Compare commits

...

63 Commits

Author SHA1 Message Date
William Fu-Hinthorn
92b0dd3d3a Copy gemini code over 2023-12-11 08:54:42 -08:00
Bagatur
b56bfd529b document script 2023-12-08 09:40:48 -08:00
Bagatur
251fd93084 adapters 2023-12-08 09:16:45 -08:00
Bagatur
0de98e7830 Merge branch 'master' into bagatur/community 2023-12-08 09:14:06 -08:00
Bagatur
b46802ad88 key 2023-12-07 20:20:48 -08:00
Bagatur
247950ebaa hash 2023-12-07 20:12:22 -08:00
Bagatur
7051e83ae0 mv more 2023-12-07 17:13:38 -08:00
Bagatur
76fb19f205 telegrame 2023-12-07 17:10:47 -08:00
Bagatur
d1a0140659 lint 2023-12-07 17:08:33 -08:00
Bagatur
9e745c8e91 examples 2023-12-07 16:59:41 -08:00
Bagatur
0de6e09659 examples 2023-12-07 16:59:08 -08:00
Bagatur
3e0c5a331c mypy cache 2023-12-07 16:54:08 -08:00
Bagatur
34709ec34f examples 2023-12-07 16:42:15 -08:00
Bagatur
279155f02d switch cache 2023-12-07 16:33:44 -08:00
Bagatur
a2c447938c nit 2023-12-07 16:32:07 -08:00
Bagatur
f541e0235c poetry 2023-12-07 16:28:27 -08:00
Bagatur
89f74bf808 rm mypy test cache 2023-12-07 16:24:18 -08:00
Bagatur
dee5fdfe2b extra 2023-12-07 16:19:47 -08:00
Bagatur
a7cbdccb8a namespaces 2023-12-07 16:02:59 -08:00
Bagatur
91dd47b12a ignore 2023-12-07 15:54:22 -08:00
Bagatur
af2ad3bb4f conftest 2023-12-07 15:43:49 -08:00
Bagatur
60fc995c3b test 2023-12-07 15:42:21 -08:00
Bagatur
c3232a8aa3 make 2023-12-07 15:31:55 -08:00
Bagatur
243465da3e poetry 2023-12-07 15:31:03 -08:00
Bagatur
32499164ab fmt 2023-12-07 15:25:33 -08:00
Bagatur
9a5a52dd99 nit 2023-12-07 15:23:47 -08:00
Bagatur
deab168da5 poetry 2023-12-07 15:21:36 -08:00
Bagatur
d7793a0a66 merge 2023-12-07 15:19:06 -08:00
Erick Friis
f0304a8d9e Merge branch 'bagatur/community' of github.com:langchain-ai/langchain into bagatur/community 2023-12-07 11:02:06 -08:00
Erick Friis
bbc795b752 override llm config 2023-12-07 11:01:59 -08:00
Bagatur
6a0a7a7f66 poetry 2023-12-07 10:50:12 -08:00
Bagatur
de690b081e stubs 2023-12-07 10:38:34 -08:00
Bagatur
cea3d61bf4 more 2023-12-07 10:35:00 -08:00
Bagatur
5631e7e397 more 2023-12-07 10:33:01 -08:00
Bagatur
a66df25a89 more 2023-12-06 20:19:32 -08:00
Bagatur
8226b81fb3 more 2023-12-06 20:19:13 -08:00
Bagatur
280aec4e1d more 2023-12-06 19:37:00 -08:00
Bagatur
12039a0057 more 2023-12-06 19:36:49 -08:00
Bagatur
85eae95764 anyio 2023-12-06 18:53:09 -08:00
Bagatur
6b1af2d19c more 2023-12-06 17:49:52 -08:00
Bagatur
fd2fe4aacf poetry 2023-12-06 17:48:10 -08:00
Bagatur
d6403c6696 poetry 2023-12-06 17:40:38 -08:00
Bagatur
11fc0a5004 poetry 2023-12-06 17:38:20 -08:00
Bagatur
ce884f801f more 2023-12-06 17:35:45 -08:00
Bagatur
75ade6116d fmt 2023-12-06 16:13:04 -08:00
Bagatur
8ccc18fd73 more 2023-12-06 15:37:04 -08:00
Bagatur
f62331a20c script 2023-12-06 13:53:52 -08:00
Bagatur
f922f9fca3 more 2023-12-06 13:53:32 -08:00
Bagatur
c6c9d93283 ci 2023-12-06 11:51:17 -08:00
Bagatur
e08017fcf7 merge 2023-12-06 11:50:12 -08:00
Bagatur
a2129713c3 more 2023-12-06 11:48:35 -08:00
Bagatur
960faa6ebe more 2023-12-06 11:38:11 -08:00
Bagatur
c4f32cb0e9 tests 2023-12-06 10:51:35 -08:00
Bagatur
f56c0359dc latest 2023-12-06 10:40:31 -08:00
Bagatur
98c4f2a5fe merge 2023-12-05 23:28:47 -08:00
Bagatur
31c9081246 merge 2023-12-05 23:25:50 -08:00
Bagatur
f5ed74d56f wip 2023-12-05 23:23:27 -08:00
Bagatur
5535c7851a deps 2023-12-05 15:44:29 -08:00
Bagatur
ee1478b6e1 update 2023-12-05 15:32:20 -08:00
Bagatur
bf7b59ec44 ci 2023-12-05 09:50:22 -08:00
Bagatur
4965f9a10e rm 2023-12-04 16:52:33 -08:00
Bagatur
2d18c65ff7 wip 2023-12-04 16:50:47 -08:00
Bagatur
88d39708a9 scripts 2023-12-04 12:03:39 -08:00
2405 changed files with 174915 additions and 131414 deletions

View File

@@ -5,6 +5,8 @@ ALL_DIRS = {
"libs/core",
"libs/langchain",
"libs/experimental",
"libs/community",
"libs/partners/openai",
}
if __name__ == "__main__":

View File

@@ -85,7 +85,8 @@ jobs:
with:
path: |
${{ env.WORKDIR }}/.mypy_cache
key: mypy-${{ runner.os }}-${{ runner.arch }}-py${{ matrix.python-version }}-${{ inputs.working-directory }}-${{ hashFiles(format('{0}/poetry.lock', env.WORKDIR)) }}
key: mypy-lint-${{ runner.os }}-${{ runner.arch }}-py${{ matrix.python-version }}-${{ inputs.working-directory }}-${{ hashFiles(format('{0}/poetry.lock', env.WORKDIR)) }}
- name: Analysing the code with our lint
working-directory: ${{ inputs.working-directory }}
@@ -105,13 +106,13 @@ jobs:
run: |
poetry install --with test
- name: Get .mypy_cache to speed up mypy
- name: Get .mypy_cache_test to speed up mypy
uses: actions/cache@v3
env:
SEGMENT_DOWNLOAD_TIMEOUT_MIN: "2"
with:
path: |
${{ env.WORKDIR }}/.mypy_cache
${{ env.WORKDIR }}/.mypy_cache_test
key: mypy-test-${{ runner.os }}-${{ runner.arch }}-py${{ matrix.python-version }}-${{ inputs.working-directory }}-${{ hashFiles(format('{0}/poetry.lock', env.WORKDIR)) }}
- name: Analysing the code with our lint

View File

@@ -0,0 +1,13 @@
---
name: libs/community Release
on:
workflow_dispatch: # Allows to trigger the workflow manually in GitHub UI
jobs:
release:
uses:
./.github/workflows/_release.yml
with:
working-directory: libs/community
secrets: inherit

View File

@@ -0,0 +1,13 @@
---
name: libs/core Release
on:
workflow_dispatch: # Allows to trigger the workflow manually in GitHub UI
jobs:
release:
uses:
./.github/workflows/_release.yml
with:
working-directory: libs/core
secrets: inherit

View File

@@ -0,0 +1,9 @@
"""Main entrypoint into package."""
from importlib import metadata
try:
__version__ = metadata.version(__package__)
except metadata.PackageNotFoundError:
# Case where package metadata is not available.
__version__ = ""
del metadata # optional, avoids polluting the results of dir(__package__)

View File

@@ -0,0 +1,123 @@
"""Agent toolkits contain integrations with various resources and services.
LangChain has a large ecosystem of integrations with various external resources
like local and remote file systems, APIs and databases.
These integrations allow developers to create versatile applications that combine the
power of LLMs with the ability to access, interact with and manipulate external
resources.
When developing an application, developers should inspect the capabilities and
permissions of the tools that underlie the given agent toolkit, and determine
whether permissions of the given toolkit are appropriate for the application.
See [Security](https://python.langchain.com/docs/security) for more information.
"""
from pathlib import Path
from typing import Any
from langchain_core._api.path import as_import_path
from langchain_community.agent_toolkits.ainetwork.toolkit import AINetworkToolkit
from langchain_community.agent_toolkits.amadeus.toolkit import AmadeusToolkit
from langchain_community.agent_toolkits.azure_cognitive_services import (
AzureCognitiveServicesToolkit,
)
from langchain_community.agent_toolkits.conversational_retrieval.openai_functions import ( # noqa: E501
create_conversational_retrieval_agent,
)
from langchain_community.agent_toolkits.file_management.toolkit import (
FileManagementToolkit,
)
from langchain_community.agent_toolkits.gmail.toolkit import GmailToolkit
from langchain_community.agent_toolkits.jira.toolkit import JiraToolkit
from langchain_community.agent_toolkits.json.base import create_json_agent
from langchain_community.agent_toolkits.json.toolkit import JsonToolkit
from langchain_community.agent_toolkits.multion.toolkit import MultionToolkit
from langchain_community.agent_toolkits.nasa.toolkit import NasaToolkit
from langchain_community.agent_toolkits.nla.toolkit import NLAToolkit
from langchain_community.agent_toolkits.office365.toolkit import O365Toolkit
from langchain_community.agent_toolkits.openapi.base import create_openapi_agent
from langchain_community.agent_toolkits.openapi.toolkit import OpenAPIToolkit
from langchain_community.agent_toolkits.playwright.toolkit import (
PlayWrightBrowserToolkit,
)
from langchain_community.agent_toolkits.powerbi.base import create_pbi_agent
from langchain_community.agent_toolkits.powerbi.chat_base import create_pbi_chat_agent
from langchain_community.agent_toolkits.powerbi.toolkit import PowerBIToolkit
from langchain_community.agent_toolkits.slack.toolkit import SlackToolkit
from langchain_community.agent_toolkits.spark_sql.base import create_spark_sql_agent
from langchain_community.agent_toolkits.spark_sql.toolkit import SparkSQLToolkit
from langchain_community.agent_toolkits.sql.base import create_sql_agent
from langchain_community.agent_toolkits.sql.toolkit import SQLDatabaseToolkit
from langchain_community.agent_toolkits.steam.toolkit import SteamToolkit
from langchain_community.agent_toolkits.vectorstore.base import (
create_vectorstore_agent,
create_vectorstore_router_agent,
)
from langchain_community.agent_toolkits.vectorstore.toolkit import (
VectorStoreInfo,
VectorStoreRouterToolkit,
VectorStoreToolkit,
)
from langchain_community.agent_toolkits.zapier.toolkit import ZapierToolkit
from langchain_community.tools.retriever import create_retriever_tool
DEPRECATED_AGENTS = [
"create_csv_agent",
"create_pandas_dataframe_agent",
"create_xorbits_agent",
"create_python_agent",
"create_spark_dataframe_agent",
]
def __getattr__(name: str) -> Any:
"""Get attr name."""
if name in DEPRECATED_AGENTS:
relative_path = as_import_path(Path(__file__).parent, suffix=name)
old_path = "langchain." + relative_path
new_path = "langchain_experimental." + relative_path
raise ImportError(
f"{name} has been moved to langchain experimental. "
"See https://github.com/langchain-ai/langchain/discussions/11680"
"for more information.\n"
f"Please update your import statement from: `{old_path}` to `{new_path}`."
)
raise AttributeError(f"{name} does not exist")
__all__ = [
"AINetworkToolkit",
"AmadeusToolkit",
"AzureCognitiveServicesToolkit",
"FileManagementToolkit",
"GmailToolkit",
"JiraToolkit",
"JsonToolkit",
"MultionToolkit",
"NasaToolkit",
"NLAToolkit",
"O365Toolkit",
"OpenAPIToolkit",
"PlayWrightBrowserToolkit",
"PowerBIToolkit",
"SlackToolkit",
"SteamToolkit",
"SQLDatabaseToolkit",
"SparkSQLToolkit",
"VectorStoreInfo",
"VectorStoreRouterToolkit",
"VectorStoreToolkit",
"ZapierToolkit",
"create_json_agent",
"create_openapi_agent",
"create_pbi_agent",
"create_pbi_chat_agent",
"create_spark_sql_agent",
"create_sql_agent",
"create_vectorstore_agent",
"create_vectorstore_router_agent",
"create_conversational_retrieval_agent",
"create_retriever_tool",
]

View File

@@ -0,0 +1,88 @@
from __future__ import annotations
from typing import Any, List, Optional, TYPE_CHECKING
from langchain_core.language_models import BaseLanguageModel
from langchain_core.memory import BaseMemory
from langchain_core.messages import SystemMessage
from langchain_core.prompts.chat import MessagesPlaceholder
from langchain_core.tools import BaseTool
if TYPE_CHECKING:
from langchain.agents.agent import AgentExecutor
def _get_default_system_message() -> SystemMessage:
return SystemMessage(
content=(
"Do your best to answer the questions. "
"Feel free to use any tools available to look up "
"relevant information, only if necessary"
)
)
def create_conversational_retrieval_agent(
llm: BaseLanguageModel,
tools: List[BaseTool],
remember_intermediate_steps: bool = True,
memory_key: str = "chat_history",
system_message: Optional[SystemMessage] = None,
verbose: bool = False,
max_token_limit: int = 2000,
**kwargs: Any,
) -> AgentExecutor:
"""A convenience method for creating a conversational retrieval agent.
Args:
llm: The language model to use, should be ChatOpenAI
tools: A list of tools the agent has access to
remember_intermediate_steps: Whether the agent should remember intermediate
steps or not. Intermediate steps refer to prior action/observation
pairs from previous questions. The benefit of remembering these is if
there is relevant information in there, the agent can use it to answer
follow up questions. The downside is it will take up more tokens.
memory_key: The name of the memory key in the prompt.
system_message: The system message to use. By default, a basic one will
be used.
verbose: Whether or not the final AgentExecutor should be verbose or not,
defaults to False.
max_token_limit: The max number of tokens to keep around in memory.
Defaults to 2000.
Returns:
An agent executor initialized appropriately
"""
from langchain.agents.agent import AgentExecutor
from langchain.agents.openai_functions_agent.agent_token_buffer_memory import (
AgentTokenBufferMemory,
)
from langchain.agents.openai_functions_agent.base import OpenAIFunctionsAgent
from langchain.memory.token_buffer import ConversationTokenBufferMemory
if remember_intermediate_steps:
memory: BaseMemory = AgentTokenBufferMemory(
memory_key=memory_key, llm=llm, max_token_limit=max_token_limit
)
else:
memory = ConversationTokenBufferMemory(
memory_key=memory_key,
return_messages=True,
output_key="output",
llm=llm,
max_token_limit=max_token_limit,
)
_system_message = system_message or _get_default_system_message()
prompt = OpenAIFunctionsAgent.create_prompt(
system_message=_system_message,
extra_prompt_messages=[MessagesPlaceholder(variable_name=memory_key)],
)
agent = OpenAIFunctionsAgent(llm=llm, tools=tools, prompt=prompt)
return AgentExecutor(
agent=agent,
tools=tools,
memory=memory,
verbose=verbose,
return_intermediate_steps=remember_intermediate_steps,
**kwargs,
)

View File

@@ -0,0 +1,53 @@
"""Json agent."""
from __future__ import annotations
from typing import Any, Dict, List, Optional, TYPE_CHECKING
from langchain_core.callbacks import BaseCallbackManager
from langchain_core.language_models import BaseLanguageModel
from langchain_community.agent_toolkits.json.prompt import JSON_PREFIX, JSON_SUFFIX
from langchain_community.agent_toolkits.json.toolkit import JsonToolkit
if TYPE_CHECKING:
from langchain.agents.agent import AgentExecutor
def create_json_agent(
llm: BaseLanguageModel,
toolkit: JsonToolkit,
callback_manager: Optional[BaseCallbackManager] = None,
prefix: str = JSON_PREFIX,
suffix: str = JSON_SUFFIX,
format_instructions: Optional[str] = None,
input_variables: Optional[List[str]] = None,
verbose: bool = False,
agent_executor_kwargs: Optional[Dict[str, Any]] = None,
**kwargs: Any,
) -> AgentExecutor:
"""Construct a json agent from an LLM and tools."""
from langchain.agents.agent import AgentExecutor
from langchain.agents.mrkl.base import ZeroShotAgent
from langchain.chains.llm import LLMChain
tools = toolkit.get_tools()
prompt_params = {"format_instructions": format_instructions} if format_instructions is not None else {}
prompt = ZeroShotAgent.create_prompt(
tools,
prefix=prefix,
suffix=suffix,
input_variables=input_variables,
**prompt_params,
)
llm_chain = LLMChain(
llm=llm,
prompt=prompt,
callback_manager=callback_manager,
)
tool_names = [tool.name for tool in tools]
agent = ZeroShotAgent(llm_chain=llm_chain, allowed_tools=tool_names, **kwargs)
return AgentExecutor.from_agent_and_tools(
agent=agent,
tools=tools,
callback_manager=callback_manager,
verbose=verbose,
**(agent_executor_kwargs or {}),
)

View File

@@ -0,0 +1,57 @@
"""Tool for interacting with a single API with natural language definition."""
from __future__ import annotations
from typing import Any, Optional, TYPE_CHECKING
from langchain_core.language_models import BaseLanguageModel
from langchain_core.tools import Tool
from langchain_community.tools.openapi.utils.api_models import APIOperation
from langchain_community.tools.openapi.utils.openapi_utils import OpenAPISpec
from langchain_community.utilities.requests import Requests
if TYPE_CHECKING:
from langchain.chains.api.openapi.chain import OpenAPIEndpointChain
class NLATool(Tool):
"""Natural Language API Tool."""
@classmethod
def from_open_api_endpoint_chain(
cls, chain: OpenAPIEndpointChain, api_title: str
) -> "NLATool":
"""Convert an endpoint chain to an API endpoint tool."""
expanded_name = (
f'{api_title.replace(" ", "_")}.{chain.api_operation.operation_id}'
)
description = (
f"I'm an AI from {api_title}. Instruct what you want,"
" and I'll assist via an API with description:"
f" {chain.api_operation.description}"
)
return cls(name=expanded_name, func=chain.run, description=description)
@classmethod
def from_llm_and_method(
cls,
llm: BaseLanguageModel,
path: str,
method: str,
spec: OpenAPISpec,
requests: Optional[Requests] = None,
verbose: bool = False,
return_intermediate_steps: bool = False,
**kwargs: Any,
) -> "NLATool":
"""Instantiate the tool from the specified path and method."""
api_operation = APIOperation.from_openapi_spec(spec, path, method)
chain = OpenAPIEndpointChain.from_api_operation(
api_operation,
llm,
requests=requests,
verbose=verbose,
return_intermediate_steps=return_intermediate_steps,
**kwargs,
)
return cls.from_open_api_endpoint_chain(chain, spec.info.title)

View File

@@ -0,0 +1,77 @@
"""OpenAPI spec agent."""
from __future__ import annotations
from typing import Any, Dict, List, Optional, TYPE_CHECKING
from langchain_core.callbacks import BaseCallbackManager
from langchain_core.language_models import BaseLanguageModel
from langchain_community.agent_toolkits.openapi.prompt import (
OPENAPI_PREFIX,
OPENAPI_SUFFIX,
)
from langchain_community.agent_toolkits.openapi.toolkit import OpenAPIToolkit
if TYPE_CHECKING:
from langchain.agents.agent import AgentExecutor
def create_openapi_agent(
llm: BaseLanguageModel,
toolkit: OpenAPIToolkit,
callback_manager: Optional[BaseCallbackManager] = None,
prefix: str = OPENAPI_PREFIX,
suffix: str = OPENAPI_SUFFIX,
format_instructions: Optional[str] = None,
input_variables: Optional[List[str]] = None,
max_iterations: Optional[int] = 15,
max_execution_time: Optional[float] = None,
early_stopping_method: str = "force",
verbose: bool = False,
return_intermediate_steps: bool = False,
agent_executor_kwargs: Optional[Dict[str, Any]] = None,
**kwargs: Any,
) -> AgentExecutor:
"""Construct an OpenAPI agent from an LLM and tools.
*Security Note*: When creating an OpenAPI agent, check the permissions
and capabilities of the underlying toolkit.
For example, if the default implementation of OpenAPIToolkit
uses the RequestsToolkit which contains tools to make arbitrary
network requests against any URL (e.g., GET, POST, PATCH, PUT, DELETE),
Control access to who can submit issue requests using this toolkit and
what network access it has.
See https://python.langchain.com/docs/security for more information.
"""
from langchain.agents.agent import AgentExecutor
from langchain.agents.mrkl.base import ZeroShotAgent
from langchain.chains.llm import LLMChain
tools = toolkit.get_tools()
prompt_params = {"format_instructions": format_instructions} if format_instructions is not None else {}
prompt = ZeroShotAgent.create_prompt(
tools,
prefix=prefix,
suffix=suffix,
input_variables=input_variables,
**prompt_params
)
llm_chain = LLMChain(
llm=llm,
prompt=prompt,
callback_manager=callback_manager,
)
tool_names = [tool.name for tool in tools]
agent = ZeroShotAgent(llm_chain=llm_chain, allowed_tools=tool_names, **kwargs)
return AgentExecutor.from_agent_and_tools(
agent=agent,
tools=tools,
callback_manager=callback_manager,
verbose=verbose,
return_intermediate_steps=return_intermediate_steps,
max_iterations=max_iterations,
max_execution_time=max_execution_time,
early_stopping_method=early_stopping_method,
**(agent_executor_kwargs or {}),
)

