablePick(RunnableSerializable[dict[str, Any], Any]):
```
As suggested by @cbornet 

Fixes ##31309

---------

Co-authored-by: Mason Daugherty <mason@langchain.dev>
Co-authored-by: Mason Daugherty <github@mdrxy.com>
2025-11-07 13:04:20 -05:00
williamzhu54
c955b53aed fix(core): fix Runnable parallel schema being empty when children runnable input schemas use TypedDict (#28196)
# Description
This submission is a part of a school project from our team of 4
@EminGul @williamzhu54 @annay54 @donttouch22.

Our pull request fixes the issue with RunnableParallel scheme being
empty by returning the correct schema output when children runnable
input schemas use TypedDicts.

# Issue
Fixes #24326


# Dependencies
No extra dependencies required for this fix.

# Feedback
Any feedback and advice is gladly welcomed. Please feel free to let us
know what we can change or improve upon regarding this issue.

---------

Co-authored-by: Mason Daugherty <mason@langchain.dev>
Co-authored-by: Mason Daugherty <github@mdrxy.com>
2025-11-07 12:01:21 -05:00
Christophe Bornet
2a626d9608 refactor(langchain): use create_importer for HypotheticalDocumentEmbedder (#32078) 2025-11-07 11:16:00 -05:00
Abhinav
0861cba04b fix(chroma): pydantic validation error when using retriever.invoke() (#31377) 2025-11-07 10:59:16 -05:00
Lê Nam Khánh
88246f45b3 docs: fix typos in libs/core/langchain_core/utils/function_calling.py (#33873) 2025-11-07 10:34:28 -05:00
Lê Nam Khánh
1d04514354 docs: fix typos in libs/core/tests/unit_tests/utils/test_strings.py (#33875) 2025-11-07 10:34:12 -05:00
Lê Nam Khánh
c2324b8f3e docs: fix typos in libs/langchain/langchain_classic/chains/summarize/chain.py (#33877) 2025-11-07 10:33:53 -05:00
Lê Nam Khánh
957ea65d12 docs: fix typos in libs/core/tests/unit_tests/indexing/test_hashed_document.py (#33874) 2025-11-07 10:32:20 -05:00
Lê Nam Khánh
00fa38a295 docs: fix typos in libs/core/tests/unit_tests/test_tools.py (#33876) 2025-11-07 10:31:57 -05:00
Lê Nam Khánh
9d98c1b669 docs: fix typos in libs/partners/groq/langchain_groq/chat_models.py (#33878) 2025-11-07 10:31:35 -05:00
Mahmut CAVDAR
00cc9d421f fix(langchain): Update langchain-core dependency version (#33775) 2025-11-07 10:31:06 -05:00
Mohammad Mohtashim
65716cf590 feat(perplexity): Created Dedicated Output Parser to Support Reasoning Model Output for perplexity (#33670) 2025-11-07 10:17:35 -05:00
riunyfir
1b77a191f4 feat: The response.incomplete event is not handled when using stream_mode=['messages'] (#33871) 2025-11-07 09:46:11 -05:00
repeat-Q
ebfde9173c docs: expand "Why use LangChain?" section in README (#33846) 2025-11-07 09:09:05 -05:00
Lê Nam Khánh
2fe0369049 docs: fix typos in some files (#33867) 2025-11-07 09:04:29 -05:00
Mason Daugherty
e023201d42 style: some cleanup (#33857) 2025-11-06 23:50:46 -05:00
Mason Daugherty
d40e340479 chore: attribute package change versions (#33854)
Needed to disambiguate for within inherited docs
2025-11-06 16:57:30 -05:00
Sydney Runkle
9a09ed0659 fix: don't trace conditional edges and no todos in input state (#33842)
while experimenting w/ todo middleware

| Before | After |
|--------|-------|
| ![Screenshot 2025-11-05 at 1 56 21
PM](https://github.com/user-attachments/assets/63195ae4-8122-4662-8246-0fbc16cb1e22)
| ![Screenshot 2025-11-05 at 1 56 03
PM](https://github.com/user-attachments/assets/255e2fa8-e52d-4d1a-949a-33df52ee6668)
|
| Tracing conditional edges (verbose) | Not tracing conditional edges
(cleaner) |
| ![Screenshot 2025-11-05 at 1 57 56
PM](https://github.com/user-attachments/assets/449ccfe9-4c21-4c87-8e0e-6e89d7a97611)
| ![Screenshot 2025-11-05 at 1 56 58
PM](https://github.com/user-attachments/assets/c5c28d0e-2153-4572-af29-b2528761fec6)
|
| Todos in input state (cluttered) | No todos in input state (cleaner) |
2025-11-05 14:25:57 -05:00
Mason Daugherty
5f27b546dd chore: update README.md with deepagents (#33843) 2025-11-05 14:22:20 -05:00
Mason Daugherty
022fdd52c3 fix(core): handle missing dependency version information (#33844)
Follow up to #33347

This continues to make searching issues difficult
2025-11-05 14:19:55 -05:00
Sydney Runkle
7946a8f64e release: langchain v1.0.4 (#33839) 2025-11-05 12:37:58 -05:00
Sydney Runkle
7af79039fc fix: only increment thread count on successful executions (#33837)
* for run count + thread count overflow we should warn model not to call
again
* don't tally mocked tool calls in thread limit -- consider the
following
  * run limit is 1 
  * thread limit is 3
  * first run calls the tool 2 times, 1 executes, 1 is blocked
* we should only count the successful execution above towards the total
thread count
* raise more helpful warnings on invalid config
2025-11-05 10:00:07 -05:00
Sydney Runkle
1755750ca1 fix: more robust tool call limit middleware (#33817)
* improving typing (covariance)
* adding in support for continuing w/ tool calls not yet at threshold,
switching default to continue
* moving all logic into after model

```py
ExitBehavior = Literal["continue", "error", "end"]
"""How to handle execution when tool call limits are exceeded.
- `"continue"`: Block exceeded tools with error messages, let other tools continue (default)
- `"error"`: Raise a `ToolCallLimitExceededError` exception
- `"end"`: Stop execution immediately, injecting a ToolMessage and an AI message
    for the single tool call that exceeded the limit. Raises `NotImplementedError`
    if there are multiple tool calls
"""
```
2025-11-05 09:18:21 -05:00
Mason Daugherty
ddb53672e2 chore(infra): remove unused pr-title-labeler.yml (#33831) 2025-11-04 20:06:52 -05:00
Mason Daugherty
eeae34972f chore(infra): drop langchain_v1 pr lint (#33830)
Just use `langchain`
2025-11-04 19:46:05 -05:00
Mason Daugherty
47d89b1e47 fix(langchain): remove Tigris (#33829)
Removing this code as there is no possible way for it to work.

See https://github.com/langchain-ai/langchain-community/pull/159
2025-11-04 19:45:52 -05:00
Mason Daugherty
ee0bdaeb79 chore: correct langchain-community references (#33827)
fix docstrings that referenced community versions of now-native packages
2025-11-04 17:01:35 -05:00
Christophe Bornet
915c446c48 chore(core): add ruff rule PLR2004 (#33706)
Co-authored-by: Mason Daugherty <mason@langchain.dev>
2025-11-04 13:33:37 -05:00
Mason Daugherty
d1e2099408 chore(core): clean pyproject formatting (#33821) 2025-11-04 18:21:15 +00:00
Mason Daugherty
6ea15b9efa docs(model-profiles): fix typo (#33820) 2025-11-04 18:19:55 +00:00
Mason Daugherty
69f33aaff5 chore(infra): remova unused poetry_setup action (#33819) 2025-11-04 13:18:55 -05:00
Mason Daugherty
3f66f102d2 chore: update issue template xref url (#33818) 2025-11-04 13:17:42 -05:00
Mason Daugherty
c6547f58b7 style(standard-tests): refs pass (#33814) 2025-11-04 00:01:16 -05:00
Mason Daugherty
dfb05a7fa0 style: refs pass (#33813) 2025-11-03 22:11:10 -05:00
ccurme
2f67f9ddcb release(huggingface): 1.0.1 (#33803) 2025-11-03 14:49:52 -05:00
Hyejeong Jo
0e36185933 fix(huggingface): add stream_usage support for ChatHuggingFace invoke/stream (#32708) 2025-11-03 14:44:32 -05:00
Michael Li
6617865440 fix(core): add no colors check (#33780)
Patch edge case in get_color_mapping
2025-11-03 13:23:23 -05:00
ccurme
6dba4912be release(model-profiles): 0.0.3 (#33798) 2025-11-03 11:17:08 -05:00
ccurme
7a3827471b fix(model-profiles): fix pdf_inputs field (#33797) 2025-11-03 11:10:33 -05:00
ccurme
f006bc4c7e feat(langchain): add model-profiles as optional dependency (#33794) 2025-11-03 10:13:58 -05:00
Mason Daugherty
0a442644e3 test(anthropic): add vcr to test_search_result_tool_message (#33793)
To fix nondeterministic results causing integration testing to sometimes
fail

Also speeds up from 10s to 0.5

---------

Co-authored-by: ccurme <chester.curme@gmail.com>
2025-11-03 15:13:30 +00:00
repeat-Q
4960663546 docs: add Code of Conduct link to README (#33782)
**Description:** Add link to Code of Conduct in the Additional resources
section to make community guidelines more accessible for all
contributors.

**Rationale:** 
- **Community Health:** Making the Code of Conduct easily discoverable
helps set clear expectations for community behavior and fosters a more
inclusive, respectful environment
- **New Contributor Experience:** Many new contributors look to the
README as the primary source of project information. Having the Code of
Conduct readily available helps onboard them properly
- **Best Practices:** Prominent Code of Conduct links are considered a
best practice in open source projects and improve project accessibility
- **Low Impact:** This is a simple, non-breaking change that
significantly improves documentation completeness

**Issue:** N/A

**Dependencies:** None
2025-11-03 09:50:47 -05:00
ccurme
1381137c37 release(standard-tests): 1.0.1 (#33792) 2025-11-03 09:46:39 -05:00
ccurme
b4a042dfc4 release(core): 1.0.3 (#33768) 2025-11-03 09:19:32 -05:00
ccurme
81c4f21b52 fix(standard-tests): update multimodal tests (#33781) 2025-11-01 16:38:20 -04:00
Mason Daugherty
f2dab562a8 style: misc refs work (#33771) 2025-10-31 18:29:53 -04:00
ccurme
61196a8280 release(openai): 1.0.2 (#33769) 2025-10-31 14:21:32 -04:00
ccurme
7a97c31ac0 release(model-profiles): 0.0.2 (#33767) 2025-10-31 13:58:04 -04:00
ccurme
424214041e feat(model-profiles): support more providers (#33766) 2025-10-31 13:48:56 -04:00
ccurme
b06bd6a913 fix(model-profiles): add typing-extensions as explicit dep (#33762) 2025-10-31 11:21:55 -04:00
ccurme
1c762187e8 fix(model-profiles): remove langchain-core as a dependency (#33761) 2025-10-31 11:04:14 -04:00
Mason Daugherty
90aefc607f docs(core): improve tools module docstrings (#33755)
styling in `base.py`, content updates in
`libs/core/langchain_core/tools/convert.py`
2025-10-31 10:54:30 -04:00
ccurme
2ca73c479b fix(infra): fix release workflow for new packages (#33760) 2025-10-31 10:38:38 -04:00
ccurme
17c7c273b8 fix(infra): fix release workflow for new packages (#33759) 2025-10-31 10:21:12 -04:00
ccurme
493be259c3 feat(core): mint langchain-model-profiles and add profile property to BaseChatModel (#33728) 2025-10-31 09:44:46 -04:00
Mason Daugherty
106c6ac273 revert: "chore: skip anthropic tests while waiting on new anthropic release" (#33753)
Reverts langchain-ai/langchain#33739
2025-10-30 16:37:12 -04:00
Mason Daugherty
7aaaa371e7 release(anthropic): 1.0.1 (#33752) 2025-10-30 16:19:44 -04:00
Mason Daugherty
468dad1780 chore: use model IDs, latest anthropic models (#33747)
- standardize on using model IDs, no more aliases - makes future
maintenance easier
- use latest models in docstrings to highlight support
- remove remaining sonnet 3-7 usage due to deprecation

Depends on #33751
2025-10-30 16:13:28 -04:00
Mason Daugherty
32d294b89a fix(anthropic): clean up tests, update default model to use ID (#33751)
- use latest models in examples to highlight support
- standardize on using IDs in examples - no more aliases to improve
determinism in future tests
- bump lock
- in integration tests, fix stale casettes and use `MODEL_NAME`
uniformly where possible
- add case for default max tokens for sonnet-4-5 (was missing)
2025-10-30 16:08:18 -04:00
Mason Daugherty
dc5b7dace8 test(openai): mark tests flaky (#33750)
see:
https://github.com/langchain-ai/langchain/actions/runs/18921929210/job/54020065079#step:10:560
2025-10-30 16:07:58 -04:00
Mason Daugherty
e00b7233cf chore(langchain): fix lint_imports paths (#33749) 2025-10-30 16:06:08 -04:00
Mason Daugherty
91f7e73c27 fix(langchain): use system_prompt in integration tests (#33748) 2025-10-30 16:05:57 -04:00
Shagun Gupta
75fff151e8 fix(openai): replace pytest.warns(None) with warnings.catch_warnings in ChatOpenAI test to resolve TypeError . Resolves issue #33705 (#33741) 2025-10-30 09:22:34 -04:00
Sydney Runkle
d05a0cb80d chore: skip anthropic tests while waiting on new anthropic release (#33739)
like https://github.com/langchain-ai/langchain/pull/33312/files

temporarily skip while waiting on new anthropic release

dependent on https://github.com/langchain-ai/langchain/pull/33737
2025-10-29 16:10:42 -07:00
Sydney Runkle
d24aa69ceb chore: don't pick up alphas for testing (#33738)
reverting change made in
eaa6dcce9e
2025-10-29 16:04:57 -07:00
Sydney Runkle
fabcacc3e5 chore: remove mentions of sonnet 3.5 (#33737)
see
https://docs.claude.com/en/docs/about-claude/model-deprecations#2025-08-13%3A-claude-sonnet-3-5-models
2025-10-29 15:49:27 -07:00
Christian Bromann
ac58d75113 fix(langchain_v1): remove thread_model_call_count and run_model_call_count from tool node test (#33725)
While working on ToolRuntime in TS I discovered that Python still uses
`thread_model_call_count` and `run_model_call_count` in ToolNode tests
which afaik we removed.
2025-10-29 15:36:18 -07:00
Sydney Runkle
28564ef94e release: core 1.0.2 and langchain 1.0.3 (#33736) 2025-10-29 15:30:17 -07:00
Christian Bromann
b62a9b57f3 fix(langchain_v1): removed unsed functions in tool_call_limit middleware (#33735)
These functions seem unused and can be removed.
2025-10-29 15:21:38 -07:00
Sydney Runkle
76dd656f2a fix: filter out injected args from tracing (#33729)
this is CC generated and I want to do a thorough review + update the
tests. but should be able to ship today.

before eek

<img width="637" height="485" alt="Screenshot 2025-10-29 at 12 34 52 PM"
src="https://github.com/user-attachments/assets/121def87-fb7b-4847-b9e2-74f37b3b4763"
/>

now, woo

<img width="651" height="158" alt="Screenshot 2025-10-29 at 12 36 09 PM"
src="https://github.com/user-attachments/assets/1fc0e19e-a83f-417c-81e2-3aa0028630d6"
/>
2025-10-29 22:20:53 +00:00
ccurme
d218936763 fix(openai): update model used in test (#33733)
Co-authored-by: Mason Daugherty <mason@langchain.dev>
2025-10-29 17:09:18 -04:00
Mason Daugherty
123e29dc26 style: more refs fixes (#33730) 2025-10-29 16:34:46 -04:00
Sydney Runkle
6a1dca113e chore: move ToolNode improvements back to langgraph (#33634)
Moving all `ToolNode` related improvements back to LangGraph and
importing them in LC!
pairing w/ https://github.com/langchain-ai/langgraph/pull/6321

this fixes a couple of things:
1. `InjectedState`, store etc will continue to work as expected no
matter where the import is from
2. `ToolRuntime` is now usable w/in langgraph, woohoo!
2025-10-29 11:44:23 -07:00
Sydney Runkle
8aea6dd23a feat: support structured output retry middleware (#33663)
* attach the latest `AIMessage` to all `StructuredOutputError`s so that
relevant middleware can use as desired
* raise `StructuredOutputError` from `ProviderStrategy` logic in case of
failed parsing (so that we can retry from middleware)
* added a test suite w/ example custom middleware that retries for tool
+ provider strategy

Long term, we could add our own opinionated structured output retry
middleware, but this at least unblocks folks who want to use custom
retry logic in the short term :)

```py
class StructuredOutputRetryMiddleware(AgentMiddleware):
    """Retries model calls when structured output parsing fails."""

    def __init__(self, max_retries: int) -> None:
        self.max_retries = max_retries

    def wrap_model_call(
        self, request: ModelRequest, handler: Callable[[ModelRequest], ModelResponse]
    ) -> ModelResponse:
        for attempt in range(self.max_retries + 1):
            try:
                return handler(request)
            except StructuredOutputError as exc:
                if attempt == self.max_retries:
                    raise

                ai_content = exc.ai_message.content
                error_message = (
                    f"Your previous response was:\n{ai_content}\n\n"
                    f"Error: {exc}. Please try again with a valid response."
                )
                request.messages.append(HumanMessage(content=error_message))
```
2025-10-29 08:41:44 -07:00
Vincent Koc
78a2f86f70 fix(core): improve JSON get_format_instructions using Opik Agent Optimizer (#33718) 2025-10-29 11:05:24 -04:00
Mason Daugherty
b5e23e5823 fix(langchain_v1): correct ref url (#33715) 2025-10-28 23:29:19 -04:00
Mason Daugherty
7872643910 chore(standard-tests): Update API reference link in README (#33714) 2025-10-28 23:29:02 -04:00
Mason Daugherty
f15391f4fc chore(text-splitters): API reference link in README (#33713) 2025-10-28 23:28:48 -04:00
Mason Daugherty
ca9b81cc2e chore(infra): update README (#33712)
Updated the README to clarify LangChain's focus on building agents and
LLM-powered applications. Added a section for community discussions and
refined the ecosystem description.
2025-10-28 23:22:18 -04:00
Mason Daugherty
a2a9a02ecb style(core): more cleanup all around (#33711) 2025-10-28 22:58:19 -04:00
Mason Daugherty
e5e1d6c705 style: more refs work (#33707) 2025-10-28 14:43:28 -04:00
dependabot[bot]
6ee19473ba chore(infra): bump actions/download-artifact from 5 to 6 (#33682)
Bumps
[actions/download-artifact](https://github.com/actions/download-artifact)
from 5 to 6.
<details>
<summary>Release notes</summary>
<p><em>Sourced from <a
href="https://github.com/actions/download-artifact/releases">actions/download-artifact's
releases</a>.</em></p>
<blockquote>
<h2>v6.0.0</h2>
<h2>What's Changed</h2>
<p><strong>BREAKING CHANGE:</strong> this update supports Node
<code>v24.x</code>. This is not a breaking change per-se but we're
treating it as such.</p>
<ul>
<li>Update README for download-artifact v5 changes by <a
href="https://github.com/yacaovsnc"><code>@​yacaovsnc</code></a> in <a
href="https://redirect.github.com/actions/download-artifact/pull/417">actions/download-artifact#417</a></li>
<li>Update README with artifact extraction details by <a
href="https://github.com/yacaovsnc"><code>@​yacaovsnc</code></a> in <a
href="https://redirect.github.com/actions/download-artifact/pull/424">actions/download-artifact#424</a></li>
<li>Readme: spell out the first use of GHES by <a
href="https://github.com/danwkennedy"><code>@​danwkennedy</code></a> in
<a
href="https://redirect.github.com/actions/download-artifact/pull/431">actions/download-artifact#431</a></li>
<li>Bump <code>@actions/artifact</code> to <code>v4.0.0</code></li>
<li>Prepare <code>v6.0.0</code> by <a
href="https://github.com/danwkennedy"><code>@​danwkennedy</code></a> in
<a
href="https://redirect.github.com/actions/download-artifact/pull/438">actions/download-artifact#438</a></li>
</ul>
<h2>New Contributors</h2>
<ul>
<li><a
href="https://github.com/danwkennedy"><code>@​danwkennedy</code></a>
made their first contribution in <a
href="https://redirect.github.com/actions/download-artifact/pull/431">actions/download-artifact#431</a></li>
</ul>
<p><strong>Full Changelog</strong>: <a
href="https://github.com/actions/download-artifact/compare/v5...v6.0.0">https://github.com/actions/download-artifact/compare/v5...v6.0.0</a></p>
</blockquote>
</details>
<details>
<summary>Commits</summary>
<ul>
<li><a
href="018cc2cf5b"><code>018cc2c</code></a>
Merge pull request <a
href="https://redirect.github.com/actions/download-artifact/issues/438">#438</a>
from actions/danwkennedy/prepare-6.0.0</li>
<li><a
href="815651c680"><code>815651c</code></a>
Revert &quot;Remove <code>github.dep.yml</code>&quot;</li>
<li><a
href="bb3a066a8b"><code>bb3a066</code></a>
Remove <code>github.dep.yml</code></li>
<li><a
href="fa1ce46bbd"><code>fa1ce46</code></a>
Prepare <code>v6.0.0</code></li>
<li><a
href="4a24838f3d"><code>4a24838</code></a>
Merge pull request <a
href="https://redirect.github.com/actions/download-artifact/issues/431">#431</a>
from danwkennedy/patch-1</li>
<li><a
href="5e3251c4ff"><code>5e3251c</code></a>
Readme: spell out the first use of GHES</li>
<li><a
href="abefc31eaf"><code>abefc31</code></a>
Merge pull request <a
href="https://redirect.github.com/actions/download-artifact/issues/424">#424</a>
from actions/yacaovsnc/update_readme</li>
<li><a
href="ac43a6070a"><code>ac43a60</code></a>
Update README with artifact extraction details</li>
<li><a
href="de96f4613b"><code>de96f46</code></a>
Merge pull request <a
href="https://redirect.github.com/actions/download-artifact/issues/417">#417</a>
from actions/yacaovsnc/update_readme</li>
<li><a
href="7993cb44e9"><code>7993cb4</code></a>
Remove migration guide for artifact download changes</li>
<li>Additional commits viewable in <a
href="https://github.com/actions/download-artifact/compare/v5...v6">compare
view</a></li>
</ul>
</details>
<br />


[![Dependabot compatibility
score](https://dependabot-badges.githubapp.com/badges/compatibility_score?dependency-name=actions/download-artifact&package-manager=github_actions&previous-version=5&new-version=6)](https://docs.github.com/en/github/managing-security-vulnerabilities/about-dependabot-security-updates#about-compatibility-scores)

Dependabot will resolve any conflicts with this PR as long as you don't
alter it yourself. You can also trigger a rebase manually by commenting
`@dependabot rebase`.

[//]: # (dependabot-automerge-start)
[//]: # (dependabot-automerge-end)

---

<details>
<summary>Dependabot commands and options</summary>
<br />

You can trigger Dependabot actions by commenting on this PR:
- `@dependabot rebase` will rebase this PR
- `@dependabot recreate` will recreate this PR, overwriting any edits
that have been made to it
- `@dependabot merge` will merge this PR after your CI passes on it
- `@dependabot squash and merge` will squash and merge this PR after
your CI passes on it
- `@dependabot cancel merge` will cancel a previously requested merge
and block automerging
- `@dependabot reopen` will reopen this PR if it is closed
- `@dependabot close` will close this PR and stop Dependabot recreating
it. You can achieve the same result by closing it manually
- `@dependabot show <dependency name> ignore conditions` will show all
of the ignore conditions of the specified dependency
- `@dependabot ignore this major version` will close this PR and stop
Dependabot creating any more for this major version (unless you reopen
the PR or upgrade to it yourself)
- `@dependabot ignore this minor version` will close this PR and stop
Dependabot creating any more for this minor version (unless you reopen
the PR or upgrade to it yourself)
- `@dependabot ignore this dependency` will close this PR and stop
Dependabot creating any more for this dependency (unless you reopen the
PR or upgrade to it yourself)


</details>

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
Co-authored-by: Mason Daugherty <mason@langchain.dev>
2025-10-28 14:07:16 -04:00
dependabot[bot]
a59551f3b4 chore(infra): bump actions/upload-artifact from 4 to 5 (#33681)
Bumps
[actions/upload-artifact](https://github.com/actions/upload-artifact)
from 4 to 5.
<details>
<summary>Release notes</summary>
<p><em>Sourced from <a
href="https://github.com/actions/upload-artifact/releases">actions/upload-artifact's
releases</a>.</em></p>
<blockquote>
<h2>v5.0.0</h2>
<h2>What's Changed</h2>
<p><strong>BREAKING CHANGE:</strong> this update supports Node
<code>v24.x</code>. This is not a breaking change per-se but we're
treating it as such.</p>
<ul>
<li>Update README.md by <a
href="https://github.com/GhadimiR"><code>@​GhadimiR</code></a> in <a
href="https://redirect.github.com/actions/upload-artifact/pull/681">actions/upload-artifact#681</a></li>
<li>Update README.md by <a
href="https://github.com/nebuk89"><code>@​nebuk89</code></a> in <a
href="https://redirect.github.com/actions/upload-artifact/pull/712">actions/upload-artifact#712</a></li>
<li>Readme: spell out the first use of GHES by <a
href="https://github.com/danwkennedy"><code>@​danwkennedy</code></a> in
<a
href="https://redirect.github.com/actions/upload-artifact/pull/727">actions/upload-artifact#727</a></li>
<li>Update GHES guidance to include reference to Node 20 version by <a
href="https://github.com/patrikpolyak"><code>@​patrikpolyak</code></a>
in <a
href="https://redirect.github.com/actions/upload-artifact/pull/725">actions/upload-artifact#725</a></li>
<li>Bump <code>@actions/artifact</code> to <code>v4.0.0</code></li>
<li>Prepare <code>v5.0.0</code> by <a
href="https://github.com/danwkennedy"><code>@​danwkennedy</code></a> in
<a
href="https://redirect.github.com/actions/upload-artifact/pull/734">actions/upload-artifact#734</a></li>
</ul>
<h2>New Contributors</h2>
<ul>
<li><a href="https://github.com/GhadimiR"><code>@​GhadimiR</code></a>
made their first contribution in <a
href="https://redirect.github.com/actions/upload-artifact/pull/681">actions/upload-artifact#681</a></li>
<li><a href="https://github.com/nebuk89"><code>@​nebuk89</code></a> made
their first contribution in <a
href="https://redirect.github.com/actions/upload-artifact/pull/712">actions/upload-artifact#712</a></li>
<li><a
href="https://github.com/danwkennedy"><code>@​danwkennedy</code></a>
made their first contribution in <a
href="https://redirect.github.com/actions/upload-artifact/pull/727">actions/upload-artifact#727</a></li>
<li><a
href="https://github.com/patrikpolyak"><code>@​patrikpolyak</code></a>
made their first contribution in <a
href="https://redirect.github.com/actions/upload-artifact/pull/725">actions/upload-artifact#725</a></li>
</ul>
<p><strong>Full Changelog</strong>: <a
href="https://github.com/actions/upload-artifact/compare/v4...v5.0.0">https://github.com/actions/upload-artifact/compare/v4...v5.0.0</a></p>
<h2>v4.6.2</h2>
<h2>What's Changed</h2>
<ul>
<li>Update to use artifact 2.3.2 package &amp; prepare for new
upload-artifact release by <a
href="https://github.com/salmanmkc"><code>@​salmanmkc</code></a> in <a
href="https://redirect.github.com/actions/upload-artifact/pull/685">actions/upload-artifact#685</a></li>
</ul>
<h2>New Contributors</h2>
<ul>
<li><a href="https://github.com/salmanmkc"><code>@​salmanmkc</code></a>
made their first contribution in <a
href="https://redirect.github.com/actions/upload-artifact/pull/685">actions/upload-artifact#685</a></li>
</ul>
<p><strong>Full Changelog</strong>: <a
href="https://github.com/actions/upload-artifact/compare/v4...v4.6.2">https://github.com/actions/upload-artifact/compare/v4...v4.6.2</a></p>
<h2>v4.6.1</h2>
<h2>What's Changed</h2>
<ul>
<li>Update to use artifact 2.2.2 package by <a
href="https://github.com/yacaovsnc"><code>@​yacaovsnc</code></a> in <a
href="https://redirect.github.com/actions/upload-artifact/pull/673">actions/upload-artifact#673</a></li>
</ul>
<p><strong>Full Changelog</strong>: <a
href="https://github.com/actions/upload-artifact/compare/v4...v4.6.1">https://github.com/actions/upload-artifact/compare/v4...v4.6.1</a></p>
<h2>v4.6.0</h2>
<h2>What's Changed</h2>
<ul>
<li>Expose env vars to control concurrency and timeout by <a
href="https://github.com/yacaovsnc"><code>@​yacaovsnc</code></a> in <a
href="https://redirect.github.com/actions/upload-artifact/pull/662">actions/upload-artifact#662</a></li>
</ul>
<p><strong>Full Changelog</strong>: <a
href="https://github.com/actions/upload-artifact/compare/v4...v4.6.0">https://github.com/actions/upload-artifact/compare/v4...v4.6.0</a></p>
<h2>v4.5.0</h2>
<h2>What's Changed</h2>
<ul>
<li>fix: deprecated <code>Node.js</code> version in action by <a
href="https://github.com/hamirmahal"><code>@​hamirmahal</code></a> in <a
href="https://redirect.github.com/actions/upload-artifact/pull/578">actions/upload-artifact#578</a></li>
<li>Add new <code>artifact-digest</code> output by <a
href="https://github.com/bdehamer"><code>@​bdehamer</code></a> in <a
href="https://redirect.github.com/actions/upload-artifact/pull/656">actions/upload-artifact#656</a></li>
</ul>
<h2>New Contributors</h2>
<ul>
<li><a
href="https://github.com/hamirmahal"><code>@​hamirmahal</code></a> made
their first contribution in <a
href="https://redirect.github.com/actions/upload-artifact/pull/578">actions/upload-artifact#578</a></li>
</ul>
<!-- raw HTML omitted -->
</blockquote>
<p>... (truncated)</p>
</details>
<details>
<summary>Commits</summary>
<ul>
<li><a
href="330a01c490"><code>330a01c</code></a>
Merge pull request <a
href="https://redirect.github.com/actions/upload-artifact/issues/734">#734</a>
from actions/danwkennedy/prepare-5.0.0</li>
<li><a
href="03f2824452"><code>03f2824</code></a>
Update <code>github.dep.yml</code></li>
<li><a
href="905a1ecb59"><code>905a1ec</code></a>
Prepare <code>v5.0.0</code></li>
<li><a
href="2d9f9cdfa9"><code>2d9f9cd</code></a>
Merge pull request <a
href="https://redirect.github.com/actions/upload-artifact/issues/725">#725</a>
from patrikpolyak/patch-1</li>
<li><a
href="9687587dec"><code>9687587</code></a>
Merge branch 'main' into patch-1</li>
<li><a
href="2848b2cda0"><code>2848b2c</code></a>
Merge pull request <a
href="https://redirect.github.com/actions/upload-artifact/issues/727">#727</a>
from danwkennedy/patch-1</li>
<li><a
href="9b511775fd"><code>9b51177</code></a>
Spell out the first use of GHES</li>
<li><a
href="cd231ca1ed"><code>cd231ca</code></a>
Update GHES guidance to include reference to Node 20 version</li>
<li><a
href="de65e23aa2"><code>de65e23</code></a>
Merge pull request <a
href="https://redirect.github.com/actions/upload-artifact/issues/712">#712</a>
from actions/nebuk89-patch-1</li>
<li><a
href="8747d8cd76"><code>8747d8c</code></a>
Update README.md</li>
<li>Additional commits viewable in <a
href="https://github.com/actions/upload-artifact/compare/v4...v5">compare
view</a></li>
</ul>
</details>
<br />


[![Dependabot compatibility
score](https://dependabot-badges.githubapp.com/badges/compatibility_score?dependency-name=actions/upload-artifact&package-manager=github_actions&previous-version=4&new-version=5)](https://docs.github.com/en/github/managing-security-vulnerabilities/about-dependabot-security-updates#about-compatibility-scores)

Dependabot will resolve any conflicts with this PR as long as you don't
alter it yourself. You can also trigger a rebase manually by commenting
`@dependabot rebase`.

[//]: # (dependabot-automerge-start)
[//]: # (dependabot-automerge-end)

---

<details>
<summary>Dependabot commands and options</summary>
<br />

You can trigger Dependabot actions by commenting on this PR:
- `@dependabot rebase` will rebase this PR
- `@dependabot recreate` will recreate this PR, overwriting any edits
that have been made to it
- `@dependabot merge` will merge this PR after your CI passes on it
- `@dependabot squash and merge` will squash and merge this PR after
your CI passes on it
- `@dependabot cancel merge` will cancel a previously requested merge
and block automerging
- `@dependabot reopen` will reopen this PR if it is closed
- `@dependabot close` will close this PR and stop Dependabot recreating
it. You can achieve the same result by closing it manually
- `@dependabot show <dependency name> ignore conditions` will show all
of the ignore conditions of the specified dependency
- `@dependabot ignore this major version` will close this PR and stop
Dependabot creating any more for this major version (unless you reopen
the PR or upgrade to it yourself)
- `@dependabot ignore this minor version` will close this PR and stop
Dependabot creating any more for this minor version (unless you reopen
the PR or upgrade to it yourself)
- `@dependabot ignore this dependency` will close this PR and stop
Dependabot creating any more for this dependency (unless you reopen the
PR or upgrade to it yourself)


</details>

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
Co-authored-by: Mason Daugherty <mason@langchain.dev>
2025-10-28 14:07:03 -04:00
ccurme
3286a98b27 fix(core): translate Google GenAI text blocks to v1 (#33699) 2025-10-28 09:53:01 -04:00
Mason Daugherty
62769a0dac feat(langchain): export UsageMetadata (#33692)
as well as `InputTokenDetails`, and `OutputTokenDetails` from
`langchain_core.messages`
2025-10-27 19:47:41 -04:00
Mason Daugherty
f94108b4bc fix: links (#33691)
* X-ref to new docs
* Formatting updates
2025-10-27 19:04:29 -04:00
ccurme
60a0ff8217 fix(standard-tests): fix tool description in agent loop test (#33690) 2025-10-27 15:02:13 -04:00
Christophe Bornet
b3dffc70e2 fix(core): fix PydanticOutputParser's get_format_instructions for v1 models (#32479) 2025-10-27 13:44:20 -04:00
Arun Prasad
86ac39e11f refactor(core): Minor refactor for code readability (#33674) 2025-10-27 11:39:36 -04:00
John Eismeier
6e036d38b2 fix(infra): add emacs backup files to gitignore (#33675) 2025-10-27 11:26:47 -04:00
Shanto Mathew
2d30ebb53b docs(langchain): clarify create_tool_calling_agent system_prompt formatting and add troubleshooting (#33679) 2025-10-27 11:18:10 -04:00
Arun Prasad
b3934b9580 refactor(anthropic): remove unnecessary url check (#33671)
if "url" in annotation: in Line 15 , already ensures "url" is key in
annotation , so no need to check again to set "url" key in out object

---------

Co-authored-by: Mason Daugherty <mason@langchain.dev>
2025-10-27 11:13:54 -04:00
Mason Daugherty
09102a634a fix: update some links (#33686) 2025-10-27 11:12:11 -04:00
ccurme
95ff5901a1 chore(anthropic): update integration test cassette (#33685) 2025-10-27 10:43:36 -04:00
Mason Daugherty
f3d7152074 style(core): more refs work (#33664) 2025-10-24 16:06:24 -04:00
Christophe Bornet
dff37f6048 fix(nomic): support Python 3.14 (#33655)
Pyarrow just published 3.14 binaries

Co-authored-by: Mason Daugherty <mason@langchain.dev>
2025-10-24 13:32:07 -04:00
ccurme
832036ef0f chore(infra): remove openai from langchain-core release test matrix (#33661) 2025-10-24 11:55:33 -04:00
ccurme
f1742954ab fix(core): make handling of schemas more defensive (#33660) 2025-10-24 11:10:06 -04:00
ccurme
6ab0476676 fix(openai): update test (#33659) 2025-10-24 11:04:33 -04:00
ccurme
d36413c821 release(mistralai): 1.0.1 (#33657) 2025-10-24 09:50:23 -04:00
Romi45
99097f799c fix(mistralai): resolve duplicate tool calls when converting to mistral chat message (#33648) 2025-10-24 09:40:31 -04:00
Mohammad Mohtashim
0666571519 chore(perplexity): Added all keys for usage metadata (#33480) 2025-10-24 09:32:35 -04:00
ccurme
ef85161525 release(core): 1.0.1 (#33639) 2025-10-22 14:25:21 -04:00
ccurme
079eb808f8 release(qdrant): 1.1.0 (#33638) 2025-10-22 13:24:36 -04:00
Anush
39fb2d1a3b feat(qdrant): Use Qdrant's built-in MMR search (#32302) 2025-10-22 13:19:32 -04:00
Mason Daugherty
db7f2db1ae feat(infra): langchain docs MCP (#33636) 2025-10-22 11:50:35 -04:00
Yu Zhong
df46c82ae2 feat(core): automatic set required to include all properties in strict mode (#32930) 2025-10-22 11:31:08 -04:00
Eugene Yurtsev
f8adbbc461 chore(langchain_v1): bump version from 1.0.1 to 1.0.2 (#33629)
Release 1.0.2
2025-10-21 17:05:51 -04:00
Eugene Yurtsev
17f0716d6c fix(langchain_v1): remove non llm controllable params from tool message on invocation failure (#33625)
The LLM shouldn't be seeing parameters it cannot control in the
ToolMessage error it gets when it invokes a tool with incorrect args.

This fixes the behavior within langchain to address immediate issue.

We may want to change the behavior in langchain_core as well to prevent
validation of injected arguments. But this would be done in a separate
change
2025-10-21 15:40:30 -04:00
Ali Ismail
5acd34ae92 feat(openai): add unit test for streaming error in _generate (#33134) 2025-10-21 15:08:37 -04:00
Aaron Sequeira
84dbebac4f fix(langchain): correctly initialize huggingface models in init_chat_model (#33167) 2025-10-21 14:21:46 -04:00
Mohammad Mohtashim
eddfcd2c88 docs(core): Updated docs for mustache_template_vars (#33481) 2025-10-21 13:01:25 -04:00
noeliecherrier
9f470d297f feat(mistralai): remove tenacity retries for embeddings (#33491) 2025-10-21 12:35:10 -04:00
ccurme
2222470f69 release(openai): 1.0.1 (#33624) 2025-10-21 11:37:47 -04:00
Marlene
78175fcb96 feat(openai): add callable support for openai_api_key parameter (#33532) 2025-10-21 11:16:02 -04:00
Mason Daugherty
d9e659ca4f style: even more refs work (#33619) 2025-10-21 01:09:52 -04:00
Mason Daugherty
e731ba1e47 style: more refs work (#33616) 2025-10-20 18:40:19 -04:00
Cole Murray
557fc9a817 fix(infra): harden pydantic test workflow against command injection (#33446) 2025-10-20 10:35:48 -04:00
Christophe Bornet
965dac74e5 chore(infra): test pydantic with python 3.12 (#33421) 2025-10-20 10:28:41 -04:00
Sydney Runkle
7d7a50d4cc release(langchain_v1): 1.0.1 (#33610) 2025-10-20 13:03:16 +00:00
Sydney Runkle
9319eecaba fix(langchain_v1): ToolRuntime default for args (#33606)
added some noqas, this is a quick patch to support a bug uncovered in
the quickstart, will resolve fully depending on where we centralize
ToolNode stuff.
2025-10-20 08:45:50 -04:00
Mason Daugherty
a47386f6dc style: more refs polishing (#33601) 2025-10-20 00:52:52 -04:00
Mason Daugherty
aaf88c157f docs(langchain): update reference documentation to note moved embeddings modules (#33600) 2025-10-19 20:10:25 -04:00
Christophe Bornet
3dcf4ae1e9 fix(cli): support Python 3.14 (#33598)
Co-authored-by: Mason Daugherty <mason@langchain.dev>
2025-10-19 19:37:34 -04:00
Christophe Bornet
3391168777 ci(infra): test CodSpeed with Python 3.13 (#33599) 2025-10-19 19:33:20 -04:00
repeat-Q
28728dca9f docs: add contributing guide to README (#33490)
**Description:** Added a beginner-friendly tip to the README to help
first-time contributors find a starting point. This is a documentation
improvement aimed at lowering the barrier for newcomers to participate
in open source.

**Issue:** No related issue

**Dependencies:** None

---

## Note to maintainers

I'm new to open source and this is my first PR! If there's anything that
needs improvement, please guide me and I'll be happy to learn and make
changes. Thank you for your patience! 😊

## What does this PR do?
- Added a noticeable beginner tip box after the badges section in README
- Provided specific guidance (Good First Issues link)
- Encourages newcomers to start with documentation fixes

## Why is this change needed?
- Makes it easier for new contributors to get started
- Provides clear direction and reduces confusion
- Creates a more welcoming open source community environment

---------

Co-authored-by: Mason Daugherty <mason@langchain.dev>
2025-10-19 00:01:21 -04:00
Christophe Bornet
1ae7fb7694 chore(langchain-classic): remove unused duckdb dependency (#33582)
* The dependency is not used.
* It takes a long time to build in Python 3.14 as there are no prebuilt
binaries yet. This slows down CI a lot.

Co-authored-by: Mason Daugherty <mason@langchain.dev>
2025-10-17 18:45:30 -04:00
Mason Daugherty
7aef3388d9 release(xai): 1.0.0 (#33591) 2025-10-17 17:42:29 -04:00
Mason Daugherty
1d056487c7 style(anthropic): use aliases for model names (#33590) 2025-10-17 21:40:22 +00:00
Mason Daugherty
64e6798a39 chore: update pyproject.toml url entries (#33587) 2025-10-17 17:16:55 -04:00
Sydney Runkle
4a65e827f7 release(langchain_v1): v1.0.0 (#33588)
waiting on langgraph bump
2025-10-17 16:49:07 -04:00
Sydney Runkle
35b89b8b10 fix: shell tool middleware (#33589)
the fact that this was broken showcases that we need significantly
better test coverage, this is literally the most minimalistic usage of
this middleware there could be 😿

will document these two gotchas better for custom middleware

```py
from langchain.agents.middleware.shell_tool import ShellToolMiddleware
from langchain.agents import create_agent

agent = create_agent(model="openai:gpt-4",middleware = [ShellToolMiddleware()])
agent.invoke({"messages":[{"role": "user", "content": "hi"}]})
```
2025-10-17 16:48:30 -04:00
Mason Daugherty
8efa75d04c fix(xai): inject model_provider in response_metadata (#33543)
plus tests minor rfc
2025-10-17 16:11:03 -04:00
Sydney Runkle
8fd54f13b5 feat(langchain_v1): Python 3.14 support (#33560)
Co-authored-by: Christophe Bornet <cbornet@hotmail.com>
2025-10-17 15:10:01 -04:00
ccurme
952fa8aa99 fix(langchain,langchain_v1): enable huggingface optional dep (#33586) 2025-10-17 18:42:53 +00:00
Mason Daugherty
3948273350 release(prompty): 1.0.0 (#33584) 2025-10-17 14:10:01 -04:00
Eugene Yurtsev
a16307fe84 chore(infra): change scope names (#33580)
Change scope names
2025-10-17 15:55:58 +00:00
Eugene Yurtsev
af6f2cf366 chore(langchain_legacy): bump version 1.0 (#33579)
Bump version for langchain-classic
2025-10-17 11:55:13 -04:00
Mason Daugherty
6997867f0e release(deepseek): 1.0.0 (#33581) 2025-10-17 11:52:08 -04:00
Mason Daugherty
de791bc3ef fix(deepseek): inject model_provider in response_metadata (#33544)
& slight tests rfc
2025-10-17 11:47:59 -04:00
Mason Daugherty
69c6e7de59 release(ollama): 1.0.0 (#33567) 2025-10-17 11:39:24 -04:00
Mason Daugherty
10cee59f2e release(mistralai): 1.0.0 (#33573) 2025-10-17 11:33:17 -04:00
Mason Daugherty
58f521ea4f release(fireworks): 1.0.0 (#33571) 2025-10-17 11:32:57 -04:00
Mason Daugherty
a194ae6959 release(huggingface): 1.0.0 (#33572) 2025-10-17 11:26:48 -04:00
ccurme
4d623133a5 release(openai): 1.0.0 (#33578) 2025-10-17 11:25:25 -04:00
Mason Daugherty
8fbf192c2a release(perplexity): 1.0.0 (#33576) 2025-10-17 11:18:43 -04:00
Mason Daugherty
241a382fba docs: fix Anthropic, OpenAI docstrings (#33566)
minor
2025-10-17 11:18:32 -04:00
Mason Daugherty
c194ee2046 release(exa): 1.0.0 (#33570) 2025-10-17 11:17:43 -04:00
Mason Daugherty
85567f1dc3 release(qdrant): 1.0.0 (#33577) 2025-10-17 11:17:01 -04:00
Mason Daugherty
6f4978041e release(nomic): 1.0.0 (#33574) 2025-10-17 11:16:41 -04:00
Mason Daugherty
f1fca4f46f release(chroma): 1.0.0 (#33569) 2025-10-17 11:16:24 -04:00
Mason Daugherty
2b899fe961 release(groq): 1.0.0 (#33568) 2025-10-17 11:15:57 -04:00
ccurme
3152d25811 fix: support python 3.14 in various projects (#33575)
Co-authored-by: cbornet <cbornet@hotmail.com>
Co-authored-by: Mason Daugherty <mason@langchain.dev>
2025-10-17 11:06:23 -04:00
ccurme
3b8cb3d4b6 release(text-splitters): 1.0.0 (#33565) 2025-10-17 10:30:42 -04:00
ccurme
15047ae28a release(anthropic): 1.0.0 (#33564) 2025-10-17 10:03:04 -04:00
ccurme
888fa3a2fb release(standard-tests): 1.0.0 (#33563) 2025-10-17 09:53:59 -04:00
ccurme
90346b8a35 release(core): 1.0.0 (#33562) 2025-10-17 09:22:45 -04:00
Christophe Bornet
2d5efd7b29 fix(core): support for Python 3.14 (#33461)
* Fix detection of support of context in `asyncio.create_task`
* Fix: in Python 3.14 `asyncio.get_event_loop()` raises an exception if
there's no running loop
* Bump pydantic to version 2.12
* Skips tests with pydantic v1 models as they are not supported with
Python 3.14
* Run core tests with Python 3.14 in CI.

---------

Co-authored-by: Mason Daugherty <mason@langchain.dev>
Co-authored-by: Sydney Runkle <54324534+sydney-runkle@users.noreply.github.com>
2025-10-17 05:27:34 -04:00
Mason Daugherty
1d2273597a docs: more fixes for refs (#33554) 2025-10-16 22:54:16 -04:00
Sydney Runkle
9dd494ddcd fix(langchain): conditional tools -> end edge when all client side calls return direct (#33550)
mostly #33520 
also tacking on change to make sure we're only looking at client side
calls for the jump to end

---------

Co-authored-by: Nuno Campos <nuno@boringbits.io>
2025-10-17 02:35:47 +00:00
Sydney Runkle
2fa07b19f6 chore(langchain_v1): relax typing on input state (#33552)
so we don't get type errors when invoking w/ dict type (openai format)
messages

would love to have types for these eventually so we can get proper
checking

before
<img width="759" height="257" alt="Screenshot 2025-10-16 at 9 46 08 PM"
src="https://github.com/user-attachments/assets/aabe716f-6d8f-429d-ae47-31dd8617752d"
/>

after
<img width="751" height="228" alt="Screenshot 2025-10-16 at 9 51 09 PM"
src="https://github.com/user-attachments/assets/e74dcf12-874b-43ca-9d5b-5575ef8ced73"
/>
2025-10-16 22:35:28 -04:00
Nuno Campos
a022e3c14d feat(langchain_v1): Add ShellToolMiddleware and ClaudeBashToolMiddleware (#33527)
- Both middleware share the same implementation, the only difference is
one uses Claude's server-side tool definition, whereas the other one
uses a generic tool definition compatible with all models
- Implemented 3 execution policies (responsible for actually running the
shell process)
- HostExecutionPolicy runs the shell as subprocess, appropriate for
already sandboxed environments, eg when run inside a dedicated docker
container
- CodexSandboxExecutionPolicy runs the shell using the sandbox command
from the Codex CLI which implements sandboxing techniques for Linux and
Mac OS.
- DockerExecutionPolicy runs the shell inside a dedicated Docker
container for isolation.
- Implements all behaviours described in
https://docs.claude.com/en/docs/agents-and-tools/tool-use/bash-tool#handle-large-outputs
including timeouts, truncation, output redaction, etc

---------

Co-authored-by: Sydney Runkle <54324534+sydney-runkle@users.noreply.github.com>
Co-authored-by: Sydney Runkle <sydneymarierunkle@gmail.com>
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2025-10-16 22:32:11 -04:00
Eugene Yurtsev
e0e11423d9 feat(langchain): file-search middleware (#33551)
File search middleware from
https://github.com/langchain-ai/langchain/pull/33527
2025-10-16 21:52:18 -04:00
Eugene Yurtsev
34de8ec1f3 feat(anthropic): add more anthropic middleware (#33510)
Middleware Classes

Text Editor Tools
- StateClaudeTextEditorToolMiddleware: In-memory text editor using agent
state
- FilesystemClaudeTextEditorToolMiddleware: Text editor operating on
real filesystem

Implementing Claude's text editor tools

https://docs.claude.com/en/docs/agents-and-tools/tool-use/text-editor-tool
Operations: view, create, str_replace, insert

Memory Tools
- StateClaudeMemoryToolMiddleware: Memory persistence in agent state
- FilesystemClaudeMemoryToolMiddleware: Memory persistence on filesystem

Implementing Claude's memory tools
https://docs.claude.com/en/docs/agents-and-tools/tool-use/memory-tool
Operations: Same as text editor plus delete and rename

File Search Tools
- StateFileSearchMiddleware: Search state-based files

Provides Glob and Grep tools with same schema as used by Claude Code
(but compatible with any model)
- Glob: Pattern matching (e.g., **/*.py, src/**/*.ts), sorted by
modification time
- Grep: Regex content search with output modes (files_with_matches,
content, count)

Usage

``` from langchain.agents import create_agent from langchain.agents.middleware import (
StateTextEditorToolMiddleware, StateFileSearchMiddleware, )

agent = create_agent( model=model, tools=[], middleware=[
StateTextEditorToolMiddleware(), StateFileSearchMiddleware(), ], ) ```

---------

Co-authored-by: Nuno Campos <nuno@boringbits.io>
2025-10-16 21:07:14 -04:00
Sydney Runkle
3d288fd610 release: joint rcs for core + langchain (#33549) 2025-10-17 01:00:47 +00:00
Sydney Runkle
055cccde28 chore(langchain): allow injection of ToolRuntime and generic ToolRuntime[ContextT, StateT] (#33546)
Adds special private helper to allow direct injection of `ToolRuntime`
in tools, plus adding guards for generic annotations w/ `get_origin`.

Went w/ the private helper so that we didn't change behavior for other
injected types.
2025-10-16 20:55:19 -04:00
Mason Daugherty
361514d11d docs(exa): fix documentation link (#33545) 2025-10-16 23:53:52 +00:00
Eugene Yurtsev
90b68059f5 fix(langchain): revert conditional edge from tools to end (#33520) (#33539)
This is causing an issue with one of the middlewares
2025-10-16 17:19:26 -04:00
Mason Daugherty
87ad5276e4 chore: add v1 migration link to MIGRATE.md (#33537) 2025-10-16 20:31:02 +00:00
Mason Daugherty
5489df75d7 release(huggingface): 1.0.0a1 (#33536) 2025-10-16 16:21:38 -04:00
Sydney Runkle
c6b3f5b888 release(langchain): cut rc (#33534) 2025-10-16 19:55:38 +00:00
Mason Daugherty
15db024811 chore: more sweeping (#33533)
more fixes for refs
2025-10-16 15:44:56 -04:00
Jacob Lee
6d73003b17 feat(openai): Populate OpenAI service tier token details (#32721) 2025-10-16 15:14:57 -04:00
ccurme
13259a109a release(standard-tests): 1.0.0rc1 (#33531) 2025-10-16 14:09:41 -04:00
ccurme
aa78be574a release(core): 1.0.0rc2 (#33530) 2025-10-16 13:00:39 -04:00
Mason Daugherty
d0dd1b30d1 docs(langchain_v1): remove absent arg descriptions (#33529) 2025-10-16 12:25:18 -04:00
Mason Daugherty
0338a15192 docs(chroma): remove an extra arg space (#33526) 2025-10-16 16:05:51 +00:00
Sydney Runkle
e10d99b728 fix(langchain): conditional edge from tools to end (#33520) 2025-10-16 11:56:45 -04:00
Mason Daugherty
c9018f81ec docs(anthropic): update extended thinking docs and fix urls (#33525)
new urls

extended thinking isn't just 3.7 anymore
2025-10-16 11:18:47 -04:00
Eugene Yurtsev
31718492c7 fix(langchain_v1): relax tool node validation to allow claude text editing tools (#33512)
Relax tool node validation to allow claude text editing tools
2025-10-16 14:56:41 +00:00
Sydney Runkle
2209878f48 chore(langchain): update state schema doc (#33524) 2025-10-16 10:40:54 -04:00
Sydney Runkle
dd77dbe3ab chore(langchain_v1): adding back state_schema to create_agent (#33519)
To make migration easier, things are more backwards compat

Very minimal footprint here

Will need to upgrade migration guide and other docs w/ this change
2025-10-16 10:12:34 -04:00
ccurme
eb19e12527 feat(core): support vertexai standard content (#33521) 2025-10-16 10:08:58 -04:00
Sydney Runkle
551e86a517 chore(langchain): use runtime not tool_runtime for injected tool arg (#33522)
fast follow to https://github.com/langchain-ai/langchain/pull/33500
2025-10-16 13:53:54 +00:00
Eugene Yurtsev
8734c05f64 feat(langchain_v1): tool retry middleware (#33503)
Adds `ToolRetryMiddleware` to automatically retry failed tool calls with
configurable exponential backoff, exception filtering, and error
handling.

## Example

```python
from langchain.agents import create_agent
from langchain.agents.middleware import ToolRetryMiddleware
from langchain_openai import ChatOpenAI

# Retry up to 3 times with exponential backoff
retry = ToolRetryMiddleware(
    max_retries=3,
    initial_delay=1.0,
    backoff_factor=2.0,
)

agent = create_agent(
    model=ChatOpenAI(model="gpt-4"),
    tools=[search_tool, database_tool],
    middleware=[retry],
)

# Tool failures are automatically retried
result = agent.invoke({"messages": [{"role": "user", "content": "Search for AI news"}]})
```

For advanced usage with specific exception handling:

```python
from requests.exceptions import Timeout, HTTPError

def should_retry(exc: Exception) -> bool:
    # Only retry on 5xx errors or timeouts
    if isinstance(exc, HTTPError):
        return 500 <= exc.response.status_code < 600
    return isinstance(exc, Timeout)

retry = ToolRetryMiddleware(
    max_retries=4,
    retry_on=should_retry,
    tools=["search_database"],  # Only apply to specific tools
)
```
2025-10-16 09:47:43 -04:00
Sydney Runkle
0c8cbfb7de chore(langchain_v1): switch order of params in ToolRuntime (#33518)
To match `Runtime`
2025-10-16 12:09:05 +00:00
Sydney Runkle
89c3428d85 feat(langchain_v1): injected runtime (#33500)
Goal here is 2 fold

1. Improved devx for injecting args into tools
2. Support runtime injection for Python 3.10 async

One consequence of this PR is that `ToolNode` now expects `config`
available with `runtime`, which only happens in LangGraph execution
contexts. Hence the config patch for tests.

Are we ok reserving `tool_runtime`?

before, eek:
```py
from langchain.agents import create_agent
from langchain.tools import tool, InjectedState, InjectedStore
from langgraph.runtime import get_runtime
from typing_extensions import Annotated
from langgraph.store.base import BaseStore

@tool
def do_something(
    arg: int,
    state: Annotated[dict, InjectedState],
    store: Annotated[BaseStore, InjectedStore],
) -> None:
    """does something."""
    print(state)
    print(store)
    print(get_runtime().context)
    ...
```

after, woo!
```py
from langchain.agents import create_agent
from langchain.tools import tool, ToolRuntime

@tool
def do_something_better(
    arg: int,
    tool_runtime: ToolRuntime,
) -> None:
    """does something better."""
    print(tool_runtime.state)
    print(tool_runtime.store)
    print(tool_runtime.context)
    ...
```

```python
@dataclass
class ToolRuntime(InjectedToolArg, Generic[StateT, ContextT]):
    state: StateT
    context: ContextT
    config: RunnableConfig
    tool_call_id: str
    stream_writer: StreamWriter
    context: ContextT
    store: BaseStore | None
2025-10-16 07:41:09 -04:00
Mason Daugherty
707e96c541 style: more sweeping refs work (#33513) 2025-10-15 23:33:39 -04:00
Mason Daugherty
26e0a00c4c style: more work for refs (#33508)
Largely:
- Remove explicit `"Default is x"` since new refs show default inferred
from sig
- Inline code (useful for eventual parsing)
- Fix code block rendering (indentations)
2025-10-15 18:46:55 -04:00
Eugene Yurtsev
d0f8f00e7e release(anthropic): 1.0.0a5 (#33507)
Release anthropic
2025-10-15 21:31:52 +00:00
Eugene Yurtsev
a39132787c feat(anthropic): add async implementation to middleware (#33506)
Add async implementation to middleware
2025-10-15 17:05:39 -04:00
Sydney Runkle
296994ebf0 release(langchain_v1): 1.0.0a15 (#33505) 2025-10-15 20:48:18 +00:00
ccurme
b5b31eec88 feat(core): include original block type in server tool results for google-genai (#33502) 2025-10-15 16:26:54 -04:00
Sydney Runkle
8f6851c349 fix(langchain_v1): keep state to relevant middlewares for tool/model call limits (#33493)
The one risk point that I can see here is that model + tool call
counting now occurs in the `after_model` hook which introduces order
dependency (what if you have HITL execute before this hook and we jump
early to `model`, for example).

This is something users can work around at the moment and we can
document. We could also introduce a priority concept to middleware.
2025-10-15 14:24:59 -04:00
Nuno Campos
0788461abd feat(openai): Add openai moderation middleware (#33492) 2025-10-15 13:59:49 -04:00
ccurme
3bfd1f6d8a release(core): 1.0.0rc1 (#33497) 2025-10-15 13:02:35 -04:00
Mason Daugherty
d83c3a12bf chore(core): delete BaseMemory, move to langchain-classic (#33373) 2025-10-15 12:55:23 -04:00
Mason Daugherty
79200cf3c2 docs: update package READMEs (#33488) 2025-10-15 10:49:35 -04:00
ccurme
bcb6789888 fix(anthropic): set langgraph-prebuilt dep explicitly (#33495) 2025-10-15 14:44:37 +00:00
ccurme
89b7933ef1 feat(standard-tests): parametrize tool calling test (#33496) 2025-10-15 14:43:09 +00:00
ccurme
4da5a8081f fix(core): propagate extras when aggregating tool calls in v1 content (#33494) 2025-10-15 10:38:16 -04:00
Mason Daugherty
53e9f00804 chore(core): delete items marked for removal in schemas.py (#33375) 2025-10-15 09:56:27 -04:00
Chenyang Li
6e25e185f6 fix(docs): Fix several typos and grammar (#33487)
Just typo changes

Co-authored-by: Mason Daugherty <mason@langchain.dev>
2025-10-14 20:04:14 -04:00
Mason Daugherty
68ceeb64f6 chore(core): delete function_calling.py utils marked for removal (#33376) 2025-10-14 16:13:19 -04:00
Mason Daugherty
edae976b81 chore(core): delete pydantic_v1/ (#33374) 2025-10-14 16:08:24 -04:00
ccurme
9f4366bc9d feat(mistralai): support reasoning feature and v1 content (#33485)
Not yet supported: server-side tool calls
2025-10-14 15:19:44 -04:00
Eugene Yurtsev
99e0a60aab chore(langchain_v1): remove invocation request (#33482)
Remove ToolNode primitives from langchain
2025-10-14 15:07:30 -04:00
Eugene Yurtsev
d38729fbac feat(langchain_v1): add async implementations to wrap_model_call (#33467)
Add async implementations to wrap_model_call for prebuilt middleware
2025-10-14 17:39:38 +00:00
gsmini
ff0d21cfd5 fix(langchain_v1): can not import "wrap_tool_call" from agents.… (#33472)
fix can not import `wrap_tool_call` from ` langchain.agents.middleware
import `
```python

from langchain.agents import create_agent
from langchain.agents.middleware import wrap_tool_call # here !
from langchain_core.messages import ToolMessage

@wrap_tool_call
def handle_tool_errors(request, handler):
    """Handle tool execution errors with custom messages."""
    try:
        return handler(request)
    except Exception as e:
        # Return a custom error message to the model
        return ToolMessage(
            content=f"Tool error: Please check your input and try again. ({str(e)})",
            tool_call_id=request.tool_call["id"]
        )

agent = create_agent(
    model="openai:gpt-4o",
    tools=[search, calculate],
    middleware=[handle_tool_errors]
)
```
> example code from:
https://docs.langchain.com/oss/python/langchain/agents#tool-error-handling
2025-10-14 13:39:25 -04:00
Eugene Yurtsev
9140a7cb86 feat(langchain_v1): add override to model request and tool call request (#33465)
Add override to model request and tool call request
2025-10-14 10:31:46 -04:00
ccurme
41fe18bc80 chore(groq): fix integration tests (#33478)
- add missing cassette
- update streaming metadata test for v1
2025-10-14 14:16:34 +00:00
Mason Daugherty
9105573cb3 docs: create_agent style and clarify system_prompt (#33470) 2025-10-14 09:56:54 -04:00
Sydney Runkle
fff87e95d1 fix(langchain): rename PlanningMiddleware to TodoListMiddleware (#33476) 2025-10-14 09:06:06 -04:00
ccurme
9beb29a34c chore(mistralai): delete redundant tests (#33468) 2025-10-13 21:28:51 +00:00
ChoYongHo | 조용호
ca00f5aed9 fix(langchain_v1): export ModelResponse from agents.middleware (#33453) (#33454)
## Description

  Fixes #33453

`ModelResponse` was defined in `types.py` and included in its `__all__`
list, but was not exported from the middleware package's `__init__.py`.
This caused `ImportError` when attempting to import it directly
from `langchain.agents.middleware`, despite being documented as a public
export.

  ## Changes

- Added `ModelResponse` to the import statement in
`langchain/agents/middleware/__init__.py`
- Added `ModelResponse` to the `__all__` list in
`langchain/agents/middleware/__init__.py`
- Added comprehensive unit tests in `test_imports.py` to verify the
import works correctly

  ## Issue

  The original issue reported that the following import failed:

  ```python
  from langchain.agents.middleware import ModelResponse
# ImportError: cannot import name 'ModelResponse' from
'langchain.agents.middleware'

  The workaround was to import from the submodule:

from langchain.agents.middleware.types import ModelResponse # Workaround

  Solution

  After this fix, ModelResponse can be imported directly as documented:

  from langchain.agents.middleware import ModelResponse  # Now works!

  Testing

-  Added 3 unit tests in
tests/unit_tests/agents/middleware/test_imports.py
  -  All tests pass locally: make format, make lint, make test
  -  Verified ModelResponse is properly exported and importable
  -  Verified ModelResponse appears in __all__ list

  Dependencies

  None. This is a simple export fix with no new dependencies.

---------

Co-authored-by: Eugene Yurtsev <eugene@langchain.dev>
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2025-10-13 16:02:30 -04:00
dependabot[bot]
637777b8e7 chore(infra): bump astral-sh/setup-uv from 6 to 7 (#33457)
Bumps [astral-sh/setup-uv](https://github.com/astral-sh/setup-uv) from 6
to 7.
<details>
<summary>Release notes</summary>
<p><em>Sourced from <a
href="https://github.com/astral-sh/setup-uv/releases">astral-sh/setup-uv's
releases</a>.</em></p>
<blockquote>
<h2>v7.0.0 🌈 node24 and a lot of bugfixes</h2>
<h2>Changes</h2>
<p>This release comes with a load of bug fixes and a speed up. Because
of switching from node20 to node24 it is also a breaking change. If you
are running on GitHub hosted runners this will just work, if you are
using self-hosted runners make sure, that your runners are up to date.
If you followed the normal installation instructions your self-hosted
runner will keep itself updated.</p>
<p>This release also removes the deprecated input
<code>server-url</code> which was used to download uv releases from a
different server.
The <a
href="https://github.com/astral-sh/setup-uv?tab=readme-ov-file#manifest-file">manifest-file</a>
input supersedes that functionality by adding a flexible way to define
available versions and where they should be downloaded from.</p>
<h3>Fixes</h3>
<ul>
<li>The action now respects when the environment variable
<code>UV_CACHE_DIR</code> is already set and does not overwrite it. It
now also finds <a
href="https://docs.astral.sh/uv/reference/settings/#cache-dir">cache-dir</a>
settings in config files if you set them.</li>
<li>Some users encountered problems that <a
href="https://github.com/astral-sh/setup-uv?tab=readme-ov-file#disable-cache-pruning">cache
pruning</a> took forever because they had some <code>uv</code> processes
running in the background. Starting with uv version <code>0.8.24</code>
this action uses <code>uv cache prune --ci --force</code> to ignore the
running processes</li>
<li>If you just want to install uv but not have it available in path,
this action now respects <code>UV_NO_MODIFY_PATH</code></li>
<li>Some other actions also set the env var <code>UV_CACHE_DIR</code>.
This action can now deal with that but as this could lead to unwanted
behavior in some edgecases a warning is now displayed.</li>
</ul>
<h3>Improvements</h3>
<p>If you are using minimum version specifiers for the version of uv to
install for example</p>
<pre lang="toml"><code>[tool.uv]
required-version = &quot;&gt;=0.8.17&quot;
</code></pre>
<p>This action now detects that and directly uses the latest version.
Previously it would download all available releases from the uv repo
to determine the highest matching candidate for the version specifier,
which took much more time.</p>
<p>If you are using other specifiers like <code>0.8.x</code> this action
still needs to download all available releases because the specifier
defines an upper bound (not 0.9.0 or later) and &quot;latest&quot; would
possibly not satisfy that.</p>
<h2>🚨 Breaking changes</h2>
<ul>
<li>Use node24 instead of node20 <a
href="https://github.com/eifinger"><code>@​eifinger</code></a> (<a
href="https://redirect.github.com/astral-sh/setup-uv/issues/608">#608</a>)</li>
<li>Remove deprecated input server-url <a
href="https://github.com/eifinger"><code>@​eifinger</code></a> (<a
href="https://redirect.github.com/astral-sh/setup-uv/issues/607">#607</a>)</li>
</ul>
<h2>🐛 Bug fixes</h2>
<ul>
<li>Respect UV_CACHE_DIR and cache-dir <a
href="https://github.com/eifinger"><code>@​eifinger</code></a> (<a
href="https://redirect.github.com/astral-sh/setup-uv/issues/612">#612</a>)</li>
<li>Use --force when pruning cache <a
href="https://github.com/eifinger"><code>@​eifinger</code></a> (<a
href="https://redirect.github.com/astral-sh/setup-uv/issues/611">#611</a>)</li>
<li>Respect UV_NO_MODIFY_PATH <a
href="https://github.com/eifinger"><code>@​eifinger</code></a> (<a
href="https://redirect.github.com/astral-sh/setup-uv/issues/603">#603</a>)</li>
<li>Warn when <code>UV_CACHE_DIR</code> has changed <a
href="https://github.com/jamesbraza"><code>@​jamesbraza</code></a> (<a
href="https://redirect.github.com/astral-sh/setup-uv/issues/601">#601</a>)</li>
</ul>
<h2>🚀 Enhancements</h2>
<ul>
<li>Shortcut to latest version for minimum version specifier <a
href="https://github.com/eifinger"><code>@​eifinger</code></a> (<a
href="https://redirect.github.com/astral-sh/setup-uv/issues/598">#598</a>)</li>
</ul>
<h2>🧰 Maintenance</h2>
<ul>
<li>Bump dependencies <a
href="https://github.com/eifinger"><code>@​eifinger</code></a> (<a
href="https://redirect.github.com/astral-sh/setup-uv/issues/613">#613</a>)</li>
<li>Fix test-uv-no-modify-path <a
href="https://github.com/eifinger"><code>@​eifinger</code></a> (<a
href="https://redirect.github.com/astral-sh/setup-uv/issues/604">#604</a>)</li>
</ul>
<!-- raw HTML omitted -->
</blockquote>
<p>... (truncated)</p>
</details>
<details>
<summary>Commits</summary>
<ul>
<li><a
href="3259c6206f"><code>3259c62</code></a>
Bump deps (<a
href="https://redirect.github.com/astral-sh/setup-uv/issues/633">#633</a>)</li>
<li><a
href="bf8e8ed895"><code>bf8e8ed</code></a>
Split up documentation (<a
href="https://redirect.github.com/astral-sh/setup-uv/issues/632">#632</a>)</li>
<li><a
href="9c6b5e9fb5"><code>9c6b5e9</code></a>
Add resolution-strategy input to support oldest compatible version
selection ...</li>
<li><a
href="a5129e99f4"><code>a5129e9</code></a>
Add copilot-instructions.md (<a
href="https://redirect.github.com/astral-sh/setup-uv/issues/630">#630</a>)</li>
<li><a
href="d18bcc753a"><code>d18bcc7</code></a>
Add value of UV_PYTHON_INSTALL_DIR to path (<a
href="https://redirect.github.com/astral-sh/setup-uv/issues/628">#628</a>)</li>
<li><a
href="bd1f875aba"><code>bd1f875</code></a>
Set output venv when activate-environment is used (<a
href="https://redirect.github.com/astral-sh/setup-uv/issues/627">#627</a>)</li>
<li><a
href="1a91c3851d"><code>1a91c38</code></a>
chore: update known checksums for 0.9.2 (<a
href="https://redirect.github.com/astral-sh/setup-uv/issues/626">#626</a>)</li>
<li><a
href="c79f606987"><code>c79f606</code></a>
chore: update known checksums for 0.9.1 (<a
href="https://redirect.github.com/astral-sh/setup-uv/issues/625">#625</a>)</li>
<li><a
href="e0249f1599"><code>e0249f1</code></a>
Fall back to PR for updating known versions (<a
href="https://redirect.github.com/astral-sh/setup-uv/issues/623">#623</a>)</li>
<li><a
href="6d2eb15b49"><code>6d2eb15</code></a>
Cache python installs (<a
href="https://redirect.github.com/astral-sh/setup-uv/issues/621">#621</a>)</li>
<li>Additional commits viewable in <a
href="https://github.com/astral-sh/setup-uv/compare/v6...v7">compare
view</a></li>
</ul>
</details>
<br />


[![Dependabot compatibility
score](https://dependabot-badges.githubapp.com/badges/compatibility_score?dependency-name=astral-sh/setup-uv&package-manager=github_actions&previous-version=6&new-version=7)](https://docs.github.com/en/github/managing-security-vulnerabilities/about-dependabot-security-updates#about-compatibility-scores)

Dependabot will resolve any conflicts with this PR as long as you don't
alter it yourself. You can also trigger a rebase manually by commenting
`@dependabot rebase`.

[//]: # (dependabot-automerge-start)
[//]: # (dependabot-automerge-end)

---

<details>
<summary>Dependabot commands and options</summary>
<br />

You can trigger Dependabot actions by commenting on this PR:
- `@dependabot rebase` will rebase this PR
- `@dependabot recreate` will recreate this PR, overwriting any edits
that have been made to it
- `@dependabot merge` will merge this PR after your CI passes on it
- `@dependabot squash and merge` will squash and merge this PR after
your CI passes on it
- `@dependabot cancel merge` will cancel a previously requested merge
and block automerging
- `@dependabot reopen` will reopen this PR if it is closed
- `@dependabot close` will close this PR and stop Dependabot recreating
it. You can achieve the same result by closing it manually
- `@dependabot show <dependency name> ignore conditions` will show all
of the ignore conditions of the specified dependency
- `@dependabot ignore this major version` will close this PR and stop
Dependabot creating any more for this major version (unless you reopen
the PR or upgrade to it yourself)
- `@dependabot ignore this minor version` will close this PR and stop
Dependabot creating any more for this minor version (unless you reopen
the PR or upgrade to it yourself)
- `@dependabot ignore this dependency` will close this PR and stop
Dependabot creating any more for this dependency (unless you reopen the
PR or upgrade to it yourself)


</details>

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2025-10-13 15:21:12 -04:00
Eugene Yurtsev
1cf851e054 chore(langchain_v1,anthropic): migrate anthropic middleware to langchain_anthropic (#33463)
Migrate prompt caching implementation into langchain_anthropic.middleware
2025-10-13 15:12:54 -04:00
ccurme
961f965f0c feat(groq): support built-in tools in message content (#33459) 2025-10-13 15:06:01 -04:00
Sydney Runkle
760fc3bc12 chore(langchain_v1): use args for HITL (#33442) 2025-10-11 07:12:46 -04:00
Eugene Yurtsev
e3fc7d8aa6 chore(langchain_v1): bump release version (#33440)
bump v1 for release
2025-10-10 21:51:00 -04:00
Eugene Yurtsev
2b3b209e40 chore(langchain_v1): improve error message (#33433)
Make error messages actionable for sync / async decorators
2025-10-10 17:18:20 -04:00
ccurme
78903ac285 fix(openai): conditionally skip test (#33431) 2025-10-10 21:04:18 +00:00
ccurme
f361acc11c chore(anthropic): speed up integration tests (#33430) 2025-10-10 20:57:44 +00:00
Eugene Yurtsev
ed185c0026 chore(langchain_v1): remove langchain_text_splitters from test group (#33425)
Remove langchain_text_splitters from test group in langchain_v1
2025-10-10 16:56:14 -04:00
Eugene Yurtsev
6dc34beb71 chore(langchain_v1): stricter handling of sync vs. async for wrap_model_call and wrap_tool_call (#33429)
Wrap model call and wrap tool call
2025-10-10 16:54:42 -04:00
Eugene Yurtsev
c2205f88e6 chore(langchain_v1): further namespace clean up (#33428)
Reduce exposed namespace for now
2025-10-10 20:48:24 +00:00
ccurme
abdbe185c5 release(anthropic): 1.0.0a4 (#33427) 2025-10-10 16:39:58 -04:00
ccurme
c1b816cb7e fix(fireworks): parse standard blocks in input (#33426) 2025-10-10 16:18:37 -04:00
Eugene Yurtsev
0559558715 feat(langchain_v1): add async implementation for wrap_tool_call (#33420)
Add async implementation. No automatic delegation to sync at the moment.
2025-10-10 15:07:19 -04:00
Eugene Yurtsev
75965474fc chore(langchain_v1): tool error exceptions (#33424)
Tool error exceptions
2025-10-10 15:06:40 -04:00
Mason Daugherty
5dc014fdf4 chore(core): delete get_relevant_documents (#33378)
Co-authored-by: Chester Curme <chester.curme@gmail.com>
2025-10-10 14:51:54 -04:00
Mason Daugherty
291a9fcea1 style: llm -> model (#33423) 2025-10-10 13:19:13 -04:00
Christophe Bornet
dd994b9d7f chore(langchain): remove arg types from docstrings (#33413)
Co-authored-by: Mason Daugherty <mason@langchain.dev>
2025-10-10 11:51:00 -04:00
Christophe Bornet
83901b30e3 chore(text-splitters): remove arg types from docstrings (#33406)
Co-authored-by: Mason Daugherty <mason@langchain.dev>
2025-10-10 11:37:53 -04:00
Mason Daugherty
bcfa21a6e7 chore(infra): remove Poetry setup and dependencies (#33418)
AWS now uses UV
2025-10-10 11:29:52 -04:00
ccurme
af1da28459 feat(langchain_v1): expand message exports (#33419) 2025-10-10 15:14:51 +00:00
Mason Daugherty
ed2ee4e8cc style: fix tables, capitalization (#33417) 2025-10-10 11:09:59 -04:00
Sydney Runkle
f293c8ffd6 chore(langchain_v1): add RemoveMessage (#33416) 2025-10-10 10:49:18 -04:00
Sydney Runkle
714c370191 release(langchain_v1): v1.0.0a13 (#33415) 2025-10-10 10:42:35 -04:00
Sydney Runkle
a29d4e9c3a fix(langchain_v1): out of date docstring (#33414) 2025-10-10 14:12:07 +00:00
Eugene Yurtsev
74983f8a96 chore(langchain_v1): update on_tool_call to wrap_tool (#33410)
Improve naming on ToolNode for on_tool_call interceptor
2025-10-10 03:19:45 +00:00
Eugene Yurtsev
11c5b86981 chore(langchain_v1): update wrap_on_model return (#33408)
Update wrap on model return to capture the full return type of the model
so we can accommodate dynamic structured outputs.
2025-10-09 23:01:21 -04:00
Mason Daugherty
383f4c0ee9 chore: update docs links in README.md (#33409) 2025-10-10 02:54:48 +00:00
Eugene Yurtsev
045e7ad4a1 feat(langchain_v1): tool emulator (#33357)
This is tool emulation middleware. The idea is to help test out an agent
that may have some tools that either take a long time to run or are
expensive to set up. This could allow simulating the behavior a bit.
2025-10-10 01:39:40 +00:00
Anika
0e80291804 fix(core): handle parent/child mustache vars (#33345)
**Description:**

currently `mustache_schema("{{x.y}} {{x}}")` will error. pr fixes

**Issue:** na
**Dependencies:**na

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2025-10-09 18:45:32 -04:00
Sydney Runkle
c99773b652 feat(langchain_v1): refactoring HITL API (#33397)
Easiest to review side by side (not inline)

* Adding `dict` type requests + responses so that we can ship config w/
interrupts. Also more extensible.
* Keeping things generic in terms of `interrupt_on` rather than
`tool_config`
* Renaming allowed decisions -- approve, edit, reject
* Draws differentiation between actions (requested + performed by the
agent), in this case tool calls, though we generalize beyond that and
decisions - human feedback for said actions

New request structure

```py
class Action(TypedDict):
    """Represents an action with a name and arguments."""

    name: str
    """The type or name of action being requested (e.g., "add_numbers")."""

    arguments: dict[str, Any]
    """Key-value pairs of arguments needed for the action (e.g., {"a": 1, "b": 2})."""


DecisionType = Literal["approve", "edit", "reject"]


class ReviewConfig(TypedDict):
    """Policy for reviewing a HITL request."""

    action_name: str
    """Name of the action associated with this review configuration."""

    allowed_decisions: list[DecisionType]
    """The decisions that are allowed for this request."""

    description: NotRequired[str]
    """The description of the action to be reviewed."""

    arguments_schema: NotRequired[dict[str, Any]]
    """JSON schema for the arguments associated with the action, if edits are allowed."""

class HITLRequest(TypedDict):
    """Request for human feedback on a sequence of actions requested by a model."""

    action_requests: list[Action]
    """A list of agent actions for human review."""

    review_configs: list[ReviewConfig]
    """Review configuration for all possible actions."""
```

New response structure

```py
class ApproveDecision(TypedDict):
    """Response when a human approves the action."""

    type: Literal["approve"]
    """The type of response when a human approves the action."""


class EditDecision(TypedDict):
    """Response when a human edits the action."""

    type: Literal["edit"]
    """The type of response when a human edits the action."""

    edited_action: Action
    """Edited action for the agent to perform.

    Ex: for a tool call, a human reviewer can edit the tool name and args.
    """


class RejectDecision(TypedDict):
    """Response when a human rejects the action."""

    type: Literal["reject"]
    """The type of response when a human rejects the action."""

    message: NotRequired[str]
    """The message sent to the model explaining why the action was rejected."""


Decision = ApproveDecision | EditDecision | RejectDecision


class HITLResponse(TypedDict):
    """Response payload for a HITLRequest."""

    decisions: list[Decision]
    """The decisions made by the human."""
```

User facing API:

NEW

```py
HumanInTheLoopMiddleware(interrupt_on={
    'send_email': True,
    # can also use a callable for description that takes tool call, state, and runtime
    'execute_sql': {
        'allowed_decisions': ['approve', 'edit', 'reject'], 
        'description': 'please review sensitive tool execution'},
    }
})

Command(resume={"decisions": [{"type": "approve"}, {"type": "reject": "message": "db down"}]})
```

OLD

```py
HumanInTheLoopMiddleware(interrupt_on={
    'send_email': True,
    'execute_sql': {
        'allow_accept': True, 
        'allow_edit': True, 
        'allow_respond': True, 
        description='please review sensitive tool execution'
    },
})

Command(resume=[{"type": "approve"}, {"type": "reject": "message": "db down"}])
```
2025-10-09 17:51:28 -04:00
Mason Daugherty
5f9e3e33cd style: remove Defaults to None (#33404) 2025-10-09 17:27:35 -04:00
Mason Daugherty
6fc21afbc9 style: .. code-block:: admonition translations (#33400)
biiiiiiiiiiiiiiiigggggggg pass
2025-10-09 16:52:58 -04:00
ccurme
50445d4a27 fix(standard-tests): update Anthropic inputs test (#33391)
Since 10/7 Anthropic will raise BadRequestError if given an invalid
thinking signature.
2025-10-09 14:13:26 -04:00
ccurme
11a2efe49b fix(anthropic): handle empty AIMessage (#33390) 2025-10-09 13:57:42 -04:00
Mason Daugherty
d8a680ee57 style: address Sphinx double-backtick snippet syntax (#33389) 2025-10-09 13:35:51 -04:00
Christophe Bornet
f405a2c57d chore(core): remove arg types from docstrings (#33388)
* Remove types args
* Remove types from Returns
* Remove types from Yield
* Replace `kwargs` by `**kwargs` when needed
2025-10-09 13:13:23 -04:00
Mason Daugherty
3576e690fa chore: update Sphinx links to markdown (#33386) 2025-10-09 11:54:14 -04:00
Mason Daugherty
057ac361ef chore: delete .claude/settings.local.json (#33387) 2025-10-09 11:44:57 -04:00
Christophe Bornet
d9675a4a20 fix(langchain): improve and fix typing (#32383) 2025-10-09 10:55:31 -04:00
ccurme
c27271f3ae fix(openai): update file index key name (#33350) 2025-10-09 13:15:27 +00:00
ccurme
a3e4f4c2e3 fix(core): override streaming callback if streaming attribute is set (#33351) 2025-10-09 09:04:27 -04:00
Mason Daugherty
b5030badbe refactor(core): clean up sys_info.py (#33372) 2025-10-09 03:31:26 +00:00
Mason Daugherty
b6132fc23e style: remove more Optional syntax (#33371) 2025-10-08 23:28:43 -04:00
Eugene Yurtsev
f33b1b3d77 chore(langchain_v1): rename on_model_call to wrap_model_call (#33370)
rename on_model_call to wrap_model_call
2025-10-08 23:28:14 -04:00
Eugene Yurtsev
c382788342 chore(langchain_v1): update the uv lock file (#33369)
Update the uv lock file.
2025-10-08 23:03:25 -04:00
Eugene Yurtsev
e193a1f273 chore(langchain_v1): replace modify model request with on model call (#33368)
* Replace modify model request with on model call
* Remove modify model request
2025-10-09 02:46:48 +00:00
Eugene Yurtsev
eb70672f4a chore(langchain): add unit tests for wrap_tool_call decorator (#33367)
Add unit tests for wrap_tool_call decorator
2025-10-09 02:30:07 +00:00
Eugene Yurtsev
87df179ca9 chore(langchain_v1): rename on_tool_call to wrap_tool_call (#33366)
Replace on tool call with wrap tool call
2025-10-08 22:10:36 -04:00
Eugene Yurtsev
982a950ccf chore(langchain_v1): add runtime and context to model request (#33365)
Add runtime and context to ModelRequest to make the API more convenient
2025-10-08 21:59:56 -04:00
Eugene Yurtsev
c2435eeca5 chore(langchain_v1): update on_tool_call to regular callbacks (#33364)
Refactor tool call middleware from generator-based to handler-based
pattern

Simplifies on_tool_call middleware by replacing the complex generator
protocol with a straightforward handler pattern. Instead of yielding
requests and receiving results via .send(),
handlers now receive an execute callable that can be invoked multiple
times for retry logic.