View File

@@ -0,0 +1,366 @@
"""Agent that interacts with OpenAPI APIs via a hierarchical planning approach."""
import json
import re
from functools import partial
from typing import Any, Callable, Dict, List, Optional, TYPE_CHECKING
import yaml
from langchain_core.callbacks import BaseCallbackManager
from langchain_core.language_models import BaseLanguageModel
from langchain_core.prompts import BasePromptTemplate, PromptTemplate
from langchain_core.pydantic_v1 import Field
from langchain_core.tools import BaseTool, Tool
from langchain_openai.llms import OpenAI
from langchain_community.agent_toolkits.openapi.planner_prompt import (
API_CONTROLLER_PROMPT,
API_CONTROLLER_TOOL_DESCRIPTION,
API_CONTROLLER_TOOL_NAME,
API_ORCHESTRATOR_PROMPT,
API_PLANNER_PROMPT,
API_PLANNER_TOOL_DESCRIPTION,
API_PLANNER_TOOL_NAME,
PARSING_DELETE_PROMPT,
PARSING_GET_PROMPT,
PARSING_PATCH_PROMPT,
PARSING_POST_PROMPT,
PARSING_PUT_PROMPT,
REQUESTS_DELETE_TOOL_DESCRIPTION,
REQUESTS_GET_TOOL_DESCRIPTION,
REQUESTS_PATCH_TOOL_DESCRIPTION,
REQUESTS_POST_TOOL_DESCRIPTION,
REQUESTS_PUT_TOOL_DESCRIPTION,
)
from langchain_community.agent_toolkits.openapi.spec import ReducedOpenAPISpec
from langchain_community.output_parsers.json import parse_json_markdown
from langchain_community.tools.requests.tool import BaseRequestsTool
from langchain_community.utilities.requests import RequestsWrapper
if TYPE_CHECKING:
from langchain.agents.agent import AgentExecutor
from langchain.chains.llm import LLMChain
from langchain.memory import ReadOnlySharedMemory
#
# Requests tools with LLM-instructed extraction of truncated responses.
#
# Of course, truncating so bluntly may lose a lot of valuable
# information in the response.
# However, the goal for now is to have only a single inference step.
MAX_RESPONSE_LENGTH = 5000
"""Maximum length of the response to be returned."""
def _get_default_llm_chain(prompt: BasePromptTemplate) -> LLMChain:
from langchain.chains.llm import LLMChain
return LLMChain(
llm=OpenAI(),
prompt=prompt,
)
def _get_default_llm_chain_factory(
prompt: BasePromptTemplate,
) -> Callable[[], LLMChain]:
"""Returns a default LLMChain factory."""
return partial(_get_default_llm_chain, prompt)
class RequestsGetToolWithParsing(BaseRequestsTool, BaseTool):
"""Requests GET tool with LLM-instructed extraction of truncated responses."""
name: str = "requests_get"
"""Tool name."""
description = REQUESTS_GET_TOOL_DESCRIPTION
"""Tool description."""
response_length: Optional[int] = MAX_RESPONSE_LENGTH
"""Maximum length of the response to be returned."""
llm_chain: Any = Field(
default_factory=_get_default_llm_chain_factory(PARSING_GET_PROMPT)
)
"""LLMChain used to extract the response."""
def _run(self, text: str) -> str:
try:
data = parse_json_markdown(text)
except json.JSONDecodeError as e:
raise e
data_params = data.get("params")
response = self.requests_wrapper.get(data["url"], params=data_params)
response = response[: self.response_length]
return self.llm_chain.predict(
response=response, instructions=data["output_instructions"]
).strip()
async def _arun(self, text: str) -> str:
raise NotImplementedError()
class RequestsPostToolWithParsing(BaseRequestsTool, BaseTool):
"""Requests POST tool with LLM-instructed extraction of truncated responses."""
name: str = "requests_post"
"""Tool name."""
description = REQUESTS_POST_TOOL_DESCRIPTION
"""Tool description."""
response_length: Optional[int] = MAX_RESPONSE_LENGTH
"""Maximum length of the response to be returned."""
llm_chain: Any = Field(
default_factory=_get_default_llm_chain_factory(PARSING_POST_PROMPT)
)
"""LLMChain used to extract the response."""
def _run(self, text: str) -> str:
try:
data = parse_json_markdown(text)
except json.JSONDecodeError as e:
raise e
response = self.requests_wrapper.post(data["url"], data["data"])
response = response[: self.response_length]
return self.llm_chain.predict(
response=response, instructions=data["output_instructions"]
).strip()
async def _arun(self, text: str) -> str:
raise NotImplementedError()
class RequestsPatchToolWithParsing(BaseRequestsTool, BaseTool):
"""Requests PATCH tool with LLM-instructed extraction of truncated responses."""
name: str = "requests_patch"
"""Tool name."""
description = REQUESTS_PATCH_TOOL_DESCRIPTION
"""Tool description."""
response_length: Optional[int] = MAX_RESPONSE_LENGTH
"""Maximum length of the response to be returned."""
llm_chain: Any = Field(
default_factory=_get_default_llm_chain_factory(PARSING_PATCH_PROMPT)
)
"""LLMChain used to extract the response."""
def _run(self, text: str) -> str:
try:
data = parse_json_markdown(text)
except json.JSONDecodeError as e:
raise e
response = self.requests_wrapper.patch(data["url"], data["data"])
response = response[: self.response_length]
return self.llm_chain.predict(
response=response, instructions=data["output_instructions"]
).strip()
async def _arun(self, text: str) -> str:
raise NotImplementedError()
class RequestsPutToolWithParsing(BaseRequestsTool, BaseTool):
"""Requests PUT tool with LLM-instructed extraction of truncated responses."""
name: str = "requests_put"
"""Tool name."""
description = REQUESTS_PUT_TOOL_DESCRIPTION
"""Tool description."""
response_length: Optional[int] = MAX_RESPONSE_LENGTH
"""Maximum length of the response to be returned."""
llm_chain: Any = Field(
default_factory=_get_default_llm_chain_factory(PARSING_PUT_PROMPT)
)
"""LLMChain used to extract the response."""
def _run(self, text: str) -> str:
try:
data = parse_json_markdown(text)
except json.JSONDecodeError as e:
raise e
response = self.requests_wrapper.put(data["url"], data["data"])
response = response[: self.response_length]
return self.llm_chain.predict(
response=response, instructions=data["output_instructions"]
).strip()
async def _arun(self, text: str) -> str:
raise NotImplementedError()
class RequestsDeleteToolWithParsing(BaseRequestsTool, BaseTool):
"""A tool that sends a DELETE request and parses the response."""
name: str = "requests_delete"
"""The name of the tool."""
description = REQUESTS_DELETE_TOOL_DESCRIPTION
"""The description of the tool."""
response_length: Optional[int] = MAX_RESPONSE_LENGTH
"""The maximum length of the response."""
llm_chain: Any = Field(
default_factory=_get_default_llm_chain_factory(PARSING_DELETE_PROMPT)
)
"""The LLM chain used to parse the response."""
def _run(self, text: str) -> str:
try:
data = parse_json_markdown(text)
except json.JSONDecodeError as e:
raise e
response = self.requests_wrapper.delete(data["url"])
response = response[: self.response_length]
return self.llm_chain.predict(
response=response, instructions=data["output_instructions"]
).strip()
async def _arun(self, text: str) -> str:
raise NotImplementedError()
#
# Orchestrator, planner, controller.
#
def _create_api_planner_tool(
api_spec: ReducedOpenAPISpec, llm: BaseLanguageModel
) -> Tool:
from langchain.chains.llm import LLMChain
endpoint_descriptions = [
f"{name} {description}" for name, description, _ in api_spec.endpoints
]
prompt = PromptTemplate(
template=API_PLANNER_PROMPT,
input_variables=["query"],
partial_variables={"endpoints": "- " + "- ".join(endpoint_descriptions)},
)
chain = LLMChain(llm=llm, prompt=prompt)
tool = Tool(
name=API_PLANNER_TOOL_NAME,
description=API_PLANNER_TOOL_DESCRIPTION,
func=chain.run,
)
return tool
def _create_api_controller_agent(
api_url: str,
api_docs: str,
requests_wrapper: RequestsWrapper,
llm: BaseLanguageModel,
) -> AgentExecutor:
from langchain.agents.mrkl.base import ZeroShotAgent
from langchain.agents.agent import AgentExecutor
from langchain.chains.llm import LLMChain
get_llm_chain = LLMChain(llm=llm, prompt=PARSING_GET_PROMPT)
post_llm_chain = LLMChain(llm=llm, prompt=PARSING_POST_PROMPT)
tools: List[BaseTool] = [
RequestsGetToolWithParsing(
requests_wrapper=requests_wrapper, llm_chain=get_llm_chain
),
RequestsPostToolWithParsing(
requests_wrapper=requests_wrapper, llm_chain=post_llm_chain
),
]
prompt = PromptTemplate(
template=API_CONTROLLER_PROMPT,
input_variables=["input", "agent_scratchpad"],
partial_variables={
"api_url": api_url,
"api_docs": api_docs,
"tool_names": ", ".join([tool.name for tool in tools]),
"tool_descriptions": "\n".join(
[f"{tool.name}: {tool.description}" for tool in tools]
),
},
)
agent = ZeroShotAgent(
llm_chain=LLMChain(llm=llm, prompt=prompt),
allowed_tools=[tool.name for tool in tools],
)
return AgentExecutor.from_agent_and_tools(agent=agent, tools=tools, verbose=True)
def _create_api_controller_tool(
api_spec: ReducedOpenAPISpec,
requests_wrapper: RequestsWrapper,
llm: BaseLanguageModel,
) -> Tool:
"""Expose controller as a tool.
The tool is invoked with a plan from the planner, and dynamically
creates a controller agent with relevant documentation only to
constrain the context.
"""
base_url = api_spec.servers[0]["url"] # TODO: do better.
def _create_and_run_api_controller_agent(plan_str: str) -> str:
pattern = r"\b(GET|POST|PATCH|DELETE)\s+(/\S+)*"
matches = re.findall(pattern, plan_str)
endpoint_names = [
"{method} {route}".format(method=method, route=route.split("?")[0])
for method, route in matches
]
docs_str = ""
for endpoint_name in endpoint_names:
found_match = False
for name, _, docs in api_spec.endpoints:
regex_name = re.compile(re.sub("\{.*?\}", ".*", name))
if regex_name.match(endpoint_name):
found_match = True
docs_str += f"== Docs for {endpoint_name} == \n{yaml.dump(docs)}\n"
if not found_match:
raise ValueError(f"{endpoint_name} endpoint does not exist.")
agent = _create_api_controller_agent(base_url, docs_str, requests_wrapper, llm)
return agent.run(plan_str)
return Tool(
name=API_CONTROLLER_TOOL_NAME,
func=_create_and_run_api_controller_agent,
description=API_CONTROLLER_TOOL_DESCRIPTION,
)
def create_openapi_agent(
api_spec: ReducedOpenAPISpec,
requests_wrapper: RequestsWrapper,
llm: BaseLanguageModel,
shared_memory: Optional[ReadOnlySharedMemory] = None,
callback_manager: Optional[BaseCallbackManager] = None,
verbose: bool = True,
agent_executor_kwargs: Optional[Dict[str, Any]] = None,
**kwargs: Any,
) -> AgentExecutor:
"""Instantiate OpenAI API planner and controller for a given spec.
Inject credentials via requests_wrapper.
We use a top-level "orchestrator" agent to invoke the planner and controller,
rather than a top-level planner
that invokes a controller with its plan. This is to keep the planner simple.
"""
from langchain.agents.mrkl.base import ZeroShotAgent
from langchain.agents.agent import AgentExecutor
from langchain.chains.llm import LLMChain
tools = [
_create_api_planner_tool(api_spec, llm),
_create_api_controller_tool(api_spec, requests_wrapper, llm),
]
prompt = PromptTemplate(
template=API_ORCHESTRATOR_PROMPT,
input_variables=["input", "agent_scratchpad"],
partial_variables={
"tool_names": ", ".join([tool.name for tool in tools]),
"tool_descriptions": "\n".join(
[f"{tool.name}: {tool.description}" for tool in tools]
),
},
)
agent = ZeroShotAgent(
llm_chain=LLMChain(llm=llm, prompt=prompt, memory=shared_memory),
allowed_tools=[tool.name for tool in tools],
**kwargs,
)
return AgentExecutor.from_agent_and_tools(
agent=agent,
tools=tools,
callback_manager=callback_manager,
verbose=verbose,
**(agent_executor_kwargs or {}),
)

View File

@@ -0,0 +1,90 @@
"""Requests toolkit."""
from __future__ import annotations
from typing import Any, List
from langchain_core.language_models import BaseLanguageModel
from langchain_core.tools import Tool
from langchain_community.agent_toolkits.base import BaseToolkit
from langchain_community.agent_toolkits.json.base import create_json_agent
from langchain_community.agent_toolkits.json.toolkit import JsonToolkit
from langchain_community.agent_toolkits.openapi.prompt import DESCRIPTION
from langchain_community.tools import BaseTool
from langchain_community.tools.json.tool import JsonSpec
from langchain_community.tools.requests.tool import (
RequestsDeleteTool,
RequestsGetTool,
RequestsPatchTool,
RequestsPostTool,
RequestsPutTool,
)
from langchain_community.utilities.requests import TextRequestsWrapper
class RequestsToolkit(BaseToolkit):
"""Toolkit for making REST requests.
*Security Note*: This toolkit contains tools to make GET, POST, PATCH, PUT,
and DELETE requests to an API.
Exercise care in who is allowed to use this toolkit. If exposing
to end users, consider that users will be able to make arbitrary
requests on behalf of the server hosting the code. For example,
users could ask the server to make a request to a private API
that is only accessible from the server.
Control access to who can submit issue requests using this toolkit and
what network access it has.
See https://python.langchain.com/docs/security for more information.
"""
requests_wrapper: TextRequestsWrapper
def get_tools(self) -> List[BaseTool]:
"""Return a list of tools."""
return [
RequestsGetTool(requests_wrapper=self.requests_wrapper),
RequestsPostTool(requests_wrapper=self.requests_wrapper),
RequestsPatchTool(requests_wrapper=self.requests_wrapper),
RequestsPutTool(requests_wrapper=self.requests_wrapper),
RequestsDeleteTool(requests_wrapper=self.requests_wrapper),
]
class OpenAPIToolkit(BaseToolkit):
"""Toolkit for interacting with an OpenAPI API.
*Security Note*: This toolkit contains tools that can read and modify
the state of a service; e.g., by creating, deleting, or updating,
reading underlying data.
For example, this toolkit can be used to delete data exposed via
an OpenAPI compliant API.
"""
json_agent: Any
requests_wrapper: TextRequestsWrapper
def get_tools(self) -> List[BaseTool]:
"""Get the tools in the toolkit."""
json_agent_tool = Tool(
name="json_explorer",
func=self.json_agent.run,
description=DESCRIPTION,
)
request_toolkit = RequestsToolkit(requests_wrapper=self.requests_wrapper)
return [*request_toolkit.get_tools(), json_agent_tool]
@classmethod
def from_llm(
cls,
llm: BaseLanguageModel,
json_spec: JsonSpec,
requests_wrapper: TextRequestsWrapper,
**kwargs: Any,
) -> OpenAPIToolkit:
"""Create json agent from llm, then initialize."""
json_agent = create_json_agent(llm, JsonToolkit(spec=json_spec), **kwargs)
return cls(json_agent=json_agent, requests_wrapper=requests_wrapper)

View File

@@ -0,0 +1,68 @@
"""Power BI agent."""
from __future__ import annotations
from typing import Any, Dict, List, Optional, TYPE_CHECKING
from langchain_core.callbacks import BaseCallbackManager
from langchain_core.language_models import BaseLanguageModel
from langchain_community.agent_toolkits.powerbi.prompt import (
POWERBI_PREFIX,
POWERBI_SUFFIX,
)
from langchain_community.agent_toolkits.powerbi.toolkit import PowerBIToolkit
from langchain_community.utilities.powerbi import PowerBIDataset
if TYPE_CHECKING:
from langchain.agents import AgentExecutor
def create_pbi_agent(
llm: BaseLanguageModel,
toolkit: Optional[PowerBIToolkit] = None,
powerbi: Optional[PowerBIDataset] = None,
callback_manager: Optional[BaseCallbackManager] = None,
prefix: str = POWERBI_PREFIX,
suffix: str = POWERBI_SUFFIX,
format_instructions: Optional[str] = None,
examples: Optional[str] = None,
input_variables: Optional[List[str]] = None,
top_k: int = 10,
verbose: bool = False,
agent_executor_kwargs: Optional[Dict[str, Any]] = None,
**kwargs: Any,
) -> AgentExecutor:
"""Construct a Power BI agent from an LLM and tools."""
from langchain.agents.mrkl.base import ZeroShotAgent
from langchain.agents import AgentExecutor
from langchain.chains.llm import LLMChain
if toolkit is None:
if powerbi is None:
raise ValueError("Must provide either a toolkit or powerbi dataset")
toolkit = PowerBIToolkit(powerbi=powerbi, llm=llm, examples=examples)
tools = toolkit.get_tools()
tables = powerbi.table_names if powerbi else toolkit.powerbi.table_names
prompt_params = {"format_instructions": format_instructions} if format_instructions is not None else {}
agent = ZeroShotAgent(
llm_chain=LLMChain(
llm=llm,
prompt=ZeroShotAgent.create_prompt(
tools,
prefix=prefix.format(top_k=top_k).format(tables=tables),
suffix=suffix,
input_variables=input_variables,
**prompt_params,
),
callback_manager=callback_manager, # type: ignore
verbose=verbose,
),
allowed_tools=[tool.name for tool in tools],
**kwargs,
)
return AgentExecutor.from_agent_and_tools(
agent=agent,
tools=tools,
callback_manager=callback_manager,
verbose=verbose,
**(agent_executor_kwargs or {}),
)

View File

@@ -0,0 +1,69 @@
"""Power BI agent."""
from __future__ import annotations
from typing import Any, Dict, List, Optional, TYPE_CHECKING
from langchain_core.callbacks import BaseCallbackManager
from langchain_core.language_models.chat_models import BaseChatModel
from langchain_community.agent_toolkits.powerbi.prompt import (
POWERBI_CHAT_PREFIX,
POWERBI_CHAT_SUFFIX,
)
from langchain_community.agent_toolkits.powerbi.toolkit import PowerBIToolkit
from langchain_community.utilities.powerbi import PowerBIDataset
if TYPE_CHECKING:
from langchain.agents import AgentExecutor
from langchain.agents.agent import AgentOutputParser
from langchain.memory.chat_memory import BaseChatMemory
def create_pbi_chat_agent(
llm: BaseChatModel,
toolkit: Optional[PowerBIToolkit] = None,
powerbi: Optional[PowerBIDataset] = None,
callback_manager: Optional[BaseCallbackManager] = None,
output_parser: Optional[AgentOutputParser] = None,
prefix: str = POWERBI_CHAT_PREFIX,
suffix: str = POWERBI_CHAT_SUFFIX,
examples: Optional[str] = None,
input_variables: Optional[List[str]] = None,
memory: Optional[BaseChatMemory] = None,
top_k: int = 10,
verbose: bool = False,
agent_executor_kwargs: Optional[Dict[str, Any]] = None,
**kwargs: Any,
) -> AgentExecutor:
"""Construct a Power BI agent from a Chat LLM and tools.
If you supply only a toolkit and no Power BI dataset, the same LLM is used for both.
"""
from langchain.agents import AgentExecutor
from langchain.agents.conversational_chat.base import ConversationalChatAgent
from langchain.memory import ConversationBufferMemory
if toolkit is None:
if powerbi is None:
raise ValueError("Must provide either a toolkit or powerbi dataset")
toolkit = PowerBIToolkit(powerbi=powerbi, llm=llm, examples=examples)
tools = toolkit.get_tools()
tables = powerbi.table_names if powerbi else toolkit.powerbi.table_names
agent = ConversationalChatAgent.from_llm_and_tools(
llm=llm,
tools=tools,
system_message=prefix.format(top_k=top_k).format(tables=tables),
human_message=suffix,
input_variables=input_variables,
callback_manager=callback_manager,
output_parser=output_parser,
verbose=verbose,
**kwargs,
)
return AgentExecutor.from_agent_and_tools(
agent=agent,
tools=tools,
callback_manager=callback_manager,
memory=memory
or ConversationBufferMemory(memory_key="chat_history", return_messages=True),
verbose=verbose,
**(agent_executor_kwargs or {}),
)

View File

@@ -0,0 +1,106 @@
"""Toolkit for interacting with a Power BI dataset."""
from __future__ import annotations
from typing import List, Optional, Union, TYPE_CHECKING
from langchain_core.callbacks import BaseCallbackManager
from langchain_core.language_models import BaseLanguageModel
from langchain_core.language_models.chat_models import BaseChatModel
from langchain_core.prompts import PromptTemplate
from langchain_core.prompts.chat import (
ChatPromptTemplate,
HumanMessagePromptTemplate,
SystemMessagePromptTemplate,
)
from langchain_core.pydantic_v1 import Field
from langchain_community.agent_toolkits.base import BaseToolkit
from langchain_community.tools import BaseTool
from langchain_community.tools.powerbi.prompt import (
QUESTION_TO_QUERY_BASE,
SINGLE_QUESTION_TO_QUERY,
USER_INPUT,
)
from langchain_community.tools.powerbi.tool import (
InfoPowerBITool,
ListPowerBITool,
QueryPowerBITool,
)
from langchain_community.utilities.powerbi import PowerBIDataset
if TYPE_CHECKING:
from langchain.chains.llm import LLMChain
class PowerBIToolkit(BaseToolkit):
"""Toolkit for interacting with Power BI dataset.
*Security Note*: This toolkit interacts with an external service.
Control access to who can use this toolkit.
Make sure that the capabilities given by this toolkit to the calling
code are appropriately scoped to the application.
See https://python.langchain.com/docs/security for more information.
"""
powerbi: PowerBIDataset = Field(exclude=True)
llm: Union[BaseLanguageModel, BaseChatModel] = Field(exclude=True)
examples: Optional[str] = None
max_iterations: int = 5
callback_manager: Optional[BaseCallbackManager] = None
output_token_limit: Optional[int] = None
tiktoken_model_name: Optional[str] = None
class Config:
"""Configuration for this pydantic object."""
arbitrary_types_allowed = True
def get_tools(self) -> List[BaseTool]:
"""Get the tools in the toolkit."""
return [
QueryPowerBITool(
llm_chain=self._get_chain(),
powerbi=self.powerbi,
examples=self.examples,
max_iterations=self.max_iterations,
output_token_limit=self.output_token_limit,
tiktoken_model_name=self.tiktoken_model_name,
),
InfoPowerBITool(powerbi=self.powerbi),
ListPowerBITool(powerbi=self.powerbi),
]
def _get_chain(self) -> LLMChain:
"""Construct the chain based on the callback manager and model type."""
from langchain.chains.llm import LLMChain
if isinstance(self.llm, BaseLanguageModel):
return LLMChain(
llm=self.llm,
callback_manager=self.callback_manager
if self.callback_manager
else None,
prompt=PromptTemplate(
template=SINGLE_QUESTION_TO_QUERY,
input_variables=["tool_input", "tables", "schemas", "examples"],
),
)
system_prompt = SystemMessagePromptTemplate(
prompt=PromptTemplate(
template=QUESTION_TO_QUERY_BASE,
input_variables=["tables", "schemas", "examples"],
)
)
human_prompt = HumanMessagePromptTemplate(
prompt=PromptTemplate(
template=USER_INPUT,
input_variables=["tool_input"],
)
)
return LLMChain(
llm=self.llm,
callback_manager=self.callback_manager if self.callback_manager else None,
prompt=ChatPromptTemplate.from_messages([system_prompt, human_prompt]),
)

View File

@@ -0,0 +1,64 @@
"""Spark SQL agent."""
from __future__ import annotations
from typing import Any, Dict, List, Optional, TYPE_CHECKING
from langchain_core.callbacks import BaseCallbackManager, Callbacks
from langchain_core.language_models import BaseLanguageModel
from langchain_community.agent_toolkits.spark_sql.prompt import SQL_PREFIX, SQL_SUFFIX
from langchain_community.agent_toolkits.spark_sql.toolkit import SparkSQLToolkit
if TYPE_CHECKING:
from langchain.agents.agent import AgentExecutor
def create_spark_sql_agent(
llm: BaseLanguageModel,
toolkit: SparkSQLToolkit,
callback_manager: Optional[BaseCallbackManager] = None,
callbacks: Callbacks = None,
prefix: str = SQL_PREFIX,
suffix: str = SQL_SUFFIX,
format_instructions: Optional[str] = None,
input_variables: Optional[List[str]] = None,
top_k: int = 10,
max_iterations: Optional[int] = 15,
max_execution_time: Optional[float] = None,
early_stopping_method: str = "force",
verbose: bool = False,
agent_executor_kwargs: Optional[Dict[str, Any]] = None,
**kwargs: Any,
) -> AgentExecutor:
"""Construct a Spark SQL agent from an LLM and tools."""
from langchain.agents.agent import AgentExecutor
from langchain.agents.mrkl.base import ZeroShotAgent
from langchain.chains.llm import LLMChain
tools = toolkit.get_tools()
prefix = prefix.format(top_k=top_k)
prompt_params = {"format_instructions": format_instructions} if format_instructions is not None else {}
prompt = ZeroShotAgent.create_prompt(
tools,
prefix=prefix,
suffix=suffix,
input_variables=input_variables,
**prompt_params,
)
llm_chain = LLMChain(
llm=llm,
prompt=prompt,
callback_manager=callback_manager,
callbacks=callbacks,
)
tool_names = [tool.name for tool in tools]
agent = ZeroShotAgent(llm_chain=llm_chain, allowed_tools=tool_names, **kwargs)
return AgentExecutor.from_agent_and_tools(
agent=agent,
tools=tools,
callback_manager=callback_manager,
callbacks=callbacks,
verbose=verbose,
max_iterations=max_iterations,
max_execution_time=max_execution_time,
early_stopping_method=early_stopping_method,
**(agent_executor_kwargs or {}),
)

View File

@@ -0,0 +1,102 @@
"""SQL agent."""
from __future__ import annotations
from typing import Any, Dict, List, Optional, Sequence, TYPE_CHECKING
from langchain_core.callbacks import BaseCallbackManager
from langchain_core.language_models import BaseLanguageModel
from langchain_core.messages import AIMessage, SystemMessage
from langchain_core.prompts.chat import (
ChatPromptTemplate,
HumanMessagePromptTemplate,
MessagesPlaceholder,
)
from langchain_community.agent_toolkits.sql.prompt import (
SQL_FUNCTIONS_SUFFIX,
SQL_PREFIX,
SQL_SUFFIX,
)
from langchain_community.agent_toolkits.sql.toolkit import SQLDatabaseToolkit
from langchain_community.tools import BaseTool
if TYPE_CHECKING:
from langchain.agents.agent import AgentExecutor
from langchain.agents.agent_types import AgentType
def create_sql_agent(
llm: BaseLanguageModel,
toolkit: SQLDatabaseToolkit,
agent_type: Optional[AgentType] = None,
callback_manager: Optional[BaseCallbackManager] = None,
prefix: str = SQL_PREFIX,
suffix: Optional[str] = None,
format_instructions: Optional[str] = None,
input_variables: Optional[List[str]] = None,
top_k: int = 10,
max_iterations: Optional[int] = 15,
max_execution_time: Optional[float] = None,
early_stopping_method: str = "force",
verbose: bool = False,
agent_executor_kwargs: Optional[Dict[str, Any]] = None,
extra_tools: Sequence[BaseTool] = (),
**kwargs: Any,
) -> AgentExecutor:
"""Construct an SQL agent from an LLM and tools."""
from langchain.agents.agent import AgentExecutor, BaseSingleActionAgent
from langchain.agents.agent_types import AgentType
from langchain.agents.mrkl.base import ZeroShotAgent
from langchain.agents.openai_functions_agent.base import OpenAIFunctionsAgent
from langchain.chains.llm import LLMChain
agent_type = agent_type or AgentType.ZERO_SHOT_REACT_DESCRIPTION
tools = toolkit.get_tools() + list(extra_tools)
prefix = prefix.format(dialect=toolkit.dialect, top_k=top_k)
agent: BaseSingleActionAgent
if agent_type == AgentType.ZERO_SHOT_REACT_DESCRIPTION:
prompt_params = {"format_instructions": format_instructions} if format_instructions is not None else {}
prompt = ZeroShotAgent.create_prompt(
tools,
prefix=prefix,
suffix=suffix or SQL_SUFFIX,
input_variables=input_variables,
**prompt_params,
)
llm_chain = LLMChain(
llm=llm,
prompt=prompt,
callback_manager=callback_manager,
)
tool_names = [tool.name for tool in tools]
agent = ZeroShotAgent(llm_chain=llm_chain, allowed_tools=tool_names, **kwargs)
elif agent_type == AgentType.OPENAI_FUNCTIONS:
messages = [
SystemMessage(content=prefix),
HumanMessagePromptTemplate.from_template("{input}"),
AIMessage(content=suffix or SQL_FUNCTIONS_SUFFIX),
MessagesPlaceholder(variable_name="agent_scratchpad"),
]
input_variables = ["input", "agent_scratchpad"]
_prompt = ChatPromptTemplate(input_variables=input_variables, messages=messages)
agent = OpenAIFunctionsAgent(
llm=llm,
prompt=_prompt,
tools=tools,
callback_manager=callback_manager,
**kwargs,
)
else:
raise ValueError(f"Agent type {agent_type} not supported at the moment.")
return AgentExecutor.from_agent_and_tools(
agent=agent,
tools=tools,
callback_manager=callback_manager,
verbose=verbose,
max_iterations=max_iterations,
max_execution_time=max_execution_time,
early_stopping_method=early_stopping_method,
**(agent_executor_kwargs or {}),
)

View File

@@ -0,0 +1,103 @@
"""VectorStore agent."""
from __future__ import annotations
from typing import Any, Dict, Optional, TYPE_CHECKING
from langchain_core.callbacks import BaseCallbackManager
from langchain_core.language_models import BaseLanguageModel
from langchain_community.agent_toolkits.vectorstore.prompt import PREFIX, ROUTER_PREFIX
from langchain_community.agent_toolkits.vectorstore.toolkit import (
VectorStoreRouterToolkit,
VectorStoreToolkit,
)
if TYPE_CHECKING:
from langchain.agents.agent import AgentExecutor
def create_vectorstore_agent(
llm: BaseLanguageModel,
toolkit: VectorStoreToolkit,
callback_manager: Optional[BaseCallbackManager] = None,
prefix: str = PREFIX,
verbose: bool = False,
agent_executor_kwargs: Optional[Dict[str, Any]] = None,
**kwargs: Any,
) -> AgentExecutor:
"""Construct a VectorStore agent from an LLM and tools.
Args:
llm (BaseLanguageModel): LLM that will be used by the agent
toolkit (VectorStoreToolkit): Set of tools for the agent
callback_manager (Optional[BaseCallbackManager], optional): Object to handle the callback [ Defaults to None. ]
prefix (str, optional): The prefix prompt for the agent. If not provided uses default PREFIX.
verbose (bool, optional): If you want to see the content of the scratchpad. [ Defaults to False ]
agent_executor_kwargs (Optional[Dict[str, Any]], optional): If there is any other parameter you want to send to the agent. [ Defaults to None ]
**kwargs: Additional named parameters to pass to the ZeroShotAgent.
Returns:
AgentExecutor: Returns a callable AgentExecutor object. Either you can call it or use run method with the query to get the response
""" # noqa: E501
from langchain.agents.agent import AgentExecutor
from langchain.agents.mrkl.base import ZeroShotAgent
from langchain.chains.llm import LLMChain
tools = toolkit.get_tools()
prompt = ZeroShotAgent.create_prompt(tools, prefix=prefix)
llm_chain = LLMChain(
llm=llm,
prompt=prompt,
callback_manager=callback_manager,
)
tool_names = [tool.name for tool in tools]
agent = ZeroShotAgent(llm_chain=llm_chain, allowed_tools=tool_names, **kwargs)
return AgentExecutor.from_agent_and_tools(
agent=agent,
tools=tools,
callback_manager=callback_manager,
verbose=verbose,
**(agent_executor_kwargs or {}),
)
def create_vectorstore_router_agent(
llm: BaseLanguageModel,
toolkit: VectorStoreRouterToolkit,
callback_manager: Optional[BaseCallbackManager] = None,
prefix: str = ROUTER_PREFIX,
verbose: bool = False,
agent_executor_kwargs: Optional[Dict[str, Any]] = None,
**kwargs: Any,
) -> AgentExecutor:
"""Construct a VectorStore router agent from an LLM and tools.
Args:
llm (BaseLanguageModel): LLM that will be used by the agent
toolkit (VectorStoreRouterToolkit): Set of tools for the agent which have routing capability with multiple vector stores
callback_manager (Optional[BaseCallbackManager], optional): Object to handle the callback [ Defaults to None. ]
prefix (str, optional): The prefix prompt for the router agent. If not provided uses default ROUTER_PREFIX.
verbose (bool, optional): If you want to see the content of the scratchpad. [ Defaults to False ]
agent_executor_kwargs (Optional[Dict[str, Any]], optional): If there is any other parameter you want to send to the agent. [ Defaults to None ]
**kwargs: Additional named parameters to pass to the ZeroShotAgent.
Returns:
AgentExecutor: Returns a callable AgentExecutor object. Either you can call it or use run method with the query to get the response.
""" # noqa: E501
from langchain.agents.agent import AgentExecutor
from langchain.agents.mrkl.base import ZeroShotAgent
from langchain.chains.llm import LLMChain
tools = toolkit.get_tools()
prompt = ZeroShotAgent.create_prompt(tools, prefix=prefix)
llm_chain = LLMChain(
llm=llm,
prompt=prompt,
callback_manager=callback_manager,
)
tool_names = [tool.name for tool in tools]
agent = ZeroShotAgent(llm_chain=llm_chain, allowed_tools=tool_names, **kwargs)
return AgentExecutor.from_agent_and_tools(
agent=agent,
tools=tools,
callback_manager=callback_manager,
verbose=verbose,
**(agent_executor_kwargs or {}),
)

View File

@@ -0,0 +1,83 @@
"""**Callback handlers** allow listening to events in LangChain.
**Class hierarchy:**
.. code-block::
BaseCallbackHandler --> <name>CallbackHandler # Example: AimCallbackHandler
"""
from langchain_core.callbacks import (
StdOutCallbackHandler,
StreamingStdOutCallbackHandler,
)
from langchain_core.tracers.langchain import LangChainTracer
from langchain_community.callbacks.aim_callback import AimCallbackHandler
from langchain_community.callbacks.argilla_callback import ArgillaCallbackHandler
from langchain_community.callbacks.arize_callback import ArizeCallbackHandler
from langchain_community.callbacks.arthur_callback import ArthurCallbackHandler
from langchain_community.callbacks.clearml_callback import ClearMLCallbackHandler
from langchain_community.callbacks.comet_ml_callback import CometCallbackHandler
from langchain_community.callbacks.context_callback import ContextCallbackHandler
from langchain_community.callbacks.file import FileCallbackHandler
from langchain_community.callbacks.flyte_callback import FlyteCallbackHandler
from langchain_community.callbacks.human import HumanApprovalCallbackHandler
from langchain_community.callbacks.infino_callback import InfinoCallbackHandler
from langchain_community.callbacks.labelstudio_callback import (
LabelStudioCallbackHandler,
)
from langchain_community.callbacks.llmonitor_callback import LLMonitorCallbackHandler
from langchain_community.callbacks.manager import (
get_openai_callback,
wandb_tracing_enabled,
)
from langchain_community.callbacks.mlflow_callback import MlflowCallbackHandler
from langchain_community.callbacks.openai_info import OpenAICallbackHandler
from langchain_community.callbacks.promptlayer_callback import (
PromptLayerCallbackHandler,
)
from langchain_community.callbacks.sagemaker_callback import SageMakerCallbackHandler
from langchain_community.callbacks.streaming_aiter import AsyncIteratorCallbackHandler
from langchain_community.callbacks.streaming_stdout_final_only import (
FinalStreamingStdOutCallbackHandler,
)
from langchain_community.callbacks.streamlit import (
LLMThoughtLabeler,
StreamlitCallbackHandler,
)
from langchain_community.callbacks.trubrics_callback import TrubricsCallbackHandler
from langchain_community.callbacks.wandb_callback import WandbCallbackHandler
from langchain_community.callbacks.whylabs_callback import WhyLabsCallbackHandler
__all__ = [
"AimCallbackHandler",
"ArgillaCallbackHandler",
"ArizeCallbackHandler",
"PromptLayerCallbackHandler",
"ArthurCallbackHandler",
"ClearMLCallbackHandler",
"CometCallbackHandler",
"ContextCallbackHandler",
"FileCallbackHandler",
"HumanApprovalCallbackHandler",
"InfinoCallbackHandler",
"MlflowCallbackHandler",
"LLMonitorCallbackHandler",
"OpenAICallbackHandler",
"StdOutCallbackHandler",
"AsyncIteratorCallbackHandler",
"StreamingStdOutCallbackHandler",
"FinalStreamingStdOutCallbackHandler",
"LLMThoughtLabeler",
"LangChainTracer",
"StreamlitCallbackHandler",
"WandbCallbackHandler",
"WhyLabsCallbackHandler",
"get_openai_callback",
"wandb_tracing_enabled",
"FlyteCallbackHandler",
"SageMakerCallbackHandler",
"LabelStudioCallbackHandler",
"TrubricsCallbackHandler",
]

View File

@@ -0,0 +1,69 @@
from __future__ import annotations
import logging
from contextlib import contextmanager
from contextvars import ContextVar
from typing import (
Generator,
Optional,
)
from langchain_core.tracers.context import register_configure_hook
from langchain_community.callbacks.openai_info import OpenAICallbackHandler
from langchain_community.callbacks.tracers.wandb import WandbTracer
logger = logging.getLogger(__name__)
openai_callback_var: ContextVar[Optional[OpenAICallbackHandler]] = ContextVar(
"openai_callback", default=None
)
wandb_tracing_callback_var: ContextVar[Optional[WandbTracer]] = ContextVar( # noqa: E501
"tracing_wandb_callback", default=None
)
register_configure_hook(openai_callback_var, True)
register_configure_hook(
wandb_tracing_callback_var, True, WandbTracer, "LANGCHAIN_WANDB_TRACING"
)
@contextmanager
def get_openai_callback() -> Generator[OpenAICallbackHandler, None, None]:
"""Get the OpenAI callback handler in a context manager.
which conveniently exposes token and cost information.
Returns:
OpenAICallbackHandler: The OpenAI callback handler.
Example:
>>> with get_openai_callback() as cb:
... # Use the OpenAI callback handler
"""
cb = OpenAICallbackHandler()
openai_callback_var.set(cb)
yield cb
openai_callback_var.set(None)
@contextmanager
def wandb_tracing_enabled(
session_name: str = "default",
) -> Generator[None, None, None]:
"""Get the WandbTracer in a context manager.
Args:
session_name (str, optional): The name of the session.
Defaults to "default".
Returns:
None
Example:
>>> with wandb_tracing_enabled() as session:
... # Use the WandbTracer session
"""
cb = WandbTracer()
wandb_tracing_callback_var.set(cb)
yield None
wandb_tracing_callback_var.set(None)

View File

@@ -0,0 +1,20 @@
"""Tracers that record execution of LangChain runs."""
from langchain_core.tracers.langchain import LangChainTracer
from langchain_core.tracers.langchain_v1 import LangChainTracerV1
from langchain_core.tracers.stdout import (
ConsoleCallbackHandler,
FunctionCallbackHandler,
)
from langchain_community.callbacks.tracers.logging import LoggingCallbackHandler
from langchain_community.callbacks.tracers.wandb import WandbTracer
__all__ = [
"ConsoleCallbackHandler",
"FunctionCallbackHandler",
"LoggingCallbackHandler",
"LangChainTracer",
"LangChainTracerV1",
"WandbTracer",
]

View File

@@ -0,0 +1,78 @@
"""**Chat Models** are a variation on language models.
While Chat Models use language models under the hood, the interface they expose
is a bit different. Rather than expose a "text in, text out" API, they expose
an interface where "chat messages" are the inputs and outputs.
**Class hierarchy:**
.. code-block::
BaseLanguageModel --> BaseChatModel --> <name> # Examples: ChatOpenAI, ChatGooglePalm
**Main helpers:**
.. code-block::
AIMessage, BaseMessage, HumanMessage
""" # noqa: E501
from langchain_community.chat_models.anthropic import ChatAnthropic
from langchain_community.chat_models.anyscale import ChatAnyscale
from langchain_community.chat_models.baichuan import ChatBaichuan
from langchain_community.chat_models.baidu_qianfan_endpoint import QianfanChatEndpoint
from langchain_community.chat_models.bedrock import BedrockChat
from langchain_community.chat_models.cohere import ChatCohere
from langchain_community.chat_models.databricks import ChatDatabricks
from langchain_community.chat_models.ernie import ErnieBotChat
from langchain_community.chat_models.everlyai import ChatEverlyAI
from langchain_community.chat_models.fake import FakeListChatModel
from langchain_community.chat_models.fireworks import ChatFireworks
from langchain_community.chat_models.gigachat import GigaChat
from langchain_community.chat_models.google_palm import ChatGooglePalm
from langchain_community.chat_models.human import HumanInputChatModel
from langchain_community.chat_models.hunyuan import ChatHunyuan
from langchain_community.chat_models.javelin_ai_gateway import ChatJavelinAIGateway
from langchain_community.chat_models.jinachat import JinaChat
from langchain_community.chat_models.konko import ChatKonko
from langchain_community.chat_models.litellm import ChatLiteLLM
from langchain_community.chat_models.minimax import MiniMaxChat
from langchain_community.chat_models.mlflow import ChatMlflow
from langchain_community.chat_models.mlflow_ai_gateway import ChatMLflowAIGateway
from langchain_community.chat_models.ollama import ChatOllama
from langchain_community.chat_models.pai_eas_endpoint import PaiEasChatEndpoint
from langchain_community.chat_models.promptlayer_openai import PromptLayerChatOpenAI
from langchain_community.chat_models.vertexai import ChatVertexAI
from langchain_community.chat_models.volcengine_maas import VolcEngineMaasChat
from langchain_community.chat_models.yandex import ChatYandexGPT
__all__ = [
"BedrockChat",
"FakeListChatModel",
"PromptLayerChatOpenAI",
"ChatDatabricks",
"ChatEverlyAI",
"ChatAnthropic",
"ChatCohere",
"ChatGooglePalm",
"ChatMlflow",
"ChatMLflowAIGateway",
"ChatOllama",
"ChatVertexAI",
"JinaChat",
"HumanInputChatModel",
"MiniMaxChat",
"ChatAnyscale",
"ChatLiteLLM",
"ErnieBotChat",
"ChatJavelinAIGateway",
"ChatKonko",
"PaiEasChatEndpoint",
"QianfanChatEndpoint",
"ChatFireworks",
"ChatYandexGPT",
"ChatBaichuan",
"ChatHunyuan",
"GigaChat",
"VolcEngineMaasChat",
]

View File

@@ -0,0 +1,101 @@
"""Abstract interface for document loader implementations."""
from __future__ import annotations
from abc import ABC, abstractmethod
from typing import Iterator, List, Optional, TYPE_CHECKING
from langchain_core.documents import Document
from langchain_community.document_loaders.blob_loaders import Blob
if TYPE_CHECKING:
from langchain.text_splitter import TextSplitter
class BaseLoader(ABC):
"""Interface for Document Loader.
Implementations should implement the lazy-loading method using generators
to avoid loading all Documents into memory at once.
The `load` method will remain as is for backwards compatibility, but its
implementation should be just `list(self.lazy_load())`.
"""
# Sub-classes should implement this method
# as return list(self.lazy_load()).
# This method returns a List which is materialized in memory.
@abstractmethod
def load(self) -> List[Document]:
"""Load data into Document objects."""
def load_and_split(
self, text_splitter: Optional[TextSplitter] = None
) -> List[Document]:
"""Load Documents and split into chunks. Chunks are returned as Documents.
Args:
text_splitter: TextSplitter instance to use for splitting documents.
Defaults to RecursiveCharacterTextSplitter.
Returns:
List of Documents.
"""
from langchain.text_splitter import RecursiveCharacterTextSplitter
if text_splitter is None:
_text_splitter: TextSplitter = RecursiveCharacterTextSplitter()
else:
_text_splitter = text_splitter
docs = self.load()
return _text_splitter.split_documents(docs)
# Attention: This method will be upgraded into an abstractmethod once it's
# implemented in all the existing subclasses.
def lazy_load(
self,
) -> Iterator[Document]:
"""A lazy loader for Documents."""
raise NotImplementedError(
f"{self.__class__.__name__} does not implement lazy_load()"
)
class BaseBlobParser(ABC):
"""Abstract interface for blob parsers.
A blob parser provides a way to parse raw data stored in a blob into one
or more documents.
The parser can be composed with blob loaders, making it easy to reuse
a parser independent of how the blob was originally loaded.
"""
@abstractmethod
def lazy_parse(self, blob: Blob) -> Iterator[Document]:
"""Lazy parsing interface.
Subclasses are required to implement this method.
Args:
blob: Blob instance
Returns:
Generator of documents
"""
def parse(self, blob: Blob) -> List[Document]:
"""Eagerly parse the blob into a document or documents.
This is a convenience method for interactive development environment.
Production applications should favor the lazy_parse method instead.
Subclasses should generally not over-ride this parse method.
Args:
blob: Blob instance
Returns:
List of documents
"""
return list(self.lazy_parse(blob))

View File

@@ -0,0 +1,147 @@
"""Use to load blobs from the local file system."""
from pathlib import Path
from typing import Callable, Iterable, Iterator, Optional, Sequence, TypeVar, Union
from langchain_community.document_loaders.blob_loaders.schema import Blob, BlobLoader
T = TypeVar("T")
def _make_iterator(
length_func: Callable[[], int], show_progress: bool = False
) -> Callable[[Iterable[T]], Iterator[T]]:
"""Create a function that optionally wraps an iterable in tqdm."""
if show_progress:
try:
from tqdm.auto import tqdm
except ImportError:
raise ImportError(
"You must install tqdm to use show_progress=True."
"You can install tqdm with `pip install tqdm`."
)
# Make sure to provide `total` here so that tqdm can show
# a progress bar that takes into account the total number of files.
def _with_tqdm(iterable: Iterable[T]) -> Iterator[T]:
"""Wrap an iterable in a tqdm progress bar."""
return tqdm(iterable, total=length_func())
iterator = _with_tqdm
else:
iterator = iter # type: ignore
return iterator
# PUBLIC API
class FileSystemBlobLoader(BlobLoader):
"""Load blobs in the local file system.
Example:
.. code-block:: python
from langchain_community.document_loaders.blob_loaders import FileSystemBlobLoader
loader = FileSystemBlobLoader("/path/to/directory")
for blob in loader.yield_blobs():
print(blob)
""" # noqa: E501
def __init__(
self,
path: Union[str, Path],
*,
glob: str = "**/[!.]*",
exclude: Sequence[str] = (),
suffixes: Optional[Sequence[str]] = None,
show_progress: bool = False,
) -> None:
"""Initialize with a path to directory and how to glob over it.
Args:
path: Path to directory to load from or path to file to load.
If a path to a file is provided, glob/exclude/suffixes are ignored.
glob: Glob pattern relative to the specified path
by default set to pick up all non-hidden files
exclude: patterns to exclude from results, use glob syntax
suffixes: Provide to keep only files with these suffixes
Useful when wanting to keep files with different suffixes
Suffixes must include the dot, e.g. ".txt"
show_progress: If true, will show a progress bar as the files are loaded.
This forces an iteration through all matching files
to count them prior to loading them.
Examples:
.. code-block:: python
from langchain_community.document_loaders.blob_loaders import FileSystemBlobLoader
# Load a single file.
loader = FileSystemBlobLoader("/path/to/file.txt")
# Recursively load all text files in a directory.
loader = FileSystemBlobLoader("/path/to/directory", glob="**/*.txt")
# Recursively load all non-hidden files in a directory.
loader = FileSystemBlobLoader("/path/to/directory", glob="**/[!.]*")
# Load all files in a directory without recursion.
loader = FileSystemBlobLoader("/path/to/directory", glob="*")
# Recursively load all files in a directory, except for py or pyc files.
loader = FileSystemBlobLoader(
"/path/to/directory",
glob="**/*.txt",
exclude=["**/*.py", "**/*.pyc"]
)
""" # noqa: E501
if isinstance(path, Path):
_path = path
elif isinstance(path, str):
_path = Path(path)
else:
raise TypeError(f"Expected str or Path, got {type(path)}")
self.path = _path.expanduser() # Expand user to handle ~
self.glob = glob
self.suffixes = set(suffixes or [])
self.show_progress = show_progress
self.exclude = exclude
def yield_blobs(
self,
) -> Iterable[Blob]:
"""Yield blobs that match the requested pattern."""
iterator = _make_iterator(
length_func=self.count_matching_files, show_progress=self.show_progress
)
for path in iterator(self._yield_paths()):
yield Blob.from_path(path)
def _yield_paths(self) -> Iterable[Path]:
"""Yield paths that match the requested pattern."""
if self.path.is_file():
yield self.path
return
paths = self.path.glob(self.glob)
for path in paths:
if self.exclude:
if any(path.match(glob) for glob in self.exclude):
continue
if path.is_file():
if self.suffixes and path.suffix not in self.suffixes:
continue
yield path
def count_matching_files(self) -> int:
"""Count files that match the pattern without loading them."""
# Carry out a full iteration to count the files without
# materializing anything expensive in memory.
num = 0
for _ in self._yield_paths():
num += 1
return num

View File

@@ -0,0 +1,190 @@
from __future__ import annotations
from pathlib import Path
from typing import (
TYPE_CHECKING,
Any,
Iterator,
List,
Literal,
Optional,
Sequence,
Union,
)
from langchain_core.documents import Document
from langchain_community.document_loaders.base import BaseBlobParser, BaseLoader
from langchain_community.document_loaders.blob_loaders import (
BlobLoader,
FileSystemBlobLoader,
)
from langchain_community.document_loaders.parsers.registry import get_parser
if TYPE_CHECKING:
from langchain.text_splitter import TextSplitter
_PathLike = Union[str, Path]
DEFAULT = Literal["default"]
class GenericLoader(BaseLoader):
"""Generic Document Loader.
A generic document loader that allows combining an arbitrary blob loader with
a blob parser.
Examples:
Parse a specific PDF file:
.. code-block:: python
from langchain_community.document_loaders import GenericLoader
from langchain_community.document_loaders.parsers.pdf import PyPDFParser
# Recursively load all text files in a directory.
loader = GenericLoader.from_filesystem(
"my_lovely_pdf.pdf",
parser=PyPDFParser()
)
.. code-block:: python
from langchain_community.document_loaders import GenericLoader
from langchain_community.document_loaders.blob_loaders import FileSystemBlobLoader
loader = GenericLoader.from_filesystem(
path="path/to/directory",
glob="**/[!.]*",
suffixes=[".pdf"],
show_progress=True,
)
docs = loader.lazy_load()
next(docs)
Example instantiations to change which files are loaded:
.. code-block:: python
# Recursively load all text files in a directory.
loader = GenericLoader.from_filesystem("/path/to/dir", glob="**/*.txt")
# Recursively load all non-hidden files in a directory.
loader = GenericLoader.from_filesystem("/path/to/dir", glob="**/[!.]*")
# Load all files in a directory without recursion.
loader = GenericLoader.from_filesystem("/path/to/dir", glob="*")
Example instantiations to change which parser is used:
.. code-block:: python
from langchain_community.document_loaders.parsers.pdf import PyPDFParser
# Recursively load all text files in a directory.
loader = GenericLoader.from_filesystem(
"/path/to/dir",
glob="**/*.pdf",
parser=PyPDFParser()
)
""" # noqa: E501
def __init__(
self,
blob_loader: BlobLoader,
blob_parser: BaseBlobParser,
) -> None:
"""A generic document loader.
Args:
blob_loader: A blob loader which knows how to yield blobs
blob_parser: A blob parser which knows how to parse blobs into documents
"""
self.blob_loader = blob_loader
self.blob_parser = blob_parser
def lazy_load(
self,
) -> Iterator[Document]:
"""Load documents lazily. Use this when working at a large scale."""
for blob in self.blob_loader.yield_blobs():
yield from self.blob_parser.lazy_parse(blob)
def load(self) -> List[Document]:
"""Load all documents."""
return list(self.lazy_load())
def load_and_split(
self, text_splitter: Optional[TextSplitter] = None
) -> List[Document]:
"""Load all documents and split them into sentences."""
raise NotImplementedError(
"Loading and splitting is not yet implemented for generic loaders. "
"When they will be implemented they will be added via the initializer. "
"This method should not be used going forward."
)
@classmethod
def from_filesystem(
cls,
path: _PathLike,
*,
glob: str = "**/[!.]*",
exclude: Sequence[str] = (),
suffixes: Optional[Sequence[str]] = None,
show_progress: bool = False,
parser: Union[DEFAULT, BaseBlobParser] = "default",
parser_kwargs: Optional[dict] = None,
) -> GenericLoader:
"""Create a generic document loader using a filesystem blob loader.
Args:
path: The path to the directory to load documents from OR the path to a
single file to load. If this is a file, glob, exclude, suffixes
will be ignored.
glob: The glob pattern to use to find documents.
suffixes: The suffixes to use to filter documents. If None, all files
matching the glob will be loaded.
exclude: A list of patterns to exclude from the loader.
show_progress: Whether to show a progress bar or not (requires tqdm).
Proxies to the file system loader.
parser: A blob parser which knows how to parse blobs into documents,
will instantiate a default parser if not provided.
The default can be overridden by either passing a parser or
setting the class attribute `blob_parser` (the latter
should be used with inheritance).
parser_kwargs: Keyword arguments to pass to the parser.
Returns:
A generic document loader.
"""
blob_loader = FileSystemBlobLoader(
path,
glob=glob,
exclude=exclude,
suffixes=suffixes,
show_progress=show_progress,
)
if isinstance(parser, str):
if parser == "default":
try:
# If there is an implementation of get_parser on the class, use it.
blob_parser = cls.get_parser(**(parser_kwargs or {}))
except NotImplementedError:
# if not then use the global registry.
blob_parser = get_parser(parser)
else:
blob_parser = get_parser(parser)
else:
blob_parser = parser
return cls(blob_loader, blob_parser)
@staticmethod
def get_parser(**kwargs: Any) -> BaseBlobParser:
"""Override this method to associate a default parser with the class."""
raise NotImplementedError()

View File

@@ -0,0 +1,70 @@
"""Code for generic / auxiliary parsers.
This module contains some logic to help assemble more sophisticated parsers.
"""
from typing import Iterator, Mapping, Optional
from langchain_core.documents import Document
from langchain_community.document_loaders.base import BaseBlobParser
from langchain_community.document_loaders.blob_loaders.schema import Blob
class MimeTypeBasedParser(BaseBlobParser):
"""Parser that uses `mime`-types to parse a blob.
This parser is useful for simple pipelines where the mime-type is sufficient
to determine how to parse a blob.
To use, configure handlers based on mime-types and pass them to the initializer.
Example:
.. code-block:: python
from langchain_community.document_loaders.parsers.generic import MimeTypeBasedParser
parser = MimeTypeBasedParser(
handlers={
"application/pdf": ...,
},
fallback_parser=...,
)
""" # noqa: E501
def __init__(
self,
handlers: Mapping[str, BaseBlobParser],
*,
fallback_parser: Optional[BaseBlobParser] = None,
) -> None:
"""Define a parser that uses mime-types to determine how to parse a blob.
Args:
handlers: A mapping from mime-types to functions that take a blob, parse it
and return a document.
fallback_parser: A fallback_parser parser to use if the mime-type is not
found in the handlers. If provided, this parser will be
used to parse blobs with all mime-types not found in
the handlers.
If not provided, a ValueError will be raised if the
mime-type is not found in the handlers.
"""
self.handlers = handlers
self.fallback_parser = fallback_parser
def lazy_parse(self, blob: Blob) -> Iterator[Document]:
"""Load documents from a blob."""
mimetype = blob.mimetype
if mimetype is None:
raise ValueError(f"{blob} does not have a mimetype.")
if mimetype in self.handlers:
handler = self.handlers[mimetype]
yield from handler.lazy_parse(blob)
else:
if self.fallback_parser is not None:
yield from self.fallback_parser.lazy_parse(blob)
else:
raise ValueError(f"Unsupported mime type: {mimetype}")

View File

@@ -0,0 +1,157 @@
from __future__ import annotations
from typing import Any, Dict, Iterator, Optional, TYPE_CHECKING
from langchain_core.documents import Document
from langchain_community.document_loaders.base import BaseBlobParser
from langchain_community.document_loaders.blob_loaders import Blob
from langchain_community.document_loaders.parsers.language.cobol import CobolSegmenter
from langchain_community.document_loaders.parsers.language.javascript import (
JavaScriptSegmenter,
)
from langchain_community.document_loaders.parsers.language.python import PythonSegmenter
if TYPE_CHECKING:
from langchain.text_splitter import Language
try:
from langchain.text_splitter import Language
LANGUAGE_EXTENSIONS: Dict[str, str] = {
"py": Language.PYTHON,
"js": Language.JS,
"cobol": Language.COBOL,
}
LANGUAGE_SEGMENTERS: Dict[str, Any] = {
Language.PYTHON: PythonSegmenter,
Language.JS: JavaScriptSegmenter,
Language.COBOL: CobolSegmenter,
}
except ImportError:
LANGUAGE_EXTENSIONS = {}
LANGUAGE_SEGMENTERS = {}
class LanguageParser(BaseBlobParser):
"""Parse using the respective programming language syntax.
Each top-level function and class in the code is loaded into separate documents.
Furthermore, an extra document is generated, containing the remaining top-level code
that excludes the already segmented functions and classes.
This approach can potentially improve the accuracy of QA models over source code.
Currently, the supported languages for code parsing are Python and JavaScript.
The language used for parsing can be configured, along with the minimum number of
lines required to activate the splitting based on syntax.
Examples:
.. code-block:: python
from langchain.text_splitter.Language
from langchain_community.document_loaders.generic import GenericLoader
from langchain_community.document_loaders.parsers import LanguageParser
loader = GenericLoader.from_filesystem(
"./code",
glob="**/*",
suffixes=[".py", ".js"],
parser=LanguageParser()
)
docs = loader.load()
Example instantiations to manually select the language:
.. code-block:: python
from langchain.text_splitter import Language
loader = GenericLoader.from_filesystem(
"./code",
glob="**/*",
suffixes=[".py"],
parser=LanguageParser(language=Language.PYTHON)
)
Example instantiations to set number of lines threshold:
.. code-block:: python
loader = GenericLoader.from_filesystem(
"./code",
glob="**/*",
suffixes=[".py"],
parser=LanguageParser(parser_threshold=200)
)
"""
def __init__(self, language: Optional[Language] = None, parser_threshold: int = 0):
"""
Language parser that split code using the respective language syntax.
Args:
language: If None (default), it will try to infer language from source.
parser_threshold: Minimum lines needed to activate parsing (0 by default).
"""
self.language = language
self.parser_threshold = parser_threshold
def lazy_parse(self, blob: Blob) -> Iterator[Document]:
code = blob.as_string()
language = self.language or (
LANGUAGE_EXTENSIONS.get(blob.source.rsplit(".", 1)[-1])
if isinstance(blob.source, str)
else None
)
if language is None:
yield Document(
page_content=code,
metadata={
"source": blob.source,
},
)
return
if self.parser_threshold >= len(code.splitlines()):
yield Document(
page_content=code,
metadata={
"source": blob.source,
"language": language,
},
)
return
self.Segmenter = LANGUAGE_SEGMENTERS[language]
segmenter = self.Segmenter(blob.as_string())
if not segmenter.is_valid():
yield Document(
page_content=code,
metadata={
"source": blob.source,
},
)
return
for functions_classes in segmenter.extract_functions_classes():
yield Document(
page_content=functions_classes,
metadata={
"source": blob.source,
"content_type": "functions_classes",
"language": language,
},
)
yield Document(
page_content=segmenter.simplify_code(),
metadata={
"source": blob.source,
"content_type": "simplified_code",
"language": language,
},
)