Before vs. After

Before (Generator):
```python
class RetryMiddleware(AgentMiddleware):
    def on_tool_call(self, request, state, runtime):
        for attempt in range(3):
            response = yield request  # Yield request, receive result via .send()
            if is_valid(response) or attempt == 2:
                return  # Final result is last value sent to generator
```

After (Handler):

```python
class RetryMiddleware(AgentMiddleware):
    def on_tool_call(self, request, handler):
        for attempt in range(3):
            result = handler(request)  # Direct function call
            if is_valid(result):
                return result
        return result
```


Follow up after this PR:

* Rename the interceptor to wrap_tool_call
* Fix the async path for the ToolNode
2025-10-08 21:46:03 -04:00
Mason Daugherty
68c56440cf fix(groq): handle content correctly (#33363)
(look at most recent commit; ignore prior)
2025-10-08 21:23:30 -04:00
Mason Daugherty
31eeb50ce0 chore: drop UP045 (#33362)
Python 3.9 EOL
2025-10-08 21:17:53 -04:00
Mason Daugherty
0039b3b046 refactor(core): remove keep-runtime-typing from pyproject.toml following dropping 3.9 (#33360)
https://docs.astral.sh/ruff/rules/non-pep604-annotation-optional/#why-is-this-bad
2025-10-08 21:09:53 -04:00
Mason Daugherty
ffb1a08871 style(infra): use modern Optional typing in script (#33361) 2025-10-08 21:09:43 -04:00
Mason Daugherty
d13823043d style: monorepo pass for refs (#33359)
* Delete some double backticks previously used by Sphinx (not done
everywhere yet)
* Fix some code blocks / dropdowns

Ignoring CLI CI for now
2025-10-08 18:41:39 -04:00
Eugene Yurtsev
b665b81a0e chore(langchain_v1): simplify on model call logic (#33358)
Moving from the generator pattern to the slightly less verbose (but explicit) handler pattern.

This will be more familiar to users

**Before (Generator Pattern):**
```python
def on_model_call(self, request, state, runtime):
    try:
        result = yield request
    except Exception:
        result = yield request  # Retry
```

**After (Handler Pattern):**
```python
def on_model_call(self, request, state, runtime, handler):
    try:
        return handler(request)
    except Exception:
        return handler(request)  # Retry
```
2025-10-08 17:23:11 -04:00
Mason Daugherty
6b9b177b89 chore(openai): base.py ref pass (#33355) 2025-10-08 16:08:52 -04:00
Mason Daugherty
b1acf8d931 chore: fix dropdown default open admonition in refs (#33354) 2025-10-08 18:50:44 +00:00
Eugene Yurtsev
97f731da7e chore(langchain_v1): remove unused internal namespace (#33352)
Remove unused internal namespace. We'll likely restore a part of it for
lazy loading optimizations later.
2025-10-08 14:08:07 -04:00
Eugene Yurtsev
1bf29da0d6 feat(langchain_v1): add on_tool_call middleware hook (#33329)
Adds generator-based middleware for intercepting tool execution in
agents. Middleware can retry on errors, cache results, modify requests,
or short-circuit execution.

### Implementation

**Middleware Protocol**
```python
class AgentMiddleware:
    def on_tool_call(
        self,
        request: ToolCallRequest,
        state: StateT,
        runtime: Runtime[ContextT],
    ) -> Generator[ToolCallRequest | ToolMessage | Command, ToolMessage | Command, None]:
        """
        Yields: ToolCallRequest (execute), ToolMessage (cached result), or Command (control flow)
        Receives: ToolMessage or Command via .send()
        Returns: None (final result is last value sent to handler)
        """
        yield request  # passthrough
```

**Composition**
Multiple middleware compose automatically (first = outermost), with
`_chain_tool_call_handlers()` stacking them like nested function calls.

### Examples

**Retry on error:**
```python
class RetryMiddleware(AgentMiddleware):
    def on_tool_call(self, request, state, runtime):
        for attempt in range(3):
            response = yield request
            if not isinstance(response, ToolMessage) or response.status != "error":
                return
            if attempt == 2:
                return  # Give up
```

**Cache results:**
```python
class CacheMiddleware(AgentMiddleware):
    def on_tool_call(self, request, state, runtime):
        cache_key = (request.tool_call["name"], tuple(request.tool_call["args"].items()))
        if cached := self.cache.get(cache_key):
            yield ToolMessage(content=cached, tool_call_id=request.tool_call["id"])
        else:
            response = yield request
            self.cache[cache_key] = response.content
```

**Emulate tools with LLM**
```python
class ToolEmulator(AgentMiddleware):
    def on_tool_call(self, request, state, runtime):
        prompt = f"""Emulate: {request.tool_call["name"]}
Description: {request.tool.description}
Args: {request.tool_call["args"]}
Return ONLY the tool's output."""

        response = emulator_model.invoke([HumanMessage(prompt)])
        yield ToolMessage(
            content=response.content,
            tool_call_id=request.tool_call["id"],
            name=request.tool_call["name"],
        )
```

**Modify requests:**
```python
class ScalingMiddleware(AgentMiddleware):
    def on_tool_call(self, request, state, runtime):
        if "value" in request.tool_call["args"]:
            request.tool_call["args"]["value"] *= 2
        yield request
```
2025-10-08 16:43:32 +00:00
Eugene Yurtsev
2c3fec014f feat(langchain_v1): on_model_call middleware (#33328)
Introduces a generator-based `on_model_call` hook that allows middleware
to intercept model calls with support for retry logic, error handling,
response transformation, and request modification.

## Overview

Middleware can now implement `on_model_call()` using a generator
protocol that:
- **Yields** `ModelRequest` to execute the model
- **Receives** `AIMessage` via `.send()` on success, or exception via
`.throw()` on error
- **Yields again** to retry or transform responses
- Uses **implicit last-yield semantics** (no return values from
generators)

## Usage Examples

### Basic Retry on Error

```python
from langchain.agents.middleware.types import AgentMiddleware

class RetryMiddleware(AgentMiddleware):
    def on_model_call(self, request, state, runtime):
        for attempt in range(3):
            try:
                yield request  # Execute model
                break  # Success
            except Exception:
                if attempt == 2:
                    raise  # Max retries exceeded
```

### Response Transformation

```python
class UppercaseMiddleware(AgentMiddleware):
    def on_model_call(self, request, state, runtime):
        result = yield request
        modified = AIMessage(content=result.content.upper())
        yield modified  # Return transformed response
```

### Error Recovery

```python
class FallbackMiddleware(AgentMiddleware):
    def on_model_call(self, request, state, runtime):
        try:
            yield request
        except Exception:
            fallback = AIMessage(content="Service unavailable")
            yield fallback  # Convert error to fallback response
```

### Caching / Short-Circuit

```python
class CacheMiddleware(AgentMiddleware):
    def on_model_call(self, request, state, runtime):
        if cached := get_cache(request):
            yield cached  # Skip model execution
        else:
            result = yield request
            save_cache(request, result)
```

### Request Modification

```python
class SystemPromptMiddleware(AgentMiddleware):
    def on_model_call(self, request, state, runtime):
        modified_request = ModelRequest(
            model=request.model,
            system_prompt="You are a helpful assistant.",
            messages=request.messages,
            tools=request.tools,
        )
        yield modified_request
```

### Function Decorator

```python
from langchain.agents.middleware.types import on_model_call

@on_model_call
def retry_three_times(request, state, runtime):
    for attempt in range(3):
        try:
            yield request
            break
        except Exception:
            if attempt == 2:
                raise

agent = create_agent(model="openai:gpt-4o", middleware=[retry_three_times])
```

## Middleware Composition

Middleware compose with first in list as outermost layer:

```python
agent = create_agent(
    model="openai:gpt-4o",
    middleware=[
        RetryMiddleware(),      # Outer - wraps others
        LoggingMiddleware(),    # Middle
        UppercaseMiddleware(),  # Inner - closest to model
    ]
)
```
2025-10-08 12:34:04 -04:00
Mason Daugherty
4c38157ee0 fix(core): don't print package if no version found (#33347)
This is polluting issues making it hard to find issues that apply to a
query
2025-10-07 23:14:17 -04:00
Sydney Runkle
b5f8e87e2f remove runtime where not needed 2025-10-07 21:33:52 -04:00
Eugene Yurtsev
6a2efd060e fix(langchain_v1): injection logic in tool node (#33344)
Fix injection logic in tool node
2025-10-07 21:31:10 -04:00
Mason Daugherty
cda336295f chore: enrich pyproject.toml files with links to new references, others (#33343) 2025-10-07 16:17:14 -04:00
Mason Daugherty
02f4256cb6 chore: remove CLI note in migrations (#33342)
unsure of functionality/we don't plan to spend time on it at the moment
2025-10-07 19:18:33 +00:00
Mason Daugherty
12d1876e87 Merge branch 'master' into bagatur/add_tool_call_metadata 2025-07-16 10:31:41 -04:00
Chester Curme
0baecee712 fix test for python < 3.13 2025-04-04 09:24:00 -04:00
Chester Curme
86552ef4a6 update tests 2025-04-04 09:17:55 -04:00
Chester Curme
0dec920d94 Merge branch 'master' into bagatur/add_tool_call_metadata 2025-04-04 08:53:17 -04:00
Bagatur
d73159b68e rfc(core): trace tools called in metadata 2025-04-02 17:31:10 -07:00
764 changed files with 69199 additions and 34707 deletions

View File

@@ -1,18 +0,0 @@
{
"permissions": {
"allow": [
"Bash(uv run:*)",
"Bash(make:*)",
"WebSearch",
"WebFetch(domain:ai.pydantic.dev)",
"WebFetch(domain:openai.github.io)",
"Bash(uv run:*)",
"Bash(python3:*)",
"WebFetch(domain:github.com)",
"Bash(gh pr view:*)",
"Bash(gh pr diff:*)"
],
"deny": [],
"ask": []
}
}

View File

@@ -2,7 +2,7 @@ blank_issues_enabled: false
version: 2.1
contact_links:
- name: 📚 Documentation
url: https://github.com/langchain-ai/docs/issues/new?template=langchain.yml
url: https://github.com/langchain-ai/docs/issues/new?template=01-langchain.yml
about: Report an issue related to the LangChain documentation
- name: 💬 LangChain Forum
url: https://forum.langchain.com/

View File

@@ -1,93 +0,0 @@
# An action for setting up poetry install with caching.
# Using a custom action since the default action does not
# take poetry install groups into account.
# Action code from:
# https://github.com/actions/setup-python/issues/505#issuecomment-1273013236
name: poetry-install-with-caching
description: Poetry install with support for caching of dependency groups.
inputs:
python-version:
description: Python version, supporting MAJOR.MINOR only
required: true
poetry-version:
description: Poetry version
required: true
cache-key:
description: Cache key to use for manual handling of caching
required: true
working-directory:
description: Directory whose poetry.lock file should be cached
required: true
runs:
using: composite
steps:
- uses: actions/setup-python@v5
name: Setup python ${{ inputs.python-version }}
id: setup-python
with:
python-version: ${{ inputs.python-version }}
- uses: actions/cache@v4
id: cache-bin-poetry
name: Cache Poetry binary - Python ${{ inputs.python-version }}
env:
SEGMENT_DOWNLOAD_TIMEOUT_MIN: "1"
with:
path: |
/opt/pipx/venvs/poetry
# This step caches the poetry installation, so make sure it's keyed on the poetry version as well.
key: bin-poetry-${{ runner.os }}-${{ runner.arch }}-py-${{ inputs.python-version }}-${{ inputs.poetry-version }}
- name: Refresh shell hashtable and fixup softlinks
if: steps.cache-bin-poetry.outputs.cache-hit == 'true'
shell: bash
env:
POETRY_VERSION: ${{ inputs.poetry-version }}
PYTHON_VERSION: ${{ inputs.python-version }}
run: |
set -eux
# Refresh the shell hashtable, to ensure correct `which` output.
hash -r
# `actions/cache@v3` doesn't always seem able to correctly unpack softlinks.
# Delete and recreate the softlinks pipx expects to have.
rm /opt/pipx/venvs/poetry/bin/python
cd /opt/pipx/venvs/poetry/bin
ln -s "$(which "python$PYTHON_VERSION")" python
chmod +x python
cd /opt/pipx_bin/
ln -s /opt/pipx/venvs/poetry/bin/poetry poetry
chmod +x poetry
# Ensure everything got set up correctly.
/opt/pipx/venvs/poetry/bin/python --version
/opt/pipx_bin/poetry --version
- name: Install poetry
if: steps.cache-bin-poetry.outputs.cache-hit != 'true'
shell: bash
env:
POETRY_VERSION: ${{ inputs.poetry-version }}
PYTHON_VERSION: ${{ inputs.python-version }}
# Install poetry using the python version installed by setup-python step.
run: pipx install "poetry==$POETRY_VERSION" --python '${{ steps.setup-python.outputs.python-path }}' --verbose
- name: Restore pip and poetry cached dependencies
uses: actions/cache@v4
env:
SEGMENT_DOWNLOAD_TIMEOUT_MIN: "4"
WORKDIR: ${{ inputs.working-directory == '' && '.' || inputs.working-directory }}
with:
path: |
~/.cache/pip
~/.cache/pypoetry/virtualenvs
~/.cache/pypoetry/cache
~/.cache/pypoetry/artifacts
${{ env.WORKDIR }}/.venv
key: py-deps-${{ runner.os }}-${{ runner.arch }}-py-${{ inputs.python-version }}-poetry-${{ inputs.poetry-version }}-${{ inputs.cache-key }}-${{ hashFiles(format('{0}/**/poetry.lock', env.WORKDIR)) }}

View File

@@ -1,41 +0,0 @@
# PR title labeler config
#
# Labels PRs based on conventional commit patterns in titles
#
# Format: type(scope): description or type!: description (breaking)
add-missing-labels: true
clear-prexisting: false
include-commits: false
include-title: true
label-for-breaking-changes: breaking
label-mapping:
documentation: ["docs"]
feature: ["feat"]
fix: ["fix"]
infra: ["build", "ci", "chore"]
integration:
[
"anthropic",
"chroma",
"deepseek",
"exa",
"fireworks",
"groq",
"huggingface",
"mistralai",
"nomic",
"ollama",
"openai",
"perplexity",
"prompty",
"qdrant",
"xai",
]
linting: ["style"]
performance: ["perf"]
refactor: ["refactor"]
release: ["release"]
revert: ["revert"]
tests: ["test"]

View File

@@ -30,6 +30,7 @@ LANGCHAIN_DIRS = [
"libs/text-splitters",
"libs/langchain",
"libs/langchain_v1",
"libs/model-profiles",
]
# When set to True, we are ignoring core dependents
@@ -130,29 +131,20 @@ def _get_configs_for_single_dir(job: str, dir_: str) -> List[Dict[str, str]]:
return _get_pydantic_test_configs(dir_)
if job == "codspeed":
py_versions = ["3.12"] # 3.13 is not yet supported
py_versions = ["3.13"]
elif dir_ == "libs/core":
py_versions = ["3.10", "3.11", "3.12", "3.13"]
py_versions = ["3.10", "3.11", "3.12", "3.13", "3.14"]
# custom logic for specific directories
elif dir_ == "libs/langchain" and job == "extended-tests":
elif dir_ in {"libs/partners/chroma"}:
py_versions = ["3.10", "3.13"]
elif dir_ == "libs/langchain_v1":
py_versions = ["3.10", "3.13"]
elif dir_ in {"libs/cli"}:
py_versions = ["3.10", "3.13"]
elif dir_ == ".":
# unable to install with 3.13 because tokenizers doesn't support 3.13 yet
py_versions = ["3.10", "3.12"]
else:
py_versions = ["3.10", "3.13"]
py_versions = ["3.10", "3.14"]
return [{"working-directory": dir_, "python-version": py_v} for py_v in py_versions]
def _get_pydantic_test_configs(
dir_: str, *, python_version: str = "3.11"
dir_: str, *, python_version: str = "3.12"
) -> List[Dict[str, str]]:
with open("./libs/core/uv.lock", "rb") as f:
core_uv_lock_data = tomllib.load(f)
@@ -306,7 +298,9 @@ if __name__ == "__main__":
if not filename.startswith(".")
] != ["README.md"]:
dirs_to_run["test"].add(f"libs/partners/{partner_dir}")
dirs_to_run["codspeed"].add(f"libs/partners/{partner_dir}")
# Skip codspeed for partners without benchmarks or in IGNORED_PARTNERS
if partner_dir not in IGNORED_PARTNERS:
dirs_to_run["codspeed"].add(f"libs/partners/{partner_dir}")
# Skip if the directory was deleted or is just a tombstone readme
elif file.startswith("libs/"):
# Check if this is a root-level file in libs/ (e.g., libs/README.md)

View File

@@ -2,7 +2,6 @@
import sys
from collections import defaultdict
from typing import Optional
if sys.version_info >= (3, 11):
import tomllib
@@ -54,7 +53,7 @@ def get_pypi_versions(package_name: str) -> List[str]:
return list(response.json()["releases"].keys())
def get_minimum_version(package_name: str, spec_string: str) -> Optional[str]:
def get_minimum_version(package_name: str, spec_string: str) -> str | None:
"""Find the minimum published version that satisfies the given constraints.
Args:
@@ -114,7 +113,7 @@ def get_min_version_from_toml(
versions_for: str,
python_version: str,
*,
include: Optional[list] = None,
include: list | None = None,
):
# Parse the TOML file
with open(toml_path, "rb") as file:

View File

@@ -77,7 +77,7 @@ jobs:
working-directory: ${{ inputs.working-directory }}
- name: Upload build
uses: actions/upload-artifact@v4
uses: actions/upload-artifact@v5
with:
name: dist
path: ${{ inputs.working-directory }}/dist/
@@ -149,8 +149,8 @@ jobs:
fi
fi
# if PREV_TAG is empty, let it be empty
if [ -z "$PREV_TAG" ]; then
# if PREV_TAG is empty or came out to 0.0.0, let it be empty
if [ -z "$PREV_TAG" ] || [ "$PREV_TAG" = "$PKG_NAME==0.0.0" ]; then
echo "No previous tag found - first release"
else
# confirm prev-tag actually exists in git repo with git tag
@@ -179,8 +179,8 @@ jobs:
PREV_TAG: ${{ steps.check-tags.outputs.prev-tag }}
run: |
PREAMBLE="Changes since $PREV_TAG"
# if PREV_TAG is empty, then we are releasing the first version
if [ -z "$PREV_TAG" ]; then
# if PREV_TAG is empty or 0.0.0, then we are releasing the first version
if [ -z "$PREV_TAG" ] || [ "$PREV_TAG" = "$PKG_NAME==0.0.0" ]; then
PREAMBLE="Initial release"
PREV_TAG=$(git rev-list --max-parents=0 HEAD)
fi
@@ -208,7 +208,7 @@ jobs:
steps:
- uses: actions/checkout@v5
- uses: actions/download-artifact@v5
- uses: actions/download-artifact@v6
with:
name: dist
path: ${{ inputs.working-directory }}/dist/
@@ -258,7 +258,7 @@ jobs:
with:
python-version: ${{ env.PYTHON_VERSION }}
- uses: actions/download-artifact@v5
- uses: actions/download-artifact@v6
with:
name: dist
path: ${{ inputs.working-directory }}/dist/
@@ -377,6 +377,7 @@ jobs:
XAI_API_KEY: ${{ secrets.XAI_API_KEY }}
DEEPSEEK_API_KEY: ${{ secrets.DEEPSEEK_API_KEY }}
PPLX_API_KEY: ${{ secrets.PPLX_API_KEY }}
LANGCHAIN_TESTS_USER_AGENT: ${{ secrets.LANGCHAIN_TESTS_USER_AGENT }}
run: make integration_tests
working-directory: ${{ inputs.working-directory }}
@@ -395,7 +396,7 @@ jobs:
contents: read
strategy:
matrix:
partner: [openai, anthropic]
partner: [openai]
fail-fast: false # Continue testing other partners if one fails
env:
ANTHROPIC_API_KEY: ${{ secrets.ANTHROPIC_API_KEY }}
@@ -409,6 +410,7 @@ jobs:
AZURE_OPENAI_LEGACY_CHAT_DEPLOYMENT_NAME: ${{ secrets.AZURE_OPENAI_LEGACY_CHAT_DEPLOYMENT_NAME }}
AZURE_OPENAI_LLM_DEPLOYMENT_NAME: ${{ secrets.AZURE_OPENAI_LLM_DEPLOYMENT_NAME }}
AZURE_OPENAI_EMBEDDINGS_DEPLOYMENT_NAME: ${{ secrets.AZURE_OPENAI_EMBEDDINGS_DEPLOYMENT_NAME }}
LANGCHAIN_TESTS_USER_AGENT: ${{ secrets.LANGCHAIN_TESTS_USER_AGENT }}
steps:
- uses: actions/checkout@v5
@@ -428,7 +430,7 @@ jobs:
with:
python-version: ${{ env.PYTHON_VERSION }}
- uses: actions/download-artifact@v5
- uses: actions/download-artifact@v6
if: startsWith(inputs.working-directory, 'libs/core')
with:
name: dist
@@ -442,7 +444,7 @@ jobs:
git ls-remote --tags origin "langchain-${{ matrix.partner }}*" \
| awk '{print $2}' \
| sed 's|refs/tags/||' \
| grep -E '[0-9]+\.[0-9]+\.[0-9]+([a-zA-Z]+[0-9]+)?$' \
| grep -E '[0-9]+\.[0-9]+\.[0-9]+$' \
| sort -Vr \
| head -n 1
)"
@@ -497,7 +499,7 @@ jobs:
with:
python-version: ${{ env.PYTHON_VERSION }}
- uses: actions/download-artifact@v5
- uses: actions/download-artifact@v6
with:
name: dist
path: ${{ inputs.working-directory }}/dist/
@@ -537,7 +539,7 @@ jobs:
with:
python-version: ${{ env.PYTHON_VERSION }}
- uses: actions/download-artifact@v5
- uses: actions/download-artifact@v6
with:
name: dist
path: ${{ inputs.working-directory }}/dist/

View File

@@ -13,7 +13,7 @@ on:
required: false
type: string
description: "Python version to use"
default: "3.11"
default: "3.12"
pydantic-version:
required: true
type: string
@@ -51,7 +51,9 @@ jobs:
- name: "🔄 Install Specific Pydantic Version"
shell: bash
run: VIRTUAL_ENV=.venv uv pip install pydantic~=${{ inputs.pydantic-version }}
env:
PYDANTIC_VERSION: ${{ inputs.pydantic-version }}
run: VIRTUAL_ENV=.venv uv pip install "pydantic~=$PYDANTIC_VERSION"
- name: "🧪 Run Core Tests"
shell: bash

View File

@@ -184,15 +184,14 @@ jobs:
steps:
- uses: actions/checkout@v5
# We have to use 3.12 as 3.13 is not yet supported
- name: "📦 Install UV Package Manager"
uses: astral-sh/setup-uv@v6
uses: astral-sh/setup-uv@v7
with:
python-version: "3.12"
python-version: "3.13"
- uses: actions/setup-python@v6
with:
python-version: "3.12"
python-version: "3.13"
- name: "📦 Install Test Dependencies"
run: uv sync --group test

View File

@@ -23,10 +23,8 @@ permissions:
contents: read
env:
POETRY_VERSION: "1.8.4"
UV_FROZEN: "true"
DEFAULT_LIBS: '["libs/partners/openai", "libs/partners/anthropic", "libs/partners/fireworks", "libs/partners/groq", "libs/partners/mistralai", "libs/partners/xai", "libs/partners/google-vertexai", "libs/partners/google-genai", "libs/partners/aws"]'
POETRY_LIBS: ("libs/partners/aws")
jobs:
# Generate dynamic test matrix based on input parameters or defaults
@@ -60,7 +58,6 @@ jobs:
echo $matrix
echo "matrix=$matrix" >> $GITHUB_OUTPUT
# Run integration tests against partner libraries with live API credentials
# Tests are run with Poetry or UV depending on the library's setup
build:
if: github.repository_owner == 'langchain-ai' || github.event_name != 'schedule'
name: "🐍 Python ${{ matrix.python-version }}: ${{ matrix.working-directory }}"
@@ -95,17 +92,7 @@ jobs:
mv langchain-google/libs/vertexai langchain/libs/partners/google-vertexai
mv langchain-aws/libs/aws langchain/libs/partners/aws
- name: "🐍 Set up Python ${{ matrix.python-version }} + Poetry"
if: contains(env.POETRY_LIBS, matrix.working-directory)
uses: "./langchain/.github/actions/poetry_setup"
with:
python-version: ${{ matrix.python-version }}
poetry-version: ${{ env.POETRY_VERSION }}
working-directory: langchain/${{ matrix.working-directory }}
cache-key: scheduled
- name: "🐍 Set up Python ${{ matrix.python-version }} + UV"
if: "!contains(env.POETRY_LIBS, matrix.working-directory)"
uses: "./langchain/.github/actions/uv_setup"
with:
python-version: ${{ matrix.python-version }}
@@ -123,15 +110,7 @@ jobs:
aws-secret-access-key: ${{ secrets.AWS_SECRET_ACCESS_KEY }}
aws-region: ${{ secrets.AWS_REGION }}
- name: "📦 Install Dependencies (Poetry)"
if: contains(env.POETRY_LIBS, matrix.working-directory)
run: |
echo "Running scheduled tests, installing dependencies with poetry..."
cd langchain/${{ matrix.working-directory }}
poetry install --with=test_integration,test
- name: "📦 Install Dependencies (UV)"
if: "!contains(env.POETRY_LIBS, matrix.working-directory)"
- name: "📦 Install Dependencies"
run: |
echo "Running scheduled tests, installing dependencies with uv..."
cd langchain/${{ matrix.working-directory }}
@@ -176,6 +155,7 @@ jobs:
WATSONX_APIKEY: ${{ secrets.WATSONX_APIKEY }}
WATSONX_PROJECT_ID: ${{ secrets.WATSONX_PROJECT_ID }}
XAI_API_KEY: ${{ secrets.XAI_API_KEY }}
LANGCHAIN_TESTS_USER_AGENT: ${{ secrets.LANGCHAIN_TESTS_USER_AGENT }}
run: |
cd langchain/${{ matrix.working-directory }}
make integration_tests

View File

@@ -27,10 +27,10 @@
# * release — prepare a new release
#
# Allowed Scopes (optional):
# core, cli, langchain, langchain_v1, langchain_legacy, standard-tests,
# core, cli, langchain, langchain_v1, langchain-classic, standard-tests,
# text-splitters, docs, anthropic, chroma, deepseek, exa, fireworks, groq,
# huggingface, mistralai, nomic, ollama, openai, perplexity, prompty, qdrant,
# xai, infra
# xai, infra, deps
#
# Rules:
# 1. The 'Type' must start with a lowercase letter.
@@ -79,8 +79,8 @@ jobs:
core
cli
langchain
langchain_v1
langchain_legacy
langchain_classic
model-profiles
standard-tests
text-splitters
docs

2
.gitignore vendored
View File

@@ -1,6 +1,8 @@
.vs/
.claude/
.idea/
#Emacs backup
*~
# Byte-compiled / optimized / DLL files
__pycache__/
*.py[cod]

8
.mcp.json Normal file
View File

@@ -0,0 +1,8 @@
{
"mcpServers": {
"docs-langchain": {
"type": "http",
"url": "https://docs.langchain.com/mcp"
}
}
}

View File

@@ -149,23 +149,25 @@ def send_email(to: str, msg: str, *, priority: str = "normal") -> bool:
Args:
to: The email address of the recipient.
msg: The message body to send.
priority: Email priority level (``'low'``, ``'normal'``, ``'high'``).
priority: Email priority level (`'low'`, `'normal'`, `'high'`).
Returns:
True if email was sent successfully, False otherwise.
`True` if email was sent successfully, `False` otherwise.
Raises:
InvalidEmailError: If the email address format is invalid.
SMTPConnectionError: If unable to connect to email server.
`InvalidEmailError`: If the email address format is invalid.
`SMTPConnectionError`: If unable to connect to email server.
"""
```
**Documentation Guidelines:**
- Types go in function signatures, NOT in docstrings
- If a default is present, DO NOT repeat it in the docstring unless there is post-processing or it is set conditionally.
- Focus on "why" rather than "what" in descriptions
- Document all parameters, return values, and exceptions
- Keep descriptions concise but clear
- Ensure American English spelling (e.g., "behavior", not "behaviour")
📌 *Tip:* Keep descriptions concise but clear. Only document return values if non-obvious.

View File

@@ -149,23 +149,25 @@ def send_email(to: str, msg: str, *, priority: str = "normal") -> bool:
Args:
to: The email address of the recipient.
msg: The message body to send.
priority: Email priority level (``'low'``, ``'normal'``, ``'high'``).
priority: Email priority level (`'low'`, `'normal'`, `'high'`).
Returns:
True if email was sent successfully, False otherwise.
`True` if email was sent successfully, `False` otherwise.
Raises:
InvalidEmailError: If the email address format is invalid.
SMTPConnectionError: If unable to connect to email server.
`InvalidEmailError`: If the email address format is invalid.
`SMTPConnectionError`: If unable to connect to email server.
"""
```
**Documentation Guidelines:**
- Types go in function signatures, NOT in docstrings
- If a default is present, DO NOT repeat it in the docstring unless there is post-processing or it is set conditionally.
- Focus on "why" rather than "what" in descriptions
- Document all parameters, return values, and exceptions
- Keep descriptions concise but clear
- Ensure American English spelling (e.g., "behavior", not "behaviour")
📌 *Tip:* Keep descriptions concise but clear. Only document return values if non-obvious.

View File

@@ -2,10 +2,8 @@
Please see the following guides for migrating LangChain code:
* Migrate to [LangChain v1.0](https://docs.langchain.com/oss/python/migrate/langchain-v1)
* Migrate to [LangChain v0.3](https://python.langchain.com/docs/versions/v0_3/)
* Migrate to [LangChain v0.2](https://python.langchain.com/docs/versions/v0_2/)
* Migrating from [LangChain 0.0.x Chains](https://python.langchain.com/docs/versions/migrating_chains/)
* Upgrade to [LangGraph Memory](https://python.langchain.com/docs/versions/migrating_memory/)
The [LangChain CLI](https://python.langchain.com/docs/versions/v0_3/#migrate-using-langchain-cli) can help you automatically upgrade your code to use non-deprecated imports.
This will be especially helpful if you're still on either version 0.0.x or 0.1.x of LangChain.

View File

@@ -12,13 +12,16 @@
<p align="center">
<a href="https://opensource.org/licenses/MIT" target="_blank">
<img src="https://img.shields.io/pypi/l/langchain-core?style=flat-square" alt="PyPI - License">
<img src="https://img.shields.io/pypi/l/langchain" alt="PyPI - License">
</a>
<a href="https://pypistats.org/packages/langchain-core" target="_blank">
<a href="https://pypistats.org/packages/langchain" target="_blank">
<img src="https://img.shields.io/pepy/dt/langchain" alt="PyPI - Downloads">
</a>
<a href="https://pypi.org/project/langchain/#history" target="_blank">
<img src="https://img.shields.io/pypi/v/langchain?label=%20" alt="Version">
</a>
<a href="https://vscode.dev/redirect?url=vscode://ms-vscode-remote.remote-containers/cloneInVolume?url=https://github.com/langchain-ai/langchain" target="_blank">
<img src="https://img.shields.io/static/v1?label=Dev%20Containers&message=Open&color=blue&logo=visualstudiocode&style=flat-square" alt="Open in Dev Containers">
<img src="https://img.shields.io/static/v1?label=Dev%20Containers&message=Open&color=blue&logo=visualstudiocode" alt="Open in Dev Containers">
</a>
<a href="https://codespaces.new/langchain-ai/langchain" target="_blank">
<img src="https://github.com/codespaces/badge.svg" alt="Open in Github Codespace" title="Open in Github Codespace" width="150" height="20">
@@ -31,17 +34,22 @@
</a>
</p>
LangChain is a framework for building LLM-powered applications. It helps you chain together interoperable components and third-party integrations to simplify AI application development all while future-proofing decisions as the underlying technology evolves.
LangChain is a framework for building agents and LLM-powered applications. It helps you chain together interoperable components and third-party integrations to simplify AI application development all while future-proofing decisions as the underlying technology evolves.
```bash
pip install -U langchain
pip install langchain
```
If you're looking for more advanced customization or agent orchestration, check out [LangGraph](https://docs.langchain.com/oss/python/langgraph/overview), our framework for building controllable agent workflows.
---
**Documentation**: To learn more about LangChain, check out [the docs](https://docs.langchain.com/).
**Documentation**:
If you're looking for more advanced customization or agent orchestration, check out [LangGraph](https://langchain-ai.github.io/langgraph/), our framework for building controllable agent workflows.
- [docs.langchain.com](https://docs.langchain.com/oss/python/langchain/overview) Comprehensive documentation, including conceptual overviews and guides
- [reference.langchain.com/python](https://reference.langchain.com/python) API reference docs for LangChain packages
**Discussions**: Visit the [LangChain Forum](https://forum.langchain.com) to connect with the community and share all of your technical questions, ideas, and feedback.
> [!NOTE]
> Looking for the JS/TS library? Check out [LangChain.js](https://github.com/langchain-ai/langchainjs).
@@ -52,26 +60,27 @@ LangChain helps developers build applications powered by LLMs through a standard
Use LangChain for:
- **Real-time data augmentation**. Easily connect LLMs to diverse data sources and external/internal systems, drawing from LangChains vast library of integrations with model providers, tools, vector stores, retrievers, and more.
- **Model interoperability**. Swap models in and out as your engineering team experiments to find the best choice for your applications needs. As the industry frontier evolves, adapt quickly LangChains abstractions keep you moving without losing momentum.
- **Real-time data augmentation**. Easily connect LLMs to diverse data sources and external/internal systems, drawing from LangChain's vast library of integrations with model providers, tools, vector stores, retrievers, and more.
- **Model interoperability**. Swap models in and out as your engineering team experiments to find the best choice for your application's needs. As the industry frontier evolves, adapt quickly LangChain's abstractions keep you moving without losing momentum.
- **Rapid prototyping**. Quickly build and iterate on LLM applications with LangChain's modular, component-based architecture. Test different approaches and workflows without rebuilding from scratch, accelerating your development cycle.
- **Production-ready features**. Deploy reliable applications with built-in support for monitoring, evaluation, and debugging through integrations like LangSmith. Scale with confidence using battle-tested patterns and best practices.
- **Vibrant community and ecosystem**. Leverage a rich ecosystem of integrations, templates, and community-contributed components. Benefit from continuous improvements and stay up-to-date with the latest AI developments through an active open-source community.
- **Flexible abstraction layers**. Work at the level of abstraction that suits your needs - from high-level chains for quick starts to low-level components for fine-grained control. LangChain grows with your application's complexity.
## LangChains ecosystem
## LangChain ecosystem
While the LangChain framework can be used standalone, it also integrates seamlessly with any LangChain product, giving developers a full suite of tools when building LLM applications.
To improve your LLM application development, pair LangChain with:
- [LangSmith](https://www.langchain.com/langsmith) - Helpful for agent evals and observability. Debug poor-performing LLM app runs, evaluate agent trajectories, gain visibility in production, and improve performance over time.
- [LangGraph](https://langchain-ai.github.io/langgraph/) - Build agents that can reliably handle complex tasks with LangGraph, our low-level agent orchestration framework. LangGraph offers customizable architecture, long-term memory, and human-in-the-loop workflows — and is trusted in production by companies like LinkedIn, Uber, Klarna, and GitLab.
- [LangGraph Platform](https://docs.langchain.com/langgraph-platform) - Deploy and scale agents effortlessly with a purpose-built deployment platform for long-running, stateful workflows. Discover, reuse, configure, and share agents across teams — and iterate quickly with visual prototyping in [LangGraph Studio](https://langchain-ai.github.io/langgraph/concepts/langgraph_studio/).
- [LangGraph](https://docs.langchain.com/oss/python/langgraph/overview) Build agents that can reliably handle complex tasks with LangGraph, our low-level agent orchestration framework. LangGraph offers customizable architecture, long-term memory, and human-in-the-loop workflows and is trusted in production by companies like LinkedIn, Uber, Klarna, and GitLab.
- [Integrations](https://docs.langchain.com/oss/python/integrations/providers/overview) List of LangChain integrations, including chat & embedding models, tools & toolkits, and more
- [LangSmith](https://www.langchain.com/langsmith) Helpful for agent evals and observability. Debug poor-performing LLM app runs, evaluate agent trajectories, gain visibility in production, and improve performance over time.
- [LangSmith Deployment](https://docs.langchain.com/langsmith/deployments) Deploy and scale agents effortlessly with a purpose-built deployment platform for long-running, stateful workflows. Discover, reuse, configure, and share agents across teams and iterate quickly with visual prototyping in [LangSmith Studio](https://docs.langchain.com/langsmith/studio).
- [Deep Agents](https://github.com/langchain-ai/deepagents) *(new!)* Build agents that can plan, use subagents, and leverage file systems for complex tasks
## Additional resources
- [Conceptual Guides](https://docs.langchain.com/oss/python/langchain/overview): Explanations of key
concepts behind the LangChain framework.
- [Tutorials](https://docs.langchain.com/oss/python/learn): Simple walkthroughs with
guided examples on getting started with LangChain.
- [API Reference](https://reference.langchain.com/python/): Detailed reference on
navigating base packages and integrations for LangChain.
- [LangChain Forum](https://forum.langchain.com/): Connect with the community and share all of your technical questions, ideas, and feedback.
- [Chat LangChain](https://chat.langchain.com/): Ask questions & chat with our documentation.
- [API Reference](https://reference.langchain.com/python) Detailed reference on navigating base packages and integrations for LangChain.
- [Contributing Guide](https://docs.langchain.com/oss/python/contributing/overview) Learn how to contribute to LangChain projects and find good first issues.
- [Code of Conduct](https://github.com/langchain-ai/langchain/blob/master/.github/CODE_OF_CONDUCT.md) Our community guidelines and standards for participation.

View File

@@ -55,10 +55,10 @@ All out of scope targets defined by huntr as well as:
* **langchain-experimental**: This repository is for experimental code and is not
eligible for bug bounties (see [package warning](https://pypi.org/project/langchain-experimental/)), bug reports to it will be marked as interesting or waste of
time and published with no bounty attached.
* **tools**: Tools in either langchain or langchain-community are not eligible for bug
* **tools**: Tools in either `langchain` or `langchain-community` are not eligible for bug
bounties. This includes the following directories
* libs/langchain/langchain/tools
* libs/community/langchain_community/tools
* `libs/langchain/langchain/tools`
* `libs/community/langchain_community/tools`
* Please review the [Best Practices](#best-practices)
for more details, but generally tools interact with the real world. Developers are
expected to understand the security implications of their code and are responsible

View File

@@ -1,6 +1,30 @@
# langchain-cli
This package implements the official CLI for LangChain. Right now, it is most useful
for getting started with LangChain Templates!
[![PyPI - Version](https://img.shields.io/pypi/v/langchain-cli?label=%20)](https://pypi.org/project/langchain-cli/#history)
[![PyPI - License](https://img.shields.io/pypi/l/langchain-cli)](https://opensource.org/licenses/MIT)
[![PyPI - Downloads](https://img.shields.io/pepy/dt/langchain-cli)](https://pypistats.org/packages/langchain-cli)
[![Twitter](https://img.shields.io/twitter/url/https/twitter.com/langchainai.svg?style=social&label=Follow%20%40LangChainAI)](https://twitter.com/langchainai)
## Quick Install
```bash
pip install langchain-cli
```
## 🤔 What is this?
This package implements the official CLI for LangChain. Right now, it is most useful for getting started with LangChain Templates!
## 📖 Documentation
[CLI Docs](https://github.com/langchain-ai/langchain/blob/master/libs/cli/DOCS.md)
## 📕 Releases & Versioning
See our [Releases](https://docs.langchain.com/oss/python/release-policy) and [Versioning](https://docs.langchain.com/oss/python/versioning) policies.
## 💁 Contributing
As an open-source project in a rapidly developing field, we are extremely open to contributions, whether it be in the form of a new feature, improved infrastructure, or better documentation.
For detailed information on how to contribute, see the [Contributing Guide](https://docs.langchain.com/oss/python/contributing/overview).

View File

@@ -19,8 +19,8 @@ And you should configure credentials by setting the following environment variab
```python
from __module_name__ import Chat__ModuleName__
llm = Chat__ModuleName__()
llm.invoke("Sing a ballad of LangChain.")
model = Chat__ModuleName__()
model.invoke("Sing a ballad of LangChain.")
```
## Embeddings
@@ -41,6 +41,6 @@ embeddings.embed_query("What is the meaning of life?")
```python
from __module_name__ import __ModuleName__LLM
llm = __ModuleName__LLM()
llm.invoke("The meaning of life is")
model = __ModuleName__LLM()
model.invoke("The meaning of life is")
```

View File

@@ -1,262 +1,264 @@
{
"cells": [
{
"cell_type": "raw",
"id": "afaf8039",
"metadata": {},
"source": [
"---\n",
"sidebar_label: __ModuleName__\n",
"---"
]
"cells": [
{
"cell_type": "raw",
"id": "afaf8039",
"metadata": {},
"source": [
"---\n",
"sidebar_label: __ModuleName__\n",
"---"
]
},
{
"cell_type": "markdown",
"id": "e49f1e0d",
"metadata": {},
"source": [
"# Chat__ModuleName__\n",
"\n",
"- TODO: Make sure API reference link is correct.\n",
"\n",
"This will help you get started with __ModuleName__ [chat models](/docs/concepts/chat_models). For detailed documentation of all Chat__ModuleName__ features and configurations head to the [API reference](https://python.langchain.com/api_reference/__package_name_short_snake__/chat_models/__module_name__.chat_models.Chat__ModuleName__.html).\n",
"\n",
"- TODO: Add any other relevant links, like information about models, prices, context windows, etc. See https://python.langchain.com/docs/integrations/chat/openai/ for an example.\n",
"\n",
"## Overview\n",
"### Integration details\n",
"\n",
"- TODO: Fill in table features.\n",
"- TODO: Remove JS support link if not relevant, otherwise ensure link is correct.\n",
"- TODO: Make sure API reference links are correct.\n",
"\n",
"| Class | Package | Local | Serializable | [JS support](https://js.langchain.com/docs/integrations/chat/__package_name_short_snake__) | Package downloads | Package latest |\n",
"| :--- | :--- | :---: | :---: | :---: | :---: | :---: |\n",
"| [Chat__ModuleName__](https://python.langchain.com/api_reference/__package_name_short_snake__/chat_models/__module_name__.chat_models.Chat__ModuleName__.html) | [__package_name__](https://python.langchain.com/api_reference/__package_name_short_snake__/) | ✅/❌ | beta/❌ | ✅/❌ | ![PyPI - Downloads](https://img.shields.io/pypi/dm/__package_name__&label=%20) | ![PyPI - Version](https://img.shields.io/pypi/v/__package_name__&label=%20) |\n",
"\n",
"### Model features\n",
"| [Tool calling](/docs/how_to/tool_calling) | [Structured output](/docs/how_to/structured_output/) | JSON mode | [Image input](/docs/how_to/multimodal_inputs/) | Audio input | Video input | [Token-level streaming](/docs/how_to/chat_streaming/) | Native async | [Token usage](/docs/how_to/chat_token_usage_tracking/) | [Logprobs](/docs/how_to/logprobs/) |\n",
"| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |\n",
"| ✅/❌ | ✅/❌ | ✅/❌ | ✅/❌ | ✅/❌ | ✅/❌ | ✅/❌ | ✅/❌ | ✅/❌ | ✅/❌ |\n",
"\n",
"## Setup\n",
"\n",
"- TODO: Update with relevant info.\n",
"\n",
"To access __ModuleName__ models you'll need to create a/an __ModuleName__ account, get an API key, and install the `__package_name__` integration package.\n",
"\n",
"### Credentials\n",
"\n",
"- TODO: Update with relevant info.\n",
"\n",
"Head to (TODO: link) to sign up to __ModuleName__ and generate an API key. Once you've done this set the __MODULE_NAME___API_KEY environment variable:"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "433e8d2b-9519-4b49-b2c4-7ab65b046c94",
"metadata": {},
"outputs": [],
"source": [
"import getpass\n",
"import os\n",
"\n",
"if not os.getenv(\"__MODULE_NAME___API_KEY\"):\n",
" os.environ[\"__MODULE_NAME___API_KEY\"] = getpass.getpass(\n",
" \"Enter your __ModuleName__ API key: \"\n",
" )"
]
},
{
"cell_type": "markdown",
"id": "72ee0c4b-9764-423a-9dbf-95129e185210",
"metadata": {},
"source": [
"To enable automated tracing of your model calls, set your [LangSmith](https://docs.smith.langchain.com/) API key:"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "a15d341e-3e26-4ca3-830b-5aab30ed66de",
"metadata": {},
"outputs": [],
"source": [
"# os.environ[\"LANGSMITH_TRACING\"] = \"true\"\n",
"# os.environ[\"LANGSMITH_API_KEY\"] = getpass.getpass(\"Enter your LangSmith API key: \")"
]
},
{
"cell_type": "markdown",
"id": "0730d6a1-c893-4840-9817-5e5251676d5d",
"metadata": {},
"source": [
"### Installation\n",
"\n",
"The LangChain __ModuleName__ integration lives in the `__package_name__` package:"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "652d6238-1f87-422a-b135-f5abbb8652fc",
"metadata": {},
"outputs": [],
"source": [
"%pip install -qU __package_name__"
]
},
{
"cell_type": "markdown",
"id": "a38cde65-254d-4219-a441-068766c0d4b5",
"metadata": {},
"source": [
"## Instantiation\n",
"\n",
"Now we can instantiate our model object and generate chat completions:\n",
"\n",
"- TODO: Update model instantiation with relevant params."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "cb09c344-1836-4e0c-acf8-11d13ac1dbae",
"metadata": {},
"outputs": [],
"source": [
"from __module_name__ import Chat__ModuleName__\n",
"\n",
"model = Chat__ModuleName__(\n",
" model=\"model-name\",\n",
" temperature=0,\n",
" max_tokens=None,\n",
" timeout=None,\n",
" max_retries=2,\n",
" # other params...\n",
")"
]
},
{
"cell_type": "markdown",
"id": "2b4f3e15",
"metadata": {},
"source": [
"## Invocation\n",
"\n",
"- TODO: Run cells so output can be seen."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "62e0dbc3",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"messages = [\n",
" (\n",
" \"system\",\n",
" \"You are a helpful assistant that translates English to French. Translate the user sentence.\",\n",
" ),\n",
" (\"human\", \"I love programming.\"),\n",
"]\n",
"ai_msg = model.invoke(messages)\n",
"ai_msg"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "d86145b3-bfef-46e8-b227-4dda5c9c2705",
"metadata": {},
"outputs": [],
"source": [
"print(ai_msg.content)"
]
},
{
"cell_type": "markdown",
"id": "18e2bfc0-7e78-4528-a73f-499ac150dca8",
"metadata": {},
"source": [
"## Chaining\n",
"\n",
"We can [chain](/docs/how_to/sequence/) our model with a prompt template like so:\n",
"\n",
"- TODO: Run cells so output can be seen."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "e197d1d7-a070-4c96-9f8a-a0e86d046e0b",
"metadata": {},
"outputs": [],
"source": [
"from langchain_core.prompts import ChatPromptTemplate\n",
"\n",
"prompt = ChatPromptTemplate(\n",
" [\n",
" (\n",
" \"system\",\n",
" \"You are a helpful assistant that translates {input_language} to {output_language}.\",\n",
" ),\n",
" (\"human\", \"{input}\"),\n",
" ]\n",
")\n",
"\n",
"chain = prompt | model\n",
"chain.invoke(\n",
" {\n",
" \"input_language\": \"English\",\n",
" \"output_language\": \"German\",\n",
" \"input\": \"I love programming.\",\n",
" }\n",
")"
]
},
{
"cell_type": "markdown",
"id": "d1ee55bc-ffc8-4cfa-801c-993953a08cfd",
"metadata": {},
"source": [
"## TODO: Any functionality specific to this model provider\n",
"\n",
"E.g. creating/using finetuned models via this provider. Delete if not relevant."
]
},
{
"cell_type": "markdown",
"id": "3a5bb5ca-c3ae-4a58-be67-2cd18574b9a3",
"metadata": {},
"source": [
"## API reference\n",
"\n",
"For detailed documentation of all Chat__ModuleName__ features and configurations head to the [API reference](https://python.langchain.com/api_reference/__package_name_short_snake__/chat_models/__module_name__.chat_models.Chat__ModuleName__.html)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.9"
}
},
{
"cell_type": "markdown",
"id": "e49f1e0d",
"metadata": {},
"source": [
"# Chat__ModuleName__\n",
"\n",
"- TODO: Make sure API reference link is correct.\n",
"\n",
"This will help you get started with __ModuleName__ [chat models](/docs/concepts/chat_models). For detailed documentation of all Chat__ModuleName__ features and configurations head to the [API reference](https://python.langchain.com/api_reference/__package_name_short_snake__/chat_models/__module_name__.chat_models.Chat__ModuleName__.html).\n",
"\n",
"- TODO: Add any other relevant links, like information about models, prices, context windows, etc. See https://python.langchain.com/docs/integrations/chat/openai/ for an example.\n",
"\n",
"## Overview\n",
"### Integration details\n",
"\n",
"- TODO: Fill in table features.\n",
"- TODO: Remove JS support link if not relevant, otherwise ensure link is correct.\n",
"- TODO: Make sure API reference links are correct.\n",
"\n",
"| Class | Package | Local | Serializable | [JS support](https://js.langchain.com/docs/integrations/chat/__package_name_short_snake__) | Package downloads | Package latest |\n",
"| :--- | :--- | :---: | :---: | :---: | :---: | :---: |\n",
"| [Chat__ModuleName__](https://python.langchain.com/api_reference/__package_name_short_snake__/chat_models/__module_name__.chat_models.Chat__ModuleName__.html) | [__package_name__](https://python.langchain.com/api_reference/__package_name_short_snake__/) | ✅/❌ | beta/❌ | ✅/❌ | ![PyPI - Downloads](https://img.shields.io/pypi/dm/__package_name__?style=flat-square&label=%20) | ![PyPI - Version](https://img.shields.io/pypi/v/__package_name__?style=flat-square&label=%20) |\n",
"\n",
"### Model features\n",
"| [Tool calling](/docs/how_to/tool_calling) | [Structured output](/docs/how_to/structured_output/) | JSON mode | [Image input](/docs/how_to/multimodal_inputs/) | Audio input | Video input | [Token-level streaming](/docs/how_to/chat_streaming/) | Native async | [Token usage](/docs/how_to/chat_token_usage_tracking/) | [Logprobs](/docs/how_to/logprobs/) |\n",
"| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |\n",
"| ✅/❌ | ✅/❌ | ✅/❌ | ✅/❌ | ✅/❌ | ✅/❌ | ✅/❌ | ✅/❌ | ✅/❌ | ✅/❌ |\n",
"\n",
"## Setup\n",
"\n",
"- TODO: Update with relevant info.\n",
"\n",
"To access __ModuleName__ models you'll need to create a/an __ModuleName__ account, get an API key, and install the `__package_name__` integration package.\n",
"\n",
"### Credentials\n",
"\n",
"- TODO: Update with relevant info.\n",
"\n",
"Head to (TODO: link) to sign up to __ModuleName__ and generate an API key. Once you've done this set the __MODULE_NAME___API_KEY environment variable:"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "433e8d2b-9519-4b49-b2c4-7ab65b046c94",
"metadata": {},
"outputs": [],
"source": [
"import getpass\n",
"import os\n",
"\n",
"if not os.getenv(\"__MODULE_NAME___API_KEY\"):\n",
" os.environ[\"__MODULE_NAME___API_KEY\"] = getpass.getpass(\n",
" \"Enter your __ModuleName__ API key: \"\n",
" )"
]
},
{
"cell_type": "markdown",
"id": "72ee0c4b-9764-423a-9dbf-95129e185210",
"metadata": {},
"source": "To enable automated tracing of your model calls, set your [LangSmith](https://docs.smith.langchain.com/) API key:"
},
{
"cell_type": "code",
"execution_count": null,
"id": "a15d341e-3e26-4ca3-830b-5aab30ed66de",
"metadata": {},
"outputs": [],
"source": [
"# os.environ[\"LANGSMITH_TRACING\"] = \"true\"\n",
"# os.environ[\"LANGSMITH_API_KEY\"] = getpass.getpass(\"Enter your LangSmith API key: \")"
]
},
{
"cell_type": "markdown",
"id": "0730d6a1-c893-4840-9817-5e5251676d5d",
"metadata": {},
"source": [
"### Installation\n",
"\n",
"The LangChain __ModuleName__ integration lives in the `__package_name__` package:"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "652d6238-1f87-422a-b135-f5abbb8652fc",
"metadata": {},
"outputs": [],
"source": [
"%pip install -qU __package_name__"
]
},
{
"cell_type": "markdown",
"id": "a38cde65-254d-4219-a441-068766c0d4b5",
"metadata": {},
"source": [
"## Instantiation\n",
"\n",
"Now we can instantiate our model object and generate chat completions:\n",
"\n",
"- TODO: Update model instantiation with relevant params."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "cb09c344-1836-4e0c-acf8-11d13ac1dbae",
"metadata": {},
"outputs": [],
"source": [
"from __module_name__ import Chat__ModuleName__\n",
"\n",
"llm = Chat__ModuleName__(\n",
" model=\"model-name\",\n",
" temperature=0,\n",
" max_tokens=None,\n",
" timeout=None,\n",
" max_retries=2,\n",
" # other params...\n",
")"
]
},
{
"cell_type": "markdown",
"id": "2b4f3e15",
"metadata": {},
"source": [
"## Invocation\n",
"\n",
"- TODO: Run cells so output can be seen."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "62e0dbc3",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"messages = [\n",
" (\n",
" \"system\",\n",
" \"You are a helpful assistant that translates English to French. Translate the user sentence.\",\n",
" ),\n",
" (\"human\", \"I love programming.\"),\n",
"]\n",
"ai_msg = llm.invoke(messages)\n",
"ai_msg"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "d86145b3-bfef-46e8-b227-4dda5c9c2705",
"metadata": {},
"outputs": [],
"source": [
"print(ai_msg.content)"
]
},
{
"cell_type": "markdown",
"id": "18e2bfc0-7e78-4528-a73f-499ac150dca8",
"metadata": {},
"source": [
"## Chaining\n",
"\n",
"We can [chain](/docs/how_to/sequence/) our model with a prompt template like so:\n",
"\n",
"- TODO: Run cells so output can be seen."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "e197d1d7-a070-4c96-9f8a-a0e86d046e0b",
"metadata": {},
"outputs": [],
"source": [
"from langchain_core.prompts import ChatPromptTemplate\n",
"\n",
"prompt = ChatPromptTemplate(\n",
" [\n",
" (\n",
" \"system\",\n",
" \"You are a helpful assistant that translates {input_language} to {output_language}.\",\n",
" ),\n",
" (\"human\", \"{input}\"),\n",
" ]\n",
")\n",
"\n",
"chain = prompt | llm\n",
"chain.invoke(\n",
" {\n",
" \"input_language\": \"English\",\n",
" \"output_language\": \"German\",\n",
" \"input\": \"I love programming.\",\n",
" }\n",
")"
]
},
{
"cell_type": "markdown",
"id": "d1ee55bc-ffc8-4cfa-801c-993953a08cfd",
"metadata": {},
"source": [
"## TODO: Any functionality specific to this model provider\n",
"\n",
"E.g. creating/using finetuned models via this provider. Delete if not relevant."
]
},
{
"cell_type": "markdown",
"id": "3a5bb5ca-c3ae-4a58-be67-2cd18574b9a3",
"metadata": {},
"source": [
"## API reference\n",
"\n",
"For detailed documentation of all Chat__ModuleName__ features and configurations head to the [API reference](https://python.langchain.com/api_reference/__package_name_short_snake__/chat_models/__module_name__.chat_models.Chat__ModuleName__.html)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.9"
}
},
"nbformat": 4,
"nbformat_minor": 5
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -1,236 +1,238 @@
{
"cells": [
{
"cell_type": "raw",
"id": "67db2992",
"metadata": {},
"source": [
"---\n",
"sidebar_label: __ModuleName__\n",
"---"
]
"cells": [
{
"cell_type": "raw",
"id": "67db2992",
"metadata": {},
"source": [
"---\n",
"sidebar_label: __ModuleName__\n",
"---"
]
},
{
"cell_type": "markdown",
"id": "9597802c",
"metadata": {},
"source": [
"# __ModuleName__LLM\n",
"\n",
"- [ ] TODO: Make sure API reference link is correct\n",
"\n",
"This will help you get started with __ModuleName__ completion models (LLMs) using LangChain. For detailed documentation on `__ModuleName__LLM` features and configuration options, please refer to the [API reference](https://api.python.langchain.com/en/latest/llms/__module_name__.llms.__ModuleName__LLM.html).\n",
"\n",
"## Overview\n",
"### Integration details\n",
"\n",
"- TODO: Fill in table features.\n",
"- TODO: Remove JS support link if not relevant, otherwise ensure link is correct.\n",
"- TODO: Make sure API reference links are correct.\n",
"\n",
"| Class | Package | Local | Serializable | [JS support](https://js.langchain.com/docs/integrations/llms/__package_name_short_snake__) | Package downloads | Package latest |\n",
"| :--- | :--- | :---: | :---: | :---: | :---: | :---: |\n",
"| [__ModuleName__LLM](https://api.python.langchain.com/en/latest/llms/__module_name__.llms.__ModuleName__LLM.html) | [__package_name__](https://api.python.langchain.com/en/latest/__package_name_short_snake___api_reference.html) | ✅/❌ | beta/❌ | ✅/❌ | ![PyPI - Downloads](https://img.shields.io/pypi/dm/__package_name__&label=%20) | ![PyPI - Version](https://img.shields.io/pypi/v/__package_name__&label=%20) |\n",
"\n",
"## Setup\n",
"\n",
"- TODO: Update with relevant info.\n",
"\n",
"To access __ModuleName__ models you'll need to create a/an __ModuleName__ account, get an API key, and install the `__package_name__` integration package.\n",
"\n",
"### Credentials\n",
"\n",
"- TODO: Update with relevant info.\n",
"\n",
"Head to (TODO: link) to sign up to __ModuleName__ and generate an API key. Once you've done this set the __MODULE_NAME___API_KEY environment variable:"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "bc51e756",
"metadata": {},
"outputs": [],
"source": [
"import getpass\n",
"import os\n",
"\n",
"if not os.getenv(\"__MODULE_NAME___API_KEY\"):\n",
" os.environ[\"__MODULE_NAME___API_KEY\"] = getpass.getpass(\n",
" \"Enter your __ModuleName__ API key: \"\n",
" )"
]
},
{
"cell_type": "markdown",
"id": "4b6e1ca6",
"metadata": {},
"source": [
"To enable automated tracing of your model calls, set your [LangSmith](https://docs.smith.langchain.com/) API key:"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "196c2b41",
"metadata": {},
"outputs": [],
"source": [
"# os.environ[\"LANGSMITH_TRACING\"] = \"true\"\n",
"# os.environ[\"LANGSMITH_API_KEY\"] = getpass.getpass(\"Enter your LangSmith API key: \")"
]
},
{
"cell_type": "markdown",
"id": "809c6577",
"metadata": {},
"source": [
"### Installation\n",
"\n",
"The LangChain __ModuleName__ integration lives in the `__package_name__` package:"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "59c710c4",
"metadata": {},
"outputs": [],
"source": [
"%pip install -qU __package_name__"
]
},
{
"cell_type": "markdown",
"id": "0a760037",
"metadata": {},
"source": [
"## Instantiation\n",
"\n",
"Now we can instantiate our model object and generate chat completions:\n",
"\n",
"- TODO: Update model instantiation with relevant params."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "a0562a13",
"metadata": {},
"outputs": [],
"source": [
"from __module_name__ import __ModuleName__LLM\n",
"\n",
"model = __ModuleName__LLM(\n",
" model=\"model-name\",\n",
" temperature=0,\n",
" max_tokens=None,\n",
" timeout=None,\n",
" max_retries=2,\n",
" # other params...\n",
")"
]
},
{
"cell_type": "markdown",
"id": "0ee90032",
"metadata": {},
"source": [
"## Invocation\n",
"\n",
"- [ ] TODO: Run cells so output can be seen."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "035dea0f",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"input_text = \"__ModuleName__ is an AI company that \"\n",
"\n",
"completion = model.invoke(input_text)\n",
"completion"
]
},
{
"cell_type": "markdown",
"id": "add38532",
"metadata": {},
"source": [
"## Chaining\n",
"\n",
"We can [chain](/docs/how_to/sequence/) our completion model with a prompt template like so:\n",
"\n",
"- TODO: Run cells so output can be seen."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "078e9db2",
"metadata": {},
"outputs": [],
"source": [
"from langchain_core.prompts import PromptTemplate\n",
"\n",
"prompt = PromptTemplate(\"How to say {input} in {output_language}:\\n\")\n",
"\n",
"chain = prompt | model\n",
"chain.invoke(\n",
" {\n",
" \"output_language\": \"German\",\n",
" \"input\": \"I love programming.\",\n",
" }\n",
")"
]
},
{
"cell_type": "markdown",
"id": "e99eef30",
"metadata": {},
"source": [
"## TODO: Any functionality specific to this model provider\n",
"\n",
"E.g. creating/using finetuned models via this provider. Delete if not relevant"
]
},
{
"cell_type": "markdown",
"id": "e9bdfcef",
"metadata": {},
"source": [
"## API reference\n",
"\n",
"For detailed documentation of all `__ModuleName__LLM` features and configurations head to the API reference: https://api.python.langchain.com/en/latest/llms/__module_name__.llms.__ModuleName__LLM.html"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3.11.1 64-bit",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.7"
},
"vscode": {
"interpreter": {
"hash": "e971737741ff4ec9aff7dc6155a1060a59a8a6d52c757dbbe66bf8ee389494b1"
}
}
},
{
"cell_type": "markdown",
"id": "9597802c",
"metadata": {},
"source": [
"# __ModuleName__LLM\n",
"\n",
"- [ ] TODO: Make sure API reference link is correct\n",
"\n",
"This will help you get started with __ModuleName__ completion models (LLMs) using LangChain. For detailed documentation on `__ModuleName__LLM` features and configuration options, please refer to the [API reference](https://api.python.langchain.com/en/latest/llms/__module_name__.llms.__ModuleName__LLM.html).\n",
"\n",
"## Overview\n",
"### Integration details\n",
"\n",
"- TODO: Fill in table features.\n",
"- TODO: Remove JS support link if not relevant, otherwise ensure link is correct.\n",
"- TODO: Make sure API reference links are correct.\n",
"\n",
"| Class | Package | Local | Serializable | [JS support](https://js.langchain.com/docs/integrations/llms/__package_name_short_snake__) | Package downloads | Package latest |\n",
"| :--- | :--- | :---: | :---: | :---: | :---: | :---: |\n",
"| [__ModuleName__LLM](https://api.python.langchain.com/en/latest/llms/__module_name__.llms.__ModuleName__LLM.html) | [__package_name__](https://api.python.langchain.com/en/latest/__package_name_short_snake___api_reference.html) | ✅/❌ | beta/❌ | ✅/❌ | ![PyPI - Downloads](https://img.shields.io/pypi/dm/__package_name__?style=flat-square&label=%20) | ![PyPI - Version](https://img.shields.io/pypi/v/__package_name__?style=flat-square&label=%20) |\n",
"\n",
"## Setup\n",
"\n",
"- TODO: Update with relevant info.\n",
"\n",
"To access __ModuleName__ models you'll need to create a/an __ModuleName__ account, get an API key, and install the `__package_name__` integration package.\n",
"\n",
"### Credentials\n",
"\n",
"- TODO: Update with relevant info.\n",
"\n",
"Head to (TODO: link) to sign up to __ModuleName__ and generate an API key. Once you've done this set the __MODULE_NAME___API_KEY environment variable:"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "bc51e756",
"metadata": {},
"outputs": [],
"source": [
"import getpass\n",
"import os\n",
"\n",
"if not os.getenv(\"__MODULE_NAME___API_KEY\"):\n",
" os.environ[\"__MODULE_NAME___API_KEY\"] = getpass.getpass(\n",
" \"Enter your __ModuleName__ API key: \"\n",
" )"
]
},
{
"cell_type": "markdown",
"id": "4b6e1ca6",
"metadata": {},
"source": "To enable automated tracing of your model calls, set your [LangSmith](https://docs.smith.langchain.com/) API key:"
},
{
"cell_type": "code",
"execution_count": null,
"id": "196c2b41",
"metadata": {},
"outputs": [],
"source": [
"# os.environ[\"LANGSMITH_TRACING\"] = \"true\"\n",
"# os.environ[\"LANGSMITH_API_KEY\"] = getpass.getpass(\"Enter your LangSmith API key: \")"
]
},
{
"cell_type": "markdown",
"id": "809c6577",
"metadata": {},
"source": [
"### Installation\n",
"\n",
"The LangChain __ModuleName__ integration lives in the `__package_name__` package:"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "59c710c4",
"metadata": {},
"outputs": [],
"source": [
"%pip install -qU __package_name__"
]
},
{
"cell_type": "markdown",
"id": "0a760037",
"metadata": {},
"source": [
"## Instantiation\n",
"\n",
"Now we can instantiate our model object and generate chat completions:\n",
"\n",
"- TODO: Update model instantiation with relevant params."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "a0562a13",
"metadata": {},
"outputs": [],
"source": [
"from __module_name__ import __ModuleName__LLM\n",
"\n",
"llm = __ModuleName__LLM(\n",
" model=\"model-name\",\n",
" temperature=0,\n",
" max_tokens=None,\n",
" timeout=None,\n",
" max_retries=2,\n",
" # other params...\n",
")"
]
},
{
"cell_type": "markdown",
"id": "0ee90032",
"metadata": {},
"source": [
"## Invocation\n",
"\n",
"- [ ] TODO: Run cells so output can be seen."
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "035dea0f",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"input_text = \"__ModuleName__ is an AI company that \"\n",
"\n",
"completion = llm.invoke(input_text)\n",
"completion"
]
},
{
"cell_type": "markdown",
"id": "add38532",
"metadata": {},
"source": [
"## Chaining\n",
"\n",
"We can [chain](/docs/how_to/sequence/) our completion model with a prompt template like so:\n",
"\n",
"- TODO: Run cells so output can be seen."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "078e9db2",
"metadata": {},
"outputs": [],
"source": [
"from langchain_core.prompts import PromptTemplate\n",
"\n",
"prompt = PromptTemplate(\"How to say {input} in {output_language}:\\n\")\n",
"\n",
"chain = prompt | llm\n",
"chain.invoke(\n",
" {\n",
" \"output_language\": \"German\",\n",
" \"input\": \"I love programming.\",\n",
" }\n",
")"
]
},
{
"cell_type": "markdown",
"id": "e99eef30",
"metadata": {},
"source": [
"## TODO: Any functionality specific to this model provider\n",
"\n",
"E.g. creating/using finetuned models via this provider. Delete if not relevant"
]
},
{
"cell_type": "markdown",
"id": "e9bdfcef",
"metadata": {},
"source": [
"## API reference\n",
"\n",
"For detailed documentation of all `__ModuleName__LLM` features and configurations head to the API reference: https://api.python.langchain.com/en/latest/llms/__module_name__.llms.__ModuleName__LLM.html"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3.11.1 64-bit",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.7"
},
"vscode": {
"interpreter": {
"hash": "e971737741ff4ec9aff7dc6155a1060a59a8a6d52c757dbbe66bf8ee389494b1"
}
}
},
"nbformat": 4,
"nbformat_minor": 5
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -155,7 +155,7 @@
"\n",
"from langchain_openai import ChatOpenAI\n",
"\n",
"llm = ChatOpenAI(model=\"gpt-3.5-turbo-0125\", temperature=0)"
"model = ChatOpenAI(model=\"gpt-3.5-turbo-0125\", temperature=0)"
]
},
{
@@ -185,7 +185,7 @@
"chain = (\n",
" {\"context\": retriever | format_docs, \"question\": RunnablePassthrough()}\n",
" | prompt\n",
" | llm\n",
" | model\n",
" | StrOutputParser()\n",
")"
]

View File

@@ -1,204 +1,204 @@
{
"cells": [
{
"cell_type": "raw",
"metadata": {
"vscode": {
"languageId": "raw"
"cells": [
{
"cell_type": "raw",
"metadata": {
"vscode": {
"languageId": "raw"
}
},
"source": [
"---\n",
"sidebar_label: __ModuleName__ByteStore\n",
"---"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# __ModuleName__ByteStore\n",
"\n",
"- TODO: Make sure API reference link is correct.\n",
"\n",
"This will help you get started with __ModuleName__ [key-value stores](/docs/concepts/#key-value-stores). For detailed documentation of all __ModuleName__ByteStore features and configurations head to the [API reference](https://python.langchain.com/v0.2/api_reference/core/stores/langchain_core.stores.__module_name__ByteStore.html).\n",
"\n",
"- TODO: Add any other relevant links, like information about models, prices, context windows, etc. See https://python.langchain.com/docs/integrations/stores/in_memory/ for an example.\n",
"\n",
"## Overview\n",
"\n",
"- TODO: (Optional) A short introduction to the underlying technology/API.\n",
"\n",
"### Integration details\n",
"\n",
"- TODO: Fill in table features.\n",
"- TODO: Remove JS support link if not relevant, otherwise ensure link is correct.\n",
"- TODO: Make sure API reference links are correct.\n",
"\n",
"| Class | Package | Local | [JS support](https://js.langchain.com/docs/integrations/stores/_package_name_) | Package downloads | Package latest |\n",
"| :--- | :--- | :---: | :---: | :---: | :---: |\n",
"| [__ModuleName__ByteStore](https://api.python.langchain.com/en/latest/stores/__module_name__.stores.__ModuleName__ByteStore.html) | [__package_name__](https://api.python.langchain.com/en/latest/__package_name_short_snake___api_reference.html) | ✅/❌ | ✅/❌ | ![PyPI - Downloads](https://img.shields.io/pypi/dm/__package_name__&label=%20) | ![PyPI - Version](https://img.shields.io/pypi/v/__package_name__&label=%20) |\n",
"\n",
"## Setup\n",
"\n",
"- TODO: Update with relevant info.\n",
"\n",
"To create a __ModuleName__ byte store, you'll need to create a/an __ModuleName__ account, get an API key, and install the `__package_name__` integration package.\n",
"\n",
"### Credentials\n",
"\n",
"- TODO: Update with relevant info, or omit if the service does not require any credentials.\n",
"\n",
"Head to (TODO: link) to sign up to __ModuleName__ and generate an API key. Once you've done this set the __MODULE_NAME___API_KEY environment variable:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import getpass\n",
"import os\n",
"\n",
"if not os.getenv(\"__MODULE_NAME___API_KEY\"):\n",
" os.environ[\"__MODULE_NAME___API_KEY\"] = getpass.getpass(\n",
" \"Enter your __ModuleName__ API key: \"\n",
" )"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Installation\n",
"\n",
"The LangChain __ModuleName__ integration lives in the `__package_name__` package:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%pip install -qU __package_name__"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Instantiation\n",
"\n",
"Now we can instantiate our byte store:\n",
"\n",
"- TODO: Update model instantiation with relevant params."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from __module_name__ import __ModuleName__ByteStore\n",
"\n",
"kv_store = __ModuleName__ByteStore(\n",
" # params...\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Usage\n",
"\n",
"- TODO: Run cells so output can be seen.\n",
"\n",
"You can set data under keys like this using the `mset` method:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"kv_store.mset(\n",
" [\n",
" [\"key1\", b\"value1\"],\n",
" [\"key2\", b\"value2\"],\n",
" ]\n",
")\n",
"\n",
"kv_store.mget(\n",
" [\n",
" \"key1\",\n",
" \"key2\",\n",
" ]\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"And you can delete data using the `mdelete` method:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"kv_store.mdelete(\n",
" [\n",
" \"key1\",\n",
" \"key2\",\n",
" ]\n",
")\n",
"\n",
"kv_store.mget(\n",
" [\n",
" \"key1\",\n",
" \"key2\",\n",
" ]\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## TODO: Any functionality specific to this key-value store provider\n",
"\n",
"E.g. extra initialization. Delete if not relevant."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## API reference\n",
"\n",
"For detailed documentation of all __ModuleName__ByteStore features and configurations, head to the API reference: https://api.python.langchain.com/en/latest/stores/__module_name__.stores.__ModuleName__ByteStore.html"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"name": "python",
"version": "3.10.5"
}
},
"source": [
"---\n",
"sidebar_label: __ModuleName__ByteStore\n",
"---"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# __ModuleName__ByteStore\n",
"\n",
"- TODO: Make sure API reference link is correct.\n",
"\n",
"This will help you get started with __ModuleName__ [key-value stores](/docs/concepts/#key-value-stores). For detailed documentation of all __ModuleName__ByteStore features and configurations head to the [API reference](https://python.langchain.com/v0.2/api_reference/core/stores/langchain_core.stores.__module_name__ByteStore.html).\n",
"\n",
"- TODO: Add any other relevant links, like information about models, prices, context windows, etc. See https://python.langchain.com/docs/integrations/stores/in_memory/ for an example.\n",
"\n",
"## Overview\n",
"\n",
"- TODO: (Optional) A short introduction to the underlying technology/API.\n",
"\n",
"### Integration details\n",
"\n",
"- TODO: Fill in table features.\n",
"- TODO: Remove JS support link if not relevant, otherwise ensure link is correct.\n",
"- TODO: Make sure API reference links are correct.\n",
"\n",
"| Class | Package | Local | [JS support](https://js.langchain.com/docs/integrations/stores/_package_name_) | Package downloads | Package latest |\n",
"| :--- | :--- | :---: | :---: | :---: | :---: |\n",
"| [__ModuleName__ByteStore](https://api.python.langchain.com/en/latest/stores/__module_name__.stores.__ModuleName__ByteStore.html) | [__package_name__](https://api.python.langchain.com/en/latest/__package_name_short_snake___api_reference.html) | ✅/❌ | ✅/❌ | ![PyPI - Downloads](https://img.shields.io/pypi/dm/__package_name__?style=flat-square&label=%20) | ![PyPI - Version](https://img.shields.io/pypi/v/__package_name__?style=flat-square&label=%20) |\n",
"\n",
"## Setup\n",
"\n",
"- TODO: Update with relevant info.\n",
"\n",
"To create a __ModuleName__ byte store, you'll need to create a/an __ModuleName__ account, get an API key, and install the `__package_name__` integration package.\n",
"\n",
"### Credentials\n",
"\n",
"- TODO: Update with relevant info, or omit if the service does not require any credentials.\n",
"\n",
"Head to (TODO: link) to sign up to __ModuleName__ and generate an API key. Once you've done this set the __MODULE_NAME___API_KEY environment variable:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import getpass\n",
"import os\n",
"\n",
"if not os.getenv(\"__MODULE_NAME___API_KEY\"):\n",
" os.environ[\"__MODULE_NAME___API_KEY\"] = getpass.getpass(\n",
" \"Enter your __ModuleName__ API key: \"\n",
" )"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Installation\n",
"\n",
"The LangChain __ModuleName__ integration lives in the `__package_name__` package:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%pip install -qU __package_name__"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Instantiation\n",
"\n",
"Now we can instantiate our byte store:\n",
"\n",
"- TODO: Update model instantiation with relevant params."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from __module_name__ import __ModuleName__ByteStore\n",
"\n",
"kv_store = __ModuleName__ByteStore(\n",
" # params...\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Usage\n",
"\n",
"- TODO: Run cells so output can be seen.\n",
"\n",
"You can set data under keys like this using the `mset` method:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"kv_store.mset(\n",
" [\n",
" [\"key1\", b\"value1\"],\n",
" [\"key2\", b\"value2\"],\n",
" ]\n",
")\n",
"\n",
"kv_store.mget(\n",
" [\n",
" \"key1\",\n",
" \"key2\",\n",
" ]\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"And you can delete data using the `mdelete` method:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"kv_store.mdelete(\n",
" [\n",
" \"key1\",\n",
" \"key2\",\n",
" ]\n",
")\n",
"\n",
"kv_store.mget(\n",
" [\n",
" \"key1\",\n",
" \"key2\",\n",
" ]\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## TODO: Any functionality specific to this key-value store provider\n",
"\n",
"E.g. extra initialization. Delete if not relevant."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## API reference\n",
"\n",
"For detailed documentation of all __ModuleName__ByteStore features and configurations, head to the API reference: https://api.python.langchain.com/en/latest/stores/__module_name__.stores.__ModuleName__ByteStore.html"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"name": "python",
"version": "3.10.5"
}
},
"nbformat": 4,
"nbformat_minor": 2
"nbformat": 4,
"nbformat_minor": 2
}