View File

@@ -0,0 +1,262 @@
from __future__ import annotations
import asyncio
import json
from pathlib import Path
from typing import TYPE_CHECKING, Dict, List, Optional, Union
from langchain_core.documents import Document
from langchain_community.document_loaders.base import BaseLoader
if TYPE_CHECKING:
import pandas as pd
from telethon.hints import EntityLike
def concatenate_rows(row: dict) -> str:
"""Combine message information in a readable format ready to be used."""
date = row["date"]
sender = row["from"]
text = row["text"]
return f"{sender} on {date}: {text}\n\n"
class TelegramChatFileLoader(BaseLoader):
"""Load from `Telegram chat` dump."""
def __init__(self, path: str):
"""Initialize with a path."""
self.file_path = path
def load(self) -> List[Document]:
"""Load documents."""
p = Path(self.file_path)
with open(p, encoding="utf8") as f:
d = json.load(f)
text = "".join(
concatenate_rows(message)
for message in d["messages"]
if message["type"] == "message" and isinstance(message["text"], str)
)
metadata = {"source": str(p)}
return [Document(page_content=text, metadata=metadata)]
def text_to_docs(text: Union[str, List[str]]) -> List[Document]:
"""Convert a string or list of strings to a list of Documents with metadata."""
from langchain.text_splitter import RecursiveCharacterTextSplitter
if isinstance(text, str):
# Take a single string as one page
text = [text]
page_docs = [Document(page_content=page) for page in text]
# Add page numbers as metadata
for i, doc in enumerate(page_docs):
doc.metadata["page"] = i + 1
# Split pages into chunks
doc_chunks = []
for doc in page_docs:
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=800,
separators=["\n\n", "\n", ".", "!", "?", ",", " ", ""],
chunk_overlap=20,
)
chunks = text_splitter.split_text(doc.page_content)
for i, chunk in enumerate(chunks):
doc = Document(
page_content=chunk, metadata={"page": doc.metadata["page"], "chunk": i}
)
# Add sources a metadata
doc.metadata["source"] = f"{doc.metadata['page']}-{doc.metadata['chunk']}"
doc_chunks.append(doc)
return doc_chunks
class TelegramChatApiLoader(BaseLoader):
"""Load `Telegram` chat json directory dump."""
def __init__(
self,
chat_entity: Optional[EntityLike] = None,
api_id: Optional[int] = None,
api_hash: Optional[str] = None,
username: Optional[str] = None,
file_path: str = "telegram_data.json",
):
"""Initialize with API parameters.
Args:
chat_entity: The chat entity to fetch data from.
api_id: The API ID.
api_hash: The API hash.
username: The username.
file_path: The file path to save the data to. Defaults to
"telegram_data.json".
"""
self.chat_entity = chat_entity
self.api_id = api_id
self.api_hash = api_hash
self.username = username
self.file_path = file_path
async def fetch_data_from_telegram(self) -> None:
"""Fetch data from Telegram API and save it as a JSON file."""
from telethon.sync import TelegramClient
data = []
async with TelegramClient(self.username, self.api_id, self.api_hash) as client:
async for message in client.iter_messages(self.chat_entity):
is_reply = message.reply_to is not None
reply_to_id = message.reply_to.reply_to_msg_id if is_reply else None
data.append(
{
"sender_id": message.sender_id,
"text": message.text,
"date": message.date.isoformat(),
"message.id": message.id,
"is_reply": is_reply,
"reply_to_id": reply_to_id,
}
)
with open(self.file_path, "w", encoding="utf-8") as f:
json.dump(data, f, ensure_ascii=False, indent=4)
def _get_message_threads(self, data: pd.DataFrame) -> dict:
"""Create a dictionary of message threads from the given data.
Args:
data (pd.DataFrame): A DataFrame containing the conversation \
data with columns:
- message.sender_id
- text
- date
- message.id
- is_reply
- reply_to_id
Returns:
dict: A dictionary where the key is the parent message ID and \
the value is a list of message IDs in ascending order.
"""
def find_replies(parent_id: int, reply_data: pd.DataFrame) -> List[int]:
"""
Recursively find all replies to a given parent message ID.
Args:
parent_id (int): The parent message ID.
reply_data (pd.DataFrame): A DataFrame containing reply messages.
Returns:
list: A list of message IDs that are replies to the parent message ID.
"""
# Find direct replies to the parent message ID
direct_replies = reply_data[reply_data["reply_to_id"] == parent_id][
"message.id"
].tolist()
# Recursively find replies to the direct replies
all_replies = []
for reply_id in direct_replies:
all_replies += [reply_id] + find_replies(reply_id, reply_data)
return all_replies
# Filter out parent messages
parent_messages = data[~data["is_reply"]]
# Filter out reply messages and drop rows with NaN in 'reply_to_id'
reply_messages = data[data["is_reply"]].dropna(subset=["reply_to_id"])
# Convert 'reply_to_id' to integer
reply_messages["reply_to_id"] = reply_messages["reply_to_id"].astype(int)
# Create a dictionary of message threads with parent message IDs as keys and \
# lists of reply message IDs as values
message_threads = {
parent_id: [parent_id] + find_replies(parent_id, reply_messages)
for parent_id in parent_messages["message.id"]
}
return message_threads
def _combine_message_texts(
self, message_threads: Dict[int, List[int]], data: pd.DataFrame
) -> str:
"""
Combine the message texts for each parent message ID based \
on the list of message threads.
Args:
message_threads (dict): A dictionary where the key is the parent message \
ID and the value is a list of message IDs in ascending order.
data (pd.DataFrame): A DataFrame containing the conversation data:
- message.sender_id
- text
- date
- message.id
- is_reply
- reply_to_id
Returns:
str: A combined string of message texts sorted by date.
"""
combined_text = ""
# Iterate through sorted parent message IDs
for parent_id, message_ids in message_threads.items():
# Get the message texts for the message IDs and sort them by date
message_texts = (
data[data["message.id"].isin(message_ids)]
.sort_values(by="date")["text"]
.tolist()
)
message_texts = [str(elem) for elem in message_texts]
# Combine the message texts
combined_text += " ".join(message_texts) + ".\n"
return combined_text.strip()
def load(self) -> List[Document]:
"""Load documents."""
if self.chat_entity is not None:
try:
import nest_asyncio
nest_asyncio.apply()
asyncio.run(self.fetch_data_from_telegram())
except ImportError:
raise ImportError(
"""`nest_asyncio` package not found.
please install with `pip install nest_asyncio`
"""
)
p = Path(self.file_path)
with open(p, encoding="utf8") as f:
d = json.load(f)
try:
import pandas as pd
except ImportError:
raise ImportError(
"""`pandas` package not found.
please install with `pip install pandas`
"""
)
normalized_messages = pd.json_normalize(d)
df = pd.DataFrame(normalized_messages)
message_threads = self._get_message_threads(df)
combined_texts = self._combine_message_texts(message_threads, df)
return text_to_docs(combined_texts)

View File

@@ -0,0 +1,149 @@
from typing import Any, Iterator, List, Sequence, cast
from langchain_core.documents import BaseDocumentTransformer, Document
class BeautifulSoupTransformer(BaseDocumentTransformer):
"""Transform HTML content by extracting specific tags and removing unwanted ones.
Example:
.. code-block:: python
from langchain_community.document_transformers import BeautifulSoupTransformer
bs4_transformer = BeautifulSoupTransformer()
docs_transformed = bs4_transformer.transform_documents(docs)
""" # noqa: E501
def __init__(self) -> None:
"""
Initialize the transformer.
This checks if the BeautifulSoup4 package is installed.
If not, it raises an ImportError.
"""
try:
import bs4 # noqa:F401
except ImportError:
raise ImportError(
"BeautifulSoup4 is required for BeautifulSoupTransformer. "
"Please install it with `pip install beautifulsoup4`."
)
def transform_documents(
self,
documents: Sequence[Document],
unwanted_tags: List[str] = ["script", "style"],
tags_to_extract: List[str] = ["p", "li", "div", "a"],
remove_lines: bool = True,
**kwargs: Any,
) -> Sequence[Document]:
"""
Transform a list of Document objects by cleaning their HTML content.
Args:
documents: A sequence of Document objects containing HTML content.
unwanted_tags: A list of tags to be removed from the HTML.
tags_to_extract: A list of tags whose content will be extracted.
remove_lines: If set to True, unnecessary lines will be
removed from the HTML content.
Returns:
A sequence of Document objects with transformed content.
"""
for doc in documents:
cleaned_content = doc.page_content
cleaned_content = self.remove_unwanted_tags(cleaned_content, unwanted_tags)
cleaned_content = self.extract_tags(cleaned_content, tags_to_extract)
if remove_lines:
cleaned_content = self.remove_unnecessary_lines(cleaned_content)
doc.page_content = cleaned_content
return documents
@staticmethod
def remove_unwanted_tags(html_content: str, unwanted_tags: List[str]) -> str:
"""
Remove unwanted tags from a given HTML content.
Args:
html_content: The original HTML content string.
unwanted_tags: A list of tags to be removed from the HTML.
Returns:
A cleaned HTML string with unwanted tags removed.
"""
from bs4 import BeautifulSoup
soup = BeautifulSoup(html_content, "html.parser")
for tag in unwanted_tags:
for element in soup.find_all(tag):
element.decompose()
return str(soup)
@staticmethod
def extract_tags(html_content: str, tags: List[str]) -> str:
"""
Extract specific tags from a given HTML content.
Args:
html_content: The original HTML content string.
tags: A list of tags to be extracted from the HTML.
Returns:
A string combining the content of the extracted tags.
"""
from bs4 import BeautifulSoup
soup = BeautifulSoup(html_content, "html.parser")
text_parts: List[str] = []
for element in soup.find_all():
if element.name in tags:
# Extract all navigable strings recursively from this element.
text_parts += get_navigable_strings(element)
# To avoid duplicate text, remove all descendants from the soup.
element.decompose()
return " ".join(text_parts)
@staticmethod
def remove_unnecessary_lines(content: str) -> str:
"""
Clean up the content by removing unnecessary lines.
Args:
content: A string, which may contain unnecessary lines or spaces.
Returns:
A cleaned string with unnecessary lines removed.
"""
lines = content.split("\n")
stripped_lines = [line.strip() for line in lines]
non_empty_lines = [line for line in stripped_lines if line]
cleaned_content = " ".join(non_empty_lines)
return cleaned_content
async def atransform_documents(
self,
documents: Sequence[Document],
**kwargs: Any,
) -> Sequence[Document]:
raise NotImplementedError
def get_navigable_strings(element: Any) -> Iterator[str]:
from bs4 import NavigableString, Tag
for child in cast(Tag, element).children:
if isinstance(child, Tag):
yield from get_navigable_strings(child)
elif isinstance(child, NavigableString):
if (element.name == "a") and (href := element.get("href")):
yield f"{child.strip()} ({href})"
else:
yield child.strip()

View File

@@ -0,0 +1,140 @@
"""Document transformers that use OpenAI Functions models"""
from typing import Any, Dict, Optional, Sequence, Type, Union
from langchain_core.documents import BaseDocumentTransformer, Document
from langchain_core.language_models import BaseLanguageModel
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.pydantic_v1 import BaseModel
class OpenAIMetadataTagger(BaseDocumentTransformer, BaseModel):
"""Extract metadata tags from document contents using OpenAI functions.
Example:
.. code-block:: python
from langchain_community.chat_models import ChatOpenAI
from langchain_community.document_transformers import OpenAIMetadataTagger
from langchain_core.documents import Document
schema = {
"properties": {
"movie_title": { "type": "string" },
"critic": { "type": "string" },
"tone": {
"type": "string",
"enum": ["positive", "negative"]
},
"rating": {
"type": "integer",
"description": "The number of stars the critic rated the movie"
}
},
"required": ["movie_title", "critic", "tone"]
}
# Must be an OpenAI model that supports functions
llm = ChatOpenAI(temperature=0, model="gpt-3.5-turbo-0613")
tagging_chain = create_tagging_chain(schema, llm)
document_transformer = OpenAIMetadataTagger(tagging_chain=tagging_chain)
original_documents = [
Document(page_content="Review of The Bee Movie\nBy Roger Ebert\n\nThis is the greatest movie ever made. 4 out of 5 stars."),
Document(page_content="Review of The Godfather\nBy Anonymous\n\nThis movie was super boring. 1 out of 5 stars.", metadata={"reliable": False}),
]
enhanced_documents = document_transformer.transform_documents(original_documents)
""" # noqa: E501
tagging_chain: Any
"""The chain used to extract metadata from each document."""
def transform_documents(
self, documents: Sequence[Document], **kwargs: Any
) -> Sequence[Document]:
"""Automatically extract and populate metadata
for each document according to the provided schema."""
new_documents = []
for document in documents:
extracted_metadata: Dict = self.tagging_chain.run(document.page_content) # type: ignore[assignment] # noqa: E501
new_document = Document(
page_content=document.page_content,
metadata={**extracted_metadata, **document.metadata},
)
new_documents.append(new_document)
return new_documents
async def atransform_documents(
self, documents: Sequence[Document], **kwargs: Any
) -> Sequence[Document]:
raise NotImplementedError
def create_metadata_tagger(
metadata_schema: Union[Dict[str, Any], Type[BaseModel]],
llm: BaseLanguageModel,
prompt: Optional[ChatPromptTemplate] = None,
*,
tagging_chain_kwargs: Optional[Dict] = None,
) -> OpenAIMetadataTagger:
"""Create a DocumentTransformer that uses an OpenAI function chain to automatically
tag documents with metadata based on their content and an input schema.
Args:
metadata_schema: Either a dictionary or pydantic.BaseModel class. If a dictionary
is passed in, it's assumed to already be a valid JsonSchema.
For best results, pydantic.BaseModels should have docstrings describing what
the schema represents and descriptions for the parameters.
llm: Language model to use, assumed to support the OpenAI function-calling API.
Defaults to use "gpt-3.5-turbo-0613"
prompt: BasePromptTemplate to pass to the model.
Returns:
An LLMChain that will pass the given function to the model.
Example:
.. code-block:: python
from langchain_community.chat_models import ChatOpenAI
from langchain_community.document_transformers import create_metadata_tagger
from langchain_core.documents import Document
schema = {
"properties": {
"movie_title": { "type": "string" },
"critic": { "type": "string" },
"tone": {
"type": "string",
"enum": ["positive", "negative"]
},
"rating": {
"type": "integer",
"description": "The number of stars the critic rated the movie"
}
},
"required": ["movie_title", "critic", "tone"]
}
# Must be an OpenAI model that supports functions
llm = ChatOpenAI(temperature=0, model="gpt-3.5-turbo-0613")
document_transformer = create_metadata_tagger(schema, llm)
original_documents = [
Document(page_content="Review of The Bee Movie\nBy Roger Ebert\n\nThis is the greatest movie ever made. 4 out of 5 stars."),
Document(page_content="Review of The Godfather\nBy Anonymous\n\nThis movie was super boring. 1 out of 5 stars.", metadata={"reliable": False}),
]
enhanced_documents = document_transformer.transform_documents(original_documents)
""" # noqa: E501
from langchain.chains.openai_functions import create_tagging_chain
metadata_schema = (
metadata_schema
if isinstance(metadata_schema, dict)
else metadata_schema.schema()
)
_tagging_chain_kwargs = tagging_chain_kwargs or {}
tagging_chain = create_tagging_chain(
metadata_schema, llm, prompt=prompt, **_tagging_chain_kwargs
)
return OpenAIMetadataTagger(tagging_chain=tagging_chain)

View File

@@ -0,0 +1,160 @@
"""**Embedding models** are wrappers around embedding models
from different APIs and services.
**Embedding models** can be LLMs or not.
**Class hierarchy:**
.. code-block::
Embeddings --> <name>Embeddings # Examples: CohereEmbeddings, HuggingFaceEmbeddings
"""
import logging
from typing import Any
from langchain_community.embeddings.aleph_alpha import (
AlephAlphaAsymmetricSemanticEmbedding,
AlephAlphaSymmetricSemanticEmbedding,
)
from langchain_community.embeddings.awa import AwaEmbeddings
from langchain_community.embeddings.baidu_qianfan_endpoint import (
QianfanEmbeddingsEndpoint,
)
from langchain_community.embeddings.bedrock import BedrockEmbeddings
from langchain_community.embeddings.bookend import BookendEmbeddings
from langchain_community.embeddings.cache import CacheBackedEmbeddings
from langchain_community.embeddings.clarifai import ClarifaiEmbeddings
from langchain_community.embeddings.cohere import CohereEmbeddings
from langchain_community.embeddings.dashscope import DashScopeEmbeddings
from langchain_community.embeddings.databricks import DatabricksEmbeddings
from langchain_community.embeddings.deepinfra import DeepInfraEmbeddings
from langchain_community.embeddings.edenai import EdenAiEmbeddings
from langchain_community.embeddings.elasticsearch import ElasticsearchEmbeddings
from langchain_community.embeddings.embaas import EmbaasEmbeddings
from langchain_community.embeddings.ernie import ErnieEmbeddings
from langchain_community.embeddings.fake import (
DeterministicFakeEmbedding,
FakeEmbeddings,
)
from langchain_community.embeddings.fastembed import FastEmbedEmbeddings
from langchain_community.embeddings.google_palm import GooglePalmEmbeddings
from langchain_community.embeddings.gpt4all import GPT4AllEmbeddings
from langchain_community.embeddings.gradient_ai import GradientEmbeddings
from langchain_community.embeddings.huggingface import (
HuggingFaceBgeEmbeddings,
HuggingFaceEmbeddings,
HuggingFaceInferenceAPIEmbeddings,
HuggingFaceInstructEmbeddings,
)
from langchain_community.embeddings.huggingface_hub import HuggingFaceHubEmbeddings
from langchain_community.embeddings.infinity import InfinityEmbeddings
from langchain_community.embeddings.javelin_ai_gateway import JavelinAIGatewayEmbeddings
from langchain_community.embeddings.jina import JinaEmbeddings
from langchain_community.embeddings.johnsnowlabs import JohnSnowLabsEmbeddings
from langchain_community.embeddings.llamacpp import LlamaCppEmbeddings
from langchain_community.embeddings.localai import LocalAIEmbeddings
from langchain_community.embeddings.minimax import MiniMaxEmbeddings
from langchain_community.embeddings.mlflow import MlflowEmbeddings
from langchain_community.embeddings.mlflow_gateway import MlflowAIGatewayEmbeddings
from langchain_community.embeddings.modelscope_hub import ModelScopeEmbeddings
from langchain_community.embeddings.mosaicml import MosaicMLInstructorEmbeddings
from langchain_community.embeddings.nlpcloud import NLPCloudEmbeddings
from langchain_community.embeddings.octoai_embeddings import OctoAIEmbeddings
from langchain_community.embeddings.ollama import OllamaEmbeddings
from langchain_community.embeddings.sagemaker_endpoint import (
SagemakerEndpointEmbeddings,
)
from langchain_community.embeddings.self_hosted import SelfHostedEmbeddings
from langchain_community.embeddings.self_hosted_hugging_face import (
SelfHostedHuggingFaceEmbeddings,
SelfHostedHuggingFaceInstructEmbeddings,
)
from langchain_community.embeddings.sentence_transformer import (
SentenceTransformerEmbeddings,
)
from langchain_community.embeddings.spacy_embeddings import SpacyEmbeddings
from langchain_community.embeddings.tensorflow_hub import TensorflowHubEmbeddings
from langchain_community.embeddings.vertexai import VertexAIEmbeddings
from langchain_community.embeddings.voyageai import VoyageEmbeddings
from langchain_community.embeddings.xinference import XinferenceEmbeddings
logger = logging.getLogger(__name__)
__all__ = [
"CacheBackedEmbeddings",
"ClarifaiEmbeddings",
"CohereEmbeddings",
"DatabricksEmbeddings",
"ElasticsearchEmbeddings",
"FastEmbedEmbeddings",
"HuggingFaceEmbeddings",
"HuggingFaceInferenceAPIEmbeddings",
"InfinityEmbeddings",
"GradientEmbeddings",
"JinaEmbeddings",
"LlamaCppEmbeddings",
"HuggingFaceHubEmbeddings",
"MlflowEmbeddings",
"MlflowAIGatewayEmbeddings",
"ModelScopeEmbeddings",
"TensorflowHubEmbeddings",
"SagemakerEndpointEmbeddings",
"HuggingFaceInstructEmbeddings",
"MosaicMLInstructorEmbeddings",
"SelfHostedEmbeddings",
"SelfHostedHuggingFaceEmbeddings",
"SelfHostedHuggingFaceInstructEmbeddings",
"FakeEmbeddings",
"DeterministicFakeEmbedding",
"AlephAlphaAsymmetricSemanticEmbedding",
"AlephAlphaSymmetricSemanticEmbedding",
"SentenceTransformerEmbeddings",
"GooglePalmEmbeddings",
"MiniMaxEmbeddings",
"VertexAIEmbeddings",
"BedrockEmbeddings",
"DeepInfraEmbeddings",
"EdenAiEmbeddings",
"DashScopeEmbeddings",
"EmbaasEmbeddings",
"OctoAIEmbeddings",
"SpacyEmbeddings",
"NLPCloudEmbeddings",
"GPT4AllEmbeddings",
"XinferenceEmbeddings",
"LocalAIEmbeddings",
"AwaEmbeddings",
"HuggingFaceBgeEmbeddings",
"ErnieEmbeddings",
"JavelinAIGatewayEmbeddings",
"OllamaEmbeddings",
"QianfanEmbeddingsEndpoint",
"JohnSnowLabsEmbeddings",
"VoyageEmbeddings",
"BookendEmbeddings",
]
# TODO: this is in here to maintain backwards compatibility
class HypotheticalDocumentEmbedder:
def __init__(self, *args: Any, **kwargs: Any):
logger.warning(
"Using a deprecated class. Please use "
"`from langchain.chains import HypotheticalDocumentEmbedder` instead"
)
from langchain.chains.hyde.base import HypotheticalDocumentEmbedder as H
return H(*args, **kwargs) # type: ignore
@classmethod
def from_llm(cls, *args: Any, **kwargs: Any) -> Any:
logger.warning(
"Using a deprecated class. Please use "
"`from langchain.chains import HypotheticalDocumentEmbedder` instead"
)
from langchain.chains.hyde.base import HypotheticalDocumentEmbedder as H
return H.from_llm(*args, **kwargs)

View File

@@ -0,0 +1,176 @@
"""Module contains code for a cache backed embedder.
The cache backed embedder is a wrapper around an embedder that caches
embeddings in a key-value store. The cache is used to avoid recomputing
embeddings for the same text.
The text is hashed and the hash is used as the key in the cache.
"""
from __future__ import annotations
import hashlib
import json
import uuid
from functools import partial
from typing import Callable, List, Sequence, Union, cast
from langchain_core.embeddings import Embeddings
from langchain_core.stores import BaseStore, ByteStore
from langchain_community.storage.encoder_backed import EncoderBackedStore
NAMESPACE_UUID = uuid.UUID(int=1985)
def _hash_string_to_uuid(input_string: str) -> uuid.UUID:
"""Hash a string and returns the corresponding UUID."""
hash_value = hashlib.sha1(input_string.encode("utf-8")).hexdigest()
return uuid.uuid5(NAMESPACE_UUID, hash_value)
def _key_encoder(key: str, namespace: str) -> str:
"""Encode a key."""
return namespace + str(_hash_string_to_uuid(key))
def _create_key_encoder(namespace: str) -> Callable[[str], str]:
"""Create an encoder for a key."""
return partial(_key_encoder, namespace=namespace)
def _value_serializer(value: Sequence[float]) -> bytes:
"""Serialize a value."""
return json.dumps(value).encode()
def _value_deserializer(serialized_value: bytes) -> List[float]:
"""Deserialize a value."""
return cast(List[float], json.loads(serialized_value.decode()))
class CacheBackedEmbeddings(Embeddings):
"""Interface for caching results from embedding models.
The interface allows works with any store that implements
the abstract store interface accepting keys of type str and values of list of
floats.
If need be, the interface can be extended to accept other implementations
of the value serializer and deserializer, as well as the key encoder.
Examples:
.. code-block: python
from langchain_community.embeddings import CacheBackedEmbeddings, OpenAIEmbeddings
from langchain_community.storage import LocalFileStore
store = LocalFileStore('./my_cache')
underlying_embedder = OpenAIEmbeddings()
embedder = CacheBackedEmbeddings.from_bytes_store(
underlying_embedder, store, namespace=underlying_embedder.model
)
# Embedding is computed and cached
embeddings = embedder.embed_documents(["hello", "goodbye"])
# Embeddings are retrieved from the cache, no computation is done
embeddings = embedder.embed_documents(["hello", "goodbye"])
""" # noqa: E501
def __init__(
self,
underlying_embeddings: Embeddings,
document_embedding_store: BaseStore[str, List[float]],
) -> None:
"""Initialize the embedder.
Args:
underlying_embeddings: the embedder to use for computing embeddings.
document_embedding_store: The store to use for caching document embeddings.
"""
super().__init__()
self.document_embedding_store = document_embedding_store
self.underlying_embeddings = underlying_embeddings
def embed_documents(self, texts: List[str]) -> List[List[float]]:
"""Embed a list of texts.
The method first checks the cache for the embeddings.
If the embeddings are not found, the method uses the underlying embedder
to embed the documents and stores the results in the cache.
Args:
texts: A list of texts to embed.
Returns:
A list of embeddings for the given texts.
"""
vectors: List[Union[List[float], None]] = self.document_embedding_store.mget(
texts
)
missing_indices: List[int] = [
i for i, vector in enumerate(vectors) if vector is None
]
missing_texts = [texts[i] for i in missing_indices]
if missing_texts:
missing_vectors = self.underlying_embeddings.embed_documents(missing_texts)
self.document_embedding_store.mset(
list(zip(missing_texts, missing_vectors))
)
for index, updated_vector in zip(missing_indices, missing_vectors):
vectors[index] = updated_vector
return cast(
List[List[float]], vectors
) # Nones should have been resolved by now
def embed_query(self, text: str) -> List[float]:
"""Embed query text.
This method does not support caching at the moment.
Support for caching queries is easily to implement, but might make
sense to hold off to see the most common patterns.
If the cache has an eviction policy, we may need to be a bit more careful
about sharing the cache between documents and queries. Generally,
one is OK evicting query caches, but document caches should be kept.
Args:
text: The text to embed.
Returns:
The embedding for the given text.
"""
return self.underlying_embeddings.embed_query(text)
@classmethod
def from_bytes_store(
cls,
underlying_embeddings: Embeddings,
document_embedding_cache: ByteStore,
*,
namespace: str = "",
) -> CacheBackedEmbeddings:
"""On-ramp that adds the necessary serialization and encoding to the store.
Args:
underlying_embeddings: The embedder to use for embedding.
document_embedding_cache: The cache to use for storing document embeddings.
*,
namespace: The namespace to use for document cache.
This namespace is used to avoid collisions with other caches.
For example, set it to the name of the embedding model used.
"""
namespace = namespace
key_encoder = _create_key_encoder(namespace)
encoder_backed_store = EncoderBackedStore[str, List[float]](
document_embedding_cache,
key_encoder,
_value_serializer,
_value_deserializer,
)
return cls(underlying_embeddings, encoder_backed_store)