View File

@@ -1,271 +1,271 @@
{
"cells": [
{
"cell_type": "raw",
"id": "10238e62-3465-4973-9279-606cbb7ccf16",
"metadata": {},
"source": [
"---\n",
"sidebar_label: __ModuleName__\n",
"---"
]
"cells": [
{
"cell_type": "raw",
"id": "10238e62-3465-4973-9279-606cbb7ccf16",
"metadata": {},
"source": [
"---\n",
"sidebar_label: __ModuleName__\n",
"---"
]
},
{
"cell_type": "markdown",
"id": "a6f91f20",
"metadata": {},
"source": [
"# __ModuleName__\n",
"\n",
"- TODO: Make sure API reference link is correct.\n",
"\n",
"This notebook provides a quick overview for getting started with __ModuleName__ [tool](/docs/integrations/tools/). For detailed documentation of all __ModuleName__ features and configurations head to the [API reference](https://python.langchain.com/v0.2/api_reference/community/tools/langchain_community.tools.__module_name__.tool.__ModuleName__.html).\n",
"\n",
"- TODO: Add any other relevant links, like information about underlying API, etc.\n",
"\n",
"## Overview\n",
"\n",
"### Integration details\n",
"\n",
"- TODO: Make sure links and features are correct\n",
"\n",
"| Class | Package | Serializable | [JS support](https://js.langchain.com/docs/integrations/tools/__module_name__) | Package latest |\n",
"| :--- | :--- | :---: | :---: | :---: |\n",
"| [__ModuleName__](https://python.langchain.com/v0.2/api_reference/community/tools/langchain_community.tools.__module_name__.tool.__ModuleName__.html) | [langchain-community](https://api.python.langchain.com/en/latest/community_api_reference.html) | beta/❌ | ✅/❌ | ![PyPI - Version](https://img.shields.io/pypi/v/langchain-community&label=%20) |\n",
"\n",
"### Tool features\n",
"\n",
"- TODO: Add feature table if it makes sense\n",
"\n",
"\n",
"## Setup\n",
"\n",
"- TODO: Add any additional deps\n",
"\n",
"The integration lives in the `langchain-community` package."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "f85b4089",
"metadata": {},
"outputs": [],
"source": [
"%pip install --quiet -U langchain-community"
]
},
{
"cell_type": "markdown",
"id": "b15e9266",
"metadata": {},
"source": [
"### Credentials\n",
"\n",
"- TODO: Add any credentials that are needed"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "e0b178a2-8816-40ca-b57c-ccdd86dde9c9",
"metadata": {},
"outputs": [],
"source": [
"import getpass\n",
"import os\n",
"\n",
"# if not os.environ.get(\"__MODULE_NAME___API_KEY\"):\n",
"# os.environ[\"__MODULE_NAME___API_KEY\"] = getpass.getpass(\"__MODULE_NAME__ API key:\\n\")"
]
},
{
"cell_type": "markdown",
"id": "bc5ab717-fd27-4c59-b912-bdd099541478",
"metadata": {},
"source": [
"It's also helpful (but not needed) to set up [LangSmith](https://smith.langchain.com/) for best-in-class observability:"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "a6c2f136-6367-4f1f-825d-ae741e1bf281",
"metadata": {},
"outputs": [],
"source": [
"# os.environ[\"LANGSMITH_TRACING\"] = \"true\"\n",
"# os.environ[\"LANGSMITH_API_KEY\"] = getpass.getpass()"
]
},
{
"cell_type": "markdown",
"id": "1c97218f-f366-479d-8bf7-fe9f2f6df73f",
"metadata": {},
"source": [
"## Instantiation\n",
"\n",
"- TODO: Fill in instantiation params\n",
"\n",
"Here we show how to instantiate an instance of the __ModuleName__ tool, with "
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "8b3ddfe9-ca79-494c-a7ab-1f56d9407a64",
"metadata": {},
"outputs": [],
"source": [
"from langchain_community.tools import __ModuleName__\n",
"\n",
"\n",
"tool = __ModuleName__(...)"
]
},
{
"cell_type": "markdown",
"id": "74147a1a",
"metadata": {},
"source": [
"## Invocation\n",
"\n",
"### [Invoke directly with args](/docs/concepts/tools/#use-the-tool-directly)\n",
"\n",
"- TODO: Describe what the tool args are, fill them in, run cell"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "65310a8b-eb0c-4d9e-a618-4f4abe2414fc",
"metadata": {},
"outputs": [],
"source": [
"tool.invoke({...})"
]
},
{
"cell_type": "markdown",
"id": "d6e73897",
"metadata": {},
"source": [
"### [Invoke with ToolCall](/docs/concepts/tool_calling/#tool-execution)\n",
"\n",
"We can also invoke the tool with a model-generated ToolCall, in which case a ToolMessage will be returned:\n",
"\n",
"- TODO: Fill in tool args and run cell"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "f90e33a7",
"metadata": {},
"outputs": [],
"source": [
"# This is usually generated by a model, but we'll create a tool call directly for demo purposes.\n",
"model_generated_tool_call = {\n",
" \"args\": {...}, # TODO: FILL IN\n",
" \"id\": \"1\",\n",
" \"name\": tool.name,\n",
" \"type\": \"tool_call\",\n",
"}\n",
"tool.invoke(model_generated_tool_call)"
]
},
{
"cell_type": "markdown",
"id": "659f9fbd-6fcf-445f-aa8c-72d8e60154bd",
"metadata": {},
"source": [
"## Use within an agent\n",
"\n",
"- TODO: Add user question and run cells\n",
"\n",
"We can use our tool in an [agent](/docs/concepts/agents/). For this we will need a LLM with [tool-calling](/docs/how_to/tool_calling/) capabilities:\n",
"\n",
"import ChatModelTabs from \"@theme/ChatModelTabs\";\n",
"\n",
"<ChatModelTabs customVarName=\"llm\" />\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "af3123ad-7a02-40e5-b58e-7d56e23e5830",
"metadata": {},
"outputs": [],
"source": [
"# | output: false\n",
"# | echo: false\n",
"\n",
"# !pip install -qU langchain langchain-openai\n",
"from langchain.chat_models import init_chat_model\n",
"\n",
"model = init_chat_model(model=\"gpt-4o\", model_provider=\"openai\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "bea35fa1",
"metadata": {},
"outputs": [],
"source": [
"from langgraph.prebuilt import create_react_agent\n",
"\n",
"tools = [tool]\n",
"agent = create_react_agent(model, tools)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "fdbf35b5-3aaf-4947-9ec6-48c21533fb95",
"metadata": {},
"outputs": [],
"source": [
"example_query = \"...\"\n",
"\n",
"events = agent.stream(\n",
" {\"messages\": [(\"user\", example_query)]},\n",
" stream_mode=\"values\",\n",
")\n",
"for event in events:\n",
" event[\"messages\"][-1].pretty_print()"
]
},
{
"cell_type": "markdown",
"id": "4ac8146c",
"metadata": {},
"source": [
"## API reference\n",
"\n",
"For detailed documentation of all __ModuleName__ features and configurations head to the API reference: https://python.langchain.com/v0.2/api_reference/community/tools/langchain_community.tools.__module_name__.tool.__ModuleName__.html"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "poetry-venv-311",
"language": "python",
"name": "poetry-venv-311"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.9"
}
},
{
"cell_type": "markdown",
"id": "a6f91f20",
"metadata": {},
"source": [
"# __ModuleName__\n",
"\n",
"- TODO: Make sure API reference link is correct.\n",
"\n",
"This notebook provides a quick overview for getting started with __ModuleName__ [tool](/docs/integrations/tools/). For detailed documentation of all __ModuleName__ features and configurations head to the [API reference](https://python.langchain.com/v0.2/api_reference/community/tools/langchain_community.tools.__module_name__.tool.__ModuleName__.html).\n",
"\n",
"- TODO: Add any other relevant links, like information about underlying API, etc.\n",
"\n",
"## Overview\n",
"\n",
"### Integration details\n",
"\n",
"- TODO: Make sure links and features are correct\n",
"\n",
"| Class | Package | Serializable | [JS support](https://js.langchain.com/docs/integrations/tools/__module_name__) | Package latest |\n",
"| :--- | :--- | :---: | :---: | :---: |\n",
"| [__ModuleName__](https://python.langchain.com/v0.2/api_reference/community/tools/langchain_community.tools.__module_name__.tool.__ModuleName__.html) | [langchain-community](https://api.python.langchain.com/en/latest/community_api_reference.html) | beta/❌ | ✅/❌ | ![PyPI - Version](https://img.shields.io/pypi/v/langchain-community?style=flat-square&label=%20) |\n",
"\n",
"### Tool features\n",
"\n",
"- TODO: Add feature table if it makes sense\n",
"\n",
"\n",
"## Setup\n",
"\n",
"- TODO: Add any additional deps\n",
"\n",
"The integration lives in the `langchain-community` package."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "f85b4089",
"metadata": {},
"outputs": [],
"source": [
"%pip install --quiet -U langchain-community"
]
},
{
"cell_type": "markdown",
"id": "b15e9266",
"metadata": {},
"source": [
"### Credentials\n",
"\n",
"- TODO: Add any credentials that are needed"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "e0b178a2-8816-40ca-b57c-ccdd86dde9c9",
"metadata": {},
"outputs": [],
"source": [
"import getpass\n",
"import os\n",
"\n",
"# if not os.environ.get(\"__MODULE_NAME___API_KEY\"):\n",
"# os.environ[\"__MODULE_NAME___API_KEY\"] = getpass.getpass(\"__MODULE_NAME__ API key:\\n\")"
]
},
{
"cell_type": "markdown",
"id": "bc5ab717-fd27-4c59-b912-bdd099541478",
"metadata": {},
"source": [
"It's also helpful (but not needed) to set up [LangSmith](https://smith.langchain.com/) for best-in-class observability:"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "a6c2f136-6367-4f1f-825d-ae741e1bf281",
"metadata": {},
"outputs": [],
"source": [
"# os.environ[\"LANGSMITH_TRACING\"] = \"true\"\n",
"# os.environ[\"LANGSMITH_API_KEY\"] = getpass.getpass()"
]
},
{
"cell_type": "markdown",
"id": "1c97218f-f366-479d-8bf7-fe9f2f6df73f",
"metadata": {},
"source": [
"## Instantiation\n",
"\n",
"- TODO: Fill in instantiation params\n",
"\n",
"Here we show how to instantiate an instance of the __ModuleName__ tool, with "
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "8b3ddfe9-ca79-494c-a7ab-1f56d9407a64",
"metadata": {},
"outputs": [],
"source": [
"from langchain_community.tools import __ModuleName__\n",
"\n",
"\n",
"tool = __ModuleName__(...)"
]
},
{
"cell_type": "markdown",
"id": "74147a1a",
"metadata": {},
"source": [
"## Invocation\n",
"\n",
"### [Invoke directly with args](/docs/concepts/tools/#use-the-tool-directly)\n",
"\n",
"- TODO: Describe what the tool args are, fill them in, run cell"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "65310a8b-eb0c-4d9e-a618-4f4abe2414fc",
"metadata": {},
"outputs": [],
"source": [
"tool.invoke({...})"
]
},
{
"cell_type": "markdown",
"id": "d6e73897",
"metadata": {},
"source": [
"### [Invoke with ToolCall](/docs/concepts/tool_calling/#tool-execution)\n",
"\n",
"We can also invoke the tool with a model-generated ToolCall, in which case a ToolMessage will be returned:\n",
"\n",
"- TODO: Fill in tool args and run cell"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "f90e33a7",
"metadata": {},
"outputs": [],
"source": [
"# This is usually generated by a model, but we'll create a tool call directly for demo purposes.\n",
"model_generated_tool_call = {\n",
" \"args\": {...}, # TODO: FILL IN\n",
" \"id\": \"1\",\n",
" \"name\": tool.name,\n",
" \"type\": \"tool_call\",\n",
"}\n",
"tool.invoke(model_generated_tool_call)"
]
},
{
"cell_type": "markdown",
"id": "659f9fbd-6fcf-445f-aa8c-72d8e60154bd",
"metadata": {},
"source": [
"## Use within an agent\n",
"\n",
"- TODO: Add user question and run cells\n",
"\n",
"We can use our tool in an [agent](/docs/concepts/agents/). For this we will need a LLM with [tool-calling](/docs/how_to/tool_calling/) capabilities:\n",
"\n",
"import ChatModelTabs from \"@theme/ChatModelTabs\";\n",
"\n",
"<ChatModelTabs customVarName=\"llm\" />\n"
]
},
{
"cell_type": "code",
"execution_count": 16,
"id": "af3123ad-7a02-40e5-b58e-7d56e23e5830",
"metadata": {},
"outputs": [],
"source": [
"# | output: false\n",
"# | echo: false\n",
"\n",
"# !pip install -qU langchain langchain-openai\n",
"from langchain.chat_models import init_chat_model\n",
"\n",
"llm = init_chat_model(model=\"gpt-4o\", model_provider=\"openai\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "bea35fa1",
"metadata": {},
"outputs": [],
"source": [
"from langgraph.prebuilt import create_react_agent\n",
"\n",
"tools = [tool]\n",
"agent = create_react_agent(llm, tools)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "fdbf35b5-3aaf-4947-9ec6-48c21533fb95",
"metadata": {},
"outputs": [],
"source": [
"example_query = \"...\"\n",
"\n",
"events = agent.stream(\n",
" {\"messages\": [(\"user\", example_query)]},\n",
" stream_mode=\"values\",\n",
")\n",
"for event in events:\n",
" event[\"messages\"][-1].pretty_print()"
]
},
{
"cell_type": "markdown",
"id": "4ac8146c",
"metadata": {},
"source": [
"## API reference\n",
"\n",
"For detailed documentation of all __ModuleName__ features and configurations head to the API reference: https://python.langchain.com/v0.2/api_reference/community/tools/langchain_community.tools.__module_name__.tool.__ModuleName__.html"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "poetry-venv-311",
"language": "python",
"name": "poetry-venv-311"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.9"
}
},
"nbformat": 4,
"nbformat_minor": 5
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -295,7 +295,7 @@
"source": [
"## TODO: Any functionality specific to this vector store\n",
"\n",
"E.g. creating a persisten database to save to your disk, etc."
"E.g. creating a persistent database to save to your disk, etc."
]
},
{

View File

@@ -1,6 +1,6 @@
"""__ModuleName__ chat models."""
from typing import Any, Dict, Iterator, List, Optional
from typing import Any, Dict, Iterator, List
from langchain_core.callbacks import (
CallbackManagerForLLMRun,
@@ -26,30 +26,30 @@ class Chat__ModuleName__(BaseChatModel):
# TODO: Replace with relevant packages, env vars.
Setup:
Install ``__package_name__`` and set environment variable
``__MODULE_NAME___API_KEY``.
Install `__package_name__` and set environment variable
`__MODULE_NAME___API_KEY`.
.. code-block:: bash
pip install -U __package_name__
export __MODULE_NAME___API_KEY="your-api-key"
```bash
pip install -U __package_name__
export __MODULE_NAME___API_KEY="your-api-key"
```
# TODO: Populate with relevant params.
Key init args — completion params:
model: str
model:
Name of __ModuleName__ model to use.
temperature: float
temperature:
Sampling temperature.
max_tokens: Optional[int]
max_tokens:
Max number of tokens to generate.
# TODO: Populate with relevant params.
Key init args — client params:
timeout: Optional[float]
timeout:
Timeout for requests.
max_retries: int
max_retries:
Max number of retries.
api_key: Optional[str]
api_key:
__ModuleName__ API key. If not passed in will be read from env var
__MODULE_NAME___API_KEY.
@@ -57,226 +57,224 @@ class Chat__ModuleName__(BaseChatModel):
# TODO: Replace with relevant init params.
Instantiate:
.. code-block:: python
```python
from __module_name__ import Chat__ModuleName__
from __module_name__ import Chat__ModuleName__
llm = Chat__ModuleName__(
model="...",
temperature=0,
max_tokens=None,
timeout=None,
max_retries=2,
# api_key="...",
# other params...
)
model = Chat__ModuleName__(
model="...",
temperature=0,
max_tokens=None,
timeout=None,
max_retries=2,
# api_key="...",
# other params...
)
```
Invoke:
.. code-block:: python
```python
messages = [
("system", "You are a helpful translator. Translate the user sentence to French."),
("human", "I love programming."),
]
model.invoke(messages)
```
messages = [
("system", "You are a helpful translator. Translate the user sentence to French."),
("human", "I love programming."),
]
llm.invoke(messages)
.. code-block:: python
# TODO: Example output.
```python
# TODO: Example output.
```
# TODO: Delete if token-level streaming isn't supported.
Stream:
.. code-block:: python
```python
for chunk in model.stream(messages):
print(chunk.text, end="")
```
for chunk in llm.stream(messages):
print(chunk.text, end="")
```python
# TODO: Example output.
```
.. code-block:: python
```python
stream = model.stream(messages)
full = next(stream)
for chunk in stream:
full += chunk
full
```
# TODO: Example output.
.. code-block:: python
stream = llm.stream(messages)
full = next(stream)
for chunk in stream:
full += chunk
full
.. code-block:: python
# TODO: Example output.
```python
# TODO: Example output.
```
# TODO: Delete if native async isn't supported.
Async:
.. code-block:: python
```python
await model.ainvoke(messages)
await llm.ainvoke(messages)
# stream:
# async for chunk in (await model.astream(messages))
# stream:
# async for chunk in (await llm.astream(messages))
# batch:
# await llm.abatch([messages])
.. code-block:: python
# TODO: Example output.
# batch:
# await model.abatch([messages])
```
```python
# TODO: Example output.
```
# TODO: Delete if .bind_tools() isn't supported.
Tool calling:
.. code-block:: python
```python
from pydantic import BaseModel, Field
from pydantic import BaseModel, Field
class GetWeather(BaseModel):
'''Get the current weather in a given location'''
class GetWeather(BaseModel):
'''Get the current weather in a given location'''
location: str = Field(..., description="The city and state, e.g. San Francisco, CA")
location: str = Field(..., description="The city and state, e.g. San Francisco, CA")
class GetPopulation(BaseModel):
'''Get the current population in a given location'''
class GetPopulation(BaseModel):
'''Get the current population in a given location'''
location: str = Field(..., description="The city and state, e.g. San Francisco, CA")
location: str = Field(..., description="The city and state, e.g. San Francisco, CA")
model_with_tools = model.bind_tools([GetWeather, GetPopulation])
ai_msg = model_with_tools.invoke("Which city is hotter today and which is bigger: LA or NY?")
ai_msg.tool_calls
```
llm_with_tools = llm.bind_tools([GetWeather, GetPopulation])
ai_msg = llm_with_tools.invoke("Which city is hotter today and which is bigger: LA or NY?")
ai_msg.tool_calls
```python
# TODO: Example output.
```
.. code-block:: python
# TODO: Example output.
See ``Chat__ModuleName__.bind_tools()`` method for more.
See `Chat__ModuleName__.bind_tools()` method for more.
# TODO: Delete if .with_structured_output() isn't supported.
Structured output:
.. code-block:: python
```python
from typing import Optional
from typing import Optional
from pydantic import BaseModel, Field
from pydantic import BaseModel, Field
class Joke(BaseModel):
'''Joke to tell user.'''
class Joke(BaseModel):
'''Joke to tell user.'''
setup: str = Field(description="The setup of the joke")
punchline: str = Field(description="The punchline to the joke")
rating: int | None = Field(description="How funny the joke is, from 1 to 10")
setup: str = Field(description="The setup of the joke")
punchline: str = Field(description="The punchline to the joke")
rating: Optional[int] = Field(description="How funny the joke is, from 1 to 10")
structured_model = model.with_structured_output(Joke)
structured_model.invoke("Tell me a joke about cats")
```
structured_llm = llm.with_structured_output(Joke)
structured_llm.invoke("Tell me a joke about cats")
```python
# TODO: Example output.
```
.. code-block:: python
# TODO: Example output.
See ``Chat__ModuleName__.with_structured_output()`` for more.
See `Chat__ModuleName__.with_structured_output()` for more.
# TODO: Delete if JSON mode response format isn't supported.
JSON mode:
.. code-block:: python
```python
# TODO: Replace with appropriate bind arg.
json_model = model.bind(response_format={"type": "json_object"})
ai_msg = json_model.invoke("Return a JSON object with key 'random_ints' and a value of 10 random ints in [0-99]")
ai_msg.content
```
# TODO: Replace with appropriate bind arg.
json_llm = llm.bind(response_format={"type": "json_object"})
ai_msg = json_llm.invoke("Return a JSON object with key 'random_ints' and a value of 10 random ints in [0-99]")
ai_msg.content
.. code-block:: python
# TODO: Example output.
```python
# TODO: Example output.
```
# TODO: Delete if image inputs aren't supported.
Image input:
.. code-block:: python
```python
import base64
import httpx
from langchain_core.messages import HumanMessage
import base64
import httpx
from langchain_core.messages import HumanMessage
image_url = "https://upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Gfp-wisconsin-madison-the-nature-boardwalk.jpg/2560px-Gfp-wisconsin-madison-the-nature-boardwalk.jpg"
image_data = base64.b64encode(httpx.get(image_url).content).decode("utf-8")
# TODO: Replace with appropriate message content format.
message = HumanMessage(
content=[
{"type": "text", "text": "describe the weather in this image"},
{
"type": "image_url",
"image_url": {"url": f"data:image/jpeg;base64,{image_data}"},
},
],
)
ai_msg = model.invoke([message])
ai_msg.content
```
image_url = "https://upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Gfp-wisconsin-madison-the-nature-boardwalk.jpg/2560px-Gfp-wisconsin-madison-the-nature-boardwalk.jpg"
image_data = base64.b64encode(httpx.get(image_url).content).decode("utf-8")
# TODO: Replace with appropriate message content format.
message = HumanMessage(
content=[
{"type": "text", "text": "describe the weather in this image"},
{
"type": "image_url",
"image_url": {"url": f"data:image/jpeg;base64,{image_data}"},
},
],
)
ai_msg = llm.invoke([message])
ai_msg.content
.. code-block:: python
# TODO: Example output.
```python
# TODO: Example output.
```
# TODO: Delete if audio inputs aren't supported.
Audio input:
.. code-block:: python
```python
# TODO: Example input
```
# TODO: Example input
.. code-block:: python
# TODO: Example output
```python
# TODO: Example output
```
# TODO: Delete if video inputs aren't supported.
Video input:
.. code-block:: python
```python
# TODO: Example input
```
# TODO: Example input
.. code-block:: python
# TODO: Example output
```python
# TODO: Example output
```
# TODO: Delete if token usage metadata isn't supported.
Token usage:
.. code-block:: python
```python
ai_msg = model.invoke(messages)
ai_msg.usage_metadata
```
ai_msg = llm.invoke(messages)
ai_msg.usage_metadata
.. code-block:: python
{'input_tokens': 28, 'output_tokens': 5, 'total_tokens': 33}
```python
{'input_tokens': 28, 'output_tokens': 5, 'total_tokens': 33}
```
# TODO: Delete if logprobs aren't supported.
Logprobs:
.. code-block:: python
# TODO: Replace with appropriate bind arg.
logprobs_llm = llm.bind(logprobs=True)
ai_msg = logprobs_llm.invoke(messages)
ai_msg.response_metadata["logprobs"]
.. code-block:: python
# TODO: Example output.
```python
# TODO: Replace with appropriate bind arg.
logprobs_model = model.bind(logprobs=True)
ai_msg = logprobs_model.invoke(messages)
ai_msg.response_metadata["logprobs"]
```
```python
# TODO: Example output.
```
Response metadata
.. code-block:: python
```python
ai_msg = model.invoke(messages)
ai_msg.response_metadata
```
ai_msg = llm.invoke(messages)
ai_msg.response_metadata
.. code-block:: python
# TODO: Example output.
```python
# TODO: Example output.
```
""" # noqa: E501
model_name: str = Field(alias="model")
"""The name of the model"""
parrot_buffer_length: int
"""The number of characters from the last message of the prompt to be echoed."""
temperature: Optional[float] = None
max_tokens: Optional[int] = None
timeout: Optional[int] = None
stop: Optional[List[str]] = None
temperature: float | None = None
max_tokens: int | None = None
timeout: int | None = None
stop: list[str] | None = None
max_retries: int = 2
@property
@@ -302,8 +300,8 @@ class Chat__ModuleName__(BaseChatModel):
def _generate(
self,
messages: List[BaseMessage],
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
stop: list[str] | None = None,
run_manager: CallbackManagerForLLMRun | None = None,
**kwargs: Any,
) -> ChatResult:
"""Override the _generate method to implement the chat model logic.
@@ -314,11 +312,11 @@ class Chat__ModuleName__(BaseChatModel):
Args:
messages: the prompt composed of a list of messages.
stop: a list of strings on which the model should stop generating.
If generation stops due to a stop token, the stop token itself
SHOULD BE INCLUDED as part of the output. This is not enforced
across models right now, but it's a good practice to follow since
it makes it much easier to parse the output of the model
downstream and understand why generation stopped.
If generation stops due to a stop token, the stop token itself
SHOULD BE INCLUDED as part of the output. This is not enforced
across models right now, but it's a good practice to follow since
it makes it much easier to parse the output of the model
downstream and understand why generation stopped.
run_manager: A run manager with callbacks for the LLM.
"""
# Replace this with actual logic to generate a response from a list
@@ -348,8 +346,8 @@ class Chat__ModuleName__(BaseChatModel):
def _stream(
self,
messages: List[BaseMessage],
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
stop: list[str] | None = None,
run_manager: CallbackManagerForLLMRun | None = None,
**kwargs: Any,
) -> Iterator[ChatGenerationChunk]:
"""Stream the output of the model.
@@ -362,11 +360,11 @@ class Chat__ModuleName__(BaseChatModel):
Args:
messages: the prompt composed of a list of messages.
stop: a list of strings on which the model should stop generating.
If generation stops due to a stop token, the stop token itself
SHOULD BE INCLUDED as part of the output. This is not enforced
across models right now, but it's a good practice to follow since
it makes it much easier to parse the output of the model
downstream and understand why generation stopped.
If generation stops due to a stop token, the stop token itself
SHOULD BE INCLUDED as part of the output. This is not enforced
across models right now, but it's a good practice to follow since
it makes it much easier to parse the output of the model
downstream and understand why generation stopped.
run_manager: A run manager with callbacks for the LLM.
"""
last_message = messages[-1]
@@ -410,8 +408,8 @@ class Chat__ModuleName__(BaseChatModel):
# async def _astream(
# self,
# messages: List[BaseMessage],
# stop: Optional[List[str]] = None,
# run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
# stop: list[str] | None = None,
# run_manager: AsyncCallbackManagerForLLMRun | None = None,
# **kwargs: Any,
# ) -> AsyncIterator[ChatGenerationChunk]:
@@ -419,7 +417,7 @@ class Chat__ModuleName__(BaseChatModel):
# async def _agenerate(
# self,
# messages: List[BaseMessage],
# stop: Optional[List[str]] = None,
# run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
# stop: list[str] | None = None,
# run_manager: AsyncCallbackManagerForLLMRun | None = None,
# **kwargs: Any,
# ) -> ChatResult:

View File

@@ -14,55 +14,55 @@ class __ModuleName__Loader(BaseLoader):
# TODO: Replace with relevant packages, env vars.
Setup:
Install ``__package_name__`` and set environment variable
``__MODULE_NAME___API_KEY``.
Install `__package_name__` and set environment variable
`__MODULE_NAME___API_KEY`.
.. code-block:: bash
pip install -U __package_name__
export __MODULE_NAME___API_KEY="your-api-key"
```bash
pip install -U __package_name__
export __MODULE_NAME___API_KEY="your-api-key"
```
# TODO: Replace with relevant init params.
Instantiate:
.. code-block:: python
```python
from langchain_community.document_loaders import __ModuleName__Loader
from langchain_community.document_loaders import __ModuleName__Loader
loader = __ModuleName__Loader(
# required params = ...
# other params = ...
)
loader = __ModuleName__Loader(
# required params = ...
# other params = ...
)
```
Lazy load:
.. code-block:: python
```python
docs = []
docs_lazy = loader.lazy_load()
docs = []
docs_lazy = loader.lazy_load()
# async variant:
# docs_lazy = await loader.alazy_load()
# async variant:
# docs_lazy = await loader.alazy_load()
for doc in docs_lazy:
docs.append(doc)
print(docs[0].page_content[:100])
print(docs[0].metadata)
```
for doc in docs_lazy:
docs.append(doc)
print(docs[0].page_content[:100])
print(docs[0].metadata)
.. code-block:: python
TODO: Example output
```python
TODO: Example output
```
# TODO: Delete if async load is not implemented
Async load:
.. code-block:: python
```python
docs = await loader.aload()
print(docs[0].page_content[:100])
print(docs[0].metadata)
```
docs = await loader.aload()
print(docs[0].page_content[:100])
print(docs[0].metadata)
.. code-block:: python
TODO: Example output
```python
TODO: Example output
```
"""
# TODO: This method must be implemented to load documents.

View File

@@ -8,13 +8,13 @@ class __ModuleName__Embeddings(Embeddings):
# TODO: Replace with relevant packages, env vars.
Setup:
Install ``__package_name__`` and set environment variable
``__MODULE_NAME___API_KEY``.
Install `__package_name__` and set environment variable
`__MODULE_NAME___API_KEY`.
.. code-block:: bash
pip install -U __package_name__
export __MODULE_NAME___API_KEY="your-api-key"
```bash
pip install -U __package_name__
export __MODULE_NAME___API_KEY="your-api-key"
```
# TODO: Populate with relevant params.
Key init args — completion params:
@@ -25,50 +25,50 @@ class __ModuleName__Embeddings(Embeddings):
# TODO: Replace with relevant init params.
Instantiate:
.. code-block:: python
```python
from __module_name__ import __ModuleName__Embeddings
from __module_name__ import __ModuleName__Embeddings
embed = __ModuleName__Embeddings(
model="...",
# api_key="...",
# other params...
)
embed = __ModuleName__Embeddings(
model="...",
# api_key="...",
# other params...
)
```
Embed single text:
.. code-block:: python
```python
input_text = "The meaning of life is 42"
embed.embed_query(input_text)
```
input_text = "The meaning of life is 42"
embed.embed_query(input_text)
.. code-block:: python
# TODO: Example output.
```python
# TODO: Example output.
```
# TODO: Delete if token-level streaming isn't supported.
Embed multiple text:
.. code-block:: python
```python
input_texts = ["Document 1...", "Document 2..."]
embed.embed_documents(input_texts)
```
input_texts = ["Document 1...", "Document 2..."]
embed.embed_documents(input_texts)
.. code-block:: python
# TODO: Example output.
```python
# TODO: Example output.
```
# TODO: Delete if native async isn't supported.
Async:
.. code-block:: python
```python
await embed.aembed_query(input_text)
await embed.aembed_query(input_text)
# multiple:
# await embed.aembed_documents(input_texts)
```
# multiple:
# await embed.aembed_documents(input_texts)
.. code-block:: python
# TODO: Example output.
```python
# TODO: Example output.
```
"""
def __init__(self, model: str):

View File

@@ -14,13 +14,13 @@ class __ModuleName__Retriever(BaseRetriever):
# TODO: Replace with relevant packages, env vars, etc.
Setup:
Install ``__package_name__`` and set environment variable
``__MODULE_NAME___API_KEY``.
Install `__package_name__` and set environment variable
`__MODULE_NAME___API_KEY`.
.. code-block:: bash
pip install -U __package_name__
export __MODULE_NAME___API_KEY="your-api-key"
```bash
pip install -U __package_name__
export __MODULE_NAME___API_KEY="your-api-key"
```
# TODO: Populate with relevant params.
Key init args:
@@ -31,58 +31,58 @@ class __ModuleName__Retriever(BaseRetriever):
# TODO: Replace with relevant init params.
Instantiate:
.. code-block:: python
```python
from __package_name__ import __ModuleName__Retriever
from __package_name__ import __ModuleName__Retriever
retriever = __ModuleName__Retriever(
# ...
)
retriever = __ModuleName__Retriever(
# ...
)
```
Usage:
.. code-block:: python
```python
query = "..."
query = "..."
retriever.invoke(query)
```
retriever.invoke(query)
.. code-block::
# TODO: Example output.
```txt
# TODO: Example output.
```
Use within a chain:
.. code-block:: python
```python
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.runnables import RunnablePassthrough
from langchain_openai import ChatOpenAI
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.runnables import RunnablePassthrough
from langchain_openai import ChatOpenAI
prompt = ChatPromptTemplate.from_template(
\"\"\"Answer the question based only on the context provided.
prompt = ChatPromptTemplate.from_template(
\"\"\"Answer the question based only on the context provided.
Context: {context}
Context: {context}
Question: {question}\"\"\"
)
Question: {question}\"\"\"
)
model = ChatOpenAI(model="gpt-3.5-turbo-0125")
llm = ChatOpenAI(model="gpt-3.5-turbo-0125")
def format_docs(docs):
return "\\n\\n".join(doc.page_content for doc in docs)
def format_docs(docs):
return "\\n\\n".join(doc.page_content for doc in docs)
chain = (
{"context": retriever | format_docs, "question": RunnablePassthrough()}
| prompt
| model
| StrOutputParser()
)
chain = (
{"context": retriever | format_docs, "question": RunnablePassthrough()}
| prompt
| llm
| StrOutputParser()
)
chain.invoke("...")
```
chain.invoke("...")
.. code-block::
# TODO: Example output.
```
# TODO: Example output.
```
"""

View File

@@ -12,13 +12,13 @@ class __ModuleName__Toolkit(BaseToolkit):
# TODO: Replace with relevant packages, env vars, etc.
Setup:
Install ``__package_name__`` and set environment variable
``__MODULE_NAME___API_KEY``.
Install `__package_name__` and set environment variable
`__MODULE_NAME___API_KEY`.
.. code-block:: bash
pip install -U __package_name__
export __MODULE_NAME___API_KEY="your-api-key"
```bash
pip install -U __package_name__
export __MODULE_NAME___API_KEY="your-api-key"
```
# TODO: Populate with relevant params.
Key init args:
@@ -29,42 +29,42 @@ class __ModuleName__Toolkit(BaseToolkit):
# TODO: Replace with relevant init params.
Instantiate:
.. code-block:: python
```python
from __package_name__ import __ModuleName__Toolkit
from __package_name__ import __ModuleName__Toolkit
toolkit = __ModuleName__Toolkit(
# ...
)
toolkit = __ModuleName__Toolkit(
# ...
)
```
Tools:
.. code-block:: python
```python
toolkit.get_tools()
```
toolkit.get_tools()
.. code-block::
# TODO: Example output.
```txt
# TODO: Example output.
```
Use within an agent:
.. code-block:: python
```python
from langgraph.prebuilt import create_react_agent
from langgraph.prebuilt import create_react_agent
agent_executor = create_react_agent(llm, tools)
agent_executor = create_react_agent(llm, tools)
example_query = "..."
example_query = "..."
events = agent_executor.stream(
{"messages": [("user", example_query)]},
stream_mode="values",
)
for event in events:
event["messages"][-1].pretty_print()
```
events = agent_executor.stream(
{"messages": [("user", example_query)]},
stream_mode="values",
)
for event in events:
event["messages"][-1].pretty_print()
.. code-block::
# TODO: Example output.
```txt
# TODO: Example output.
```
"""

View File

@@ -1,6 +1,6 @@
"""__ModuleName__ tools."""
from typing import Optional, Type
from typing import Type
from langchain_core.callbacks import (
CallbackManagerForToolRun,
@@ -27,42 +27,42 @@ class __ModuleName__Tool(BaseTool): # type: ignore[override]
Setup:
# TODO: Replace with relevant packages, env vars.
Install ``__package_name__`` and set environment variable
``__MODULE_NAME___API_KEY``.
Install `__package_name__` and set environment variable
`__MODULE_NAME___API_KEY`.
.. code-block:: bash
pip install -U __package_name__
export __MODULE_NAME___API_KEY="your-api-key"
```bash
pip install -U __package_name__
export __MODULE_NAME___API_KEY="your-api-key"
```
Instantiation:
.. code-block:: python
tool = __ModuleName__Tool(
# TODO: init params
)
```python
tool = __ModuleName__Tool(
# TODO: init params
)
```
Invocation with args:
.. code-block:: python
```python
# TODO: invoke args
tool.invoke({...})
```
# TODO: invoke args
tool.invoke({...})
.. code-block:: python
# TODO: output of invocation
```python
# TODO: output of invocation
```
Invocation with ToolCall:
.. code-block:: python
```python
# TODO: invoke args
tool.invoke({"args": {...}, "id": "1", "name": tool.name, "type": "tool_call"})
```
# TODO: invoke args
tool.invoke({"args": {...}, "id": "1", "name": tool.name, "type": "tool_call"})
.. code-block:: python
# TODO: output of invocation
```python
# TODO: output of invocation
```
""" # noqa: E501
# TODO: Set tool name and description
@@ -74,12 +74,12 @@ class __ModuleName__Tool(BaseTool): # type: ignore[override]
"""The schema that is passed to the model when performing tool calling."""
# TODO: Add any other init params for the tool.
# param1: Optional[str]
# param1: str | None
# """param1 determines foobar"""
# TODO: Replaced (a, b) with real tool arguments.
def _run(
self, a: int, b: int, *, run_manager: Optional[CallbackManagerForToolRun] = None
self, a: int, b: int, *, run_manager: CallbackManagerForToolRun | None = None
) -> str:
return str(a + b + 80)
@@ -90,6 +90,6 @@ class __ModuleName__Tool(BaseTool): # type: ignore[override]
# a: int,
# b: int,
# *,
# run_manager: Optional[AsyncCallbackManagerForToolRun] = None,
# run_manager: AsyncCallbackManagerForToolRun | None = None,
# ) -> str:
# ...

View File

@@ -8,7 +8,6 @@ from typing import (
Callable,
Iterator,
List,
Optional,
Sequence,
Tuple,
Type,
@@ -29,133 +28,133 @@ class __ModuleName__VectorStore(VectorStore):
# TODO: Replace with relevant packages, env vars.
Setup:
Install ``__package_name__`` and set environment variable ``__MODULE_NAME___API_KEY``.
Install `__package_name__` and set environment variable `__MODULE_NAME___API_KEY`.
.. code-block:: bash
pip install -U __package_name__
export __MODULE_NAME___API_KEY="your-api-key"
```bash
pip install -U __package_name__
export __MODULE_NAME___API_KEY="your-api-key"
```
# TODO: Populate with relevant params.
Key init args — indexing params:
collection_name: str
collection_name:
Name of the collection.
embedding_function: Embeddings
embedding_function:
Embedding function to use.
# TODO: Populate with relevant params.
Key init args — client params:
client: Optional[Client]
client:
Client to use.
connection_args: Optional[dict]
connection_args:
Connection arguments.
# TODO: Replace with relevant init params.
Instantiate:
.. code-block:: python
```python
from __module_name__.vectorstores import __ModuleName__VectorStore
from langchain_openai import OpenAIEmbeddings
from __module_name__.vectorstores import __ModuleName__VectorStore
from langchain_openai import OpenAIEmbeddings
vector_store = __ModuleName__VectorStore(
collection_name="foo",
embedding_function=OpenAIEmbeddings(),
connection_args={"uri": "./foo.db"},
# other params...
)
vector_store = __ModuleName__VectorStore(
collection_name="foo",
embedding_function=OpenAIEmbeddings(),
connection_args={"uri": "./foo.db"},
# other params...
)
```
# TODO: Populate with relevant variables.
Add Documents:
.. code-block:: python
```python
from langchain_core.documents import Document
from langchain_core.documents import Document
document_1 = Document(page_content="foo", metadata={"baz": "bar"})
document_2 = Document(page_content="thud", metadata={"bar": "baz"})
document_3 = Document(page_content="i will be deleted :(")
document_1 = Document(page_content="foo", metadata={"baz": "bar"})
document_2 = Document(page_content="thud", metadata={"bar": "baz"})
document_3 = Document(page_content="i will be deleted :(")
documents = [document_1, document_2, document_3]
ids = ["1", "2", "3"]
vector_store.add_documents(documents=documents, ids=ids)
documents = [document_1, document_2, document_3]
ids = ["1", "2", "3"]
vector_store.add_documents(documents=documents, ids=ids)
```
# TODO: Populate with relevant variables.
Delete Documents:
.. code-block:: python
vector_store.delete(ids=["3"])
```python
vector_store.delete(ids=["3"])
```
# TODO: Fill out with relevant variables and example output.
Search:
.. code-block:: python
```python
results = vector_store.similarity_search(query="thud",k=1)
for doc in results:
print(f"* {doc.page_content} [{doc.metadata}]")
```
results = vector_store.similarity_search(query="thud",k=1)
for doc in results:
print(f"* {doc.page_content} [{doc.metadata}]")
.. code-block:: python
# TODO: Example output
```python
# TODO: Example output
```
# TODO: Fill out with relevant variables and example output.
Search with filter:
.. code-block:: python
```python
results = vector_store.similarity_search(query="thud",k=1,filter={"bar": "baz"})
for doc in results:
print(f"* {doc.page_content} [{doc.metadata}]")
```
results = vector_store.similarity_search(query="thud",k=1,filter={"bar": "baz"})
for doc in results:
print(f"* {doc.page_content} [{doc.metadata}]")
.. code-block:: python
# TODO: Example output
```python
# TODO: Example output
```
# TODO: Fill out with relevant variables and example output.
Search with score:
.. code-block:: python
```python
results = vector_store.similarity_search_with_score(query="qux",k=1)
for doc, score in results:
print(f"* [SIM={score:3f}] {doc.page_content} [{doc.metadata}]")
```
results = vector_store.similarity_search_with_score(query="qux",k=1)
for doc, score in results:
print(f"* [SIM={score:3f}] {doc.page_content} [{doc.metadata}]")
.. code-block:: python
# TODO: Example output
```python
# TODO: Example output
```
# TODO: Fill out with relevant variables and example output.
Async:
.. code-block:: python
```python
# add documents
# await vector_store.aadd_documents(documents=documents, ids=ids)
# add documents
# await vector_store.aadd_documents(documents=documents, ids=ids)
# delete documents
# await vector_store.adelete(ids=["3"])
# delete documents
# await vector_store.adelete(ids=["3"])
# search
# results = vector_store.asimilarity_search(query="thud",k=1)
# search
# results = vector_store.asimilarity_search(query="thud",k=1)
# search with score
results = await vector_store.asimilarity_search_with_score(query="qux",k=1)
for doc,score in results:
print(f"* [SIM={score:3f}] {doc.page_content} [{doc.metadata}]")
```
# search with score
results = await vector_store.asimilarity_search_with_score(query="qux",k=1)
for doc,score in results:
print(f"* [SIM={score:3f}] {doc.page_content} [{doc.metadata}]")
.. code-block:: python
# TODO: Example output
```python
# TODO: Example output
```
# TODO: Fill out with relevant variables and example output.
Use as Retriever:
.. code-block:: python
```python
retriever = vector_store.as_retriever(
search_type="mmr",
search_kwargs={"k": 1, "fetch_k": 2, "lambda_mult": 0.5},
)
retriever.invoke("thud")
```
retriever = vector_store.as_retriever(
search_type="mmr",
search_kwargs={"k": 1, "fetch_k": 2, "lambda_mult": 0.5},
)
retriever.invoke("thud")
.. code-block:: python
# TODO: Example output
```python
# TODO: Example output
```
""" # noqa: E501
def __init__(self, embedding: Embeddings) -> None:
@@ -172,7 +171,7 @@ class __ModuleName__VectorStore(VectorStore):
cls: Type[__ModuleName__VectorStore],
texts: List[str],
embedding: Embeddings,
metadatas: Optional[List[dict]] = None,
metadatas: list[dict] | None = None,
**kwargs: Any,
) -> __ModuleName__VectorStore:
store = cls(
@@ -187,7 +186,7 @@ class __ModuleName__VectorStore(VectorStore):
# cls: Type[VST],
# texts: List[str],
# embedding: Embeddings,
# metadatas: Optional[List[dict]] = None,
# metadatas: list[dict] | None = None,
# **kwargs: Any,
# ) -> VST:
# return await asyncio.get_running_loop().run_in_executor(
@@ -201,7 +200,7 @@ class __ModuleName__VectorStore(VectorStore):
def add_documents(
self,
documents: List[Document],
ids: Optional[List[str]] = None,
ids: list[str] | None = None,
**kwargs: Any,
) -> List[str]:
"""Add documents to the store."""
@@ -215,7 +214,7 @@ class __ModuleName__VectorStore(VectorStore):
)
raise ValueError(msg)
id_iterator: Iterator[Optional[str]] = (
id_iterator: Iterator[str | None] = (
iter(ids) if ids else iter(doc.id for doc in documents)
)
@@ -238,19 +237,19 @@ class __ModuleName__VectorStore(VectorStore):
# async def aadd_documents(
# self,
# documents: List[Document],
# ids: Optional[List[str]] = None,
# ids: list[str] | None = None,
# **kwargs: Any,
# ) -> List[str]:
# raise NotImplementedError
def delete(self, ids: Optional[List[str]] = None, **kwargs: Any) -> None:
def delete(self, ids: list[str] | None = None, **kwargs: Any) -> None:
if ids:
for _id in ids:
self._database.pop(_id, None)
# optional: add custom async implementations
# async def adelete(
# self, ids: Optional[List[str]] = None, **kwargs: Any
# self, ids: list[str] | None = None, **kwargs: Any
# ) -> None:
# raise NotImplementedError
@@ -287,7 +286,7 @@ class __ModuleName__VectorStore(VectorStore):
self,
embedding: List[float],
k: int = 4,
filter: Optional[Callable[[Document], bool]] = None,
filter: Callable[[Document], bool] | None = None,
**kwargs: Any,
) -> List[tuple[Document, float, List[float]]]:
# get all docs with fixed order in list

View File

@@ -24,7 +24,7 @@ def get_migrations_for_partner_package(pkg_name: str) -> list[tuple[str, str]]:
This code works
Args:
pkg_name (str): The name of the partner package.
pkg_name: The name of the partner package.
Returns:
List of 2-tuples containing old and new import paths.

View File

@@ -65,7 +65,7 @@ def is_subclass(class_obj: type, classes_: list[type]) -> bool:
classes_: A list of classes to check against.
Returns:
True if `class_obj` is a subclass of any class in `classes_`, False otherwise.
True if `class_obj` is a subclass of any class in `classes_`, `False` otherwise.
"""
return any(
issubclass(class_obj, kls)

View File

@@ -182,7 +182,7 @@ def parse_dependencies(
inner_branches = _list_arg_to_length(branch, num_deps)
return list(
map( # type: ignore[call-overload]
map( # type: ignore[call-overload, unused-ignore]
parse_dependency_string,
inner_deps,
inner_repos,

View File

@@ -13,7 +13,7 @@ def get_package_root(cwd: Path | None = None) -> Path:
Args:
cwd: The current working directory to start the search from.
If None, uses the current working directory of the process.
If `None`, uses the current working directory of the process.
Returns:
The path to the package root directory.

View File

@@ -20,9 +20,13 @@ description = "CLI for interacting with LangChain"
readme = "README.md"
[project.urls]
"Source Code" = "https://github.com/langchain-ai/langchain/tree/master/libs/cli"
"Release Notes" = "https://github.com/langchain-ai/langchain/releases?q=tag%3A%22langchain-cli%3D%3D0%22&expanded=true"
repository = "https://github.com/langchain-ai/langchain"
Homepage = "https://docs.langchain.com/"
Documentation = "https://docs.langchain.com/"
Source = "https://github.com/langchain-ai/langchain/tree/master/libs/cli"
Changelog = "https://github.com/langchain-ai/langchain/releases?q=%22langchain-cli%3D%3D1%22"
Twitter = "https://x.com/LangChainAI"
Slack = "https://www.langchain.com/join-community"
Reddit = "https://www.reddit.com/r/LangChain/"
[project.scripts]
langchain = "langchain_cli.cli:app"
@@ -39,14 +43,14 @@ lint = [
]
test = [
"langchain-core",
"langchain"
"langchain-classic"
]
typing = ["langchain"]
typing = ["langchain-classic"]
test_integration = []
[tool.uv.sources]
langchain-core = { path = "../core", editable = true }
langchain = { path = "../langchain", editable = true }
langchain-classic = { path = "../langchain", editable = true }
[tool.ruff.format]
docstring-code-format = true

View File

@@ -1,5 +1,5 @@
import pytest
from langchain._api import suppress_langchain_deprecation_warning as sup2
from langchain_classic._api import suppress_langchain_deprecation_warning as sup2
from langchain_core._api import suppress_langchain_deprecation_warning as sup1
from langchain_cli.namespaces.migrate.generate.generic import (