View File

@@ -0,0 +1,343 @@
from typing import Any, Dict, List, Optional
import requests
from langchain_core.embeddings import Embeddings
from langchain_core.pydantic_v1 import BaseModel, Extra, Field
DEFAULT_MODEL_NAME = "sentence-transformers/all-mpnet-base-v2"
DEFAULT_INSTRUCT_MODEL = "hkunlp/instructor-large"
DEFAULT_BGE_MODEL = "BAAI/bge-large-en"
DEFAULT_EMBED_INSTRUCTION = "Represent the document for retrieval: "
DEFAULT_QUERY_INSTRUCTION = (
"Represent the question for retrieving supporting documents: "
)
DEFAULT_QUERY_BGE_INSTRUCTION_EN = (
"Represent this question for searching relevant passages: "
)
DEFAULT_QUERY_BGE_INSTRUCTION_ZH = "为这个句子生成表示以用于检索相关文章:"
class HuggingFaceEmbeddings(BaseModel, Embeddings):
"""HuggingFace sentence_transformers embedding models.
To use, you should have the ``sentence_transformers`` python package installed.
Example:
.. code-block:: python
from langchain_community.embeddings import HuggingFaceEmbeddings
model_name = "sentence-transformers/all-mpnet-base-v2"
model_kwargs = {'device': 'cpu'}
encode_kwargs = {'normalize_embeddings': False}
hf = HuggingFaceEmbeddings(
model_name=model_name,
model_kwargs=model_kwargs,
encode_kwargs=encode_kwargs
)
"""
client: Any #: :meta private:
model_name: str = DEFAULT_MODEL_NAME
"""Model name to use."""
cache_folder: Optional[str] = None
"""Path to store models.
Can be also set by SENTENCE_TRANSFORMERS_HOME environment variable."""
model_kwargs: Dict[str, Any] = Field(default_factory=dict)
"""Keyword arguments to pass to the model."""
encode_kwargs: Dict[str, Any] = Field(default_factory=dict)
"""Keyword arguments to pass when calling the `encode` method of the model."""
multi_process: bool = False
"""Run encode() on multiple GPUs."""
def __init__(self, **kwargs: Any):
"""Initialize the sentence_transformer."""
super().__init__(**kwargs)
try:
import sentence_transformers
except ImportError as exc:
raise ImportError(
"Could not import sentence_transformers python package. "
"Please install it with `pip install sentence-transformers`."
) from exc
self.client = sentence_transformers.SentenceTransformer(
self.model_name, cache_folder=self.cache_folder, **self.model_kwargs
)
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
def embed_documents(self, texts: List[str]) -> List[List[float]]:
"""Compute doc embeddings using a HuggingFace transformer model.
Args:
texts: The list of texts to embed.
Returns:
List of embeddings, one for each text.
"""
import sentence_transformers
texts = list(map(lambda x: x.replace("\n", " "), texts))
if self.multi_process:
pool = self.client.start_multi_process_pool()
embeddings = self.client.encode_multi_process(texts, pool)
sentence_transformers.SentenceTransformer.stop_multi_process_pool(pool)
else:
embeddings = self.client.encode(texts, **self.encode_kwargs)
return embeddings.tolist()
def embed_query(self, text: str) -> List[float]:
"""Compute query embeddings using a HuggingFace transformer model.
Args:
text: The text to embed.
Returns:
Embeddings for the text.
"""
return self.embed_documents([text])[0]
class HuggingFaceInstructEmbeddings(BaseModel, Embeddings):
"""Wrapper around sentence_transformers embedding models.
To use, you should have the ``sentence_transformers``
and ``InstructorEmbedding`` python packages installed.
Example:
.. code-block:: python
from langchain_community.embeddings import HuggingFaceInstructEmbeddings
model_name = "hkunlp/instructor-large"
model_kwargs = {'device': 'cpu'}
encode_kwargs = {'normalize_embeddings': True}
hf = HuggingFaceInstructEmbeddings(
model_name=model_name,
model_kwargs=model_kwargs,
encode_kwargs=encode_kwargs
)
"""
client: Any #: :meta private:
model_name: str = DEFAULT_INSTRUCT_MODEL
"""Model name to use."""
cache_folder: Optional[str] = None
"""Path to store models.
Can be also set by SENTENCE_TRANSFORMERS_HOME environment variable."""
model_kwargs: Dict[str, Any] = Field(default_factory=dict)
"""Keyword arguments to pass to the model."""
encode_kwargs: Dict[str, Any] = Field(default_factory=dict)
"""Keyword arguments to pass when calling the `encode` method of the model."""
embed_instruction: str = DEFAULT_EMBED_INSTRUCTION
"""Instruction to use for embedding documents."""
query_instruction: str = DEFAULT_QUERY_INSTRUCTION
"""Instruction to use for embedding query."""
def __init__(self, **kwargs: Any):
"""Initialize the sentence_transformer."""
super().__init__(**kwargs)
try:
from InstructorEmbedding import INSTRUCTOR
self.client = INSTRUCTOR(
self.model_name, cache_folder=self.cache_folder, **self.model_kwargs
)
except ImportError as e:
raise ImportError("Dependencies for InstructorEmbedding not found.") from e
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
def embed_documents(self, texts: List[str]) -> List[List[float]]:
"""Compute doc embeddings using a HuggingFace instruct model.
Args:
texts: The list of texts to embed.
Returns:
List of embeddings, one for each text.
"""
instruction_pairs = [[self.embed_instruction, text] for text in texts]
embeddings = self.client.encode(instruction_pairs, **self.encode_kwargs)
return embeddings.tolist()
def embed_query(self, text: str) -> List[float]:
"""Compute query embeddings using a HuggingFace instruct model.
Args:
text: The text to embed.
Returns:
Embeddings for the text.
"""
instruction_pair = [self.query_instruction, text]
embedding = self.client.encode([instruction_pair], **self.encode_kwargs)[0]
return embedding.tolist()
class HuggingFaceBgeEmbeddings(BaseModel, Embeddings):
"""HuggingFace BGE sentence_transformers embedding models.
To use, you should have the ``sentence_transformers`` python package installed.
Example:
.. code-block:: python
from langchain_community.embeddings import HuggingFaceBgeEmbeddings
model_name = "BAAI/bge-large-en"
model_kwargs = {'device': 'cpu'}
encode_kwargs = {'normalize_embeddings': True}
hf = HuggingFaceBgeEmbeddings(
model_name=model_name,
model_kwargs=model_kwargs,
encode_kwargs=encode_kwargs
)
"""
client: Any #: :meta private:
model_name: str = DEFAULT_BGE_MODEL
"""Model name to use."""
cache_folder: Optional[str] = None
"""Path to store models.
Can be also set by SENTENCE_TRANSFORMERS_HOME environment variable."""
model_kwargs: Dict[str, Any] = Field(default_factory=dict)
"""Keyword arguments to pass to the model."""
encode_kwargs: Dict[str, Any] = Field(default_factory=dict)
"""Keyword arguments to pass when calling the `encode` method of the model."""
query_instruction: str = DEFAULT_QUERY_BGE_INSTRUCTION_EN
"""Instruction to use for embedding query."""
def __init__(self, **kwargs: Any):
"""Initialize the sentence_transformer."""
super().__init__(**kwargs)
try:
import sentence_transformers
except ImportError as exc:
raise ImportError(
"Could not import sentence_transformers python package. "
"Please install it with `pip install sentence_transformers`."
) from exc
self.client = sentence_transformers.SentenceTransformer(
self.model_name, cache_folder=self.cache_folder, **self.model_kwargs
)
if "-zh" in self.model_name:
self.query_instruction = DEFAULT_QUERY_BGE_INSTRUCTION_ZH
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
def embed_documents(self, texts: List[str]) -> List[List[float]]:
"""Compute doc embeddings using a HuggingFace transformer model.
Args:
texts: The list of texts to embed.
Returns:
List of embeddings, one for each text.
"""
texts = [t.replace("\n", " ") for t in texts]
embeddings = self.client.encode(texts, **self.encode_kwargs)
return embeddings.tolist()
def embed_query(self, text: str) -> List[float]:
"""Compute query embeddings using a HuggingFace transformer model.
Args:
text: The text to embed.
Returns:
Embeddings for the text.
"""
text = text.replace("\n", " ")
embedding = self.client.encode(
self.query_instruction + text, **self.encode_kwargs
)
return embedding.tolist()
class HuggingFaceInferenceAPIEmbeddings(BaseModel, Embeddings):
"""Embed texts using the HuggingFace API.
Requires a HuggingFace Inference API key and a model name.
"""
api_key: str
"""Your API key for the HuggingFace Inference API."""
model_name: str = "sentence-transformers/all-MiniLM-L6-v2"
"""The name of the model to use for text embeddings."""
api_url: Optional[str] = None
"""Custom inference endpoint url. None for using default public url."""
@property
def _api_url(self) -> str:
return self.api_url or self._default_api_url
@property
def _default_api_url(self) -> str:
return (
"https://api-inference.huggingface.co"
"/pipeline"
"/feature-extraction"
f"/{self.model_name}"
)
@property
def _headers(self) -> dict:
return {"Authorization": f"Bearer {self.api_key}"}
def embed_documents(self, texts: List[str]) -> List[List[float]]:
"""Get the embeddings for a list of texts.
Args:
texts (Documents): A list of texts to get embeddings for.
Returns:
Embedded texts as List[List[float]], where each inner List[float]
corresponds to a single input text.
Example:
.. code-block:: python
from langchain_community.embeddings import HuggingFaceInferenceAPIEmbeddings
hf_embeddings = HuggingFaceInferenceAPIEmbeddings(
api_key="your_api_key",
model_name="sentence-transformers/all-MiniLM-l6-v2"
)
texts = ["Hello, world!", "How are you?"]
hf_embeddings.embed_documents(texts)
""" # noqa: E501
response = requests.post(
self._api_url,
headers=self._headers,
json={
"inputs": texts,
"options": {"wait_for_model": True, "use_cache": True},
},
)
return response.json()
def embed_query(self, text: str) -> List[float]:
"""Compute query embeddings using a HuggingFace transformer model.
Args:
text: The text to embed.
Returns:
Embeddings for the text.
"""
return self.embed_documents([text])[0]

View File

@@ -0,0 +1,92 @@
import os
import sys
from typing import Any, List
from langchain_core.embeddings import Embeddings
from langchain_core.pydantic_v1 import BaseModel, Extra
class JohnSnowLabsEmbeddings(BaseModel, Embeddings):
"""JohnSnowLabs embedding models
To use, you should have the ``johnsnowlabs`` python package installed.
Example:
.. code-block:: python
from langchain_community.embeddings.johnsnowlabs import JohnSnowLabsEmbeddings
embedding = JohnSnowLabsEmbeddings(model='embed_sentence.bert')
output = embedding.embed_query("foo bar")
""" # noqa: E501
model: Any = "embed_sentence.bert"
def __init__(
self,
model: Any = "embed_sentence.bert",
hardware_target: str = "cpu",
**kwargs: Any,
):
"""Initialize the johnsnowlabs model."""
super().__init__(**kwargs)
# 1) Check imports
try:
from johnsnowlabs import nlp
from nlu.pipe.pipeline import NLUPipeline
except ImportError as exc:
raise ImportError(
"Could not import johnsnowlabs python package. "
"Please install it with `pip install johnsnowlabs`."
) from exc
# 2) Start a Spark Session
try:
os.environ["PYSPARK_PYTHON"] = sys.executable
os.environ["PYSPARK_DRIVER_PYTHON"] = sys.executable
nlp.start(hardware_target=hardware_target)
except Exception as exc:
raise Exception("Failure starting Spark Session") from exc
# 3) Load the model
try:
if isinstance(model, str):
self.model = nlp.load(model)
elif isinstance(model, NLUPipeline):
self.model = model
else:
self.model = nlp.to_nlu_pipe(model)
except Exception as exc:
raise Exception("Failure loading model") from exc
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
def embed_documents(self, texts: List[str]) -> List[List[float]]:
"""Compute doc embeddings using a JohnSnowLabs transformer model.
Args:
texts: The list of texts to embed.
Returns:
List of embeddings, one for each text.
"""
df = self.model.predict(texts, output_level="document")
emb_col = None
for c in df.columns:
if "embedding" in c:
emb_col = c
return [vec.tolist() for vec in df[emb_col].tolist()]
def embed_query(self, text: str) -> List[float]:
"""Compute query embeddings using a JohnSnowLabs transformer model.
Args:
text: The text to embed.
Returns:
Embeddings for the text.
"""
return self.embed_documents([text])[0]

View File

@@ -0,0 +1,168 @@
import importlib
import logging
from typing import Any, Callable, List, Optional
from langchain_community.embeddings.self_hosted import SelfHostedEmbeddings
DEFAULT_MODEL_NAME = "sentence-transformers/all-mpnet-base-v2"
DEFAULT_INSTRUCT_MODEL = "hkunlp/instructor-large"
DEFAULT_EMBED_INSTRUCTION = "Represent the document for retrieval: "
DEFAULT_QUERY_INSTRUCTION = (
"Represent the question for retrieving supporting documents: "
)
logger = logging.getLogger(__name__)
def _embed_documents(client: Any, *args: Any, **kwargs: Any) -> List[List[float]]:
"""Inference function to send to the remote hardware.
Accepts a sentence_transformer model_id and
returns a list of embeddings for each document in the batch.
"""
return client.encode(*args, **kwargs)
def load_embedding_model(model_id: str, instruct: bool = False, device: int = 0) -> Any:
"""Load the embedding model."""
if not instruct:
import sentence_transformers
client = sentence_transformers.SentenceTransformer(model_id)
else:
from InstructorEmbedding import INSTRUCTOR
client = INSTRUCTOR(model_id)
if importlib.util.find_spec("torch") is not None:
import torch
cuda_device_count = torch.cuda.device_count()
if device < -1 or (device >= cuda_device_count):
raise ValueError(
f"Got device=={device}, "
f"device is required to be within [-1, {cuda_device_count})"
)
if device < 0 and cuda_device_count > 0:
logger.warning(
"Device has %d GPUs available. "
"Provide device={deviceId} to `from_model_id` to use available"
"GPUs for execution. deviceId is -1 for CPU and "
"can be a positive integer associated with CUDA device id.",
cuda_device_count,
)
client = client.to(device)
return client
class SelfHostedHuggingFaceEmbeddings(SelfHostedEmbeddings):
"""HuggingFace embedding models on self-hosted remote hardware.
Supported hardware includes auto-launched instances on AWS, GCP, Azure,
and Lambda, as well as servers specified
by IP address and SSH credentials (such as on-prem, or another cloud
like Paperspace, Coreweave, etc.).
To use, you should have the ``runhouse`` python package installed.
Example:
.. code-block:: python
from langchain_community.embeddings import SelfHostedHuggingFaceEmbeddings
import runhouse as rh
model_name = "sentence-transformers/all-mpnet-base-v2"
gpu = rh.cluster(name="rh-a10x", instance_type="A100:1")
hf = SelfHostedHuggingFaceEmbeddings(model_name=model_name, hardware=gpu)
"""
client: Any #: :meta private:
model_id: str = DEFAULT_MODEL_NAME
"""Model name to use."""
model_reqs: List[str] = ["./", "sentence_transformers", "torch"]
"""Requirements to install on hardware to inference the model."""
hardware: Any
"""Remote hardware to send the inference function to."""
model_load_fn: Callable = load_embedding_model
"""Function to load the model remotely on the server."""
load_fn_kwargs: Optional[dict] = None
"""Keyword arguments to pass to the model load function."""
inference_fn: Callable = _embed_documents
"""Inference function to extract the embeddings."""
def __init__(self, **kwargs: Any):
"""Initialize the remote inference function."""
load_fn_kwargs = kwargs.pop("load_fn_kwargs", {})
load_fn_kwargs["model_id"] = load_fn_kwargs.get("model_id", DEFAULT_MODEL_NAME)
load_fn_kwargs["instruct"] = load_fn_kwargs.get("instruct", False)
load_fn_kwargs["device"] = load_fn_kwargs.get("device", 0)
super().__init__(load_fn_kwargs=load_fn_kwargs, **kwargs)
class SelfHostedHuggingFaceInstructEmbeddings(SelfHostedHuggingFaceEmbeddings):
"""HuggingFace InstructEmbedding models on self-hosted remote hardware.
Supported hardware includes auto-launched instances on AWS, GCP, Azure,
and Lambda, as well as servers specified
by IP address and SSH credentials (such as on-prem, or another
cloud like Paperspace, Coreweave, etc.).
To use, you should have the ``runhouse`` python package installed.
Example:
.. code-block:: python
from langchain_community.embeddings import SelfHostedHuggingFaceInstructEmbeddings
import runhouse as rh
model_name = "hkunlp/instructor-large"
gpu = rh.cluster(name='rh-a10x', instance_type='A100:1')
hf = SelfHostedHuggingFaceInstructEmbeddings(
model_name=model_name, hardware=gpu)
""" # noqa: E501
model_id: str = DEFAULT_INSTRUCT_MODEL
"""Model name to use."""
embed_instruction: str = DEFAULT_EMBED_INSTRUCTION
"""Instruction to use for embedding documents."""
query_instruction: str = DEFAULT_QUERY_INSTRUCTION
"""Instruction to use for embedding query."""
model_reqs: List[str] = ["./", "InstructorEmbedding", "torch"]
"""Requirements to install on hardware to inference the model."""
def __init__(self, **kwargs: Any):
"""Initialize the remote inference function."""
load_fn_kwargs = kwargs.pop("load_fn_kwargs", {})
load_fn_kwargs["model_id"] = load_fn_kwargs.get(
"model_id", DEFAULT_INSTRUCT_MODEL
)
load_fn_kwargs["instruct"] = load_fn_kwargs.get("instruct", True)
load_fn_kwargs["device"] = load_fn_kwargs.get("device", 0)
super().__init__(load_fn_kwargs=load_fn_kwargs, **kwargs)
def embed_documents(self, texts: List[str]) -> List[List[float]]:
"""Compute doc embeddings using a HuggingFace instruct model.
Args:
texts: The list of texts to embed.
Returns:
List of embeddings, one for each text.
"""
instruction_pairs = []
for text in texts:
instruction_pairs.append([self.embed_instruction, text])
embeddings = self.client(self.pipeline_ref, instruction_pairs)
return embeddings.tolist()
def embed_query(self, text: str) -> List[float]:
"""Compute query embeddings using a HuggingFace instruct model.
Args:
text: The text to embed.
Returns:
Embeddings for the text.
"""
instruction_pair = [self.query_instruction, text]
embedding = self.client(self.pipeline_ref, [instruction_pair])[0]
return embedding.tolist()

View File

@@ -0,0 +1,853 @@
"""
**LLM** classes provide
access to the large language model (**LLM**) APIs and services.
**Class hierarchy:**
.. code-block::
BaseLanguageModel --> BaseLLM --> LLM --> <name> # Examples: AI21, HuggingFaceHub
**Main helpers:**
.. code-block::
LLMResult, PromptValue,
CallbackManagerForLLMRun, AsyncCallbackManagerForLLMRun,
CallbackManager, AsyncCallbackManager,
AIMessage, BaseMessage
""" # noqa: E501
from typing import Any, Callable, Dict, Type
from langchain_core.language_models.llms import BaseLLM
def _import_ai21() -> Any:
from langchain_community.llms.ai21 import AI21
return AI21
def _import_aleph_alpha() -> Any:
from langchain_community.llms.aleph_alpha import AlephAlpha
return AlephAlpha
def _import_amazon_api_gateway() -> Any:
from langchain_community.llms.amazon_api_gateway import AmazonAPIGateway
return AmazonAPIGateway
def _import_anthropic() -> Any:
from langchain_community.llms.anthropic import Anthropic
return Anthropic
def _import_anyscale() -> Any:
from langchain_community.llms.anyscale import Anyscale
return Anyscale
def _import_arcee() -> Any:
from langchain_community.llms.arcee import Arcee
return Arcee
def _import_aviary() -> Any:
from langchain_community.llms.aviary import Aviary
return Aviary
def _import_azureml_endpoint() -> Any:
from langchain_community.llms.azureml_endpoint import AzureMLOnlineEndpoint
return AzureMLOnlineEndpoint
def _import_baidu_qianfan_endpoint() -> Any:
from langchain_community.llms.baidu_qianfan_endpoint import QianfanLLMEndpoint
return QianfanLLMEndpoint
def _import_bananadev() -> Any:
from langchain_community.llms.bananadev import Banana
return Banana
def _import_baseten() -> Any:
from langchain_community.llms.baseten import Baseten
return Baseten
def _import_beam() -> Any:
from langchain_community.llms.beam import Beam
return Beam
def _import_bedrock() -> Any:
from langchain_community.llms.bedrock import Bedrock
return Bedrock
def _import_bittensor() -> Any:
from langchain_community.llms.bittensor import NIBittensorLLM
return NIBittensorLLM
def _import_cerebriumai() -> Any:
from langchain_community.llms.cerebriumai import CerebriumAI
return CerebriumAI
def _import_chatglm() -> Any:
from langchain_community.llms.chatglm import ChatGLM
return ChatGLM
def _import_clarifai() -> Any:
from langchain_community.llms.clarifai import Clarifai
return Clarifai
def _import_cohere() -> Any:
from langchain_community.llms.cohere import Cohere
return Cohere
def _import_ctransformers() -> Any:
from langchain_community.llms.ctransformers import CTransformers
return CTransformers
def _import_ctranslate2() -> Any:
from langchain_community.llms.ctranslate2 import CTranslate2
return CTranslate2
def _import_databricks() -> Any:
from langchain_community.llms.databricks import Databricks
return Databricks
def _import_databricks_chat() -> Any:
from langchain_community.chat_models.databricks import ChatDatabricks
return ChatDatabricks
def _import_deepinfra() -> Any:
from langchain_community.llms.deepinfra import DeepInfra
return DeepInfra
def _import_deepsparse() -> Any:
from langchain_community.llms.deepsparse import DeepSparse
return DeepSparse
def _import_edenai() -> Any:
from langchain_community.llms.edenai import EdenAI
return EdenAI
def _import_fake() -> Any:
from langchain_community.llms.fake import FakeListLLM
return FakeListLLM
def _import_fireworks() -> Any:
from langchain_community.llms.fireworks import Fireworks
return Fireworks
def _import_forefrontai() -> Any:
from langchain_community.llms.forefrontai import ForefrontAI
return ForefrontAI
def _import_gigachat() -> Any:
from langchain_community.llms.gigachat import GigaChat
return GigaChat
def _import_google_palm() -> Any:
from langchain_community.llms.google_palm import GooglePalm
return GooglePalm
def _import_gooseai() -> Any:
from langchain_community.llms.gooseai import GooseAI
return GooseAI
def _import_gpt4all() -> Any:
from langchain_community.llms.gpt4all import GPT4All
return GPT4All
def _import_gradient_ai() -> Any:
from langchain_community.llms.gradient_ai import GradientLLM
return GradientLLM
def _import_huggingface_endpoint() -> Any:
from langchain_community.llms.huggingface_endpoint import HuggingFaceEndpoint
return HuggingFaceEndpoint
def _import_huggingface_hub() -> Any:
from langchain_community.llms.huggingface_hub import HuggingFaceHub
return HuggingFaceHub
def _import_huggingface_pipeline() -> Any:
from langchain_community.llms.huggingface_pipeline import HuggingFacePipeline
return HuggingFacePipeline
def _import_huggingface_text_gen_inference() -> Any:
from langchain_community.llms.huggingface_text_gen_inference import (
HuggingFaceTextGenInference,
)
return HuggingFaceTextGenInference
def _import_human() -> Any:
from langchain_community.llms.human import HumanInputLLM
return HumanInputLLM
def _import_javelin_ai_gateway() -> Any:
from langchain_community.llms.javelin_ai_gateway import JavelinAIGateway
return JavelinAIGateway
def _import_koboldai() -> Any:
from langchain_community.llms.koboldai import KoboldApiLLM
return KoboldApiLLM
def _import_llamacpp() -> Any:
from langchain_community.llms.llamacpp import LlamaCpp
return LlamaCpp
def _import_manifest() -> Any:
from langchain_community.llms.manifest import ManifestWrapper
return ManifestWrapper
def _import_minimax() -> Any:
from langchain_community.llms.minimax import Minimax
return Minimax
def _import_mlflow() -> Any:
from langchain_community.llms.mlflow import Mlflow
return Mlflow
def _import_mlflow_chat() -> Any:
from langchain_community.chat_models.mlflow import ChatMlflow
return ChatMlflow
def _import_mlflow_ai_gateway() -> Any:
from langchain_community.llms.mlflow_ai_gateway import MlflowAIGateway
return MlflowAIGateway
def _import_modal() -> Any:
from langchain_community.llms.modal import Modal
return Modal
def _import_mosaicml() -> Any:
from langchain_community.llms.mosaicml import MosaicML
return MosaicML
def _import_nlpcloud() -> Any:
from langchain_community.llms.nlpcloud import NLPCloud
return NLPCloud
def _import_octoai_endpoint() -> Any:
from langchain_community.llms.octoai_endpoint import OctoAIEndpoint
return OctoAIEndpoint
def _import_ollama() -> Any:
from langchain_community.llms.ollama import Ollama
return Ollama
def _import_opaqueprompts() -> Any:
from langchain_community.llms.opaqueprompts import OpaquePrompts
return OpaquePrompts
def _import_openllm() -> Any:
from langchain_community.llms.openllm import OpenLLM
return OpenLLM
def _import_openlm() -> Any:
from langchain_community.llms.openlm import OpenLM
return OpenLM
def _import_pai_eas_endpoint() -> Any:
from langchain_community.llms.pai_eas_endpoint import PaiEasEndpoint
return PaiEasEndpoint
def _import_petals() -> Any:
from langchain_community.llms.petals import Petals
return Petals
def _import_pipelineai() -> Any:
from langchain_community.llms.pipelineai import PipelineAI
return PipelineAI
def _import_predibase() -> Any:
from langchain_community.llms.predibase import Predibase
return Predibase
def _import_predictionguard() -> Any:
from langchain_community.llms.predictionguard import PredictionGuard
return PredictionGuard
def _import_promptlayer() -> Any:
from langchain_community.llms.promptlayer_openai import PromptLayerOpenAI
return PromptLayerOpenAI
def _import_promptlayer_chat() -> Any:
from langchain_community.llms.promptlayer_openai import PromptLayerOpenAIChat
return PromptLayerOpenAIChat
def _import_replicate() -> Any:
from langchain_community.llms.replicate import Replicate
return Replicate
def _import_rwkv() -> Any:
from langchain_community.llms.rwkv import RWKV
return RWKV
def _import_sagemaker_endpoint() -> Any:
from langchain_community.llms.sagemaker_endpoint import SagemakerEndpoint
return SagemakerEndpoint
def _import_self_hosted() -> Any:
from langchain_community.llms.self_hosted import SelfHostedPipeline
return SelfHostedPipeline
def _import_self_hosted_hugging_face() -> Any:
from langchain_community.llms.self_hosted_hugging_face import (
SelfHostedHuggingFaceLLM,
)
return SelfHostedHuggingFaceLLM
def _import_stochasticai() -> Any:
from langchain_community.llms.stochasticai import StochasticAI
return StochasticAI
def _import_symblai_nebula() -> Any:
from langchain_community.llms.symblai_nebula import Nebula
return Nebula
def _import_textgen() -> Any:
from langchain_community.llms.textgen import TextGen
return TextGen
def _import_titan_takeoff() -> Any:
from langchain_community.llms.titan_takeoff import TitanTakeoff
return TitanTakeoff
def _import_titan_takeoff_pro() -> Any:
from langchain_community.llms.titan_takeoff_pro import TitanTakeoffPro
return TitanTakeoffPro
def _import_together() -> Any:
from langchain_community.llms.together import Together
return Together
def _import_tongyi() -> Any:
from langchain_community.llms.tongyi import Tongyi
return Tongyi
def _import_vertex() -> Any:
from langchain_community.llms.vertexai import VertexAI
return VertexAI
def _import_vertex_model_garden() -> Any:
from langchain_community.llms.vertexai import VertexAIModelGarden
return VertexAIModelGarden
def _import_vllm() -> Any:
from langchain_community.llms.vllm import VLLM
return VLLM
def _import_vllm_openai() -> Any:
from langchain_community.llms.vllm import VLLMOpenAI
return VLLMOpenAI
def _import_watsonxllm() -> Any:
from langchain_community.llms.watsonxllm import WatsonxLLM
return WatsonxLLM
def _import_writer() -> Any:
from langchain_community.llms.writer import Writer
return Writer
def _import_xinference() -> Any:
from langchain_community.llms.xinference import Xinference
return Xinference
def _import_yandex_gpt() -> Any:
from langchain_community.llms.yandex import YandexGPT
return YandexGPT
def _import_volcengine_maas() -> Any:
from langchain_community.llms.volcengine_maas import VolcEngineMaasLLM
return VolcEngineMaasLLM
def __getattr__(name: str) -> Any:
if name == "AI21":
return _import_ai21()
elif name == "AlephAlpha":
return _import_aleph_alpha()
elif name == "AmazonAPIGateway":
return _import_amazon_api_gateway()
elif name == "Anthropic":
return _import_anthropic()
elif name == "Anyscale":
return _import_anyscale()
elif name == "Arcee":
return _import_arcee()
elif name == "Aviary":
return _import_aviary()
elif name == "AzureMLOnlineEndpoint":
return _import_azureml_endpoint()
elif name == "QianfanLLMEndpoint":
return _import_baidu_qianfan_endpoint()
elif name == "Banana":
return _import_bananadev()
elif name == "Baseten":
return _import_baseten()
elif name == "Beam":
return _import_beam()
elif name == "Bedrock":
return _import_bedrock()
elif name == "NIBittensorLLM":
return _import_bittensor()
elif name == "CerebriumAI":
return _import_cerebriumai()
elif name == "ChatGLM":
return _import_chatglm()
elif name == "Clarifai":
return _import_clarifai()
elif name == "Cohere":
return _import_cohere()
elif name == "CTransformers":
return _import_ctransformers()
elif name == "CTranslate2":
return _import_ctranslate2()
elif name == "Databricks":
return _import_databricks()
elif name == "DeepInfra":
return _import_deepinfra()
elif name == "DeepSparse":
return _import_deepsparse()
elif name == "EdenAI":
return _import_edenai()
elif name == "FakeListLLM":
return _import_fake()
elif name == "Fireworks":
return _import_fireworks()
elif name == "ForefrontAI":
return _import_forefrontai()
elif name == "GigaChat":
return _import_gigachat()
elif name == "GooglePalm":
return _import_google_palm()
elif name == "GooseAI":
return _import_gooseai()
elif name == "GPT4All":
return _import_gpt4all()
elif name == "GradientLLM":
return _import_gradient_ai()
elif name == "HuggingFaceEndpoint":
return _import_huggingface_endpoint()
elif name == "HuggingFaceHub":
return _import_huggingface_hub()
elif name == "HuggingFacePipeline":
return _import_huggingface_pipeline()
elif name == "HuggingFaceTextGenInference":
return _import_huggingface_text_gen_inference()
elif name == "HumanInputLLM":
return _import_human()
elif name == "JavelinAIGateway":
return _import_javelin_ai_gateway()
elif name == "KoboldApiLLM":
return _import_koboldai()
elif name == "LlamaCpp":
return _import_llamacpp()
elif name == "ManifestWrapper":
return _import_manifest()
elif name == "Minimax":
return _import_minimax()
elif name == "Mlflow":
return _import_mlflow()
elif name == "MlflowAIGateway":
return _import_mlflow_ai_gateway()
elif name == "Modal":
return _import_modal()
elif name == "MosaicML":
return _import_mosaicml()
elif name == "NLPCloud":
return _import_nlpcloud()
elif name == "OctoAIEndpoint":
return _import_octoai_endpoint()
elif name == "Ollama":
return _import_ollama()
elif name == "OpaquePrompts":
return _import_opaqueprompts()
elif name == "OpenLLM":
return _import_openllm()
elif name == "OpenLM":
return _import_openlm()
elif name == "PaiEasEndpoint":
return _import_pai_eas_endpoint()
elif name == "Petals":
return _import_petals()
elif name == "PipelineAI":
return _import_pipelineai()
elif name == "Predibase":
return _import_predibase()
elif name == "PredictionGuard":
return _import_predictionguard()
elif name == "PromptLayerOpenAI":
return _import_promptlayer()
elif name == "PromptLayerOpenAIChat":
return _import_promptlayer_chat()
elif name == "Replicate":
return _import_replicate()
elif name == "RWKV":
return _import_rwkv()
elif name == "SagemakerEndpoint":
return _import_sagemaker_endpoint()
elif name == "SelfHostedPipeline":
return _import_self_hosted()
elif name == "SelfHostedHuggingFaceLLM":
return _import_self_hosted_hugging_face()
elif name == "StochasticAI":
return _import_stochasticai()
elif name == "Nebula":
return _import_symblai_nebula()
elif name == "TextGen":
return _import_textgen()
elif name == "TitanTakeoff":
return _import_titan_takeoff()
elif name == "TitanTakeoffPro":
return _import_titan_takeoff_pro()
elif name == "Together":
return _import_together()
elif name == "Tongyi":
return _import_tongyi()
elif name == "VertexAI":
return _import_vertex()
elif name == "VertexAIModelGarden":
return _import_vertex_model_garden()
elif name == "VLLM":
return _import_vllm()
elif name == "VLLMOpenAI":
return _import_vllm_openai()
elif name == "WatsonxLLM":
return _import_watsonxllm()
elif name == "Writer":
return _import_writer()
elif name == "Xinference":
return _import_xinference()
elif name == "YandexGPT":
return _import_yandex_gpt()
elif name == "VolcEngineMaasLLM":
return _import_volcengine_maas()
elif name == "type_to_cls_dict":
# for backwards compatibility
type_to_cls_dict: Dict[str, Type[BaseLLM]] = {
k: v() for k, v in get_type_to_cls_dict().items()
}
return type_to_cls_dict
else:
raise AttributeError(f"Could not find: {name}")
__all__ = [
"AI21",
"AlephAlpha",
"AmazonAPIGateway",
"Anthropic",
"Anyscale",
"Arcee",
"Aviary",
"AzureMLOnlineEndpoint",
"Banana",
"Baseten",
"Beam",
"Bedrock",
"CTransformers",
"CTranslate2",
"CerebriumAI",
"ChatGLM",
"Clarifai",
"Cohere",
"Databricks",
"DeepInfra",
"DeepSparse",
"EdenAI",
"FakeListLLM",
"Fireworks",
"ForefrontAI",
"GigaChat",
"GPT4All",
"GooglePalm",
"GooseAI",
"GradientLLM",
"HuggingFaceEndpoint",
"HuggingFaceHub",
"HuggingFacePipeline",
"HuggingFaceTextGenInference",
"HumanInputLLM",
"KoboldApiLLM",
"LlamaCpp",
"TextGen",
"ManifestWrapper",
"Minimax",
"MlflowAIGateway",
"Modal",
"MosaicML",
"Nebula",
"NIBittensorLLM",
"NLPCloud",
"Ollama",
"OpenLLM",
"OpenLM",
"PaiEasEndpoint",
"Petals",
"PipelineAI",
"Predibase",
"PredictionGuard",
"PromptLayerOpenAI",
"PromptLayerOpenAIChat",
"OpaquePrompts",
"RWKV",
"Replicate",
"SagemakerEndpoint",
"SelfHostedHuggingFaceLLM",
"SelfHostedPipeline",
"StochasticAI",
"TitanTakeoff",
"TitanTakeoffPro",
"Tongyi",
"VertexAI",
"VertexAIModelGarden",
"VLLM",
"VLLMOpenAI",
"WatsonxLLM",
"Writer",
"OctoAIEndpoint",
"Xinference",
"JavelinAIGateway",
"QianfanLLMEndpoint",
"YandexGPT",
"VolcEngineMaasLLM",
]
def get_type_to_cls_dict() -> Dict[str, Callable[[], Type[BaseLLM]]]:
return {
"ai21": _import_ai21,
"aleph_alpha": _import_aleph_alpha,
"amazon_api_gateway": _import_amazon_api_gateway,
"amazon_bedrock": _import_bedrock,
"anthropic": _import_anthropic,
"anyscale": _import_anyscale,
"arcee": _import_arcee,
"aviary": _import_aviary,
"azureml_endpoint": _import_azureml_endpoint,
"bananadev": _import_bananadev,
"baseten": _import_baseten,
"beam": _import_beam,
"cerebriumai": _import_cerebriumai,
"chat_glm": _import_chatglm,
"clarifai": _import_clarifai,
"cohere": _import_cohere,
"ctransformers": _import_ctransformers,
"ctranslate2": _import_ctranslate2,
"databricks": _import_databricks,
"databricks-chat": _import_databricks_chat,
"deepinfra": _import_deepinfra,
"deepsparse": _import_deepsparse,
"edenai": _import_edenai,
"fake-list": _import_fake,
"forefrontai": _import_forefrontai,
"giga-chat-model": _import_gigachat,
"google_palm": _import_google_palm,
"gooseai": _import_gooseai,
"gradient": _import_gradient_ai,
"gpt4all": _import_gpt4all,
"huggingface_endpoint": _import_huggingface_endpoint,
"huggingface_hub": _import_huggingface_hub,
"huggingface_pipeline": _import_huggingface_pipeline,
"huggingface_textgen_inference": _import_huggingface_text_gen_inference,
"human-input": _import_human,
"koboldai": _import_koboldai,
"llamacpp": _import_llamacpp,
"textgen": _import_textgen,
"minimax": _import_minimax,
"mlflow": _import_mlflow,
"mlflow-chat": _import_mlflow_chat,
"mlflow-ai-gateway": _import_mlflow_ai_gateway,
"modal": _import_modal,
"mosaic": _import_mosaicml,
"nebula": _import_symblai_nebula,
"nibittensor": _import_bittensor,
"nlpcloud": _import_nlpcloud,
"ollama": _import_ollama,
"openlm": _import_openlm,
"pai_eas_endpoint": _import_pai_eas_endpoint,
"petals": _import_petals,
"pipelineai": _import_pipelineai,
"predibase": _import_predibase,
"opaqueprompts": _import_opaqueprompts,
"replicate": _import_replicate,
"rwkv": _import_rwkv,
"sagemaker_endpoint": _import_sagemaker_endpoint,
"self_hosted": _import_self_hosted,
"self_hosted_hugging_face": _import_self_hosted_hugging_face,
"stochasticai": _import_stochasticai,
"together": _import_together,
"tongyi": _import_tongyi,
"titan_takeoff": _import_titan_takeoff,
"titan_takeoff_pro": _import_titan_takeoff_pro,
"vertexai": _import_vertex,
"vertexai_model_garden": _import_vertex_model_garden,
"openllm": _import_openllm,
"openllm_client": _import_openllm,
"vllm": _import_vllm,
"vllm_openai": _import_vllm_openai,
"watsonxllm": _import_watsonxllm,
"writer": _import_writer,
"xinference": _import_xinference,
"javelin-ai-gateway": _import_javelin_ai_gateway,
"qianfan_endpoint": _import_baidu_qianfan_endpoint,
"yandex_gpt": _import_yandex_gpt,
"VolcEngineMaasLLM": _import_volcengine_maas,
}