466
libs/cli/uv.lock generated
View File

@@ -327,7 +327,21 @@ wheels = [
[[package]]
name = "langchain"
version = "0.3.27"
version = "1.0.0"
source = { registry = "https://pypi.org/simple" }
dependencies = [
{ name = "langchain-core" },
{ name = "langgraph" },
{ name = "pydantic" },
]
sdist = { url = "https://files.pythonhosted.org/packages/7d/b8/36078257ba52351608129ee983079a4d77ee69eb1470ee248cd8f5728a31/langchain-1.0.0.tar.gz", hash = "sha256:56bf90d935ac1dda864519372d195ca58757b755dd4c44b87840b67d069085b7", size = 466932, upload-time = "2025-10-17T20:53:20.319Z" }
wheels = [
{ url = "https://files.pythonhosted.org/packages/c4/4d/2758a16ad01716c0fb3fe9ec205fd530eae4528b35a27ff44837c399e032/langchain-1.0.0-py3-none-any.whl", hash = "sha256:8c95e41250fc86d09a978fbdf999f86c18d50a28a2addc5da88546af00a1ad15", size = 106202, upload-time = "2025-10-17T20:53:18.685Z" },
]
[[package]]
name = "langchain-classic"
version = "1.0.0"
source = { editable = "../langchain" }
dependencies = [
{ name = "async-timeout", marker = "python_full_version < '3.11'" },
@@ -344,20 +358,28 @@ dependencies = [
requires-dist = [
{ name = "async-timeout", marker = "python_full_version < '3.11'", specifier = ">=4.0.0,<5.0.0" },
{ name = "langchain-anthropic", marker = "extra == 'anthropic'" },
{ name = "langchain-community", marker = "extra == 'community'" },
{ name = "langchain-aws", marker = "extra == 'aws'" },
{ name = "langchain-core", editable = "../core" },
{ name = "langchain-deepseek", marker = "extra == 'deepseek'" },
{ name = "langchain-fireworks", marker = "extra == 'fireworks'" },
{ name = "langchain-google-genai", marker = "extra == 'google-genai'" },
{ name = "langchain-google-vertexai", marker = "extra == 'google-vertexai'" },
{ name = "langchain-groq", marker = "extra == 'groq'" },
{ name = "langchain-huggingface", marker = "extra == 'huggingface'" },
{ name = "langchain-mistralai", marker = "extra == 'mistralai'" },
{ name = "langchain-ollama", marker = "extra == 'ollama'" },
{ name = "langchain-openai", marker = "extra == 'openai'", editable = "../partners/openai" },
{ name = "langchain-perplexity", marker = "extra == 'perplexity'" },
{ name = "langchain-text-splitters", editable = "../text-splitters" },
{ name = "langchain-together", marker = "extra == 'together'" },
{ name = "langchain-xai", marker = "extra == 'xai'" },
{ name = "langsmith", specifier = ">=0.1.17,<1.0.0" },
{ name = "pydantic", specifier = ">=2.7.4,<3.0.0" },
{ name = "pyyaml", specifier = ">=5.3.0,<7.0.0" },
{ name = "requests", specifier = ">=2.0.0,<3.0.0" },
{ name = "sqlalchemy", specifier = ">=1.4.0,<3.0.0" },
]
provides-extras = ["community", "anthropic", "openai", "google-vertexai", "google-genai", "together"]
provides-extras = ["anthropic", "openai", "google-vertexai", "google-genai", "fireworks", "ollama", "together", "mistralai", "huggingface", "groq", "aws", "deepseek", "xai", "perplexity"]
[package.metadata.requires-dev]
dev = [
@@ -376,7 +398,6 @@ test = [
{ name = "blockbuster", specifier = ">=1.5.18,<1.6.0" },
{ name = "cffi", marker = "python_full_version < '3.10'", specifier = "<1.17.1" },
{ name = "cffi", marker = "python_full_version >= '3.10'" },
{ name = "duckdb-engine", specifier = ">=0.9.2,<1.0.0" },
{ name = "freezegun", specifier = ">=1.2.2,<2.0.0" },
{ name = "langchain-core", editable = "../core" },
{ name = "langchain-openai", editable = "../partners/openai" },
@@ -411,9 +432,10 @@ test-integration = [
{ name = "wrapt", specifier = ">=1.15.0,<2.0.0" },
]
typing = [
{ name = "fastapi", specifier = ">=0.116.1,<1.0.0" },
{ name = "langchain-core", editable = "../core" },
{ name = "langchain-text-splitters", editable = "../text-splitters" },
{ name = "mypy", specifier = ">=1.15.0,<1.16.0" },
{ name = "mypy", specifier = ">=1.18.2,<1.19.0" },
{ name = "mypy-protobuf", specifier = ">=3.0.0,<4.0.0" },
{ name = "numpy", marker = "python_full_version < '3.13'", specifier = ">=1.26.4" },
{ name = "numpy", marker = "python_full_version >= '3.13'", specifier = ">=2.1.0" },
@@ -448,11 +470,11 @@ lint = [
{ name = "ruff" },
]
test = [
{ name = "langchain" },
{ name = "langchain-classic" },
{ name = "langchain-core" },
]
typing = [
{ name = "langchain" },
{ name = "langchain-classic" },
]
[package.metadata]
@@ -475,15 +497,15 @@ lint = [
{ name = "ruff", specifier = ">=0.13.1,<0.14" },
]
test = [
{ name = "langchain", editable = "../langchain" },
{ name = "langchain-classic", editable = "../langchain" },
{ name = "langchain-core", editable = "../core" },
]
test-integration = []
typing = [{ name = "langchain", editable = "../langchain" }]
typing = [{ name = "langchain-classic", editable = "../langchain" }]
[[package]]
name = "langchain-core"
version = "1.0.0a6"
version = "1.0.0"
source = { editable = "../core" }
dependencies = [
{ name = "jsonpatch" },
@@ -541,7 +563,7 @@ typing = [
[[package]]
name = "langchain-text-splitters"
version = "1.0.0a1"
version = "1.0.0"
source = { editable = "../text-splitters" }
dependencies = [
{ name = "langchain-core" },
@@ -574,8 +596,8 @@ test-integration = [
{ name = "nltk", specifier = ">=3.9.1,<4.0.0" },
{ name = "scipy", marker = "python_full_version == '3.12.*'", specifier = ">=1.7.0,<2.0.0" },
{ name = "scipy", marker = "python_full_version >= '3.13'", specifier = ">=1.14.1,<2.0.0" },
{ name = "sentence-transformers", specifier = ">=3.0.1,<4.0.0" },
{ name = "spacy", specifier = ">=3.8.7,<4.0.0" },
{ name = "sentence-transformers", marker = "python_full_version < '3.14'", specifier = ">=3.0.1,<4.0.0" },
{ name = "spacy", marker = "python_full_version < '3.14'", specifier = ">=3.8.7,<4.0.0" },
{ name = "thinc", specifier = ">=8.3.6,<9.0.0" },
{ name = "tiktoken", specifier = ">=0.8.0,<1.0.0" },
{ name = "transformers", specifier = ">=4.51.3,<5.0.0" },
@@ -588,6 +610,62 @@ typing = [
{ name = "types-requests", specifier = ">=2.31.0.20240218,<3.0.0.0" },
]
[[package]]
name = "langgraph"
version = "1.0.0"
source = { registry = "https://pypi.org/simple" }
dependencies = [
{ name = "langchain-core" },
{ name = "langgraph-checkpoint" },
{ name = "langgraph-prebuilt" },
{ name = "langgraph-sdk" },
{ name = "pydantic" },
{ name = "xxhash" },
]
sdist = { url = "https://files.pythonhosted.org/packages/57/f7/7ae10f1832ab1a6a402f451e54d6dab277e28e7d4e4204e070c7897ca71c/langgraph-1.0.0.tar.gz", hash = "sha256:5f83ed0e9bbcc37635bc49cbc9b3d9306605fa07504f955b7a871ed715f9964c", size = 472835, upload-time = "2025-10-17T20:23:38.263Z" }
wheels = [
{ url = "https://files.pythonhosted.org/packages/07/42/6f6d0fe4eb661b06da8e6c59e58044e9e4221fdbffdcacae864557de961e/langgraph-1.0.0-py3-none-any.whl", hash = "sha256:4d478781832a1bc67e06c3eb571412ec47d7c57a5467d1f3775adf0e9dd4042c", size = 155416, upload-time = "2025-10-17T20:23:36.978Z" },
]
[[package]]
name = "langgraph-checkpoint"
version = "2.1.2"
source = { registry = "https://pypi.org/simple" }
dependencies = [
{ name = "langchain-core" },
{ name = "ormsgpack" },
]
sdist = { url = "https://files.pythonhosted.org/packages/29/83/6404f6ed23a91d7bc63d7df902d144548434237d017820ceaa8d014035f2/langgraph_checkpoint-2.1.2.tar.gz", hash = "sha256:112e9d067a6eff8937caf198421b1ffba8d9207193f14ac6f89930c1260c06f9", size = 142420, upload-time = "2025-10-07T17:45:17.129Z" }
wheels = [
{ url = "https://files.pythonhosted.org/packages/c4/f2/06bf5addf8ee664291e1b9ffa1f28fc9d97e59806dc7de5aea9844cbf335/langgraph_checkpoint-2.1.2-py3-none-any.whl", hash = "sha256:911ebffb069fd01775d4b5184c04aaafc2962fcdf50cf49d524cd4367c4d0c60", size = 45763, upload-time = "2025-10-07T17:45:16.19Z" },
]
[[package]]
name = "langgraph-prebuilt"
version = "1.0.0"
source = { registry = "https://pypi.org/simple" }
dependencies = [
{ name = "langchain-core" },
{ name = "langgraph-checkpoint" },
]
sdist = { url = "https://files.pythonhosted.org/packages/02/2d/934b1129e217216a0dfaf0f7df0a10cedf2dfafe6cc8e1ee238cafaaa4a7/langgraph_prebuilt-1.0.0.tar.gz", hash = "sha256:eb75dad9aca0137451ca0395aa8541a665b3f60979480b0431d626fd195dcda2", size = 119927, upload-time = "2025-10-17T20:15:21.429Z" }
wheels = [
{ url = "https://files.pythonhosted.org/packages/33/2e/ffa698eedc4c355168a9207ee598b2cc74ede92ce2b55c3469ea06978b6e/langgraph_prebuilt-1.0.0-py3-none-any.whl", hash = "sha256:ceaae4c5cee8c1f9b6468f76c114cafebb748aed0c93483b7c450e5a89de9c61", size = 28455, upload-time = "2025-10-17T20:15:20.043Z" },
]
[[package]]
name = "langgraph-sdk"
version = "0.2.9"
source = { registry = "https://pypi.org/simple" }
dependencies = [
{ name = "httpx" },
{ name = "orjson" },
]
sdist = { url = "https://files.pythonhosted.org/packages/23/d8/40e01190a73c564a4744e29a6c902f78d34d43dad9b652a363a92a67059c/langgraph_sdk-0.2.9.tar.gz", hash = "sha256:b3bd04c6be4fa382996cd2be8fbc1e7cc94857d2bc6b6f4599a7f2a245975303", size = 99802, upload-time = "2025-09-20T18:49:14.734Z" }
wheels = [
{ url = "https://files.pythonhosted.org/packages/66/05/b2d34e16638241e6f27a6946d28160d4b8b641383787646d41a3727e0896/langgraph_sdk-0.2.9-py3-none-any.whl", hash = "sha256:fbf302edadbf0fb343596f91c597794e936ef68eebc0d3e1d358b6f9f72a1429", size = 56752, upload-time = "2025-09-20T18:49:13.346Z" },
]
[[package]]
name = "langserve"
version = "0.0.51"
@@ -780,6 +858,61 @@ wheels = [
{ url = "https://files.pythonhosted.org/packages/28/01/d6b274a0635be0468d4dbd9cafe80c47105937a0d42434e805e67cd2ed8b/orjson-3.11.3-cp314-cp314-win_arm64.whl", hash = "sha256:e8f6a7a27d7b7bec81bd5924163e9af03d49bbb63013f107b48eb5d16db711bc", size = 125985, upload-time = "2025-08-26T17:46:16.67Z" },
]
[[package]]
name = "ormsgpack"
version = "1.11.0"
source = { registry = "https://pypi.org/simple" }
sdist = { url = "https://files.pythonhosted.org/packages/65/f8/224c342c0e03e131aaa1a1f19aa2244e167001783a433f4eed10eedd834b/ormsgpack-1.11.0.tar.gz", hash = "sha256:7c9988e78fedba3292541eb3bb274fa63044ef4da2ddb47259ea70c05dee4206", size = 49357, upload-time = "2025-10-08T17:29:15.621Z" }
wheels = [
{ url = "https://files.pythonhosted.org/packages/ff/3d/6996193cb2babc47fc92456223bef7d141065357ad4204eccf313f47a7b3/ormsgpack-1.11.0-cp310-cp310-macosx_10_12_x86_64.macosx_11_0_arm64.macosx_10_12_universal2.whl", hash = "sha256:03d4e658dd6e1882a552ce1d13cc7b49157414e7d56a4091fbe7823225b08cba", size = 367965, upload-time = "2025-10-08T17:28:06.736Z" },
{ url = "https://files.pythonhosted.org/packages/35/89/c83b805dd9caebb046f4ceeed3706d0902ed2dbbcf08b8464e89f2c52e05/ormsgpack-1.11.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1bb67eb913c2b703f0ed39607fc56e50724dd41f92ce080a586b4d6149eb3fe4", size = 195209, upload-time = "2025-10-08T17:28:08.395Z" },
{ url = "https://files.pythonhosted.org/packages/3a/17/427d9c4f77b120f0af01d7a71d8144771c9388c2a81f712048320e31353b/ormsgpack-1.11.0-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:1e54175b92411f73a238e5653a998627f6660de3def37d9dd7213e0fd264ca56", size = 205868, upload-time = "2025-10-08T17:28:09.688Z" },
{ url = "https://files.pythonhosted.org/packages/82/32/a9ce218478bdbf3fee954159900e24b314ab3064f7b6a217ccb1e3464324/ormsgpack-1.11.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ca2b197f4556e1823d1319869d4c5dc278be335286d2308b0ed88b59a5afcc25", size = 207391, upload-time = "2025-10-08T17:28:11.031Z" },
{ url = "https://files.pythonhosted.org/packages/7a/d3/4413fe7454711596fdf08adabdfa686580e4656702015108e4975f00a022/ormsgpack-1.11.0-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:bc62388262f58c792fe1e450e1d9dbcc174ed2fb0b43db1675dd7c5ff2319d6a", size = 377078, upload-time = "2025-10-08T17:28:12.39Z" },
{ url = "https://files.pythonhosted.org/packages/f0/ad/13fae555a45e35ca1ca929a27c9ee0a3ecada931b9d44454658c543f9b9c/ormsgpack-1.11.0-cp310-cp310-musllinux_1_2_armv7l.whl", hash = "sha256:c48bc10af74adfbc9113f3fb160dc07c61ad9239ef264c17e449eba3de343dc2", size = 470776, upload-time = "2025-10-08T17:28:13.484Z" },
{ url = "https://files.pythonhosted.org/packages/36/60/51178b093ffc4e2ef3381013a67223e7d56224434fba80047249f4a84b26/ormsgpack-1.11.0-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:a608d3a1d4fa4acdc5082168a54513cff91f47764cef435e81a483452f5f7647", size = 380862, upload-time = "2025-10-08T17:28:14.747Z" },
{ url = "https://files.pythonhosted.org/packages/a6/e3/1cb6c161335e2ae7d711ecfb007a31a3936603626e347c13e5e53b7c7cf8/ormsgpack-1.11.0-cp310-cp310-win_amd64.whl", hash = "sha256:97217b4f7f599ba45916b9c4c4b1d5656e8e2a4d91e2e191d72a7569d3c30923", size = 112058, upload-time = "2025-10-08T17:28:15.777Z" },
{ url = "https://files.pythonhosted.org/packages/a4/7c/90164d00e8e94b48eff8a17bc2f4be6b71ae356a00904bc69d5e8afe80fb/ormsgpack-1.11.0-cp311-cp311-macosx_10_12_x86_64.macosx_11_0_arm64.macosx_10_12_universal2.whl", hash = "sha256:c7be823f47d8e36648d4bc90634b93f02b7d7cc7480081195f34767e86f181fb", size = 367964, upload-time = "2025-10-08T17:28:16.778Z" },
{ url = "https://files.pythonhosted.org/packages/7b/c2/fb6331e880a3446c1341e72c77bd5a46da3e92a8e2edf7ea84a4c6c14fff/ormsgpack-1.11.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:68accf15d1b013812755c0eb7a30e1fc2f81eb603a1a143bf0cda1b301cfa797", size = 195209, upload-time = "2025-10-08T17:28:17.796Z" },
{ url = "https://files.pythonhosted.org/packages/18/50/4943fb5df8cc02da6b7b1ee2c2a7fb13aebc9f963d69280b1bb02b1fb178/ormsgpack-1.11.0-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:805d06fb277d9a4e503c0c707545b49cde66cbb2f84e5cf7c58d81dfc20d8658", size = 205869, upload-time = "2025-10-08T17:28:19.01Z" },
{ url = "https://files.pythonhosted.org/packages/1c/fa/e7e06835bfea9adeef43915143ce818098aecab0cbd3df584815adf3e399/ormsgpack-1.11.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a1e57cdf003e77acc43643bda151dc01f97147a64b11cdee1380bb9698a7601c", size = 207391, upload-time = "2025-10-08T17:28:20.352Z" },
{ url = "https://files.pythonhosted.org/packages/33/f0/f28a19e938a14ec223396e94f4782fbcc023f8c91f2ab6881839d3550f32/ormsgpack-1.11.0-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:37fc05bdaabd994097c62e2f3e08f66b03f856a640ede6dc5ea340bd15b77f4d", size = 377081, upload-time = "2025-10-08T17:28:21.926Z" },
{ url = "https://files.pythonhosted.org/packages/4f/e3/73d1d7287637401b0b6637e30ba9121e1aa1d9f5ea185ed9834ca15d512c/ormsgpack-1.11.0-cp311-cp311-musllinux_1_2_armv7l.whl", hash = "sha256:a6e9db6c73eb46b2e4d97bdffd1368a66f54e6806b563a997b19c004ef165e1d", size = 470779, upload-time = "2025-10-08T17:28:22.993Z" },
{ url = "https://files.pythonhosted.org/packages/9c/46/7ba7f9721e766dd0dfe4cedf444439447212abffe2d2f4538edeeec8ccbd/ormsgpack-1.11.0-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:e9c44eae5ac0196ffc8b5ed497c75511056508f2303fa4d36b208eb820cf209e", size = 380865, upload-time = "2025-10-08T17:28:24.012Z" },
{ url = "https://files.pythonhosted.org/packages/a7/7d/bb92a0782bbe0626c072c0320001410cf3f6743ede7dc18f034b1a18edef/ormsgpack-1.11.0-cp311-cp311-win_amd64.whl", hash = "sha256:11d0dfaf40ae7c6de4f7dbd1e4892e2e6a55d911ab1774357c481158d17371e4", size = 112058, upload-time = "2025-10-08T17:28:25.015Z" },
{ url = "https://files.pythonhosted.org/packages/28/1a/f07c6f74142815d67e1d9d98c5b2960007100408ade8242edac96d5d1c73/ormsgpack-1.11.0-cp311-cp311-win_arm64.whl", hash = "sha256:0c63a3f7199a3099c90398a1bdf0cb577b06651a442dc5efe67f2882665e5b02", size = 105894, upload-time = "2025-10-08T17:28:25.93Z" },
{ url = "https://files.pythonhosted.org/packages/1e/16/2805ebfb3d2cbb6c661b5fae053960fc90a2611d0d93e2207e753e836117/ormsgpack-1.11.0-cp312-cp312-macosx_10_12_x86_64.macosx_11_0_arm64.macosx_10_12_universal2.whl", hash = "sha256:3434d0c8d67de27d9010222de07fb6810fb9af3bb7372354ffa19257ac0eb83b", size = 368474, upload-time = "2025-10-08T17:28:27.532Z" },
{ url = "https://files.pythonhosted.org/packages/6f/39/6afae47822dca0ce4465d894c0bbb860a850ce29c157882dbdf77a5dd26e/ormsgpack-1.11.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d2da5bd097e8dbfa4eb0d4ccfe79acd6f538dee4493579e2debfe4fc8f4ca89b", size = 195321, upload-time = "2025-10-08T17:28:28.573Z" },
{ url = "https://files.pythonhosted.org/packages/f6/54/11eda6b59f696d2f16de469bfbe539c9f469c4b9eef5a513996b5879c6e9/ormsgpack-1.11.0-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:fdbaa0a5a8606a486960b60c24f2d5235d30ac7a8b98eeaea9854bffef14dc3d", size = 206036, upload-time = "2025-10-08T17:28:29.785Z" },
{ url = "https://files.pythonhosted.org/packages/1e/86/890430f704f84c4699ddad61c595d171ea2fd77a51fbc106f83981e83939/ormsgpack-1.11.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3682f24f800c1837017ee90ce321086b2cbaef88db7d4cdbbda1582aa6508159", size = 207615, upload-time = "2025-10-08T17:28:31.076Z" },
{ url = "https://files.pythonhosted.org/packages/b6/b9/77383e16c991c0ecb772205b966fc68d9c519e0b5f9c3913283cbed30ffe/ormsgpack-1.11.0-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:fcca21202bb05ccbf3e0e92f560ee59b9331182e4c09c965a28155efbb134993", size = 377195, upload-time = "2025-10-08T17:28:32.436Z" },
{ url = "https://files.pythonhosted.org/packages/20/e2/15f9f045d4947f3c8a5e0535259fddf027b17b1215367488b3565c573b9d/ormsgpack-1.11.0-cp312-cp312-musllinux_1_2_armv7l.whl", hash = "sha256:c30e5c4655ba46152d722ec7468e8302195e6db362ec1ae2c206bc64f6030e43", size = 470960, upload-time = "2025-10-08T17:28:33.556Z" },
{ url = "https://files.pythonhosted.org/packages/b8/61/403ce188c4c495bc99dff921a0ad3d9d352dd6d3c4b629f3638b7f0cf79b/ormsgpack-1.11.0-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:7138a341f9e2c08c59368f03d3be25e8b87b3baaf10d30fb1f6f6b52f3d47944", size = 381174, upload-time = "2025-10-08T17:28:34.781Z" },
{ url = "https://files.pythonhosted.org/packages/14/a8/94c94bc48c68da4374870a851eea03fc5a45eb041182ad4c5ed9acfc05a4/ormsgpack-1.11.0-cp312-cp312-win_amd64.whl", hash = "sha256:d4bd8589b78a11026d47f4edf13c1ceab9088bb12451f34396afe6497db28a27", size = 112314, upload-time = "2025-10-08T17:28:36.259Z" },
{ url = "https://files.pythonhosted.org/packages/19/d0/aa4cf04f04e4cc180ce7a8d8ddb5a7f3af883329cbc59645d94d3ba157a5/ormsgpack-1.11.0-cp312-cp312-win_arm64.whl", hash = "sha256:e5e746a1223e70f111d4001dab9585ac8639eee8979ca0c8db37f646bf2961da", size = 106072, upload-time = "2025-10-08T17:28:37.518Z" },
{ url = "https://files.pythonhosted.org/packages/8b/35/e34722edb701d053cf2240f55974f17b7dbfd11fdef72bd2f1835bcebf26/ormsgpack-1.11.0-cp313-cp313-macosx_10_12_x86_64.macosx_11_0_arm64.macosx_10_12_universal2.whl", hash = "sha256:0e7b36ab7b45cb95217ae1f05f1318b14a3e5ef73cb00804c0f06233f81a14e8", size = 368502, upload-time = "2025-10-08T17:28:38.547Z" },
{ url = "https://files.pythonhosted.org/packages/2f/6a/c2fc369a79d6aba2aa28c8763856c95337ac7fcc0b2742185cd19397212a/ormsgpack-1.11.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:43402d67e03a9a35cc147c8c03f0c377cad016624479e1ee5b879b8425551484", size = 195344, upload-time = "2025-10-08T17:28:39.554Z" },
{ url = "https://files.pythonhosted.org/packages/8b/6a/0f8e24b7489885534c1a93bdba7c7c434b9b8638713a68098867db9f254c/ormsgpack-1.11.0-cp313-cp313-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:64fd992f932764d6306b70ddc755c1bc3405c4c6a69f77a36acf7af1c8f5ada4", size = 206045, upload-time = "2025-10-08T17:28:40.561Z" },
{ url = "https://files.pythonhosted.org/packages/99/71/8b460ba264f3c6f82ef5b1920335720094e2bd943057964ce5287d6df83a/ormsgpack-1.11.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0362fb7fe4a29c046c8ea799303079a09372653a1ce5a5a588f3bbb8088368d0", size = 207641, upload-time = "2025-10-08T17:28:41.736Z" },
{ url = "https://files.pythonhosted.org/packages/50/cf/f369446abaf65972424ed2651f2df2b7b5c3b735c93fc7fa6cfb81e34419/ormsgpack-1.11.0-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:de2f7a65a9d178ed57be49eba3d0fc9b833c32beaa19dbd4ba56014d3c20b152", size = 377211, upload-time = "2025-10-08T17:28:43.12Z" },
{ url = "https://files.pythonhosted.org/packages/2f/3f/948bb0047ce0f37c2efc3b9bb2bcfdccc61c63e0b9ce8088d4903ba39dcf/ormsgpack-1.11.0-cp313-cp313-musllinux_1_2_armv7l.whl", hash = "sha256:f38cfae95461466055af966fc922d06db4e1654966385cda2828653096db34da", size = 470973, upload-time = "2025-10-08T17:28:44.465Z" },
{ url = "https://files.pythonhosted.org/packages/31/a4/92a8114d1d017c14aaa403445060f345df9130ca532d538094f38e535988/ormsgpack-1.11.0-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:c88396189d238f183cea7831b07a305ab5c90d6d29b53288ae11200bd956357b", size = 381161, upload-time = "2025-10-08T17:28:46.063Z" },
{ url = "https://files.pythonhosted.org/packages/d0/64/5b76447da654798bfcfdfd64ea29447ff2b7f33fe19d0e911a83ad5107fc/ormsgpack-1.11.0-cp313-cp313-win_amd64.whl", hash = "sha256:5403d1a945dd7c81044cebeca3f00a28a0f4248b33242a5d2d82111628043725", size = 112321, upload-time = "2025-10-08T17:28:47.393Z" },
{ url = "https://files.pythonhosted.org/packages/46/5e/89900d06db9ab81e7ec1fd56a07c62dfbdcda398c435718f4252e1dc52a0/ormsgpack-1.11.0-cp313-cp313-win_arm64.whl", hash = "sha256:c57357b8d43b49722b876edf317bdad9e6d52071b523fdd7394c30cd1c67d5a0", size = 106084, upload-time = "2025-10-08T17:28:48.305Z" },
{ url = "https://files.pythonhosted.org/packages/4c/0b/c659e8657085c8c13f6a0224789f422620cef506e26573b5434defe68483/ormsgpack-1.11.0-cp314-cp314-macosx_10_12_x86_64.macosx_11_0_arm64.macosx_10_12_universal2.whl", hash = "sha256:d390907d90fd0c908211592c485054d7a80990697ef4dff4e436ac18e1aab98a", size = 368497, upload-time = "2025-10-08T17:28:49.297Z" },
{ url = "https://files.pythonhosted.org/packages/1b/0e/451e5848c7ed56bd287e8a2b5cb5926e54466f60936e05aec6cb299f9143/ormsgpack-1.11.0-cp314-cp314-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6153c2e92e789509098e04c9aa116b16673bd88ec78fbe0031deeb34ab642d10", size = 195385, upload-time = "2025-10-08T17:28:50.314Z" },
{ url = "https://files.pythonhosted.org/packages/4c/28/90f78cbbe494959f2439c2ec571f08cd3464c05a6a380b0d621c622122a9/ormsgpack-1.11.0-cp314-cp314-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:c2b2c2a065a94d742212b2018e1fecd8f8d72f3c50b53a97d1f407418093446d", size = 206114, upload-time = "2025-10-08T17:28:51.336Z" },
{ url = "https://files.pythonhosted.org/packages/fb/db/34163f4c0923bea32dafe42cd878dcc66795a3e85669bc4b01c1e2b92a7b/ormsgpack-1.11.0-cp314-cp314-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:110e65b5340f3d7ef8b0009deae3c6b169437e6b43ad5a57fd1748085d29d2ac", size = 207679, upload-time = "2025-10-08T17:28:53.627Z" },
{ url = "https://files.pythonhosted.org/packages/b6/14/04ee741249b16f380a9b4a0cc19d4134d0b7c74bab27a2117da09e525eb9/ormsgpack-1.11.0-cp314-cp314-musllinux_1_2_aarch64.whl", hash = "sha256:c27e186fca96ab34662723e65b420919910acbbc50fc8e1a44e08f26268cb0e0", size = 377237, upload-time = "2025-10-08T17:28:56.12Z" },
{ url = "https://files.pythonhosted.org/packages/89/ff/53e588a6aaa833237471caec679582c2950f0e7e1a8ba28c1511b465c1f4/ormsgpack-1.11.0-cp314-cp314-musllinux_1_2_armv7l.whl", hash = "sha256:d56b1f877c13d499052d37a3db2378a97d5e1588d264f5040b3412aee23d742c", size = 471021, upload-time = "2025-10-08T17:28:57.299Z" },
{ url = "https://files.pythonhosted.org/packages/a6/f9/f20a6d9ef2be04da3aad05e8f5699957e9a30c6d5c043a10a296afa7e890/ormsgpack-1.11.0-cp314-cp314-musllinux_1_2_x86_64.whl", hash = "sha256:c88e28cd567c0a3269f624b4ade28142d5e502c8e826115093c572007af5be0a", size = 381205, upload-time = "2025-10-08T17:28:58.872Z" },
{ url = "https://files.pythonhosted.org/packages/f8/64/96c07d084b479ac8b7821a77ffc8d3f29d8b5c95ebfdf8db1c03dff02762/ormsgpack-1.11.0-cp314-cp314-win_amd64.whl", hash = "sha256:8811160573dc0a65f62f7e0792c4ca6b7108dfa50771edb93f9b84e2d45a08ae", size = 112374, upload-time = "2025-10-08T17:29:00Z" },
{ url = "https://files.pythonhosted.org/packages/88/a5/5dcc18b818d50213a3cadfe336bb6163a102677d9ce87f3d2f1a1bee0f8c/ormsgpack-1.11.0-cp314-cp314-win_arm64.whl", hash = "sha256:23e30a8d3c17484cf74e75e6134322255bd08bc2b5b295cc9c442f4bae5f3c2d", size = 106056, upload-time = "2025-10-08T17:29:01.29Z" },
{ url = "https://files.pythonhosted.org/packages/19/2b/776d1b411d2be50f77a6e6e94a25825cca55dcacfe7415fd691a144db71b/ormsgpack-1.11.0-cp314-cp314t-macosx_10_12_x86_64.macosx_11_0_arm64.macosx_10_12_universal2.whl", hash = "sha256:2905816502adfaf8386a01dd85f936cd378d243f4f5ee2ff46f67f6298dc90d5", size = 368661, upload-time = "2025-10-08T17:29:02.382Z" },
{ url = "https://files.pythonhosted.org/packages/a9/0c/81a19e6115b15764db3d241788f9fac093122878aaabf872cc545b0c4650/ormsgpack-1.11.0-cp314-cp314t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c04402fb9a0a9b9f18fbafd6d5f8398ee99b3ec619fb63952d3a954bc9d47daa", size = 195539, upload-time = "2025-10-08T17:29:03.472Z" },
{ url = "https://files.pythonhosted.org/packages/97/86/e5b50247a61caec5718122feb2719ea9d451d30ac0516c288c1dbc6408e8/ormsgpack-1.11.0-cp314-cp314t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a025ec07ac52056ecfd9e57b5cbc6fff163f62cb9805012b56cda599157f8ef2", size = 207718, upload-time = "2025-10-08T17:29:04.545Z" },
]
[[package]]
name = "packaging"
version = "25.0"
@@ -809,7 +942,7 @@ wheels = [
[[package]]
name = "pydantic"
version = "2.11.9"
version = "2.12.3"
source = { registry = "https://pypi.org/simple" }
dependencies = [
{ name = "annotated-types" },
@@ -817,96 +950,123 @@ dependencies = [
{ name = "typing-extensions" },
{ name = "typing-inspection" },
]
sdist = { url = "https://files.pythonhosted.org/packages/ff/5d/09a551ba512d7ca404d785072700d3f6727a02f6f3c24ecfd081c7cf0aa8/pydantic-2.11.9.tar.gz", hash = "sha256:6b8ffda597a14812a7975c90b82a8a2e777d9257aba3453f973acd3c032a18e2", size = 788495, upload-time = "2025-09-13T11:26:39.325Z" }
sdist = { url = "https://files.pythonhosted.org/packages/f3/1e/4f0a3233767010308f2fd6bd0814597e3f63f1dc98304a9112b8759df4ff/pydantic-2.12.3.tar.gz", hash = "sha256:1da1c82b0fc140bb0103bc1441ffe062154c8d38491189751ee00fd8ca65ce74", size = 819383, upload-time = "2025-10-17T15:04:21.222Z" }
wheels = [
{ url = "https://files.pythonhosted.org/packages/3e/d3/108f2006987c58e76691d5ae5d200dd3e0f532cb4e5fa3560751c3a1feba/pydantic-2.11.9-py3-none-any.whl", hash = "sha256:c42dd626f5cfc1c6950ce6205ea58c93efa406da65f479dcb4029d5934857da2", size = 444855, upload-time = "2025-09-13T11:26:36.909Z" },
{ url = "https://files.pythonhosted.org/packages/a1/6b/83661fa77dcefa195ad5f8cd9af3d1a7450fd57cc883ad04d65446ac2029/pydantic-2.12.3-py3-none-any.whl", hash = "sha256:6986454a854bc3bc6e5443e1369e06a3a456af9d339eda45510f517d9ea5c6bf", size = 462431, upload-time = "2025-10-17T15:04:19.346Z" },
]
[[package]]
name = "pydantic-core"
version = "2.33.2"
version = "2.41.4"
source = { registry = "https://pypi.org/simple" }
dependencies = [
{ name = "typing-extensions" },
]
sdist = { url = "https://files.pythonhosted.org/packages/ad/88/5f2260bdfae97aabf98f1778d43f69574390ad787afb646292a638c923d4/pydantic_core-2.33.2.tar.gz", hash = "sha256:7cb8bc3605c29176e1b105350d2e6474142d7c1bd1d9327c4a9bdb46bf827acc", size = 435195, upload-time = "2025-04-23T18:33:52.104Z" }
sdist = { url = "https://files.pythonhosted.org/packages/df/18/d0944e8eaaa3efd0a91b0f1fc537d3be55ad35091b6a87638211ba691964/pydantic_core-2.41.4.tar.gz", hash = "sha256:70e47929a9d4a1905a67e4b687d5946026390568a8e952b92824118063cee4d5", size = 457557, upload-time = "2025-10-14T10:23:47.909Z" }
wheels = [
{ url = "https://files.pythonhosted.org/packages/e5/92/b31726561b5dae176c2d2c2dc43a9c5bfba5d32f96f8b4c0a600dd492447/pydantic_core-2.33.2-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:2b3d326aaef0c0399d9afffeb6367d5e26ddc24d351dbc9c636840ac355dc5d8", size = 2028817, upload-time = "2025-04-23T18:30:43.919Z" },
{ url = "https://files.pythonhosted.org/packages/a3/44/3f0b95fafdaca04a483c4e685fe437c6891001bf3ce8b2fded82b9ea3aa1/pydantic_core-2.33.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:0e5b2671f05ba48b94cb90ce55d8bdcaaedb8ba00cc5359f6810fc918713983d", size = 1861357, upload-time = "2025-04-23T18:30:46.372Z" },
{ url = "https://files.pythonhosted.org/packages/30/97/e8f13b55766234caae05372826e8e4b3b96e7b248be3157f53237682e43c/pydantic_core-2.33.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0069c9acc3f3981b9ff4cdfaf088e98d83440a4c7ea1bc07460af3d4dc22e72d", size = 1898011, upload-time = "2025-04-23T18:30:47.591Z" },
{ url = "https://files.pythonhosted.org/packages/9b/a3/99c48cf7bafc991cc3ee66fd544c0aae8dc907b752f1dad2d79b1b5a471f/pydantic_core-2.33.2-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:d53b22f2032c42eaaf025f7c40c2e3b94568ae077a606f006d206a463bc69572", size = 1982730, upload-time = "2025-04-23T18:30:49.328Z" },
{ url = "https://files.pythonhosted.org/packages/de/8e/a5b882ec4307010a840fb8b58bd9bf65d1840c92eae7534c7441709bf54b/pydantic_core-2.33.2-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:0405262705a123b7ce9f0b92f123334d67b70fd1f20a9372b907ce1080c7ba02", size = 2136178, upload-time = "2025-04-23T18:30:50.907Z" },
{ url = "https://files.pythonhosted.org/packages/e4/bb/71e35fc3ed05af6834e890edb75968e2802fe98778971ab5cba20a162315/pydantic_core-2.33.2-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:4b25d91e288e2c4e0662b8038a28c6a07eaac3e196cfc4ff69de4ea3db992a1b", size = 2736462, upload-time = "2025-04-23T18:30:52.083Z" },
{ url = "https://files.pythonhosted.org/packages/31/0d/c8f7593e6bc7066289bbc366f2235701dcbebcd1ff0ef8e64f6f239fb47d/pydantic_core-2.33.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6bdfe4b3789761f3bcb4b1ddf33355a71079858958e3a552f16d5af19768fef2", size = 2005652, upload-time = "2025-04-23T18:30:53.389Z" },
{ url = "https://files.pythonhosted.org/packages/d2/7a/996d8bd75f3eda405e3dd219ff5ff0a283cd8e34add39d8ef9157e722867/pydantic_core-2.33.2-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:efec8db3266b76ef9607c2c4c419bdb06bf335ae433b80816089ea7585816f6a", size = 2113306, upload-time = "2025-04-23T18:30:54.661Z" },
{ url = "https://files.pythonhosted.org/packages/ff/84/daf2a6fb2db40ffda6578a7e8c5a6e9c8affb251a05c233ae37098118788/pydantic_core-2.33.2-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:031c57d67ca86902726e0fae2214ce6770bbe2f710dc33063187a68744a5ecac", size = 2073720, upload-time = "2025-04-23T18:30:56.11Z" },
{ url = "https://files.pythonhosted.org/packages/77/fb/2258da019f4825128445ae79456a5499c032b55849dbd5bed78c95ccf163/pydantic_core-2.33.2-cp310-cp310-musllinux_1_1_armv7l.whl", hash = "sha256:f8de619080e944347f5f20de29a975c2d815d9ddd8be9b9b7268e2e3ef68605a", size = 2244915, upload-time = "2025-04-23T18:30:57.501Z" },
{ url = "https://files.pythonhosted.org/packages/d8/7a/925ff73756031289468326e355b6fa8316960d0d65f8b5d6b3a3e7866de7/pydantic_core-2.33.2-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:73662edf539e72a9440129f231ed3757faab89630d291b784ca99237fb94db2b", size = 2241884, upload-time = "2025-04-23T18:30:58.867Z" },
{ url = "https://files.pythonhosted.org/packages/0b/b0/249ee6d2646f1cdadcb813805fe76265745c4010cf20a8eba7b0e639d9b2/pydantic_core-2.33.2-cp310-cp310-win32.whl", hash = "sha256:0a39979dcbb70998b0e505fb1556a1d550a0781463ce84ebf915ba293ccb7e22", size = 1910496, upload-time = "2025-04-23T18:31:00.078Z" },
{ url = "https://files.pythonhosted.org/packages/66/ff/172ba8f12a42d4b552917aa65d1f2328990d3ccfc01d5b7c943ec084299f/pydantic_core-2.33.2-cp310-cp310-win_amd64.whl", hash = "sha256:b0379a2b24882fef529ec3b4987cb5d003b9cda32256024e6fe1586ac45fc640", size = 1955019, upload-time = "2025-04-23T18:31:01.335Z" },
{ url = "https://files.pythonhosted.org/packages/3f/8d/71db63483d518cbbf290261a1fc2839d17ff89fce7089e08cad07ccfce67/pydantic_core-2.33.2-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:4c5b0a576fb381edd6d27f0a85915c6daf2f8138dc5c267a57c08a62900758c7", size = 2028584, upload-time = "2025-04-23T18:31:03.106Z" },
{ url = "https://files.pythonhosted.org/packages/24/2f/3cfa7244ae292dd850989f328722d2aef313f74ffc471184dc509e1e4e5a/pydantic_core-2.33.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:e799c050df38a639db758c617ec771fd8fb7a5f8eaaa4b27b101f266b216a246", size = 1855071, upload-time = "2025-04-23T18:31:04.621Z" },
{ url = "https://files.pythonhosted.org/packages/b3/d3/4ae42d33f5e3f50dd467761304be2fa0a9417fbf09735bc2cce003480f2a/pydantic_core-2.33.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:dc46a01bf8d62f227d5ecee74178ffc448ff4e5197c756331f71efcc66dc980f", size = 1897823, upload-time = "2025-04-23T18:31:06.377Z" },
{ url = "https://files.pythonhosted.org/packages/f4/f3/aa5976e8352b7695ff808599794b1fba2a9ae2ee954a3426855935799488/pydantic_core-2.33.2-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:a144d4f717285c6d9234a66778059f33a89096dfb9b39117663fd8413d582dcc", size = 1983792, upload-time = "2025-04-23T18:31:07.93Z" },
{ url = "https://files.pythonhosted.org/packages/d5/7a/cda9b5a23c552037717f2b2a5257e9b2bfe45e687386df9591eff7b46d28/pydantic_core-2.33.2-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:73cf6373c21bc80b2e0dc88444f41ae60b2f070ed02095754eb5a01df12256de", size = 2136338, upload-time = "2025-04-23T18:31:09.283Z" },
{ url = "https://files.pythonhosted.org/packages/2b/9f/b8f9ec8dd1417eb9da784e91e1667d58a2a4a7b7b34cf4af765ef663a7e5/pydantic_core-2.33.2-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:3dc625f4aa79713512d1976fe9f0bc99f706a9dee21dfd1810b4bbbf228d0e8a", size = 2730998, upload-time = "2025-04-23T18:31:11.7Z" },
{ url = "https://files.pythonhosted.org/packages/47/bc/cd720e078576bdb8255d5032c5d63ee5c0bf4b7173dd955185a1d658c456/pydantic_core-2.33.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:881b21b5549499972441da4758d662aeea93f1923f953e9cbaff14b8b9565aef", size = 2003200, upload-time = "2025-04-23T18:31:13.536Z" },
{ url = "https://files.pythonhosted.org/packages/ca/22/3602b895ee2cd29d11a2b349372446ae9727c32e78a94b3d588a40fdf187/pydantic_core-2.33.2-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:bdc25f3681f7b78572699569514036afe3c243bc3059d3942624e936ec93450e", size = 2113890, upload-time = "2025-04-23T18:31:15.011Z" },
{ url = "https://files.pythonhosted.org/packages/ff/e6/e3c5908c03cf00d629eb38393a98fccc38ee0ce8ecce32f69fc7d7b558a7/pydantic_core-2.33.2-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:fe5b32187cbc0c862ee201ad66c30cf218e5ed468ec8dc1cf49dec66e160cc4d", size = 2073359, upload-time = "2025-04-23T18:31:16.393Z" },
{ url = "https://files.pythonhosted.org/packages/12/e7/6a36a07c59ebefc8777d1ffdaf5ae71b06b21952582e4b07eba88a421c79/pydantic_core-2.33.2-cp311-cp311-musllinux_1_1_armv7l.whl", hash = "sha256:bc7aee6f634a6f4a95676fcb5d6559a2c2a390330098dba5e5a5f28a2e4ada30", size = 2245883, upload-time = "2025-04-23T18:31:17.892Z" },
{ url = "https://files.pythonhosted.org/packages/16/3f/59b3187aaa6cc0c1e6616e8045b284de2b6a87b027cce2ffcea073adf1d2/pydantic_core-2.33.2-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:235f45e5dbcccf6bd99f9f472858849f73d11120d76ea8707115415f8e5ebebf", size = 2241074, upload-time = "2025-04-23T18:31:19.205Z" },
{ url = "https://files.pythonhosted.org/packages/e0/ed/55532bb88f674d5d8f67ab121a2a13c385df382de2a1677f30ad385f7438/pydantic_core-2.33.2-cp311-cp311-win32.whl", hash = "sha256:6368900c2d3ef09b69cb0b913f9f8263b03786e5b2a387706c5afb66800efd51", size = 1910538, upload-time = "2025-04-23T18:31:20.541Z" },
{ url = "https://files.pythonhosted.org/packages/fe/1b/25b7cccd4519c0b23c2dd636ad39d381abf113085ce4f7bec2b0dc755eb1/pydantic_core-2.33.2-cp311-cp311-win_amd64.whl", hash = "sha256:1e063337ef9e9820c77acc768546325ebe04ee38b08703244c1309cccc4f1bab", size = 1952909, upload-time = "2025-04-23T18:31:22.371Z" },
{ url = "https://files.pythonhosted.org/packages/49/a9/d809358e49126438055884c4366a1f6227f0f84f635a9014e2deb9b9de54/pydantic_core-2.33.2-cp311-cp311-win_arm64.whl", hash = "sha256:6b99022f1d19bc32a4c2a0d544fc9a76e3be90f0b3f4af413f87d38749300e65", size = 1897786, upload-time = "2025-04-23T18:31:24.161Z" },
{ url = "https://files.pythonhosted.org/packages/18/8a/2b41c97f554ec8c71f2a8a5f85cb56a8b0956addfe8b0efb5b3d77e8bdc3/pydantic_core-2.33.2-cp312-cp312-macosx_10_12_x86_64.whl", hash = "sha256:a7ec89dc587667f22b6a0b6579c249fca9026ce7c333fc142ba42411fa243cdc", size = 2009000, upload-time = "2025-04-23T18:31:25.863Z" },
{ url = "https://files.pythonhosted.org/packages/a1/02/6224312aacb3c8ecbaa959897af57181fb6cf3a3d7917fd44d0f2917e6f2/pydantic_core-2.33.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:3c6db6e52c6d70aa0d00d45cdb9b40f0433b96380071ea80b09277dba021ddf7", size = 1847996, upload-time = "2025-04-23T18:31:27.341Z" },
{ url = "https://files.pythonhosted.org/packages/d6/46/6dcdf084a523dbe0a0be59d054734b86a981726f221f4562aed313dbcb49/pydantic_core-2.33.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4e61206137cbc65e6d5256e1166f88331d3b6238e082d9f74613b9b765fb9025", size = 1880957, upload-time = "2025-04-23T18:31:28.956Z" },
{ url = "https://files.pythonhosted.org/packages/ec/6b/1ec2c03837ac00886ba8160ce041ce4e325b41d06a034adbef11339ae422/pydantic_core-2.33.2-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:eb8c529b2819c37140eb51b914153063d27ed88e3bdc31b71198a198e921e011", size = 1964199, upload-time = "2025-04-23T18:31:31.025Z" },
{ url = "https://files.pythonhosted.org/packages/2d/1d/6bf34d6adb9debd9136bd197ca72642203ce9aaaa85cfcbfcf20f9696e83/pydantic_core-2.33.2-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:c52b02ad8b4e2cf14ca7b3d918f3eb0ee91e63b3167c32591e57c4317e134f8f", size = 2120296, upload-time = "2025-04-23T18:31:32.514Z" },
{ url = "https://files.pythonhosted.org/packages/e0/94/2bd0aaf5a591e974b32a9f7123f16637776c304471a0ab33cf263cf5591a/pydantic_core-2.33.2-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:96081f1605125ba0855dfda83f6f3df5ec90c61195421ba72223de35ccfb2f88", size = 2676109, upload-time = "2025-04-23T18:31:33.958Z" },
{ url = "https://files.pythonhosted.org/packages/f9/41/4b043778cf9c4285d59742281a769eac371b9e47e35f98ad321349cc5d61/pydantic_core-2.33.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8f57a69461af2a5fa6e6bbd7a5f60d3b7e6cebb687f55106933188e79ad155c1", size = 2002028, upload-time = "2025-04-23T18:31:39.095Z" },
{ url = "https://files.pythonhosted.org/packages/cb/d5/7bb781bf2748ce3d03af04d5c969fa1308880e1dca35a9bd94e1a96a922e/pydantic_core-2.33.2-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:572c7e6c8bb4774d2ac88929e3d1f12bc45714ae5ee6d9a788a9fb35e60bb04b", size = 2100044, upload-time = "2025-04-23T18:31:41.034Z" },
{ url = "https://files.pythonhosted.org/packages/fe/36/def5e53e1eb0ad896785702a5bbfd25eed546cdcf4087ad285021a90ed53/pydantic_core-2.33.2-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:db4b41f9bd95fbe5acd76d89920336ba96f03e149097365afe1cb092fceb89a1", size = 2058881, upload-time = "2025-04-23T18:31:42.757Z" },
{ url = "https://files.pythonhosted.org/packages/01/6c/57f8d70b2ee57fc3dc8b9610315949837fa8c11d86927b9bb044f8705419/pydantic_core-2.33.2-cp312-cp312-musllinux_1_1_armv7l.whl", hash = "sha256:fa854f5cf7e33842a892e5c73f45327760bc7bc516339fda888c75ae60edaeb6", size = 2227034, upload-time = "2025-04-23T18:31:44.304Z" },
{ url = "https://files.pythonhosted.org/packages/27/b9/9c17f0396a82b3d5cbea4c24d742083422639e7bb1d5bf600e12cb176a13/pydantic_core-2.33.2-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:5f483cfb75ff703095c59e365360cb73e00185e01aaea067cd19acffd2ab20ea", size = 2234187, upload-time = "2025-04-23T18:31:45.891Z" },
{ url = "https://files.pythonhosted.org/packages/b0/6a/adf5734ffd52bf86d865093ad70b2ce543415e0e356f6cacabbc0d9ad910/pydantic_core-2.33.2-cp312-cp312-win32.whl", hash = "sha256:9cb1da0f5a471435a7bc7e439b8a728e8b61e59784b2af70d7c169f8dd8ae290", size = 1892628, upload-time = "2025-04-23T18:31:47.819Z" },
{ url = "https://files.pythonhosted.org/packages/43/e4/5479fecb3606c1368d496a825d8411e126133c41224c1e7238be58b87d7e/pydantic_core-2.33.2-cp312-cp312-win_amd64.whl", hash = "sha256:f941635f2a3d96b2973e867144fde513665c87f13fe0e193c158ac51bfaaa7b2", size = 1955866, upload-time = "2025-04-23T18:31:49.635Z" },
{ url = "https://files.pythonhosted.org/packages/0d/24/8b11e8b3e2be9dd82df4b11408a67c61bb4dc4f8e11b5b0fc888b38118b5/pydantic_core-2.33.2-cp312-cp312-win_arm64.whl", hash = "sha256:cca3868ddfaccfbc4bfb1d608e2ccaaebe0ae628e1416aeb9c4d88c001bb45ab", size = 1888894, upload-time = "2025-04-23T18:31:51.609Z" },
{ url = "https://files.pythonhosted.org/packages/46/8c/99040727b41f56616573a28771b1bfa08a3d3fe74d3d513f01251f79f172/pydantic_core-2.33.2-cp313-cp313-macosx_10_12_x86_64.whl", hash = "sha256:1082dd3e2d7109ad8b7da48e1d4710c8d06c253cbc4a27c1cff4fbcaa97a9e3f", size = 2015688, upload-time = "2025-04-23T18:31:53.175Z" },
{ url = "https://files.pythonhosted.org/packages/3a/cc/5999d1eb705a6cefc31f0b4a90e9f7fc400539b1a1030529700cc1b51838/pydantic_core-2.33.2-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:f517ca031dfc037a9c07e748cefd8d96235088b83b4f4ba8939105d20fa1dcd6", size = 1844808, upload-time = "2025-04-23T18:31:54.79Z" },
{ url = "https://files.pythonhosted.org/packages/6f/5e/a0a7b8885c98889a18b6e376f344da1ef323d270b44edf8174d6bce4d622/pydantic_core-2.33.2-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0a9f2c9dd19656823cb8250b0724ee9c60a82f3cdf68a080979d13092a3b0fef", size = 1885580, upload-time = "2025-04-23T18:31:57.393Z" },
{ url = "https://files.pythonhosted.org/packages/3b/2a/953581f343c7d11a304581156618c3f592435523dd9d79865903272c256a/pydantic_core-2.33.2-cp313-cp313-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:2b0a451c263b01acebe51895bfb0e1cc842a5c666efe06cdf13846c7418caa9a", size = 1973859, upload-time = "2025-04-23T18:31:59.065Z" },
{ url = "https://files.pythonhosted.org/packages/e6/55/f1a813904771c03a3f97f676c62cca0c0a4138654107c1b61f19c644868b/pydantic_core-2.33.2-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:1ea40a64d23faa25e62a70ad163571c0b342b8bf66d5fa612ac0dec4f069d916", size = 2120810, upload-time = "2025-04-23T18:32:00.78Z" },
{ url = "https://files.pythonhosted.org/packages/aa/c3/053389835a996e18853ba107a63caae0b9deb4a276c6b472931ea9ae6e48/pydantic_core-2.33.2-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:0fb2d542b4d66f9470e8065c5469ec676978d625a8b7a363f07d9a501a9cb36a", size = 2676498, upload-time = "2025-04-23T18:32:02.418Z" },
{ url = "https://files.pythonhosted.org/packages/eb/3c/f4abd740877a35abade05e437245b192f9d0ffb48bbbbd708df33d3cda37/pydantic_core-2.33.2-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9fdac5d6ffa1b5a83bca06ffe7583f5576555e6c8b3a91fbd25ea7780f825f7d", size = 2000611, upload-time = "2025-04-23T18:32:04.152Z" },
{ url = "https://files.pythonhosted.org/packages/59/a7/63ef2fed1837d1121a894d0ce88439fe3e3b3e48c7543b2a4479eb99c2bd/pydantic_core-2.33.2-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:04a1a413977ab517154eebb2d326da71638271477d6ad87a769102f7c2488c56", size = 2107924, upload-time = "2025-04-23T18:32:06.129Z" },
{ url = "https://files.pythonhosted.org/packages/04/8f/2551964ef045669801675f1cfc3b0d74147f4901c3ffa42be2ddb1f0efc4/pydantic_core-2.33.2-cp313-cp313-musllinux_1_1_aarch64.whl", hash = "sha256:c8e7af2f4e0194c22b5b37205bfb293d166a7344a5b0d0eaccebc376546d77d5", size = 2063196, upload-time = "2025-04-23T18:32:08.178Z" },
{ url = "https://files.pythonhosted.org/packages/26/bd/d9602777e77fc6dbb0c7db9ad356e9a985825547dce5ad1d30ee04903918/pydantic_core-2.33.2-cp313-cp313-musllinux_1_1_armv7l.whl", hash = "sha256:5c92edd15cd58b3c2d34873597a1e20f13094f59cf88068adb18947df5455b4e", size = 2236389, upload-time = "2025-04-23T18:32:10.242Z" },
{ url = "https://files.pythonhosted.org/packages/42/db/0e950daa7e2230423ab342ae918a794964b053bec24ba8af013fc7c94846/pydantic_core-2.33.2-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:65132b7b4a1c0beded5e057324b7e16e10910c106d43675d9bd87d4f38dde162", size = 2239223, upload-time = "2025-04-23T18:32:12.382Z" },
{ url = "https://files.pythonhosted.org/packages/58/4d/4f937099c545a8a17eb52cb67fe0447fd9a373b348ccfa9a87f141eeb00f/pydantic_core-2.33.2-cp313-cp313-win32.whl", hash = "sha256:52fb90784e0a242bb96ec53f42196a17278855b0f31ac7c3cc6f5c1ec4811849", size = 1900473, upload-time = "2025-04-23T18:32:14.034Z" },
{ url = "https://files.pythonhosted.org/packages/a0/75/4a0a9bac998d78d889def5e4ef2b065acba8cae8c93696906c3a91f310ca/pydantic_core-2.33.2-cp313-cp313-win_amd64.whl", hash = "sha256:c083a3bdd5a93dfe480f1125926afcdbf2917ae714bdb80b36d34318b2bec5d9", size = 1955269, upload-time = "2025-04-23T18:32:15.783Z" },
{ url = "https://files.pythonhosted.org/packages/f9/86/1beda0576969592f1497b4ce8e7bc8cbdf614c352426271b1b10d5f0aa64/pydantic_core-2.33.2-cp313-cp313-win_arm64.whl", hash = "sha256:e80b087132752f6b3d714f041ccf74403799d3b23a72722ea2e6ba2e892555b9", size = 1893921, upload-time = "2025-04-23T18:32:18.473Z" },
{ url = "https://files.pythonhosted.org/packages/a4/7d/e09391c2eebeab681df2b74bfe6c43422fffede8dc74187b2b0bf6fd7571/pydantic_core-2.33.2-cp313-cp313t-macosx_11_0_arm64.whl", hash = "sha256:61c18fba8e5e9db3ab908620af374db0ac1baa69f0f32df4f61ae23f15e586ac", size = 1806162, upload-time = "2025-04-23T18:32:20.188Z" },
{ url = "https://files.pythonhosted.org/packages/f1/3d/847b6b1fed9f8ed3bb95a9ad04fbd0b212e832d4f0f50ff4d9ee5a9f15cf/pydantic_core-2.33.2-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:95237e53bb015f67b63c91af7518a62a8660376a6a0db19b89acc77a4d6199f5", size = 1981560, upload-time = "2025-04-23T18:32:22.354Z" },
{ url = "https://files.pythonhosted.org/packages/6f/9a/e73262f6c6656262b5fdd723ad90f518f579b7bc8622e43a942eec53c938/pydantic_core-2.33.2-cp313-cp313t-win_amd64.whl", hash = "sha256:c2fc0a768ef76c15ab9238afa6da7f69895bb5d1ee83aeea2e3509af4472d0b9", size = 1935777, upload-time = "2025-04-23T18:32:25.088Z" },
{ url = "https://files.pythonhosted.org/packages/30/68/373d55e58b7e83ce371691f6eaa7175e3a24b956c44628eb25d7da007917/pydantic_core-2.33.2-pp310-pypy310_pp73-macosx_10_12_x86_64.whl", hash = "sha256:5c4aa4e82353f65e548c476b37e64189783aa5384903bfea4f41580f255fddfa", size = 2023982, upload-time = "2025-04-23T18:32:53.14Z" },
{ url = "https://files.pythonhosted.org/packages/a4/16/145f54ac08c96a63d8ed6442f9dec17b2773d19920b627b18d4f10a061ea/pydantic_core-2.33.2-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:d946c8bf0d5c24bf4fe333af284c59a19358aa3ec18cb3dc4370080da1e8ad29", size = 1858412, upload-time = "2025-04-23T18:32:55.52Z" },
{ url = "https://files.pythonhosted.org/packages/41/b1/c6dc6c3e2de4516c0bb2c46f6a373b91b5660312342a0cf5826e38ad82fa/pydantic_core-2.33.2-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:87b31b6846e361ef83fedb187bb5b4372d0da3f7e28d85415efa92d6125d6e6d", size = 1892749, upload-time = "2025-04-23T18:32:57.546Z" },
{ url = "https://files.pythonhosted.org/packages/12/73/8cd57e20afba760b21b742106f9dbdfa6697f1570b189c7457a1af4cd8a0/pydantic_core-2.33.2-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:aa9d91b338f2df0508606f7009fde642391425189bba6d8c653afd80fd6bb64e", size = 2067527, upload-time = "2025-04-23T18:32:59.771Z" },
{ url = "https://files.pythonhosted.org/packages/e3/d5/0bb5d988cc019b3cba4a78f2d4b3854427fc47ee8ec8e9eaabf787da239c/pydantic_core-2.33.2-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:2058a32994f1fde4ca0480ab9d1e75a0e8c87c22b53a3ae66554f9af78f2fe8c", size = 2108225, upload-time = "2025-04-23T18:33:04.51Z" },
{ url = "https://files.pythonhosted.org/packages/f1/c5/00c02d1571913d496aabf146106ad8239dc132485ee22efe08085084ff7c/pydantic_core-2.33.2-pp310-pypy310_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:0e03262ab796d986f978f79c943fc5f620381be7287148b8010b4097f79a39ec", size = 2069490, upload-time = "2025-04-23T18:33:06.391Z" },
{ url = "https://files.pythonhosted.org/packages/22/a8/dccc38768274d3ed3a59b5d06f59ccb845778687652daa71df0cab4040d7/pydantic_core-2.33.2-pp310-pypy310_pp73-musllinux_1_1_armv7l.whl", hash = "sha256:1a8695a8d00c73e50bff9dfda4d540b7dee29ff9b8053e38380426a85ef10052", size = 2237525, upload-time = "2025-04-23T18:33:08.44Z" },
{ url = "https://files.pythonhosted.org/packages/d4/e7/4f98c0b125dda7cf7ccd14ba936218397b44f50a56dd8c16a3091df116c3/pydantic_core-2.33.2-pp310-pypy310_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:fa754d1850735a0b0e03bcffd9d4b4343eb417e47196e4485d9cca326073a42c", size = 2238446, upload-time = "2025-04-23T18:33:10.313Z" },
{ url = "https://files.pythonhosted.org/packages/ce/91/2ec36480fdb0b783cd9ef6795753c1dea13882f2e68e73bce76ae8c21e6a/pydantic_core-2.33.2-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:a11c8d26a50bfab49002947d3d237abe4d9e4b5bdc8846a63537b6488e197808", size = 2066678, upload-time = "2025-04-23T18:33:12.224Z" },
{ url = "https://files.pythonhosted.org/packages/7b/27/d4ae6487d73948d6f20dddcd94be4ea43e74349b56eba82e9bdee2d7494c/pydantic_core-2.33.2-pp311-pypy311_pp73-macosx_10_12_x86_64.whl", hash = "sha256:dd14041875d09cc0f9308e37a6f8b65f5585cf2598a53aa0123df8b129d481f8", size = 2025200, upload-time = "2025-04-23T18:33:14.199Z" },
{ url = "https://files.pythonhosted.org/packages/f1/b8/b3cb95375f05d33801024079b9392a5ab45267a63400bf1866e7ce0f0de4/pydantic_core-2.33.2-pp311-pypy311_pp73-macosx_11_0_arm64.whl", hash = "sha256:d87c561733f66531dced0da6e864f44ebf89a8fba55f31407b00c2f7f9449593", size = 1859123, upload-time = "2025-04-23T18:33:16.555Z" },
{ url = "https://files.pythonhosted.org/packages/05/bc/0d0b5adeda59a261cd30a1235a445bf55c7e46ae44aea28f7bd6ed46e091/pydantic_core-2.33.2-pp311-pypy311_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2f82865531efd18d6e07a04a17331af02cb7a651583c418df8266f17a63c6612", size = 1892852, upload-time = "2025-04-23T18:33:18.513Z" },
{ url = "https://files.pythonhosted.org/packages/3e/11/d37bdebbda2e449cb3f519f6ce950927b56d62f0b84fd9cb9e372a26a3d5/pydantic_core-2.33.2-pp311-pypy311_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2bfb5112df54209d820d7bf9317c7a6c9025ea52e49f46b6a2060104bba37de7", size = 2067484, upload-time = "2025-04-23T18:33:20.475Z" },
{ url = "https://files.pythonhosted.org/packages/8c/55/1f95f0a05ce72ecb02a8a8a1c3be0579bbc29b1d5ab68f1378b7bebc5057/pydantic_core-2.33.2-pp311-pypy311_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:64632ff9d614e5eecfb495796ad51b0ed98c453e447a76bcbeeb69615079fc7e", size = 2108896, upload-time = "2025-04-23T18:33:22.501Z" },
{ url = "https://files.pythonhosted.org/packages/53/89/2b2de6c81fa131f423246a9109d7b2a375e83968ad0800d6e57d0574629b/pydantic_core-2.33.2-pp311-pypy311_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:f889f7a40498cc077332c7ab6b4608d296d852182211787d4f3ee377aaae66e8", size = 2069475, upload-time = "2025-04-23T18:33:24.528Z" },
{ url = "https://files.pythonhosted.org/packages/b8/e9/1f7efbe20d0b2b10f6718944b5d8ece9152390904f29a78e68d4e7961159/pydantic_core-2.33.2-pp311-pypy311_pp73-musllinux_1_1_armv7l.whl", hash = "sha256:de4b83bb311557e439b9e186f733f6c645b9417c84e2eb8203f3f820a4b988bf", size = 2239013, upload-time = "2025-04-23T18:33:26.621Z" },
{ url = "https://files.pythonhosted.org/packages/3c/b2/5309c905a93811524a49b4e031e9851a6b00ff0fb668794472ea7746b448/pydantic_core-2.33.2-pp311-pypy311_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:82f68293f055f51b51ea42fafc74b6aad03e70e191799430b90c13d643059ebb", size = 2238715, upload-time = "2025-04-23T18:33:28.656Z" },
{ url = "https://files.pythonhosted.org/packages/32/56/8a7ca5d2cd2cda1d245d34b1c9a942920a718082ae8e54e5f3e5a58b7add/pydantic_core-2.33.2-pp311-pypy311_pp73-win_amd64.whl", hash = "sha256:329467cecfb529c925cf2bbd4d60d2c509bc2fb52a20c1045bf09bb70971a9c1", size = 2066757, upload-time = "2025-04-23T18:33:30.645Z" },
{ url = "https://files.pythonhosted.org/packages/a7/3d/9b8ca77b0f76fcdbf8bc6b72474e264283f461284ca84ac3fde570c6c49a/pydantic_core-2.41.4-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:2442d9a4d38f3411f22eb9dd0912b7cbf4b7d5b6c92c4173b75d3e1ccd84e36e", size = 2111197, upload-time = "2025-10-14T10:19:43.303Z" },
{ url = "https://files.pythonhosted.org/packages/59/92/b7b0fe6ed4781642232755cb7e56a86e2041e1292f16d9ae410a0ccee5ac/pydantic_core-2.41.4-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:30a9876226dda131a741afeab2702e2d127209bde3c65a2b8133f428bc5d006b", size = 1917909, upload-time = "2025-10-14T10:19:45.194Z" },
{ url = "https://files.pythonhosted.org/packages/52/8c/3eb872009274ffa4fb6a9585114e161aa1a0915af2896e2d441642929fe4/pydantic_core-2.41.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d55bbac04711e2980645af68b97d445cdbcce70e5216de444a6c4b6943ebcccd", size = 1969905, upload-time = "2025-10-14T10:19:46.567Z" },
{ url = "https://files.pythonhosted.org/packages/f4/21/35adf4a753bcfaea22d925214a0c5b880792e3244731b3f3e6fec0d124f7/pydantic_core-2.41.4-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:e1d778fb7849a42d0ee5927ab0f7453bf9f85eef8887a546ec87db5ddb178945", size = 2051938, upload-time = "2025-10-14T10:19:48.237Z" },
{ url = "https://files.pythonhosted.org/packages/7d/d0/cdf7d126825e36d6e3f1eccf257da8954452934ede275a8f390eac775e89/pydantic_core-2.41.4-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:1b65077a4693a98b90ec5ad8f203ad65802a1b9b6d4a7e48066925a7e1606706", size = 2250710, upload-time = "2025-10-14T10:19:49.619Z" },
{ url = "https://files.pythonhosted.org/packages/2e/1c/af1e6fd5ea596327308f9c8d1654e1285cc3d8de0d584a3c9d7705bf8a7c/pydantic_core-2.41.4-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:62637c769dee16eddb7686bf421be48dfc2fae93832c25e25bc7242e698361ba", size = 2367445, upload-time = "2025-10-14T10:19:51.269Z" },
{ url = "https://files.pythonhosted.org/packages/d3/81/8cece29a6ef1b3a92f956ea6da6250d5b2d2e7e4d513dd3b4f0c7a83dfea/pydantic_core-2.41.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2dfe3aa529c8f501babf6e502936b9e8d4698502b2cfab41e17a028d91b1ac7b", size = 2072875, upload-time = "2025-10-14T10:19:52.671Z" },
{ url = "https://files.pythonhosted.org/packages/e3/37/a6a579f5fc2cd4d5521284a0ab6a426cc6463a7b3897aeb95b12f1ba607b/pydantic_core-2.41.4-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:ca2322da745bf2eeb581fc9ea3bbb31147702163ccbcbf12a3bb630e4bf05e1d", size = 2191329, upload-time = "2025-10-14T10:19:54.214Z" },
{ url = "https://files.pythonhosted.org/packages/ae/03/505020dc5c54ec75ecba9f41119fd1e48f9e41e4629942494c4a8734ded1/pydantic_core-2.41.4-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:e8cd3577c796be7231dcf80badcf2e0835a46665eaafd8ace124d886bab4d700", size = 2151658, upload-time = "2025-10-14T10:19:55.843Z" },
{ url = "https://files.pythonhosted.org/packages/cb/5d/2c0d09fb53aa03bbd2a214d89ebfa6304be7df9ed86ee3dc7770257f41ee/pydantic_core-2.41.4-cp310-cp310-musllinux_1_1_armv7l.whl", hash = "sha256:1cae8851e174c83633f0833e90636832857297900133705ee158cf79d40f03e6", size = 2316777, upload-time = "2025-10-14T10:19:57.607Z" },
{ url = "https://files.pythonhosted.org/packages/ea/4b/c2c9c8f5e1f9c864b57d08539d9d3db160e00491c9f5ee90e1bfd905e644/pydantic_core-2.41.4-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:a26d950449aae348afe1ac8be5525a00ae4235309b729ad4d3399623125b43c9", size = 2320705, upload-time = "2025-10-14T10:19:59.016Z" },
{ url = "https://files.pythonhosted.org/packages/28/c3/a74c1c37f49c0a02c89c7340fafc0ba816b29bd495d1a31ce1bdeacc6085/pydantic_core-2.41.4-cp310-cp310-win32.whl", hash = "sha256:0cf2a1f599efe57fa0051312774280ee0f650e11152325e41dfd3018ef2c1b57", size = 1975464, upload-time = "2025-10-14T10:20:00.581Z" },
{ url = "https://files.pythonhosted.org/packages/d6/23/5dd5c1324ba80303368f7569e2e2e1a721c7d9eb16acb7eb7b7f85cb1be2/pydantic_core-2.41.4-cp310-cp310-win_amd64.whl", hash = "sha256:a8c2e340d7e454dc3340d3d2e8f23558ebe78c98aa8f68851b04dcb7bc37abdc", size = 2024497, upload-time = "2025-10-14T10:20:03.018Z" },
{ url = "https://files.pythonhosted.org/packages/62/4c/f6cbfa1e8efacd00b846764e8484fe173d25b8dab881e277a619177f3384/pydantic_core-2.41.4-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:28ff11666443a1a8cf2a044d6a545ebffa8382b5f7973f22c36109205e65dc80", size = 2109062, upload-time = "2025-10-14T10:20:04.486Z" },
{ url = "https://files.pythonhosted.org/packages/21/f8/40b72d3868896bfcd410e1bd7e516e762d326201c48e5b4a06446f6cf9e8/pydantic_core-2.41.4-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:61760c3925d4633290292bad462e0f737b840508b4f722247d8729684f6539ae", size = 1916301, upload-time = "2025-10-14T10:20:06.857Z" },
{ url = "https://files.pythonhosted.org/packages/94/4d/d203dce8bee7faeca791671c88519969d98d3b4e8f225da5b96dad226fc8/pydantic_core-2.41.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:eae547b7315d055b0de2ec3965643b0ab82ad0106a7ffd29615ee9f266a02827", size = 1968728, upload-time = "2025-10-14T10:20:08.353Z" },
{ url = "https://files.pythonhosted.org/packages/65/f5/6a66187775df87c24d526985b3a5d78d861580ca466fbd9d4d0e792fcf6c/pydantic_core-2.41.4-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:ef9ee5471edd58d1fcce1c80ffc8783a650e3e3a193fe90d52e43bb4d87bff1f", size = 2050238, upload-time = "2025-10-14T10:20:09.766Z" },
{ url = "https://files.pythonhosted.org/packages/5e/b9/78336345de97298cf53236b2f271912ce11f32c1e59de25a374ce12f9cce/pydantic_core-2.41.4-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:15dd504af121caaf2c95cb90c0ebf71603c53de98305621b94da0f967e572def", size = 2249424, upload-time = "2025-10-14T10:20:11.732Z" },
{ url = "https://files.pythonhosted.org/packages/99/bb/a4584888b70ee594c3d374a71af5075a68654d6c780369df269118af7402/pydantic_core-2.41.4-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:3a926768ea49a8af4d36abd6a8968b8790f7f76dd7cbd5a4c180db2b4ac9a3a2", size = 2366047, upload-time = "2025-10-14T10:20:13.647Z" },
{ url = "https://files.pythonhosted.org/packages/5f/8d/17fc5de9d6418e4d2ae8c675f905cdafdc59d3bf3bf9c946b7ab796a992a/pydantic_core-2.41.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6916b9b7d134bff5440098a4deb80e4cb623e68974a87883299de9124126c2a8", size = 2071163, upload-time = "2025-10-14T10:20:15.307Z" },
{ url = "https://files.pythonhosted.org/packages/54/e7/03d2c5c0b8ed37a4617430db68ec5e7dbba66358b629cd69e11b4d564367/pydantic_core-2.41.4-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:5cf90535979089df02e6f17ffd076f07237efa55b7343d98760bde8743c4b265", size = 2190585, upload-time = "2025-10-14T10:20:17.3Z" },
{ url = "https://files.pythonhosted.org/packages/be/fc/15d1c9fe5ad9266a5897d9b932b7f53d7e5cfc800573917a2c5d6eea56ec/pydantic_core-2.41.4-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:7533c76fa647fade2d7ec75ac5cc079ab3f34879626dae5689b27790a6cf5a5c", size = 2150109, upload-time = "2025-10-14T10:20:19.143Z" },
{ url = "https://files.pythonhosted.org/packages/26/ef/e735dd008808226c83ba56972566138665b71477ad580fa5a21f0851df48/pydantic_core-2.41.4-cp311-cp311-musllinux_1_1_armv7l.whl", hash = "sha256:37e516bca9264cbf29612539801ca3cd5d1be465f940417b002905e6ed79d38a", size = 2315078, upload-time = "2025-10-14T10:20:20.742Z" },
{ url = "https://files.pythonhosted.org/packages/90/00/806efdcf35ff2ac0f938362350cd9827b8afb116cc814b6b75cf23738c7c/pydantic_core-2.41.4-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:0c19cb355224037c83642429b8ce261ae108e1c5fbf5c028bac63c77b0f8646e", size = 2318737, upload-time = "2025-10-14T10:20:22.306Z" },
{ url = "https://files.pythonhosted.org/packages/41/7e/6ac90673fe6cb36621a2283552897838c020db343fa86e513d3f563b196f/pydantic_core-2.41.4-cp311-cp311-win32.whl", hash = "sha256:09c2a60e55b357284b5f31f5ab275ba9f7f70b7525e18a132ec1f9160b4f1f03", size = 1974160, upload-time = "2025-10-14T10:20:23.817Z" },
{ url = "https://files.pythonhosted.org/packages/e0/9d/7c5e24ee585c1f8b6356e1d11d40ab807ffde44d2db3b7dfd6d20b09720e/pydantic_core-2.41.4-cp311-cp311-win_amd64.whl", hash = "sha256:711156b6afb5cb1cb7c14a2cc2c4a8b4c717b69046f13c6b332d8a0a8f41ca3e", size = 2021883, upload-time = "2025-10-14T10:20:25.48Z" },
{ url = "https://files.pythonhosted.org/packages/33/90/5c172357460fc28b2871eb4a0fb3843b136b429c6fa827e4b588877bf115/pydantic_core-2.41.4-cp311-cp311-win_arm64.whl", hash = "sha256:6cb9cf7e761f4f8a8589a45e49ed3c0d92d1d696a45a6feaee8c904b26efc2db", size = 1968026, upload-time = "2025-10-14T10:20:27.039Z" },
{ url = "https://files.pythonhosted.org/packages/e9/81/d3b3e95929c4369d30b2a66a91db63c8ed0a98381ae55a45da2cd1cc1288/pydantic_core-2.41.4-cp312-cp312-macosx_10_12_x86_64.whl", hash = "sha256:ab06d77e053d660a6faaf04894446df7b0a7e7aba70c2797465a0a1af00fc887", size = 2099043, upload-time = "2025-10-14T10:20:28.561Z" },
{ url = "https://files.pythonhosted.org/packages/58/da/46fdac49e6717e3a94fc9201403e08d9d61aa7a770fab6190b8740749047/pydantic_core-2.41.4-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:c53ff33e603a9c1179a9364b0a24694f183717b2e0da2b5ad43c316c956901b2", size = 1910699, upload-time = "2025-10-14T10:20:30.217Z" },
{ url = "https://files.pythonhosted.org/packages/1e/63/4d948f1b9dd8e991a5a98b77dd66c74641f5f2e5225fee37994b2e07d391/pydantic_core-2.41.4-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:304c54176af2c143bd181d82e77c15c41cbacea8872a2225dd37e6544dce9999", size = 1952121, upload-time = "2025-10-14T10:20:32.246Z" },
{ url = "https://files.pythonhosted.org/packages/b2/a7/e5fc60a6f781fc634ecaa9ecc3c20171d238794cef69ae0af79ac11b89d7/pydantic_core-2.41.4-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:025ba34a4cf4fb32f917d5d188ab5e702223d3ba603be4d8aca2f82bede432a4", size = 2041590, upload-time = "2025-10-14T10:20:34.332Z" },
{ url = "https://files.pythonhosted.org/packages/70/69/dce747b1d21d59e85af433428978a1893c6f8a7068fa2bb4a927fba7a5ff/pydantic_core-2.41.4-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:b9f5f30c402ed58f90c70e12eff65547d3ab74685ffe8283c719e6bead8ef53f", size = 2219869, upload-time = "2025-10-14T10:20:35.965Z" },
{ url = "https://files.pythonhosted.org/packages/83/6a/c070e30e295403bf29c4df1cb781317b6a9bac7cd07b8d3acc94d501a63c/pydantic_core-2.41.4-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:dd96e5d15385d301733113bcaa324c8bcf111275b7675a9c6e88bfb19fc05e3b", size = 2345169, upload-time = "2025-10-14T10:20:37.627Z" },
{ url = "https://files.pythonhosted.org/packages/f0/83/06d001f8043c336baea7fd202a9ac7ad71f87e1c55d8112c50b745c40324/pydantic_core-2.41.4-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:98f348cbb44fae6e9653c1055db7e29de67ea6a9ca03a5fa2c2e11a47cff0e47", size = 2070165, upload-time = "2025-10-14T10:20:39.246Z" },
{ url = "https://files.pythonhosted.org/packages/14/0a/e567c2883588dd12bcbc110232d892cf385356f7c8a9910311ac997ab715/pydantic_core-2.41.4-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:ec22626a2d14620a83ca583c6f5a4080fa3155282718b6055c2ea48d3ef35970", size = 2189067, upload-time = "2025-10-14T10:20:41.015Z" },
{ url = "https://files.pythonhosted.org/packages/f4/1d/3d9fca34273ba03c9b1c5289f7618bc4bd09c3ad2289b5420481aa051a99/pydantic_core-2.41.4-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:3a95d4590b1f1a43bf33ca6d647b990a88f4a3824a8c4572c708f0b45a5290ed", size = 2132997, upload-time = "2025-10-14T10:20:43.106Z" },
{ url = "https://files.pythonhosted.org/packages/52/70/d702ef7a6cd41a8afc61f3554922b3ed8d19dd54c3bd4bdbfe332e610827/pydantic_core-2.41.4-cp312-cp312-musllinux_1_1_armv7l.whl", hash = "sha256:f9672ab4d398e1b602feadcffcdd3af44d5f5e6ddc15bc7d15d376d47e8e19f8", size = 2307187, upload-time = "2025-10-14T10:20:44.849Z" },
{ url = "https://files.pythonhosted.org/packages/68/4c/c06be6e27545d08b802127914156f38d10ca287a9e8489342793de8aae3c/pydantic_core-2.41.4-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:84d8854db5f55fead3b579f04bda9a36461dab0730c5d570e1526483e7bb8431", size = 2305204, upload-time = "2025-10-14T10:20:46.781Z" },
{ url = "https://files.pythonhosted.org/packages/b0/e5/35ae4919bcd9f18603419e23c5eaf32750224a89d41a8df1a3704b69f77e/pydantic_core-2.41.4-cp312-cp312-win32.whl", hash = "sha256:9be1c01adb2ecc4e464392c36d17f97e9110fbbc906bcbe1c943b5b87a74aabd", size = 1972536, upload-time = "2025-10-14T10:20:48.39Z" },
{ url = "https://files.pythonhosted.org/packages/1e/c2/49c5bb6d2a49eb2ee3647a93e3dae7080c6409a8a7558b075027644e879c/pydantic_core-2.41.4-cp312-cp312-win_amd64.whl", hash = "sha256:d682cf1d22bab22a5be08539dca3d1593488a99998f9f412137bc323179067ff", size = 2031132, upload-time = "2025-10-14T10:20:50.421Z" },
{ url = "https://files.pythonhosted.org/packages/06/23/936343dbcba6eec93f73e95eb346810fc732f71ba27967b287b66f7b7097/pydantic_core-2.41.4-cp312-cp312-win_arm64.whl", hash = "sha256:833eebfd75a26d17470b58768c1834dfc90141b7afc6eb0429c21fc5a21dcfb8", size = 1969483, upload-time = "2025-10-14T10:20:52.35Z" },
{ url = "https://files.pythonhosted.org/packages/13/d0/c20adabd181a029a970738dfe23710b52a31f1258f591874fcdec7359845/pydantic_core-2.41.4-cp313-cp313-macosx_10_12_x86_64.whl", hash = "sha256:85e050ad9e5f6fe1004eec65c914332e52f429bc0ae12d6fa2092407a462c746", size = 2105688, upload-time = "2025-10-14T10:20:54.448Z" },
{ url = "https://files.pythonhosted.org/packages/00/b6/0ce5c03cec5ae94cca220dfecddc453c077d71363b98a4bbdb3c0b22c783/pydantic_core-2.41.4-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:e7393f1d64792763a48924ba31d1e44c2cfbc05e3b1c2c9abb4ceeadd912cced", size = 1910807, upload-time = "2025-10-14T10:20:56.115Z" },
{ url = "https://files.pythonhosted.org/packages/68/3e/800d3d02c8beb0b5c069c870cbb83799d085debf43499c897bb4b4aaff0d/pydantic_core-2.41.4-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:94dab0940b0d1fb28bcab847adf887c66a27a40291eedf0b473be58761c9799a", size = 1956669, upload-time = "2025-10-14T10:20:57.874Z" },
{ url = "https://files.pythonhosted.org/packages/60/a4/24271cc71a17f64589be49ab8bd0751f6a0a03046c690df60989f2f95c2c/pydantic_core-2.41.4-cp313-cp313-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:de7c42f897e689ee6f9e93c4bec72b99ae3b32a2ade1c7e4798e690ff5246e02", size = 2051629, upload-time = "2025-10-14T10:21:00.006Z" },
{ url = "https://files.pythonhosted.org/packages/68/de/45af3ca2f175d91b96bfb62e1f2d2f1f9f3b14a734afe0bfeff079f78181/pydantic_core-2.41.4-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:664b3199193262277b8b3cd1e754fb07f2c6023289c815a1e1e8fb415cb247b1", size = 2224049, upload-time = "2025-10-14T10:21:01.801Z" },
{ url = "https://files.pythonhosted.org/packages/af/8f/ae4e1ff84672bf869d0a77af24fd78387850e9497753c432875066b5d622/pydantic_core-2.41.4-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:d95b253b88f7d308b1c0b417c4624f44553ba4762816f94e6986819b9c273fb2", size = 2342409, upload-time = "2025-10-14T10:21:03.556Z" },
{ url = "https://files.pythonhosted.org/packages/18/62/273dd70b0026a085c7b74b000394e1ef95719ea579c76ea2f0cc8893736d/pydantic_core-2.41.4-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a1351f5bbdbbabc689727cb91649a00cb9ee7203e0a6e54e9f5ba9e22e384b84", size = 2069635, upload-time = "2025-10-14T10:21:05.385Z" },
{ url = "https://files.pythonhosted.org/packages/30/03/cf485fff699b4cdaea469bc481719d3e49f023241b4abb656f8d422189fc/pydantic_core-2.41.4-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:1affa4798520b148d7182da0615d648e752de4ab1a9566b7471bc803d88a062d", size = 2194284, upload-time = "2025-10-14T10:21:07.122Z" },
{ url = "https://files.pythonhosted.org/packages/f9/7e/c8e713db32405dfd97211f2fc0a15d6bf8adb7640f3d18544c1f39526619/pydantic_core-2.41.4-cp313-cp313-musllinux_1_1_aarch64.whl", hash = "sha256:7b74e18052fea4aa8dea2fb7dbc23d15439695da6cbe6cfc1b694af1115df09d", size = 2137566, upload-time = "2025-10-14T10:21:08.981Z" },
{ url = "https://files.pythonhosted.org/packages/04/f7/db71fd4cdccc8b75990f79ccafbbd66757e19f6d5ee724a6252414483fb4/pydantic_core-2.41.4-cp313-cp313-musllinux_1_1_armv7l.whl", hash = "sha256:285b643d75c0e30abda9dc1077395624f314a37e3c09ca402d4015ef5979f1a2", size = 2316809, upload-time = "2025-10-14T10:21:10.805Z" },
{ url = "https://files.pythonhosted.org/packages/76/63/a54973ddb945f1bca56742b48b144d85c9fc22f819ddeb9f861c249d5464/pydantic_core-2.41.4-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:f52679ff4218d713b3b33f88c89ccbf3a5c2c12ba665fb80ccc4192b4608dbab", size = 2311119, upload-time = "2025-10-14T10:21:12.583Z" },
{ url = "https://files.pythonhosted.org/packages/f8/03/5d12891e93c19218af74843a27e32b94922195ded2386f7b55382f904d2f/pydantic_core-2.41.4-cp313-cp313-win32.whl", hash = "sha256:ecde6dedd6fff127c273c76821bb754d793be1024bc33314a120f83a3c69460c", size = 1981398, upload-time = "2025-10-14T10:21:14.584Z" },
{ url = "https://files.pythonhosted.org/packages/be/d8/fd0de71f39db91135b7a26996160de71c073d8635edfce8b3c3681be0d6d/pydantic_core-2.41.4-cp313-cp313-win_amd64.whl", hash = "sha256:d081a1f3800f05409ed868ebb2d74ac39dd0c1ff6c035b5162356d76030736d4", size = 2030735, upload-time = "2025-10-14T10:21:16.432Z" },
{ url = "https://files.pythonhosted.org/packages/72/86/c99921c1cf6650023c08bfab6fe2d7057a5142628ef7ccfa9921f2dda1d5/pydantic_core-2.41.4-cp313-cp313-win_arm64.whl", hash = "sha256:f8e49c9c364a7edcbe2a310f12733aad95b022495ef2a8d653f645e5d20c1564", size = 1973209, upload-time = "2025-10-14T10:21:18.213Z" },
{ url = "https://files.pythonhosted.org/packages/36/0d/b5706cacb70a8414396efdda3d72ae0542e050b591119e458e2490baf035/pydantic_core-2.41.4-cp313-cp313t-macosx_11_0_arm64.whl", hash = "sha256:ed97fd56a561f5eb5706cebe94f1ad7c13b84d98312a05546f2ad036bafe87f4", size = 1877324, upload-time = "2025-10-14T10:21:20.363Z" },
{ url = "https://files.pythonhosted.org/packages/de/2d/cba1fa02cfdea72dfb3a9babb067c83b9dff0bbcb198368e000a6b756ea7/pydantic_core-2.41.4-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a870c307bf1ee91fc58a9a61338ff780d01bfae45922624816878dce784095d2", size = 1884515, upload-time = "2025-10-14T10:21:22.339Z" },
{ url = "https://files.pythonhosted.org/packages/07/ea/3df927c4384ed9b503c9cc2d076cf983b4f2adb0c754578dfb1245c51e46/pydantic_core-2.41.4-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d25e97bc1f5f8f7985bdc2335ef9e73843bb561eb1fa6831fdfc295c1c2061cf", size = 2042819, upload-time = "2025-10-14T10:21:26.683Z" },
{ url = "https://files.pythonhosted.org/packages/6a/ee/df8e871f07074250270a3b1b82aad4cd0026b588acd5d7d3eb2fcb1471a3/pydantic_core-2.41.4-cp313-cp313t-win_amd64.whl", hash = "sha256:d405d14bea042f166512add3091c1af40437c2e7f86988f3915fabd27b1e9cd2", size = 1995866, upload-time = "2025-10-14T10:21:28.951Z" },
{ url = "https://files.pythonhosted.org/packages/fc/de/b20f4ab954d6d399499c33ec4fafc46d9551e11dc1858fb7f5dca0748ceb/pydantic_core-2.41.4-cp313-cp313t-win_arm64.whl", hash = "sha256:19f3684868309db5263a11bace3c45d93f6f24afa2ffe75a647583df22a2ff89", size = 1970034, upload-time = "2025-10-14T10:21:30.869Z" },
{ url = "https://files.pythonhosted.org/packages/54/28/d3325da57d413b9819365546eb9a6e8b7cbd9373d9380efd5f74326143e6/pydantic_core-2.41.4-cp314-cp314-macosx_10_12_x86_64.whl", hash = "sha256:e9205d97ed08a82ebb9a307e92914bb30e18cdf6f6b12ca4bedadb1588a0bfe1", size = 2102022, upload-time = "2025-10-14T10:21:32.809Z" },
{ url = "https://files.pythonhosted.org/packages/9e/24/b58a1bc0d834bf1acc4361e61233ee217169a42efbdc15a60296e13ce438/pydantic_core-2.41.4-cp314-cp314-macosx_11_0_arm64.whl", hash = "sha256:82df1f432b37d832709fbcc0e24394bba04a01b6ecf1ee87578145c19cde12ac", size = 1905495, upload-time = "2025-10-14T10:21:34.812Z" },
{ url = "https://files.pythonhosted.org/packages/fb/a4/71f759cc41b7043e8ecdaab81b985a9b6cad7cec077e0b92cff8b71ecf6b/pydantic_core-2.41.4-cp314-cp314-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:fc3b4cc4539e055cfa39a3763c939f9d409eb40e85813257dcd761985a108554", size = 1956131, upload-time = "2025-10-14T10:21:36.924Z" },
{ url = "https://files.pythonhosted.org/packages/b0/64/1e79ac7aa51f1eec7c4cda8cbe456d5d09f05fdd68b32776d72168d54275/pydantic_core-2.41.4-cp314-cp314-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:b1eb1754fce47c63d2ff57fdb88c351a6c0150995890088b33767a10218eaa4e", size = 2052236, upload-time = "2025-10-14T10:21:38.927Z" },
{ url = "https://files.pythonhosted.org/packages/e9/e3/a3ffc363bd4287b80f1d43dc1c28ba64831f8dfc237d6fec8f2661138d48/pydantic_core-2.41.4-cp314-cp314-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:e6ab5ab30ef325b443f379ddb575a34969c333004fca5a1daa0133a6ffaad616", size = 2223573, upload-time = "2025-10-14T10:21:41.574Z" },
{ url = "https://files.pythonhosted.org/packages/28/27/78814089b4d2e684a9088ede3790763c64693c3d1408ddc0a248bc789126/pydantic_core-2.41.4-cp314-cp314-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:31a41030b1d9ca497634092b46481b937ff9397a86f9f51bd41c4767b6fc04af", size = 2342467, upload-time = "2025-10-14T10:21:44.018Z" },
{ url = "https://files.pythonhosted.org/packages/92/97/4de0e2a1159cb85ad737e03306717637842c88c7fd6d97973172fb183149/pydantic_core-2.41.4-cp314-cp314-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a44ac1738591472c3d020f61c6df1e4015180d6262ebd39bf2aeb52571b60f12", size = 2063754, upload-time = "2025-10-14T10:21:46.466Z" },
{ url = "https://files.pythonhosted.org/packages/0f/50/8cb90ce4b9efcf7ae78130afeb99fd1c86125ccdf9906ef64b9d42f37c25/pydantic_core-2.41.4-cp314-cp314-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:d72f2b5e6e82ab8f94ea7d0d42f83c487dc159c5240d8f83beae684472864e2d", size = 2196754, upload-time = "2025-10-14T10:21:48.486Z" },
{ url = "https://files.pythonhosted.org/packages/34/3b/ccdc77af9cd5082723574a1cc1bcae7a6acacc829d7c0a06201f7886a109/pydantic_core-2.41.4-cp314-cp314-musllinux_1_1_aarch64.whl", hash = "sha256:c4d1e854aaf044487d31143f541f7aafe7b482ae72a022c664b2de2e466ed0ad", size = 2137115, upload-time = "2025-10-14T10:21:50.63Z" },
{ url = "https://files.pythonhosted.org/packages/ca/ba/e7c7a02651a8f7c52dc2cff2b64a30c313e3b57c7d93703cecea76c09b71/pydantic_core-2.41.4-cp314-cp314-musllinux_1_1_armv7l.whl", hash = "sha256:b568af94267729d76e6ee5ececda4e283d07bbb28e8148bb17adad93d025d25a", size = 2317400, upload-time = "2025-10-14T10:21:52.959Z" },
{ url = "https://files.pythonhosted.org/packages/2c/ba/6c533a4ee8aec6b812c643c49bb3bd88d3f01e3cebe451bb85512d37f00f/pydantic_core-2.41.4-cp314-cp314-musllinux_1_1_x86_64.whl", hash = "sha256:6d55fb8b1e8929b341cc313a81a26e0d48aa3b519c1dbaadec3a6a2b4fcad025", size = 2312070, upload-time = "2025-10-14T10:21:55.419Z" },
{ url = "https://files.pythonhosted.org/packages/22/ae/f10524fcc0ab8d7f96cf9a74c880243576fd3e72bd8ce4f81e43d22bcab7/pydantic_core-2.41.4-cp314-cp314-win32.whl", hash = "sha256:5b66584e549e2e32a1398df11da2e0a7eff45d5c2d9db9d5667c5e6ac764d77e", size = 1982277, upload-time = "2025-10-14T10:21:57.474Z" },
{ url = "https://files.pythonhosted.org/packages/b4/dc/e5aa27aea1ad4638f0c3fb41132f7eb583bd7420ee63204e2d4333a3bbf9/pydantic_core-2.41.4-cp314-cp314-win_amd64.whl", hash = "sha256:557a0aab88664cc552285316809cab897716a372afaf8efdbef756f8b890e894", size = 2024608, upload-time = "2025-10-14T10:21:59.557Z" },
{ url = "https://files.pythonhosted.org/packages/3e/61/51d89cc2612bd147198e120a13f150afbf0bcb4615cddb049ab10b81b79e/pydantic_core-2.41.4-cp314-cp314-win_arm64.whl", hash = "sha256:3f1ea6f48a045745d0d9f325989d8abd3f1eaf47dd00485912d1a3a63c623a8d", size = 1967614, upload-time = "2025-10-14T10:22:01.847Z" },
{ url = "https://files.pythonhosted.org/packages/0d/c2/472f2e31b95eff099961fa050c376ab7156a81da194f9edb9f710f68787b/pydantic_core-2.41.4-cp314-cp314t-macosx_11_0_arm64.whl", hash = "sha256:6c1fe4c5404c448b13188dd8bd2ebc2bdd7e6727fa61ff481bcc2cca894018da", size = 1876904, upload-time = "2025-10-14T10:22:04.062Z" },
{ url = "https://files.pythonhosted.org/packages/4a/07/ea8eeb91173807ecdae4f4a5f4b150a520085b35454350fc219ba79e66a3/pydantic_core-2.41.4-cp314-cp314t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:523e7da4d43b113bf8e7b49fa4ec0c35bf4fe66b2230bfc5c13cc498f12c6c3e", size = 1882538, upload-time = "2025-10-14T10:22:06.39Z" },
{ url = "https://files.pythonhosted.org/packages/1e/29/b53a9ca6cd366bfc928823679c6a76c7a4c69f8201c0ba7903ad18ebae2f/pydantic_core-2.41.4-cp314-cp314t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5729225de81fb65b70fdb1907fcf08c75d498f4a6f15af005aabb1fdadc19dfa", size = 2041183, upload-time = "2025-10-14T10:22:08.812Z" },
{ url = "https://files.pythonhosted.org/packages/c7/3d/f8c1a371ceebcaf94d6dd2d77c6cf4b1c078e13a5837aee83f760b4f7cfd/pydantic_core-2.41.4-cp314-cp314t-win_amd64.whl", hash = "sha256:de2cfbb09e88f0f795fd90cf955858fc2c691df65b1f21f0aa00b99f3fbc661d", size = 1993542, upload-time = "2025-10-14T10:22:11.332Z" },
{ url = "https://files.pythonhosted.org/packages/8a/ac/9fc61b4f9d079482a290afe8d206b8f490e9fd32d4fc03ed4fc698214e01/pydantic_core-2.41.4-cp314-cp314t-win_arm64.whl", hash = "sha256:d34f950ae05a83e0ede899c595f312ca976023ea1db100cd5aa188f7005e3ab0", size = 1973897, upload-time = "2025-10-14T10:22:13.444Z" },
{ url = "https://files.pythonhosted.org/packages/b0/12/5ba58daa7f453454464f92b3ca7b9d7c657d8641c48e370c3ebc9a82dd78/pydantic_core-2.41.4-graalpy311-graalpy242_311_native-macosx_10_12_x86_64.whl", hash = "sha256:a1b2cfec3879afb742a7b0bcfa53e4f22ba96571c9e54d6a3afe1052d17d843b", size = 2122139, upload-time = "2025-10-14T10:22:47.288Z" },
{ url = "https://files.pythonhosted.org/packages/21/fb/6860126a77725c3108baecd10fd3d75fec25191d6381b6eb2ac660228eac/pydantic_core-2.41.4-graalpy311-graalpy242_311_native-macosx_11_0_arm64.whl", hash = "sha256:d175600d975b7c244af6eb9c9041f10059f20b8bbffec9e33fdd5ee3f67cdc42", size = 1936674, upload-time = "2025-10-14T10:22:49.555Z" },
{ url = "https://files.pythonhosted.org/packages/de/be/57dcaa3ed595d81f8757e2b44a38240ac5d37628bce25fb20d02c7018776/pydantic_core-2.41.4-graalpy311-graalpy242_311_native-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0f184d657fa4947ae5ec9c47bd7e917730fa1cbb78195037e32dcbab50aca5ee", size = 1956398, upload-time = "2025-10-14T10:22:52.19Z" },
{ url = "https://files.pythonhosted.org/packages/2f/1d/679a344fadb9695f1a6a294d739fbd21d71fa023286daeea8c0ed49e7c2b/pydantic_core-2.41.4-graalpy311-graalpy242_311_native-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1ed810568aeffed3edc78910af32af911c835cc39ebbfacd1f0ab5dd53028e5c", size = 2138674, upload-time = "2025-10-14T10:22:54.499Z" },
{ url = "https://files.pythonhosted.org/packages/c4/48/ae937e5a831b7c0dc646b2ef788c27cd003894882415300ed21927c21efa/pydantic_core-2.41.4-graalpy312-graalpy250_312_native-macosx_10_12_x86_64.whl", hash = "sha256:4f5d640aeebb438517150fdeec097739614421900e4a08db4a3ef38898798537", size = 2112087, upload-time = "2025-10-14T10:22:56.818Z" },
{ url = "https://files.pythonhosted.org/packages/5e/db/6db8073e3d32dae017da7e0d16a9ecb897d0a4d92e00634916e486097961/pydantic_core-2.41.4-graalpy312-graalpy250_312_native-macosx_11_0_arm64.whl", hash = "sha256:4a9ab037b71927babc6d9e7fc01aea9e66dc2a4a34dff06ef0724a4049629f94", size = 1920387, upload-time = "2025-10-14T10:22:59.342Z" },
{ url = "https://files.pythonhosted.org/packages/0d/c1/dd3542d072fcc336030d66834872f0328727e3b8de289c662faa04aa270e/pydantic_core-2.41.4-graalpy312-graalpy250_312_native-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e4dab9484ec605c3016df9ad4fd4f9a390bc5d816a3b10c6550f8424bb80b18c", size = 1951495, upload-time = "2025-10-14T10:23:02.089Z" },
{ url = "https://files.pythonhosted.org/packages/2b/c6/db8d13a1f8ab3f1eb08c88bd00fd62d44311e3456d1e85c0e59e0a0376e7/pydantic_core-2.41.4-graalpy312-graalpy250_312_native-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bd8a5028425820731d8c6c098ab642d7b8b999758e24acae03ed38a66eca8335", size = 2139008, upload-time = "2025-10-14T10:23:04.539Z" },
{ url = "https://files.pythonhosted.org/packages/5d/d4/912e976a2dd0b49f31c98a060ca90b353f3b73ee3ea2fd0030412f6ac5ec/pydantic_core-2.41.4-pp310-pypy310_pp73-macosx_10_12_x86_64.whl", hash = "sha256:1e5ab4fc177dd41536b3c32b2ea11380dd3d4619a385860621478ac2d25ceb00", size = 2106739, upload-time = "2025-10-14T10:23:06.934Z" },
{ url = "https://files.pythonhosted.org/packages/71/f0/66ec5a626c81eba326072d6ee2b127f8c139543f1bf609b4842978d37833/pydantic_core-2.41.4-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:3d88d0054d3fa11ce936184896bed3c1c5441d6fa483b498fac6a5d0dd6f64a9", size = 1932549, upload-time = "2025-10-14T10:23:09.24Z" },
{ url = "https://files.pythonhosted.org/packages/c4/af/625626278ca801ea0a658c2dcf290dc9f21bb383098e99e7c6a029fccfc0/pydantic_core-2.41.4-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7b2a054a8725f05b4b6503357e0ac1c4e8234ad3b0c2ac130d6ffc66f0e170e2", size = 2135093, upload-time = "2025-10-14T10:23:11.626Z" },
{ url = "https://files.pythonhosted.org/packages/20/f6/2fba049f54e0f4975fef66be654c597a1d005320fa141863699180c7697d/pydantic_core-2.41.4-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:b0d9db5a161c99375a0c68c058e227bee1d89303300802601d76a3d01f74e258", size = 2187971, upload-time = "2025-10-14T10:23:14.437Z" },
{ url = "https://files.pythonhosted.org/packages/0e/80/65ab839a2dfcd3b949202f9d920c34f9de5a537c3646662bdf2f7d999680/pydantic_core-2.41.4-pp310-pypy310_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:6273ea2c8ffdac7b7fda2653c49682db815aebf4a89243a6feccf5e36c18c347", size = 2147939, upload-time = "2025-10-14T10:23:16.831Z" },
{ url = "https://files.pythonhosted.org/packages/44/58/627565d3d182ce6dfda18b8e1c841eede3629d59c9d7cbc1e12a03aeb328/pydantic_core-2.41.4-pp310-pypy310_pp73-musllinux_1_1_armv7l.whl", hash = "sha256:4c973add636efc61de22530b2ef83a65f39b6d6f656df97f678720e20de26caa", size = 2311400, upload-time = "2025-10-14T10:23:19.234Z" },
{ url = "https://files.pythonhosted.org/packages/24/06/8a84711162ad5a5f19a88cead37cca81b4b1f294f46260ef7334ae4f24d3/pydantic_core-2.41.4-pp310-pypy310_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:b69d1973354758007f46cf2d44a4f3d0933f10b6dc9bf15cf1356e037f6f731a", size = 2316840, upload-time = "2025-10-14T10:23:21.738Z" },
{ url = "https://files.pythonhosted.org/packages/aa/8b/b7bb512a4682a2f7fbfae152a755d37351743900226d29bd953aaf870eaa/pydantic_core-2.41.4-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:3619320641fd212aaf5997b6ca505e97540b7e16418f4a241f44cdf108ffb50d", size = 2149135, upload-time = "2025-10-14T10:23:24.379Z" },
{ url = "https://files.pythonhosted.org/packages/7e/7d/138e902ed6399b866f7cfe4435d22445e16fff888a1c00560d9dc79a780f/pydantic_core-2.41.4-pp311-pypy311_pp73-macosx_10_12_x86_64.whl", hash = "sha256:491535d45cd7ad7e4a2af4a5169b0d07bebf1adfd164b0368da8aa41e19907a5", size = 2104721, upload-time = "2025-10-14T10:23:26.906Z" },
{ url = "https://files.pythonhosted.org/packages/47/13/0525623cf94627f7b53b4c2034c81edc8491cbfc7c28d5447fa318791479/pydantic_core-2.41.4-pp311-pypy311_pp73-macosx_11_0_arm64.whl", hash = "sha256:54d86c0cada6aba4ec4c047d0e348cbad7063b87ae0f005d9f8c9ad04d4a92a2", size = 1931608, upload-time = "2025-10-14T10:23:29.306Z" },
{ url = "https://files.pythonhosted.org/packages/d6/f9/744bc98137d6ef0a233f808bfc9b18cf94624bf30836a18d3b05d08bf418/pydantic_core-2.41.4-pp311-pypy311_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:eca1124aced216b2500dc2609eade086d718e8249cb9696660ab447d50a758bd", size = 2132986, upload-time = "2025-10-14T10:23:32.057Z" },
{ url = "https://files.pythonhosted.org/packages/17/c8/629e88920171173f6049386cc71f893dff03209a9ef32b4d2f7e7c264bcf/pydantic_core-2.41.4-pp311-pypy311_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:6c9024169becccf0cb470ada03ee578d7348c119a0d42af3dcf9eda96e3a247c", size = 2187516, upload-time = "2025-10-14T10:23:34.871Z" },
{ url = "https://files.pythonhosted.org/packages/2e/0f/4f2734688d98488782218ca61bcc118329bf5de05bb7fe3adc7dd79b0b86/pydantic_core-2.41.4-pp311-pypy311_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:26895a4268ae5a2849269f4991cdc97236e4b9c010e51137becf25182daac405", size = 2146146, upload-time = "2025-10-14T10:23:37.342Z" },
{ url = "https://files.pythonhosted.org/packages/ed/f2/ab385dbd94a052c62224b99cf99002eee99dbec40e10006c78575aead256/pydantic_core-2.41.4-pp311-pypy311_pp73-musllinux_1_1_armv7l.whl", hash = "sha256:ca4df25762cf71308c446e33c9b1fdca2923a3f13de616e2a949f38bf21ff5a8", size = 2311296, upload-time = "2025-10-14T10:23:40.145Z" },
{ url = "https://files.pythonhosted.org/packages/fc/8e/e4f12afe1beeb9823bba5375f8f258df0cc61b056b0195fb1cf9f62a1a58/pydantic_core-2.41.4-pp311-pypy311_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:5a28fcedd762349519276c36634e71853b4541079cab4acaaac60c4421827308", size = 2315386, upload-time = "2025-10-14T10:23:42.624Z" },
{ url = "https://files.pythonhosted.org/packages/48/f7/925f65d930802e3ea2eb4d5afa4cb8730c8dc0d2cb89a59dc4ed2fcb2d74/pydantic_core-2.41.4-pp311-pypy311_pp73-win_amd64.whl", hash = "sha256:c173ddcd86afd2535e2b695217e82191580663a1d1928239f877f5a1649ef39f", size = 2147775, upload-time = "2025-10-14T10:23:45.406Z" },
]
[[package]]
@@ -1327,6 +1487,124 @@ wheels = [
{ url = "https://files.pythonhosted.org/packages/33/e8/e40370e6d74ddba47f002a32919d91310d6074130fe4e17dabcafc15cbf1/watchdog-6.0.0-py3-none-win_ia64.whl", hash = "sha256:a1914259fa9e1454315171103c6a30961236f508b9b623eae470268bbcc6a22f", size = 79067, upload-time = "2024-11-01T14:07:11.845Z" },
]
[[package]]
name = "xxhash"
version = "3.6.0"
source = { registry = "https://pypi.org/simple" }
sdist = { url = "https://files.pythonhosted.org/packages/02/84/30869e01909fb37a6cc7e18688ee8bf1e42d57e7e0777636bd47524c43c7/xxhash-3.6.0.tar.gz", hash = "sha256:f0162a78b13a0d7617b2845b90c763339d1f1d82bb04a4b07f4ab535cc5e05d6", size = 85160, upload-time = "2025-10-02T14:37:08.097Z" }
wheels = [
{ url = "https://files.pythonhosted.org/packages/34/ee/f9f1d656ad168681bb0f6b092372c1e533c4416b8069b1896a175c46e484/xxhash-3.6.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:87ff03d7e35c61435976554477a7f4cd1704c3596a89a8300d5ce7fc83874a71", size = 32845, upload-time = "2025-10-02T14:33:51.573Z" },
{ url = "https://files.pythonhosted.org/packages/a3/b1/93508d9460b292c74a09b83d16750c52a0ead89c51eea9951cb97a60d959/xxhash-3.6.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:f572dfd3d0e2eb1a57511831cf6341242f5a9f8298a45862d085f5b93394a27d", size = 30807, upload-time = "2025-10-02T14:33:52.964Z" },
{ url = "https://files.pythonhosted.org/packages/07/55/28c93a3662f2d200c70704efe74aab9640e824f8ce330d8d3943bf7c9b3c/xxhash-3.6.0-cp310-cp310-manylinux1_i686.manylinux_2_28_i686.manylinux_2_5_i686.whl", hash = "sha256:89952ea539566b9fed2bbd94e589672794b4286f342254fad28b149f9615fef8", size = 193786, upload-time = "2025-10-02T14:33:54.272Z" },
{ url = "https://files.pythonhosted.org/packages/c1/96/fec0be9bb4b8f5d9c57d76380a366f31a1781fb802f76fc7cda6c84893c7/xxhash-3.6.0-cp310-cp310-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:48e6f2ffb07a50b52465a1032c3cf1f4a5683f944acaca8a134a2f23674c2058", size = 212830, upload-time = "2025-10-02T14:33:55.706Z" },
{ url = "https://files.pythonhosted.org/packages/c4/a0/c706845ba77b9611f81fd2e93fad9859346b026e8445e76f8c6fd057cc6d/xxhash-3.6.0-cp310-cp310-manylinux2014_ppc64le.manylinux_2_17_ppc64le.manylinux_2_28_ppc64le.whl", hash = "sha256:b5b848ad6c16d308c3ac7ad4ba6bede80ed5df2ba8ed382f8932df63158dd4b2", size = 211606, upload-time = "2025-10-02T14:33:57.133Z" },
{ url = "https://files.pythonhosted.org/packages/67/1e/164126a2999e5045f04a69257eea946c0dc3e86541b400d4385d646b53d7/xxhash-3.6.0-cp310-cp310-manylinux2014_s390x.manylinux_2_17_s390x.manylinux_2_28_s390x.whl", hash = "sha256:a034590a727b44dd8ac5914236a7b8504144447a9682586c3327e935f33ec8cc", size = 444872, upload-time = "2025-10-02T14:33:58.446Z" },
{ url = "https://files.pythonhosted.org/packages/2d/4b/55ab404c56cd70a2cf5ecfe484838865d0fea5627365c6c8ca156bd09c8f/xxhash-3.6.0-cp310-cp310-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:8a8f1972e75ebdd161d7896743122834fe87378160c20e97f8b09166213bf8cc", size = 193217, upload-time = "2025-10-02T14:33:59.724Z" },
{ url = "https://files.pythonhosted.org/packages/45/e6/52abf06bac316db33aa269091ae7311bd53cfc6f4b120ae77bac1b348091/xxhash-3.6.0-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:ee34327b187f002a596d7b167ebc59a1b729e963ce645964bbc050d2f1b73d07", size = 210139, upload-time = "2025-10-02T14:34:02.041Z" },
{ url = "https://files.pythonhosted.org/packages/34/37/db94d490b8691236d356bc249c08819cbcef9273a1a30acf1254ff9ce157/xxhash-3.6.0-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:339f518c3c7a850dd033ab416ea25a692759dc7478a71131fe8869010d2b75e4", size = 197669, upload-time = "2025-10-02T14:34:03.664Z" },
{ url = "https://files.pythonhosted.org/packages/b7/36/c4f219ef4a17a4f7a64ed3569bc2b5a9c8311abdb22249ac96093625b1a4/xxhash-3.6.0-cp310-cp310-musllinux_1_2_ppc64le.whl", hash = "sha256:bf48889c9630542d4709192578aebbd836177c9f7a4a2778a7d6340107c65f06", size = 210018, upload-time = "2025-10-02T14:34:05.325Z" },
{ url = "https://files.pythonhosted.org/packages/fd/06/bfac889a374fc2fc439a69223d1750eed2e18a7db8514737ab630534fa08/xxhash-3.6.0-cp310-cp310-musllinux_1_2_s390x.whl", hash = "sha256:5576b002a56207f640636056b4160a378fe36a58db73ae5c27a7ec8db35f71d4", size = 413058, upload-time = "2025-10-02T14:34:06.925Z" },
{ url = "https://files.pythonhosted.org/packages/c9/d1/555d8447e0dd32ad0930a249a522bb2e289f0d08b6b16204cfa42c1f5a0c/xxhash-3.6.0-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:af1f3278bd02814d6dedc5dec397993b549d6f16c19379721e5a1d31e132c49b", size = 190628, upload-time = "2025-10-02T14:34:08.669Z" },
{ url = "https://files.pythonhosted.org/packages/d1/15/8751330b5186cedc4ed4b597989882ea05e0408b53fa47bcb46a6125bfc6/xxhash-3.6.0-cp310-cp310-win32.whl", hash = "sha256:aed058764db109dc9052720da65fafe84873b05eb8b07e5e653597951af57c3b", size = 30577, upload-time = "2025-10-02T14:34:10.234Z" },
{ url = "https://files.pythonhosted.org/packages/bb/cc/53f87e8b5871a6eb2ff7e89c48c66093bda2be52315a8161ddc54ea550c4/xxhash-3.6.0-cp310-cp310-win_amd64.whl", hash = "sha256:e82da5670f2d0d98950317f82a0e4a0197150ff19a6df2ba40399c2a3b9ae5fb", size = 31487, upload-time = "2025-10-02T14:34:11.618Z" },
{ url = "https://files.pythonhosted.org/packages/9f/00/60f9ea3bb697667a14314d7269956f58bf56bb73864f8f8d52a3c2535e9a/xxhash-3.6.0-cp310-cp310-win_arm64.whl", hash = "sha256:4a082ffff8c6ac07707fb6b671caf7c6e020c75226c561830b73d862060f281d", size = 27863, upload-time = "2025-10-02T14:34:12.619Z" },
{ url = "https://files.pythonhosted.org/packages/17/d4/cc2f0400e9154df4b9964249da78ebd72f318e35ccc425e9f403c392f22a/xxhash-3.6.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:b47bbd8cf2d72797f3c2772eaaac0ded3d3af26481a26d7d7d41dc2d3c46b04a", size = 32844, upload-time = "2025-10-02T14:34:14.037Z" },
{ url = "https://files.pythonhosted.org/packages/5e/ec/1cc11cd13e26ea8bc3cb4af4eaadd8d46d5014aebb67be3f71fb0b68802a/xxhash-3.6.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:2b6821e94346f96db75abaa6e255706fb06ebd530899ed76d32cd99f20dc52fa", size = 30809, upload-time = "2025-10-02T14:34:15.484Z" },
{ url = "https://files.pythonhosted.org/packages/04/5f/19fe357ea348d98ca22f456f75a30ac0916b51c753e1f8b2e0e6fb884cce/xxhash-3.6.0-cp311-cp311-manylinux1_i686.manylinux_2_28_i686.manylinux_2_5_i686.whl", hash = "sha256:d0a9751f71a1a65ce3584e9cae4467651c7e70c9d31017fa57574583a4540248", size = 194665, upload-time = "2025-10-02T14:34:16.541Z" },
{ url = "https://files.pythonhosted.org/packages/90/3b/d1f1a8f5442a5fd8beedae110c5af7604dc37349a8e16519c13c19a9a2de/xxhash-3.6.0-cp311-cp311-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:8b29ee68625ab37b04c0b40c3fafdf24d2f75ccd778333cfb698f65f6c463f62", size = 213550, upload-time = "2025-10-02T14:34:17.878Z" },
{ url = "https://files.pythonhosted.org/packages/c4/ef/3a9b05eb527457d5db13a135a2ae1a26c80fecd624d20f3e8dcc4cb170f3/xxhash-3.6.0-cp311-cp311-manylinux2014_ppc64le.manylinux_2_17_ppc64le.manylinux_2_28_ppc64le.whl", hash = "sha256:6812c25fe0d6c36a46ccb002f40f27ac903bf18af9f6dd8f9669cb4d176ab18f", size = 212384, upload-time = "2025-10-02T14:34:19.182Z" },
{ url = "https://files.pythonhosted.org/packages/0f/18/ccc194ee698c6c623acbf0f8c2969811a8a4b6185af5e824cd27b9e4fd3e/xxhash-3.6.0-cp311-cp311-manylinux2014_s390x.manylinux_2_17_s390x.manylinux_2_28_s390x.whl", hash = "sha256:4ccbff013972390b51a18ef1255ef5ac125c92dc9143b2d1909f59abc765540e", size = 445749, upload-time = "2025-10-02T14:34:20.659Z" },
{ url = "https://files.pythonhosted.org/packages/a5/86/cf2c0321dc3940a7aa73076f4fd677a0fb3e405cb297ead7d864fd90847e/xxhash-3.6.0-cp311-cp311-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:297b7fbf86c82c550e12e8fb71968b3f033d27b874276ba3624ea868c11165a8", size = 193880, upload-time = "2025-10-02T14:34:22.431Z" },
{ url = "https://files.pythonhosted.org/packages/82/fb/96213c8560e6f948a1ecc9a7613f8032b19ee45f747f4fca4eb31bb6d6ed/xxhash-3.6.0-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:dea26ae1eb293db089798d3973a5fc928a18fdd97cc8801226fae705b02b14b0", size = 210912, upload-time = "2025-10-02T14:34:23.937Z" },
{ url = "https://files.pythonhosted.org/packages/40/aa/4395e669b0606a096d6788f40dbdf2b819d6773aa290c19e6e83cbfc312f/xxhash-3.6.0-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:7a0b169aafb98f4284f73635a8e93f0735f9cbde17bd5ec332480484241aaa77", size = 198654, upload-time = "2025-10-02T14:34:25.644Z" },
{ url = "https://files.pythonhosted.org/packages/67/74/b044fcd6b3d89e9b1b665924d85d3f400636c23590226feb1eb09e1176ce/xxhash-3.6.0-cp311-cp311-musllinux_1_2_ppc64le.whl", hash = "sha256:08d45aef063a4531b785cd72de4887766d01dc8f362a515693df349fdb825e0c", size = 210867, upload-time = "2025-10-02T14:34:27.203Z" },
{ url = "https://files.pythonhosted.org/packages/bc/fd/3ce73bf753b08cb19daee1eb14aa0d7fe331f8da9c02dd95316ddfe5275e/xxhash-3.6.0-cp311-cp311-musllinux_1_2_s390x.whl", hash = "sha256:929142361a48ee07f09121fe9e96a84950e8d4df3bb298ca5d88061969f34d7b", size = 414012, upload-time = "2025-10-02T14:34:28.409Z" },
{ url = "https://files.pythonhosted.org/packages/ba/b3/5a4241309217c5c876f156b10778f3ab3af7ba7e3259e6d5f5c7d0129eb2/xxhash-3.6.0-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:51312c768403d8540487dbbfb557454cfc55589bbde6424456951f7fcd4facb3", size = 191409, upload-time = "2025-10-02T14:34:29.696Z" },
{ url = "https://files.pythonhosted.org/packages/c0/01/99bfbc15fb9abb9a72b088c1d95219fc4782b7d01fc835bd5744d66dd0b8/xxhash-3.6.0-cp311-cp311-win32.whl", hash = "sha256:d1927a69feddc24c987b337ce81ac15c4720955b667fe9b588e02254b80446fd", size = 30574, upload-time = "2025-10-02T14:34:31.028Z" },
{ url = "https://files.pythonhosted.org/packages/65/79/9d24d7f53819fe301b231044ea362ce64e86c74f6e8c8e51320de248b3e5/xxhash-3.6.0-cp311-cp311-win_amd64.whl", hash = "sha256:26734cdc2d4ffe449b41d186bbeac416f704a482ed835d375a5c0cb02bc63fef", size = 31481, upload-time = "2025-10-02T14:34:32.062Z" },
{ url = "https://files.pythonhosted.org/packages/30/4e/15cd0e3e8772071344eab2961ce83f6e485111fed8beb491a3f1ce100270/xxhash-3.6.0-cp311-cp311-win_arm64.whl", hash = "sha256:d72f67ef8bf36e05f5b6c65e8524f265bd61071471cd4cf1d36743ebeeeb06b7", size = 27861, upload-time = "2025-10-02T14:34:33.555Z" },
{ url = "https://files.pythonhosted.org/packages/9a/07/d9412f3d7d462347e4511181dea65e47e0d0e16e26fbee2ea86a2aefb657/xxhash-3.6.0-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:01362c4331775398e7bb34e3ab403bc9ee9f7c497bc7dee6272114055277dd3c", size = 32744, upload-time = "2025-10-02T14:34:34.622Z" },
{ url = "https://files.pythonhosted.org/packages/79/35/0429ee11d035fc33abe32dca1b2b69e8c18d236547b9a9b72c1929189b9a/xxhash-3.6.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:b7b2df81a23f8cb99656378e72501b2cb41b1827c0f5a86f87d6b06b69f9f204", size = 30816, upload-time = "2025-10-02T14:34:36.043Z" },
{ url = "https://files.pythonhosted.org/packages/b7/f2/57eb99aa0f7d98624c0932c5b9a170e1806406cdbcdb510546634a1359e0/xxhash-3.6.0-cp312-cp312-manylinux1_i686.manylinux_2_28_i686.manylinux_2_5_i686.whl", hash = "sha256:dc94790144e66b14f67b10ac8ed75b39ca47536bf8800eb7c24b50271ea0c490", size = 194035, upload-time = "2025-10-02T14:34:37.354Z" },
{ url = "https://files.pythonhosted.org/packages/4c/ed/6224ba353690d73af7a3f1c7cdb1fc1b002e38f783cb991ae338e1eb3d79/xxhash-3.6.0-cp312-cp312-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:93f107c673bccf0d592cdba077dedaf52fe7f42dcd7676eba1f6d6f0c3efffd2", size = 212914, upload-time = "2025-10-02T14:34:38.6Z" },
{ url = "https://files.pythonhosted.org/packages/38/86/fb6b6130d8dd6b8942cc17ab4d90e223653a89aa32ad2776f8af7064ed13/xxhash-3.6.0-cp312-cp312-manylinux2014_ppc64le.manylinux_2_17_ppc64le.manylinux_2_28_ppc64le.whl", hash = "sha256:2aa5ee3444c25b69813663c9f8067dcfaa2e126dc55e8dddf40f4d1c25d7effa", size = 212163, upload-time = "2025-10-02T14:34:39.872Z" },
{ url = "https://files.pythonhosted.org/packages/ee/dc/e84875682b0593e884ad73b2d40767b5790d417bde603cceb6878901d647/xxhash-3.6.0-cp312-cp312-manylinux2014_s390x.manylinux_2_17_s390x.manylinux_2_28_s390x.whl", hash = "sha256:f7f99123f0e1194fa59cc69ad46dbae2e07becec5df50a0509a808f90a0f03f0", size = 445411, upload-time = "2025-10-02T14:34:41.569Z" },
{ url = "https://files.pythonhosted.org/packages/11/4f/426f91b96701ec2f37bb2b8cec664eff4f658a11f3fa9d94f0a887ea6d2b/xxhash-3.6.0-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:49e03e6fe2cac4a1bc64952dd250cf0dbc5ef4ebb7b8d96bce82e2de163c82a2", size = 193883, upload-time = "2025-10-02T14:34:43.249Z" },
{ url = "https://files.pythonhosted.org/packages/53/5a/ddbb83eee8e28b778eacfc5a85c969673e4023cdeedcfcef61f36731610b/xxhash-3.6.0-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:bd17fede52a17a4f9a7bc4472a5867cb0b160deeb431795c0e4abe158bc784e9", size = 210392, upload-time = "2025-10-02T14:34:45.042Z" },
{ url = "https://files.pythonhosted.org/packages/1e/c2/ff69efd07c8c074ccdf0a4f36fcdd3d27363665bcdf4ba399abebe643465/xxhash-3.6.0-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:6fb5f5476bef678f69db04f2bd1efbed3030d2aba305b0fc1773645f187d6a4e", size = 197898, upload-time = "2025-10-02T14:34:46.302Z" },
{ url = "https://files.pythonhosted.org/packages/58/ca/faa05ac19b3b622c7c9317ac3e23954187516298a091eb02c976d0d3dd45/xxhash-3.6.0-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:843b52f6d88071f87eba1631b684fcb4b2068cd2180a0224122fe4ef011a9374", size = 210655, upload-time = "2025-10-02T14:34:47.571Z" },
{ url = "https://files.pythonhosted.org/packages/d4/7a/06aa7482345480cc0cb597f5c875b11a82c3953f534394f620b0be2f700c/xxhash-3.6.0-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:7d14a6cfaf03b1b6f5f9790f76880601ccc7896aff7ab9cd8978a939c1eb7e0d", size = 414001, upload-time = "2025-10-02T14:34:49.273Z" },
{ url = "https://files.pythonhosted.org/packages/23/07/63ffb386cd47029aa2916b3d2f454e6cc5b9f5c5ada3790377d5430084e7/xxhash-3.6.0-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:418daf3db71e1413cfe211c2f9a528456936645c17f46b5204705581a45390ae", size = 191431, upload-time = "2025-10-02T14:34:50.798Z" },
{ url = "https://files.pythonhosted.org/packages/0f/93/14fde614cadb4ddf5e7cebf8918b7e8fac5ae7861c1875964f17e678205c/xxhash-3.6.0-cp312-cp312-win32.whl", hash = "sha256:50fc255f39428a27299c20e280d6193d8b63b8ef8028995323bf834a026b4fbb", size = 30617, upload-time = "2025-10-02T14:34:51.954Z" },
{ url = "https://files.pythonhosted.org/packages/13/5d/0d125536cbe7565a83d06e43783389ecae0c0f2ed037b48ede185de477c0/xxhash-3.6.0-cp312-cp312-win_amd64.whl", hash = "sha256:c0f2ab8c715630565ab8991b536ecded9416d615538be8ecddce43ccf26cbc7c", size = 31534, upload-time = "2025-10-02T14:34:53.276Z" },
{ url = "https://files.pythonhosted.org/packages/54/85/6ec269b0952ec7e36ba019125982cf11d91256a778c7c3f98a4c5043d283/xxhash-3.6.0-cp312-cp312-win_arm64.whl", hash = "sha256:eae5c13f3bc455a3bbb68bdc513912dc7356de7e2280363ea235f71f54064829", size = 27876, upload-time = "2025-10-02T14:34:54.371Z" },
{ url = "https://files.pythonhosted.org/packages/33/76/35d05267ac82f53ae9b0e554da7c5e281ee61f3cad44c743f0fcd354f211/xxhash-3.6.0-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:599e64ba7f67472481ceb6ee80fa3bd828fd61ba59fb11475572cc5ee52b89ec", size = 32738, upload-time = "2025-10-02T14:34:55.839Z" },
{ url = "https://files.pythonhosted.org/packages/31/a8/3fbce1cd96534a95e35d5120637bf29b0d7f5d8fa2f6374e31b4156dd419/xxhash-3.6.0-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:7d8b8aaa30fca4f16f0c84a5c8d7ddee0e25250ec2796c973775373257dde8f1", size = 30821, upload-time = "2025-10-02T14:34:57.219Z" },
{ url = "https://files.pythonhosted.org/packages/0c/ea/d387530ca7ecfa183cb358027f1833297c6ac6098223fd14f9782cd0015c/xxhash-3.6.0-cp313-cp313-manylinux1_i686.manylinux_2_28_i686.manylinux_2_5_i686.whl", hash = "sha256:d597acf8506d6e7101a4a44a5e428977a51c0fadbbfd3c39650cca9253f6e5a6", size = 194127, upload-time = "2025-10-02T14:34:59.21Z" },
{ url = "https://files.pythonhosted.org/packages/ba/0c/71435dcb99874b09a43b8d7c54071e600a7481e42b3e3ce1eb5226a5711a/xxhash-3.6.0-cp313-cp313-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:858dc935963a33bc33490128edc1c12b0c14d9c7ebaa4e387a7869ecc4f3e263", size = 212975, upload-time = "2025-10-02T14:35:00.816Z" },
{ url = "https://files.pythonhosted.org/packages/84/7a/c2b3d071e4bb4a90b7057228a99b10d51744878f4a8a6dd643c8bd897620/xxhash-3.6.0-cp313-cp313-manylinux2014_ppc64le.manylinux_2_17_ppc64le.manylinux_2_28_ppc64le.whl", hash = "sha256:ba284920194615cb8edf73bf52236ce2e1664ccd4a38fdb543506413529cc546", size = 212241, upload-time = "2025-10-02T14:35:02.207Z" },
{ url = "https://files.pythonhosted.org/packages/81/5f/640b6eac0128e215f177df99eadcd0f1b7c42c274ab6a394a05059694c5a/xxhash-3.6.0-cp313-cp313-manylinux2014_s390x.manylinux_2_17_s390x.manylinux_2_28_s390x.whl", hash = "sha256:4b54219177f6c6674d5378bd862c6aedf64725f70dd29c472eaae154df1a2e89", size = 445471, upload-time = "2025-10-02T14:35:03.61Z" },
{ url = "https://files.pythonhosted.org/packages/5e/1e/3c3d3ef071b051cc3abbe3721ffb8365033a172613c04af2da89d5548a87/xxhash-3.6.0-cp313-cp313-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:42c36dd7dbad2f5238950c377fcbf6811b1cdb1c444fab447960030cea60504d", size = 193936, upload-time = "2025-10-02T14:35:05.013Z" },
{ url = "https://files.pythonhosted.org/packages/2c/bd/4a5f68381939219abfe1c22a9e3a5854a4f6f6f3c4983a87d255f21f2e5d/xxhash-3.6.0-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:f22927652cba98c44639ffdc7aaf35828dccf679b10b31c4ad72a5b530a18eb7", size = 210440, upload-time = "2025-10-02T14:35:06.239Z" },
{ url = "https://files.pythonhosted.org/packages/eb/37/b80fe3d5cfb9faff01a02121a0f4d565eb7237e9e5fc66e73017e74dcd36/xxhash-3.6.0-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:b45fad44d9c5c119e9c6fbf2e1c656a46dc68e280275007bbfd3d572b21426db", size = 197990, upload-time = "2025-10-02T14:35:07.735Z" },
{ url = "https://files.pythonhosted.org/packages/d7/fd/2c0a00c97b9e18f72e1f240ad4e8f8a90fd9d408289ba9c7c495ed7dc05c/xxhash-3.6.0-cp313-cp313-musllinux_1_2_ppc64le.whl", hash = "sha256:6f2580ffab1a8b68ef2b901cde7e55fa8da5e4be0977c68f78fc80f3c143de42", size = 210689, upload-time = "2025-10-02T14:35:09.438Z" },
{ url = "https://files.pythonhosted.org/packages/93/86/5dd8076a926b9a95db3206aba20d89a7fc14dd5aac16e5c4de4b56033140/xxhash-3.6.0-cp313-cp313-musllinux_1_2_s390x.whl", hash = "sha256:40c391dd3cd041ebc3ffe6f2c862f402e306eb571422e0aa918d8070ba31da11", size = 414068, upload-time = "2025-10-02T14:35:11.162Z" },
{ url = "https://files.pythonhosted.org/packages/af/3c/0bb129170ee8f3650f08e993baee550a09593462a5cddd8e44d0011102b1/xxhash-3.6.0-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:f205badabde7aafd1a31e8ca2a3e5a763107a71c397c4481d6a804eb5063d8bd", size = 191495, upload-time = "2025-10-02T14:35:12.971Z" },
{ url = "https://files.pythonhosted.org/packages/e9/3a/6797e0114c21d1725e2577508e24006fd7ff1d8c0c502d3b52e45c1771d8/xxhash-3.6.0-cp313-cp313-win32.whl", hash = "sha256:2577b276e060b73b73a53042ea5bd5203d3e6347ce0d09f98500f418a9fcf799", size = 30620, upload-time = "2025-10-02T14:35:14.129Z" },
{ url = "https://files.pythonhosted.org/packages/86/15/9bc32671e9a38b413a76d24722a2bf8784a132c043063a8f5152d390b0f9/xxhash-3.6.0-cp313-cp313-win_amd64.whl", hash = "sha256:757320d45d2fbcce8f30c42a6b2f47862967aea7bf458b9625b4bbe7ee390392", size = 31542, upload-time = "2025-10-02T14:35:15.21Z" },
{ url = "https://files.pythonhosted.org/packages/39/c5/cc01e4f6188656e56112d6a8e0dfe298a16934b8c47a247236549a3f7695/xxhash-3.6.0-cp313-cp313-win_arm64.whl", hash = "sha256:457b8f85dec5825eed7b69c11ae86834a018b8e3df5e77783c999663da2f96d6", size = 27880, upload-time = "2025-10-02T14:35:16.315Z" },
{ url = "https://files.pythonhosted.org/packages/f3/30/25e5321c8732759e930c555176d37e24ab84365482d257c3b16362235212/xxhash-3.6.0-cp313-cp313t-macosx_10_13_x86_64.whl", hash = "sha256:a42e633d75cdad6d625434e3468126c73f13f7584545a9cf34e883aa1710e702", size = 32956, upload-time = "2025-10-02T14:35:17.413Z" },
{ url = "https://files.pythonhosted.org/packages/9f/3c/0573299560d7d9f8ab1838f1efc021a280b5ae5ae2e849034ef3dee18810/xxhash-3.6.0-cp313-cp313t-macosx_11_0_arm64.whl", hash = "sha256:568a6d743219e717b07b4e03b0a828ce593833e498c3b64752e0f5df6bfe84db", size = 31072, upload-time = "2025-10-02T14:35:18.844Z" },
{ url = "https://files.pythonhosted.org/packages/7a/1c/52d83a06e417cd9d4137722693424885cc9878249beb3a7c829e74bf7ce9/xxhash-3.6.0-cp313-cp313t-manylinux1_i686.manylinux_2_28_i686.manylinux_2_5_i686.whl", hash = "sha256:bec91b562d8012dae276af8025a55811b875baace6af510412a5e58e3121bc54", size = 196409, upload-time = "2025-10-02T14:35:20.31Z" },
{ url = "https://files.pythonhosted.org/packages/e3/8e/c6d158d12a79bbd0b878f8355432075fc82759e356ab5a111463422a239b/xxhash-3.6.0-cp313-cp313t-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:78e7f2f4c521c30ad5e786fdd6bae89d47a32672a80195467b5de0480aa97b1f", size = 215736, upload-time = "2025-10-02T14:35:21.616Z" },
{ url = "https://files.pythonhosted.org/packages/bc/68/c4c80614716345d55071a396cf03d06e34b5f4917a467faf43083c995155/xxhash-3.6.0-cp313-cp313t-manylinux2014_ppc64le.manylinux_2_17_ppc64le.manylinux_2_28_ppc64le.whl", hash = "sha256:3ed0df1b11a79856df5ffcab572cbd6b9627034c1c748c5566fa79df9048a7c5", size = 214833, upload-time = "2025-10-02T14:35:23.32Z" },
{ url = "https://files.pythonhosted.org/packages/7e/e9/ae27c8ffec8b953efa84c7c4a6c6802c263d587b9fc0d6e7cea64e08c3af/xxhash-3.6.0-cp313-cp313t-manylinux2014_s390x.manylinux_2_17_s390x.manylinux_2_28_s390x.whl", hash = "sha256:0e4edbfc7d420925b0dd5e792478ed393d6e75ff8fc219a6546fb446b6a417b1", size = 448348, upload-time = "2025-10-02T14:35:25.111Z" },
{ url = "https://files.pythonhosted.org/packages/d7/6b/33e21afb1b5b3f46b74b6bd1913639066af218d704cc0941404ca717fc57/xxhash-3.6.0-cp313-cp313t-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:fba27a198363a7ef87f8c0f6b171ec36b674fe9053742c58dd7e3201c1ab30ee", size = 196070, upload-time = "2025-10-02T14:35:26.586Z" },
{ url = "https://files.pythonhosted.org/packages/96/b6/fcabd337bc5fa624e7203aa0fa7d0c49eed22f72e93229431752bddc83d9/xxhash-3.6.0-cp313-cp313t-musllinux_1_2_aarch64.whl", hash = "sha256:794fe9145fe60191c6532fa95063765529770edcdd67b3d537793e8004cabbfd", size = 212907, upload-time = "2025-10-02T14:35:28.087Z" },
{ url = "https://files.pythonhosted.org/packages/4b/d3/9ee6160e644d660fcf176c5825e61411c7f62648728f69c79ba237250143/xxhash-3.6.0-cp313-cp313t-musllinux_1_2_i686.whl", hash = "sha256:6105ef7e62b5ac73a837778efc331a591d8442f8ef5c7e102376506cb4ae2729", size = 200839, upload-time = "2025-10-02T14:35:29.857Z" },
{ url = "https://files.pythonhosted.org/packages/0d/98/e8de5baa5109394baf5118f5e72ab21a86387c4f89b0e77ef3e2f6b0327b/xxhash-3.6.0-cp313-cp313t-musllinux_1_2_ppc64le.whl", hash = "sha256:f01375c0e55395b814a679b3eea205db7919ac2af213f4a6682e01220e5fe292", size = 213304, upload-time = "2025-10-02T14:35:31.222Z" },
{ url = "https://files.pythonhosted.org/packages/7b/1d/71056535dec5c3177eeb53e38e3d367dd1d16e024e63b1cee208d572a033/xxhash-3.6.0-cp313-cp313t-musllinux_1_2_s390x.whl", hash = "sha256:d706dca2d24d834a4661619dcacf51a75c16d65985718d6a7d73c1eeeb903ddf", size = 416930, upload-time = "2025-10-02T14:35:32.517Z" },
{ url = "https://files.pythonhosted.org/packages/dc/6c/5cbde9de2cd967c322e651c65c543700b19e7ae3e0aae8ece3469bf9683d/xxhash-3.6.0-cp313-cp313t-musllinux_1_2_x86_64.whl", hash = "sha256:5f059d9faeacd49c0215d66f4056e1326c80503f51a1532ca336a385edadd033", size = 193787, upload-time = "2025-10-02T14:35:33.827Z" },
{ url = "https://files.pythonhosted.org/packages/19/fa/0172e350361d61febcea941b0cc541d6e6c8d65d153e85f850a7b256ff8a/xxhash-3.6.0-cp313-cp313t-win32.whl", hash = "sha256:1244460adc3a9be84731d72b8e80625788e5815b68da3da8b83f78115a40a7ec", size = 30916, upload-time = "2025-10-02T14:35:35.107Z" },
{ url = "https://files.pythonhosted.org/packages/ad/e6/e8cf858a2b19d6d45820f072eff1bea413910592ff17157cabc5f1227a16/xxhash-3.6.0-cp313-cp313t-win_amd64.whl", hash = "sha256:b1e420ef35c503869c4064f4a2f2b08ad6431ab7b229a05cce39d74268bca6b8", size = 31799, upload-time = "2025-10-02T14:35:36.165Z" },
{ url = "https://files.pythonhosted.org/packages/56/15/064b197e855bfb7b343210e82490ae672f8bc7cdf3ddb02e92f64304ee8a/xxhash-3.6.0-cp313-cp313t-win_arm64.whl", hash = "sha256:ec44b73a4220623235f67a996c862049f375df3b1052d9899f40a6382c32d746", size = 28044, upload-time = "2025-10-02T14:35:37.195Z" },
{ url = "https://files.pythonhosted.org/packages/7e/5e/0138bc4484ea9b897864d59fce9be9086030825bc778b76cb5a33a906d37/xxhash-3.6.0-cp314-cp314-macosx_10_13_x86_64.whl", hash = "sha256:a40a3d35b204b7cc7643cbcf8c9976d818cb47befcfac8bbefec8038ac363f3e", size = 32754, upload-time = "2025-10-02T14:35:38.245Z" },
{ url = "https://files.pythonhosted.org/packages/18/d7/5dac2eb2ec75fd771957a13e5dda560efb2176d5203f39502a5fc571f899/xxhash-3.6.0-cp314-cp314-macosx_11_0_arm64.whl", hash = "sha256:a54844be970d3fc22630b32d515e79a90d0a3ddb2644d8d7402e3c4c8da61405", size = 30846, upload-time = "2025-10-02T14:35:39.6Z" },
{ url = "https://files.pythonhosted.org/packages/fe/71/8bc5be2bb00deb5682e92e8da955ebe5fa982da13a69da5a40a4c8db12fb/xxhash-3.6.0-cp314-cp314-manylinux1_i686.manylinux_2_28_i686.manylinux_2_5_i686.whl", hash = "sha256:016e9190af8f0a4e3741343777710e3d5717427f175adfdc3e72508f59e2a7f3", size = 194343, upload-time = "2025-10-02T14:35:40.69Z" },
{ url = "https://files.pythonhosted.org/packages/e7/3b/52badfb2aecec2c377ddf1ae75f55db3ba2d321c5e164f14461c90837ef3/xxhash-3.6.0-cp314-cp314-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:4f6f72232f849eb9d0141e2ebe2677ece15adfd0fa599bc058aad83c714bb2c6", size = 213074, upload-time = "2025-10-02T14:35:42.29Z" },
{ url = "https://files.pythonhosted.org/packages/a2/2b/ae46b4e9b92e537fa30d03dbc19cdae57ed407e9c26d163895e968e3de85/xxhash-3.6.0-cp314-cp314-manylinux2014_ppc64le.manylinux_2_17_ppc64le.manylinux_2_28_ppc64le.whl", hash = "sha256:63275a8aba7865e44b1813d2177e0f5ea7eadad3dd063a21f7cf9afdc7054063", size = 212388, upload-time = "2025-10-02T14:35:43.929Z" },
{ url = "https://files.pythonhosted.org/packages/f5/80/49f88d3afc724b4ac7fbd664c8452d6db51b49915be48c6982659e0e7942/xxhash-3.6.0-cp314-cp314-manylinux2014_s390x.manylinux_2_17_s390x.manylinux_2_28_s390x.whl", hash = "sha256:3cd01fa2aa00d8b017c97eb46b9a794fbdca53fc14f845f5a328c71254b0abb7", size = 445614, upload-time = "2025-10-02T14:35:45.216Z" },
{ url = "https://files.pythonhosted.org/packages/ed/ba/603ce3961e339413543d8cd44f21f2c80e2a7c5cfe692a7b1f2cccf58f3c/xxhash-3.6.0-cp314-cp314-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:0226aa89035b62b6a86d3c68df4d7c1f47a342b8683da2b60cedcddb46c4d95b", size = 194024, upload-time = "2025-10-02T14:35:46.959Z" },
{ url = "https://files.pythonhosted.org/packages/78/d1/8e225ff7113bf81545cfdcd79eef124a7b7064a0bba53605ff39590b95c2/xxhash-3.6.0-cp314-cp314-musllinux_1_2_aarch64.whl", hash = "sha256:c6e193e9f56e4ca4923c61238cdaced324f0feac782544eb4c6d55ad5cc99ddd", size = 210541, upload-time = "2025-10-02T14:35:48.301Z" },
{ url = "https://files.pythonhosted.org/packages/6f/58/0f89d149f0bad89def1a8dd38feb50ccdeb643d9797ec84707091d4cb494/xxhash-3.6.0-cp314-cp314-musllinux_1_2_i686.whl", hash = "sha256:9176dcaddf4ca963d4deb93866d739a343c01c969231dbe21680e13a5d1a5bf0", size = 198305, upload-time = "2025-10-02T14:35:49.584Z" },
{ url = "https://files.pythonhosted.org/packages/11/38/5eab81580703c4df93feb5f32ff8fa7fe1e2c51c1f183ee4e48d4bb9d3d7/xxhash-3.6.0-cp314-cp314-musllinux_1_2_ppc64le.whl", hash = "sha256:c1ce4009c97a752e682b897aa99aef84191077a9433eb237774689f14f8ec152", size = 210848, upload-time = "2025-10-02T14:35:50.877Z" },
{ url = "https://files.pythonhosted.org/packages/5e/6b/953dc4b05c3ce678abca756416e4c130d2382f877a9c30a20d08ee6a77c0/xxhash-3.6.0-cp314-cp314-musllinux_1_2_s390x.whl", hash = "sha256:8cb2f4f679b01513b7adbb9b1b2f0f9cdc31b70007eaf9d59d0878809f385b11", size = 414142, upload-time = "2025-10-02T14:35:52.15Z" },
{ url = "https://files.pythonhosted.org/packages/08/a9/238ec0d4e81a10eb5026d4a6972677cbc898ba6c8b9dbaec12ae001b1b35/xxhash-3.6.0-cp314-cp314-musllinux_1_2_x86_64.whl", hash = "sha256:653a91d7c2ab54a92c19ccf43508b6a555440b9be1bc8be553376778be7f20b5", size = 191547, upload-time = "2025-10-02T14:35:53.547Z" },
{ url = "https://files.pythonhosted.org/packages/f1/ee/3cf8589e06c2164ac77c3bf0aa127012801128f1feebf2a079272da5737c/xxhash-3.6.0-cp314-cp314-win32.whl", hash = "sha256:a756fe893389483ee8c394d06b5ab765d96e68fbbfe6fde7aa17e11f5720559f", size = 31214, upload-time = "2025-10-02T14:35:54.746Z" },
{ url = "https://files.pythonhosted.org/packages/02/5d/a19552fbc6ad4cb54ff953c3908bbc095f4a921bc569433d791f755186f1/xxhash-3.6.0-cp314-cp314-win_amd64.whl", hash = "sha256:39be8e4e142550ef69629c9cd71b88c90e9a5db703fecbcf265546d9536ca4ad", size = 32290, upload-time = "2025-10-02T14:35:55.791Z" },
{ url = "https://files.pythonhosted.org/packages/b1/11/dafa0643bc30442c887b55baf8e73353a344ee89c1901b5a5c54a6c17d39/xxhash-3.6.0-cp314-cp314-win_arm64.whl", hash = "sha256:25915e6000338999236f1eb68a02a32c3275ac338628a7eaa5a269c401995679", size = 28795, upload-time = "2025-10-02T14:35:57.162Z" },
{ url = "https://files.pythonhosted.org/packages/2c/db/0e99732ed7f64182aef4a6fb145e1a295558deec2a746265dcdec12d191e/xxhash-3.6.0-cp314-cp314t-macosx_10_13_x86_64.whl", hash = "sha256:c5294f596a9017ca5a3e3f8884c00b91ab2ad2933cf288f4923c3fd4346cf3d4", size = 32955, upload-time = "2025-10-02T14:35:58.267Z" },
{ url = "https://files.pythonhosted.org/packages/55/f4/2a7c3c68e564a099becfa44bb3d398810cc0ff6749b0d3cb8ccb93f23c14/xxhash-3.6.0-cp314-cp314t-macosx_11_0_arm64.whl", hash = "sha256:1cf9dcc4ab9cff01dfbba78544297a3a01dafd60f3bde4e2bfd016cf7e4ddc67", size = 31072, upload-time = "2025-10-02T14:35:59.382Z" },
{ url = "https://files.pythonhosted.org/packages/c6/d9/72a29cddc7250e8a5819dad5d466facb5dc4c802ce120645630149127e73/xxhash-3.6.0-cp314-cp314t-manylinux1_i686.manylinux_2_28_i686.manylinux_2_5_i686.whl", hash = "sha256:01262da8798422d0685f7cef03b2bd3f4f46511b02830861df548d7def4402ad", size = 196579, upload-time = "2025-10-02T14:36:00.838Z" },
{ url = "https://files.pythonhosted.org/packages/63/93/b21590e1e381040e2ca305a884d89e1c345b347404f7780f07f2cdd47ef4/xxhash-3.6.0-cp314-cp314t-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:51a73fb7cb3a3ead9f7a8b583ffd9b8038e277cdb8cb87cf890e88b3456afa0b", size = 215854, upload-time = "2025-10-02T14:36:02.207Z" },
{ url = "https://files.pythonhosted.org/packages/ce/b8/edab8a7d4fa14e924b29be877d54155dcbd8b80be85ea00d2be3413a9ed4/xxhash-3.6.0-cp314-cp314t-manylinux2014_ppc64le.manylinux_2_17_ppc64le.manylinux_2_28_ppc64le.whl", hash = "sha256:b9c6df83594f7df8f7f708ce5ebeacfc69f72c9fbaaababf6cf4758eaada0c9b", size = 214965, upload-time = "2025-10-02T14:36:03.507Z" },
{ url = "https://files.pythonhosted.org/packages/27/67/dfa980ac7f0d509d54ea0d5a486d2bb4b80c3f1bb22b66e6a05d3efaf6c0/xxhash-3.6.0-cp314-cp314t-manylinux2014_s390x.manylinux_2_17_s390x.manylinux_2_28_s390x.whl", hash = "sha256:627f0af069b0ea56f312fd5189001c24578868643203bca1abbc2c52d3a6f3ca", size = 448484, upload-time = "2025-10-02T14:36:04.828Z" },
{ url = "https://files.pythonhosted.org/packages/8c/63/8ffc2cc97e811c0ca5d00ab36604b3ea6f4254f20b7bc658ca825ce6c954/xxhash-3.6.0-cp314-cp314t-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:aa912c62f842dfd013c5f21a642c9c10cd9f4c4e943e0af83618b4a404d9091a", size = 196162, upload-time = "2025-10-02T14:36:06.182Z" },
{ url = "https://files.pythonhosted.org/packages/4b/77/07f0e7a3edd11a6097e990f6e5b815b6592459cb16dae990d967693e6ea9/xxhash-3.6.0-cp314-cp314t-musllinux_1_2_aarch64.whl", hash = "sha256:b465afd7909db30168ab62afe40b2fcf79eedc0b89a6c0ab3123515dc0df8b99", size = 213007, upload-time = "2025-10-02T14:36:07.733Z" },
{ url = "https://files.pythonhosted.org/packages/ae/d8/bc5fa0d152837117eb0bef6f83f956c509332ce133c91c63ce07ee7c4873/xxhash-3.6.0-cp314-cp314t-musllinux_1_2_i686.whl", hash = "sha256:a881851cf38b0a70e7c4d3ce81fc7afd86fbc2a024f4cfb2a97cf49ce04b75d3", size = 200956, upload-time = "2025-10-02T14:36:09.106Z" },
{ url = "https://files.pythonhosted.org/packages/26/a5/d749334130de9411783873e9b98ecc46688dad5db64ca6e04b02acc8b473/xxhash-3.6.0-cp314-cp314t-musllinux_1_2_ppc64le.whl", hash = "sha256:9b3222c686a919a0f3253cfc12bb118b8b103506612253b5baeaac10d8027cf6", size = 213401, upload-time = "2025-10-02T14:36:10.585Z" },
{ url = "https://files.pythonhosted.org/packages/89/72/abed959c956a4bfc72b58c0384bb7940663c678127538634d896b1195c10/xxhash-3.6.0-cp314-cp314t-musllinux_1_2_s390x.whl", hash = "sha256:c5aa639bc113e9286137cec8fadc20e9cd732b2cc385c0b7fa673b84fc1f2a93", size = 417083, upload-time = "2025-10-02T14:36:12.276Z" },
{ url = "https://files.pythonhosted.org/packages/0c/b3/62fd2b586283b7d7d665fb98e266decadf31f058f1cf6c478741f68af0cb/xxhash-3.6.0-cp314-cp314t-musllinux_1_2_x86_64.whl", hash = "sha256:5c1343d49ac102799905e115aee590183c3921d475356cb24b4de29a4bc56518", size = 193913, upload-time = "2025-10-02T14:36:14.025Z" },
{ url = "https://files.pythonhosted.org/packages/9a/9a/c19c42c5b3f5a4aad748a6d5b4f23df3bed7ee5445accc65a0fb3ff03953/xxhash-3.6.0-cp314-cp314t-win32.whl", hash = "sha256:5851f033c3030dd95c086b4a36a2683c2ff4a799b23af60977188b057e467119", size = 31586, upload-time = "2025-10-02T14:36:15.603Z" },
{ url = "https://files.pythonhosted.org/packages/03/d6/4cc450345be9924fd5dc8c590ceda1db5b43a0a889587b0ae81a95511360/xxhash-3.6.0-cp314-cp314t-win_amd64.whl", hash = "sha256:0444e7967dac37569052d2409b00a8860c2135cff05502df4da80267d384849f", size = 32526, upload-time = "2025-10-02T14:36:16.708Z" },
{ url = "https://files.pythonhosted.org/packages/0f/c9/7243eb3f9eaabd1a88a5a5acadf06df2d83b100c62684b7425c6a11bcaa8/xxhash-3.6.0-cp314-cp314t-win_arm64.whl", hash = "sha256:bb79b1e63f6fd84ec778a4b1916dfe0a7c3fdb986c06addd5db3a0d413819d95", size = 28898, upload-time = "2025-10-02T14:36:17.843Z" },
{ url = "https://files.pythonhosted.org/packages/93/1e/8aec23647a34a249f62e2398c42955acd9b4c6ed5cf08cbea94dc46f78d2/xxhash-3.6.0-pp311-pypy311_pp73-macosx_10_15_x86_64.whl", hash = "sha256:0f7b7e2ec26c1666ad5fc9dbfa426a6a3367ceaf79db5dd76264659d509d73b0", size = 30662, upload-time = "2025-10-02T14:37:01.743Z" },
{ url = "https://files.pythonhosted.org/packages/b8/0b/b14510b38ba91caf43006209db846a696ceea6a847a0c9ba0a5b1adc53d6/xxhash-3.6.0-pp311-pypy311_pp73-manylinux1_i686.manylinux_2_28_i686.manylinux_2_5_i686.whl", hash = "sha256:5dc1e14d14fa0f5789ec29a7062004b5933964bb9b02aae6622b8f530dc40296", size = 41056, upload-time = "2025-10-02T14:37:02.879Z" },
{ url = "https://files.pythonhosted.org/packages/50/55/15a7b8a56590e66ccd374bbfa3f9ffc45b810886c8c3b614e3f90bd2367c/xxhash-3.6.0-pp311-pypy311_pp73-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:881b47fc47e051b37d94d13e7455131054b56749b91b508b0907eb07900d1c13", size = 36251, upload-time = "2025-10-02T14:37:04.44Z" },
{ url = "https://files.pythonhosted.org/packages/62/b2/5ac99a041a29e58e95f907876b04f7067a0242cb85b5f39e726153981503/xxhash-3.6.0-pp311-pypy311_pp73-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:c6dc31591899f5e5666f04cc2e529e69b4072827085c1ef15294d91a004bc1bd", size = 32481, upload-time = "2025-10-02T14:37:05.869Z" },
{ url = "https://files.pythonhosted.org/packages/7b/d9/8d95e906764a386a3d3b596f3c68bb63687dfca806373509f51ce8eea81f/xxhash-3.6.0-pp311-pypy311_pp73-win_amd64.whl", hash = "sha256:15e0dac10eb9309508bfc41f7f9deaa7755c69e35af835db9cb10751adebc35d", size = 31565, upload-time = "2025-10-02T14:37:06.966Z" },
]
[[package]]
name = "zstandard"
version = "0.25.0"