View File

@@ -0,0 +1,351 @@
import re
import warnings
from typing import (
Any,
AsyncIterator,
Callable,
Dict,
Iterator,
List,
Mapping,
Optional,
)
from langchain_core.callbacks import (
AsyncCallbackManagerForLLMRun,
CallbackManagerForLLMRun,
)
from langchain_core.language_models import BaseLanguageModel
from langchain_core.language_models.llms import LLM
from langchain_core.outputs import GenerationChunk
from langchain_core.prompt_values import PromptValue
from langchain_core.pydantic_v1 import Field, SecretStr, root_validator
from langchain_core.utils import (
check_package_version,
get_from_dict_or_env,
get_pydantic_field_names,
)
from langchain_core.utils.utils import build_extra_kwargs, convert_to_secret_str
class _AnthropicCommon(BaseLanguageModel):
client: Any = None #: :meta private:
async_client: Any = None #: :meta private:
model: str = Field(default="claude-2", alias="model_name")
"""Model name to use."""
max_tokens_to_sample: int = Field(default=256, alias="max_tokens")
"""Denotes the number of tokens to predict per generation."""
temperature: Optional[float] = None
"""A non-negative float that tunes the degree of randomness in generation."""
top_k: Optional[int] = None
"""Number of most likely tokens to consider at each step."""
top_p: Optional[float] = None
"""Total probability mass of tokens to consider at each step."""
streaming: bool = False
"""Whether to stream the results."""
default_request_timeout: Optional[float] = None
"""Timeout for requests to Anthropic Completion API. Default is 600 seconds."""
anthropic_api_url: Optional[str] = None
anthropic_api_key: Optional[SecretStr] = None
HUMAN_PROMPT: Optional[str] = None
AI_PROMPT: Optional[str] = None
count_tokens: Optional[Callable[[str], int]] = None
model_kwargs: Dict[str, Any] = Field(default_factory=dict)
@root_validator(pre=True)
def build_extra(cls, values: Dict) -> Dict:
extra = values.get("model_kwargs", {})
all_required_field_names = get_pydantic_field_names(cls)
values["model_kwargs"] = build_extra_kwargs(
extra, values, all_required_field_names
)
return values
@root_validator()
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that api key and python package exists in environment."""
values["anthropic_api_key"] = convert_to_secret_str(
get_from_dict_or_env(values, "anthropic_api_key", "ANTHROPIC_API_KEY")
)
# Get custom api url from environment.
values["anthropic_api_url"] = get_from_dict_or_env(
values,
"anthropic_api_url",
"ANTHROPIC_API_URL",
default="https://api.anthropic.com",
)
try:
import anthropic
check_package_version("anthropic", gte_version="0.3")
values["client"] = anthropic.Anthropic(
base_url=values["anthropic_api_url"],
api_key=values["anthropic_api_key"].get_secret_value(),
timeout=values["default_request_timeout"],
)
values["async_client"] = anthropic.AsyncAnthropic(
base_url=values["anthropic_api_url"],
api_key=values["anthropic_api_key"].get_secret_value(),
timeout=values["default_request_timeout"],
)
values["HUMAN_PROMPT"] = anthropic.HUMAN_PROMPT
values["AI_PROMPT"] = anthropic.AI_PROMPT
values["count_tokens"] = values["client"].count_tokens
except ImportError:
raise ImportError(
"Could not import anthropic python package. "
"Please it install it with `pip install anthropic`."
)
return values
@property
def _default_params(self) -> Mapping[str, Any]:
"""Get the default parameters for calling Anthropic API."""
d = {
"max_tokens_to_sample": self.max_tokens_to_sample,
"model": self.model,
}
if self.temperature is not None:
d["temperature"] = self.temperature
if self.top_k is not None:
d["top_k"] = self.top_k
if self.top_p is not None:
d["top_p"] = self.top_p
return {**d, **self.model_kwargs}
@property
def _identifying_params(self) -> Mapping[str, Any]:
"""Get the identifying parameters."""
return {**{}, **self._default_params}
def _get_anthropic_stop(self, stop: Optional[List[str]] = None) -> List[str]:
if not self.HUMAN_PROMPT or not self.AI_PROMPT:
raise NameError("Please ensure the anthropic package is loaded")
if stop is None:
stop = []
# Never want model to invent new turns of Human / Assistant dialog.
stop.extend([self.HUMAN_PROMPT])
return stop
class Anthropic(LLM, _AnthropicCommon):
"""Anthropic large language models.
To use, you should have the ``anthropic`` python package installed, and the
environment variable ``ANTHROPIC_API_KEY`` set with your API key, or pass
it as a named parameter to the constructor.
Example:
.. code-block:: python
import anthropic
from langchain_community.llms import Anthropic
model = Anthropic(model="<model_name>", anthropic_api_key="my-api-key")
# Simplest invocation, automatically wrapped with HUMAN_PROMPT
# and AI_PROMPT.
response = model("What are the biggest risks facing humanity?")
# Or if you want to use the chat mode, build a few-shot-prompt, or
# put words in the Assistant's mouth, use HUMAN_PROMPT and AI_PROMPT:
raw_prompt = "What are the biggest risks facing humanity?"
prompt = f"{anthropic.HUMAN_PROMPT} {prompt}{anthropic.AI_PROMPT}"
response = model(prompt)
"""
class Config:
"""Configuration for this pydantic object."""
allow_population_by_field_name = True
arbitrary_types_allowed = True
@root_validator()
def raise_warning(cls, values: Dict) -> Dict:
"""Raise warning that this class is deprecated."""
warnings.warn(
"This Anthropic LLM is deprecated. "
"Please use `from langchain_community.chat_models import ChatAnthropic` "
"instead"
)
return values
@property
def _llm_type(self) -> str:
"""Return type of llm."""
return "anthropic-llm"
def _wrap_prompt(self, prompt: str) -> str:
if not self.HUMAN_PROMPT or not self.AI_PROMPT:
raise NameError("Please ensure the anthropic package is loaded")
if prompt.startswith(self.HUMAN_PROMPT):
return prompt # Already wrapped.
# Guard against common errors in specifying wrong number of newlines.
corrected_prompt, n_subs = re.subn(r"^\n*Human:", self.HUMAN_PROMPT, prompt)
if n_subs == 1:
return corrected_prompt
# As a last resort, wrap the prompt ourselves to emulate instruct-style.
return f"{self.HUMAN_PROMPT} {prompt}{self.AI_PROMPT} Sure, here you go:\n"
def _call(
self,
prompt: str,
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> str:
r"""Call out to Anthropic's completion endpoint.
Args:
prompt: The prompt to pass into the model.
stop: Optional list of stop words to use when generating.
Returns:
The string generated by the model.
Example:
.. code-block:: python
prompt = "What are the biggest risks facing humanity?"
prompt = f"\n\nHuman: {prompt}\n\nAssistant:"
response = model(prompt)
"""
if self.streaming:
completion = ""
for chunk in self._stream(
prompt=prompt, stop=stop, run_manager=run_manager, **kwargs
):
completion += chunk.text
return completion
stop = self._get_anthropic_stop(stop)
params = {**self._default_params, **kwargs}
response = self.client.completions.create(
prompt=self._wrap_prompt(prompt),
stop_sequences=stop,
**params,
)
return response.completion
def convert_prompt(self, prompt: PromptValue) -> str:
return self._wrap_prompt(prompt.to_string())
async def _acall(
self,
prompt: str,
stop: Optional[List[str]] = None,
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> str:
"""Call out to Anthropic's completion endpoint asynchronously."""
if self.streaming:
completion = ""
async for chunk in self._astream(
prompt=prompt, stop=stop, run_manager=run_manager, **kwargs
):
completion += chunk.text
return completion
stop = self._get_anthropic_stop(stop)
params = {**self._default_params, **kwargs}
response = await self.async_client.completions.create(
prompt=self._wrap_prompt(prompt),
stop_sequences=stop,
**params,
)
return response.completion
def _stream(
self,
prompt: str,
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> Iterator[GenerationChunk]:
r"""Call Anthropic completion_stream and return the resulting generator.
Args:
prompt: The prompt to pass into the model.
stop: Optional list of stop words to use when generating.
Returns:
A generator representing the stream of tokens from Anthropic.
Example:
.. code-block:: python
prompt = "Write a poem about a stream."
prompt = f"\n\nHuman: {prompt}\n\nAssistant:"
generator = anthropic.stream(prompt)
for token in generator:
yield token
"""
stop = self._get_anthropic_stop(stop)
params = {**self._default_params, **kwargs}
for token in self.client.completions.create(
prompt=self._wrap_prompt(prompt), stop_sequences=stop, stream=True, **params
):
chunk = GenerationChunk(text=token.completion)
yield chunk
if run_manager:
run_manager.on_llm_new_token(chunk.text, chunk=chunk)
async def _astream(
self,
prompt: str,
stop: Optional[List[str]] = None,
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> AsyncIterator[GenerationChunk]:
r"""Call Anthropic completion_stream and return the resulting generator.
Args:
prompt: The prompt to pass into the model.
stop: Optional list of stop words to use when generating.
Returns:
A generator representing the stream of tokens from Anthropic.
Example:
.. code-block:: python
prompt = "Write a poem about a stream."
prompt = f"\n\nHuman: {prompt}\n\nAssistant:"
generator = anthropic.stream(prompt)
for token in generator:
yield token
"""
stop = self._get_anthropic_stop(stop)
params = {**self._default_params, **kwargs}
async for token in await self.async_client.completions.create(
prompt=self._wrap_prompt(prompt),
stop_sequences=stop,
stream=True,
**params,
):
chunk = GenerationChunk(text=token.completion)
yield chunk
if run_manager:
await run_manager.on_llm_new_token(chunk.text, chunk=chunk)
def get_num_tokens(self, text: str) -> int:
"""Calculate number of tokens."""
if not self.count_tokens:
raise NameError("Please ensure the anthropic package is loaded")
return self.count_tokens(text)

View File

@@ -0,0 +1,126 @@
import json
import logging
from typing import Any, Dict, Iterator, List, Optional
import requests
from langchain_core.callbacks import CallbackManagerForLLMRun
from langchain_core.language_models.llms import LLM
from langchain_core.outputs import GenerationChunk
logger = logging.getLogger(__name__)
class CloudflareWorkersAI(LLM):
"""Langchain LLM class to help to access Cloudflare Workers AI service.
To use, you must provide an API token and
account ID to access Cloudflare Workers AI, and
pass it as a named parameter to the constructor.
Example:
.. code-block:: python
from langchain_community.llms.cloudflare_workersai import CloudflareWorkersAI
my_account_id = "my_account_id"
my_api_token = "my_secret_api_token"
llm_model = "@cf/meta/llama-2-7b-chat-int8"
cf_ai = CloudflareWorkersAI(
account_id=my_account_id,
api_token=my_api_token,
model=llm_model
)
""" # noqa: E501
account_id: str
api_token: str
model: str = "@cf/meta/llama-2-7b-chat-int8"
base_url: str = "https://api.cloudflare.com/client/v4/accounts"
streaming: bool = False
endpoint_url: str = ""
def __init__(self, **kwargs: Any) -> None:
"""Initialize the Cloudflare Workers AI class."""
super().__init__(**kwargs)
self.endpoint_url = f"{self.base_url}/{self.account_id}/ai/run/{self.model}"
@property
def _llm_type(self) -> str:
"""Return type of LLM."""
return "cloudflare"
@property
def _default_params(self) -> Dict[str, Any]:
"""Default parameters"""
return {}
@property
def _identifying_params(self) -> Dict[str, Any]:
"""Identifying parameters"""
return {
"account_id": self.account_id,
"api_token": self.api_token,
"model": self.model,
"base_url": self.base_url,
}
def _call_api(self, prompt: str, params: Dict[str, Any]) -> requests.Response:
"""Call Cloudflare Workers API"""
headers = {"Authorization": f"Bearer {self.api_token}"}
data = {"prompt": prompt, "stream": self.streaming, **params}
response = requests.post(self.endpoint_url, headers=headers, json=data)
return response
def _process_response(self, response: requests.Response) -> str:
"""Process API response"""
if response.ok:
data = response.json()
return data["result"]["response"]
else:
raise ValueError(f"Request failed with status {response.status_code}")
def _stream(
self,
prompt: str,
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> Iterator[GenerationChunk]:
"""Streaming prediction"""
original_steaming: bool = self.streaming
self.streaming = True
_response_prefix_count = len("data: ")
_response_stream_end = b"data: [DONE]"
for chunk in self._call_api(prompt, kwargs).iter_lines():
if chunk == _response_stream_end:
break
if len(chunk) > _response_prefix_count:
try:
data = json.loads(chunk[_response_prefix_count:])
except Exception as e:
logger.debug(chunk)
raise e
if data is not None and "response" in data:
yield GenerationChunk(text=data["response"])
if run_manager:
run_manager.on_llm_new_token(data["response"])
logger.debug("stream end")
self.streaming = original_steaming
def _call(
self,
prompt: str,
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> str:
"""Regular prediction"""
if self.streaming:
return "".join(
[c.text for c in self._stream(prompt, stop, run_manager, **kwargs)]
)
else:
response = self._call_api(prompt, kwargs)
return self._process_response(response)

View File

@@ -0,0 +1,50 @@
from typing import Optional, Type
from langchain_core.callbacks import CallbackManagerForToolRun
from langchain_core.pydantic_v1 import BaseModel, Field
from langchain_openai.chat_models import ChatOpenAI
from langchain_community.tools.amadeus.base import AmadeusBaseTool
class ClosestAirportSchema(BaseModel):
"""Schema for the AmadeusClosestAirport tool."""
location: str = Field(
description=(
" The location for which you would like to find the nearest airport "
" along with optional details such as country, state, region, or "
" province, allowing for easy processing and identification of "
" the closest airport. Examples of the format are the following:\n"
" Cali, Colombia\n "
" Lincoln, Nebraska, United States\n"
" New York, United States\n"
" Sydney, New South Wales, Australia\n"
" Rome, Lazio, Italy\n"
" Toronto, Ontario, Canada\n"
)
)
class AmadeusClosestAirport(AmadeusBaseTool):
"""Tool for finding the closest airport to a particular location."""
name: str = "closest_airport"
description: str = (
"Use this tool to find the closest airport to a particular location."
)
args_schema: Type[ClosestAirportSchema] = ClosestAirportSchema
def _run(
self,
location: str,
run_manager: Optional[CallbackManagerForToolRun] = None,
) -> str:
content = (
f" What is the nearest airport to {location}? Please respond with the "
" airport's International Air Transport Association (IATA) Location "
' Identifier in the following JSON format. JSON: "iataCode": "IATA '
' Location Identifier" '
)
return ChatOpenAI(temperature=0).invoke(content)

View File

@@ -0,0 +1,42 @@
"""
This tool allows agents to interact with the clickup library
and operate on a Clickup instance.
To use this tool, you must first set as environment variables:
client_secret
client_id
code
Below is a sample script that uses the Clickup tool:
```python
from langchain_community.agent_toolkits.clickup.toolkit import ClickupToolkit
from langchain_community.utilities.clickup import ClickupAPIWrapper
clickup = ClickupAPIWrapper()
toolkit = ClickupToolkit.from_clickup_api_wrapper(clickup)
```
"""
from typing import Optional
from langchain_core.callbacks import CallbackManagerForToolRun
from langchain_core.pydantic_v1 import Field
from langchain_core.tools import BaseTool
from langchain_community.utilities.clickup import ClickupAPIWrapper
class ClickupAction(BaseTool):
"""Tool that queries the Clickup API."""
api_wrapper: ClickupAPIWrapper = Field(default_factory=ClickupAPIWrapper)
mode: str
name: str = ""
description: str = ""
def _run(
self,
instructions: str,
run_manager: Optional[CallbackManagerForToolRun] = None,
) -> str:
"""Use the Clickup API to run an operation."""
return self.api_wrapper.run(self.mode, instructions)

View File

@@ -0,0 +1,44 @@
"""
This tool allows agents to interact with the atlassian-python-api library
and operate on a Jira instance. For more information on the
atlassian-python-api library, see https://atlassian-python-api.readthedocs.io/jira.html
To use this tool, you must first set as environment variables:
JIRA_API_TOKEN
JIRA_USERNAME
JIRA_INSTANCE_URL
Below is a sample script that uses the Jira tool:
```python
from langchain_community.agent_toolkits.jira.toolkit import JiraToolkit
from langchain_community.utilities.jira import JiraAPIWrapper
jira = JiraAPIWrapper()
toolkit = JiraToolkit.from_jira_api_wrapper(jira)
```
"""
from typing import Optional
from langchain_core.callbacks import CallbackManagerForToolRun
from langchain_core.pydantic_v1 import Field
from langchain_core.tools import BaseTool
from langchain_community.utilities.jira import JiraAPIWrapper
class JiraAction(BaseTool):
"""Tool that queries the Atlassian Jira API."""
api_wrapper: JiraAPIWrapper = Field(default_factory=JiraAPIWrapper)
mode: str
name: str = ""
description: str = ""
def _run(
self,
instructions: str,
run_manager: Optional[CallbackManagerForToolRun] = None,
) -> str:
"""Use the Atlassian Jira API to run an operation."""
return self.api_wrapper.run(self.mode, instructions)