View File

@@ -1,7 +1,14 @@
# 🦜🍎️ LangChain Core
[![PyPI - License](https://img.shields.io/pypi/l/langchain-core?style=flat-square)](https://opensource.org/licenses/MIT)
[![PyPI - Version](https://img.shields.io/pypi/v/langchain-core?label=%20)](https://pypi.org/project/langchain-core/#history)
[![PyPI - License](https://img.shields.io/pypi/l/langchain-core)](https://opensource.org/licenses/MIT)
[![PyPI - Downloads](https://img.shields.io/pepy/dt/langchain-core)](https://pypistats.org/packages/langchain-core)
[![Twitter](https://img.shields.io/twitter/url/https/twitter.com/langchainai.svg?style=social&label=Follow%20%40LangChainAI)](https://twitter.com/langchainai)
Looking for the JS/TS version? Check out [LangChain.js](https://github.com/langchain-ai/langchainjs).
To help you ship LangChain apps to production faster, check out [LangSmith](https://smith.langchain.com).
[LangSmith](https://smith.langchain.com) is a unified developer platform for building, testing, and monitoring LLM applications.
## Quick Install
@@ -9,16 +16,14 @@
pip install langchain-core
```
## What is it?
## 🤔 What is this?
LangChain Core contains the base abstractions that power the the LangChain ecosystem.
LangChain Core contains the base abstractions that power the LangChain ecosystem.
These abstractions are designed to be as modular and simple as possible.
The benefit of having these abstractions is that any provider can implement the required interface and then easily be used in the rest of the LangChain ecosystem.
For full documentation see the [API reference](https://reference.langchain.com/python/).
## ⛰️ Why build on top of LangChain Core?
The LangChain ecosystem is built on top of `langchain-core`. Some of the benefits:
@@ -27,12 +32,16 @@ The LangChain ecosystem is built on top of `langchain-core`. Some of the benefit
- **Stability**: We are committed to a stable versioning scheme, and will communicate any breaking changes with advance notice and version bumps.
- **Battle-tested**: Core components have the largest install base in the LLM ecosystem, and are used in production by many companies.
## 📖 Documentation
For full documentation, see the [API reference](https://reference.langchain.com/python/langchain_core/).
## 📕 Releases & Versioning
See our [Releases](https://docs.langchain.com/oss/python/release-policy) and [Versioning Policy](https://docs.langchain.com/oss/python/versioning).
See our [Releases](https://docs.langchain.com/oss/python/release-policy) and [Versioning](https://docs.langchain.com/oss/python/versioning) policies.
## 💁 Contributing
As an open-source project in a rapidly developing field, we are extremely open to contributions, whether it be in the form of a new feature, improved infrastructure, or better documentation.
For detailed information on how to contribute, see the [Contributing Guide](https://docs.langchain.com/oss/python/contributing).
For detailed information on how to contribute, see the [Contributing Guide](https://docs.langchain.com/oss/python/contributing/overview).

View File

@@ -1,4 +1,4 @@
"""``langchain-core`` defines the base abstractions for the LangChain ecosystem.
"""`langchain-core` defines the base abstractions for the LangChain ecosystem.
The interfaces for core components like chat models, LLMs, vector stores, retrievers,
and more are defined here. The universal invocation protocol (Runnables) along with

View File

@@ -6,7 +6,6 @@ This module is only relevant for LangChain developers, not for users.
This module and its submodules are for internal use only. Do not use them in your
own code. We may change the API at any time with no warning.
"""
from typing import TYPE_CHECKING

View File

@@ -40,40 +40,37 @@ def beta(
"""Decorator to mark a function, a class, or a property as beta.
When marking a classmethod, a staticmethod, or a property, the
``@beta`` decorator should go *under* ``@classmethod`` and
``@staticmethod`` (i.e., `beta` should directly decorate the
underlying callable), but *over* ``@property``.
`@beta` decorator should go *under* `@classmethod` and
`@staticmethod` (i.e., `beta` should directly decorate the
underlying callable), but *over* `@property`.
When marking a class ``C`` intended to be used as a base class in a
multiple inheritance hierarchy, ``C`` *must* define an ``__init__`` method
(if ``C`` instead inherited its ``__init__`` from its own base class, then
``@beta`` would mess up ``__init__`` inheritance when installing its
own (annotation-emitting) ``C.__init__``).
When marking a class `C` intended to be used as a base class in a
multiple inheritance hierarchy, `C` *must* define an `__init__` method
(if `C` instead inherited its `__init__` from its own base class, then
`@beta` would mess up `__init__` inheritance when installing its
own (annotation-emitting) `C.__init__`).
Args:
message : str, optional
message:
Override the default beta message. The %(since)s,
%(name)s, %(alternative)s, %(obj_type)s, %(addendum)s,
and %(removal)s format specifiers will be replaced by the
values of the respective arguments passed to this function.
name : str, optional
name:
The name of the beta object.
obj_type : str, optional
obj_type:
The object type being beta.
addendum : str, optional
addendum:
Additional text appended directly to the final message.
Returns:
A decorator which can be used to mark functions or classes as beta.
Examples:
.. code-block:: python
@beta
def the_function_to_annotate():
pass
```python
@beta
def the_function_to_annotate():
pass
```
"""
def beta(

View File

@@ -82,62 +82,59 @@ def deprecated(
"""Decorator to mark a function, a class, or a property as deprecated.
When deprecating a classmethod, a staticmethod, or a property, the
``@deprecated`` decorator should go *under* ``@classmethod`` and
``@staticmethod`` (i.e., `deprecated` should directly decorate the
underlying callable), but *over* ``@property``.
`@deprecated` decorator should go *under* `@classmethod` and
`@staticmethod` (i.e., `deprecated` should directly decorate the
underlying callable), but *over* `@property`.
When deprecating a class ``C`` intended to be used as a base class in a
multiple inheritance hierarchy, ``C`` *must* define an ``__init__`` method
(if ``C`` instead inherited its ``__init__`` from its own base class, then
``@deprecated`` would mess up ``__init__`` inheritance when installing its
own (deprecation-emitting) ``C.__init__``).
When deprecating a class `C` intended to be used as a base class in a
multiple inheritance hierarchy, `C` *must* define an `__init__` method
(if `C` instead inherited its `__init__` from its own base class, then
`@deprecated` would mess up `__init__` inheritance when installing its
own (deprecation-emitting) `C.__init__`).
Parameters are the same as for `warn_deprecated`, except that *obj_type*
defaults to 'class' if decorating a class, 'attribute' if decorating a
property, and 'function' otherwise.
Args:
since : str
since:
The release at which this API became deprecated.
message : str, optional
message:
Override the default deprecation message. The %(since)s,
%(name)s, %(alternative)s, %(obj_type)s, %(addendum)s,
and %(removal)s format specifiers will be replaced by the
values of the respective arguments passed to this function.
name : str, optional
name:
The name of the deprecated object.
alternative : str, optional
alternative:
An alternative API that the user may use in place of the
deprecated API. The deprecation warning will tell the user
about this alternative if provided.
alternative_import: str, optional
alternative_import:
An alternative import that the user may use instead.
pending : bool, optional
If True, uses a PendingDeprecationWarning instead of a
pending:
If `True`, uses a `PendingDeprecationWarning` instead of a
DeprecationWarning. Cannot be used together with removal.
obj_type : str, optional
obj_type:
The object type being deprecated.
addendum : str, optional
addendum:
Additional text appended directly to the final message.
removal : str, optional
removal:
The expected removal version. With the default (an empty
string), a removal version is automatically computed from
since. Set to other Falsy values to not schedule a removal
date. Cannot be used together with pending.
package: str, optional
package:
The package of the deprecated object.
Returns:
A decorator to mark a function or class as deprecated.
Examples:
.. code-block:: python
@deprecated("1.4.0")
def the_function_to_deprecate():
pass
```python
@deprecated("1.4.0")
def the_function_to_deprecate():
pass
```
"""
_validate_deprecation_params(
removal, alternative, alternative_import, pending=pending
@@ -372,7 +369,7 @@ def deprecated(
components = [
_message,
f"Use {_alternative} instead." if _alternative else "",
f"Use ``{_alternative_import}`` instead." if _alternative_import else "",
f"Use `{_alternative_import}` instead." if _alternative_import else "",
_addendum,
]
details = " ".join([component.strip() for component in components if component])
@@ -440,7 +437,7 @@ def warn_deprecated(
alternative_import:
An alternative import that the user may use instead.
pending:
If True, uses a PendingDeprecationWarning instead of a
If `True`, uses a `PendingDeprecationWarning` instead of a
DeprecationWarning. Cannot be used together with removal.
obj_type:
The object type being deprecated.
@@ -550,12 +547,10 @@ def rename_parameter(
A decorator indicating that a parameter was renamed.
Example:
.. code-block:: python
@_api.rename_parameter("3.1", "bad_name", "good_name")
def func(good_name): ...
```python
@_api.rename_parameter("3.1", "bad_name", "good_name")
def func(good_name): ...
```
"""
def decorator(f: Callable[_P, _R]) -> Callable[_P, _R]:

View File

@@ -13,7 +13,7 @@ def import_attr(
Args:
attr_name: The name of the attribute to import.
module_name: The name of the module to import from. If None, the attribute
module_name: The name of the module to import from. If `None`, the attribute
is imported from the package itself.
package: The name of the package where the module is located.

View File

@@ -1,25 +1,24 @@
"""Schema definitions for representing agent actions, observations, and return values.
**ATTENTION** The schema definitions are provided for backwards compatibility.
!!! warning
The schema definitions are provided for backwards compatibility.
!!! important
!!! warning
New agents should be built using the
[langgraph library](https://github.com/langchain-ai/langgraph), which provides a
[`langchain` library](https://pypi.org/project/langchain/), which provides a
simpler and more flexible way to define agents.
Please see the
[migration guide](https://python.langchain.com/docs/how_to/migrate_agent/) for
information on how to migrate existing agents to modern langgraph agents.
See docs on [building agents](https://docs.langchain.com/oss/python/langchain/agents).
Agents use language models to choose a sequence of actions to take.
A basic agent works in the following manner:
1. Given a prompt an agent uses an LLM to request an action to take
(e.g., a tool to run).
(e.g., a tool to run).
2. The agent executes the action (e.g., runs the tool), and receives an observation.
3. The agent returns the observation to the LLM, which can then be used to generate
the next action.
the next action.
4. When the agent reaches a stopping condition, it returns a final return value.
The schemas for the agents themselves are defined in langchain.agents.agent.
@@ -53,40 +52,42 @@ class AgentAction(Serializable):
"""The input to pass in to the Tool."""
log: str
"""Additional information to log about the action.
This log can be used in a few ways. First, it can be used to audit
what exactly the LLM predicted to lead to this (tool, tool_input).
Second, it can be used in future iterations to show the LLMs prior
thoughts. This is useful when (tool, tool_input) does not contain
full information about the LLM prediction (for example, any `thought`
before the tool/tool_input)."""
This log can be used in a few ways. First, it can be used to audit what exactly the
LLM predicted to lead to this `(tool, tool_input)`.
Second, it can be used in future iterations to show the LLMs prior thoughts. This is
useful when `(tool, tool_input)` does not contain full information about the LLM
prediction (for example, any `thought` before the tool/tool_input).
"""
type: Literal["AgentAction"] = "AgentAction"
# Override init to support instantiation by position for backward compat.
def __init__(self, tool: str, tool_input: str | dict, log: str, **kwargs: Any):
"""Create an AgentAction.
"""Create an `AgentAction`.
Args:
tool: The name of the tool to execute.
tool_input: The input to pass in to the Tool.
tool_input: The input to pass in to the `Tool`.
log: Additional information to log about the action.
"""
super().__init__(tool=tool, tool_input=tool_input, log=log, **kwargs)
@classmethod
def is_lc_serializable(cls) -> bool:
"""AgentAction is serializable.
"""`AgentAction` is serializable.
Returns:
True
`True`
"""
return True
@classmethod
def get_lc_namespace(cls) -> list[str]:
"""Get the namespace of the langchain object.
"""Get the namespace of the LangChain object.
Returns:
``["langchain", "schema", "agent"]``
`["langchain", "schema", "agent"]`
"""
return ["langchain", "schema", "agent"]
@@ -99,19 +100,23 @@ class AgentAction(Serializable):
class AgentActionMessageLog(AgentAction):
"""Representation of an action to be executed by an agent.
This is similar to AgentAction, but includes a message log consisting of
chat messages. This is useful when working with ChatModels, and is used
to reconstruct conversation history from the agent's perspective.
This is similar to `AgentAction`, but includes a message log consisting of
chat messages.
This is useful when working with `ChatModels`, and is used to reconstruct
conversation history from the agent's perspective.
"""
message_log: Sequence[BaseMessage]
"""Similar to log, this can be used to pass along extra
information about what exact messages were predicted by the LLM
before parsing out the (tool, tool_input). This is again useful
if (tool, tool_input) cannot be used to fully recreate the LLM
prediction, and you need that LLM prediction (for future agent iteration).
"""Similar to log, this can be used to pass along extra information about what exact
messages were predicted by the LLM before parsing out the `(tool, tool_input)`.
This is again useful if `(tool, tool_input)` cannot be used to fully recreate the
LLM prediction, and you need that LLM prediction (for future agent iteration).
Compared to `log`, this is useful when the underlying LLM is a
ChatModel (and therefore returns messages rather than a string)."""
chat model (and therefore returns messages rather than a string).
"""
# Ignoring type because we're overriding the type from AgentAction.
# And this is the correct thing to do in this case.
# The type literal is used for serialization purposes.
@@ -119,12 +124,12 @@ class AgentActionMessageLog(AgentAction):
class AgentStep(Serializable):
"""Result of running an AgentAction."""
"""Result of running an `AgentAction`."""
action: AgentAction
"""The AgentAction that was executed."""
"""The `AgentAction` that was executed."""
observation: Any
"""The result of the AgentAction."""
"""The result of the `AgentAction`."""
@property
def messages(self) -> Sequence[BaseMessage]:
@@ -133,19 +138,22 @@ class AgentStep(Serializable):
class AgentFinish(Serializable):
"""Final return value of an ActionAgent.
"""Final return value of an `ActionAgent`.
Agents return an AgentFinish when they have reached a stopping condition.
Agents return an `AgentFinish` when they have reached a stopping condition.
"""
return_values: dict
"""Dictionary of return values."""
log: str
"""Additional information to log about the return value.
This is used to pass along the full LLM prediction, not just the parsed out
return value. For example, if the full LLM prediction was
`Final Answer: 2` you may want to just return `2` as a return value, but pass
along the full string as a `log` (for debugging or observability purposes).
return value.
For example, if the full LLM prediction was `Final Answer: 2` you may want to just
return `2` as a return value, but pass along the full string as a `log` (for
debugging or observability purposes).
"""
type: Literal["AgentFinish"] = "AgentFinish"
@@ -155,15 +163,15 @@ class AgentFinish(Serializable):
@classmethod
def is_lc_serializable(cls) -> bool:
"""Return True as this class is serializable."""
"""Return `True` as this class is serializable."""
return True
@classmethod
def get_lc_namespace(cls) -> list[str]:
"""Get the namespace of the langchain object.
"""Get the namespace of the LangChain object.
Returns:
``["langchain", "schema", "agent"]``
`["langchain", "schema", "agent"]`
"""
return ["langchain", "schema", "agent"]
@@ -203,7 +211,7 @@ def _convert_agent_observation_to_messages(
observation: Observation to convert to a message.
Returns:
AIMessage that corresponds to the original tool invocation.
`AIMessage` that corresponds to the original tool invocation.
"""
if isinstance(agent_action, AgentActionMessageLog):
return [_create_function_message(agent_action, observation)]
@@ -226,7 +234,7 @@ def _create_function_message(
observation: the result of the tool invocation.
Returns:
FunctionMessage that corresponds to the original tool invocation.
`FunctionMessage` that corresponds to the original tool invocation.
"""
if not isinstance(observation, str):
try:

View File

@@ -1,24 +1,17 @@
"""Cache classes.
"""Optional caching layer for language models.
!!! warning
Beta Feature!
Distinct from provider-based [prompt caching](https://docs.langchain.com/oss/python/langchain/models#prompt-caching).
**Cache** provides an optional caching layer for LLMs.
!!! warning "Beta feature"
This is a beta feature. Please be wary of deploying experimental code to production
unless you've taken appropriate precautions.
Cache is useful for two reasons:
A cache is useful for two reasons:
- It can save you money by reducing the number of API calls you make to the LLM
provider if you're often requesting the same completion multiple times.
- It can speed up your application by reducing the number of API calls you make
to the LLM provider.
Cache directly competes with Memory. See documentation for Pros and Cons.
**Class hierarchy:**
.. code-block::
BaseCache --> <name>Cache # Examples: InMemoryCache, RedisCache, GPTCache
1. It can save you money by reducing the number of API calls you make to the LLM
provider if you're often requesting the same completion multiple times.
2. It can speed up your application by reducing the number of API calls you make to the
LLM provider.
"""
from __future__ import annotations
@@ -40,8 +33,8 @@ class BaseCache(ABC):
The cache interface consists of the following methods:
- lookup: Look up a value based on a prompt and llm_string.
- update: Update the cache based on a prompt and llm_string.
- lookup: Look up a value based on a prompt and `llm_string`.
- update: Update the cache based on a prompt and `llm_string`.
- clear: Clear the cache.
In addition, the cache interface provides an async version of each method.
@@ -53,43 +46,46 @@ class BaseCache(ABC):
@abstractmethod
def lookup(self, prompt: str, llm_string: str) -> RETURN_VAL_TYPE | None:
"""Look up based on prompt and llm_string.
"""Look up based on `prompt` and `llm_string`.
A cache implementation is expected to generate a key from the 2-tuple
of prompt and llm_string (e.g., by concatenating them with a delimiter).
of `prompt` and `llm_string` (e.g., by concatenating them with a delimiter).
Args:
prompt: a string representation of the prompt.
In the case of a Chat model, the prompt is a non-trivial
prompt: A string representation of the prompt.
In the case of a chat model, the prompt is a non-trivial
serialization of the prompt into the language model.
llm_string: A string representation of the LLM configuration.
This is used to capture the invocation parameters of the LLM
(e.g., model name, temperature, stop tokens, max tokens, etc.).
These invocation parameters are serialized into a string
representation.
These invocation parameters are serialized into a string representation.
Returns:
On a cache miss, return None. On a cache hit, return the cached value.
The cached value is a list of Generations (or subclasses).
On a cache miss, return `None`. On a cache hit, return the cached value.
The cached value is a list of `Generation` (or subclasses).
"""
@abstractmethod
def update(self, prompt: str, llm_string: str, return_val: RETURN_VAL_TYPE) -> None:
"""Update cache based on prompt and llm_string.
"""Update cache based on `prompt` and `llm_string`.
The prompt and llm_string are used to generate a key for the cache.
The key should match that of the lookup method.
Args:
prompt: a string representation of the prompt.
In the case of a Chat model, the prompt is a non-trivial
prompt: A string representation of the prompt.
In the case of a chat model, the prompt is a non-trivial
serialization of the prompt into the language model.
llm_string: A string representation of the LLM configuration.
This is used to capture the invocation parameters of the LLM
(e.g., model name, temperature, stop tokens, max tokens, etc.).
These invocation parameters are serialized into a string
representation.
return_val: The value to be cached. The value is a list of Generations
return_val: The value to be cached. The value is a list of `Generation`
(or subclasses).
"""
@@ -98,45 +94,49 @@ class BaseCache(ABC):
"""Clear cache that can take additional keyword arguments."""
async def alookup(self, prompt: str, llm_string: str) -> RETURN_VAL_TYPE | None:
"""Async look up based on prompt and llm_string.
"""Async look up based on `prompt` and `llm_string`.
A cache implementation is expected to generate a key from the 2-tuple
of prompt and llm_string (e.g., by concatenating them with a delimiter).
of `prompt` and `llm_string` (e.g., by concatenating them with a delimiter).
Args:
prompt: a string representation of the prompt.
In the case of a Chat model, the prompt is a non-trivial
prompt: A string representation of the prompt.
In the case of a chat model, the prompt is a non-trivial
serialization of the prompt into the language model.
llm_string: A string representation of the LLM configuration.
This is used to capture the invocation parameters of the LLM
(e.g., model name, temperature, stop tokens, max tokens, etc.).
These invocation parameters are serialized into a string
representation.
Returns:
On a cache miss, return None. On a cache hit, return the cached value.
The cached value is a list of Generations (or subclasses).
On a cache miss, return `None`. On a cache hit, return the cached value.
The cached value is a list of `Generation` (or subclasses).
"""
return await run_in_executor(None, self.lookup, prompt, llm_string)
async def aupdate(
self, prompt: str, llm_string: str, return_val: RETURN_VAL_TYPE
) -> None:
"""Async update cache based on prompt and llm_string.
"""Async update cache based on `prompt` and `llm_string`.
The prompt and llm_string are used to generate a key for the cache.
The key should match that of the look up method.
Args:
prompt: a string representation of the prompt.
In the case of a Chat model, the prompt is a non-trivial
prompt: A string representation of the prompt.
In the case of a chat model, the prompt is a non-trivial
serialization of the prompt into the language model.
llm_string: A string representation of the LLM configuration.
This is used to capture the invocation parameters of the LLM
(e.g., model name, temperature, stop tokens, max tokens, etc.).
These invocation parameters are serialized into a string
representation.
return_val: The value to be cached. The value is a list of Generations
return_val: The value to be cached. The value is a list of `Generation`
(or subclasses).
"""
return await run_in_executor(None, self.update, prompt, llm_string, return_val)
@@ -154,12 +154,11 @@ class InMemoryCache(BaseCache):
Args:
maxsize: The maximum number of items to store in the cache.
If None, the cache has no maximum size.
If `None`, the cache has no maximum size.
If the cache exceeds the maximum size, the oldest items are removed.
Default is None.
Raises:
ValueError: If maxsize is less than or equal to 0.
ValueError: If `maxsize` is less than or equal to `0`.
"""
self._cache: dict[tuple[str, str], RETURN_VAL_TYPE] = {}
if maxsize is not None and maxsize <= 0:
@@ -168,28 +167,28 @@ class InMemoryCache(BaseCache):
self._maxsize = maxsize
def lookup(self, prompt: str, llm_string: str) -> RETURN_VAL_TYPE | None:
"""Look up based on prompt and llm_string.
"""Look up based on `prompt` and `llm_string`.
Args:
prompt: a string representation of the prompt.
In the case of a Chat model, the prompt is a non-trivial
prompt: A string representation of the prompt.
In the case of a chat model, the prompt is a non-trivial
serialization of the prompt into the language model.
llm_string: A string representation of the LLM configuration.
Returns:
On a cache miss, return None. On a cache hit, return the cached value.
On a cache miss, return `None`. On a cache hit, return the cached value.
"""
return self._cache.get((prompt, llm_string), None)
def update(self, prompt: str, llm_string: str, return_val: RETURN_VAL_TYPE) -> None:
"""Update cache based on prompt and llm_string.
"""Update cache based on `prompt` and `llm_string`.
Args:
prompt: a string representation of the prompt.
In the case of a Chat model, the prompt is a non-trivial
prompt: A string representation of the prompt.
In the case of a chat model, the prompt is a non-trivial
serialization of the prompt into the language model.
llm_string: A string representation of the LLM configuration.
return_val: The value to be cached. The value is a list of Generations
return_val: The value to be cached. The value is a list of `Generation`
(or subclasses).
"""
if self._maxsize is not None and len(self._cache) == self._maxsize:
@@ -202,30 +201,30 @@ class InMemoryCache(BaseCache):
self._cache = {}
async def alookup(self, prompt: str, llm_string: str) -> RETURN_VAL_TYPE | None:
"""Async look up based on prompt and llm_string.
"""Async look up based on `prompt` and `llm_string`.
Args:
prompt: a string representation of the prompt.
In the case of a Chat model, the prompt is a non-trivial
prompt: A string representation of the prompt.
In the case of a chat model, the prompt is a non-trivial
serialization of the prompt into the language model.
llm_string: A string representation of the LLM configuration.
Returns:
On a cache miss, return None. On a cache hit, return the cached value.
On a cache miss, return `None`. On a cache hit, return the cached value.
"""
return self.lookup(prompt, llm_string)
async def aupdate(
self, prompt: str, llm_string: str, return_val: RETURN_VAL_TYPE
) -> None:
"""Async update cache based on prompt and llm_string.
"""Async update cache based on `prompt` and `llm_string`.
Args:
prompt: a string representation of the prompt.
In the case of a Chat model, the prompt is a non-trivial
prompt: A string representation of the prompt.
In the case of a chat model, the prompt is a non-trivial
serialization of the prompt into the language model.
llm_string: A string representation of the LLM configuration.
return_val: The value to be cached. The value is a list of Generations
return_val: The value to be cached. The value is a list of `Generation`
(or subclasses).
"""
self.update(prompt, llm_string, return_val)

View File

@@ -1,11 +1,4 @@
"""**Callback handlers** allow listening to events in LangChain.
**Class hierarchy:**
.. code-block::
BaseCallbackHandler --> <name>CallbackHandler # Example: AimCallbackHandler
"""
"""**Callback handlers** allow listening to events in LangChain."""
from typing import TYPE_CHECKING

View File

@@ -35,10 +35,10 @@ class RetrieverManagerMixin:
"""Run when Retriever errors.
Args:
error (BaseException): The error that occurred.
run_id (UUID): The run ID. This is the ID of the current run.
parent_run_id (UUID): The parent run ID. This is the ID of the parent run.
kwargs (Any): Additional keyword arguments.
error: The error that occurred.
run_id: The run ID. This is the ID of the current run.
parent_run_id: The parent run ID. This is the ID of the parent run.
**kwargs: Additional keyword arguments.
"""
def on_retriever_end(
@@ -52,10 +52,10 @@ class RetrieverManagerMixin:
"""Run when Retriever ends running.
Args:
documents (Sequence[Document]): The documents retrieved.
run_id (UUID): The run ID. This is the ID of the current run.
parent_run_id (UUID): The parent run ID. This is the ID of the parent run.
kwargs (Any): Additional keyword arguments.
documents: The documents retrieved.
run_id: The run ID. This is the ID of the current run.
parent_run_id: The parent run ID. This is the ID of the parent run.
**kwargs: Additional keyword arguments.
"""
@@ -76,12 +76,11 @@ class LLMManagerMixin:
For both chat models and non-chat models (legacy LLMs).
Args:
token (str): The new token.
chunk (GenerationChunk | ChatGenerationChunk): The new generated chunk,
containing content and other information.
run_id (UUID): The run ID. This is the ID of the current run.
parent_run_id (UUID): The parent run ID. This is the ID of the parent run.
kwargs (Any): Additional keyword arguments.
token: The new token.
chunk: The new generated chunk, containing content and other information.
run_id: The run ID. This is the ID of the current run.
parent_run_id: The parent run ID. This is the ID of the parent run.
**kwargs: Additional keyword arguments.
"""
def on_llm_end(
@@ -95,10 +94,10 @@ class LLMManagerMixin:
"""Run when LLM ends running.
Args:
response (LLMResult): The response which was generated.
run_id (UUID): The run ID. This is the ID of the current run.
parent_run_id (UUID): The parent run ID. This is the ID of the parent run.
kwargs (Any): Additional keyword arguments.
response: The response which was generated.
run_id: The run ID. This is the ID of the current run.
parent_run_id: The parent run ID. This is the ID of the parent run.
**kwargs: Additional keyword arguments.
"""
def on_llm_error(
@@ -112,10 +111,10 @@ class LLMManagerMixin:
"""Run when LLM errors.
Args:
error (BaseException): The error that occurred.
run_id (UUID): The run ID. This is the ID of the current run.
parent_run_id (UUID): The parent run ID. This is the ID of the parent run.
kwargs (Any): Additional keyword arguments.
error: The error that occurred.
run_id: The run ID. This is the ID of the current run.
parent_run_id: The parent run ID. This is the ID of the parent run.
**kwargs: Additional keyword arguments.
"""
@@ -133,10 +132,10 @@ class ChainManagerMixin:
"""Run when chain ends running.
Args:
outputs (dict[str, Any]): The outputs of the chain.
run_id (UUID): The run ID. This is the ID of the current run.
parent_run_id (UUID): The parent run ID. This is the ID of the parent run.
kwargs (Any): Additional keyword arguments.
outputs: The outputs of the chain.
run_id: The run ID. This is the ID of the current run.
parent_run_id: The parent run ID. This is the ID of the parent run.
**kwargs: Additional keyword arguments.
"""
def on_chain_error(
@@ -150,10 +149,10 @@ class ChainManagerMixin:
"""Run when chain errors.
Args:
error (BaseException): The error that occurred.
run_id (UUID): The run ID. This is the ID of the current run.
parent_run_id (UUID): The parent run ID. This is the ID of the parent run.
kwargs (Any): Additional keyword arguments.
error: The error that occurred.
run_id: The run ID. This is the ID of the current run.
parent_run_id: The parent run ID. This is the ID of the parent run.
**kwargs: Additional keyword arguments.
"""
def on_agent_action(
@@ -167,10 +166,10 @@ class ChainManagerMixin:
"""Run on agent action.
Args:
action (AgentAction): The agent action.
run_id (UUID): The run ID. This is the ID of the current run.
parent_run_id (UUID): The parent run ID. This is the ID of the parent run.
kwargs (Any): Additional keyword arguments.
action: The agent action.
run_id: The run ID. This is the ID of the current run.
parent_run_id: The parent run ID. This is the ID of the parent run.
**kwargs: Additional keyword arguments.
"""
def on_agent_finish(
@@ -184,10 +183,10 @@ class ChainManagerMixin:
"""Run on the agent end.
Args:
finish (AgentFinish): The agent finish.
run_id (UUID): The run ID. This is the ID of the current run.
parent_run_id (UUID): The parent run ID. This is the ID of the parent run.
kwargs (Any): Additional keyword arguments.
finish: The agent finish.
run_id: The run ID. This is the ID of the current run.
parent_run_id: The parent run ID. This is the ID of the parent run.
**kwargs: Additional keyword arguments.
"""
@@ -205,10 +204,10 @@ class ToolManagerMixin:
"""Run when the tool ends running.
Args:
output (Any): The output of the tool.
run_id (UUID): The run ID. This is the ID of the current run.
parent_run_id (UUID): The parent run ID. This is the ID of the parent run.
kwargs (Any): Additional keyword arguments.
output: The output of the tool.
run_id: The run ID. This is the ID of the current run.
parent_run_id: The parent run ID. This is the ID of the parent run.
**kwargs: Additional keyword arguments.
"""
def on_tool_error(
@@ -222,10 +221,10 @@ class ToolManagerMixin:
"""Run when tool errors.
Args:
error (BaseException): The error that occurred.
run_id (UUID): The run ID. This is the ID of the current run.
parent_run_id (UUID): The parent run ID. This is the ID of the parent run.
kwargs (Any): Additional keyword arguments.
error: The error that occurred.
run_id: The run ID. This is the ID of the current run.
parent_run_id: The parent run ID. This is the ID of the parent run.
**kwargs: Additional keyword arguments.
"""
@@ -248,16 +247,16 @@ class CallbackManagerMixin:
!!! warning
This method is called for non-chat models (regular LLMs). If you're
implementing a handler for a chat model, you should use
``on_chat_model_start`` instead.
`on_chat_model_start` instead.
Args:
serialized (dict[str, Any]): The serialized LLM.
prompts (list[str]): The prompts.
run_id (UUID): The run ID. This is the ID of the current run.
parent_run_id (UUID): The parent run ID. This is the ID of the parent run.
tags (Optional[list[str]]): The tags.
metadata (Optional[dict[str, Any]]): The metadata.
kwargs (Any): Additional keyword arguments.
serialized: The serialized LLM.
prompts: The prompts.
run_id: The run ID. This is the ID of the current run.
parent_run_id: The parent run ID. This is the ID of the parent run.
tags: The tags.
metadata: The metadata.
**kwargs: Additional keyword arguments.
"""
def on_chat_model_start(
@@ -275,16 +274,16 @@ class CallbackManagerMixin:
!!! warning
This method is called for chat models. If you're implementing a handler for
a non-chat model, you should use ``on_llm_start`` instead.
a non-chat model, you should use `on_llm_start` instead.
Args:
serialized (dict[str, Any]): The serialized chat model.
messages (list[list[BaseMessage]]): The messages.
run_id (UUID): The run ID. This is the ID of the current run.
parent_run_id (UUID): The parent run ID. This is the ID of the parent run.
tags (Optional[list[str]]): The tags.
metadata (Optional[dict[str, Any]]): The metadata.
kwargs (Any): Additional keyword arguments.
serialized: The serialized chat model.
messages: The messages.
run_id: The run ID. This is the ID of the current run.
parent_run_id: The parent run ID. This is the ID of the parent run.
tags: The tags.
metadata: The metadata.
**kwargs: Additional keyword arguments.
"""
# NotImplementedError is thrown intentionally
# Callback handler will fall back to on_llm_start if this is exception is thrown
@@ -305,13 +304,13 @@ class CallbackManagerMixin:
"""Run when the Retriever starts running.
Args:
serialized (dict[str, Any]): The serialized Retriever.
query (str): The query.
run_id (UUID): The run ID. This is the ID of the current run.
parent_run_id (UUID): The parent run ID. This is the ID of the parent run.
tags (Optional[list[str]]): The tags.
metadata (Optional[dict[str, Any]]): The metadata.
kwargs (Any): Additional keyword arguments.
serialized: The serialized Retriever.
query: The query.
run_id: The run ID. This is the ID of the current run.
parent_run_id: The parent run ID. This is the ID of the parent run.
tags: The tags.
metadata: The metadata.
**kwargs: Additional keyword arguments.
"""
def on_chain_start(
@@ -328,13 +327,13 @@ class CallbackManagerMixin:
"""Run when a chain starts running.
Args:
serialized (dict[str, Any]): The serialized chain.
inputs (dict[str, Any]): The inputs.
run_id (UUID): The run ID. This is the ID of the current run.
parent_run_id (UUID): The parent run ID. This is the ID of the parent run.
tags (Optional[list[str]]): The tags.
metadata (Optional[dict[str, Any]]): The metadata.
kwargs (Any): Additional keyword arguments.
serialized: The serialized chain.
inputs: The inputs.
run_id: The run ID. This is the ID of the current run.
parent_run_id: The parent run ID. This is the ID of the parent run.
tags: The tags.
metadata: The metadata.
**kwargs: Additional keyword arguments.
"""
def on_tool_start(
@@ -352,14 +351,14 @@ class CallbackManagerMixin:
"""Run when the tool starts running.
Args:
serialized (dict[str, Any]): The serialized tool.
input_str (str): The input string.
run_id (UUID): The run ID. This is the ID of the current run.
parent_run_id (UUID): The parent run ID. This is the ID of the parent run.
tags (Optional[list[str]]): The tags.
metadata (Optional[dict[str, Any]]): The metadata.
inputs (Optional[dict[str, Any]]): The inputs.
kwargs (Any): Additional keyword arguments.
serialized: The serialized chain.
input_str: The input string.
run_id: The run ID. This is the ID of the current run.
parent_run_id: The parent run ID. This is the ID of the parent run.
tags: The tags.
metadata: The metadata.
inputs: The inputs.
**kwargs: Additional keyword arguments.
"""
@@ -377,10 +376,10 @@ class RunManagerMixin:
"""Run on an arbitrary text.
Args:
text (str): The text.
run_id (UUID): The run ID. This is the ID of the current run.
parent_run_id (UUID): The parent run ID. This is the ID of the parent run.
kwargs (Any): Additional keyword arguments.
text: The text.
run_id: The run ID. This is the ID of the current run.
parent_run_id: The parent run ID. This is the ID of the parent run.
**kwargs: Additional keyword arguments.
"""
def on_retry(
@@ -394,10 +393,10 @@ class RunManagerMixin:
"""Run on a retry event.
Args:
retry_state (RetryCallState): The retry state.
run_id (UUID): The run ID. This is the ID of the current run.
parent_run_id (UUID): The parent run ID. This is the ID of the parent run.
kwargs (Any): Additional keyword arguments.
retry_state: The retry state.
run_id: The run ID. This is the ID of the current run.
parent_run_id: The parent run ID. This is the ID of the parent run.
**kwargs: Additional keyword arguments.
"""
def on_custom_event(
@@ -415,14 +414,12 @@ class RunManagerMixin:
Args:
name: The name of the custom event.
data: The data for the custom event. Format will match
the format specified by the user.
the format specified by the user.
run_id: The ID of the run.
tags: The tags associated with the custom event
(includes inherited tags).
metadata: The metadata associated with the custom event
(includes inherited metadata).
!!! version-added "Added in version 0.2.15"
"""
@@ -497,16 +494,16 @@ class AsyncCallbackHandler(BaseCallbackHandler):
!!! warning
This method is called for non-chat models (regular LLMs). If you're
implementing a handler for a chat model, you should use
``on_chat_model_start`` instead.
`on_chat_model_start` instead.
Args:
serialized (dict[str, Any]): The serialized LLM.
prompts (list[str]): The prompts.
run_id (UUID): The run ID. This is the ID of the current run.
parent_run_id (UUID): The parent run ID. This is the ID of the parent run.
tags (Optional[list[str]]): The tags.
metadata (Optional[dict[str, Any]]): The metadata.
kwargs (Any): Additional keyword arguments.
serialized: The serialized LLM.
prompts: The prompts.
run_id: The run ID. This is the ID of the current run.
parent_run_id: The parent run ID. This is the ID of the parent run.
tags: The tags.
metadata: The metadata.
**kwargs: Additional keyword arguments.
"""
async def on_chat_model_start(
@@ -524,16 +521,16 @@ class AsyncCallbackHandler(BaseCallbackHandler):
!!! warning
This method is called for chat models. If you're implementing a handler for
a non-chat model, you should use ``on_llm_start`` instead.
a non-chat model, you should use `on_llm_start` instead.
Args:
serialized (dict[str, Any]): The serialized chat model.
messages (list[list[BaseMessage]]): The messages.
run_id (UUID): The run ID. This is the ID of the current run.
parent_run_id (UUID): The parent run ID. This is the ID of the parent run.
tags (Optional[list[str]]): The tags.
metadata (Optional[dict[str, Any]]): The metadata.
kwargs (Any): Additional keyword arguments.
serialized: The serialized chat model.
messages: The messages.
run_id: The run ID. This is the ID of the current run.
parent_run_id: The parent run ID. This is the ID of the parent run.
tags: The tags.
metadata: The metadata.
**kwargs: Additional keyword arguments.
"""
# NotImplementedError is thrown intentionally
# Callback handler will fall back to on_llm_start if this is exception is thrown
@@ -555,13 +552,12 @@ class AsyncCallbackHandler(BaseCallbackHandler):
For both chat models and non-chat models (legacy LLMs).
Args:
token (str): The new token.
chunk (GenerationChunk | ChatGenerationChunk): The new generated chunk,
containing content and other information.
run_id (UUID): The run ID. This is the ID of the current run.
parent_run_id (UUID): The parent run ID. This is the ID of the parent run.
tags (Optional[list[str]]): The tags.
kwargs (Any): Additional keyword arguments.
token: The new token.
chunk: The new generated chunk, containing content and other information.
run_id: The run ID. This is the ID of the current run.
parent_run_id: The parent run ID. This is the ID of the parent run.
tags: The tags.
**kwargs: Additional keyword arguments.
"""
async def on_llm_end(
@@ -576,11 +572,11 @@ class AsyncCallbackHandler(BaseCallbackHandler):
"""Run when the model ends running.
Args:
response (LLMResult): The response which was generated.
run_id (UUID): The run ID. This is the ID of the current run.
parent_run_id (UUID): The parent run ID. This is the ID of the parent run.
tags (Optional[list[str]]): The tags.
kwargs (Any): Additional keyword arguments.
response: The response which was generated.
run_id: The run ID. This is the ID of the current run.
parent_run_id: The parent run ID. This is the ID of the parent run.
tags: The tags.
**kwargs: Additional keyword arguments.
"""
async def on_llm_error(
@@ -599,7 +595,7 @@ class AsyncCallbackHandler(BaseCallbackHandler):
run_id: The run ID. This is the ID of the current run.
parent_run_id: The parent run ID. This is the ID of the parent run.
tags: The tags.
kwargs (Any): Additional keyword arguments.
**kwargs: Additional keyword arguments.
- response (LLMResult): The response which was generated before
the error occurred.
"""
@@ -618,13 +614,13 @@ class AsyncCallbackHandler(BaseCallbackHandler):
"""Run when a chain starts running.
Args:
serialized (dict[str, Any]): The serialized chain.
inputs (dict[str, Any]): The inputs.
run_id (UUID): The run ID. This is the ID of the current run.
parent_run_id (UUID): The parent run ID. This is the ID of the parent run.
tags (Optional[list[str]]): The tags.
metadata (Optional[dict[str, Any]]): The metadata.
kwargs (Any): Additional keyword arguments.
serialized: The serialized chain.
inputs: The inputs.
run_id: The run ID. This is the ID of the current run.
parent_run_id: The parent run ID. This is the ID of the parent run.
tags: The tags.
metadata: The metadata.
**kwargs: Additional keyword arguments.
"""
async def on_chain_end(
@@ -639,11 +635,11 @@ class AsyncCallbackHandler(BaseCallbackHandler):
"""Run when a chain ends running.
Args:
outputs (dict[str, Any]): The outputs of the chain.
run_id (UUID): The run ID. This is the ID of the current run.
parent_run_id (UUID): The parent run ID. This is the ID of the parent run.
tags (Optional[list[str]]): The tags.
kwargs (Any): Additional keyword arguments.
outputs: The outputs of the chain.
run_id: The run ID. This is the ID of the current run.
parent_run_id: The parent run ID. This is the ID of the parent run.
tags: The tags.
**kwargs: Additional keyword arguments.
"""
async def on_chain_error(
@@ -658,11 +654,11 @@ class AsyncCallbackHandler(BaseCallbackHandler):
"""Run when chain errors.
Args:
error (BaseException): The error that occurred.
run_id (UUID): The run ID. This is the ID of the current run.
parent_run_id (UUID): The parent run ID. This is the ID of the parent run.
tags (Optional[list[str]]): The tags.
kwargs (Any): Additional keyword arguments.
error: The error that occurred.
run_id: The run ID. This is the ID of the current run.
parent_run_id: The parent run ID. This is the ID of the parent run.
tags: The tags.
**kwargs: Additional keyword arguments.
"""
async def on_tool_start(
@@ -680,14 +676,14 @@ class AsyncCallbackHandler(BaseCallbackHandler):
"""Run when the tool starts running.
Args:
serialized (dict[str, Any]): The serialized tool.
input_str (str): The input string.
run_id (UUID): The run ID. This is the ID of the current run.
parent_run_id (UUID): The parent run ID. This is the ID of the parent run.
tags (Optional[list[str]]): The tags.
metadata (Optional[dict[str, Any]]): The metadata.
inputs (Optional[dict[str, Any]]): The inputs.
kwargs (Any): Additional keyword arguments.
serialized: The serialized tool.
input_str: The input string.
run_id: The run ID. This is the ID of the current run.
parent_run_id: The parent run ID. This is the ID of the parent run.
tags: The tags.
metadata: The metadata.
inputs: The inputs.
**kwargs: Additional keyword arguments.
"""
async def on_tool_end(
@@ -702,11 +698,11 @@ class AsyncCallbackHandler(BaseCallbackHandler):
"""Run when the tool ends running.
Args:
output (Any): The output of the tool.
run_id (UUID): The run ID. This is the ID of the current run.
parent_run_id (UUID): The parent run ID. This is the ID of the parent run.
tags (Optional[list[str]]): The tags.
kwargs (Any): Additional keyword arguments.
output: The output of the tool.
run_id: The run ID. This is the ID of the current run.
parent_run_id: The parent run ID. This is the ID of the parent run.
tags: The tags.
**kwargs: Additional keyword arguments.
"""
async def on_tool_error(
@@ -721,11 +717,11 @@ class AsyncCallbackHandler(BaseCallbackHandler):
"""Run when tool errors.
Args:
error (BaseException): The error that occurred.
run_id (UUID): The run ID. This is the ID of the current run.
parent_run_id (UUID): The parent run ID. This is the ID of the parent run.
tags (Optional[list[str]]): The tags.
kwargs (Any): Additional keyword arguments.
error: The error that occurred.
run_id: The run ID. This is the ID of the current run.
parent_run_id: The parent run ID. This is the ID of the parent run.
tags: The tags.
**kwargs: Additional keyword arguments.
"""
async def on_text(
@@ -740,11 +736,11 @@ class AsyncCallbackHandler(BaseCallbackHandler):
"""Run on an arbitrary text.
Args:
text (str): The text.
run_id (UUID): The run ID. This is the ID of the current run.
parent_run_id (UUID): The parent run ID. This is the ID of the parent run.
tags (Optional[list[str]]): The tags.
kwargs (Any): Additional keyword arguments.
text: The text.
run_id: The run ID. This is the ID of the current run.
parent_run_id: The parent run ID. This is the ID of the parent run.
tags: The tags.
**kwargs: Additional keyword arguments.
"""
async def on_retry(
@@ -758,10 +754,10 @@ class AsyncCallbackHandler(BaseCallbackHandler):
"""Run on a retry event.
Args:
retry_state (RetryCallState): The retry state.
run_id (UUID): The run ID. This is the ID of the current run.
parent_run_id (UUID): The parent run ID. This is the ID of the parent run.
kwargs (Any): Additional keyword arguments.
retry_state: The retry state.
run_id: The run ID. This is the ID of the current run.
parent_run_id: The parent run ID. This is the ID of the parent run.
**kwargs: Additional keyword arguments.
"""
async def on_agent_action(
@@ -776,11 +772,11 @@ class AsyncCallbackHandler(BaseCallbackHandler):
"""Run on agent action.
Args:
action (AgentAction): The agent action.
run_id (UUID): The run ID. This is the ID of the current run.
parent_run_id (UUID): The parent run ID. This is the ID of the parent run.
tags (Optional[list[str]]): The tags.
kwargs (Any): Additional keyword arguments.
action: The agent action.
run_id: The run ID. This is the ID of the current run.
parent_run_id: The parent run ID. This is the ID of the parent run.
tags: The tags.
**kwargs: Additional keyword arguments.
"""
async def on_agent_finish(
@@ -795,11 +791,11 @@ class AsyncCallbackHandler(BaseCallbackHandler):
"""Run on the agent end.
Args:
finish (AgentFinish): The agent finish.
run_id (UUID): The run ID. This is the ID of the current run.
parent_run_id (UUID): The parent run ID. This is the ID of the parent run.
tags (Optional[list[str]]): The tags.
kwargs (Any): Additional keyword arguments.
finish: The agent finish.
run_id: The run ID. This is the ID of the current run.
parent_run_id: The parent run ID. This is the ID of the parent run.
tags: The tags.
**kwargs: Additional keyword arguments.
"""
async def on_retriever_start(
@@ -816,13 +812,13 @@ class AsyncCallbackHandler(BaseCallbackHandler):
"""Run on the retriever start.
Args:
serialized (dict[str, Any]): The serialized retriever.
query (str): The query.
run_id (UUID): The run ID. This is the ID of the current run.
parent_run_id (UUID): The parent run ID. This is the ID of the parent run.
tags (Optional[list[str]]): The tags.
metadata (Optional[dict[str, Any]]): The metadata.
kwargs (Any): Additional keyword arguments.
serialized: The serialized retriever.
query: The query.
run_id: The run ID. This is the ID of the current run.
parent_run_id: The parent run ID. This is the ID of the parent run.
tags: The tags.
metadata: The metadata.
**kwargs: Additional keyword arguments.
"""
async def on_retriever_end(
@@ -837,11 +833,11 @@ class AsyncCallbackHandler(BaseCallbackHandler):
"""Run on the retriever end.
Args:
documents (Sequence[Document]): The documents retrieved.
run_id (UUID): The run ID. This is the ID of the current run.
parent_run_id (UUID): The parent run ID. This is the ID of the parent run.
tags (Optional[list[str]]): The tags.
kwargs (Any): Additional keyword arguments.
documents: The documents retrieved.
run_id: The run ID. This is the ID of the current run.
parent_run_id: The parent run ID. This is the ID of the parent run.
tags: The tags.
**kwargs: Additional keyword arguments.
"""
async def on_retriever_error(
@@ -856,11 +852,11 @@ class AsyncCallbackHandler(BaseCallbackHandler):
"""Run on retriever error.
Args:
error (BaseException): The error that occurred.
run_id (UUID): The run ID. This is the ID of the current run.
parent_run_id (UUID): The parent run ID. This is the ID of the parent run.
tags (Optional[list[str]]): The tags.
kwargs (Any): Additional keyword arguments.
error: The error that occurred.
run_id: The run ID. This is the ID of the current run.
parent_run_id: The parent run ID. This is the ID of the parent run.
tags: The tags.
**kwargs: Additional keyword arguments.
"""
async def on_custom_event(
@@ -878,14 +874,12 @@ class AsyncCallbackHandler(BaseCallbackHandler):
Args:
name: The name of the custom event.
data: The data for the custom event. Format will match
the format specified by the user.
the format specified by the user.
run_id: The ID of the run.
tags: The tags associated with the custom event
(includes inherited tags).
metadata: The metadata associated with the custom event
(includes inherited metadata).
!!! version-added "Added in version 0.2.15"
"""
@@ -906,16 +900,13 @@ class BaseCallbackManager(CallbackManagerMixin):
"""Initialize callback manager.
Args:
handlers (list[BaseCallbackHandler]): The handlers.
inheritable_handlers (Optional[list[BaseCallbackHandler]]):
The inheritable handlers. Default is None.
parent_run_id (Optional[UUID]): The parent run ID. Default is None.
tags (Optional[list[str]]): The tags. Default is None.
inheritable_tags (Optional[list[str]]): The inheritable tags.
Default is None.
metadata (Optional[dict[str, Any]]): The metadata. Default is None.
inheritable_metadata (Optional[dict[str, Any]]): The inheritable metadata.
Default is None.
handlers: The handlers.
inheritable_handlers: The inheritable handlers.
parent_run_id: The parent run ID.
tags: The tags.
inheritable_tags: The inheritable tags.
metadata: The metadata.
inheritable_metadata: The inheritable metadata.
"""
self.handlers: list[BaseCallbackHandler] = handlers
self.inheritable_handlers: list[BaseCallbackHandler] = (
@@ -946,35 +937,29 @@ class BaseCallbackManager(CallbackManagerMixin):
within merge_configs.
Returns:
BaseCallbackManager: The merged callback manager of the same type
as the current object.
The merged callback manager of the same type as the current object.
Example: Merging two callback managers.
.. code-block:: python
```python
from langchain_core.callbacks.manager import (
CallbackManager,
trace_as_chain_group,
)
from langchain_core.callbacks.stdout import StdOutCallbackHandler
from langchain_core.callbacks.manager import (
CallbackManager,
trace_as_chain_group,
)
from langchain_core.callbacks.stdout import StdOutCallbackHandler
manager = CallbackManager(
handlers=[StdOutCallbackHandler()], tags=["tag2"]
)
with trace_as_chain_group(
"My Group Name", tags=["tag1"]
) as group_manager:
merged_manager = group_manager.merge(manager)
print(merged_manager.handlers)
# [
# <langchain_core.callbacks.stdout.StdOutCallbackHandler object at ...>,
# <langchain_core.callbacks.streaming_stdout.StreamingStdOutCallbackHandler object at ...>,
# ]
print(merged_manager.tags)
# ['tag2', 'tag1']
manager = CallbackManager(handlers=[StdOutCallbackHandler()], tags=["tag2"])
with trace_as_chain_group("My Group Name", tags=["tag1"]) as group_manager:
merged_manager = group_manager.merge(manager)
print(merged_manager.handlers)
# [
# <langchain_core.callbacks.stdout.StdOutCallbackHandler object at ...>,
# <langchain_core.callbacks.streaming_stdout.StreamingStdOutCallbackHandler object at ...>,
# ]
print(merged_manager.tags)
# ['tag2', 'tag1']
```
""" # noqa: E501
manager = self.__class__(
parent_run_id=self.parent_run_id or other.parent_run_id,
@@ -1011,8 +996,8 @@ class BaseCallbackManager(CallbackManagerMixin):
"""Add a handler to the callback manager.
Args:
handler (BaseCallbackHandler): The handler to add.
inherit (bool): Whether to inherit the handler. Default is True.
handler: The handler to add.
inherit: Whether to inherit the handler.
"""
if handler not in self.handlers:
self.handlers.append(handler)
@@ -1023,7 +1008,7 @@ class BaseCallbackManager(CallbackManagerMixin):
"""Remove a handler from the callback manager.
Args:
handler (BaseCallbackHandler): The handler to remove.
handler: The handler to remove.
"""
if handler in self.handlers:
self.handlers.remove(handler)
@@ -1038,8 +1023,8 @@ class BaseCallbackManager(CallbackManagerMixin):
"""Set handlers as the only handlers on the callback manager.
Args:
handlers (list[BaseCallbackHandler]): The handlers to set.
inherit (bool): Whether to inherit the handlers. Default is True.
handlers: The handlers to set.
inherit: Whether to inherit the handlers.
"""
self.handlers = []
self.inheritable_handlers = []
@@ -1054,8 +1039,8 @@ class BaseCallbackManager(CallbackManagerMixin):
"""Set handler as the only handler on the callback manager.
Args:
handler (BaseCallbackHandler): The handler to set.
inherit (bool): Whether to inherit the handler. Default is True.
handler: The handler to set.
inherit: Whether to inherit the handler.
"""
self.set_handlers([handler], inherit=inherit)
@@ -1067,8 +1052,8 @@ class BaseCallbackManager(CallbackManagerMixin):
"""Add tags to the callback manager.
Args:
tags (list[str]): The tags to add.
inherit (bool): Whether to inherit the tags. Default is True.
tags: The tags to add.
inherit: Whether to inherit the tags.
"""
for tag in tags:
if tag in self.tags:
@@ -1081,7 +1066,7 @@ class BaseCallbackManager(CallbackManagerMixin):
"""Remove tags from the callback manager.
Args:
tags (list[str]): The tags to remove.
tags: The tags to remove.
"""
for tag in tags:
if tag in self.tags:
@@ -1097,8 +1082,8 @@ class BaseCallbackManager(CallbackManagerMixin):
"""Add metadata to the callback manager.
Args:
metadata (dict[str, Any]): The metadata to add.
inherit (bool): Whether to inherit the metadata. Default is True.
metadata: The metadata to add.
inherit: Whether to inherit the metadata.
"""
self.metadata.update(metadata)
if inherit:
@@ -1108,7 +1093,7 @@ class BaseCallbackManager(CallbackManagerMixin):
"""Remove metadata from the callback manager.
Args:
keys (list[str]): The keys to remove.
keys: The keys to remove.
"""
for key in keys:
self.metadata.pop(key, None)

View File

@@ -27,32 +27,32 @@ class FileCallbackHandler(BaseCallbackHandler):
Examples:
Using as a context manager (recommended):
.. code-block:: python
with FileCallbackHandler("output.txt") as handler:
# Use handler with your chain/agent
chain.invoke(inputs, config={"callbacks": [handler]})
```python
with FileCallbackHandler("output.txt") as handler:
# Use handler with your chain/agent
chain.invoke(inputs, config={"callbacks": [handler]})
```
Direct instantiation (deprecated):
.. code-block:: python
handler = FileCallbackHandler("output.txt")
# File remains open until handler is garbage collected
try:
chain.invoke(inputs, config={"callbacks": [handler]})
finally:
handler.close() # Explicit cleanup recommended
```python
handler = FileCallbackHandler("output.txt")
# File remains open until handler is garbage collected
try:
chain.invoke(inputs, config={"callbacks": [handler]})
finally:
handler.close() # Explicit cleanup recommended
```
Args:
filename: The file path to write to.
mode: The file open mode. Defaults to ``'a'`` (append).
color: Default color for text output. Defaults to ``None``.
mode: The file open mode. Defaults to `'a'` (append).
color: Default color for text output.
!!! note
When not used as a context manager, a deprecation warning will be issued
on first use. The file will be opened immediately in ``__init__`` and closed
in ``__del__`` or when ``close()`` is called explicitly.
on first use. The file will be opened immediately in `__init__` and closed
in `__del__` or when `close()` is called explicitly.
"""
@@ -63,8 +63,8 @@ class FileCallbackHandler(BaseCallbackHandler):
Args:
filename: Path to the output file.
mode: File open mode (e.g., ``'w'``, ``'a'``, ``'x'``). Defaults to ``'a'``.
color: Default text color for output. Defaults to ``None``.
mode: File open mode (e.g., `'w'`, `'a'`, `'x'`). Defaults to `'a'`.
color: Default text color for output.
"""
self.filename = filename
@@ -84,7 +84,7 @@ class FileCallbackHandler(BaseCallbackHandler):
The FileCallbackHandler instance.
!!! note
The file is already opened in ``__init__``, so this just marks that
The file is already opened in `__init__`, so this just marks that
the handler is being used as a context manager.
"""
@@ -131,9 +131,9 @@ class FileCallbackHandler(BaseCallbackHandler):
Args:
text: The text to write to the file.
color: Optional color for the text. Defaults to ``self.color``.
end: String appended after the text. Defaults to ``""``.
file: Optional file to write to. Defaults to ``self.file``.
color: Optional color for the text. Defaults to `self.color`.
end: String appended after the text.
file: Optional file to write to. Defaults to `self.file`.
Raises:
RuntimeError: If the file is closed or not available.
@@ -167,7 +167,7 @@ class FileCallbackHandler(BaseCallbackHandler):
Args:
serialized: The serialized chain information.
inputs: The inputs to the chain.
**kwargs: Additional keyword arguments that may contain ``'name'``.
**kwargs: Additional keyword arguments that may contain `'name'`.
"""
name = (
@@ -196,8 +196,8 @@ class FileCallbackHandler(BaseCallbackHandler):
Args:
action: The agent action containing the log to write.
color: Color override for this specific output. If ``None``, uses
``self.color``.
color: Color override for this specific output. If `None`, uses
`self.color`.
**kwargs: Additional keyword arguments.
"""
@@ -216,8 +216,8 @@ class FileCallbackHandler(BaseCallbackHandler):
Args:
output: The tool output to write.
color: Color override for this specific output. If ``None``, uses
``self.color``.
color: Color override for this specific output. If `None`, uses
`self.color`.
observation_prefix: Optional prefix to write before the output.
llm_prefix: Optional prefix to write after the output.
**kwargs: Additional keyword arguments.
@@ -237,9 +237,9 @@ class FileCallbackHandler(BaseCallbackHandler):
Args:
text: The text to write.
color: Color override for this specific output. If ``None``, uses
``self.color``.
end: String appended after the text. Defaults to ``""``.
color: Color override for this specific output. If `None`, uses
`self.color`.
end: String appended after the text.
**kwargs: Additional keyword arguments.
"""
@@ -253,8 +253,8 @@ class FileCallbackHandler(BaseCallbackHandler):
Args:
finish: The agent finish object containing the log to write.
color: Color override for this specific output. If ``None``, uses
``self.color``.
color: Color override for this specific output. If `None`, uses
`self.color`.
**kwargs: Additional keyword arguments.
"""

File diff suppressed because it is too large Load Diff

View File

@@ -20,7 +20,7 @@ class StdOutCallbackHandler(BaseCallbackHandler):
"""Initialize callback handler.
Args:
color: The color to use for the text. Defaults to None.
color: The color to use for the text.
"""
self.color = color
@@ -31,9 +31,9 @@ class StdOutCallbackHandler(BaseCallbackHandler):
"""Print out that we are entering a chain.
Args:
serialized (dict[str, Any]): The serialized chain.
inputs (dict[str, Any]): The inputs to the chain.
**kwargs (Any): Additional keyword arguments.
serialized: The serialized chain.
inputs: The inputs to the chain.
**kwargs: Additional keyword arguments.
"""
if "name" in kwargs:
name = kwargs["name"]
@@ -48,8 +48,8 @@ class StdOutCallbackHandler(BaseCallbackHandler):
"""Print out that we finished a chain.
Args:
outputs (dict[str, Any]): The outputs of the chain.
**kwargs (Any): Additional keyword arguments.
outputs: The outputs of the chain.
**kwargs: Additional keyword arguments.
"""
print("\n\033[1m> Finished chain.\033[0m") # noqa: T201
@@ -60,9 +60,9 @@ class StdOutCallbackHandler(BaseCallbackHandler):
"""Run on agent action.
Args:
action (AgentAction): The agent action.
color (Optional[str]): The color to use for the text. Defaults to None.
**kwargs (Any): Additional keyword arguments.
action: The agent action.
color: The color to use for the text.
**kwargs: Additional keyword arguments.
"""
print_text(action.log, color=color or self.color)
@@ -78,12 +78,11 @@ class StdOutCallbackHandler(BaseCallbackHandler):
"""If not the final action, print out observation.
Args:
output (Any): The output to print.
color (Optional[str]): The color to use for the text. Defaults to None.
observation_prefix (Optional[str]): The observation prefix.
Defaults to None.
llm_prefix (Optional[str]): The LLM prefix. Defaults to None.
**kwargs (Any): Additional keyword arguments.
output: The output to print.
color: The color to use for the text.
observation_prefix: The observation prefix.
llm_prefix: The LLM prefix.
**kwargs: Additional keyword arguments.
"""
output = str(output)
if observation_prefix is not None:
@@ -103,10 +102,10 @@ class StdOutCallbackHandler(BaseCallbackHandler):
"""Run when the agent ends.
Args:
text (str): The text to print.
color (Optional[str]): The color to use for the text. Defaults to None.
end (str): The end character to use. Defaults to "".
**kwargs (Any): Additional keyword arguments.
text: The text to print.
color: The color to use for the text.
end: The end character to use.
**kwargs: Additional keyword arguments.
"""
print_text(text, color=color or self.color, end=end)
@@ -117,8 +116,8 @@ class StdOutCallbackHandler(BaseCallbackHandler):
"""Run on the agent end.
Args:
finish (AgentFinish): The agent finish.
color (Optional[str]): The color to use for the text. Defaults to None.
**kwargs (Any): Additional keyword arguments.
finish: The agent finish.
color: The color to use for the text.
**kwargs: Additional keyword arguments.
"""
print_text(finish.log, color=color or self.color, end="\n")

View File

@@ -24,9 +24,9 @@ class StreamingStdOutCallbackHandler(BaseCallbackHandler):
"""Run when LLM starts running.
Args:
serialized (dict[str, Any]): The serialized LLM.
prompts (list[str]): The prompts to run.
**kwargs (Any): Additional keyword arguments.
serialized: The serialized LLM.
prompts: The prompts to run.
**kwargs: Additional keyword arguments.
"""
def on_chat_model_start(
@@ -38,9 +38,9 @@ class StreamingStdOutCallbackHandler(BaseCallbackHandler):
"""Run when LLM starts running.
Args:
serialized (dict[str, Any]): The serialized LLM.
messages (list[list[BaseMessage]]): The messages to run.
**kwargs (Any): Additional keyword arguments.
serialized: The serialized LLM.
messages: The messages to run.
**kwargs: Additional keyword arguments.
"""
@override
@@ -48,8 +48,8 @@ class StreamingStdOutCallbackHandler(BaseCallbackHandler):
"""Run on new LLM token. Only available when streaming is enabled.
Args:
token (str): The new token.
**kwargs (Any): Additional keyword arguments.
token: The new token.
**kwargs: Additional keyword arguments.
"""
sys.stdout.write(token)
sys.stdout.flush()
@@ -58,16 +58,16 @@ class StreamingStdOutCallbackHandler(BaseCallbackHandler):
"""Run when LLM ends running.
Args:
response (LLMResult): The response from the LLM.
**kwargs (Any): Additional keyword arguments.
response: The response from the LLM.
**kwargs: Additional keyword arguments.
"""
def on_llm_error(self, error: BaseException, **kwargs: Any) -> None:
"""Run when LLM errors.
Args:
error (BaseException): The error that occurred.
**kwargs (Any): Additional keyword arguments.
error: The error that occurred.
**kwargs: Additional keyword arguments.
"""
def on_chain_start(
@@ -76,25 +76,25 @@ class StreamingStdOutCallbackHandler(BaseCallbackHandler):
"""Run when a chain starts running.
Args:
serialized (dict[str, Any]): The serialized chain.
inputs (dict[str, Any]): The inputs to the chain.
**kwargs (Any): Additional keyword arguments.
serialized: The serialized chain.
inputs: The inputs to the chain.
**kwargs: Additional keyword arguments.
"""
def on_chain_end(self, outputs: dict[str, Any], **kwargs: Any) -> None:
"""Run when a chain ends running.
Args:
outputs (dict[str, Any]): The outputs of the chain.
**kwargs (Any): Additional keyword arguments.
outputs: The outputs of the chain.
**kwargs: Additional keyword arguments.
"""
def on_chain_error(self, error: BaseException, **kwargs: Any) -> None:
"""Run when chain errors.
Args:
error (BaseException): The error that occurred.
**kwargs (Any): Additional keyword arguments.
error: The error that occurred.
**kwargs: Additional keyword arguments.
"""
def on_tool_start(
@@ -103,47 +103,47 @@ class StreamingStdOutCallbackHandler(BaseCallbackHandler):
"""Run when the tool starts running.
Args:
serialized (dict[str, Any]): The serialized tool.
input_str (str): The input string.
**kwargs (Any): Additional keyword arguments.
serialized: The serialized tool.
input_str: The input string.
**kwargs: Additional keyword arguments.
"""
def on_agent_action(self, action: AgentAction, **kwargs: Any) -> Any:
"""Run on agent action.
Args:
action (AgentAction): The agent action.
**kwargs (Any): Additional keyword arguments.
action: The agent action.
**kwargs: Additional keyword arguments.
"""
def on_tool_end(self, output: Any, **kwargs: Any) -> None:
"""Run when tool ends running.
Args:
output (Any): The output of the tool.
**kwargs (Any): Additional keyword arguments.
output: The output of the tool.
**kwargs: Additional keyword arguments.
"""
def on_tool_error(self, error: BaseException, **kwargs: Any) -> None:
"""Run when tool errors.
Args:
error (BaseException): The error that occurred.
**kwargs (Any): Additional keyword arguments.
error: The error that occurred.
**kwargs: Additional keyword arguments.
"""
def on_text(self, text: str, **kwargs: Any) -> None:
"""Run on an arbitrary text.
Args:
text (str): The text to print.
**kwargs (Any): Additional keyword arguments.
text: The text to print.
**kwargs: Additional keyword arguments.
"""
def on_agent_finish(self, finish: AgentFinish, **kwargs: Any) -> None:
"""Run on the agent end.
Args:
finish (AgentFinish): The agent finish.
**kwargs (Any): Additional keyword arguments.
finish: The agent finish.
**kwargs: Additional keyword arguments.
"""

View File

@@ -19,32 +19,31 @@ class UsageMetadataCallbackHandler(BaseCallbackHandler):
"""Callback Handler that tracks AIMessage.usage_metadata.
Example:
.. code-block:: python
```python
from langchain.chat_models import init_chat_model
from langchain_core.callbacks import UsageMetadataCallbackHandler
from langchain.chat_models import init_chat_model
from langchain_core.callbacks import UsageMetadataCallbackHandler
llm_1 = init_chat_model(model="openai:gpt-4o-mini")
llm_2 = init_chat_model(model="anthropic:claude-3-5-haiku-20241022")
llm_1 = init_chat_model(model="openai:gpt-4o-mini")
llm_2 = init_chat_model(model="anthropic:claude-3-5-haiku-latest")
callback = UsageMetadataCallbackHandler()
result_1 = llm_1.invoke("Hello", config={"callbacks": [callback]})
result_2 = llm_2.invoke("Hello", config={"callbacks": [callback]})
callback.usage_metadata
```
```txt
{'gpt-4o-mini-2024-07-18': {'input_tokens': 8,
'output_tokens': 10,
'total_tokens': 18,
'input_token_details': {'audio': 0, 'cache_read': 0},
'output_token_details': {'audio': 0, 'reasoning': 0}},
'claude-3-5-haiku-20241022': {'input_tokens': 8,
'output_tokens': 21,
'total_tokens': 29,
'input_token_details': {'cache_read': 0, 'cache_creation': 0}}}
```
callback = UsageMetadataCallbackHandler()
result_1 = llm_1.invoke("Hello", config={"callbacks": [callback]})
result_2 = llm_2.invoke("Hello", config={"callbacks": [callback]})
callback.usage_metadata
.. code-block::
{'gpt-4o-mini-2024-07-18': {'input_tokens': 8,
'output_tokens': 10,
'total_tokens': 18,
'input_token_details': {'audio': 0, 'cache_read': 0},
'output_token_details': {'audio': 0, 'reasoning': 0}},
'claude-3-5-haiku-20241022': {'input_tokens': 8,
'output_tokens': 21,
'total_tokens': 29,
'input_token_details': {'cache_read': 0, 'cache_creation': 0}}}
!!! version-added "Added in version 0.3.49"
!!! version-added "Added in `langchain-core` 0.3.49"
"""
@@ -96,42 +95,46 @@ def get_usage_metadata_callback(
"""Get usage metadata callback.
Get context manager for tracking usage metadata across chat model calls using
``AIMessage.usage_metadata``.
`AIMessage.usage_metadata`.
Args:
name (str): The name of the context variable. Defaults to
``'usage_metadata_callback'``.
name: The name of the context variable.
Yields:
The usage metadata callback.
Example:
.. code-block:: python
```python
from langchain.chat_models import init_chat_model
from langchain_core.callbacks import get_usage_metadata_callback
from langchain.chat_models import init_chat_model
from langchain_core.callbacks import get_usage_metadata_callback
llm_1 = init_chat_model(model="openai:gpt-4o-mini")
llm_2 = init_chat_model(model="anthropic:claude-3-5-haiku-20241022")
llm_1 = init_chat_model(model="openai:gpt-4o-mini")
llm_2 = init_chat_model(model="anthropic:claude-3-5-haiku-latest")
with get_usage_metadata_callback() as cb:
llm_1.invoke("Hello")
llm_2.invoke("Hello")
print(cb.usage_metadata)
```
```txt
{
"gpt-4o-mini-2024-07-18": {
"input_tokens": 8,
"output_tokens": 10,
"total_tokens": 18,
"input_token_details": {"audio": 0, "cache_read": 0},
"output_token_details": {"audio": 0, "reasoning": 0},
},
"claude-3-5-haiku-20241022": {
"input_tokens": 8,
"output_tokens": 21,
"total_tokens": 29,
"input_token_details": {"cache_read": 0, "cache_creation": 0},
},
}
```
with get_usage_metadata_callback() as cb:
llm_1.invoke("Hello")
llm_2.invoke("Hello")
print(cb.usage_metadata)
.. code-block::
{'gpt-4o-mini-2024-07-18': {'input_tokens': 8,
'output_tokens': 10,
'total_tokens': 18,
'input_token_details': {'audio': 0, 'cache_read': 0},
'output_token_details': {'audio': 0, 'reasoning': 0}},
'claude-3-5-haiku-20241022': {'input_tokens': 8,
'output_tokens': 21,
'total_tokens': 29,
'input_token_details': {'cache_read': 0, 'cache_creation': 0}}}
!!! version-added "Added in version 0.3.49"
!!! version-added "Added in `langchain-core` 0.3.49"
"""
usage_metadata_callback_var: ContextVar[UsageMetadataCallbackHandler | None] = (

View File

@@ -1,18 +1,4 @@
"""**Chat message history** stores a history of the message interactions in a chat.
**Class hierarchy:**
.. code-block::
BaseChatMessageHistory --> <name>ChatMessageHistory # Examples: FileChatMessageHistory, PostgresChatMessageHistory
**Main helpers:**
.. code-block::
AIMessage, HumanMessage, BaseMessage
""" # noqa: E501
"""**Chat message history** stores a history of the message interactions in a chat."""
from __future__ import annotations
@@ -63,46 +49,45 @@ class BaseChatMessageHistory(ABC):
Example: Shows a default implementation.
.. code-block:: python
import json
import os
from langchain_core.messages import messages_from_dict, message_to_dict
```python
import json
import os
from langchain_core.messages import messages_from_dict, message_to_dict
class FileChatMessageHistory(BaseChatMessageHistory):
storage_path: str
session_id: str
class FileChatMessageHistory(BaseChatMessageHistory):
storage_path: str
session_id: str
@property
def messages(self) -> list[BaseMessage]:
try:
with open(
os.path.join(self.storage_path, self.session_id),
"r",
encoding="utf-8",
) as f:
messages_data = json.load(f)
return messages_from_dict(messages_data)
except FileNotFoundError:
return []
@property
def messages(self) -> list[BaseMessage]:
try:
with open(
os.path.join(self.storage_path, self.session_id),
"r",
encoding="utf-8",
) as f:
messages_data = json.load(f)
return messages_from_dict(messages_data)
except FileNotFoundError:
return []
def add_messages(self, messages: Sequence[BaseMessage]) -> None:
all_messages = list(self.messages) # Existing messages
all_messages.extend(messages) # Add new messages
def add_messages(self, messages: Sequence[BaseMessage]) -> None:
all_messages = list(self.messages) # Existing messages
all_messages.extend(messages) # Add new messages
serialized = [message_to_dict(message) for message in all_messages]
file_path = os.path.join(self.storage_path, self.session_id)
os.makedirs(os.path.dirname(file_path), exist_ok=True)
with open(file_path, "w", encoding="utf-8") as f:
json.dump(serialized, f)
def clear(self) -> None:
file_path = os.path.join(self.storage_path, self.session_id)
os.makedirs(os.path.dirname(file_path), exist_ok=True)
with open(file_path, "w", encoding="utf-8") as f:
json.dump([], f)
serialized = [message_to_dict(message) for message in all_messages]
file_path = os.path.join(self.storage_path, self.session_id)
os.makedirs(os.path.dirname(file_path), exist_ok=True)
with open(file_path, "w", encoding="utf-8") as f:
json.dump(serialized, f)
def clear(self) -> None:
file_path = os.path.join(self.storage_path, self.session_id)
os.makedirs(os.path.dirname(file_path), exist_ok=True)
with open(file_path, "w", encoding="utf-8") as f:
json.dump([], f)
```
"""
messages: list[BaseMessage]
@@ -130,13 +115,13 @@ class BaseChatMessageHistory(ABC):
"""Convenience method for adding a human message string to the store.
!!! note
This is a convenience method. Code should favor the bulk ``add_messages``
This is a convenience method. Code should favor the bulk `add_messages`
interface instead to save on round-trips to the persistence layer.
This method may be deprecated in a future release.
Args:
message: The human message to add to the store.
message: The `HumanMessage` to add to the store.
"""
if isinstance(message, HumanMessage):
self.add_message(message)
@@ -144,16 +129,16 @@ class BaseChatMessageHistory(ABC):
self.add_message(HumanMessage(content=message))
def add_ai_message(self, message: AIMessage | str) -> None:
"""Convenience method for adding an AI message string to the store.
"""Convenience method for adding an `AIMessage` string to the store.
!!! note
This is a convenience method. Code should favor the bulk ``add_messages``
This is a convenience method. Code should favor the bulk `add_messages`
interface instead to save on round-trips to the persistence layer.
This method may be deprecated in a future release.
Args:
message: The AI message to add.
message: The `AIMessage` to add.
"""
if isinstance(message, AIMessage):
self.add_message(message)
@@ -168,7 +153,7 @@ class BaseChatMessageHistory(ABC):
Raises:
NotImplementedError: If the sub-class has not implemented an efficient
add_messages method.
`add_messages` method.
"""
if type(self).add_messages != BaseChatMessageHistory.add_messages:
# This means that the sub-class has implemented an efficient add_messages
@@ -188,7 +173,7 @@ class BaseChatMessageHistory(ABC):
in an efficient manner to avoid unnecessary round-trips to the underlying store.
Args:
messages: A sequence of BaseMessage objects to store.
messages: A sequence of `BaseMessage` objects to store.
"""
for message in messages:
self.add_message(message)
@@ -197,7 +182,7 @@ class BaseChatMessageHistory(ABC):
"""Async add a list of messages.
Args:
messages: A sequence of BaseMessage objects to store.
messages: A sequence of `BaseMessage` objects to store.
"""
await run_in_executor(None, self.add_messages, messages)

View File

@@ -27,7 +27,7 @@ class BaseLoader(ABC): # noqa: B024
"""Interface for Document Loader.
Implementations should implement the lazy-loading method using generators
to avoid loading all Documents into memory at once.
to avoid loading all documents into memory at once.
`load` is provided just for user convenience and should not be overridden.
"""
@@ -35,38 +35,40 @@ class BaseLoader(ABC): # noqa: B024
# Sub-classes should not implement this method directly. Instead, they
# should implement the lazy load method.
def load(self) -> list[Document]:
"""Load data into Document objects.
"""Load data into `Document` objects.
Returns:
the documents.
The documents.
"""
return list(self.lazy_load())
async def aload(self) -> list[Document]:
"""Load data into Document objects.
"""Load data into `Document` objects.
Returns:
the documents.
The documents.
"""
return [document async for document in self.alazy_load()]
def load_and_split(
self, text_splitter: TextSplitter | None = None
) -> list[Document]:
"""Load Documents and split into chunks. Chunks are returned as Documents.
"""Load `Document` and split into chunks. Chunks are returned as `Document`.
Do not override this method. It should be considered to be deprecated!
!!! danger
Do not override this method. It should be considered to be deprecated!
Args:
text_splitter: TextSplitter instance to use for splitting documents.
Defaults to RecursiveCharacterTextSplitter.
text_splitter: `TextSplitter` instance to use for splitting documents.
Defaults to `RecursiveCharacterTextSplitter`.
Raises:
ImportError: If langchain-text-splitters is not installed
and no text_splitter is provided.
ImportError: If `langchain-text-splitters` is not installed
and no `text_splitter` is provided.
Returns:
List of Documents.
List of `Document`.
"""
if text_splitter is None:
if not _HAS_TEXT_SPLITTERS:
@@ -86,10 +88,10 @@ class BaseLoader(ABC): # noqa: B024
# Attention: This method will be upgraded into an abstractmethod once it's
# implemented in all the existing subclasses.
def lazy_load(self) -> Iterator[Document]:
"""A lazy loader for Documents.
"""A lazy loader for `Document`.
Yields:
the documents.
The `Document` objects.
"""
if type(self).load != BaseLoader.load:
return iter(self.load())
@@ -97,10 +99,10 @@ class BaseLoader(ABC): # noqa: B024
raise NotImplementedError(msg)
async def alazy_load(self) -> AsyncIterator[Document]:
"""A lazy loader for Documents.
"""A lazy loader for `Document`.
Yields:
the documents.
The `Document` objects.
"""
iterator = await run_in_executor(None, self.lazy_load)
done = object()
@@ -115,7 +117,7 @@ class BaseBlobParser(ABC):
"""Abstract interface for blob parsers.
A blob parser provides a way to parse raw data stored in a blob into one
or more documents.
or more `Document` objects.
The parser can be composed with blob loaders, making it easy to reuse
a parser independent of how the blob was originally loaded.
@@ -128,25 +130,25 @@ class BaseBlobParser(ABC):
Subclasses are required to implement this method.
Args:
blob: Blob instance
blob: `Blob` instance
Returns:
Generator of documents
Generator of `Document` objects
"""
def parse(self, blob: Blob) -> list[Document]:
"""Eagerly parse the blob into a document or documents.
"""Eagerly parse the blob into a `Document` or list of `Document` objects.
This is a convenience method for interactive development environment.
Production applications should favor the lazy_parse method instead.
Production applications should favor the `lazy_parse` method instead.
Subclasses should generally not over-ride this parse method.
Args:
blob: Blob instance
blob: `Blob` instance
Returns:
List of documents
List of `Document` objects
"""
return list(self.lazy_parse(blob))

View File

@@ -28,7 +28,7 @@ class BlobLoader(ABC):
def yield_blobs(
self,
) -> Iterable[Blob]:
"""A lazy loader for raw data represented by LangChain's Blob object.
"""A lazy loader for raw data represented by LangChain's `Blob` object.
Returns:
A generator over blobs

View File

@@ -14,30 +14,27 @@ from langchain_core.documents import Document
class LangSmithLoader(BaseLoader):
"""Load LangSmith Dataset examples as Documents.
"""Load LangSmith Dataset examples as `Document` objects.
Loads the example inputs as the Document page content and places the entire example
into the Document metadata. This allows you to easily create few-shot example
retrievers from the loaded documents.
Loads the example inputs as the `Document` page content and places the entire
example into the `Document` metadata. This allows you to easily create few-shot
example retrievers from the loaded documents.
??? note "Lazy load"
??? note "Lazy loading example"
.. code-block:: python
```python
from langchain_core.document_loaders import LangSmithLoader
from langchain_core.document_loaders import LangSmithLoader
loader = LangSmithLoader(dataset_id="...", limit=100)
docs = []
for doc in loader.lazy_load():
docs.append(doc)
```
loader = LangSmithLoader(dataset_id="...", limit=100)
docs = []
for doc in loader.lazy_load():
docs.append(doc)
.. code-block:: python
# -> [Document("...", metadata={"inputs": {...}, "outputs": {...}, ...}), ...]
!!! version-added "Added in version 0.2.34"
""" # noqa: E501
```python
# -> [Document("...", metadata={"inputs": {...}, "outputs": {...}, ...}), ...]
```
"""
def __init__(
self,
@@ -60,33 +57,32 @@ class LangSmithLoader(BaseLoader):
"""Create a LangSmith loader.
Args:
dataset_id: The ID of the dataset to filter by. Defaults to None.
dataset_name: The name of the dataset to filter by. Defaults to None.
content_key: The inputs key to set as Document page content. ``'.'`` characters
are interpreted as nested keys. E.g. ``content_key="first.second"`` will
dataset_id: The ID of the dataset to filter by.
dataset_name: The name of the dataset to filter by.
content_key: The inputs key to set as Document page content. `'.'` characters
are interpreted as nested keys. E.g. `content_key="first.second"` will
result in
``Document(page_content=format_content(example.inputs["first"]["second"]))``
`Document(page_content=format_content(example.inputs["first"]["second"]))`
format_content: Function for converting the content extracted from the example
inputs into a string. Defaults to JSON-encoding the contents.
example_ids: The IDs of the examples to filter by. Defaults to None.
as_of: The dataset version tag OR
timestamp to retrieve the examples as of.
Response examples will only be those that were present at the time
of the tagged (or timestamped) version.
example_ids: The IDs of the examples to filter by.
as_of: The dataset version tag or timestamp to retrieve the examples as of.
Response examples will only be those that were present at the time of
the tagged (or timestamped) version.
splits: A list of dataset splits, which are
divisions of your dataset such as 'train', 'test', or 'validation'.
divisions of your dataset such as `train`, `test`, or `validation`.
Returns examples only from the specified splits.
inline_s3_urls: Whether to inline S3 URLs. Defaults to True.
offset: The offset to start from. Defaults to 0.
inline_s3_urls: Whether to inline S3 URLs.
offset: The offset to start from.
limit: The maximum number of examples to return.
metadata: Metadata to filter by. Defaults to None.
metadata: Metadata to filter by.
filter: A structured filter string to apply to the examples.
client: LangSmith Client. If not provided will be initialized from below args.
client_kwargs: Keyword args to pass to LangSmith client init. Should only be
specified if ``client`` isn't.
specified if `client` isn't.
Raises:
ValueError: If both ``client`` and ``client_kwargs`` are provided.
ValueError: If both `client` and `client_kwargs` are provided.
""" # noqa: E501
if client and client_kwargs:
raise ValueError

View File

@@ -1,8 +1,28 @@
"""Documents module.
"""Documents module for data retrieval and processing workflows.
**Document** module is a collection of classes that handle documents
and their transformations.
This module provides core abstractions for handling data in retrieval-augmented
generation (RAG) pipelines, vector stores, and document processing workflows.
!!! warning "Documents vs. message content"
This module is distinct from `langchain_core.messages.content`, which provides
multimodal content blocks for **LLM chat I/O** (text, images, audio, etc. within
messages).
**Key distinction:**
- **Documents** (this module): For **data retrieval and processing workflows**
- Vector stores, retrievers, RAG pipelines
- Text chunking, embedding, and semantic search
- Example: Chunks of a PDF stored in a vector database
- **Content Blocks** (`messages.content`): For **LLM conversational I/O**
- Multimodal message content sent to/from models
- Tool calls, reasoning, citations within chat
- Example: An image sent to a vision model in a chat message (via
[`ImageContentBlock`][langchain.messages.ImageContentBlock])
While both can represent similar data types (text, files), they serve different
architectural purposes in LangChain applications.
"""
from typing import TYPE_CHECKING

View File

@@ -1,4 +1,16 @@
"""Base classes for media and documents."""
"""Base classes for media and documents.
This module contains core abstractions for **data retrieval and processing workflows**:
- `BaseMedia`: Base class providing `id` and `metadata` fields
- `Blob`: Raw data loading (files, binary data) - used by document loaders
- `Document`: Text content for retrieval (RAG, vector stores, semantic search)
!!! note "Not for LLM chat messages"
These classes are for data processing pipelines, not LLM I/O. For multimodal
content in chat messages (images, audio in conversations), see
`langchain.messages` content blocks instead.
"""
from __future__ import annotations
@@ -19,27 +31,23 @@ PathLike = str | PurePath
class BaseMedia(Serializable):
"""Use to represent media content.
"""Base class for content used in retrieval and data processing workflows.
Media objects can be used to represent raw data, such as text or binary data.
Provides common fields for content that needs to be stored, indexed, or searched.
LangChain Media objects allow associating metadata and an optional identifier
with the content.
The presence of an ID and metadata make it easier to store, index, and search
over the content in a structured way.
!!! note
For multimodal content in **chat messages** (images, audio sent to/from LLMs),
use `langchain.messages` content blocks instead.
"""
# The ID field is optional at the moment.
# It will likely become required in a future major release after
# it has been adopted by enough vectorstore implementations.
# it has been adopted by enough VectorStore implementations.
id: str | None = Field(default=None, coerce_numbers_to_str=True)
"""An optional identifier for the document.
Ideally this should be unique across the document collection and formatted
as a UUID, but this will not be enforced.
!!! version-added "Added in version 0.2.11"
"""
metadata: dict = Field(default_factory=dict)
@@ -47,72 +55,70 @@ class BaseMedia(Serializable):
class Blob(BaseMedia):
"""Blob represents raw data by either reference or value.
"""Raw data abstraction for document loading and file processing.
Provides an interface to materialize the blob in different representations, and
help to decouple the development of data loaders from the downstream parsing of
the raw data.
Represents raw bytes or text, either in-memory or by file reference. Used
primarily by document loaders to decouple data loading from parsing.
Inspired by: https://developer.mozilla.org/en-US/docs/Web/API/Blob
Inspired by [Mozilla's `Blob`](https://developer.mozilla.org/en-US/docs/Web/API/Blob)
Example: Initialize a blob from in-memory data
???+ example "Initialize a blob from in-memory data"
.. code-block:: python
```python
from langchain_core.documents import Blob
from langchain_core.documents import Blob
blob = Blob.from_data("Hello, world!")
blob = Blob.from_data("Hello, world!")
# Read the blob as a string
print(blob.as_string())
# Read the blob as a string
print(blob.as_string())
# Read the blob as bytes
print(blob.as_bytes())
# Read the blob as bytes
print(blob.as_bytes())
# Read the blob as a byte stream
with blob.as_bytes_io() as f:
print(f.read())
```
# Read the blob as a byte stream
with blob.as_bytes_io() as f:
print(f.read())
??? example "Load from memory and specify MIME type and metadata"
Example: Load from memory and specify mime-type and metadata
```python
from langchain_core.documents import Blob
.. code-block:: python
blob = Blob.from_data(
data="Hello, world!",
mime_type="text/plain",
metadata={"source": "https://example.com"},
)
```
from langchain_core.documents import Blob
??? example "Load the blob from a file"
blob = Blob.from_data(
data="Hello, world!",
mime_type="text/plain",
metadata={"source": "https://example.com"},
)
```python
from langchain_core.documents import Blob
Example: Load the blob from a file
blob = Blob.from_path("path/to/file.txt")
.. code-block:: python
# Read the blob as a string
print(blob.as_string())
from langchain_core.documents import Blob
blob = Blob.from_path("path/to/file.txt")
# Read the blob as a string
print(blob.as_string())
# Read the blob as bytes
print(blob.as_bytes())
# Read the blob as a byte stream
with blob.as_bytes_io() as f:
print(f.read())
# Read the blob as bytes
print(blob.as_bytes())
# Read the blob as a byte stream
with blob.as_bytes_io() as f:
print(f.read())
```
"""
data: bytes | str | None = None
"""Raw data associated with the blob."""
"""Raw data associated with the `Blob`."""
mimetype: str | None = None
"""MimeType not to be confused with a file extension."""
"""MIME type, not to be confused with a file extension."""
encoding: str = "utf-8"
"""Encoding to use if decoding the bytes into a string.
Use utf-8 as default encoding, if decoding to string.
Uses `utf-8` as default encoding if decoding to string.
"""
path: PathLike | None = None
"""Location where the original content was found."""
@@ -126,9 +132,9 @@ class Blob(BaseMedia):
def source(self) -> str | None:
"""The source location of the blob as string if known otherwise none.
If a path is associated with the blob, it will default to the path location.
If a path is associated with the `Blob`, it will default to the path location.
Unless explicitly set via a metadata field called "source", in which
Unless explicitly set via a metadata field called `'source'`, in which
case that value will be used instead.
"""
if self.metadata and "source" in self.metadata:
@@ -212,15 +218,15 @@ class Blob(BaseMedia):
"""Load the blob from a path like object.
Args:
path: path like object to file to be read
path: Path-like object to file to be read
encoding: Encoding to use if decoding the bytes into a string
mime_type: if provided, will be set as the mime-type of the data
guess_type: If True, the mimetype will be guessed from the file extension,
if a mime-type was not provided
metadata: Metadata to associate with the blob
mime_type: If provided, will be set as the MIME type of the data
guess_type: If `True`, the MIME type will be guessed from the file
extension, if a MIME type was not provided
metadata: Metadata to associate with the `Blob`
Returns:
Blob instance
`Blob` instance
"""
if mime_type is None and guess_type:
mimetype = mimetypes.guess_type(path)[0] if guess_type else None
@@ -246,17 +252,17 @@ class Blob(BaseMedia):
path: str | None = None,
metadata: dict | None = None,
) -> Blob:
"""Initialize the blob from in-memory data.
"""Initialize the `Blob` from in-memory data.
Args:
data: the in-memory data associated with the blob
data: The in-memory data associated with the `Blob`
encoding: Encoding to use if decoding the bytes into a string
mime_type: if provided, will be set as the mime-type of the data
path: if provided, will be set as the source from which the data came
metadata: Metadata to associate with the blob
mime_type: If provided, will be set as the MIME type of the data
path: If provided, will be set as the source from which the data came
metadata: Metadata to associate with the `Blob`
Returns:
Blob instance
`Blob` instance
"""
return cls(
data=data,
@@ -277,16 +283,18 @@ class Blob(BaseMedia):
class Document(BaseMedia):
"""Class for storing a piece of text and associated metadata.
!!! note
`Document` is for **retrieval workflows**, not chat I/O. For sending text
to an LLM in a conversation, use message types from `langchain.messages`.
Example:
```python
from langchain_core.documents import Document
.. code-block:: python
from langchain_core.documents import Document
document = Document(
page_content="Hello, world!", metadata={"source": "https://example.com"}
)
document = Document(
page_content="Hello, world!", metadata={"source": "https://example.com"}
)
```
"""
page_content: str
@@ -301,12 +309,12 @@ class Document(BaseMedia):
@classmethod
def is_lc_serializable(cls) -> bool:
"""Return True as this class is serializable."""
"""Return `True` as this class is serializable."""
return True
@classmethod
def get_lc_namespace(cls) -> list[str]:
"""Get the namespace of the langchain object.
"""Get the namespace of the LangChain object.
Returns:
["langchain", "schema", "document"]
@@ -314,10 +322,10 @@ class Document(BaseMedia):
return ["langchain", "schema", "document"]
def __str__(self) -> str:
"""Override __str__ to restrict it to page_content and metadata.
"""Override `__str__` to restrict it to page_content and metadata.
Returns:
A string representation of the Document.
A string representation of the `Document`.
"""
# The format matches pydantic format for __str__.
#

View File

@@ -21,14 +21,14 @@ class BaseDocumentCompressor(BaseModel, ABC):
This abstraction is primarily used for post-processing of retrieved documents.
Documents matching a given query are first retrieved.
`Document` objects matching a given query are first retrieved.
Then the list of documents can be further processed.
For example, one could re-rank the retrieved documents using an LLM.
!!! note
Users should favor using a RunnableLambda instead of sub-classing from this
Users should favor using a `RunnableLambda` instead of sub-classing from this
interface.
"""
@@ -43,9 +43,9 @@ class BaseDocumentCompressor(BaseModel, ABC):
"""Compress retrieved documents given the query context.
Args:
documents: The retrieved documents.
documents: The retrieved `Document` objects.
query: The query context.
callbacks: Optional callbacks to run during compression.
callbacks: Optional `Callbacks` to run during compression.
Returns:
The compressed documents.
@@ -61,9 +61,9 @@ class BaseDocumentCompressor(BaseModel, ABC):
"""Async compress retrieved documents given the query context.
Args:
documents: The retrieved documents.
documents: The retrieved `Document` objects.
query: The query context.
callbacks: Optional callbacks to run during compression.
callbacks: Optional `Callbacks` to run during compression.
Returns:
The compressed documents.

View File

@@ -16,39 +16,38 @@ if TYPE_CHECKING:
class BaseDocumentTransformer(ABC):
"""Abstract base class for document transformation.
A document transformation takes a sequence of Documents and returns a
sequence of transformed Documents.
A document transformation takes a sequence of `Document` objects and returns a
sequence of transformed `Document` objects.
Example:
.. code-block:: python
```python
class EmbeddingsRedundantFilter(BaseDocumentTransformer, BaseModel):
embeddings: Embeddings
similarity_fn: Callable = cosine_similarity
similarity_threshold: float = 0.95
class EmbeddingsRedundantFilter(BaseDocumentTransformer, BaseModel):
embeddings: Embeddings
similarity_fn: Callable = cosine_similarity
similarity_threshold: float = 0.95
class Config:
arbitrary_types_allowed = True
class Config:
arbitrary_types_allowed = True
def transform_documents(
self, documents: Sequence[Document], **kwargs: Any
) -> Sequence[Document]:
stateful_documents = get_stateful_documents(documents)
embedded_documents = _get_embeddings_from_stateful_docs(
self.embeddings, stateful_documents
)
included_idxs = _filter_similar_embeddings(
embedded_documents,
self.similarity_fn,
self.similarity_threshold,
)
return [stateful_documents[i] for i in sorted(included_idxs)]
async def atransform_documents(
self, documents: Sequence[Document], **kwargs: Any
) -> Sequence[Document]:
raise NotImplementedError
def transform_documents(
self, documents: Sequence[Document], **kwargs: Any
) -> Sequence[Document]:
stateful_documents = get_stateful_documents(documents)
embedded_documents = _get_embeddings_from_stateful_docs(
self.embeddings, stateful_documents
)
included_idxs = _filter_similar_embeddings(
embedded_documents,
self.similarity_fn,
self.similarity_threshold,
)
return [stateful_documents[i] for i in sorted(included_idxs)]
async def atransform_documents(
self, documents: Sequence[Document], **kwargs: Any
) -> Sequence[Document]:
raise NotImplementedError
```
"""
@abstractmethod
@@ -58,10 +57,10 @@ class BaseDocumentTransformer(ABC):
"""Transform a list of documents.
Args:
documents: A sequence of Documents to be transformed.
documents: A sequence of `Document` objects to be transformed.
Returns:
A sequence of transformed Documents.
A sequence of transformed `Document` objects.
"""
async def atransform_documents(
@@ -70,10 +69,10 @@ class BaseDocumentTransformer(ABC):
"""Asynchronously transform a list of documents.
Args:
documents: A sequence of Documents to be transformed.
documents: A sequence of `Document` objects to be transformed.
Returns:
A sequence of transformed Documents.
A sequence of transformed `Document` objects.
"""
return await run_in_executor(
None, self.transform_documents, documents, **kwargs

View File

@@ -18,40 +18,38 @@ class FakeEmbeddings(Embeddings, BaseModel):
This embedding model creates embeddings by sampling from a normal distribution.
Do not use this outside of testing, as it is not a real embedding model.
!!! danger "Toy model"
Do not use this outside of testing, as it is not a real embedding model.
Instantiate:
.. code-block:: python
```python
from langchain_core.embeddings import FakeEmbeddings
from langchain_core.embeddings import FakeEmbeddings
embed = FakeEmbeddings(size=100)
embed = FakeEmbeddings(size=100)
```
Embed single text:
.. code-block:: python
input_text = "The meaning of life is 42"
vector = embed.embed_query(input_text)
print(vector[:3])
.. code-block:: python
[-0.700234640213188, -0.581266257710429, -1.1328482266445354]
```python
input_text = "The meaning of life is 42"
vector = embed.embed_query(input_text)
print(vector[:3])
```
```python
[-0.700234640213188, -0.581266257710429, -1.1328482266445354]
```
Embed multiple texts:
.. code-block:: python
input_texts = ["Document 1...", "Document 2..."]
vectors = embed.embed_documents(input_texts)
print(len(vectors))
# The first 3 coordinates for the first vector
print(vectors[0][:3])
.. code-block:: python
2
[-0.5670477847544458, -0.31403828652395727, -0.5840547508955257]
```python
input_texts = ["Document 1...", "Document 2..."]
vectors = embed.embed_documents(input_texts)
print(len(vectors))
# The first 3 coordinates for the first vector
print(vectors[0][:3])
```
```python
2
[-0.5670477847544458, -0.31403828652395727, -0.5840547508955257]
```
"""
size: int
@@ -75,40 +73,38 @@ class DeterministicFakeEmbedding(Embeddings, BaseModel):
This embedding model creates embeddings by sampling from a normal distribution
with a seed based on the hash of the text.
Do not use this outside of testing, as it is not a real embedding model.
!!! danger "Toy model"
Do not use this outside of testing, as it is not a real embedding model.
Instantiate:
.. code-block:: python
```python
from langchain_core.embeddings import DeterministicFakeEmbedding
from langchain_core.embeddings import DeterministicFakeEmbedding
embed = DeterministicFakeEmbedding(size=100)
embed = DeterministicFakeEmbedding(size=100)
```
Embed single text:
.. code-block:: python
input_text = "The meaning of life is 42"
vector = embed.embed_query(input_text)
print(vector[:3])
.. code-block:: python
[-0.700234640213188, -0.581266257710429, -1.1328482266445354]
```python
input_text = "The meaning of life is 42"
vector = embed.embed_query(input_text)
print(vector[:3])
```
```python
[-0.700234640213188, -0.581266257710429, -1.1328482266445354]
```
Embed multiple texts:
.. code-block:: python
input_texts = ["Document 1...", "Document 2..."]
vectors = embed.embed_documents(input_texts)
print(len(vectors))
# The first 3 coordinates for the first vector
print(vectors[0][:3])
.. code-block:: python
2
[-0.5670477847544458, -0.31403828652395727, -0.5840547508955257]
```python
input_texts = ["Document 1...", "Document 2..."]
vectors = embed.embed_documents(input_texts)
print(len(vectors))
# The first 3 coordinates for the first vector
print(vectors[0][:3])
```
```python
2
[-0.5670477847544458, -0.31403828652395727, -0.5840547508955257]
```
"""
size: int

View File

@@ -29,7 +29,7 @@ class LengthBasedExampleSelector(BaseExampleSelector, BaseModel):
max_length: int = 2048
"""Max length for the prompt, beyond which examples are cut."""
example_text_lengths: list[int] = Field(default_factory=list) # :meta private:
example_text_lengths: list[int] = Field(default_factory=list)
"""Length of each example."""
def add_example(self, example: dict[str, str]) -> None:

View File

@@ -41,7 +41,7 @@ class _VectorStoreExampleSelector(BaseExampleSelector, BaseModel, ABC):
"""Optional keys to filter input to. If provided, the search is based on
the input variables instead of all variables."""
vectorstore_kwargs: dict[str, Any] | None = None
"""Extra arguments passed to similarity_search function of the vectorstore."""
"""Extra arguments passed to similarity_search function of the `VectorStore`."""
model_config = ConfigDict(
arbitrary_types_allowed=True,
@@ -154,12 +154,12 @@ class SemanticSimilarityExampleSelector(_VectorStoreExampleSelector):
examples: List of examples to use in the prompt.
embeddings: An initialized embedding API interface, e.g. OpenAIEmbeddings().
vectorstore_cls: A vector store DB interface class, e.g. FAISS.
k: Number of examples to select. Default is 4.
k: Number of examples to select.
input_keys: If provided, the search is based on the input variables
instead of all variables.
example_keys: If provided, keys to filter examples to.
vectorstore_kwargs: Extra arguments passed to similarity_search function
of the vectorstore.
of the `VectorStore`.
vectorstore_cls_kwargs: optional kwargs containing url for vector store
Returns:
@@ -198,12 +198,12 @@ class SemanticSimilarityExampleSelector(_VectorStoreExampleSelector):
examples: List of examples to use in the prompt.
embeddings: An initialized embedding API interface, e.g. OpenAIEmbeddings().
vectorstore_cls: A vector store DB interface class, e.g. FAISS.
k: Number of examples to select. Default is 4.
k: Number of examples to select.
input_keys: If provided, the search is based on the input variables
instead of all variables.
example_keys: If provided, keys to filter examples to.
vectorstore_kwargs: Extra arguments passed to similarity_search function
of the vectorstore.
of the `VectorStore`.
vectorstore_cls_kwargs: optional kwargs containing url for vector store
Returns:
@@ -285,14 +285,13 @@ class MaxMarginalRelevanceExampleSelector(_VectorStoreExampleSelector):
examples: List of examples to use in the prompt.
embeddings: An initialized embedding API interface, e.g. OpenAIEmbeddings().
vectorstore_cls: A vector store DB interface class, e.g. FAISS.
k: Number of examples to select. Default is 4.
fetch_k: Number of Documents to fetch to pass to MMR algorithm.
Default is 20.
k: Number of examples to select.
fetch_k: Number of `Document` objects to fetch to pass to MMR algorithm.
input_keys: If provided, the search is based on the input variables
instead of all variables.
example_keys: If provided, keys to filter examples to.
vectorstore_kwargs: Extra arguments passed to similarity_search function
of the vectorstore.
of the `VectorStore`.
vectorstore_cls_kwargs: optional kwargs containing url for vector store
Returns:
@@ -333,14 +332,13 @@ class MaxMarginalRelevanceExampleSelector(_VectorStoreExampleSelector):
examples: List of examples to use in the prompt.
embeddings: An initialized embedding API interface, e.g. OpenAIEmbeddings().
vectorstore_cls: A vector store DB interface class, e.g. FAISS.
k: Number of examples to select. Default is 4.
fetch_k: Number of Documents to fetch to pass to MMR algorithm.
Default is 20.
k: Number of examples to select.
fetch_k: Number of `Document` objects to fetch to pass to MMR algorithm.
input_keys: If provided, the search is based on the input variables
instead of all variables.
example_keys: If provided, keys to filter examples to.
vectorstore_kwargs: Extra arguments passed to similarity_search function
of the vectorstore.
of the `VectorStore`.
vectorstore_cls_kwargs: optional kwargs containing url for vector store
Returns:

View File

@@ -16,9 +16,10 @@ class OutputParserException(ValueError, LangChainException): # noqa: N818
"""Exception that output parsers should raise to signify a parsing error.
This exists to differentiate parsing errors from other code or execution errors
that also may arise inside the output parser. OutputParserExceptions will be
available to catch and handle in ways to fix the parsing error, while other
errors will be raised.
that also may arise inside the output parser.
`OutputParserException` will be available to catch and handle in ways to fix the
parsing error, while other errors will be raised.
"""
def __init__(
@@ -28,24 +29,24 @@ class OutputParserException(ValueError, LangChainException): # noqa: N818
llm_output: str | None = None,
send_to_llm: bool = False, # noqa: FBT001,FBT002
):
"""Create an OutputParserException.
"""Create an `OutputParserException`.
Args:
error: The error that's being re-raised or an error message.
observation: String explanation of error which can be passed to a
model to try and remediate the issue. Defaults to None.
observation: String explanation of error which can be passed to a model to
try and remediate the issue.
llm_output: String model output which is error-ing.
Defaults to None.
send_to_llm: Whether to send the observation and llm_output back to an Agent
after an OutputParserException has been raised.
after an `OutputParserException` has been raised.
This gives the underlying model driving the agent the context that the
previous output was improperly structured, in the hopes that it will
update the output to the correct format.
Defaults to False.
Raises:
ValueError: If ``send_to_llm`` is True but either observation or
``llm_output`` are not provided.
ValueError: If `send_to_llm` is `True` but either observation or
`llm_output` are not provided.
"""
if isinstance(error, str):
error = create_message(
@@ -67,11 +68,11 @@ class ErrorCode(Enum):
"""Error codes."""
INVALID_PROMPT_INPUT = "INVALID_PROMPT_INPUT"
INVALID_TOOL_RESULTS = "INVALID_TOOL_RESULTS"
INVALID_TOOL_RESULTS = "INVALID_TOOL_RESULTS" # Used in JS; not Py (yet)
MESSAGE_COERCION_FAILURE = "MESSAGE_COERCION_FAILURE"
MODEL_AUTHENTICATION = "MODEL_AUTHENTICATION"
MODEL_NOT_FOUND = "MODEL_NOT_FOUND"
MODEL_RATE_LIMIT = "MODEL_RATE_LIMIT"
MODEL_AUTHENTICATION = "MODEL_AUTHENTICATION" # Used in JS; not Py (yet)
MODEL_NOT_FOUND = "MODEL_NOT_FOUND" # Used in JS; not Py (yet)
MODEL_RATE_LIMIT = "MODEL_RATE_LIMIT" # Used in JS; not Py (yet)
OUTPUT_PARSING_FAILURE = "OUTPUT_PARSING_FAILURE"
@@ -87,6 +88,6 @@ def create_message(*, message: str, error_code: ErrorCode) -> str:
"""
return (
f"{message}\n"
"For troubleshooting, visit: https://python.langchain.com/docs/"
f"troubleshooting/errors/{error_code.value} "
"For troubleshooting, visit: https://docs.langchain.com/oss/python/langchain"
f"/errors/{error_code.value} "
)

View File

@@ -1,7 +1,7 @@
"""Code to help indexing data into a vectorstore.
This package contains helper logic to help deal with indexing data into
a vectorstore while avoiding duplicated content and over-writing content
a `VectorStore` while avoiding duplicated content and over-writing content
if it's unchanged.
"""

View File

@@ -298,61 +298,58 @@ def index(
For the time being, documents are indexed using their hashes, and users
are not able to specify the uid of the document.
!!! warning "Behavior changed in 0.3.25"
Added ``scoped_full`` cleanup mode.
!!! warning "Behavior changed in `langchain-core` 0.3.25"
Added `scoped_full` cleanup mode.
!!! important
!!! warning
* In full mode, the loader should be returning
the entire dataset, and not just a subset of the dataset.
Otherwise, the auto_cleanup will remove documents that it is not
supposed to.
the entire dataset, and not just a subset of the dataset.
Otherwise, the auto_cleanup will remove documents that it is not
supposed to.
* In incremental mode, if documents associated with a particular
source id appear across different batches, the indexing API
will do some redundant work. This will still result in the
correct end state of the index, but will unfortunately not be
100% efficient. For example, if a given document is split into 15
chunks, and we index them using a batch size of 5, we'll have 3 batches
all with the same source id. In general, to avoid doing too much
redundant work select as big a batch size as possible.
* The ``scoped_full`` mode is suitable if determining an appropriate batch size
is challenging or if your data loader cannot return the entire dataset at
once. This mode keeps track of source IDs in memory, which should be fine
for most use cases. If your dataset is large (10M+ docs), you will likely
need to parallelize the indexing process regardless.
source id appear across different batches, the indexing API
will do some redundant work. This will still result in the
correct end state of the index, but will unfortunately not be
100% efficient. For example, if a given document is split into 15
chunks, and we index them using a batch size of 5, we'll have 3 batches
all with the same source id. In general, to avoid doing too much
redundant work select as big a batch size as possible.
* The `scoped_full` mode is suitable if determining an appropriate batch size
is challenging or if your data loader cannot return the entire dataset at
once. This mode keeps track of source IDs in memory, which should be fine
for most use cases. If your dataset is large (10M+ docs), you will likely
need to parallelize the indexing process regardless.
Args:
docs_source: Data loader or iterable of documents to index.
record_manager: Timestamped set to keep track of which documents were
updated.
vector_store: VectorStore or DocumentIndex to index the documents into.
batch_size: Batch size to use when indexing. Default is 100.
cleanup: How to handle clean up of documents. Default is None.
vector_store: `VectorStore` or DocumentIndex to index the documents into.
batch_size: Batch size to use when indexing.
cleanup: How to handle clean up of documents.
- incremental: Cleans up all documents that haven't been updated AND
that are associated with source ids that were seen during indexing.
Clean up is done continuously during indexing helping to minimize the
probability of users seeing duplicated content.
that are associated with source IDs that were seen during indexing.
Clean up is done continuously during indexing helping to minimize the
probability of users seeing duplicated content.
- full: Delete all documents that have not been returned by the loader
during this run of indexing.
Clean up runs after all documents have been indexed.
This means that users may see duplicated content during indexing.
during this run of indexing.
Clean up runs after all documents have been indexed.
This means that users may see duplicated content during indexing.
- scoped_full: Similar to Full, but only deletes all documents
that haven't been updated AND that are associated with
source ids that were seen during indexing.
that haven't been updated AND that are associated with
source IDs that were seen during indexing.
- None: Do not delete any documents.
source_id_key: Optional key that helps identify the original source
of the document. Default is None.
of the document.
cleanup_batch_size: Batch size to use when cleaning up documents.
Default is 1_000.
force_update: Force update documents even if they are present in the
record manager. Useful if you are re-indexing with updated embeddings.
Default is False.
key_encoder: Hashing algorithm to use for hashing the document content and
metadata. Default is "sha1".
Other options include "blake2b", "sha256", and "sha512".
metadata. Options include "blake2b", "sha256", and "sha512".
!!! version-added "Added in version 0.3.66"
!!! version-added "Added in `langchain-core` 0.3.66"
key_encoder: Hashing algorithm to use for hashing the document.
If not provided, a default encoder using SHA-1 will be used.
@@ -366,10 +363,10 @@ def index(
When changing the key encoder, you must change the
index as well to avoid duplicated documents in the cache.
upsert_kwargs: Additional keyword arguments to pass to the add_documents
method of the VectorStore or the upsert method of the DocumentIndex.
method of the `VectorStore` or the upsert method of the DocumentIndex.
For example, you can use this to specify a custom vector_field:
upsert_kwargs={"vector_field": "embedding"}
!!! version-added "Added in version 0.3.10"
!!! version-added "Added in `langchain-core` 0.3.10"
Returns:
Indexing result which contains information about how many documents
@@ -378,11 +375,11 @@ def index(
Raises:
ValueError: If cleanup mode is not one of 'incremental', 'full' or None
ValueError: If cleanup mode is incremental and source_id_key is None.
ValueError: If vectorstore does not have
ValueError: If `VectorStore` does not have
"delete" and "add_documents" required methods.
ValueError: If source_id_key is not None, but is not a string or callable.
TypeError: If ``vectorstore`` is not a VectorStore or a DocumentIndex.
AssertionError: If ``source_id`` is None when cleanup mode is incremental.
TypeError: If `vectorstore` is not a `VectorStore` or a DocumentIndex.
AssertionError: If `source_id` is None when cleanup mode is incremental.
(should be unreachable code).
"""
# Behavior is deprecated, but we keep it for backwards compatibility.
@@ -418,7 +415,7 @@ def index(
raise ValueError(msg)
if type(destination).delete == VectorStore.delete:
# Checking if the vectorstore has overridden the default delete method
# Checking if the VectorStore has overridden the default delete method
# implementation which just raises a NotImplementedError
msg = "Vectorstore has not implemented the delete method"
raise ValueError(msg)
@@ -469,11 +466,11 @@ def index(
]
if cleanup in {"incremental", "scoped_full"}:
# source ids are required.
# Source IDs are required.
for source_id, hashed_doc in zip(source_ids, hashed_docs, strict=False):
if source_id is None:
msg = (
f"Source ids are required when cleanup mode is "
f"Source IDs are required when cleanup mode is "
f"incremental or scoped_full. "
f"Document that starts with "
f"content: {hashed_doc.page_content[:100]} "
@@ -482,7 +479,7 @@ def index(
raise ValueError(msg)
if cleanup == "scoped_full":
scoped_full_cleanup_source_ids.add(source_id)
# source ids cannot be None after for loop above.
# Source IDs cannot be None after for loop above.
source_ids = cast("Sequence[str]", source_ids)
exists_batch = record_manager.exists(
@@ -541,7 +538,7 @@ def index(
# If source IDs are provided, we can do the deletion incrementally!
if cleanup == "incremental":
# Get the uids of the documents that were not returned by the loader.
# mypy isn't good enough to determine that source ids cannot be None
# mypy isn't good enough to determine that source IDs cannot be None
# here due to a check that's happening above, so we check again.
for source_id in source_ids:
if source_id is None:
@@ -639,61 +636,58 @@ async def aindex(
For the time being, documents are indexed using their hashes, and users
are not able to specify the uid of the document.
!!! warning "Behavior changed in 0.3.25"
Added ``scoped_full`` cleanup mode.
!!! warning "Behavior changed in `langchain-core` 0.3.25"
Added `scoped_full` cleanup mode.
!!! important
!!! warning
* In full mode, the loader should be returning
the entire dataset, and not just a subset of the dataset.
Otherwise, the auto_cleanup will remove documents that it is not
supposed to.
the entire dataset, and not just a subset of the dataset.
Otherwise, the auto_cleanup will remove documents that it is not
supposed to.
* In incremental mode, if documents associated with a particular
source id appear across different batches, the indexing API
will do some redundant work. This will still result in the
correct end state of the index, but will unfortunately not be
100% efficient. For example, if a given document is split into 15
chunks, and we index them using a batch size of 5, we'll have 3 batches
all with the same source id. In general, to avoid doing too much
redundant work select as big a batch size as possible.
* The ``scoped_full`` mode is suitable if determining an appropriate batch size
is challenging or if your data loader cannot return the entire dataset at
once. This mode keeps track of source IDs in memory, which should be fine
for most use cases. If your dataset is large (10M+ docs), you will likely
need to parallelize the indexing process regardless.
source id appear across different batches, the indexing API
will do some redundant work. This will still result in the
correct end state of the index, but will unfortunately not be
100% efficient. For example, if a given document is split into 15
chunks, and we index them using a batch size of 5, we'll have 3 batches
all with the same source id. In general, to avoid doing too much
redundant work select as big a batch size as possible.
* The `scoped_full` mode is suitable if determining an appropriate batch size
is challenging or if your data loader cannot return the entire dataset at
once. This mode keeps track of source IDs in memory, which should be fine
for most use cases. If your dataset is large (10M+ docs), you will likely
need to parallelize the indexing process regardless.
Args:
docs_source: Data loader or iterable of documents to index.
record_manager: Timestamped set to keep track of which documents were
updated.
vector_store: VectorStore or DocumentIndex to index the documents into.
batch_size: Batch size to use when indexing. Default is 100.
cleanup: How to handle clean up of documents. Default is None.
vector_store: `VectorStore` or DocumentIndex to index the documents into.
batch_size: Batch size to use when indexing.
cleanup: How to handle clean up of documents.
- incremental: Cleans up all documents that haven't been updated AND
that are associated with source ids that were seen during indexing.
Clean up is done continuously during indexing helping to minimize the
probability of users seeing duplicated content.
that are associated with source IDs that were seen during indexing.
Clean up is done continuously during indexing helping to minimize the
probability of users seeing duplicated content.
- full: Delete all documents that have not been returned by the loader
during this run of indexing.
Clean up runs after all documents have been indexed.
This means that users may see duplicated content during indexing.
during this run of indexing.
Clean up runs after all documents have been indexed.
This means that users may see duplicated content during indexing.
- scoped_full: Similar to Full, but only deletes all documents
that haven't been updated AND that are associated with
source ids that were seen during indexing.
that haven't been updated AND that are associated with
source IDs that were seen during indexing.
- None: Do not delete any documents.
source_id_key: Optional key that helps identify the original source
of the document. Default is None.
of the document.
cleanup_batch_size: Batch size to use when cleaning up documents.
Default is 1_000.
force_update: Force update documents even if they are present in the
record manager. Useful if you are re-indexing with updated embeddings.
Default is False.
key_encoder: Hashing algorithm to use for hashing the document content and
metadata. Default is "sha1".
Other options include "blake2b", "sha256", and "sha512".
metadata. Options include "blake2b", "sha256", and "sha512".
!!! version-added "Added in version 0.3.66"
!!! version-added "Added in `langchain-core` 0.3.66"
key_encoder: Hashing algorithm to use for hashing the document.
If not provided, a default encoder using SHA-1 will be used.
@@ -707,10 +701,10 @@ async def aindex(
When changing the key encoder, you must change the
index as well to avoid duplicated documents in the cache.
upsert_kwargs: Additional keyword arguments to pass to the add_documents
method of the VectorStore or the upsert method of the DocumentIndex.
method of the `VectorStore` or the upsert method of the DocumentIndex.
For example, you can use this to specify a custom vector_field:
upsert_kwargs={"vector_field": "embedding"}
!!! version-added "Added in version 0.3.10"
!!! version-added "Added in `langchain-core` 0.3.10"
Returns:
Indexing result which contains information about how many documents
@@ -719,12 +713,12 @@ async def aindex(
Raises:
ValueError: If cleanup mode is not one of 'incremental', 'full' or None
ValueError: If cleanup mode is incremental and source_id_key is None.
ValueError: If vectorstore does not have
ValueError: If `VectorStore` does not have
"adelete" and "aadd_documents" required methods.
ValueError: If source_id_key is not None, but is not a string or callable.
TypeError: If ``vector_store`` is not a VectorStore or DocumentIndex.
AssertionError: If ``source_id_key`` is None when cleanup mode is
incremental or ``scoped_full`` (should be unreachable).
TypeError: If `vector_store` is not a `VectorStore` or DocumentIndex.
AssertionError: If `source_id_key` is None when cleanup mode is
incremental or `scoped_full` (should be unreachable).
"""
# Behavior is deprecated, but we keep it for backwards compatibility.
# # Warn only once per process.
@@ -763,7 +757,7 @@ async def aindex(
type(destination).adelete == VectorStore.adelete
and type(destination).delete == VectorStore.delete
):
# Checking if the vectorstore has overridden the default adelete or delete
# Checking if the VectorStore has overridden the default adelete or delete
# methods implementation which just raises a NotImplementedError
msg = "Vectorstore has not implemented the adelete or delete method"
raise ValueError(msg)
@@ -821,11 +815,11 @@ async def aindex(
]
if cleanup in {"incremental", "scoped_full"}:
# If the cleanup mode is incremental, source ids are required.
# If the cleanup mode is incremental, source IDs are required.
for source_id, hashed_doc in zip(source_ids, hashed_docs, strict=False):
if source_id is None:
msg = (
f"Source ids are required when cleanup mode is "
f"Source IDs are required when cleanup mode is "
f"incremental or scoped_full. "
f"Document that starts with "
f"content: {hashed_doc.page_content[:100]} "
@@ -834,7 +828,7 @@ async def aindex(
raise ValueError(msg)
if cleanup == "scoped_full":
scoped_full_cleanup_source_ids.add(source_id)
# source ids cannot be None after for loop above.
# Source IDs cannot be None after for loop above.
source_ids = cast("Sequence[str]", source_ids)
exists_batch = await record_manager.aexists(
@@ -894,7 +888,7 @@ async def aindex(
if cleanup == "incremental":
# Get the uids of the documents that were not returned by the loader.
# mypy isn't good enough to determine that source ids cannot be None
# mypy isn't good enough to determine that source IDs cannot be None
# here due to a check that's happening above, so we check again.
for source_id in source_ids:
if source_id is None:

View File

@@ -25,7 +25,7 @@ class RecordManager(ABC):
The record manager abstraction is used by the langchain indexing API.
The record manager keeps track of which documents have been
written into a vectorstore and when they were written.
written into a `VectorStore` and when they were written.
The indexing API computes hashes for each document and stores the hash
together with the write time and the source id in the record manager.
@@ -37,7 +37,7 @@ class RecordManager(ABC):
already been indexed, and to only index new documents.
The main benefit of this abstraction is that it works across many vectorstores.
To be supported, a vectorstore needs to only support the ability to add and
To be supported, a `VectorStore` needs to only support the ability to add and
delete documents by ID. Using the record manager, the indexing API will
be able to delete outdated documents and avoid redundant indexing of documents
that have already been indexed.
@@ -45,13 +45,13 @@ class RecordManager(ABC):
The main constraints of this abstraction are:
1. It relies on the time-stamps to determine which documents have been
indexed and which have not. This means that the time-stamps must be
monotonically increasing. The timestamp should be the timestamp
as measured by the server to minimize issues.
indexed and which have not. This means that the time-stamps must be
monotonically increasing. The timestamp should be the timestamp
as measured by the server to minimize issues.
2. The record manager is currently implemented separately from the
vectorstore, which means that the overall system becomes distributed
and may create issues with consistency. For example, writing to
record manager succeeds, but corresponding writing to vectorstore fails.
vectorstore, which means that the overall system becomes distributed
and may create issues with consistency. For example, writing to
record manager succeeds, but corresponding writing to `VectorStore` fails.
"""
def __init__(
@@ -61,7 +61,7 @@ class RecordManager(ABC):
"""Initialize the record manager.
Args:
namespace (str): The namespace for the record manager.
namespace: The namespace for the record manager.
"""
self.namespace = namespace
@@ -244,7 +244,7 @@ class InMemoryRecordManager(RecordManager):
"""Initialize the in-memory record manager.
Args:
namespace (str): The namespace for the record manager.
namespace: The namespace for the record manager.
"""
super().__init__(namespace)
# Each key points to a dictionary
@@ -278,10 +278,10 @@ class InMemoryRecordManager(RecordManager):
Args:
keys: A list of record keys to upsert.
group_ids: A list of group IDs corresponding to the keys.
Defaults to None.
time_at_least: Optional timestamp. Implementation can use this
to optionally verify that the timestamp IS at least this time
in the system that stores. Defaults to None.
in the system that stores.
E.g., use to validate that the time in the postgres database
is equal to or larger than the given timestamp, if not
raise an error.
@@ -315,10 +315,10 @@ class InMemoryRecordManager(RecordManager):
Args:
keys: A list of record keys to upsert.
group_ids: A list of group IDs corresponding to the keys.
Defaults to None.
time_at_least: Optional timestamp. Implementation can use this
to optionally verify that the timestamp IS at least this time
in the system that stores. Defaults to None.
in the system that stores.
E.g., use to validate that the time in the postgres database
is equal to or larger than the given timestamp, if not
raise an error.
@@ -361,13 +361,13 @@ class InMemoryRecordManager(RecordManager):
Args:
before: Filter to list records updated before this time.
Defaults to None.
after: Filter to list records updated after this time.
Defaults to None.
group_ids: Filter to list records with specific group IDs.
Defaults to None.
limit: optional limit on the number of records to return.
Defaults to None.
Returns:
A list of keys for the matching records.
@@ -397,13 +397,13 @@ class InMemoryRecordManager(RecordManager):
Args:
before: Filter to list records updated before this time.
Defaults to None.
after: Filter to list records updated after this time.
Defaults to None.
group_ids: Filter to list records with specific group IDs.
Defaults to None.
limit: optional limit on the number of records to return.
Defaults to None.
Returns:
A list of keys for the matching records.
@@ -460,7 +460,7 @@ class UpsertResponse(TypedDict):
class DeleteResponse(TypedDict, total=False):
"""A generic response for delete operation.
The fields in this response are optional and whether the vectorstore
The fields in this response are optional and whether the `VectorStore`
returns them or not is up to the implementation.
"""
@@ -508,8 +508,6 @@ class DocumentIndex(BaseRetriever):
1. Storing document in the index.
2. Fetching document by ID.
3. Searching for document using a query.
!!! version-added "Added in version 0.2.29"
"""
@abc.abstractmethod
@@ -520,40 +518,40 @@ class DocumentIndex(BaseRetriever):
if it is provided. If the ID is not provided, the upsert method is free
to generate an ID for the content.
When an ID is specified and the content already exists in the vectorstore,
When an ID is specified and the content already exists in the `VectorStore`,
the upsert method should update the content with the new data. If the content
does not exist, the upsert method should add the item to the vectorstore.
does not exist, the upsert method should add the item to the `VectorStore`.
Args:
items: Sequence of documents to add to the vectorstore.
items: Sequence of documents to add to the `VectorStore`.
**kwargs: Additional keyword arguments.
Returns:
UpsertResponse: A response object that contains the list of IDs that were
successfully added or updated in the vectorstore and the list of IDs that
A response object that contains the list of IDs that were
successfully added or updated in the `VectorStore` and the list of IDs that
failed to be added or updated.
"""
async def aupsert(
self, items: Sequence[Document], /, **kwargs: Any
) -> UpsertResponse:
"""Add or update documents in the vectorstore. Async version of upsert.
"""Add or update documents in the `VectorStore`. Async version of `upsert`.
The upsert functionality should utilize the ID field of the item
if it is provided. If the ID is not provided, the upsert method is free
to generate an ID for the item.
When an ID is specified and the item already exists in the vectorstore,
When an ID is specified and the item already exists in the `VectorStore`,
the upsert method should update the item with the new data. If the item
does not exist, the upsert method should add the item to the vectorstore.
does not exist, the upsert method should add the item to the `VectorStore`.
Args:
items: Sequence of documents to add to the vectorstore.
items: Sequence of documents to add to the `VectorStore`.
**kwargs: Additional keyword arguments.
Returns:
UpsertResponse: A response object that contains the list of IDs that were
successfully added or updated in the vectorstore and the list of IDs that
A response object that contains the list of IDs that were
successfully added or updated in the `VectorStore` and the list of IDs that
failed to be added or updated.
"""
return await run_in_executor(
@@ -570,13 +568,13 @@ class DocumentIndex(BaseRetriever):
Calling delete without any input parameters should raise a ValueError!
Args:
ids: List of ids to delete.
kwargs: Additional keyword arguments. This is up to the implementation.
ids: List of IDs to delete.
**kwargs: Additional keyword arguments. This is up to the implementation.
For example, can include an option to delete the entire index,
or else issue a non-blocking delete etc.
Returns:
DeleteResponse: A response object that contains the list of IDs that were
A response object that contains the list of IDs that were
successfully deleted and the list of IDs that failed to be deleted.
"""
@@ -588,12 +586,12 @@ class DocumentIndex(BaseRetriever):
Calling adelete without any input parameters should raise a ValueError!
Args:
ids: List of ids to delete.
kwargs: Additional keyword arguments. This is up to the implementation.
ids: List of IDs to delete.
**kwargs: Additional keyword arguments. This is up to the implementation.
For example, can include an option to delete the entire index.
Returns:
DeleteResponse: A response object that contains the list of IDs that were
A response object that contains the list of IDs that were
successfully deleted and the list of IDs that failed to be deleted.
"""
return await run_in_executor(
@@ -624,10 +622,10 @@ class DocumentIndex(BaseRetriever):
Args:
ids: List of IDs to get.
kwargs: Additional keyword arguments. These are up to the implementation.
**kwargs: Additional keyword arguments. These are up to the implementation.
Returns:
list[Document]: List of documents that were found.
List of documents that were found.
"""
async def aget(
@@ -650,10 +648,10 @@ class DocumentIndex(BaseRetriever):
Args:
ids: List of IDs to get.
kwargs: Additional keyword arguments. These are up to the implementation.
**kwargs: Additional keyword arguments. These are up to the implementation.
Returns:
list[Document]: List of documents that were found.
List of documents that were found.
"""
return await run_in_executor(
None,

View File

@@ -23,8 +23,6 @@ class InMemoryDocumentIndex(DocumentIndex):
It provides a simple search API that returns documents by the number of
counts the given query appears in the document.
!!! version-added "Added in version 0.2.29"
"""
store: dict[str, Document] = Field(default_factory=dict)
@@ -64,10 +62,10 @@ class InMemoryDocumentIndex(DocumentIndex):
"""Delete by IDs.
Args:
ids: List of ids to delete.
ids: List of IDs to delete.
Raises:
ValueError: If ids is None.
ValueError: If IDs is None.
Returns:
A response object that contains the list of IDs that were successfully

View File

@@ -1,45 +1,30 @@
"""Language models.
**Language Model** is a type of model that can generate text or complete
text prompts.
LangChain has two main classes to work with language models: chat models and
"old-fashioned" LLMs.
LangChain has two main classes to work with language models: **Chat Models**
and "old-fashioned" **LLMs**.
**Chat Models**
**Chat models**
Language models that use a sequence of messages as inputs and return chat messages
as outputs (as opposed to using plain text). These are traditionally newer models (
older models are generally LLMs, see below). Chat models support the assignment of
distinct roles to conversation messages, helping to distinguish messages from the AI,
users, and instructions such as system messages.
as outputs (as opposed to using plain text).
The key abstraction for chat models is `BaseChatModel`. Implementations
should inherit from this class. Please see LangChain how-to guides with more
information on how to implement a custom chat model.
Chat models support the assignment of distinct roles to conversation messages, helping
to distinguish messages from the AI, users, and instructions such as system messages.
To implement a custom Chat Model, inherit from `BaseChatModel`. See
the following guide for more information on how to implement a custom Chat Model:
The key abstraction for chat models is `BaseChatModel`. Implementations should inherit
from this class.
https://python.langchain.com/docs/how_to/custom_chat_model/
See existing [chat model integrations](https://docs.langchain.com/oss/python/integrations/chat).
**LLMs**
Language models that takes a string as input and returns a string.
These are traditionally older models (newer models generally are Chat Models,
see below).
Although the underlying models are string in, string out, the LangChain wrappers
also allow these models to take messages as input. This gives them the same interface
as Chat Models. When messages are passed in as input, they will be formatted into a
string under the hood before being passed to the underlying model.
To implement a custom LLM, inherit from `BaseLLM` or `LLM`.
Please see the following guide for more information on how to implement a custom LLM:
https://python.langchain.com/docs/how_to/custom_llm/
These are traditionally older models (newer models generally are chat models).
Although the underlying models are string in, string out, the LangChain wrappers also
allow these models to take messages as input. This gives them the same interface as
chat models. When messages are passed in as input, they will be formatted into a string
under the hood before being passed to the underlying model.
"""
from typing import TYPE_CHECKING

View File

@@ -19,7 +19,7 @@ def is_openai_data_block(
) -> bool:
"""Check whether a block contains multimodal data in OpenAI Chat Completions format.
Supports both data and ID-style blocks (e.g. ``'file_data'`` and ``'file_id'``)
Supports both data and ID-style blocks (e.g. `'file_data'` and `'file_id'`)
If additional keys are present, they are ignored / will not affect outcome as long
as the required keys are present and valid.
@@ -30,12 +30,12 @@ def is_openai_data_block(
- "image": Only match image_url blocks
- "audio": Only match input_audio blocks
- "file": Only match file blocks
If None, match any valid OpenAI data block type. Note that this means that
If `None`, match any valid OpenAI data block type. Note that this means that
if the block has a valid OpenAI data type but the filter_ is set to a
different type, this function will return False.
Returns:
True if the block is a valid OpenAI data block and matches the filter_
`True` if the block is a valid OpenAI data block and matches the filter_
(if provided).
"""
@@ -89,21 +89,20 @@ class ParsedDataUri(TypedDict):
def _parse_data_uri(uri: str) -> ParsedDataUri | None:
"""Parse a data URI into its components.
If parsing fails, return None. If either MIME type or data is missing, return None.
If parsing fails, return `None`. If either MIME type or data is missing, return
`None`.
Example:
```python
data_uri = "..."
parsed = _parse_data_uri(data_uri)
.. code-block:: python
data_uri = "..."
parsed = _parse_data_uri(data_uri)
assert parsed == {
"source_type": "base64",
"mime_type": "image/jpeg",
"data": "/9j/4AAQSkZJRg...",
}
assert parsed == {
"source_type": "base64",
"mime_type": "image/jpeg",
"data": "/9j/4AAQSkZJRg...",
}
```
"""
regex = r"^data:(?P<mime_type>[^;]+);base64,(?P<data>.+)$"
match = re.match(regex, uri)
@@ -133,14 +132,14 @@ def _normalize_messages(
- LangChain v1 standard content blocks
This function extends support to:
- `Audio <https://platform.openai.com/docs/api-reference/chat/create>`__ and
`file <https://platform.openai.com/docs/api-reference/files>`__ data in OpenAI
- `[Audio](https://platform.openai.com/docs/api-reference/chat/create) and
`[file](https://platform.openai.com/docs/api-reference/files) data in OpenAI
Chat Completions format
- Images are technically supported but we expect chat models to handle them
directly; this may change in the future
- LangChain v0 standard content blocks for backward compatibility
!!! warning "Behavior changed in 1.0.0"
!!! warning "Behavior changed in `langchain-core` 1.0.0"
In previous versions, this function returned messages in LangChain v0 format.
Now, it returns messages in LangChain v1 format, which upgraded chat models now
expect to receive when passing back in message history. For backward
@@ -148,50 +147,50 @@ def _normalize_messages(
??? note "v0 Content Block Schemas"
``URLContentBlock``:
`URLContentBlock`:
.. codeblock::
```python
{
mime_type: NotRequired[str]
type: Literal['image', 'audio', 'file'],
source_type: Literal['url'],
url: str,
}
```
{
mime_type: NotRequired[str]
type: Literal['image', 'audio', 'file'],
source_type: Literal['url'],
url: str,
}
`Base64ContentBlock`:
``Base64ContentBlock``:
```python
{
mime_type: NotRequired[str]
type: Literal['image', 'audio', 'file'],
source_type: Literal['base64'],
data: str,
}
```
.. codeblock::
{
mime_type: NotRequired[str]
type: Literal['image', 'audio', 'file'],
source_type: Literal['base64'],
data: str,
}
``IDContentBlock``:
`IDContentBlock`:
(In practice, this was never used)
.. codeblock::
```python
{
type: Literal["image", "audio", "file"],
source_type: Literal["id"],
id: str,
}
```
{
type: Literal['image', 'audio', 'file'],
source_type: Literal['id'],
id: str,
}
`PlainTextContentBlock`:
``PlainTextContentBlock``:
.. codeblock::
{
mime_type: NotRequired[str]
type: Literal['file'],
source_type: Literal['text'],
url: str,
}
```python
{
mime_type: NotRequired[str]
type: Literal['file'],
source_type: Literal['text'],
url: str,
}
```
If a v1 message is passed in, it will be returned as-is, meaning it is safe to
always pass in v1 messages to this function for assurance.
@@ -222,7 +221,7 @@ def _normalize_messages(
"type": Literal['file'],
"file": Union[
{
"filename": Optional[str] = "$FILENAME",
"filename": str | None = "$FILENAME",
"file_data": str = "$BASE64_ENCODED_FILE",
},
{

View File

@@ -96,9 +96,16 @@ def _get_token_ids_default_method(text: str) -> list[int]:
LanguageModelInput = PromptValue | str | Sequence[MessageLikeRepresentation]
"""Input to a language model."""
LanguageModelOutput = BaseMessage | str
"""Output from a language model."""
LanguageModelLike = Runnable[LanguageModelInput, LanguageModelOutput]
"""Input/output interface for a language model."""
LanguageModelOutputVar = TypeVar("LanguageModelOutputVar", AIMessage, str)
"""Type variable for the output of a language model."""
def _get_verbosity() -> bool:
@@ -110,29 +117,33 @@ class BaseLanguageModel(
):
"""Abstract base class for interfacing with language models.
All language model wrappers inherited from ``BaseLanguageModel``.
All language model wrappers inherited from `BaseLanguageModel`.
"""
cache: BaseCache | bool | None = Field(default=None, exclude=True)
"""Whether to cache the response.
* If true, will use the global cache.
* If false, will not use a cache
* If None, will use the global cache if it's set, otherwise no cache.
* If instance of ``BaseCache``, will use the provided cache.
* If `True`, will use the global cache.
* If `False`, will not use a cache
* If `None`, will use the global cache if it's set, otherwise no cache.
* If instance of `BaseCache`, will use the provided cache.
Caching is not currently supported for streaming methods of models.
"""
verbose: bool = Field(default_factory=_get_verbosity, exclude=True, repr=False)
"""Whether to print out response text."""
callbacks: Callbacks = Field(default=None, exclude=True)
"""Callbacks to add to the run trace."""
tags: list[str] | None = Field(default=None, exclude=True)
"""Tags to add to the run trace."""
metadata: dict[str, Any] | None = Field(default=None, exclude=True)
"""Metadata to add to the run trace."""
custom_get_token_ids: Callable[[str], list[int]] | None = Field(
default=None, exclude=True
)
@@ -144,9 +155,9 @@ class BaseLanguageModel(
@field_validator("verbose", mode="before")
def set_verbose(cls, verbose: bool | None) -> bool: # noqa: FBT001
"""If verbose is None, set it.
"""If verbose is `None`, set it.
This allows users to pass in None as verbose to access the global setting.
This allows users to pass in `None` as verbose to access the global setting.
Args:
verbose: The verbosity setting to use.
@@ -162,7 +173,7 @@ class BaseLanguageModel(
@property
@override
def InputType(self) -> TypeAlias:
"""Get the input type for this runnable."""
"""Get the input type for this `Runnable`."""
# This is a version of LanguageModelInput which replaces the abstract
# base class BaseMessage with a union of its subclasses, which makes
# for a much better schema.
@@ -186,22 +197,29 @@ class BaseLanguageModel(
1. Take advantage of batched calls,
2. Need more output from the model than just the top generated value,
3. Are building chains that are agnostic to the underlying language model
type (e.g., pure text completion models vs chat models).
type (e.g., pure text completion models vs chat models).
Args:
prompts: List of PromptValues. A PromptValue is an object that can be
converted to match the format of any language model (string for pure
text generation models and BaseMessages for chat models).
stop: Stop words to use when generating. Model output is cut off at the
first occurrence of any of these substrings.
callbacks: Callbacks to pass through. Used for executing additional
functionality, such as logging or streaming, throughout generation.
**kwargs: Arbitrary additional keyword arguments. These are usually passed
to the model provider API call.
prompts: List of `PromptValue` objects.
A `PromptValue` is an object that can be converted to match the format
of any language model (string for pure text generation models and
`BaseMessage` objects for chat models).
stop: Stop words to use when generating.
Model output is cut off at the first occurrence of any of these
substrings.
callbacks: `Callbacks` to pass through.
Used for executing additional functionality, such as logging or
streaming, throughout generation.
**kwargs: Arbitrary additional keyword arguments.
These are usually passed to the model provider API call.
Returns:
An LLMResult, which contains a list of candidate Generations for each input
prompt and additional model provider-specific output.
An `LLMResult`, which contains a list of candidate `Generation` objects for
each input prompt and additional model provider-specific output.
"""
@@ -223,22 +241,29 @@ class BaseLanguageModel(
1. Take advantage of batched calls,
2. Need more output from the model than just the top generated value,
3. Are building chains that are agnostic to the underlying language model
type (e.g., pure text completion models vs chat models).
type (e.g., pure text completion models vs chat models).
Args:
prompts: List of PromptValues. A PromptValue is an object that can be
converted to match the format of any language model (string for pure
text generation models and BaseMessages for chat models).
stop: Stop words to use when generating. Model output is cut off at the
first occurrence of any of these substrings.
callbacks: Callbacks to pass through. Used for executing additional
functionality, such as logging or streaming, throughout generation.
**kwargs: Arbitrary additional keyword arguments. These are usually passed
to the model provider API call.
prompts: List of `PromptValue` objects.
A `PromptValue` is an object that can be converted to match the format
of any language model (string for pure text generation models and
`BaseMessage` objects for chat models).
stop: Stop words to use when generating.
Model output is cut off at the first occurrence of any of these
substrings.
callbacks: `Callbacks` to pass through.
Used for executing additional functionality, such as logging or
streaming, throughout generation.
**kwargs: Arbitrary additional keyword arguments.
These are usually passed to the model provider API call.
Returns:
An ``LLMResult``, which contains a list of candidate Generations for each
input prompt and additional model provider-specific output.
An `LLMResult`, which contains a list of candidate `Generation` objects for
each input prompt and additional model provider-specific output.
"""
@@ -256,15 +281,14 @@ class BaseLanguageModel(
return self.lc_attributes
def get_token_ids(self, text: str) -> list[int]:
"""Return the ordered ids of the tokens in a text.
"""Return the ordered IDs of the tokens in a text.
Args:
text: The string input to tokenize.
Returns:
A list of ids corresponding to the tokens in the text, in order they occur
in the text.
A list of IDs corresponding to the tokens in the text, in order they occur
in the text.
"""
if self.custom_get_token_ids is not None:
return self.custom_get_token_ids(text)
@@ -294,13 +318,13 @@ class BaseLanguageModel(
Useful for checking if an input fits in a model's context window.
!!! note
The base implementation of ``get_num_tokens_from_messages`` ignores tool
The base implementation of `get_num_tokens_from_messages` ignores tool
schemas.
Args:
messages: The message inputs to tokenize.
tools: If provided, sequence of dict, ``BaseModel``, function, or
``BaseTools`` to be converted to tool schemas.
tools: If provided, sequence of dict, `BaseModel`, function, or
`BaseTool` objects to be converted to tool schemas.
Returns:
The sum of the number of tokens across the messages.

View File

@@ -15,6 +15,7 @@ from typing import TYPE_CHECKING, Any, Literal, cast
from pydantic import BaseModel, ConfigDict, Field
from typing_extensions import override
from langchain_core._api.beta_decorator import beta
from langchain_core.caches import BaseCache
from langchain_core.callbacks import (
AsyncCallbackManager,
@@ -75,6 +76,8 @@ from langchain_core.utils.utils import LC_ID_PREFIX, from_env
if TYPE_CHECKING:
import uuid
from langchain_model_profiles import ModelProfile # type: ignore[import-untyped]
from langchain_core.output_parsers.base import OutputParserLike
from langchain_core.runnables import Runnable, RunnableConfig
from langchain_core.tools import BaseTool
@@ -108,11 +111,11 @@ def _generate_response_from_error(error: BaseException) -> list[ChatGeneration]:
def _format_for_tracing(messages: list[BaseMessage]) -> list[BaseMessage]:
"""Format messages for tracing in ``on_chat_model_start``.
"""Format messages for tracing in `on_chat_model_start`.
- Update image content blocks to OpenAI Chat Completions format (backward
compatibility).
- Add ``type`` key to content blocks that have a single key.
- Add `type` key to content blocks that have a single key.
Args:
messages: List of messages to format.
@@ -179,13 +182,13 @@ def generate_from_stream(stream: Iterator[ChatGenerationChunk]) -> ChatResult:
"""Generate from a stream.
Args:
stream: Iterator of ``ChatGenerationChunk``.
stream: Iterator of `ChatGenerationChunk`.
Raises:
ValueError: If no generations are found in the stream.
Returns:
ChatResult: Chat result.
Chat result.
"""
generation = next(stream, None)
@@ -210,10 +213,10 @@ async def agenerate_from_stream(
"""Async generate from a stream.
Args:
stream: Iterator of ``ChatGenerationChunk``.
stream: Iterator of `ChatGenerationChunk`.
Returns:
ChatResult: Chat result.
Chat result.
"""
chunks = [chunk async for chunk in stream]
@@ -240,79 +243,52 @@ def _format_ls_structured_output(ls_structured_output_format: dict | None) -> di
class BaseChatModel(BaseLanguageModel[AIMessage], ABC):
"""Base class for chat models.
r"""Base class for chat models.
Key imperative methods:
Methods that actually call the underlying model.
+---------------------------+----------------------------------------------------------------+---------------------------------------------------------------------+--------------------------------------------------------------------------------------------------+
| Method | Input | Output | Description |
+===========================+================================================================+=====================================================================+==================================================================================================+
| `invoke` | str | list[dict | tuple | BaseMessage] | PromptValue | BaseMessage | A single chat model call. |
+---------------------------+----------------------------------------------------------------+---------------------------------------------------------------------+--------------------------------------------------------------------------------------------------+
| `ainvoke` | ''' | BaseMessage | Defaults to running invoke in an async executor. |
+---------------------------+----------------------------------------------------------------+---------------------------------------------------------------------+--------------------------------------------------------------------------------------------------+
| `stream` | ''' | Iterator[BaseMessageChunk] | Defaults to yielding output of invoke. |
+---------------------------+----------------------------------------------------------------+---------------------------------------------------------------------+--------------------------------------------------------------------------------------------------+
| `astream` | ''' | AsyncIterator[BaseMessageChunk] | Defaults to yielding output of ainvoke. |
+---------------------------+----------------------------------------------------------------+---------------------------------------------------------------------+--------------------------------------------------------------------------------------------------+
| `astream_events` | ''' | AsyncIterator[StreamEvent] | Event types: 'on_chat_model_start', 'on_chat_model_stream', 'on_chat_model_end'. |
+---------------------------+----------------------------------------------------------------+---------------------------------------------------------------------+--------------------------------------------------------------------------------------------------+
| `batch` | list['''] | list[BaseMessage] | Defaults to running invoke in concurrent threads. |
+---------------------------+----------------------------------------------------------------+---------------------------------------------------------------------+--------------------------------------------------------------------------------------------------+
| `abatch` | list['''] | list[BaseMessage] | Defaults to running ainvoke in concurrent threads. |
+---------------------------+----------------------------------------------------------------+---------------------------------------------------------------------+--------------------------------------------------------------------------------------------------+
| `batch_as_completed` | list['''] | Iterator[tuple[int, Union[BaseMessage, Exception]]] | Defaults to running invoke in concurrent threads. |
+---------------------------+----------------------------------------------------------------+---------------------------------------------------------------------+--------------------------------------------------------------------------------------------------+
| `abatch_as_completed` | list['''] | AsyncIterator[tuple[int, Union[BaseMessage, Exception]]] | Defaults to running ainvoke in concurrent threads. |
+---------------------------+----------------------------------------------------------------+---------------------------------------------------------------------+--------------------------------------------------------------------------------------------------+
This table provides a brief overview of the main imperative methods. Please see the base `Runnable` reference for full documentation.
This table provides a brief overview of the main imperative methods. Please see the base Runnable reference for full documentation.
| Method | Input | Output | Description |
| ---------------------- | ------------------------------------------------------------ | ---------------------------------------------------------- | -------------------------------------------------------------------------------- |
| `invoke` | `str` \| `list[dict | tuple | BaseMessage]` \| `PromptValue` | `BaseMessage` | A single chat model call. |
| `ainvoke` | `'''` | `BaseMessage` | Defaults to running `invoke` in an async executor. |
| `stream` | `'''` | `Iterator[BaseMessageChunk]` | Defaults to yielding output of `invoke`. |
| `astream` | `'''` | `AsyncIterator[BaseMessageChunk]` | Defaults to yielding output of `ainvoke`. |
| `astream_events` | `'''` | `AsyncIterator[StreamEvent]` | Event types: `on_chat_model_start`, `on_chat_model_stream`, `on_chat_model_end`. |
| `batch` | `list[''']` | `list[BaseMessage]` | Defaults to running `invoke` in concurrent threads. |
| `abatch` | `list[''']` | `list[BaseMessage]` | Defaults to running `ainvoke` in concurrent threads. |
| `batch_as_completed` | `list[''']` | `Iterator[tuple[int, Union[BaseMessage, Exception]]]` | Defaults to running `invoke` in concurrent threads. |
| `abatch_as_completed` | `list[''']` | `AsyncIterator[tuple[int, Union[BaseMessage, Exception]]]` | Defaults to running `ainvoke` in concurrent threads. |
Key declarative methods:
Methods for creating another Runnable using the ChatModel.
+----------------------------------+-----------------------------------------------------------------------------------------------------------+
| Method | Description |
+==================================+===========================================================================================================+
| `bind_tools` | Create ChatModel that can call tools. |
+----------------------------------+-----------------------------------------------------------------------------------------------------------+
| `with_structured_output` | Create wrapper that structures model output using schema. |
+----------------------------------+-----------------------------------------------------------------------------------------------------------+
| `with_retry` | Create wrapper that retries model calls on failure. |
+----------------------------------+-----------------------------------------------------------------------------------------------------------+
| `with_fallbacks` | Create wrapper that falls back to other models on failure. |
+----------------------------------+-----------------------------------------------------------------------------------------------------------+
| `configurable_fields` | Specify init args of the model that can be configured at runtime via the RunnableConfig. |
+----------------------------------+-----------------------------------------------------------------------------------------------------------+
| `configurable_alternatives` | Specify alternative models which can be swapped in at runtime via the RunnableConfig. |
+----------------------------------+-----------------------------------------------------------------------------------------------------------+
Methods for creating another `Runnable` using the chat model.
This table provides a brief overview of the main declarative methods. Please see the reference for each method for full documentation.
| Method | Description |
| ---------------------------- | ------------------------------------------------------------------------------------------ |
| `bind_tools` | Create chat model that can call tools. |
| `with_structured_output` | Create wrapper that structures model output using schema. |
| `with_retry` | Create wrapper that retries model calls on failure. |
| `with_fallbacks` | Create wrapper that falls back to other models on failure. |
| `configurable_fields` | Specify init args of the model that can be configured at runtime via the `RunnableConfig`. |
| `configurable_alternatives` | Specify alternative models which can be swapped in at runtime via the `RunnableConfig`. |
Creating custom chat model:
Custom chat model implementations should inherit from this class.
Please reference the table below for information about which
methods and properties are required or optional for implementations.
+----------------------------------+--------------------------------------------------------------------+-------------------+
| Method/Property | Description | Required/Optional |
+==================================+====================================================================+===================+
| Method/Property | Description | Required |
| -------------------------------- | ------------------------------------------------------------------ | ----------------- |
| `_generate` | Use to generate a chat result from a prompt | Required |
+----------------------------------+--------------------------------------------------------------------+-------------------+
| `_llm_type` (property) | Used to uniquely identify the type of the model. Used for logging. | Required |
+----------------------------------+--------------------------------------------------------------------+-------------------+
| `_identifying_params` (property) | Represent model parameterization for tracing purposes. | Optional |
+----------------------------------+--------------------------------------------------------------------+-------------------+
| `_stream` | Use to implement streaming | Optional |
+----------------------------------+--------------------------------------------------------------------+-------------------+
| `_agenerate` | Use to implement a native async method | Optional |
+----------------------------------+--------------------------------------------------------------------+-------------------+
| `_astream` | Use to implement async version of `_stream` | Optional |
+----------------------------------+--------------------------------------------------------------------+-------------------+
Follow the guide for more information on how to implement a custom Chat Model:
[Guide](https://python.langchain.com/docs/how_to/custom_chat_model/).
""" # noqa: E501
@@ -322,41 +298,41 @@ class BaseChatModel(BaseLanguageModel[AIMessage], ABC):
disable_streaming: bool | Literal["tool_calling"] = False
"""Whether to disable streaming for this model.
If streaming is bypassed, then ``stream()``/``astream()``/``astream_events()`` will
defer to ``invoke()``/``ainvoke()``.
If streaming is bypassed, then `stream`/`astream`/`astream_events` will
defer to `invoke`/`ainvoke`.
- If True, will always bypass streaming case.
- If ``'tool_calling'``, will bypass streaming case only when the model is called
with a ``tools`` keyword argument. In other words, LangChain will automatically
switch to non-streaming behavior (``invoke()``) only when the tools argument is
provided. This offers the best of both worlds.
- If False (default), will always use streaming case if available.
- If `True`, will always bypass streaming case.
- If `'tool_calling'`, will bypass streaming case only when the model is called
with a `tools` keyword argument. In other words, LangChain will automatically
switch to non-streaming behavior (`invoke`) only when the tools argument is
provided. This offers the best of both worlds.
- If `False` (Default), will always use streaming case if available.
The main reason for this flag is that code might be written using ``stream()`` and
The main reason for this flag is that code might be written using `stream` and
a user may want to swap out a given model for another model whose the implementation
does not properly support streaming.
"""
output_version: str | None = Field(
default_factory=from_env("LC_OUTPUT_VERSION", default=None)
)
"""Version of ``AIMessage`` output format to store in message content.
"""Version of `AIMessage` output format to store in message content.
``AIMessage.content_blocks`` will lazily parse the contents of ``content`` into a
`AIMessage.content_blocks` will lazily parse the contents of `content` into a
standard format. This flag can be used to additionally store the standard format
in message content, e.g., for serialization purposes.
Supported values:
- ``"v0"``: provider-specific format in content (can lazily-parse with
``.content_blocks``)
- ``"v1"``: standardized format in content (consistent with ``.content_blocks``)
- `'v0'`: provider-specific format in content (can lazily-parse with
`content_blocks`)
- `'v1'`: standardized format in content (consistent with `content_blocks`)
Partner packages (e.g., ``langchain-openai``) can also use this field to roll out
new content formats in a backward-compatible way.
Partner packages (e.g.,
[`langchain-openai`](https://pypi.org/project/langchain-openai)) can also use this
field to roll out new content formats in a backward-compatible way.
!!! version-added "Added in version 1.0"
!!! version-added "Added in `langchain-core` 1.0"
"""
@@ -373,7 +349,7 @@ class BaseChatModel(BaseLanguageModel[AIMessage], ABC):
@property
@override
def OutputType(self) -> Any:
"""Get the output type for this runnable."""
"""Get the output type for this `Runnable`."""
return AnyMessage
def _convert_input(self, model_input: LanguageModelInput) -> PromptValue:
@@ -471,8 +447,10 @@ class BaseChatModel(BaseLanguageModel[AIMessage], ABC):
if "stream" in kwargs:
return kwargs["stream"]
if getattr(self, "streaming", False):
return True
if "streaming" in self.model_fields_set:
streaming_value = getattr(self, "streaming", None)
if isinstance(streaming_value, bool):
return streaming_value
# Check if any streaming callback handlers have been passed in.
handlers = run_manager.handlers if run_manager else []
@@ -730,9 +708,7 @@ class BaseChatModel(BaseLanguageModel[AIMessage], ABC):
await run_manager.on_llm_error(err, response=LLMResult(generations=[]))
raise err
await run_manager.on_llm_end(
LLMResult(generations=[[generation]]),
)
await run_manager.on_llm_end(LLMResult(generations=[[generation]]))
# --- Custom methods ---
@@ -863,24 +839,29 @@ class BaseChatModel(BaseLanguageModel[AIMessage], ABC):
1. Take advantage of batched calls,
2. Need more output from the model than just the top generated value,
3. Are building chains that are agnostic to the underlying language model
type (e.g., pure text completion models vs chat models).
type (e.g., pure text completion models vs chat models).
Args:
messages: List of list of messages.
stop: Stop words to use when generating. Model output is cut off at the
first occurrence of any of these substrings.
callbacks: Callbacks to pass through. Used for executing additional
functionality, such as logging or streaming, throughout generation.
stop: Stop words to use when generating.
Model output is cut off at the first occurrence of any of these
substrings.
callbacks: `Callbacks` to pass through.
Used for executing additional functionality, such as logging or
streaming, throughout generation.
tags: The tags to apply.
metadata: The metadata to apply.
run_name: The name of the run.
run_id: The ID of the run.
**kwargs: Arbitrary additional keyword arguments. These are usually passed
to the model provider API call.
**kwargs: Arbitrary additional keyword arguments.
These are usually passed to the model provider API call.
Returns:
An LLMResult, which contains a list of candidate Generations for each input
prompt and additional model provider-specific output.
An `LLMResult`, which contains a list of candidate `Generations` for each
input prompt and additional model provider-specific output.
"""
ls_structured_output_format = kwargs.pop(
@@ -981,24 +962,29 @@ class BaseChatModel(BaseLanguageModel[AIMessage], ABC):
1. Take advantage of batched calls,
2. Need more output from the model than just the top generated value,
3. Are building chains that are agnostic to the underlying language model
type (e.g., pure text completion models vs chat models).
type (e.g., pure text completion models vs chat models).
Args:
messages: List of list of messages.
stop: Stop words to use when generating. Model output is cut off at the
first occurrence of any of these substrings.
callbacks: Callbacks to pass through. Used for executing additional
functionality, such as logging or streaming, throughout generation.
stop: Stop words to use when generating.
Model output is cut off at the first occurrence of any of these
substrings.
callbacks: `Callbacks` to pass through.
Used for executing additional functionality, such as logging or
streaming, throughout generation.
tags: The tags to apply.
metadata: The metadata to apply.
run_name: The name of the run.
run_id: The ID of the run.
**kwargs: Arbitrary additional keyword arguments. These are usually passed
to the model provider API call.
**kwargs: Arbitrary additional keyword arguments.
These are usually passed to the model provider API call.
Returns:
An LLMResult, which contains a list of candidate Generations for each input
prompt and additional model provider-specific output.
An `LLMResult`, which contains a list of candidate `Generations` for each
input prompt and additional model provider-specific output.
"""
ls_structured_output_format = kwargs.pop(
@@ -1527,125 +1513,136 @@ class BaseChatModel(BaseLanguageModel[AIMessage], ABC):
Args:
schema: The output schema. Can be passed in as:
- an OpenAI function/tool schema,
- a JSON Schema,
- a TypedDict class,
- or a Pydantic class.
- An OpenAI function/tool schema,
- A JSON Schema,
- A `TypedDict` class,
- Or a Pydantic class.
If ``schema`` is a Pydantic class then the model output will be a
If `schema` is a Pydantic class then the model output will be a
Pydantic instance of that class, and the model-generated fields will be
validated by the Pydantic class. Otherwise the model output will be a
dict and will not be validated. See `langchain_core.utils.function_calling.convert_to_openai_tool`
for more on how to properly specify types and descriptions of
schema fields when specifying a Pydantic or TypedDict class.
dict and will not be validated.
See `langchain_core.utils.function_calling.convert_to_openai_tool` for
more on how to properly specify types and descriptions of schema fields
when specifying a Pydantic or `TypedDict` class.
include_raw:
If False then only the parsed structured output is returned. If
an error occurs during model output parsing it will be raised. If True
then both the raw model response (a BaseMessage) and the parsed model
response will be returned. If an error occurs during output parsing it
will be caught and returned as well. The final output is always a dict
with keys ``'raw'``, ``'parsed'``, and ``'parsing_error'``.
If `False` then only the parsed structured output is returned.
If an error occurs during model output parsing it will be raised.
If `True` then both the raw model response (a `BaseMessage`) and the
parsed model response will be returned.
If an error occurs during output parsing it will be caught and returned
as well.
The final output is always a `dict` with keys `'raw'`, `'parsed'`, and
`'parsing_error'`.
Raises:
ValueError: If there are any unsupported ``kwargs``.
ValueError: If there are any unsupported `kwargs`.
NotImplementedError: If the model does not implement
``with_structured_output()``.
`with_structured_output()`.
Returns:
A Runnable that takes same inputs as a `langchain_core.language_models.chat.BaseChatModel`.
A `Runnable` that takes same inputs as a
`langchain_core.language_models.chat.BaseChatModel`. If `include_raw` is
`False` and `schema` is a Pydantic class, `Runnable` outputs an instance
of `schema` (i.e., a Pydantic object). Otherwise, if `include_raw` is
`False` then `Runnable` outputs a `dict`.
If ``include_raw`` is False and ``schema`` is a Pydantic class, Runnable outputs
an instance of ``schema`` (i.e., a Pydantic object).
If `include_raw` is `True`, then `Runnable` outputs a `dict` with keys:
Otherwise, if ``include_raw`` is False then Runnable outputs a dict.
- `'raw'`: `BaseMessage`
- `'parsed'`: `None` if there was a parsing error, otherwise the type
depends on the `schema` as described above.
- `'parsing_error'`: `BaseException | None`
If ``include_raw`` is True, then Runnable outputs a dict with keys:
Example: Pydantic schema (`include_raw=False`):
- ``'raw'``: BaseMessage
- ``'parsed'``: None if there was a parsing error, otherwise the type depends on the ``schema`` as described above.
- ``'parsing_error'``: Optional[BaseException]
Example: Pydantic schema (include_raw=False):
.. code-block:: python
from pydantic import BaseModel
```python
from pydantic import BaseModel
class AnswerWithJustification(BaseModel):
'''An answer to the user question along with justification for the answer.'''
class AnswerWithJustification(BaseModel):
'''An answer to the user question along with justification for the answer.'''
answer: str
justification: str
answer: str
justification: str
llm = ChatModel(model="model-name", temperature=0)
structured_llm = llm.with_structured_output(AnswerWithJustification)
model = ChatModel(model="model-name", temperature=0)
structured_model = model.with_structured_output(AnswerWithJustification)
structured_llm.invoke(
"What weighs more a pound of bricks or a pound of feathers"
)
structured_model.invoke(
"What weighs more a pound of bricks or a pound of feathers"
)
# -> AnswerWithJustification(
# answer='They weigh the same',
# justification='Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume or density of the objects may differ.'
# )
# -> AnswerWithJustification(
# answer='They weigh the same',
# justification='Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume or density of the objects may differ.'
# )
```
Example: Pydantic schema (include_raw=True):
.. code-block:: python
Example: Pydantic schema (`include_raw=True`):
from pydantic import BaseModel
```python
from pydantic import BaseModel
class AnswerWithJustification(BaseModel):
'''An answer to the user question along with justification for the answer.'''
class AnswerWithJustification(BaseModel):
'''An answer to the user question along with justification for the answer.'''
answer: str
justification: str
answer: str
justification: str
llm = ChatModel(model="model-name", temperature=0)
structured_llm = llm.with_structured_output(
AnswerWithJustification, include_raw=True
)
model = ChatModel(model="model-name", temperature=0)
structured_model = model.with_structured_output(
AnswerWithJustification, include_raw=True
)
structured_llm.invoke(
"What weighs more a pound of bricks or a pound of feathers"
)
# -> {
# 'raw': AIMessage(content='', additional_kwargs={'tool_calls': [{'id': 'call_Ao02pnFYXD6GN1yzc0uXPsvF', 'function': {'arguments': '{"answer":"They weigh the same.","justification":"Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume or density of the objects may differ."}', 'name': 'AnswerWithJustification'}, 'type': 'function'}]}),
# 'parsed': AnswerWithJustification(answer='They weigh the same.', justification='Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume or density of the objects may differ.'),
# 'parsing_error': None
# }
structured_model.invoke(
"What weighs more a pound of bricks or a pound of feathers"
)
# -> {
# 'raw': AIMessage(content='', additional_kwargs={'tool_calls': [{'id': 'call_Ao02pnFYXD6GN1yzc0uXPsvF', 'function': {'arguments': '{"answer":"They weigh the same.","justification":"Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume or density of the objects may differ."}', 'name': 'AnswerWithJustification'}, 'type': 'function'}]}),
# 'parsed': AnswerWithJustification(answer='They weigh the same.', justification='Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume or density of the objects may differ.'),
# 'parsing_error': None
# }
```
Example: Dict schema (include_raw=False):
.. code-block:: python
Example: `dict` schema (`include_raw=False`):
from pydantic import BaseModel
from langchain_core.utils.function_calling import convert_to_openai_tool
```python
from pydantic import BaseModel
from langchain_core.utils.function_calling import convert_to_openai_tool
class AnswerWithJustification(BaseModel):
'''An answer to the user question along with justification for the answer.'''
class AnswerWithJustification(BaseModel):
'''An answer to the user question along with justification for the answer.'''
answer: str
justification: str
answer: str
justification: str
dict_schema = convert_to_openai_tool(AnswerWithJustification)
llm = ChatModel(model="model-name", temperature=0)
structured_llm = llm.with_structured_output(dict_schema)
dict_schema = convert_to_openai_tool(AnswerWithJustification)
model = ChatModel(model="model-name", temperature=0)
structured_model = model.with_structured_output(dict_schema)
structured_llm.invoke(
"What weighs more a pound of bricks or a pound of feathers"
)
# -> {
# 'answer': 'They weigh the same',
# 'justification': 'Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume and density of the two substances differ.'
# }
structured_model.invoke(
"What weighs more a pound of bricks or a pound of feathers"
)
# -> {
# 'answer': 'They weigh the same',
# 'justification': 'Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume and density of the two substances differ.'
# }
```
!!! warning "Behavior changed in 0.2.26"
Added support for TypedDict class.
!!! warning "Behavior changed in `langchain-core` 0.2.26"
Added support for `TypedDict` class.
""" # noqa: E501
_ = kwargs.pop("method", None)
@@ -1686,13 +1683,47 @@ class BaseChatModel(BaseLanguageModel[AIMessage], ABC):
return RunnableMap(raw=llm) | parser_with_fallback
return llm | output_parser
@property
@beta()
def profile(self) -> ModelProfile:
"""Return profiling information for the model.
This property relies on the `langchain-model-profiles` package to retrieve chat
model capabilities, such as context window sizes and supported features.
Raises:
ImportError: If `langchain-model-profiles` is not installed.
Returns:
A `ModelProfile` object containing profiling information for the model.
"""
try:
from langchain_model_profiles import get_model_profile # noqa: PLC0415
except ImportError as err:
informative_error_message = (
"To access model profiling information, please install the "
"`langchain-model-profiles` package: "
"`pip install langchain-model-profiles`."
)
raise ImportError(informative_error_message) from err
provider_id = self._llm_type
model_name = (
# Model name is not standardized across integrations. New integrations
# should prefer `model`.
getattr(self, "model", None)
or getattr(self, "model_name", None)
or getattr(self, "model_id", "")
)
return get_model_profile(provider_id, model_name) or {}
class SimpleChatModel(BaseChatModel):
"""Simplified implementation for a chat model to inherit from.
!!! note
This implementation is primarily here for backwards compatibility. For new
implementations, please use ``BaseChatModel`` directly.
implementations, please use `BaseChatModel` directly.
"""
@@ -1744,9 +1775,12 @@ def _gen_info_and_msg_metadata(
}
_MAX_CLEANUP_DEPTH = 100
def _cleanup_llm_representation(serialized: Any, depth: int) -> None:
"""Remove non-serializable objects from a serialized object."""
if depth > 100: # Don't cooperate for pathological cases
if depth > _MAX_CLEANUP_DEPTH: # Don't cooperate for pathological cases
return
if not isinstance(serialized, dict):

View File

@@ -1,4 +1,4 @@
"""Fake ChatModel for testing purposes."""
"""Fake chat models for testing purposes."""
import asyncio
import re
@@ -19,7 +19,7 @@ from langchain_core.runnables import RunnableConfig
class FakeMessagesListChatModel(BaseChatModel):
"""Fake ``ChatModel`` for testing purposes."""
"""Fake chat model for testing purposes."""
responses: list[BaseMessage]
"""List of responses to **cycle** through in order."""
@@ -57,7 +57,7 @@ class FakeListChatModelError(Exception):
class FakeListChatModel(SimpleChatModel):
"""Fake ChatModel for testing purposes."""
"""Fake chat model for testing purposes."""
responses: list[str]
"""List of responses to **cycle** through in order."""
@@ -228,10 +228,10 @@ class GenericFakeChatModel(BaseChatModel):
"""Generic fake chat model that can be used to test the chat model interface.
* Chat model should be usable in both sync and async tests
* Invokes ``on_llm_new_token`` to allow for testing of callback related code for new
tokens.
* Invokes `on_llm_new_token` to allow for testing of callback related code for new
tokens.
* Includes logic to break messages into message chunk to facilitate testing of
streaming.
streaming.
"""
@@ -242,7 +242,7 @@ class GenericFakeChatModel(BaseChatModel):
to make the interface more generic if needed.
!!! note
if you want to pass a list, you can use ``iter`` to convert it to an iterator.
if you want to pass a list, you can use `iter` to convert it to an iterator.
!!! warning
Streaming is not implemented yet. We should try to implement it in the future by

View File

@@ -1,4 +1,7 @@
"""Base interface for large language models to expose."""
"""Base interface for traditional large language models (LLMs) to expose.
These are traditionally older models (newer models generally are chat models).
"""
from __future__ import annotations
@@ -74,8 +77,8 @@ def create_base_retry_decorator(
Args:
error_types: List of error types to retry on.
max_retries: Number of retries. Default is 1.
run_manager: Callback manager for the run. Default is None.
max_retries: Number of retries.
run_manager: Callback manager for the run.
Returns:
A retry decorator.
@@ -91,13 +94,17 @@ def create_base_retry_decorator(
if isinstance(run_manager, AsyncCallbackManagerForLLMRun):
coro = run_manager.on_retry(retry_state)
try:
loop = asyncio.get_event_loop()
if loop.is_running():
# TODO: Fix RUF006 - this task should have a reference
# and be awaited somewhere
loop.create_task(coro) # noqa: RUF006
else:
try:
loop = asyncio.get_event_loop()
except RuntimeError:
asyncio.run(coro)
else:
if loop.is_running():
# TODO: Fix RUF006 - this task should have a reference
# and be awaited somewhere
loop.create_task(coro) # noqa: RUF006
else:
asyncio.run(coro)
except Exception as e:
_log_error_once(f"Error in on_retry: {e}")
else:
@@ -153,7 +160,7 @@ def get_prompts(
Args:
params: Dictionary of parameters.
prompts: List of prompts.
cache: Cache object. Default is None.
cache: Cache object.
Returns:
A tuple of existing prompts, llm_string, missing prompt indexes,
@@ -189,7 +196,7 @@ async def aget_prompts(
Args:
params: Dictionary of parameters.
prompts: List of prompts.
cache: Cache object. Default is None.
cache: Cache object.
Returns:
A tuple of existing prompts, llm_string, missing prompt indexes,
@@ -299,7 +306,7 @@ class BaseLLM(BaseLanguageModel[str], ABC):
@property
@override
def OutputType(self) -> type[str]:
"""Get the input type for this runnable."""
"""Get the input type for this `Runnable`."""
return str
def _convert_input(self, model_input: LanguageModelInput) -> PromptValue:
@@ -644,9 +651,12 @@ class BaseLLM(BaseLanguageModel[str], ABC):
Args:
prompts: The prompts to generate from.
stop: Stop words to use when generating. Model output is cut off at the
first occurrence of any of the stop substrings.
If stop tokens are not supported consider raising NotImplementedError.
stop: Stop words to use when generating.
Model output is cut off at the first occurrence of any of these
substrings.
If stop tokens are not supported consider raising `NotImplementedError`.
run_manager: Callback manager for the run.
Returns:
@@ -664,9 +674,12 @@ class BaseLLM(BaseLanguageModel[str], ABC):
Args:
prompts: The prompts to generate from.
stop: Stop words to use when generating. Model output is cut off at the
first occurrence of any of the stop substrings.
If stop tokens are not supported consider raising NotImplementedError.
stop: Stop words to use when generating.
Model output is cut off at the first occurrence of any of these
substrings.
If stop tokens are not supported consider raising `NotImplementedError`.
run_manager: Callback manager for the run.
Returns:
@@ -698,11 +711,14 @@ class BaseLLM(BaseLanguageModel[str], ABC):
Args:
prompt: The prompt to generate from.
stop: Stop words to use when generating. Model output is cut off at the
first occurrence of any of these substrings.
stop: Stop words to use when generating.
Model output is cut off at the first occurrence of any of these
substrings.
run_manager: Callback manager for the run.
**kwargs: Arbitrary additional keyword arguments. These are usually passed
to the model provider API call.
**kwargs: Arbitrary additional keyword arguments.
These are usually passed to the model provider API call.
Yields:
Generation chunks.
@@ -724,11 +740,14 @@ class BaseLLM(BaseLanguageModel[str], ABC):
Args:
prompt: The prompt to generate from.
stop: Stop words to use when generating. Model output is cut off at the
first occurrence of any of these substrings.
stop: Stop words to use when generating.
Model output is cut off at the first occurrence of any of these
substrings.
run_manager: Callback manager for the run.
**kwargs: Arbitrary additional keyword arguments. These are usually passed
to the model provider API call.
**kwargs: Arbitrary additional keyword arguments.
These are usually passed to the model provider API call.
Yields:
Generation chunks.
@@ -835,14 +854,18 @@ class BaseLLM(BaseLanguageModel[str], ABC):
1. Take advantage of batched calls,
2. Need more output from the model than just the top generated value,
3. Are building chains that are agnostic to the underlying language model
type (e.g., pure text completion models vs chat models).
type (e.g., pure text completion models vs chat models).
Args:
prompts: List of string prompts.
stop: Stop words to use when generating. Model output is cut off at the
first occurrence of any of these substrings.
callbacks: Callbacks to pass through. Used for executing additional
functionality, such as logging or streaming, throughout generation.
stop: Stop words to use when generating.
Model output is cut off at the first occurrence of any of these
substrings.
callbacks: `Callbacks` to pass through.
Used for executing additional functionality, such as logging or
streaming, throughout generation.
tags: List of tags to associate with each prompt. If provided, the length
of the list must match the length of the prompts list.
metadata: List of metadata dictionaries to associate with each prompt. If
@@ -852,17 +875,18 @@ class BaseLLM(BaseLanguageModel[str], ABC):
length of the list must match the length of the prompts list.
run_id: List of run IDs to associate with each prompt. If provided, the
length of the list must match the length of the prompts list.
**kwargs: Arbitrary additional keyword arguments. These are usually passed
to the model provider API call.
**kwargs: Arbitrary additional keyword arguments.
These are usually passed to the model provider API call.
Raises:
ValueError: If prompts is not a list.
ValueError: If the length of ``callbacks``, ``tags``, ``metadata``, or
``run_name`` (if provided) does not match the length of prompts.
ValueError: If the length of `callbacks`, `tags`, `metadata`, or
`run_name` (if provided) does not match the length of prompts.
Returns:
An LLMResult, which contains a list of candidate Generations for each input
prompt and additional model provider-specific output.
An `LLMResult`, which contains a list of candidate `Generations` for each
input prompt and additional model provider-specific output.
"""
if not isinstance(prompts, list):
msg = (
@@ -1105,14 +1129,18 @@ class BaseLLM(BaseLanguageModel[str], ABC):
1. Take advantage of batched calls,
2. Need more output from the model than just the top generated value,
3. Are building chains that are agnostic to the underlying language model
type (e.g., pure text completion models vs chat models).
type (e.g., pure text completion models vs chat models).
Args:
prompts: List of string prompts.
stop: Stop words to use when generating. Model output is cut off at the
first occurrence of any of these substrings.
callbacks: Callbacks to pass through. Used for executing additional
functionality, such as logging or streaming, throughout generation.
stop: Stop words to use when generating.
Model output is cut off at the first occurrence of any of these
substrings.
callbacks: `Callbacks` to pass through.
Used for executing additional functionality, such as logging or
streaming, throughout generation.
tags: List of tags to associate with each prompt. If provided, the length
of the list must match the length of the prompts list.
metadata: List of metadata dictionaries to associate with each prompt. If
@@ -1122,16 +1150,17 @@ class BaseLLM(BaseLanguageModel[str], ABC):
length of the list must match the length of the prompts list.
run_id: List of run IDs to associate with each prompt. If provided, the
length of the list must match the length of the prompts list.
**kwargs: Arbitrary additional keyword arguments. These are usually passed
to the model provider API call.
**kwargs: Arbitrary additional keyword arguments.
These are usually passed to the model provider API call.
Raises:
ValueError: If the length of ``callbacks``, ``tags``, ``metadata``, or
``run_name`` (if provided) does not match the length of prompts.
ValueError: If the length of `callbacks`, `tags`, `metadata`, or
`run_name` (if provided) does not match the length of prompts.
Returns:
An LLMResult, which contains a list of candidate Generations for each input
prompt and additional model provider-specific output.
An `LLMResult`, which contains a list of candidate `Generations` for each
input prompt and additional model provider-specific output.
"""
if isinstance(metadata, list):
metadata = [
@@ -1340,11 +1369,9 @@ class BaseLLM(BaseLanguageModel[str], ABC):
ValueError: If the file path is not a string or Path object.
Example:
.. code-block:: python
llm.save(file_path="path/llm.yaml")
```python
llm.save(file_path="path/llm.yaml")
```
"""
# Convert file to Path object.
save_path = Path(file_path)
@@ -1389,11 +1416,6 @@ class LLM(BaseLLM):
`astream` will use `_astream` if provided, otherwise it will implement
a fallback behavior that will use `_stream` if `_stream` is implemented,
and use `_acall` if `_stream` is not implemented.
Please see the following guide for more information on how to
implement a custom LLM:
https://python.langchain.com/docs/how_to/custom_llm/
"""
@abstractmethod
@@ -1410,12 +1432,16 @@ class LLM(BaseLLM):
Args:
prompt: The prompt to generate from.
stop: Stop words to use when generating. Model output is cut off at the
first occurrence of any of the stop substrings.
If stop tokens are not supported consider raising NotImplementedError.
stop: Stop words to use when generating.
Model output is cut off at the first occurrence of any of these
substrings.
If stop tokens are not supported consider raising `NotImplementedError`.