View File

@@ -0,0 +1,276 @@
"""Tools for interacting with a Power BI dataset."""
import logging
from time import perf_counter
from typing import Any, Dict, Optional, Tuple
from langchain_core.callbacks import (
AsyncCallbackManagerForToolRun,
CallbackManagerForToolRun,
)
from langchain_core.pydantic_v1 import Field, validator
from langchain_core.tools import BaseTool
from langchain_openai.chat_models import _import_tiktoken
from langchain_community.tools.powerbi.prompt import (
BAD_REQUEST_RESPONSE,
DEFAULT_FEWSHOT_EXAMPLES,
RETRY_RESPONSE,
)
from langchain_community.utilities.powerbi import PowerBIDataset, json_to_md
logger = logging.getLogger(__name__)
class QueryPowerBITool(BaseTool):
"""Tool for querying a Power BI Dataset."""
name: str = "query_powerbi"
description: str = """
Input to this tool is a detailed question about the dataset, output is a result from the dataset. It will try to answer the question using the dataset, and if it cannot, it will ask for clarification.
Example Input: "How many rows are in table1?"
""" # noqa: E501
llm_chain: Any
powerbi: PowerBIDataset = Field(exclude=True)
examples: Optional[str] = DEFAULT_FEWSHOT_EXAMPLES
session_cache: Dict[str, Any] = Field(default_factory=dict, exclude=True)
max_iterations: int = 5
output_token_limit: int = 4000
tiktoken_model_name: Optional[str] = None # "cl100k_base"
class Config:
"""Configuration for this pydantic object."""
arbitrary_types_allowed = True
@validator("llm_chain")
def validate_llm_chain_input_variables( # pylint: disable=E0213
cls, llm_chain: Any
) -> Any:
"""Make sure the LLM chain has the correct input variables."""
for var in llm_chain.prompt.input_variables:
if var not in ["tool_input", "tables", "schemas", "examples"]:
raise ValueError(
"LLM chain for QueryPowerBITool must have input variables ['tool_input', 'tables', 'schemas', 'examples'], found %s", # noqa: C0301 E501 # pylint: disable=C0301
llm_chain.prompt.input_variables,
)
return llm_chain
def _check_cache(self, tool_input: str) -> Optional[str]:
"""Check if the input is present in the cache.
If the value is a bad request, overwrite with the escalated version,
if not present return None."""
if tool_input not in self.session_cache:
return None
return self.session_cache[tool_input]
def _run(
self,
tool_input: str,
run_manager: Optional[CallbackManagerForToolRun] = None,
**kwargs: Any,
) -> str:
"""Execute the query, return the results or an error message."""
if cache := self._check_cache(tool_input):
logger.debug("Found cached result for %s: %s", tool_input, cache)
return cache
try:
logger.info("Running PBI Query Tool with input: %s", tool_input)
query = self.llm_chain.predict(
tool_input=tool_input,
tables=self.powerbi.get_table_names(),
schemas=self.powerbi.get_schemas(),
examples=self.examples,
callbacks=run_manager.get_child() if run_manager else None,
)
except Exception as exc: # pylint: disable=broad-except
self.session_cache[tool_input] = f"Error on call to LLM: {exc}"
return self.session_cache[tool_input]
if query == "I cannot answer this":
self.session_cache[tool_input] = query
return self.session_cache[tool_input]
logger.info("PBI Query:\n%s", query)
start_time = perf_counter()
pbi_result = self.powerbi.run(command=query)
end_time = perf_counter()
logger.debug("PBI Result: %s", pbi_result)
logger.debug(f"PBI Query duration: {end_time - start_time:0.6f}")
result, error = self._parse_output(pbi_result)
if error is not None and "TokenExpired" in error:
self.session_cache[
tool_input
] = "Authentication token expired or invalid, please try reauthenticate."
return self.session_cache[tool_input]
iterations = kwargs.get("iterations", 0)
if error and iterations < self.max_iterations:
return self._run(
tool_input=RETRY_RESPONSE.format(
tool_input=tool_input, query=query, error=error
),
run_manager=run_manager,
iterations=iterations + 1,
)
self.session_cache[tool_input] = (
result if result else BAD_REQUEST_RESPONSE.format(error=error)
)
return self.session_cache[tool_input]
async def _arun(
self,
tool_input: str,
run_manager: Optional[AsyncCallbackManagerForToolRun] = None,
**kwargs: Any,
) -> str:
"""Execute the query, return the results or an error message."""
if cache := self._check_cache(tool_input):
logger.debug("Found cached result for %s: %s", tool_input, cache)
return f"{cache}, from cache, you have already asked this question."
try:
logger.info("Running PBI Query Tool with input: %s", tool_input)
query = await self.llm_chain.apredict(
tool_input=tool_input,
tables=self.powerbi.get_table_names(),
schemas=self.powerbi.get_schemas(),
examples=self.examples,
callbacks=run_manager.get_child() if run_manager else None,
)
except Exception as exc: # pylint: disable=broad-except
self.session_cache[tool_input] = f"Error on call to LLM: {exc}"
return self.session_cache[tool_input]
if query == "I cannot answer this":
self.session_cache[tool_input] = query
return self.session_cache[tool_input]
logger.info("PBI Query: %s", query)
start_time = perf_counter()
pbi_result = await self.powerbi.arun(command=query)
end_time = perf_counter()
logger.debug("PBI Result: %s", pbi_result)
logger.debug(f"PBI Query duration: {end_time - start_time:0.6f}")
result, error = self._parse_output(pbi_result)
if error is not None and ("TokenExpired" in error or "TokenError" in error):
self.session_cache[
tool_input
] = "Authentication token expired or invalid, please try to reauthenticate or check the scope of the credential." # noqa: E501
return self.session_cache[tool_input]
iterations = kwargs.get("iterations", 0)
if error and iterations < self.max_iterations:
return await self._arun(
tool_input=RETRY_RESPONSE.format(
tool_input=tool_input, query=query, error=error
),
run_manager=run_manager,
iterations=iterations + 1,
)
self.session_cache[tool_input] = (
result if result else BAD_REQUEST_RESPONSE.format(error=error)
)
return self.session_cache[tool_input]
def _parse_output(
self, pbi_result: Dict[str, Any]
) -> Tuple[Optional[str], Optional[Any]]:
"""Parse the output of the query to a markdown table."""
if "results" in pbi_result:
rows = pbi_result["results"][0]["tables"][0]["rows"]
if len(rows) == 0:
logger.info("0 records in result, query was valid.")
return (
None,
"0 rows returned, this might be correct, but please validate if all filter values were correct?", # noqa: E501
)
result = json_to_md(rows)
too_long, length = self._result_too_large(result)
if too_long:
return (
f"Result too large, please try to be more specific or use the `TOPN` function. The result is {length} tokens long, the limit is {self.output_token_limit} tokens.", # noqa: E501
None,
)
return result, None
if "error" in pbi_result:
if (
"pbi.error" in pbi_result["error"]
and "details" in pbi_result["error"]["pbi.error"]
):
return None, pbi_result["error"]["pbi.error"]["details"][0]["detail"]
return None, pbi_result["error"]
return None, pbi_result
def _result_too_large(self, result: str) -> Tuple[bool, int]:
"""Tokenize the output of the query."""
if self.tiktoken_model_name:
tiktoken_ = _import_tiktoken()
encoding = tiktoken_.encoding_for_model(self.tiktoken_model_name)
length = len(encoding.encode(result))
logger.info("Result length: %s", length)
return length > self.output_token_limit, length
return False, 0
class InfoPowerBITool(BaseTool):
"""Tool for getting metadata about a PowerBI Dataset."""
name: str = "schema_powerbi"
description: str = """
Input to this tool is a comma-separated list of tables, output is the schema and sample rows for those tables.
Be sure that the tables actually exist by calling list_tables_powerbi first!
Example Input: "table1, table2, table3"
""" # noqa: E501
powerbi: PowerBIDataset = Field(exclude=True)
class Config:
"""Configuration for this pydantic object."""
arbitrary_types_allowed = True
def _run(
self,
tool_input: str,
run_manager: Optional[CallbackManagerForToolRun] = None,
) -> str:
"""Get the schema for tables in a comma-separated list."""
return self.powerbi.get_table_info(tool_input.split(", "))
async def _arun(
self,
tool_input: str,
run_manager: Optional[AsyncCallbackManagerForToolRun] = None,
) -> str:
return await self.powerbi.aget_table_info(tool_input.split(", "))
class ListPowerBITool(BaseTool):
"""Tool for getting tables names."""
name: str = "list_tables_powerbi"
description: str = "Input is an empty string, output is a comma separated list of tables in the database." # noqa: E501 # pylint: disable=C0301
powerbi: PowerBIDataset = Field(exclude=True)
class Config:
"""Configuration for this pydantic object."""
arbitrary_types_allowed = True
def _run(
self,
tool_input: Optional[str] = None,
run_manager: Optional[CallbackManagerForToolRun] = None,
) -> str:
"""Get the names of the tables."""
return ", ".join(self.powerbi.get_table_names())
async def _arun(
self,
tool_input: Optional[str] = None,
run_manager: Optional[AsyncCallbackManagerForToolRun] = None,
) -> str:
"""Get the names of the tables."""
return ", ".join(self.powerbi.get_table_names())

View File

@@ -0,0 +1,130 @@
# flake8: noqa
"""Tools for interacting with Spark SQL."""
from typing import Any, Dict, Optional
from langchain_core.pydantic_v1 import BaseModel, Field, root_validator
from langchain_core.language_models import BaseLanguageModel
from langchain_core.callbacks import (
AsyncCallbackManagerForToolRun,
CallbackManagerForToolRun,
)
from langchain_core.prompts import PromptTemplate
from langchain_community.utilities.spark_sql import SparkSQL
from langchain_core.tools import BaseTool
from langchain_community.tools.spark_sql.prompt import QUERY_CHECKER
class BaseSparkSQLTool(BaseModel):
"""Base tool for interacting with Spark SQL."""
db: SparkSQL = Field(exclude=True)
class Config(BaseTool.Config):
pass
class QuerySparkSQLTool(BaseSparkSQLTool, BaseTool):
"""Tool for querying a Spark SQL."""
name: str = "query_sql_db"
description: str = """
Input to this tool is a detailed and correct SQL query, output is a result from the Spark SQL.
If the query is not correct, an error message will be returned.
If an error is returned, rewrite the query, check the query, and try again.
"""
def _run(
self,
query: str,
run_manager: Optional[CallbackManagerForToolRun] = None,
) -> str:
"""Execute the query, return the results or an error message."""
return self.db.run_no_throw(query)
class InfoSparkSQLTool(BaseSparkSQLTool, BaseTool):
"""Tool for getting metadata about a Spark SQL."""
name: str = "schema_sql_db"
description: str = """
Input to this tool is a comma-separated list of tables, output is the schema and sample rows for those tables.
Be sure that the tables actually exist by calling list_tables_sql_db first!
Example Input: "table1, table2, table3"
"""
def _run(
self,
table_names: str,
run_manager: Optional[CallbackManagerForToolRun] = None,
) -> str:
"""Get the schema for tables in a comma-separated list."""
return self.db.get_table_info_no_throw(table_names.split(", "))
class ListSparkSQLTool(BaseSparkSQLTool, BaseTool):
"""Tool for getting tables names."""
name: str = "list_tables_sql_db"
description: str = "Input is an empty string, output is a comma separated list of tables in the Spark SQL."
def _run(
self,
tool_input: str = "",
run_manager: Optional[CallbackManagerForToolRun] = None,
) -> str:
"""Get the schema for a specific table."""
return ", ".join(self.db.get_usable_table_names())
class QueryCheckerTool(BaseSparkSQLTool, BaseTool):
"""Use an LLM to check if a query is correct.
Adapted from https://www.patterns.app/blog/2023/01/18/crunchbot-sql-analyst-gpt/"""
template: str = QUERY_CHECKER
llm: BaseLanguageModel
llm_chain: Any = Field(init=False)
name: str = "query_checker_sql_db"
description: str = """
Use this tool to double check if your query is correct before executing it.
Always use this tool before executing a query with query_sql_db!
"""
@root_validator(pre=True)
def initialize_llm_chain(cls, values: Dict[str, Any]) -> Dict[str, Any]:
if "llm_chain" not in values:
from langchain.chains.llm import LLMChain
values["llm_chain"] = LLMChain(
llm=values.get("llm"),
prompt=PromptTemplate(
template=QUERY_CHECKER, input_variables=["query"]
),
)
if values["llm_chain"].prompt.input_variables != ["query"]:
raise ValueError(
"LLM chain for QueryCheckerTool need to use ['query'] as input_variables "
"for the embedded prompt"
)
return values
def _run(
self,
query: str,
run_manager: Optional[CallbackManagerForToolRun] = None,
) -> str:
"""Use the LLM to check the query."""
return self.llm_chain.predict(
query=query, callbacks=run_manager.get_child() if run_manager else None
)
async def _arun(
self,
query: str,
run_manager: Optional[AsyncCallbackManagerForToolRun] = None,
) -> str:
return await self.llm_chain.apredict(
query=query, callbacks=run_manager.get_child() if run_manager else None
)

View File

@@ -0,0 +1,134 @@
# flake8: noqa
"""Tools for interacting with a SQL database."""
from typing import Any, Dict, Optional
from langchain_core.pydantic_v1 import BaseModel, Extra, Field, root_validator
from langchain_core.language_models import BaseLanguageModel
from langchain_core.callbacks import (
AsyncCallbackManagerForToolRun,
CallbackManagerForToolRun,
)
from langchain_core.prompts import PromptTemplate
from langchain_community.utilities.sql_database import SQLDatabase
from langchain_core.tools import BaseTool
from langchain_community.tools.sql_database.prompt import QUERY_CHECKER
class BaseSQLDatabaseTool(BaseModel):
"""Base tool for interacting with a SQL database."""
db: SQLDatabase = Field(exclude=True)
class Config(BaseTool.Config):
pass
class QuerySQLDataBaseTool(BaseSQLDatabaseTool, BaseTool):
"""Tool for querying a SQL database."""
name: str = "sql_db_query"
description: str = """
Input to this tool is a detailed and correct SQL query, output is a result from the database.
If the query is not correct, an error message will be returned.
If an error is returned, rewrite the query, check the query, and try again.
"""
def _run(
self,
query: str,
run_manager: Optional[CallbackManagerForToolRun] = None,
) -> str:
"""Execute the query, return the results or an error message."""
return self.db.run_no_throw(query)
class InfoSQLDatabaseTool(BaseSQLDatabaseTool, BaseTool):
"""Tool for getting metadata about a SQL database."""
name: str = "sql_db_schema"
description: str = """
Input to this tool is a comma-separated list of tables, output is the schema and sample rows for those tables.
Example Input: "table1, table2, table3"
"""
def _run(
self,
table_names: str,
run_manager: Optional[CallbackManagerForToolRun] = None,
) -> str:
"""Get the schema for tables in a comma-separated list."""
return self.db.get_table_info_no_throw(
[t.strip() for t in table_names.split(",")]
)
class ListSQLDatabaseTool(BaseSQLDatabaseTool, BaseTool):
"""Tool for getting tables names."""
name: str = "sql_db_list_tables"
description: str = "Input is an empty string, output is a comma separated list of tables in the database."
def _run(
self,
tool_input: str = "",
run_manager: Optional[CallbackManagerForToolRun] = None,
) -> str:
"""Get the schema for a specific table."""
return ", ".join(self.db.get_usable_table_names())
class QuerySQLCheckerTool(BaseSQLDatabaseTool, BaseTool):
"""Use an LLM to check if a query is correct.
Adapted from https://www.patterns.app/blog/2023/01/18/crunchbot-sql-analyst-gpt/"""
template: str = QUERY_CHECKER
llm: BaseLanguageModel
llm_chain: Any = Field(init=False)
name: str = "sql_db_query_checker"
description: str = """
Use this tool to double check if your query is correct before executing it.
Always use this tool before executing a query with sql_db_query!
"""
@root_validator(pre=True)
def initialize_llm_chain(cls, values: Dict[str, Any]) -> Dict[str, Any]:
if "llm_chain" not in values:
from langchain.chains.llm import LLMChain
values["llm_chain"] = LLMChain(
llm=values.get("llm"),
prompt=PromptTemplate(
template=QUERY_CHECKER, input_variables=["dialect", "query"]
),
)
if values["llm_chain"].prompt.input_variables != ["dialect", "query"]:
raise ValueError(
"LLM chain for QueryCheckerTool must have input variables ['query', 'dialect']"
)
return values
def _run(
self,
query: str,
run_manager: Optional[CallbackManagerForToolRun] = None,
) -> str:
"""Use the LLM to check the query."""
return self.llm_chain.predict(
query=query,
dialect=self.db.dialect,
callbacks=run_manager.get_child() if run_manager else None,
)
async def _arun(
self,
query: str,
run_manager: Optional[AsyncCallbackManagerForToolRun] = None,
) -> str:
return await self.llm_chain.apredict(
query=query,
dialect=self.db.dialect,
callbacks=run_manager.get_child() if run_manager else None,
)

View File

@@ -0,0 +1,215 @@
"""[DEPRECATED]
## Zapier Natural Language Actions API
\
Full docs here: https://nla.zapier.com/start/
**Zapier Natural Language Actions** gives you access to the 5k+ apps, 20k+ actions
on Zapier's platform through a natural language API interface.
NLA supports apps like Gmail, Salesforce, Trello, Slack, Asana, HubSpot, Google Sheets,
Microsoft Teams, and thousands more apps: https://zapier.com/apps
Zapier NLA handles ALL the underlying API auth and translation from
natural language --> underlying API call --> return simplified output for LLMs
The key idea is you, or your users, expose a set of actions via an oauth-like setup
window, which you can then query and execute via a REST API.
NLA offers both API Key and OAuth for signing NLA API requests.
1. Server-side (API Key): for quickly getting started, testing, and production scenarios
where LangChain will only use actions exposed in the developer's Zapier account
(and will use the developer's connected accounts on Zapier.com)
2. User-facing (Oauth): for production scenarios where you are deploying an end-user
facing application and LangChain needs access to end-user's exposed actions and
connected accounts on Zapier.com
This quick start will focus on the server-side use case for brevity.
Review [full docs](https://nla.zapier.com/start/) for user-facing oauth developer
support.
Typically, you'd use SequentialChain, here's a basic example:
1. Use NLA to find an email in Gmail
2. Use LLMChain to generate a draft reply to (1)
3. Use NLA to send the draft reply (2) to someone in Slack via direct message
In code, below:
```python
import os
# get from https://platform.openai.com/
os.environ["OPENAI_API_KEY"] = os.environ.get("OPENAI_API_KEY", "")
# get from https://nla.zapier.com/docs/authentication/
os.environ["ZAPIER_NLA_API_KEY"] = os.environ.get("ZAPIER_NLA_API_KEY", "")
from langchain_community.agent_toolkits import ZapierToolkit
from langchain_community.utilities.zapier import ZapierNLAWrapper
## step 0. expose gmail 'find email' and slack 'send channel message' actions
# first go here, log in, expose (enable) the two actions:
# https://nla.zapier.com/demo/start
# -- for this example, can leave all fields "Have AI guess"
# in an oauth scenario, you'd get your own <provider> id (instead of 'demo')
# which you route your users through first
zapier = ZapierNLAWrapper()
## To leverage OAuth you may pass the value `nla_oauth_access_token` to
## the ZapierNLAWrapper. If you do this there is no need to initialize
## the ZAPIER_NLA_API_KEY env variable
# zapier = ZapierNLAWrapper(zapier_nla_oauth_access_token="TOKEN_HERE")
toolkit = ZapierToolkit.from_zapier_nla_wrapper(zapier)
```
"""
from typing import Any, Dict, Optional
from langchain_core._api import warn_deprecated
from langchain_core.callbacks import (
AsyncCallbackManagerForToolRun,
CallbackManagerForToolRun,
)
from langchain_core.pydantic_v1 import Field, root_validator
from langchain_core.tools import BaseTool
from langchain_community.tools.zapier.prompt import BASE_ZAPIER_TOOL_PROMPT
from langchain_community.utilities.zapier import ZapierNLAWrapper
class ZapierNLARunAction(BaseTool):
"""
Args:
action_id: a specific action ID (from list actions) of the action to execute
(the set api_key must be associated with the action owner)
instructions: a natural language instruction string for using the action
(eg. "get the latest email from Mike Knoop" for "Gmail: find email" action)
params: a dict, optional. Any params provided will *override* AI guesses
from `instructions` (see "understanding the AI guessing flow" here:
https://nla.zapier.com/docs/using-the-api#ai-guessing)
"""
api_wrapper: ZapierNLAWrapper = Field(default_factory=ZapierNLAWrapper)
action_id: str
params: Optional[dict] = None
base_prompt: str = BASE_ZAPIER_TOOL_PROMPT
zapier_description: str
params_schema: Dict[str, str] = Field(default_factory=dict)
name: str = ""
description: str = ""
@root_validator
def set_name_description(cls, values: Dict[str, Any]) -> Dict[str, Any]:
zapier_description = values["zapier_description"]
params_schema = values["params_schema"]
if "instructions" in params_schema:
del params_schema["instructions"]
# Ensure base prompt (if overridden) contains necessary input fields
necessary_fields = {"{zapier_description}", "{params}"}
if not all(field in values["base_prompt"] for field in necessary_fields):
raise ValueError(
"Your custom base Zapier prompt must contain input fields for "
"{zapier_description} and {params}."
)
values["name"] = zapier_description
values["description"] = values["base_prompt"].format(
zapier_description=zapier_description,
params=str(list(params_schema.keys())),
)
return values
def _run(
self, instructions: str, run_manager: Optional[CallbackManagerForToolRun] = None
) -> str:
"""Use the Zapier NLA tool to return a list of all exposed user actions."""
warn_deprecated(
since="0.0.319",
message=(
"This tool will be deprecated on 2023-11-17. See "
"https://nla.zapier.com/sunset/ for details"
),
)
return self.api_wrapper.run_as_str(self.action_id, instructions, self.params)
async def _arun(
self,
instructions: str,
run_manager: Optional[AsyncCallbackManagerForToolRun] = None,
) -> str:
"""Use the Zapier NLA tool to return a list of all exposed user actions."""
warn_deprecated(
since="0.0.319",
message=(
"This tool will be deprecated on 2023-11-17. See "
"https://nla.zapier.com/sunset/ for details"
),
)
return await self.api_wrapper.arun_as_str(
self.action_id,
instructions,
self.params,
)
ZapierNLARunAction.__doc__ = (
ZapierNLAWrapper.run.__doc__ + ZapierNLARunAction.__doc__ # type: ignore
)
# other useful actions
class ZapierNLAListActions(BaseTool):
"""
Args:
None
"""
name: str = "ZapierNLA_list_actions"
description: str = BASE_ZAPIER_TOOL_PROMPT + (
"This tool returns a list of the user's exposed actions."
)
api_wrapper: ZapierNLAWrapper = Field(default_factory=ZapierNLAWrapper)
def _run(
self,
_: str = "",
run_manager: Optional[CallbackManagerForToolRun] = None,
) -> str:
"""Use the Zapier NLA tool to return a list of all exposed user actions."""
warn_deprecated(
since="0.0.319",
message=(
"This tool will be deprecated on 2023-11-17. See "
"https://nla.zapier.com/sunset/ for details"
),
)
return self.api_wrapper.list_as_str()
async def _arun(
self,
_: str = "",
run_manager: Optional[AsyncCallbackManagerForToolRun] = None,
) -> str:
"""Use the Zapier NLA tool to return a list of all exposed user actions."""
warn_deprecated(
since="0.0.319",
message=(
"This tool will be deprecated on 2023-11-17. See "
"https://nla.zapier.com/sunset/ for details"
),
)
return await self.api_wrapper.alist_as_str()
ZapierNLAListActions.__doc__ = (
ZapierNLAWrapper.list.__doc__ + ZapierNLAListActions.__doc__ # type: ignore
)

View File

@@ -3,20 +3,12 @@ import asyncio
import os
from aiohttp import ClientSession
from langchain_core.callbacks.manager import atrace_as_chain_group, trace_as_chain_group
from langchain_core.tracers.context import tracing_v2_enabled, tracing_enabled
from langchain_core.prompts import PromptTemplate
from langchain.agents import AgentType, initialize_agent, load_tools
from langchain.callbacks import tracing_enabled
from langchain.callbacks.manager import (
atrace_as_chain_group,
trace_as_chain_group,
tracing_v2_enabled,
)
from langchain.chains import LLMChain
from langchain.chains.constitutional_ai.base import ConstitutionalChain
from langchain.chains.constitutional_ai.models import ConstitutionalPrinciple
from langchain.chat_models import ChatOpenAI
from langchain.llms import OpenAI
from langchain_openai.chat_models import ChatOpenAI
from langchain_openai.llms import OpenAI
questions = [
(
@@ -40,6 +32,7 @@ questions = [
def test_tracing_sequential() -> None:
from langchain.agents import AgentType, initialize_agent, load_tools
os.environ["LANGCHAIN_TRACING"] = "true"
for q in questions[:3]:
@@ -52,6 +45,7 @@ def test_tracing_sequential() -> None:
def test_tracing_session_env_var() -> None:
from langchain.agents import AgentType, initialize_agent, load_tools
os.environ["LANGCHAIN_TRACING"] = "true"
os.environ["LANGCHAIN_SESSION"] = "my_session"
@@ -66,6 +60,7 @@ def test_tracing_session_env_var() -> None:
async def test_tracing_concurrent() -> None:
from langchain.agents import AgentType, initialize_agent, load_tools
os.environ["LANGCHAIN_TRACING"] = "true"
aiosession = ClientSession()
llm = OpenAI(temperature=0)
@@ -79,6 +74,7 @@ async def test_tracing_concurrent() -> None:
async def test_tracing_concurrent_bw_compat_environ() -> None:
from langchain.agents import AgentType, initialize_agent, load_tools
os.environ["LANGCHAIN_HANDLER"] = "langchain"
if "LANGCHAIN_TRACING" in os.environ:
del os.environ["LANGCHAIN_TRACING"]
@@ -96,6 +92,7 @@ async def test_tracing_concurrent_bw_compat_environ() -> None:
def test_tracing_context_manager() -> None:
from langchain.agents import AgentType, initialize_agent, load_tools
llm = OpenAI(temperature=0)
tools = load_tools(["llm-math", "serpapi"], llm=llm)
agent = initialize_agent(
@@ -111,6 +108,7 @@ def test_tracing_context_manager() -> None:
async def test_tracing_context_manager_async() -> None:
from langchain.agents import AgentType, initialize_agent, load_tools
llm = OpenAI(temperature=0)
async_tools = load_tools(["llm-math", "serpapi"], llm=llm)
agent = initialize_agent(
@@ -130,6 +128,7 @@ async def test_tracing_context_manager_async() -> None:
async def test_tracing_v2_environment_variable() -> None:
from langchain.agents import AgentType, initialize_agent, load_tools
os.environ["LANGCHAIN_TRACING_V2"] = "true"
aiosession = ClientSession()
@@ -144,6 +143,7 @@ async def test_tracing_v2_environment_variable() -> None:
def test_tracing_v2_context_manager() -> None:
from langchain.agents import AgentType, initialize_agent, load_tools
llm = ChatOpenAI(temperature=0)
tools = load_tools(["llm-math", "serpapi"], llm=llm)
agent = initialize_agent(
@@ -158,6 +158,9 @@ def test_tracing_v2_context_manager() -> None:
def test_tracing_v2_chain_with_tags() -> None:
from langchain.chains.llm import LLMChain
from langchain.chains.constitutional_ai.base import ConstitutionalChain
from langchain.chains.constitutional_ai.models import ConstitutionalPrinciple
llm = OpenAI(temperature=0)
chain = ConstitutionalChain.from_llm(
llm,
@@ -177,6 +180,7 @@ def test_tracing_v2_chain_with_tags() -> None:
def test_tracing_v2_agent_with_metadata() -> None:
from langchain.agents import AgentType, initialize_agent, load_tools
os.environ["LANGCHAIN_TRACING_V2"] = "true"
llm = OpenAI(temperature=0)
chat = ChatOpenAI(temperature=0)
@@ -192,6 +196,7 @@ def test_tracing_v2_agent_with_metadata() -> None:
async def test_tracing_v2_async_agent_with_metadata() -> None:
from langchain.agents import AgentType, initialize_agent, load_tools
os.environ["LANGCHAIN_TRACING_V2"] = "true"
llm = OpenAI(temperature=0, metadata={"f": "g", "h": "i"})
chat = ChatOpenAI(temperature=0, metadata={"f": "g", "h": "i"})
@@ -210,6 +215,7 @@ async def test_tracing_v2_async_agent_with_metadata() -> None:
def test_trace_as_group() -> None:
from langchain.chains.llm import LLMChain
llm = OpenAI(temperature=0.9)
prompt = PromptTemplate(
input_variables=["product"],
@@ -228,6 +234,7 @@ def test_trace_as_group() -> None:
def test_trace_as_group_with_env_set() -> None:
from langchain.chains.llm import LLMChain
os.environ["LANGCHAIN_TRACING_V2"] = "true"
llm = OpenAI(temperature=0.9)
prompt = PromptTemplate(
@@ -251,6 +258,7 @@ def test_trace_as_group_with_env_set() -> None:
async def test_trace_as_group_async() -> None:
from langchain.chains.llm import LLMChain
llm = OpenAI(temperature=0.9)
prompt = PromptTemplate(
input_variables=["product"],

View File

@@ -1,9 +1,9 @@
"""Integration tests for the langchain tracer module."""
import asyncio
from langchain.agents import AgentType, initialize_agent, load_tools
from langchain.callbacks import get_openai_callback
from langchain.llms import OpenAI
from langchain_community.callbacks import get_openai_callback
from langchain_openai.llms import OpenAI
async def test_openai_callback() -> None:
@@ -51,6 +51,7 @@ def test_openai_callback_batch_llm() -> None:
def test_openai_callback_agent() -> None:
from langchain.agents import AgentType, initialize_agent, load_tools
llm = OpenAI(temperature=0)
tools = load_tools(["serpapi", "llm-math"], llm=llm)
agent = initialize_agent(