run_manager: Callback manager for the run.
**kwargs: Arbitrary additional keyword arguments. These are usually passed
to the model provider API call.
**kwargs: Arbitrary additional keyword arguments.
These are usually passed to the model provider API call.
Returns:
The model output as a string. SHOULD NOT include the prompt.
@@ -1436,12 +1462,16 @@ class LLM(BaseLLM):
Args:
prompt: The prompt to generate from.
stop: Stop words to use when generating. Model output is cut off at the
first occurrence of any of the stop substrings.
If stop tokens are not supported consider raising NotImplementedError.
stop: Stop words to use when generating.
Model output is cut off at the first occurrence of any of these
substrings.
If stop tokens are not supported consider raising `NotImplementedError`.
run_manager: Callback manager for the run.
**kwargs: Arbitrary additional keyword arguments. These are usually passed
to the model provider API call.
**kwargs: Arbitrary additional keyword arguments.
These are usually passed to the model provider API call.
Returns:
The model output as a string. SHOULD NOT include the prompt.

View File

@@ -17,7 +17,7 @@ def default(obj: Any) -> Any:
obj: The object to serialize to json if it is a Serializable object.
Returns:
A json serializable object or a SerializedNotImplemented object.
A JSON serializable object or a SerializedNotImplemented object.
"""
if isinstance(obj, Serializable):
return obj.to_json()
@@ -38,17 +38,16 @@ def _dump_pydantic_models(obj: Any) -> Any:
def dumps(obj: Any, *, pretty: bool = False, **kwargs: Any) -> str:
"""Return a json string representation of an object.
"""Return a JSON string representation of an object.
Args:
obj: The object to dump.
pretty: Whether to pretty print the json. If true, the json will be
indented with 2 spaces (if no indent is provided as part of kwargs).
Default is False.
kwargs: Additional arguments to pass to json.dumps
pretty: Whether to pretty print the json. If `True`, the json will be
indented with 2 spaces (if no indent is provided as part of `kwargs`).
**kwargs: Additional arguments to pass to `json.dumps`
Returns:
A json string representation of the object.
A JSON string representation of the object.
Raises:
ValueError: If `default` is passed as a kwarg.
@@ -72,14 +71,12 @@ def dumps(obj: Any, *, pretty: bool = False, **kwargs: Any) -> str:
def dumpd(obj: Any) -> Any:
"""Return a dict representation of an object.
!!! note
Unfortunately this function is not as efficient as it could be because it first
dumps the object to a json string and then loads it back into a dictionary.
Args:
obj: The object to dump.
Returns:
dictionary that can be serialized to json using json.dumps
Dictionary that can be serialized to json using `json.dumps`.
"""
# Unfortunately this function is not as efficient as it could be because it first
# dumps the object to a json string and then loads it back into a dictionary.
return json.loads(dumps(obj))

View File

@@ -63,16 +63,13 @@ class Reviver:
Args:
secrets_map: A map of secrets to load. If a secret is not found in
the map, it will be loaded from the environment if `secrets_from_env`
is True. Defaults to None.
is True.
valid_namespaces: A list of additional namespaces (modules)
to allow to be deserialized. Defaults to None.
to allow to be deserialized.
secrets_from_env: Whether to load secrets from the environment.
Defaults to True.
additional_import_mappings: A dictionary of additional namespace mappings
You can use this to override default mappings or add new mappings.
Defaults to None.
ignore_unserializable_fields: Whether to ignore unserializable fields.
Defaults to False.
"""
self.secrets_from_env = secrets_from_env
self.secrets_map = secrets_map or {}
@@ -107,7 +104,7 @@ class Reviver:
ValueError: If trying to deserialize something that cannot
be deserialized in the current version of langchain-core.
NotImplementedError: If the object is not implemented and
``ignore_unserializable_fields`` is False.
`ignore_unserializable_fields` is False.
"""
if (
value.get("lc") == 1
@@ -200,16 +197,13 @@ def loads(
text: The string to load.
secrets_map: A map of secrets to load. If a secret is not found in
the map, it will be loaded from the environment if `secrets_from_env`
is True. Defaults to None.
is True.
valid_namespaces: A list of additional namespaces (modules)
to allow to be deserialized. Defaults to None.
to allow to be deserialized.
secrets_from_env: Whether to load secrets from the environment.
Defaults to True.
additional_import_mappings: A dictionary of additional namespace mappings
You can use this to override default mappings or add new mappings.
Defaults to None.
ignore_unserializable_fields: Whether to ignore unserializable fields.
Defaults to False.
Returns:
Revived LangChain objects.
@@ -245,16 +239,13 @@ def load(
obj: The object to load.
secrets_map: A map of secrets to load. If a secret is not found in
the map, it will be loaded from the environment if `secrets_from_env`
is True. Defaults to None.
is True.
valid_namespaces: A list of additional namespaces (modules)
to allow to be deserialized. Defaults to None.
to allow to be deserialized.
secrets_from_env: Whether to load secrets from the environment.
Defaults to True.
additional_import_mappings: A dictionary of additional namespace mappings
You can use this to override default mappings or add new mappings.
Defaults to None.
ignore_unserializable_fields: Whether to ignore unserializable fields.
Defaults to False.
Returns:
Revived LangChain objects.

View File

@@ -25,16 +25,16 @@ class BaseSerialized(TypedDict):
id: list[str]
"""The unique identifier of the object."""
name: NotRequired[str]
"""The name of the object. Optional."""
"""The name of the object."""
graph: NotRequired[dict[str, Any]]
"""The graph of the object. Optional."""
"""The graph of the object."""
class SerializedConstructor(BaseSerialized):
"""Serialized constructor."""
type: Literal["constructor"]
"""The type of the object. Must be ``'constructor'``."""
"""The type of the object. Must be `'constructor'`."""
kwargs: dict[str, Any]
"""The constructor arguments."""
@@ -43,16 +43,16 @@ class SerializedSecret(BaseSerialized):
"""Serialized secret."""
type: Literal["secret"]
"""The type of the object. Must be ``'secret'``."""
"""The type of the object. Must be `'secret'`."""
class SerializedNotImplemented(BaseSerialized):
"""Serialized not implemented."""
type: Literal["not_implemented"]
"""The type of the object. Must be ``'not_implemented'``."""
"""The type of the object. Must be `'not_implemented'`."""
repr: str | None
"""The representation of the object. Optional."""
"""The representation of the object."""
def try_neq_default(value: Any, key: str, model: BaseModel) -> bool:
@@ -61,7 +61,7 @@ def try_neq_default(value: Any, key: str, model: BaseModel) -> bool:
Args:
value: The value.
key: The key.
model: The pydantic model.
model: The Pydantic model.
Returns:
Whether the value is different from the default.
@@ -92,19 +92,22 @@ class Serializable(BaseModel, ABC):
It relies on the following methods and properties:
- ``is_lc_serializable``: Is this class serializable?
By design, even if a class inherits from Serializable, it is not serializable by
default. This is to prevent accidental serialization of objects that should not
be serialized.
- ``get_lc_namespace``: Get the namespace of the langchain object.
During deserialization, this namespace is used to identify
the correct class to instantiate.
Please see the ``Reviver`` class in ``langchain_core.load.load`` for more details.
During deserialization an additional mapping is handle
classes that have moved or been renamed across package versions.
- ``lc_secrets``: A map of constructor argument names to secret ids.
- ``lc_attributes``: List of additional attribute names that should be included
as part of the serialized representation.
- `is_lc_serializable`: Is this class serializable?
By design, even if a class inherits from `Serializable`, it is not serializable
by default. This is to prevent accidental serialization of objects that should
not be serialized.
- `get_lc_namespace`: Get the namespace of the LangChain object.
During deserialization, this namespace is used to identify
the correct class to instantiate.
Please see the `Reviver` class in `langchain_core.load.load` for more details.
During deserialization an additional mapping is handle classes that have moved
or been renamed across package versions.
- `lc_secrets`: A map of constructor argument names to secret ids.
- `lc_attributes`: List of additional attribute names that should be included
as part of the serialized representation.
"""
# Remove default BaseModel init docstring.
@@ -116,24 +119,24 @@ class Serializable(BaseModel, ABC):
def is_lc_serializable(cls) -> bool:
"""Is this class serializable?
By design, even if a class inherits from Serializable, it is not serializable by
default. This is to prevent accidental serialization of objects that should not
be serialized.
By design, even if a class inherits from `Serializable`, it is not serializable
by default. This is to prevent accidental serialization of objects that should
not be serialized.
Returns:
Whether the class is serializable. Default is False.
Whether the class is serializable. Default is `False`.
"""
return False
@classmethod
def get_lc_namespace(cls) -> list[str]:
"""Get the namespace of the langchain object.
"""Get the namespace of the LangChain object.
For example, if the class is `langchain.llms.openai.OpenAI`, then the
namespace is ["langchain", "llms", "openai"]
namespace is `["langchain", "llms", "openai"]`
Returns:
The namespace as a list of strings.
The namespace.
"""
return cls.__module__.split(".")
@@ -141,8 +144,7 @@ class Serializable(BaseModel, ABC):
def lc_secrets(self) -> dict[str, str]:
"""A map of constructor argument names to secret ids.
For example,
{"openai_api_key": "OPENAI_API_KEY"}
For example, `{"openai_api_key": "OPENAI_API_KEY"}`
"""
return {}
@@ -151,6 +153,7 @@ class Serializable(BaseModel, ABC):
"""List of attribute names that should be included in the serialized kwargs.
These attributes must be accepted by the constructor.
Default is an empty dictionary.
"""
return {}
@@ -161,8 +164,9 @@ class Serializable(BaseModel, ABC):
The unique identifier is a list of strings that describes the path
to the object.
For example, for the class `langchain.llms.openai.OpenAI`, the id is
["langchain", "llms", "openai", "OpenAI"].
`["langchain", "llms", "openai", "OpenAI"]`.
"""
# Pydantic generics change the class name. So we need to do the following
if (
@@ -193,7 +197,7 @@ class Serializable(BaseModel, ABC):
ValueError: If the class has deprecated attributes.
Returns:
A json serializable object or a SerializedNotImplemented object.
A JSON serializable object or a `SerializedNotImplemented` object.
"""
if not self.is_lc_serializable():
return self.to_json_not_implemented()
@@ -268,7 +272,7 @@ class Serializable(BaseModel, ABC):
"""Serialize a "not implemented" object.
Returns:
SerializedNotImplemented.
`SerializedNotImplemented`.
"""
return to_json_not_implemented(self)
@@ -283,8 +287,8 @@ def _is_field_useful(inst: Serializable, key: str, value: Any) -> bool:
Returns:
Whether the field is useful. If the field is required, it is useful.
If the field is not required, it is useful if the value is not None.
If the field is not required and the value is None, it is useful if the
If the field is not required, it is useful if the value is not `None`.
If the field is not required and the value is `None`, it is useful if the
default value is different from the value.
"""
field = type(inst).model_fields.get(key)
@@ -343,10 +347,10 @@ def to_json_not_implemented(obj: object) -> SerializedNotImplemented:
"""Serialize a "not implemented" object.
Args:
obj: object to serialize.
obj: Object to serialize.
Returns:
SerializedNotImplemented
`SerializedNotImplemented`
"""
id_: list[str] = []
try:

View File

@@ -1,19 +1,4 @@
"""**Messages** are objects used in prompts and chat conversations.
**Class hierarchy:**
.. code-block::
BaseMessage --> SystemMessage, AIMessage, HumanMessage, ChatMessage, FunctionMessage, ToolMessage
--> BaseMessageChunk --> SystemMessageChunk, AIMessageChunk, HumanMessageChunk, ChatMessageChunk, FunctionMessageChunk, ToolMessageChunk
**Main helpers:**
.. code-block::
ChatPromptTemplate
""" # noqa: E501
"""**Messages** are objects used in prompts and chat conversations."""
from typing import TYPE_CHECKING
@@ -24,6 +9,9 @@ if TYPE_CHECKING:
from langchain_core.messages.ai import (
AIMessage,
AIMessageChunk,
InputTokenDetails,
OutputTokenDetails,
UsageMetadata,
)
from langchain_core.messages.base import (
BaseMessage,
@@ -102,10 +90,12 @@ __all__ = (
"HumanMessage",
"HumanMessageChunk",
"ImageContentBlock",
"InputTokenDetails",
"InvalidToolCall",
"MessageLikeRepresentation",
"NonStandardAnnotation",
"NonStandardContentBlock",
"OutputTokenDetails",
"PlainTextContentBlock",
"ReasoningContentBlock",
"RemoveMessage",
@@ -119,6 +109,7 @@ __all__ = (
"ToolCallChunk",
"ToolMessage",
"ToolMessageChunk",
"UsageMetadata",
"VideoContentBlock",
"_message_from_dict",
"convert_to_messages",
@@ -160,6 +151,7 @@ _dynamic_imports = {
"HumanMessageChunk": "human",
"NonStandardAnnotation": "content",
"NonStandardContentBlock": "content",
"OutputTokenDetails": "ai",
"PlainTextContentBlock": "content",
"ReasoningContentBlock": "content",
"RemoveMessage": "modifier",
@@ -169,12 +161,14 @@ _dynamic_imports = {
"SystemMessage": "system",
"SystemMessageChunk": "system",
"ImageContentBlock": "content",
"InputTokenDetails": "ai",
"InvalidToolCall": "tool",
"TextContentBlock": "content",
"ToolCall": "tool",
"ToolCallChunk": "tool",
"ToolMessage": "tool",
"ToolMessageChunk": "tool",
"UsageMetadata": "ai",
"VideoContentBlock": "content",
"AnyMessage": "utils",
"MessageLikeRepresentation": "utils",

View File

@@ -40,18 +40,18 @@ class InputTokenDetails(TypedDict, total=False):
Does *not* need to sum to full input token count. Does *not* need to have all keys.
Example:
.. code-block:: python
{
"audio": 10,
"cache_creation": 200,
"cache_read": 100,
}
!!! version-added "Added in version 0.3.9"
```python
{
"audio": 10,
"cache_creation": 200,
"cache_read": 100,
}
```
May also hold extra provider-specific keys.
!!! version-added "Added in `langchain-core` 0.3.9"
"""
audio: int
@@ -76,14 +76,16 @@ class OutputTokenDetails(TypedDict, total=False):
Does *not* need to sum to full output token count. Does *not* need to have all keys.
Example:
.. code-block:: python
```python
{
"audio": 10,
"reasoning": 200,
}
```
{
"audio": 10,
"reasoning": 200,
}
May also hold extra provider-specific keys.
!!! version-added "Added in version 0.3.9"
!!! version-added "Added in `langchain-core` 0.3.9"
"""
@@ -104,26 +106,30 @@ class UsageMetadata(TypedDict):
This is a standard representation of token usage that is consistent across models.
Example:
.. code-block:: python
```python
{
"input_tokens": 350,
"output_tokens": 240,
"total_tokens": 590,
"input_token_details": {
"audio": 10,
"cache_creation": 200,
"cache_read": 100,
},
"output_token_details": {
"audio": 10,
"reasoning": 200,
},
}
```
{
"input_tokens": 350,
"output_tokens": 240,
"total_tokens": 590,
"input_token_details": {
"audio": 10,
"cache_creation": 200,
"cache_read": 100,
},
"output_token_details": {
"audio": 10,
"reasoning": 200,
},
}
!!! warning "Behavior changed in 0.3.9"
Added ``input_token_details`` and ``output_token_details``.
!!! warning "Behavior changed in `langchain-core` 0.3.9"
Added `input_token_details` and `output_token_details`.
!!! note "LangSmith SDK"
The LangSmith SDK also has a `UsageMetadata` class. While the two share fields,
LangSmith's `UsageMetadata` has additional fields to capture cost information
used by the LangSmith platform.
"""
input_tokens: int
@@ -131,7 +137,7 @@ class UsageMetadata(TypedDict):
output_tokens: int
"""Count of output (or completion) tokens. Sum of all output token types."""
total_tokens: int
"""Total token count. Sum of input_tokens + output_tokens."""
"""Total token count. Sum of `input_tokens` + `output_tokens`."""
input_token_details: NotRequired[InputTokenDetails]
"""Breakdown of input token counts.
@@ -141,34 +147,31 @@ class UsageMetadata(TypedDict):
"""Breakdown of output token counts.
Does *not* need to sum to full output token count. Does *not* need to have all keys.
"""
class AIMessage(BaseMessage):
"""Message from an AI.
AIMessage is returned from a chat model as a response to a prompt.
An `AIMessage` is returned from a chat model as a response to a prompt.
This message represents the output of the model and consists of both
the raw output as returned by the model together standardized fields
the raw output as returned by the model and standardized fields
(e.g., tool calls, usage metadata) added by the LangChain framework.
"""
tool_calls: list[ToolCall] = []
"""If provided, tool calls associated with the message."""
"""If present, tool calls associated with the message."""
invalid_tool_calls: list[InvalidToolCall] = []
"""If provided, tool calls with parsing errors associated with the message."""
"""If present, tool calls with parsing errors associated with the message."""
usage_metadata: UsageMetadata | None = None
"""If provided, usage metadata for a message, such as token counts.
"""If present, usage metadata for a message, such as token counts.
This is a standard representation of token usage that is consistent across models.
"""
type: Literal["ai"] = "ai"
"""The type of the message (used for deserialization). Defaults to "ai"."""
"""The type of the message (used for deserialization)."""
@overload
def __init__(
@@ -191,14 +194,14 @@ class AIMessage(BaseMessage):
content_blocks: list[types.ContentBlock] | None = None,
**kwargs: Any,
) -> None:
"""Initialize ``AIMessage``.
"""Initialize an `AIMessage`.
Specify ``content`` as positional arg or ``content_blocks`` for typing.
Specify `content` as positional arg or `content_blocks` for typing.
Args:
content: The content of the message.
content_blocks: Typed standard content.
kwargs: Additional arguments to pass to the parent class.
**kwargs: Additional arguments to pass to the parent class.
"""
if content_blocks is not None:
# If there are tool calls in content_blocks, but not in tool_calls, add them
@@ -217,7 +220,11 @@ class AIMessage(BaseMessage):
@property
def lc_attributes(self) -> dict:
"""Attrs to be serialized even if they are derived from other init args."""
"""Attributes to be serialized.
Includes all attributes, even if they are derived from other initialization
arguments.
"""
return {
"tool_calls": self.tool_calls,
"invalid_tool_calls": self.invalid_tool_calls,
@@ -225,11 +232,11 @@ class AIMessage(BaseMessage):
@property
def content_blocks(self) -> list[types.ContentBlock]:
"""Return content blocks of the message.
"""Return standard, typed `ContentBlock` dicts from the message.
If the message has a known model provider, use the provider-specific translator
first before falling back to best-effort parsing. For details, see the property
on ``BaseMessage``.
on `BaseMessage`.
"""
if self.response_metadata.get("output_version") == "v1":
return cast("list[types.ContentBlock]", self.content)
@@ -331,11 +338,10 @@ class AIMessage(BaseMessage):
@override
def pretty_repr(self, html: bool = False) -> str:
"""Return a pretty representation of the message.
"""Return a pretty representation of the message for display.
Args:
html: Whether to return an HTML-formatted string.
Defaults to False.
Returns:
A pretty representation of the message.
@@ -372,31 +378,27 @@ class AIMessage(BaseMessage):
class AIMessageChunk(AIMessage, BaseMessageChunk):
"""Message chunk from an AI."""
"""Message chunk from an AI (yielded when streaming)."""
# Ignoring mypy re-assignment here since we're overriding the value
# to make sure that the chunk variant can be discriminated from the
# non-chunk variant.
type: Literal["AIMessageChunk"] = "AIMessageChunk" # type: ignore[assignment]
"""The type of the message (used for deserialization).
Defaults to ``AIMessageChunk``.
"""
"""The type of the message (used for deserialization)."""
tool_call_chunks: list[ToolCallChunk] = []
"""If provided, tool call chunks associated with the message."""
chunk_position: Literal["last"] | None = None
"""Optional span represented by an aggregated AIMessageChunk.
"""Optional span represented by an aggregated `AIMessageChunk`.
If a chunk with ``chunk_position="last"`` is aggregated into a stream,
``tool_call_chunks`` in message content will be parsed into ``tool_calls``.
If a chunk with `chunk_position="last"` is aggregated into a stream,
`tool_call_chunks` in message content will be parsed into `tool_calls`.
"""
@property
def lc_attributes(self) -> dict:
"""Attrs to be serialized even if they are derived from other init args."""
"""Attributes to be serialized, even if they are derived from other initialization args.""" # noqa: E501
return {
"tool_calls": self.tool_calls,
"invalid_tool_calls": self.invalid_tool_calls,
@@ -404,7 +406,7 @@ class AIMessageChunk(AIMessage, BaseMessageChunk):
@property
def content_blocks(self) -> list[types.ContentBlock]:
"""Return content blocks of the message."""
"""Return standard, typed `ContentBlock` dicts from the message."""
if self.response_metadata.get("output_version") == "v1":
return cast("list[types.ContentBlock]", self.content)
@@ -545,12 +547,15 @@ class AIMessageChunk(AIMessage, BaseMessageChunk):
and call_id in id_to_tc
):
self.content[idx] = cast("dict[str, Any]", id_to_tc[call_id])
if "extras" in block:
# mypy does not account for instance check for dict above
self.content[idx]["extras"] = block["extras"] # type: ignore[index]
return self
@model_validator(mode="after")
def init_server_tool_calls(self) -> Self:
"""Parse server_tool_call_chunks."""
"""Parse `server_tool_call_chunks`."""
if (
self.chunk_position == "last"
and self.response_metadata.get("output_version") == "v1"
@@ -596,14 +601,14 @@ class AIMessageChunk(AIMessage, BaseMessageChunk):
def add_ai_message_chunks(
left: AIMessageChunk, *others: AIMessageChunk
) -> AIMessageChunk:
"""Add multiple ``AIMessageChunk``s together.
"""Add multiple `AIMessageChunk`s together.
Args:
left: The first ``AIMessageChunk``.
*others: Other ``AIMessageChunk``s to add.
left: The first `AIMessageChunk`.
*others: Other `AIMessageChunk`s to add.
Returns:
The resulting ``AIMessageChunk``.
The resulting `AIMessageChunk`.
"""
content = merge_content(left.content, *(o.content for o in others))
@@ -650,13 +655,13 @@ def add_ai_message_chunks(
chunk_id = id_
break
else:
# second pass: prefer lc_run-* ids over lc_* ids
# second pass: prefer lc_run-* IDs over lc_* IDs
for id_ in candidates:
if id_ and id_.startswith(LC_ID_PREFIX):
chunk_id = id_
break
else:
# third pass: take any remaining id (auto-generated lc_* ids)
# third pass: take any remaining ID (auto-generated lc_* IDs)
for id_ in candidates:
if id_:
chunk_id = id_
@@ -681,43 +686,42 @@ def add_usage(left: UsageMetadata | None, right: UsageMetadata | None) -> UsageM
"""Recursively add two UsageMetadata objects.
Example:
.. code-block:: python
```python
from langchain_core.messages.ai import add_usage
from langchain_core.messages.ai import add_usage
left = UsageMetadata(
input_tokens=5,
output_tokens=0,
total_tokens=5,
input_token_details=InputTokenDetails(cache_read=3),
)
right = UsageMetadata(
input_tokens=0,
output_tokens=10,
total_tokens=10,
output_token_details=OutputTokenDetails(reasoning=4),
)
left = UsageMetadata(
input_tokens=5,
output_tokens=0,
total_tokens=5,
input_token_details=InputTokenDetails(cache_read=3),
)
right = UsageMetadata(
input_tokens=0,
output_tokens=10,
total_tokens=10,
output_token_details=OutputTokenDetails(reasoning=4),
)
add_usage(left, right)
add_usage(left, right)
```
results in
.. code-block:: python
UsageMetadata(
input_tokens=5,
output_tokens=10,
total_tokens=15,
input_token_details=InputTokenDetails(cache_read=3),
output_token_details=OutputTokenDetails(reasoning=4),
)
```python
UsageMetadata(
input_tokens=5,
output_tokens=10,
total_tokens=15,
input_token_details=InputTokenDetails(cache_read=3),
output_token_details=OutputTokenDetails(reasoning=4),
)
```
Args:
left: The first ``UsageMetadata`` object.
right: The second ``UsageMetadata`` object.
left: The first `UsageMetadata` object.
right: The second `UsageMetadata` object.
Returns:
The sum of the two ``UsageMetadata`` objects.
The sum of the two `UsageMetadata` objects.
"""
if not (left or right):
@@ -740,48 +744,47 @@ def add_usage(left: UsageMetadata | None, right: UsageMetadata | None) -> UsageM
def subtract_usage(
left: UsageMetadata | None, right: UsageMetadata | None
) -> UsageMetadata:
"""Recursively subtract two ``UsageMetadata`` objects.
"""Recursively subtract two `UsageMetadata` objects.
Token counts cannot be negative so the actual operation is ``max(left - right, 0)``.
Token counts cannot be negative so the actual operation is `max(left - right, 0)`.
Example:
.. code-block:: python
```python
from langchain_core.messages.ai import subtract_usage
from langchain_core.messages.ai import subtract_usage
left = UsageMetadata(
input_tokens=5,
output_tokens=10,
total_tokens=15,
input_token_details=InputTokenDetails(cache_read=4),
)
right = UsageMetadata(
input_tokens=3,
output_tokens=8,
total_tokens=11,
output_token_details=OutputTokenDetails(reasoning=4),
)
left = UsageMetadata(
input_tokens=5,
output_tokens=10,
total_tokens=15,
input_token_details=InputTokenDetails(cache_read=4),
)
right = UsageMetadata(
input_tokens=3,
output_tokens=8,
total_tokens=11,
output_token_details=OutputTokenDetails(reasoning=4),
)
subtract_usage(left, right)
subtract_usage(left, right)
```
results in
.. code-block:: python
UsageMetadata(
input_tokens=2,
output_tokens=2,
total_tokens=4,
input_token_details=InputTokenDetails(cache_read=4),
output_token_details=OutputTokenDetails(reasoning=0),
)
```python
UsageMetadata(
input_tokens=2,
output_tokens=2,
total_tokens=4,
input_token_details=InputTokenDetails(cache_read=4),
output_token_details=OutputTokenDetails(reasoning=0),
)
```
Args:
left: The first ``UsageMetadata`` object.
right: The second ``UsageMetadata`` object.
left: The first `UsageMetadata` object.
right: The second `UsageMetadata` object.
Returns:
The resulting ``UsageMetadata`` after subtraction.
The resulting `UsageMetadata` after subtraction.
"""
if not (left or right):

View File

@@ -48,13 +48,13 @@ class TextAccessor(str):
Exists to maintain backward compatibility while transitioning from method-based to
property-based text access in message objects. In LangChain <v1.0, message text was
accessed via ``.text()`` method calls. In v1.0=<, the preferred pattern is property
access via ``.text``.
accessed via `.text()` method calls. In v1.0=<, the preferred pattern is property
access via `.text`.
Rather than breaking existing code immediately, ``TextAccessor`` allows both
Rather than breaking existing code immediately, `TextAccessor` allows both
patterns:
- Modern property access: ``message.text`` (returns string directly)
- Legacy method access: ``message.text()`` (callable, emits deprecation warning)
- Modern property access: `message.text` (returns string directly)
- Legacy method access: `message.text()` (callable, emits deprecation warning)
"""
@@ -67,12 +67,12 @@ class TextAccessor(str):
def __call__(self) -> str:
"""Enable method-style text access for backward compatibility.
This method exists solely to support legacy code that calls ``.text()``
as a method. New code should use property access (``.text``) instead.
This method exists solely to support legacy code that calls `.text()`
as a method. New code should use property access (`.text`) instead.
!!! deprecated
As of `langchain-core` 1.0.0, calling ``.text()`` as a method is deprecated.
Use ``.text`` as a property instead. This method will be removed in 2.0.0.
As of `langchain-core` 1.0.0, calling `.text()` as a method is deprecated.
Use `.text` as a property instead. This method will be removed in 2.0.0.
Returns:
The string content, identical to property access.
@@ -92,11 +92,15 @@ class TextAccessor(str):
class BaseMessage(Serializable):
"""Base abstract message class.
Messages are the inputs and outputs of a ``ChatModel``.
Messages are the inputs and outputs of a chat model.
Examples include [`HumanMessage`][langchain.messages.HumanMessage],
[`AIMessage`][langchain.messages.AIMessage], and
[`SystemMessage`][langchain.messages.SystemMessage].
"""
content: str | list[str | dict]
"""The string contents of the message."""
"""The contents of the message."""
additional_kwargs: dict = Field(default_factory=dict)
"""Reserved for additional payload data associated with the message.
@@ -159,14 +163,14 @@ class BaseMessage(Serializable):
content_blocks: list[types.ContentBlock] | None = None,
**kwargs: Any,
) -> None:
"""Initialize ``BaseMessage``.
"""Initialize a `BaseMessage`.
Specify ``content`` as positional arg or ``content_blocks`` for typing.
Specify `content` as positional arg or `content_blocks` for typing.
Args:
content: The string contents of the message.
content: The contents of the message.
content_blocks: Typed standard content.
kwargs: Additional arguments to pass to the parent class.
**kwargs: Additional arguments to pass to the parent class.
"""
if content_blocks is not None:
super().__init__(content=content_blocks, **kwargs)
@@ -175,7 +179,7 @@ class BaseMessage(Serializable):
@classmethod
def is_lc_serializable(cls) -> bool:
"""``BaseMessage`` is serializable.
"""`BaseMessage` is serializable.
Returns:
True
@@ -184,10 +188,10 @@ class BaseMessage(Serializable):
@classmethod
def get_lc_namespace(cls) -> list[str]:
"""Get the namespace of the langchain object.
"""Get the namespace of the LangChain object.
Returns:
``["langchain", "schema", "messages"]``
`["langchain", "schema", "messages"]`
"""
return ["langchain", "schema", "messages"]
@@ -195,7 +199,7 @@ class BaseMessage(Serializable):
def content_blocks(self) -> list[types.ContentBlock]:
r"""Load content blocks from the message content.
!!! version-added "Added in version 1.0.0"
!!! version-added "Added in `langchain-core` 1.0.0"
"""
# Needed here to avoid circular import, as these classes import BaseMessages
@@ -259,11 +263,11 @@ class BaseMessage(Serializable):
def text(self) -> TextAccessor:
"""Get the text content of the message as a string.
Can be used as both property (``message.text``) and method (``message.text()``).
Can be used as both property (`message.text`) and method (`message.text()`).
!!! deprecated
As of langchain-core 1.0.0, calling ``.text()`` as a method is deprecated.
Use ``.text`` as a property instead. This method will be removed in 2.0.0.
As of `langchain-core` 1.0.0, calling `.text()` as a method is deprecated.
Use `.text` as a property instead. This method will be removed in 2.0.0.
Returns:
The text content of the message.
@@ -306,8 +310,8 @@ class BaseMessage(Serializable):
"""Get a pretty representation of the message.
Args:
html: Whether to format the message as HTML. If True, the message will be
formatted with HTML tags. Default is False.
html: Whether to format the message as HTML. If `True`, the message will be
formatted with HTML tags.
Returns:
A pretty representation of the message.
@@ -331,8 +335,8 @@ def merge_content(
"""Merge multiple message contents.
Args:
first_content: The first ``content``. Can be a string or a list.
contents: The other ``content``s. Can be a string or a list.
first_content: The first `content`. Can be a string or a list.
contents: The other `content`s. Can be a string or a list.
Returns:
The merged content.
@@ -388,9 +392,9 @@ class BaseMessageChunk(BaseMessage):
For example,
``AIMessageChunk(content="Hello") + AIMessageChunk(content=" World")``
`AIMessageChunk(content="Hello") + AIMessageChunk(content=" World")`
will give ``AIMessageChunk(content="Hello World")``
will give `AIMessageChunk(content="Hello World")`
"""
if isinstance(other, BaseMessageChunk):
@@ -439,8 +443,8 @@ def message_to_dict(message: BaseMessage) -> dict:
message: Message to convert.
Returns:
Message as a dict. The dict will have a ``type`` key with the message type
and a ``data`` key with the message data as a dict.
Message as a dict. The dict will have a `type` key with the message type
and a `data` key with the message data as a dict.
"""
return {"type": message.type, "data": message.model_dump()}
@@ -450,7 +454,7 @@ def messages_to_dict(messages: Sequence[BaseMessage]) -> list[dict]:
"""Convert a sequence of Messages to a list of dictionaries.
Args:
messages: Sequence of messages (as ``BaseMessage``s) to convert.
messages: Sequence of messages (as `BaseMessage`s) to convert.
Returns:
List of messages as dicts.
@@ -464,7 +468,7 @@ def get_msg_title_repr(title: str, *, bold: bool = False) -> str:
Args:
title: The title.
bold: Whether to bold the title. Default is False.
bold: Whether to bold the title.
Returns:
The title representation.

View File

@@ -1,13 +1,13 @@
"""Derivations of standard content blocks from provider content.
``AIMessage`` will first attempt to use a provider-specific translator if
``model_provider`` is set in ``response_metadata`` on the message. Consequently, each
`AIMessage` will first attempt to use a provider-specific translator if
`model_provider` is set in `response_metadata` on the message. Consequently, each
provider translator must handle all possible content response types from the provider,
including text.
If no provider is set, or if the provider does not have a registered translator,
``AIMessage`` will fall back to best-effort parsing of the content into blocks using
the implementation in ``BaseMessage``.
`AIMessage` will fall back to best-effort parsing of the content into blocks using
the implementation in `BaseMessage`.
"""
from __future__ import annotations
@@ -23,15 +23,15 @@ if TYPE_CHECKING:
PROVIDER_TRANSLATORS: dict[str, dict[str, Callable[..., list[types.ContentBlock]]]] = {}
"""Map model provider names to translator functions.
The dictionary maps provider names (e.g. ``'openai'``, ``'anthropic'``) to another
The dictionary maps provider names (e.g. `'openai'`, `'anthropic'`) to another
dictionary with two keys:
- ``'translate_content'``: Function to translate ``AIMessage`` content.
- ``'translate_content_chunk'``: Function to translate ``AIMessageChunk`` content.
- `'translate_content'`: Function to translate `AIMessage` content.
- `'translate_content_chunk'`: Function to translate `AIMessageChunk` content.
When calling `.content_blocks` on an ``AIMessage`` or ``AIMessageChunk``, if
``model_provider`` is set in ``response_metadata``, the corresponding translator
When calling `content_blocks` on an `AIMessage` or `AIMessageChunk`, if
`model_provider` is set in `response_metadata`, the corresponding translator
functions will be used to parse the content into blocks. Otherwise, best-effort parsing
in ``BaseMessage`` will be used.
in `BaseMessage` will be used.
"""
@@ -43,9 +43,9 @@ def register_translator(
"""Register content translators for a provider in `PROVIDER_TRANSLATORS`.
Args:
provider: The model provider name (e.g. ``'openai'``, ``'anthropic'``).
translate_content: Function to translate ``AIMessage`` content.
translate_content_chunk: Function to translate ``AIMessageChunk`` content.
provider: The model provider name (e.g. `'openai'`, `'anthropic'`).
translate_content: Function to translate `AIMessage` content.
translate_content_chunk: Function to translate `AIMessageChunk` content.
"""
PROVIDER_TRANSLATORS[provider] = {
"translate_content": translate_content,
@@ -62,9 +62,9 @@ def get_translator(
provider: The model provider name.
Returns:
Dictionary with ``'translate_content'`` and ``'translate_content_chunk'``
Dictionary with `'translate_content'` and `'translate_content_chunk'`
functions, or None if no translator is registered for the provider. In such
case, best-effort parsing in ``BaseMessage`` will be used.
case, best-effort parsing in `BaseMessage` will be used.
"""
return PROVIDER_TRANSLATORS.get(provider)
@@ -72,10 +72,10 @@ def get_translator(
def _register_translators() -> None:
"""Register all translators in langchain-core.
A unit test ensures all modules in ``block_translators`` are represented here.
A unit test ensures all modules in `block_translators` are represented here.
For translators implemented outside langchain-core, they can be registered by
calling ``register_translator`` from within the integration package.
calling `register_translator` from within the integration package.
"""
from langchain_core.messages.block_translators.anthropic import ( # noqa: PLC0415
_register_anthropic_translator,

View File

@@ -31,12 +31,12 @@ def _convert_to_v1_from_anthropic_input(
) -> list[types.ContentBlock]:
"""Convert Anthropic format blocks to v1 format.
During the `.content_blocks` parsing process, we wrap blocks not recognized as a v1
block as a ``'non_standard'`` block with the original block stored in the ``value``
During the `content_blocks` parsing process, we wrap blocks not recognized as a v1
block as a `'non_standard'` block with the original block stored in the `value`
field. This function attempts to unpack those blocks and convert any blocks that
might be Anthropic format to v1 ContentBlocks.
If conversion fails, the block is left as a ``'non_standard'`` block.
If conversion fails, the block is left as a `'non_standard'` block.
Args:
content: List of content blocks to process.

View File

@@ -35,12 +35,12 @@ def _convert_to_v1_from_converse_input(
) -> list[types.ContentBlock]:
"""Convert Bedrock Converse format blocks to v1 format.
During the `.content_blocks` parsing process, we wrap blocks not recognized as a v1
block as a ``'non_standard'`` block with the original block stored in the ``value``
During the `content_blocks` parsing process, we wrap blocks not recognized as a v1
block as a `'non_standard'` block with the original block stored in the `value`
field. This function attempts to unpack those blocks and convert any blocks that
might be Converse format to v1 ContentBlocks.
If conversion fails, the block is left as a ``'non_standard'`` block.
If conversion fails, the block is left as a `'non_standard'` block.
Args:
content: List of content blocks to process.

View File

@@ -105,12 +105,12 @@ def _convert_to_v1_from_genai_input(
Called when message isn't an `AIMessage` or `model_provider` isn't set on
`response_metadata`.
During the `.content_blocks` parsing process, we wrap blocks not recognized as a v1
block as a ``'non_standard'`` block with the original block stored in the ``value``
During the `content_blocks` parsing process, we wrap blocks not recognized as a v1
block as a `'non_standard'` block with the original block stored in the `value`
field. This function attempts to unpack those blocks and convert any blocks that
might be GenAI format to v1 ContentBlocks.
If conversion fails, the block is left as a ``'non_standard'`` block.
If conversion fails, the block is left as a `'non_standard'` block.
Args:
content: List of content blocks to process.
@@ -282,7 +282,7 @@ def _convert_to_v1_from_genai(message: AIMessage) -> list[types.ContentBlock]:
standard content blocks for returning.
Args:
message: The AIMessage or AIMessageChunk to convert.
message: The `AIMessage` or `AIMessageChunk` to convert.
Returns:
List of standard content blocks derived from the message content.
@@ -368,7 +368,7 @@ def _convert_to_v1_from_genai(message: AIMessage) -> list[types.ContentBlock]:
else:
# Assume it's raw base64 without data URI
try:
# Validate base64 and decode for mime type detection
# Validate base64 and decode for MIME type detection
decoded_bytes = base64.b64decode(url, validate=True)
image_url_b64_block = {
@@ -379,7 +379,7 @@ def _convert_to_v1_from_genai(message: AIMessage) -> list[types.ContentBlock]:
try:
import filetype # type: ignore[import-not-found] # noqa: PLC0415
# Guess mime type based on file bytes
# Guess MIME type based on file bytes
mime_type = None
kind = filetype.guess(decoded_bytes)
if kind:
@@ -453,10 +453,13 @@ def _convert_to_v1_from_genai(message: AIMessage) -> list[types.ContentBlock]:
"status": status, # type: ignore[typeddict-item]
"output": item.get("code_execution_result", ""),
}
server_tool_result_block["extras"] = {"block_type": item_type}
# Preserve original outcome in extras
if outcome is not None:
server_tool_result_block["extras"] = {"outcome": outcome}
server_tool_result_block["extras"]["outcome"] = outcome
converted_blocks.append(server_tool_result_block)
elif item_type == "text":
converted_blocks.append(cast("types.TextContentBlock", item))
else:
# Unknown type, preserve as non-standard
converted_blocks.append({"type": "non_standard", "value": item})

View File

@@ -1,37 +1,9 @@
"""Derivations of standard content blocks from Google (VertexAI) content."""
import warnings
from langchain_core.messages import AIMessage, AIMessageChunk
from langchain_core.messages import content as types
WARNED = False
def translate_content(message: AIMessage) -> list[types.ContentBlock]: # noqa: ARG001
"""Derive standard content blocks from a message with Google (VertexAI) content."""
global WARNED # noqa: PLW0603
if not WARNED:
warning_message = (
"Content block standardization is not yet fully supported for Google "
"VertexAI."
)
warnings.warn(warning_message, stacklevel=2)
WARNED = True
raise NotImplementedError
def translate_content_chunk(message: AIMessageChunk) -> list[types.ContentBlock]: # noqa: ARG001
"""Derive standard content blocks from a chunk with Google (VertexAI) content."""
global WARNED # noqa: PLW0603
if not WARNED:
warning_message = (
"Content block standardization is not yet fully supported for Google "
"VertexAI."
)
warnings.warn(warning_message, stacklevel=2)
WARNED = True
raise NotImplementedError
from langchain_core.messages.block_translators.google_genai import (
translate_content,
translate_content_chunk,
)
def _register_google_vertexai_translator() -> None:

View File

@@ -1,39 +1,135 @@
"""Derivations of standard content blocks from Groq content."""
import warnings
import json
import re
from typing import Any
from langchain_core.messages import AIMessage, AIMessageChunk
from langchain_core.messages import content as types
WARNED = False
from langchain_core.messages.base import _extract_reasoning_from_additional_kwargs
def translate_content(message: AIMessage) -> list[types.ContentBlock]: # noqa: ARG001
"""Derive standard content blocks from a message with Groq content."""
global WARNED # noqa: PLW0603
if not WARNED:
warning_message = (
"Content block standardization is not yet fully supported for Groq."
def _populate_extras(
standard_block: types.ContentBlock, block: dict[str, Any], known_fields: set[str]
) -> types.ContentBlock:
"""Mutate a block, populating extras."""
if standard_block.get("type") == "non_standard":
return standard_block
for key, value in block.items():
if key not in known_fields:
if "extras" not in standard_block:
# Below type-ignores are because mypy thinks a non-standard block can
# get here, although we exclude them above.
standard_block["extras"] = {} # type: ignore[typeddict-unknown-key]
standard_block["extras"][key] = value # type: ignore[typeddict-item]
return standard_block
def _parse_code_json(s: str) -> dict:
"""Extract Python code from Groq built-in tool content.
Extracts the value of the 'code' field from a string of the form:
{"code": some_arbitrary_text_with_unescaped_quotes}
As Groq may not escape quotes in the executed tools, e.g.:
```
'{"code": "import math; print("The square root of 101 is: "); print(math.sqrt(101))"}'
```
""" # noqa: E501
m = re.fullmatch(r'\s*\{\s*"code"\s*:\s*"(.*)"\s*\}\s*', s, flags=re.DOTALL)
if not m:
msg = (
"Could not extract Python code from Groq tool arguments. "
"Expected a JSON object with a 'code' field."
)
warnings.warn(warning_message, stacklevel=2)
WARNED = True
raise NotImplementedError
raise ValueError(msg)
return {"code": m.group(1)}
def translate_content_chunk(message: AIMessageChunk) -> list[types.ContentBlock]: # noqa: ARG001
"""Derive standard content blocks from a message chunk with Groq content."""
global WARNED # noqa: PLW0603
if not WARNED:
warning_message = (
"Content block standardization is not yet fully supported for Groq."
def _convert_to_v1_from_groq(message: AIMessage) -> list[types.ContentBlock]:
"""Convert groq message content to v1 format."""
content_blocks: list[types.ContentBlock] = []
if reasoning_block := _extract_reasoning_from_additional_kwargs(message):
content_blocks.append(reasoning_block)
if executed_tools := message.additional_kwargs.get("executed_tools"):
for idx, executed_tool in enumerate(executed_tools):
args: dict[str, Any] | None = None
if arguments := executed_tool.get("arguments"):
try:
args = json.loads(arguments)
except json.JSONDecodeError:
if executed_tool.get("type") == "python":
try:
args = _parse_code_json(arguments)
except ValueError:
continue
elif (
executed_tool.get("type") == "function"
and executed_tool.get("name") == "python"
):
# GPT-OSS
args = {"code": arguments}
else:
continue
if isinstance(args, dict):
name = ""
if executed_tool.get("type") == "search":
name = "web_search"
elif executed_tool.get("type") == "python" or (
executed_tool.get("type") == "function"
and executed_tool.get("name") == "python"
):
name = "code_interpreter"
server_tool_call: types.ServerToolCall = {
"type": "server_tool_call",
"name": name,
"id": str(idx),
"args": args,
}
content_blocks.append(server_tool_call)
if tool_output := executed_tool.get("output"):
tool_result: types.ServerToolResult = {
"type": "server_tool_result",
"tool_call_id": str(idx),
"output": tool_output,
"status": "success",
}
known_fields = {"type", "arguments", "index", "output"}
_populate_extras(tool_result, executed_tool, known_fields)
content_blocks.append(tool_result)
if isinstance(message.content, str) and message.content:
content_blocks.append({"type": "text", "text": message.content})
for tool_call in message.tool_calls:
content_blocks.append( # noqa: PERF401
{
"type": "tool_call",
"name": tool_call["name"],
"args": tool_call["args"],
"id": tool_call.get("id"),
}
)
warnings.warn(warning_message, stacklevel=2)
WARNED = True
raise NotImplementedError
return content_blocks
def translate_content(message: AIMessage) -> list[types.ContentBlock]:
"""Derive standard content blocks from a message with groq content."""
return _convert_to_v1_from_groq(message)
def translate_content_chunk(message: AIMessageChunk) -> list[types.ContentBlock]:
"""Derive standard content blocks from a message chunk with groq content."""
return _convert_to_v1_from_groq(message)
def _register_groq_translator() -> None:
"""Register the Groq translator with the central registry.
"""Register the groq translator with the central registry.
Run automatically when the module is imported.
"""

View File

@@ -10,12 +10,12 @@ def _convert_v0_multimodal_input_to_v1(
) -> list[types.ContentBlock]:
"""Convert v0 multimodal blocks to v1 format.
During the `.content_blocks` parsing process, we wrap blocks not recognized as a v1
block as a ``'non_standard'`` block with the original block stored in the ``value``
During the `content_blocks` parsing process, we wrap blocks not recognized as a v1
block as a `'non_standard'` block with the original block stored in the `value`
field. This function attempts to unpack those blocks and convert any v0 format
blocks to v1 format.
If conversion fails, the block is left as a ``'non_standard'`` block.
If conversion fails, the block is left as a `'non_standard'` block.
Args:
content: List of content blocks to process.

View File

@@ -18,7 +18,7 @@ if TYPE_CHECKING:
def convert_to_openai_image_block(block: dict[str, Any]) -> dict:
"""Convert ``ImageContentBlock`` to format expected by OpenAI Chat Completions."""
"""Convert `ImageContentBlock` to format expected by OpenAI Chat Completions."""
if "url" in block:
return {
"type": "image_url",
@@ -155,12 +155,12 @@ def _convert_to_v1_from_chat_completions_input(
) -> list[types.ContentBlock]:
"""Convert OpenAI Chat Completions format blocks to v1 format.
During the `.content_blocks` parsing process, we wrap blocks not recognized as a v1
block as a ``'non_standard'`` block with the original block stored in the ``value``
During the `content_blocks` parsing process, we wrap blocks not recognized as a v1
block as a `'non_standard'` block with the original block stored in the `value`
field. This function attempts to unpack those blocks and convert any blocks that
might be OpenAI format to v1 ContentBlocks.
If conversion fails, the block is left as a ``'non_standard'`` block.
If conversion fails, the block is left as a `'non_standard'` block.
Args:
content: List of content blocks to process.
@@ -263,7 +263,7 @@ _FUNCTION_CALL_IDS_MAP_KEY = "__openai_function_call_ids__"
def _convert_from_v03_ai_message(message: AIMessage) -> AIMessage:
"""Convert v0 AIMessage into ``output_version="responses/v1"`` format."""
"""Convert v0 AIMessage into `output_version="responses/v1"` format."""
from langchain_core.messages import AIMessageChunk # noqa: PLC0415
# Only update ChatOpenAI v0.3 AIMessages

View File

@@ -19,7 +19,7 @@ class ChatMessage(BaseMessage):
"""The speaker / role of the Message."""
type: Literal["chat"] = "chat"
"""The type of the message (used during serialization). Defaults to "chat"."""
"""The type of the message (used during serialization)."""
class ChatMessageChunk(ChatMessage, BaseMessageChunk):
@@ -29,11 +29,7 @@ class ChatMessageChunk(ChatMessage, BaseMessageChunk):
# to make sure that the chunk variant can be discriminated from the
# non-chunk variant.
type: Literal["ChatMessageChunk"] = "ChatMessageChunk" # type: ignore[assignment]
"""The type of the message (used during serialization).
Defaults to ``'ChatMessageChunk'``.
"""
"""The type of the message (used during serialization)."""
@override
def __add__(self, other: Any) -> BaseMessageChunk: # type: ignore[override]

View File

@@ -5,7 +5,7 @@
change in future releases.
This module provides standardized data structures for representing inputs to and
outputs from LLMs. The core abstraction is the **Content Block**, a ``TypedDict``.
outputs from LLMs. The core abstraction is the **Content Block**, a `TypedDict`.
**Rationale**
@@ -20,59 +20,59 @@ blocks into the format required by its API.
**Extensibility**
Data **not yet mapped** to a standard block may be represented using the
``NonStandardContentBlock``, which allows for provider-specific data to be included
`NonStandardContentBlock`, which allows for provider-specific data to be included
without losing the benefits of type checking and validation.
Furthermore, provider-specific fields **within** a standard block are fully supported
by default in the ``extras`` field of each block. This allows for additional metadata
by default in the `extras` field of each block. This allows for additional metadata
to be included without breaking the standard structure.
!!! warning
Do not heavily rely on the ``extras`` field for provider-specific data! This field
Do not heavily rely on the `extras` field for provider-specific data! This field
is subject to deprecation in future releases as we move towards PEP 728.
!!! note
Following widespread adoption of `PEP 728 <https://peps.python.org/pep-0728/>`__, we
will add ``extra_items=Any`` as a param to Content Blocks. This will signify to type
Following widespread adoption of [PEP 728](https://peps.python.org/pep-0728/), we
will add `extra_items=Any` as a param to Content Blocks. This will signify to type
checkers that additional provider-specific fields are allowed outside of the
``extras`` field, and that will become the new standard approach to adding
`extras` field, and that will become the new standard approach to adding
provider-specific metadata.
??? note
**Example with PEP 728 provider-specific fields:**
.. code-block:: python
```python
# Content block definition
# NOTE: `extra_items=Any`
class TextContentBlock(TypedDict, extra_items=Any):
type: Literal["text"]
id: NotRequired[str]
text: str
annotations: NotRequired[list[Annotation]]
index: NotRequired[int]
```
# Content block definition
# NOTE: `extra_items=Any`
class TextContentBlock(TypedDict, extra_items=Any):
type: Literal["text"]
id: NotRequired[str]
text: str
annotations: NotRequired[list[Annotation]]
index: NotRequired[int]
```python
from langchain_core.messages.content import TextContentBlock
.. code-block:: python
# Create a text content block with provider-specific fields
my_block: TextContentBlock = {
# Add required fields
"type": "text",
"text": "Hello, world!",
# Additional fields not specified in the TypedDict
# These are valid with PEP 728 and are typed as Any
"openai_metadata": {"model": "gpt-4", "temperature": 0.7},
"anthropic_usage": {"input_tokens": 10, "output_tokens": 20},
"custom_field": "any value",
}
from langchain_core.messages.content import TextContentBlock
# Mutating an existing block to add provider-specific fields
openai_data = my_block["openai_metadata"] # Type: Any
```
# Create a text content block with provider-specific fields
my_block: TextContentBlock = {
# Add required fields
"type": "text",
"text": "Hello, world!",
# Additional fields not specified in the TypedDict
# These are valid with PEP 728 and are typed as Any
"openai_metadata": {"model": "gpt-4", "temperature": 0.7},
"anthropic_usage": {"input_tokens": 10, "output_tokens": 20},
"custom_field": "any value",
}
# Mutating an existing block to add provider-specific fields
openai_data = my_block["openai_metadata"] # Type: Any
PEP 728 is enabled with ``# type: ignore[call-arg]`` comments to suppress
PEP 728 is enabled with `# type: ignore[call-arg]` comments to suppress
warnings from type checkers that don't yet support it. The functionality works
correctly in Python 3.13+ and will be fully supported as the ecosystem catches
up.
@@ -81,52 +81,51 @@ to be included without breaking the standard structure.
The module defines several types of content blocks, including:
- ``TextContentBlock``: Standard text output.
- ``Citation``: For annotations that link text output to a source document.
- ``ToolCall``: For function calling.
- ``ReasoningContentBlock``: To capture a model's thought process.
- `TextContentBlock`: Standard text output.
- `Citation`: For annotations that link text output to a source document.
- `ToolCall`: For function calling.
- `ReasoningContentBlock`: To capture a model's thought process.
- Multimodal data:
- ``ImageContentBlock``
- ``AudioContentBlock``
- ``VideoContentBlock``
- ``PlainTextContentBlock`` (e.g. .txt or .md files)
- ``FileContentBlock`` (e.g. PDFs, etc.)
- `ImageContentBlock`
- `AudioContentBlock`
- `VideoContentBlock`
- `PlainTextContentBlock` (e.g. .txt or .md files)
- `FileContentBlock` (e.g. PDFs, etc.)
**Example Usage**
.. code-block:: python
```python
# Direct construction:
from langchain_core.messages.content import TextContentBlock, ImageContentBlock
# Direct construction:
from langchain_core.messages.content import TextContentBlock, ImageContentBlock
multimodal_message: AIMessage(
content_blocks=[
TextContentBlock(type="text", text="What is shown in this image?"),
ImageContentBlock(
type="image",
url="https://www.langchain.com/images/brand/langchain_logo_text_w_white.png",
mime_type="image/png",
),
]
)
multimodal_message: AIMessage(
content_blocks=[
TextContentBlock(type="text", text="What is shown in this image?"),
ImageContentBlock(
type="image",
url="https://www.langchain.com/images/brand/langchain_logo_text_w_white.png",
mime_type="image/png",
),
]
)
# Using factories:
from langchain_core.messages.content import create_text_block, create_image_block
# Using factories:
from langchain_core.messages.content import create_text_block, create_image_block
multimodal_message: AIMessage(
content=[
create_text_block("What is shown in this image?"),
create_image_block(
url="https://www.langchain.com/images/brand/langchain_logo_text_w_white.png",
mime_type="image/png",
),
]
)
multimodal_message: AIMessage(
content=[
create_text_block("What is shown in this image?"),
create_image_block(
url="https://www.langchain.com/images/brand/langchain_logo_text_w_white.png",
mime_type="image/png",
),
]
)
```
Factory functions offer benefits such as:
- Automatic ID generation (when not provided)
- No need to manually specify the ``type`` field
- No need to manually specify the `type` field
"""
from typing import Any, Literal, get_args, get_type_hints
@@ -140,12 +139,12 @@ class Citation(TypedDict):
"""Annotation for citing data from a document.
!!! note
``start``/``end`` indices refer to the **response text**,
`start`/`end` indices refer to the **response text**,
not the source text. This means that the indices are relative to the model's
response, not the original document (as specified in the ``url``).
response, not the original document (as specified in the `url`).
!!! note
``create_citation`` may also be used as a factory to create a ``Citation``.
!!! note "Factory function"
`create_citation` may also be used as a factory to create a `Citation`.
Benefits include:
* Automatic ID generation (when not provided)
@@ -157,10 +156,12 @@ class Citation(TypedDict):
"""Type of the content block. Used for discrimination."""
id: NotRequired[str]
"""Content block identifier. Either:
"""Content block identifier.
Either:
- Generated by the provider (e.g., OpenAI's file ID)
- Generated by LangChain upon creation (``UUID4`` prefixed with ``'lc_'``))
- Generated by LangChain upon creation (`UUID4` prefixed with `'lc_'`))
"""
@@ -174,10 +175,10 @@ class Citation(TypedDict):
"""
start_index: NotRequired[int]
"""Start index of the **response text** (``TextContentBlock.text``)."""
"""Start index of the **response text** (`TextContentBlock.text`)."""
end_index: NotRequired[int]
"""End index of the **response text** (``TextContentBlock.text``)"""
"""End index of the **response text** (`TextContentBlock.text`)"""
cited_text: NotRequired[str]
"""Excerpt of source text being cited."""
@@ -202,8 +203,9 @@ class NonStandardAnnotation(TypedDict):
"""Content block identifier.
Either:
- Generated by the provider (e.g., OpenAI's file ID)
- Generated by LangChain upon creation (``UUID4`` prefixed with ``'lc_'``))
- Generated by LangChain upon creation (`UUID4` prefixed with `'lc_'`))
"""
@@ -212,6 +214,7 @@ class NonStandardAnnotation(TypedDict):
Annotation = Citation | NonStandardAnnotation
"""A union of all defined `Annotation` types."""
class TextContentBlock(TypedDict):
@@ -220,9 +223,9 @@ class TextContentBlock(TypedDict):
This typically represents the main text content of a message, such as the response
from a language model or the text of a user message.
!!! note
``create_text_block`` may also be used as a factory to create a
``TextContentBlock``. Benefits include:
!!! note "Factory function"
`create_text_block` may also be used as a factory to create a
`TextContentBlock`. Benefits include:
* Automatic ID generation (when not provided)
* Required arguments strictly validated at creation time
@@ -236,8 +239,9 @@ class TextContentBlock(TypedDict):
"""Content block identifier.
Either:
- Generated by the provider (e.g., OpenAI's file ID)
- Generated by LangChain upon creation (``UUID4`` prefixed with ``'lc_'``))
- Generated by LangChain upon creation (`UUID4` prefixed with `'lc_'`))
"""
@@ -245,7 +249,7 @@ class TextContentBlock(TypedDict):
"""Block text."""
annotations: NotRequired[list[Annotation]]
"""``Citation``s and other annotations."""
"""`Citation`s and other annotations."""
index: NotRequired[int | str]
"""Index of block in aggregate response. Used during streaming."""
@@ -255,20 +259,19 @@ class TextContentBlock(TypedDict):
class ToolCall(TypedDict):
"""Represents a request to call a tool.
"""Represents an AI's request to call a tool.
Example:
.. code-block:: python
{"name": "foo", "args": {"a": 1}, "id": "123"}
```python
{"name": "foo", "args": {"a": 1}, "id": "123"}
```
This represents a request to call the tool named "foo" with arguments {"a": 1}
and an identifier of "123".
!!! note
``create_tool_call`` may also be used as a factory to create a
``ToolCall``. Benefits include:
!!! note "Factory function"
`create_tool_call` may also be used as a factory to create a
`ToolCall`. Benefits include:
* Automatic ID generation (when not provided)
* Required arguments strictly validated at creation time
@@ -301,24 +304,22 @@ class ToolCall(TypedDict):
class ToolCallChunk(TypedDict):
"""A chunk of a tool call (e.g., as part of a stream).
"""A chunk of a tool call (yielded when streaming).
When merging ``ToolCallChunks`` (e.g., via ``AIMessageChunk.__add__``),
When merging `ToolCallChunks` (e.g., via `AIMessageChunk.__add__`),
all string attributes are concatenated. Chunks are only merged if their
values of ``index`` are equal and not ``None``.
values of `index` are equal and not `None`.
Example:
```python
left_chunks = [ToolCallChunk(name="foo", args='{"a":', index=0)]
right_chunks = [ToolCallChunk(name=None, args="1}", index=0)]
.. code-block:: python
left_chunks = [ToolCallChunk(name="foo", args='{"a":', index=0)]
right_chunks = [ToolCallChunk(name=None, args="1}", index=0)]
(
AIMessageChunk(content="", tool_call_chunks=left_chunks)
+ AIMessageChunk(content="", tool_call_chunks=right_chunks)
).tool_call_chunks == [ToolCallChunk(name="foo", args='{"a":1}', index=0)]
(
AIMessageChunk(content="", tool_call_chunks=left_chunks)
+ AIMessageChunk(content="", tool_call_chunks=right_chunks)
).tool_call_chunks == [ToolCallChunk(name="foo", args='{"a":1}', index=0)]
```
"""
# TODO: Consider making fields NotRequired[str] in the future.
@@ -350,7 +351,7 @@ class ToolCallChunk(TypedDict):
class InvalidToolCall(TypedDict):
"""Allowance for errors made by LLM.
Here we add an ``error`` key to surface errors made during generation
Here we add an `error` key to surface errors made during generation
(e.g., invalid JSON arguments.)
"""
@@ -385,7 +386,10 @@ class InvalidToolCall(TypedDict):
class ServerToolCall(TypedDict):
"""Tool call that is executed server-side."""
"""Tool call that is executed server-side.
For example: code execution, web search, etc.
"""
type: Literal["server_tool_call"]
"""Used for discrimination."""
@@ -407,7 +411,7 @@ class ServerToolCall(TypedDict):
class ServerToolCallChunk(TypedDict):
"""A chunk of a tool call (as part of a stream)."""
"""A chunk of a server-side tool call (yielded when streaming)."""
type: Literal["server_tool_call_chunk"]
"""Used for discrimination."""
@@ -456,9 +460,9 @@ class ServerToolResult(TypedDict):
class ReasoningContentBlock(TypedDict):
"""Reasoning output from a LLM.
!!! note
``create_reasoning_block`` may also be used as a factory to create a
``ReasoningContentBlock``. Benefits include:
!!! note "Factory function"
`create_reasoning_block` may also be used as a factory to create a
`ReasoningContentBlock`. Benefits include:
* Automatic ID generation (when not provided)
* Required arguments strictly validated at creation time
@@ -472,8 +476,9 @@ class ReasoningContentBlock(TypedDict):
"""Content block identifier.
Either:
- Generated by the provider (e.g., OpenAI's file ID)
- Generated by LangChain upon creation (``UUID4`` prefixed with ``'lc_'``))
- Generated by LangChain upon creation (`UUID4` prefixed with `'lc_'`))
"""
@@ -481,7 +486,7 @@ class ReasoningContentBlock(TypedDict):
"""Reasoning text.
Either the thought summary or the raw reasoning text itself. This is often parsed
from ``<think>`` tags in the model's response.
from `<think>` tags in the model's response.
"""
@@ -498,9 +503,9 @@ class ReasoningContentBlock(TypedDict):
class ImageContentBlock(TypedDict):
"""Image data.
!!! note
``create_image_block`` may also be used as a factory to create a
``ImageContentBlock``. Benefits include:
!!! note "Factory function"
`create_image_block` may also be used as a factory to create a
`ImageContentBlock`. Benefits include:
* Automatic ID generation (when not provided)
* Required arguments strictly validated at creation time
@@ -514,8 +519,9 @@ class ImageContentBlock(TypedDict):
"""Content block identifier.
Either:
- Generated by the provider (e.g., OpenAI's file ID)
- Generated by LangChain upon creation (``UUID4`` prefixed with ``'lc_'``))
- Generated by LangChain upon creation (`UUID4` prefixed with `'lc_'`))
"""
@@ -525,7 +531,7 @@ class ImageContentBlock(TypedDict):
mime_type: NotRequired[str]
"""MIME type of the image. Required for base64.
`Examples from IANA <https://www.iana.org/assignments/media-types/media-types.xhtml#image>`__
[Examples from IANA](https://www.iana.org/assignments/media-types/media-types.xhtml#image)
"""
@@ -545,9 +551,9 @@ class ImageContentBlock(TypedDict):
class VideoContentBlock(TypedDict):
"""Video data.
!!! note
``create_video_block`` may also be used as a factory to create a
``VideoContentBlock``. Benefits include:
!!! note "Factory function"
`create_video_block` may also be used as a factory to create a
`VideoContentBlock`. Benefits include:
* Automatic ID generation (when not provided)
* Required arguments strictly validated at creation time
@@ -561,8 +567,9 @@ class VideoContentBlock(TypedDict):
"""Content block identifier.
Either:
- Generated by the provider (e.g., OpenAI's file ID)
- Generated by LangChain upon creation (``UUID4`` prefixed with ``'lc_'``))
- Generated by LangChain upon creation (`UUID4` prefixed with `'lc_'`))
"""
@@ -572,7 +579,7 @@ class VideoContentBlock(TypedDict):
mime_type: NotRequired[str]
"""MIME type of the video. Required for base64.
`Examples from IANA <https://www.iana.org/assignments/media-types/media-types.xhtml#video>`__
[Examples from IANA](https://www.iana.org/assignments/media-types/media-types.xhtml#video)
"""
@@ -592,9 +599,9 @@ class VideoContentBlock(TypedDict):
class AudioContentBlock(TypedDict):
"""Audio data.
!!! note
``create_audio_block`` may also be used as a factory to create an
``AudioContentBlock``. Benefits include:
!!! note "Factory function"
`create_audio_block` may also be used as a factory to create an
`AudioContentBlock`. Benefits include:
* Automatic ID generation (when not provided)
* Required arguments strictly validated at creation time
@@ -607,8 +614,9 @@ class AudioContentBlock(TypedDict):
"""Content block identifier.
Either:
- Generated by the provider (e.g., OpenAI's file ID)
- Generated by LangChain upon creation (``UUID4`` prefixed with ``'lc_'``))
- Generated by LangChain upon creation (`UUID4` prefixed with `'lc_'`))
"""
@@ -618,7 +626,7 @@ class AudioContentBlock(TypedDict):
mime_type: NotRequired[str]
"""MIME type of the audio. Required for base64.
`Examples from IANA <https://www.iana.org/assignments/media-types/media-types.xhtml#audio>`__
[Examples from IANA](https://www.iana.org/assignments/media-types/media-types.xhtml#audio)
"""
@@ -636,21 +644,21 @@ class AudioContentBlock(TypedDict):
class PlainTextContentBlock(TypedDict):
"""Plaintext data (e.g., from a document).
"""Plaintext data (e.g., from a `.txt` or `.md` document).
!!! note
A ``PlainTextContentBlock`` existed in ``langchain-core<1.0.0``. Although the
A `PlainTextContentBlock` existed in `langchain-core<1.0.0`. Although the
name has carried over, the structure has changed significantly. The only shared
keys between the old and new versions are ``type`` and ``text``, though the
``type`` value has changed from ``'text'`` to ``'text-plain'``.
keys between the old and new versions are `type` and `text`, though the
`type` value has changed from `'text'` to `'text-plain'`.
!!! note
Title and context are optional fields that may be passed to the model. See
Anthropic `example <https://docs.anthropic.com/en/docs/build-with-claude/citations#citable-vs-non-citable-content>`__.
Anthropic [example](https://docs.claude.com/en/docs/build-with-claude/citations#citable-vs-non-citable-content).
!!! note
``create_plaintext_block`` may also be used as a factory to create a
``PlainTextContentBlock``. Benefits include:
!!! note "Factory function"
`create_plaintext_block` may also be used as a factory to create a
`PlainTextContentBlock`. Benefits include:
* Automatic ID generation (when not provided)
* Required arguments strictly validated at creation time
@@ -664,8 +672,9 @@ class PlainTextContentBlock(TypedDict):
"""Content block identifier.
Either:
- Generated by the provider (e.g., OpenAI's file ID)
- Generated by LangChain upon creation (``UUID4`` prefixed with ``'lc_'``))
- Generated by LangChain upon creation (`UUID4` prefixed with `'lc_'`))
"""
@@ -698,18 +707,18 @@ class PlainTextContentBlock(TypedDict):
class FileContentBlock(TypedDict):
"""File data that doesn't fit into other multimodal blocks.
"""File data that doesn't fit into other multimodal block types.
This block is intended for files that are not images, audio, or plaintext. For
example, it can be used for PDFs, Word documents, etc.
If the file is an image, audio, or plaintext, you should use the corresponding
content block type (e.g., ``ImageContentBlock``, ``AudioContentBlock``,
``PlainTextContentBlock``).
content block type (e.g., `ImageContentBlock`, `AudioContentBlock`,
`PlainTextContentBlock`).
!!! note
``create_file_block`` may also be used as a factory to create a
``FileContentBlock``. Benefits include:
!!! note "Factory function"
`create_file_block` may also be used as a factory to create a
`FileContentBlock`. Benefits include:
* Automatic ID generation (when not provided)
* Required arguments strictly validated at creation time
@@ -723,8 +732,9 @@ class FileContentBlock(TypedDict):
"""Content block identifier.
Either:
- Generated by the provider (e.g., OpenAI's file ID)
- Generated by LangChain upon creation (``UUID4`` prefixed with ``'lc_'``))
- Generated by LangChain upon creation (`UUID4` prefixed with `'lc_'`))
"""
@@ -734,7 +744,7 @@ class FileContentBlock(TypedDict):
mime_type: NotRequired[str]
"""MIME type of the file. Required for base64.
`Examples from IANA <https://www.iana.org/assignments/media-types/media-types.xhtml>`__
[Examples from IANA](https://www.iana.org/assignments/media-types/media-types.xhtml)
"""
@@ -757,21 +767,21 @@ class FileContentBlock(TypedDict):
class NonStandardContentBlock(TypedDict):
"""Provider-specific data.
"""Provider-specific content data.
This block contains data for which there is not yet a standard type.
The purpose of this block should be to simply hold a provider-specific payload.
If a provider's non-standard output includes reasoning and tool calls, it should be
the adapter's job to parse that payload and emit the corresponding standard
``ReasoningContentBlock`` and ``ToolCalls``.
`ReasoningContentBlock` and `ToolCalls`.
Has no ``extras`` field, as provider-specific data should be included in the
``value`` field.
Has no `extras` field, as provider-specific data should be included in the
`value` field.
!!! note
``create_non_standard_block`` may also be used as a factory to create a
``NonStandardContentBlock``. Benefits include:
!!! note "Factory function"
`create_non_standard_block` may also be used as a factory to create a
`NonStandardContentBlock`. Benefits include:
* Automatic ID generation (when not provided)
* Required arguments strictly validated at creation time
@@ -785,13 +795,14 @@ class NonStandardContentBlock(TypedDict):
"""Content block identifier.
Either:
- Generated by the provider (e.g., OpenAI's file ID)
- Generated by LangChain upon creation (``UUID4`` prefixed with ``'lc_'``))
- Generated by LangChain upon creation (`UUID4` prefixed with `'lc_'`))
"""
value: dict[str, Any]
"""Provider-specific data."""
"""Provider-specific content data."""
index: NotRequired[int | str]
"""Index of block in aggregate response. Used during streaming."""
@@ -805,6 +816,7 @@ DataContentBlock = (
| PlainTextContentBlock
| FileContentBlock
)
"""A union of all defined multimodal data `ContentBlock` types."""
ToolContentBlock = (
ToolCall | ToolCallChunk | ServerToolCall | ServerToolCallChunk | ServerToolResult
@@ -818,6 +830,7 @@ ContentBlock = (
| DataContentBlock
| ToolContentBlock
)
"""A union of all defined `ContentBlock` types and aliases."""
KNOWN_BLOCK_TYPES = {
@@ -842,7 +855,7 @@ KNOWN_BLOCK_TYPES = {
"non_standard",
# citation and non_standard_annotation intentionally omitted
}
"""These are block types known to ``langchain-core>=1.0.0``.
"""These are block types known to `langchain-core>=1.0.0`.
If a block has a type not in this set, it is considered to be provider-specific.
"""
@@ -854,7 +867,7 @@ def _get_data_content_block_types() -> tuple[str, ...]:
Example: ("image", "video", "audio", "text-plain", "file")
Note that old style multimodal blocks type literals with new style blocks.
Speficially, "image", "audio", and "file".
Specifically, "image", "audio", and "file".
See the docstring of `_normalize_messages` in `language_models._utils` for details.
"""
@@ -881,7 +894,7 @@ def is_data_content_block(block: dict) -> bool:
block: The content block to check.
Returns:
True if the content block is a data content block, False otherwise.
`True` if the content block is a data content block, `False` otherwise.
"""
if block.get("type") not in _get_data_content_block_types():
@@ -893,7 +906,7 @@ def is_data_content_block(block: dict) -> bool:
# 'text' is checked to support v0 PlainTextContentBlock types
# We must guard against new style TextContentBlock which also has 'text' `type`
# by ensuring the presense of `source_type`
# by ensuring the presence of `source_type`
if block["type"] == "text" and "source_type" not in block: # noqa: SIM103 # This is more readable
return False
@@ -923,20 +936,20 @@ def create_text_block(
index: int | str | None = None,
**kwargs: Any,
) -> TextContentBlock:
"""Create a ``TextContentBlock``.
"""Create a `TextContentBlock`.
Args:
text: The text content of the block.
id: Content block identifier. Generated automatically if not provided.
annotations: ``Citation``s and other annotations for the text.
annotations: `Citation`s and other annotations for the text.
index: Index of block in aggregate response. Used during streaming.
Returns:
A properly formatted ``TextContentBlock``.
A properly formatted `TextContentBlock`.
!!! note
The ``id`` is generated automatically if not provided, using a UUID4 format
prefixed with ``'lc_'`` to indicate it is a LangChain-generated ID.
The `id` is generated automatically if not provided, using a UUID4 format
prefixed with `'lc_'` to indicate it is a LangChain-generated ID.
"""
block = TextContentBlock(
@@ -966,7 +979,7 @@ def create_image_block(
index: int | str | None = None,
**kwargs: Any,
) -> ImageContentBlock:
"""Create an ``ImageContentBlock``.
"""Create an `ImageContentBlock`.
Args:
url: URL of the image.
@@ -977,15 +990,15 @@ def create_image_block(
index: Index of block in aggregate response. Used during streaming.
Returns:
A properly formatted ``ImageContentBlock``.
A properly formatted `ImageContentBlock`.
Raises:
ValueError: If no image source is provided or if ``base64`` is used without
``mime_type``.
ValueError: If no image source is provided or if `base64` is used without
`mime_type`.
!!! note
The ``id`` is generated automatically if not provided, using a UUID4 format
prefixed with ``'lc_'`` to indicate it is a LangChain-generated ID.
The `id` is generated automatically if not provided, using a UUID4 format
prefixed with `'lc_'` to indicate it is a LangChain-generated ID.
"""
if not any([url, base64, file_id]):
@@ -1022,7 +1035,7 @@ def create_video_block(
index: int | str | None = None,
**kwargs: Any,
) -> VideoContentBlock:
"""Create a ``VideoContentBlock``.
"""Create a `VideoContentBlock`.
Args:
url: URL of the video.
@@ -1033,15 +1046,15 @@ def create_video_block(
index: Index of block in aggregate response. Used during streaming.
Returns:
A properly formatted ``VideoContentBlock``.
A properly formatted `VideoContentBlock`.
Raises:
ValueError: If no video source is provided or if ``base64`` is used without
``mime_type``.
ValueError: If no video source is provided or if `base64` is used without
`mime_type`.
!!! note
The ``id`` is generated automatically if not provided, using a UUID4 format
prefixed with ``'lc_'`` to indicate it is a LangChain-generated ID.
The `id` is generated automatically if not provided, using a UUID4 format
prefixed with `'lc_'` to indicate it is a LangChain-generated ID.
"""
if not any([url, base64, file_id]):
@@ -1082,7 +1095,7 @@ def create_audio_block(
index: int | str | None = None,
**kwargs: Any,
) -> AudioContentBlock:
"""Create an ``AudioContentBlock``.
"""Create an `AudioContentBlock`.
Args:
url: URL of the audio.
@@ -1093,15 +1106,15 @@ def create_audio_block(
index: Index of block in aggregate response. Used during streaming.
Returns:
A properly formatted ``AudioContentBlock``.
A properly formatted `AudioContentBlock`.
Raises:
ValueError: If no audio source is provided or if ``base64`` is used without
``mime_type``.
ValueError: If no audio source is provided or if `base64` is used without
`mime_type`.
!!! note
The ``id`` is generated automatically if not provided, using a UUID4 format
prefixed with ``'lc_'`` to indicate it is a LangChain-generated ID.
The `id` is generated automatically if not provided, using a UUID4 format
prefixed with `'lc_'` to indicate it is a LangChain-generated ID.
"""
if not any([url, base64, file_id]):
@@ -1142,7 +1155,7 @@ def create_file_block(
index: int | str | None = None,
**kwargs: Any,
) -> FileContentBlock:
"""Create a ``FileContentBlock``.
"""Create a `FileContentBlock`.
Args:
url: URL of the file.
@@ -1153,15 +1166,15 @@ def create_file_block(
index: Index of block in aggregate response. Used during streaming.
Returns:
A properly formatted ``FileContentBlock``.
A properly formatted `FileContentBlock`.
Raises:
ValueError: If no file source is provided or if ``base64`` is used without
``mime_type``.
ValueError: If no file source is provided or if `base64` is used without
`mime_type`.
!!! note
The ``id`` is generated automatically if not provided, using a UUID4 format
prefixed with ``'lc_'`` to indicate it is a LangChain-generated ID.
The `id` is generated automatically if not provided, using a UUID4 format
prefixed with `'lc_'` to indicate it is a LangChain-generated ID.
"""
if not any([url, base64, file_id]):
@@ -1203,7 +1216,7 @@ def create_plaintext_block(
index: int | str | None = None,
**kwargs: Any,
) -> PlainTextContentBlock:
"""Create a ``PlainTextContentBlock``.
"""Create a `PlainTextContentBlock`.
Args:
text: The plaintext content.
@@ -1216,11 +1229,11 @@ def create_plaintext_block(
index: Index of block in aggregate response. Used during streaming.
Returns:
A properly formatted ``PlainTextContentBlock``.
A properly formatted `PlainTextContentBlock`.
!!! note
The ``id`` is generated automatically if not provided, using a UUID4 format
prefixed with ``'lc_'`` to indicate it is a LangChain-generated ID.
The `id` is generated automatically if not provided, using a UUID4 format
prefixed with `'lc_'` to indicate it is a LangChain-generated ID.
"""
block = PlainTextContentBlock(
@@ -1259,7 +1272,7 @@ def create_tool_call(
index: int | str | None = None,
**kwargs: Any,
) -> ToolCall:
"""Create a ``ToolCall``.
"""Create a `ToolCall`.
Args:
name: The name of the tool to be called.
@@ -1268,11 +1281,11 @@ def create_tool_call(
index: Index of block in aggregate response. Used during streaming.
Returns:
A properly formatted ``ToolCall``.
A properly formatted `ToolCall`.
!!! note
The ``id`` is generated automatically if not provided, using a UUID4 format
prefixed with ``'lc_'`` to indicate it is a LangChain-generated ID.
The `id` is generated automatically if not provided, using a UUID4 format
prefixed with `'lc_'` to indicate it is a LangChain-generated ID.
"""
block = ToolCall(
@@ -1298,7 +1311,7 @@ def create_reasoning_block(
index: int | str | None = None,
**kwargs: Any,
) -> ReasoningContentBlock:
"""Create a ``ReasoningContentBlock``.
"""Create a `ReasoningContentBlock`.
Args:
reasoning: The reasoning text or thought summary.
@@ -1306,11 +1319,11 @@ def create_reasoning_block(
index: Index of block in aggregate response. Used during streaming.
Returns:
A properly formatted ``ReasoningContentBlock``.
A properly formatted `ReasoningContentBlock`.
!!! note
The ``id`` is generated automatically if not provided, using a UUID4 format
prefixed with ``'lc_'`` to indicate it is a LangChain-generated ID.
The `id` is generated automatically if not provided, using a UUID4 format
prefixed with `'lc_'` to indicate it is a LangChain-generated ID.
"""
block = ReasoningContentBlock(
@@ -1339,7 +1352,7 @@ def create_citation(
id: str | None = None,
**kwargs: Any,
) -> Citation:
"""Create a ``Citation``.
"""Create a `Citation`.
Args:
url: URL of the document source.
@@ -1350,11 +1363,11 @@ def create_citation(
id: Content block identifier. Generated automatically if not provided.
Returns:
A properly formatted ``Citation``.
A properly formatted `Citation`.
!!! note
The ``id`` is generated automatically if not provided, using a UUID4 format
prefixed with ``'lc_'`` to indicate it is a LangChain-generated ID.
The `id` is generated automatically if not provided, using a UUID4 format
prefixed with `'lc_'` to indicate it is a LangChain-generated ID.
"""
block = Citation(type="citation", id=ensure_id(id))
@@ -1383,19 +1396,19 @@ def create_non_standard_block(
id: str | None = None,
index: int | str | None = None,
) -> NonStandardContentBlock:
"""Create a ``NonStandardContentBlock``.
"""Create a `NonStandardContentBlock`.
Args:
value: Provider-specific data.
value: Provider-specific content data.
id: Content block identifier. Generated automatically if not provided.
index: Index of block in aggregate response. Used during streaming.
Returns:
A properly formatted ``NonStandardContentBlock``.
A properly formatted `NonStandardContentBlock`.
!!! note
The ``id`` is generated automatically if not provided, using a UUID4 format
prefixed with ``'lc_'`` to indicate it is a LangChain-generated ID.
The `id` is generated automatically if not provided, using a UUID4 format
prefixed with `'lc_'` to indicate it is a LangChain-generated ID.
"""
block = NonStandardContentBlock(

View File

@@ -15,11 +15,11 @@ from langchain_core.utils._merge import merge_dicts
class FunctionMessage(BaseMessage):
"""Message for passing the result of executing a tool back to a model.
``FunctionMessage`` are an older version of the ``ToolMessage`` schema, and
do not contain the ``tool_call_id`` field.
`FunctionMessage` are an older version of the `ToolMessage` schema, and
do not contain the `tool_call_id` field.
The ``tool_call_id`` field is used to associate the tool call request with the
tool call response. This is useful in situations where a chat model is able
The `tool_call_id` field is used to associate the tool call request with the
tool call response. Useful in situations where a chat model is able
to request multiple tool calls in parallel.
"""
@@ -28,7 +28,7 @@ class FunctionMessage(BaseMessage):
"""The name of the function that was executed."""
type: Literal["function"] = "function"
"""The type of the message (used for serialization). Defaults to ``'function'``."""
"""The type of the message (used for serialization)."""
class FunctionMessageChunk(FunctionMessage, BaseMessageChunk):
@@ -38,11 +38,7 @@ class FunctionMessageChunk(FunctionMessage, BaseMessageChunk):
# to make sure that the chunk variant can be discriminated from the
# non-chunk variant.
type: Literal["FunctionMessageChunk"] = "FunctionMessageChunk" # type: ignore[assignment]
"""The type of the message (used for serialization).
Defaults to ``'FunctionMessageChunk'``.
"""
"""The type of the message (used for serialization)."""
@override
def __add__(self, other: Any) -> BaseMessageChunk: # type: ignore[override]

View File

@@ -7,33 +7,27 @@ from langchain_core.messages.base import BaseMessage, BaseMessageChunk
class HumanMessage(BaseMessage):
"""Message from a human.
"""Message from the user.
``HumanMessage``s are messages that are passed in from a human to the model.
A `HumanMessage` is a message that is passed in from a user to the model.
Example:
```python
from langchain_core.messages import HumanMessage, SystemMessage
.. code-block:: python
from langchain_core.messages import HumanMessage, SystemMessage
messages = [
SystemMessage(content="You are a helpful assistant! Your name is Bob."),
HumanMessage(content="What is your name?"),
]
# Instantiate a chat model and invoke it with the messages
model = ...
print(model.invoke(messages))
messages = [
SystemMessage(content="You are a helpful assistant! Your name is Bob."),
HumanMessage(content="What is your name?"),
]
# Instantiate a chat model and invoke it with the messages
model = ...
print(model.invoke(messages))
```
"""
type: Literal["human"] = "human"
"""The type of the message (used for serialization).
Defaults to ``'human'``.
"""
"""The type of the message (used for serialization)."""
@overload
def __init__(
@@ -56,7 +50,7 @@ class HumanMessage(BaseMessage):
content_blocks: list[types.ContentBlock] | None = None,
**kwargs: Any,
) -> None:
"""Specify ``content`` as positional arg or ``content_blocks`` for typing."""
"""Specify `content` as positional arg or `content_blocks` for typing."""
if content_blocks is not None:
super().__init__(
content=cast("str | list[str | dict]", content_blocks),
@@ -73,5 +67,4 @@ class HumanMessageChunk(HumanMessage, BaseMessageChunk):
# to make sure that the chunk variant can be discriminated from the
# non-chunk variant.
type: Literal["HumanMessageChunk"] = "HumanMessageChunk" # type: ignore[assignment]
"""The type of the message (used for serialization).
Defaults to "HumanMessageChunk"."""
"""The type of the message (used for serialization)."""

View File

@@ -9,7 +9,7 @@ class RemoveMessage(BaseMessage):
"""Message responsible for deleting other messages."""
type: Literal["remove"] = "remove"
"""The type of the message (used for serialization). Defaults to "remove"."""
"""The type of the message (used for serialization)."""
def __init__(
self,
@@ -20,7 +20,7 @@ class RemoveMessage(BaseMessage):
Args:
id: The ID of the message to remove.
kwargs: Additional fields to pass to the message.
**kwargs: Additional fields to pass to the message.
Raises:
ValueError: If the 'content' field is passed in kwargs.

View File

@@ -13,27 +13,21 @@ class SystemMessage(BaseMessage):
of input messages.
Example:
```python
from langchain_core.messages import HumanMessage, SystemMessage
.. code-block:: python
from langchain_core.messages import HumanMessage, SystemMessage
messages = [
SystemMessage(content="You are a helpful assistant! Your name is Bob."),
HumanMessage(content="What is your name?"),
]
# Define a chat model and invoke it with the messages
print(model.invoke(messages))
messages = [
SystemMessage(content="You are a helpful assistant! Your name is Bob."),
HumanMessage(content="What is your name?"),
]
# Define a chat model and invoke it with the messages
print(model.invoke(messages))
```
"""
type: Literal["system"] = "system"
"""The type of the message (used for serialization).
Defaults to ``'system'``.
"""
"""The type of the message (used for serialization)."""
@overload
def __init__(
@@ -56,7 +50,7 @@ class SystemMessage(BaseMessage):
content_blocks: list[types.ContentBlock] | None = None,
**kwargs: Any,
) -> None:
"""Specify ``content`` as positional arg or ``content_blocks`` for typing."""
"""Specify `content` as positional arg or `content_blocks` for typing."""
if content_blocks is not None:
super().__init__(
content=cast("str | list[str | dict]", content_blocks),
@@ -73,8 +67,4 @@ class SystemMessageChunk(SystemMessage, BaseMessageChunk):
# to make sure that the chunk variant can be discriminated from the
# non-chunk variant.
type: Literal["SystemMessageChunk"] = "SystemMessageChunk" # type: ignore[assignment]
"""The type of the message (used for serialization).
Defaults to ``'SystemMessageChunk'``.
"""
"""The type of the message (used for serialization)."""

View File

@@ -16,9 +16,9 @@ from langchain_core.utils._merge import merge_dicts, merge_obj
class ToolOutputMixin:
"""Mixin for objects that tools can return directly.
If a custom BaseTool is invoked with a ``ToolCall`` and the output of custom code is
not an instance of ``ToolOutputMixin``, the output will automatically be coerced to
a string and wrapped in a ``ToolMessage``.
If a custom BaseTool is invoked with a `ToolCall` and the output of custom code is
not an instance of `ToolOutputMixin`, the output will automatically be coerced to
a string and wrapped in a `ToolMessage`.
"""
@@ -26,42 +26,39 @@ class ToolOutputMixin:
class ToolMessage(BaseMessage, ToolOutputMixin):
"""Message for passing the result of executing a tool back to a model.
``ToolMessage``s contain the result of a tool invocation. Typically, the result
is encoded inside the ``content`` field.
`ToolMessage` objects contain the result of a tool invocation. Typically, the result
is encoded inside the `content` field.
Example: A ``ToolMessage`` representing a result of ``42`` from a tool call with id
Example: A `ToolMessage` representing a result of `42` from a tool call with id
.. code-block:: python
```python
from langchain_core.messages import ToolMessage
from langchain_core.messages import ToolMessage
ToolMessage(content="42", tool_call_id="call_Jja7J89XsjrOLA5r!MEOW!SL")
```
ToolMessage(content="42", tool_call_id="call_Jja7J89XsjrOLA5r!MEOW!SL")
Example: A `ToolMessage` where only part of the tool output is sent to the model
and the full output is passed in to artifact.
```python
from langchain_core.messages import ToolMessage
Example: A ``ToolMessage`` where only part of the tool output is sent to the model
and the full output is passed in to artifact.
tool_output = {
"stdout": "From the graph we can see that the correlation between "
"x and y is ...",
"stderr": None,
"artifacts": {"type": "image", "base64_data": "/9j/4gIcSU..."},
}
!!! version-added "Added in version 0.2.17"
ToolMessage(
content=tool_output["stdout"],
artifact=tool_output,
tool_call_id="call_Jja7J89XsjrOLA5r!MEOW!SL",
)
```
.. code-block:: python
from langchain_core.messages import ToolMessage
tool_output = {
"stdout": "From the graph we can see that the correlation between "
"x and y is ...",
"stderr": None,
"artifacts": {"type": "image", "base64_data": "/9j/4gIcSU..."},
}
ToolMessage(
content=tool_output["stdout"],
artifact=tool_output,
tool_call_id="call_Jja7J89XsjrOLA5r!MEOW!SL",
)
The ``tool_call_id`` field is used to associate the tool call request with the
tool call response. This is useful in situations where a chat model is able
The `tool_call_id` field is used to associate the tool call request with the
tool call response. Useful in situations where a chat model is able
to request multiple tool calls in parallel.
"""
@@ -70,11 +67,7 @@ class ToolMessage(BaseMessage, ToolOutputMixin):
"""Tool call that this message is responding to."""
type: Literal["tool"] = "tool"
"""The type of the message (used for serialization).
Defaults to ``'tool'``.
"""
"""The type of the message (used for serialization)."""
artifact: Any = None
"""Artifact of the Tool execution which is not meant to be sent to the model.
@@ -83,21 +76,15 @@ class ToolMessage(BaseMessage, ToolOutputMixin):
a subset of the full tool output is being passed as message content but the full
output is needed in other parts of the code.
!!! version-added "Added in version 0.2.17"
"""
status: Literal["success", "error"] = "success"
"""Status of the tool invocation.
!!! version-added "Added in version 0.2.24"
"""
"""Status of the tool invocation."""
additional_kwargs: dict = Field(default_factory=dict, repr=False)
"""Currently inherited from BaseMessage, but not used."""
"""Currently inherited from `BaseMessage`, but not used."""
response_metadata: dict = Field(default_factory=dict, repr=False)
"""Currently inherited from BaseMessage, but not used."""
"""Currently inherited from `BaseMessage`, but not used."""
@model_validator(mode="before")
@classmethod
@@ -165,12 +152,12 @@ class ToolMessage(BaseMessage, ToolOutputMixin):
content_blocks: list[types.ContentBlock] | None = None,
**kwargs: Any,
) -> None:
"""Initialize ``ToolMessage``.
"""Initialize a `ToolMessage`.
Specify ``content`` as positional arg or ``content_blocks`` for typing.
Specify `content` as positional arg or `content_blocks` for typing.
Args:
content: The string contents of the message.
content: The contents of the message.
content_blocks: Typed standard content.
**kwargs: Additional fields.
"""
@@ -216,16 +203,15 @@ class ToolMessageChunk(ToolMessage, BaseMessageChunk):
class ToolCall(TypedDict):
"""Represents a request to call a tool.
"""Represents an AI's request to call a tool.
Example:
```python
{"name": "foo", "args": {"a": 1}, "id": "123"}
```
.. code-block:: python
{"name": "foo", "args": {"a": 1}, "id": "123"}
This represents a request to call the tool named ``'foo'`` with arguments
``{"a": 1}`` and an identifier of ``'123'``.
This represents a request to call the tool named `'foo'` with arguments
`{"a": 1}` and an identifier of `'123'`.
"""
@@ -263,24 +249,22 @@ def tool_call(
class ToolCallChunk(TypedDict):
"""A chunk of a tool call (e.g., as part of a stream).
"""A chunk of a tool call (yielded when streaming).
When merging ``ToolCallChunk``s (e.g., via ``AIMessageChunk.__add__``),
When merging `ToolCallChunk`s (e.g., via `AIMessageChunk.__add__`),
all string attributes are concatenated. Chunks are only merged if their
values of ``index`` are equal and not None.
values of `index` are equal and not None.
Example:
```python
left_chunks = [ToolCallChunk(name="foo", args='{"a":', index=0)]
right_chunks = [ToolCallChunk(name=None, args="1}", index=0)]
.. code-block:: python
left_chunks = [ToolCallChunk(name="foo", args='{"a":', index=0)]
right_chunks = [ToolCallChunk(name=None, args="1}", index=0)]
(
AIMessageChunk(content="", tool_call_chunks=left_chunks)
+ AIMessageChunk(content="", tool_call_chunks=right_chunks)
).tool_call_chunks == [ToolCallChunk(name="foo", args='{"a":1}', index=0)]
(
AIMessageChunk(content="", tool_call_chunks=left_chunks)
+ AIMessageChunk(content="", tool_call_chunks=right_chunks)
).tool_call_chunks == [ToolCallChunk(name="foo", args='{"a":1}', index=0)]
```
"""
name: str | None

File diff suppressed because it is too large Load Diff

View File

@@ -1,17 +1,20 @@
"""**OutputParser** classes parse the output of an LLM call.
"""`OutputParser` classes parse the output of an LLM call into structured data.
**Class hierarchy:**
!!! tip "Structured output"
.. code-block::
Output parsers emerged as an early solution to the challenge of obtaining structured
output from LLMs.
BaseLLMOutputParser --> BaseOutputParser --> <name>OutputParser # ListOutputParser, PydanticOutputParser
Today, most LLMs support [structured output](https://docs.langchain.com/oss/python/langchain/models#structured-outputs)
natively. In such cases, using output parsers may be unnecessary, and you should
leverage the model's built-in capabilities for structured output. Refer to the
[documentation of your chosen model](https://docs.langchain.com/oss/python/integrations/providers/overview)
for guidance on how to achieve structured output directly.
**Main helpers:**
.. code-block::
Serializable, Generation, PromptValue
""" # noqa: E501
Output parsers remain valuable when working with models that do not support
structured output natively, or when you require additional processing or validation
of the model's output beyond its inherent capabilities.
"""
from typing import TYPE_CHECKING

Some files were not shown because too many files have changed in this diff Show More