View File

@@ -2,19 +2,18 @@
import pytest
from langchain.agents import AgentType, initialize_agent, load_tools
# Import the internal StreamlitCallbackHandler from its module - and not from
# the `langchain.callbacks.streamlit` package - so that we don't end up using
# the `langchain_community.callbacks.streamlit` package - so that we don't end up using
# Streamlit's externally-provided callback handler.
from langchain.callbacks.streamlit.streamlit_callback_handler import (
from langchain_community.callbacks.streamlit.streamlit_callback_handler import (
StreamlitCallbackHandler,
)
from langchain.llms import OpenAI
from langchain_openai.llms import OpenAI
@pytest.mark.requires("streamlit")
def test_streamlit_callback_agent() -> None:
from langchain.agents import AgentType, initialize_agent, load_tools
import streamlit as st
streamlit_callback = StreamlitCallbackHandler(st.container())

View File

@@ -3,10 +3,9 @@ import asyncio
import os
from aiohttp import ClientSession
from langchain_community.callbacks import wandb_tracing_enabled
from langchain.agents import AgentType, initialize_agent, load_tools
from langchain.callbacks.manager import wandb_tracing_enabled
from langchain.llms import OpenAI
from langchain_openai.llms import OpenAI
questions = [
(
@@ -30,6 +29,7 @@ questions = [
def test_tracing_sequential() -> None:
from langchain.agents import AgentType, initialize_agent, load_tools
os.environ["LANGCHAIN_WANDB_TRACING"] = "true"
os.environ["WANDB_PROJECT"] = "langchain-tracing"
@@ -46,6 +46,7 @@ def test_tracing_sequential() -> None:
def test_tracing_session_env_var() -> None:
from langchain.agents import AgentType, initialize_agent, load_tools
os.environ["LANGCHAIN_WANDB_TRACING"] = "true"
llm = OpenAI(temperature=0)
@@ -60,6 +61,7 @@ def test_tracing_session_env_var() -> None:
async def test_tracing_concurrent() -> None:
from langchain.agents import AgentType, initialize_agent, load_tools
os.environ["LANGCHAIN_WANDB_TRACING"] = "true"
aiosession = ClientSession()
llm = OpenAI(temperature=0)
@@ -77,6 +79,7 @@ async def test_tracing_concurrent() -> None:
def test_tracing_context_manager() -> None:
from langchain.agents import AgentType, initialize_agent, load_tools
llm = OpenAI(temperature=0)
tools = load_tools(
["llm-math", "serpapi"],
@@ -94,6 +97,7 @@ def test_tracing_context_manager() -> None:
async def test_tracing_context_manager_async() -> None:
from langchain.agents import AgentType, initialize_agent, load_tools
llm = OpenAI(temperature=0)
async_tools = load_tools(
["llm-math", "serpapi"],

View File

@@ -2,6 +2,7 @@
from typing import Any
from langchain_core.callbacks import CallbackManager
from langchain_core.messages import (
AIMessage,
BaseMessage,
@@ -11,11 +12,7 @@ from langchain_core.messages import (
from langchain_core.outputs import ChatGeneration, LLMResult
from langchain_core.prompts import ChatPromptTemplate, HumanMessagePromptTemplate
from langchain.callbacks.manager import CallbackManager
from langchain.chains.openai_functions import (
create_openai_fn_chain,
)
from langchain.chat_models.baidu_qianfan_endpoint import QianfanChatEndpoint
from langchain_community.chat_models.baidu_qianfan_endpoint import QianfanChatEndpoint
from tests.unit_tests.callbacks.fake_callback_handler import FakeCallbackHandler
_FUNCTIONS: Any = [
@@ -185,18 +182,12 @@ def test_functions_call_thoughts() -> None:
]
prompt = ChatPromptTemplate(messages=prompt_msgs)
chain = create_openai_fn_chain(
_FUNCTIONS,
chat,
prompt,
output_parser=None,
)
chain = prompt | chat.bind(functions=_FUNCTIONS)
message = HumanMessage(content="What's the temperature in Shanghai today?")
response = chain.generate([{"input": message}])
assert isinstance(response.generations[0][0], ChatGeneration)
assert isinstance(response.generations[0][0].message, AIMessage)
assert "function_call" in response.generations[0][0].message.additional_kwargs
response = chain.batch([{"input": message}])
assert isinstance(response[0], AIMessage)
assert "function_call" in response[0].additional_kwargs
def test_functions_call() -> None:
@@ -223,11 +214,6 @@ def test_functions_call() -> None:
),
]
)
llm_chain = create_openai_fn_chain(
_FUNCTIONS,
chat,
prompt,
output_parser=None,
)
resp = llm_chain.generate([{}])
assert isinstance(resp, LLMResult)
chain = prompt | chat.bind(functions=_FUNCTIONS)
resp = chain.invoke({})
assert isinstance(resp, AIMessage)

View File

@@ -2,10 +2,9 @@ from pathlib import Path
import pytest
from langchain.document_loaders.concurrent import ConcurrentLoader
from langchain.document_loaders.generic import GenericLoader
from langchain.document_loaders.parsers import LanguageParser
from langchain.text_splitter import Language
from langchain_community.document_loaders.concurrent import ConcurrentLoader
from langchain_community.document_loaders.generic import GenericLoader
from langchain_community.document_loaders.parsers import LanguageParser
def test_language_loader_for_python() -> None:
@@ -55,7 +54,7 @@ def test_language_loader_for_python_with_parser_threshold() -> None:
loader = GenericLoader.from_filesystem(
file_path,
glob="hello_world.py",
parser=LanguageParser(language=Language.PYTHON, parser_threshold=1000),
parser=LanguageParser(language="python", parser_threshold=1000),
)
docs = loader.load()
@@ -127,7 +126,7 @@ def test_language_loader_for_javascript_with_parser_threshold() -> None:
loader = GenericLoader.from_filesystem(
file_path,
glob="hello_world.js",
parser=LanguageParser(language=Language.JS, parser_threshold=1000),
parser=LanguageParser(language="js", parser_threshold=1000),
)
docs = loader.load()
@@ -140,7 +139,7 @@ def test_concurrent_language_loader_for_javascript_with_parser_threshold() -> No
loader = ConcurrentLoader.from_filesystem(
file_path,
glob="hello_world.js",
parser=LanguageParser(language=Language.JS, parser_threshold=1000),
parser=LanguageParser(language="js", parser_threshold=1000),
)
docs = loader.load()
@@ -153,7 +152,7 @@ def test_concurrent_language_loader_for_python_with_parser_threshold() -> None:
loader = ConcurrentLoader.from_filesystem(
file_path,
glob="hello_world.py",
parser=LanguageParser(language=Language.PYTHON, parser_threshold=1000),
parser=LanguageParser(language="python", parser_threshold=1000),
)
docs = loader.load()

View File

@@ -4,14 +4,8 @@ from typing import Generator
import pytest
from langchain_core.outputs import LLMResult
from langchain_core.prompts import PromptTemplate
from langchain_core.prompts.chat import (
ChatPromptTemplate,
HumanMessagePromptTemplate,
)
from langchain.chains import LLMChain
from langchain.llms.fireworks import Fireworks
from langchain_community.llms.fireworks import Fireworks
if sys.version_info < (3, 9):
pytest.skip("fireworks-ai requires Python > 3.8", allow_module_level=True)
@@ -29,22 +23,6 @@ def test_fireworks_call(llm: Fireworks) -> None:
assert isinstance(output, str)
@pytest.mark.scheduled
def test_fireworks_in_chain() -> None:
"""Tests fireworks AI in a Langchain chain"""
human_message_prompt = HumanMessagePromptTemplate(
prompt=PromptTemplate(
template="What is a good name for a company that makes {product}?",
input_variables=["product"],
)
)
chat_prompt_template = ChatPromptTemplate.from_messages([human_message_prompt])
chat = Fireworks()
chain = LLMChain(llm=chat, prompt=chat_prompt_template)
output = chain.run("football helmets")
assert isinstance(output, str)
@pytest.mark.scheduled
def test_fireworks_model_param() -> None:
"""Tests model parameters for Fireworks"""

View File

@@ -1,12 +1,10 @@
import langchain_community.utilities.opaqueprompts as op
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import PromptTemplate
from langchain_core.runnables import RunnableParallel
import langchain.utilities.opaqueprompts as op
from langchain.chains.llm import LLMChain
from langchain.llms import OpenAI
from langchain.llms.opaqueprompts import OpaquePrompts
from langchain.memory import ConversationBufferWindowMemory
from langchain_openai.llms import OpenAI
from langchain_community.llms.opaqueprompts import OpaquePrompts
prompt_template = """
As an AI assistant, you will answer questions according to given context.
@@ -45,13 +43,8 @@ Question: ```{question}```
def test_opaqueprompts() -> None:
chain = LLMChain(
prompt=PromptTemplate.from_template(prompt_template),
llm=OpaquePrompts(llm=OpenAI()),
memory=ConversationBufferWindowMemory(k=2),
)
output = chain.run(
chain = PromptTemplate.from_template(prompt_template) | OpaquePrompts(llm=OpenAI())
output = chain.invoke(
{
"question": "Write a text message to remind John to do password reset \
for his website through his email to stay secure."

View File

@@ -1,8 +1,5 @@
"""Test Nebula API wrapper."""
from langchain_core.prompts.prompt import PromptTemplate
from langchain.chains.llm import LLMChain
from langchain.llms.symblai_nebula import Nebula
from langchain_community.llms.symblai_nebula import Nebula
def test_symblai_nebula_call() -> None:
@@ -41,7 +38,5 @@ Rhea: Thanks, bye!"""
instruction = """Identify the main objectives mentioned in this
conversation."""
prompt = PromptTemplate.from_template(template="{instruction}\n{conversation}")
llm_chain = LLMChain(prompt=prompt, llm=llm)
output = llm_chain.run(instruction=instruction, conversation=conversation)
output = llm.invoke(f"{instruction}\n{conversation}")
assert isinstance(output, str)

View File

@@ -9,12 +9,9 @@ import os
from typing import Optional
import pytest
from langchain_core.documents import Document
from langchain_core.outputs import LLMResult
from pytest_mock import MockerFixture
from langchain.chains.summarize import load_summarize_chain
from langchain.llms import VertexAI, VertexAIModelGarden
from langchain_community.llms import VertexAI, VertexAIModelGarden
def test_vertex_initialization() -> None:
@@ -152,31 +149,3 @@ def test_vertex_call_count_tokens() -> None:
llm = VertexAI()
output = llm.get_num_tokens("How are you?")
assert output == 4
@pytest.mark.requires("google.cloud.aiplatform")
def test_get_num_tokens_be_called_when_using_mapreduce_chain(
mocker: MockerFixture,
) -> None:
from vertexai.language_models._language_models import CountTokensResponse
m1 = mocker.patch(
"vertexai.preview.language_models._PreviewTextGenerationModel.count_tokens",
return_value=CountTokensResponse(
total_tokens=2,
total_billable_characters=2,
_count_tokens_response={"total_tokens": 2, "total_billable_characters": 2},
),
)
llm = VertexAI()
chain = load_summarize_chain(
llm,
chain_type="map_reduce",
return_intermediate_steps=False,
)
doc = Document(page_content="Hi")
output = chain({"input_documents": [doc]})
assert isinstance(output["output_text"], str)
m1.assert_called_once()
assert llm._llm_type == "vertexai"
assert llm.model_name == llm.client._model_id

View File

@@ -3,11 +3,10 @@ from typing import Any, List
import pytest
from langchain_core.documents import Document
from langchain_core.tools import BaseTool
from langchain.agents.load_tools import load_tools
from langchain.tools import ArxivQueryRun
from langchain.tools.base import BaseTool
from langchain.utilities import ArxivAPIWrapper
from langchain_community.tools import ArxivQueryRun
from langchain_community.utilities import ArxivAPIWrapper
@pytest.fixture
@@ -142,6 +141,7 @@ def test_load_returns_full_set_of_metadata() -> None:
def _load_arxiv_from_universal_entry(**kwargs: Any) -> BaseTool:
from langchain.agents.load_tools import load_tools
tools = load_tools(["arxiv"], **kwargs)
assert len(tools) == 1, "loaded more than 1 tool"
return tools[0]

View File

@@ -3,11 +3,10 @@ from typing import Any, List
import pytest
from langchain_core.documents import Document
from langchain_core.tools import BaseTool
from langchain.agents.load_tools import load_tools
from langchain.tools import PubmedQueryRun
from langchain.tools.base import BaseTool
from langchain.utilities import PubMedAPIWrapper
from langchain_community.tools import PubmedQueryRun
from langchain_community.utilities import PubMedAPIWrapper
xmltodict = pytest.importorskip("xmltodict")
@@ -135,6 +134,7 @@ def test_load_returns_full_set_of_metadata() -> None:
def _load_pubmed_from_universal_entry(**kwargs: Any) -> BaseTool:
from langchain.agents.load_tools import load_tools
tools = load_tools(["pubmed"], **kwargs)
assert len(tools) == 1, "loaded more than 1 tool"
return tools[0]

View File

@@ -1,14 +1,9 @@
import os
from typing import Generator, List, Union
from typing import Union
import pytest
from langchain_core.documents import Document
from vcr.request import Request
from langchain.document_loaders import TextLoader
from langchain.embeddings import OpenAIEmbeddings
from langchain.text_splitter import CharacterTextSplitter
# Those environment variables turn on Deep Lake pytest mode.
# It significantly makes tests run much faster.
# Need to run before `import deeplake`
@@ -47,35 +42,3 @@ def vcr_config() -> dict:
],
"ignore_localhost": True,
}
# Define a fixture that yields a generator object returning a list of documents
@pytest.fixture(scope="function")
def documents() -> Generator[List[Document], None, None]:
"""Return a generator that yields a list of documents."""
# Create a CharacterTextSplitter object for splitting the documents into chunks
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
# Load the documents from a file located in the fixtures directory
documents = TextLoader(
os.path.join(os.path.dirname(__file__), "fixtures", "sharks.txt")
).load()
# Yield the documents split into chunks
yield text_splitter.split_documents(documents)
@pytest.fixture(scope="function")
def texts() -> Generator[List[str], None, None]:
# Load the documents from a file located in the fixtures directory
documents = TextLoader(
os.path.join(os.path.dirname(__file__), "fixtures", "sharks.txt")
).load()
yield [doc.page_content for doc in documents]
@pytest.fixture(scope="module")
def embedding_openai() -> OpenAIEmbeddings:
return OpenAIEmbeddings()

View File

@@ -0,0 +1,85 @@
"""Test CallbackManager."""
from unittest.mock import patch
import pytest
from langchain_community.callbacks import get_openai_callback
from langchain_core.callbacks.manager import trace_as_chain_group, CallbackManager
from langchain_core.outputs import LLMResult
from langchain_core.tracers.langchain import LangChainTracer, wait_for_all_tracers
from langchain_openai.llms import BaseOpenAI
def test_callback_manager_configure_context_vars(
monkeypatch: pytest.MonkeyPatch,
) -> None:
"""Test callback manager configuration."""
monkeypatch.setenv("LANGCHAIN_TRACING_V2", "true")
monkeypatch.setenv("LANGCHAIN_TRACING", "false")
with patch.object(LangChainTracer, "_update_run_single"):
with patch.object(LangChainTracer, "_persist_run_single"):
with trace_as_chain_group("test") as group_manager:
assert len(group_manager.handlers) == 1
tracer = group_manager.handlers[0]
assert isinstance(tracer, LangChainTracer)
with get_openai_callback() as cb:
# This is a new empty callback handler
assert cb.successful_requests == 0
assert cb.total_tokens == 0
# configure adds this openai cb but doesn't modify the group manager
mngr = CallbackManager.configure(group_manager)
assert mngr.handlers == [tracer, cb]
assert group_manager.handlers == [tracer]
response = LLMResult(
generations=[],
llm_output={
"token_usage": {
"prompt_tokens": 2,
"completion_tokens": 1,
"total_tokens": 3,
},
"model_name": BaseOpenAI.__fields__["model_name"].default,
},
)
mngr.on_llm_start({}, ["prompt"])[0].on_llm_end(response)
# The callback handler has been updated
assert cb.successful_requests == 1
assert cb.total_tokens == 3
assert cb.prompt_tokens == 2
assert cb.completion_tokens == 1
assert cb.total_cost > 0
with get_openai_callback() as cb:
# This is a new empty callback handler
assert cb.successful_requests == 0
assert cb.total_tokens == 0
# configure adds this openai cb but doesn't modify the group manager
mngr = CallbackManager.configure(group_manager)
assert mngr.handlers == [tracer, cb]
assert group_manager.handlers == [tracer]
response = LLMResult(
generations=[],
llm_output={
"token_usage": {
"prompt_tokens": 2,
"completion_tokens": 1,
"total_tokens": 3,
},
"model_name": BaseOpenAI.__fields__["model_name"].default,
},
)
mngr.on_llm_start({}, ["prompt"])[0].on_llm_end(response)
# The callback handler has been updated
assert cb.successful_requests == 1
assert cb.total_tokens == 3
assert cb.prompt_tokens == 2
assert cb.completion_tokens == 1
assert cb.total_cost > 0
wait_for_all_tracers()
assert LangChainTracer._persist_run_single.call_count == 1 # type: ignore

View File

@@ -0,0 +1,37 @@
from langchain_community.callbacks import __all__
EXPECTED_ALL = [
"AimCallbackHandler",
"ArgillaCallbackHandler",
"ArizeCallbackHandler",
"PromptLayerCallbackHandler",
"ArthurCallbackHandler",
"ClearMLCallbackHandler",
"CometCallbackHandler",
"ContextCallbackHandler",
"FileCallbackHandler",
"HumanApprovalCallbackHandler",
"InfinoCallbackHandler",
"MlflowCallbackHandler",
"LLMonitorCallbackHandler",
"OpenAICallbackHandler",
"StdOutCallbackHandler",
"AsyncIteratorCallbackHandler",
"StreamingStdOutCallbackHandler",
"FinalStreamingStdOutCallbackHandler",
"LLMThoughtLabeler",
"LangChainTracer",
"StreamlitCallbackHandler",
"WandbCallbackHandler",
"WhyLabsCallbackHandler",
"get_openai_callback",
"wandb_tracing_enabled",
"FlyteCallbackHandler",
"SageMakerCallbackHandler",
"LabelStudioCallbackHandler",
"TrubricsCallbackHandler",
]
def test_all_imports() -> None:
assert set(__all__) == set(EXPECTED_ALL)

View File

@@ -1,12 +1,11 @@
import pathlib
from langchain.chat_loaders import slack, utils
from langchain_community.chat_loaders import slack, utils
def test_slack_chat_loader() -> None:
chat_path = (
pathlib.Path(__file__).parents[2]
/ "integration_tests"
/ "examples"
/ "slack_export.zip"
)

View File

@@ -0,0 +1,54 @@
"""Test Anthropic Chat API wrapper."""
from typing import List
from unittest.mock import MagicMock
import pytest
from langchain_core.messages import (
AIMessage,
BaseMessage,
HumanMessage,
SystemMessage,
)
from langchain_community.chat_models import BedrockChat
from langchain_community.chat_models.meta import convert_messages_to_prompt_llama
@pytest.mark.parametrize(
("messages", "expected"),
[
([HumanMessage(content="Hello")], "[INST] Hello [/INST]"),
(
[HumanMessage(content="Hello"), AIMessage(content="Answer:")],
"[INST] Hello [/INST]\nAnswer:",
),
(
[
SystemMessage(content="You're an assistant"),
HumanMessage(content="Hello"),
AIMessage(content="Answer:"),
],
"<<SYS>> You're an assistant <</SYS>>\n[INST] Hello [/INST]\nAnswer:",
),
],
)
def test_formatting(messages: List[BaseMessage], expected: str) -> None:
result = convert_messages_to_prompt_llama(messages)
assert result == expected
def test_anthropic_bedrock() -> None:
client = MagicMock()
respbody = MagicMock(
read=MagicMock(
return_value=MagicMock(
decode=MagicMock(return_value=b'{"completion":"Hi back"}')
)
)
)
client.invoke_model.return_value = {"body": respbody}
model = BedrockChat(model_id="anthropic.claude-v2", client=client)
# should not throw an error
model.invoke("hello there")

View File

@@ -0,0 +1,36 @@
from langchain_community.chat_models import __all__
EXPECTED_ALL = [
"BedrockChat",
"FakeListChatModel",
"PromptLayerChatOpenAI",
"ChatEverlyAI",
"ChatAnthropic",
"ChatCohere",
"ChatDatabricks",
"ChatGooglePalm",
"ChatMlflow",
"ChatMLflowAIGateway",
"ChatOllama",
"ChatVertexAI",
"JinaChat",
"HumanInputChatModel",
"MiniMaxChat",
"ChatAnyscale",
"ChatLiteLLM",
"ErnieBotChat",
"ChatJavelinAIGateway",
"ChatKonko",
"PaiEasChatEndpoint",
"QianfanChatEndpoint",
"ChatFireworks",
"ChatYandexGPT",
"ChatBaichuan",
"ChatHunyuan",
"GigaChat",
"VolcEngineMaasChat",
]
def test_all_imports() -> None:
assert set(__all__) == set(EXPECTED_ALL)

View File

@@ -1,17 +1,25 @@
"""Tests for the various PDF parsers."""
from pathlib import Path
from typing import Iterator
import pytest
from langchain.document_loaders.base import BaseBlobParser
from langchain.document_loaders.blob_loaders import Blob
from langchain.document_loaders.parsers.pdf import (
from langchain_community.document_loaders.base import BaseBlobParser
from langchain_community.document_loaders.blob_loaders import Blob
from langchain_community.document_loaders.parsers.pdf import (
PDFMinerParser,
PyMuPDFParser,
PyPDFium2Parser,
PyPDFParser,
)
from tests.data import HELLO_PDF, LAYOUT_PARSER_PAPER_PDF
_THIS_DIR = Path(__file__).parents[3]
_EXAMPLES_DIR = _THIS_DIR / "examples"
# Paths to test PDF files
HELLO_PDF = _EXAMPLES_DIR / "hello.pdf"
LAYOUT_PARSER_PAPER_PDF = _EXAMPLES_DIR / "layout-parser-paper.pdf"
def _assert_with_parser(parser: BaseBlobParser, splits_by_page: bool = True) -> None:

View File

@@ -0,0 +1,59 @@
from langchain_community.embeddings import __all__
EXPECTED_ALL = [
"CacheBackedEmbeddings",
"ClarifaiEmbeddings",
"CohereEmbeddings",
"DatabricksEmbeddings",
"ElasticsearchEmbeddings",
"FastEmbedEmbeddings",
"HuggingFaceEmbeddings",
"HuggingFaceInferenceAPIEmbeddings",
"InfinityEmbeddings",
"GradientEmbeddings",
"JinaEmbeddings",
"LlamaCppEmbeddings",
"HuggingFaceHubEmbeddings",
"MlflowAIGatewayEmbeddings",
"MlflowEmbeddings",
"ModelScopeEmbeddings",
"TensorflowHubEmbeddings",
"SagemakerEndpointEmbeddings",
"HuggingFaceInstructEmbeddings",
"MosaicMLInstructorEmbeddings",
"SelfHostedEmbeddings",
"SelfHostedHuggingFaceEmbeddings",
"SelfHostedHuggingFaceInstructEmbeddings",
"FakeEmbeddings",
"DeterministicFakeEmbedding",
"AlephAlphaAsymmetricSemanticEmbedding",
"AlephAlphaSymmetricSemanticEmbedding",
"SentenceTransformerEmbeddings",
"GooglePalmEmbeddings",
"MiniMaxEmbeddings",
"VertexAIEmbeddings",
"BedrockEmbeddings",
"DeepInfraEmbeddings",
"EdenAiEmbeddings",
"DashScopeEmbeddings",
"EmbaasEmbeddings",
"OctoAIEmbeddings",
"SpacyEmbeddings",
"NLPCloudEmbeddings",
"GPT4AllEmbeddings",
"XinferenceEmbeddings",
"LocalAIEmbeddings",
"AwaEmbeddings",
"HuggingFaceBgeEmbeddings",
"ErnieEmbeddings",
"JavelinAIGatewayEmbeddings",
"OllamaEmbeddings",
"QianfanEmbeddingsEndpoint",
"JohnSnowLabsEmbeddings",
"VoyageEmbeddings",
"BookendEmbeddings",
]
def test_all_imports() -> None:
assert set(__all__) == set(EXPECTED_ALL)

View File

@@ -0,0 +1,91 @@
from langchain_core.language_models.llms import BaseLLM
from langchain_community import llms
EXPECT_ALL = [
"AI21",
"AlephAlpha",
"AmazonAPIGateway",
"Anthropic",
"Anyscale",
"Arcee",
"Aviary",
"AzureMLOnlineEndpoint",
"Banana",
"Baseten",
"Beam",
"Bedrock",
"CTransformers",
"CTranslate2",
"CerebriumAI",
"ChatGLM",
"Clarifai",
"Cohere",
"Databricks",
"DeepInfra",
"DeepSparse",
"EdenAI",
"FakeListLLM",
"Fireworks",
"ForefrontAI",
"GigaChat",
"GPT4All",
"GooglePalm",
"GooseAI",
"GradientLLM",
"HuggingFaceEndpoint",
"HuggingFaceHub",
"HuggingFacePipeline",
"HuggingFaceTextGenInference",
"HumanInputLLM",
"KoboldApiLLM",
"LlamaCpp",
"TextGen",
"ManifestWrapper",
"Minimax",
"MlflowAIGateway",
"Modal",
"MosaicML",
"Nebula",
"NIBittensorLLM",
"NLPCloud",
"Ollama",
"OpenLLM",
"OpenLM",
"PaiEasEndpoint",
"Petals",
"PipelineAI",
"Predibase",
"PredictionGuard",
"PromptLayerOpenAI",
"PromptLayerOpenAIChat",
"OpaquePrompts",
"RWKV",
"Replicate",
"SagemakerEndpoint",
"SelfHostedHuggingFaceLLM",
"SelfHostedPipeline",
"StochasticAI",
"TitanTakeoff",
"TitanTakeoffPro",
"Tongyi",
"VertexAI",
"VertexAIModelGarden",
"VLLM",
"VLLMOpenAI",
"Writer",
"OctoAIEndpoint",
"Xinference",
"JavelinAIGateway",
"QianfanLLMEndpoint",
"YandexGPT",
"VolcEngineMaasLLM",
"WatsonxLLM",
]
def test_all_imports() -> None:
"""Simple test to make sure all things can be imported."""
for cls in llms.__all__:
assert issubclass(getattr(llms, cls), BaseLLM)
assert set(llms.__all__) == set(EXPECT_ALL)

View File

@@ -1,9 +1,10 @@
from typing import List, Type
import langchain.tools
from langchain.tools import _DEPRECATED_TOOLS
from langchain.tools import __all__ as tools_all
from langchain.tools.base import BaseTool, StructuredTool
from langchain_core.tools import BaseTool, StructuredTool
import langchain_community.tools
from langchain_community.tools import _DEPRECATED_TOOLS
from langchain_community.tools import __all__ as tools_all
_EXCLUDE = {
BaseTool,
@@ -17,7 +18,7 @@ def _get_tool_classes(skip_tools_without_default_names: bool) -> List[Type[BaseT
if tool_class_name in _DEPRECATED_TOOLS:
continue
# Resolve the str to the class
tool_class = getattr(langchain.tools, tool_class_name)
tool_class = getattr(langchain_community.tools, tool_class_name)
if isinstance(tool_class, type) and issubclass(tool_class, BaseTool):
if tool_class in _EXCLUDE:
continue

View File

@@ -0,0 +1,728 @@
"""Test FAISS functionality."""
import datetime
import math
import tempfile
import pytest
from typing import Union
from langchain_core.documents import Document
from langchain_community.docstore.base import Docstore
from langchain_community.docstore.in_memory import InMemoryDocstore
from langchain_community.vectorstores.faiss import FAISS
from tests.integration_tests.vectorstores.fake_embeddings import FakeEmbeddings
_PAGE_CONTENT = """This is a page about LangChain.
It is a really cool framework.
What isn't there to love about langchain?
Made in 2022."""
class FakeDocstore(Docstore):
"""Fake docstore for testing purposes."""
def search(self, search: str) -> Union[str, Document]:
"""Return the fake document."""
document = Document(page_content=_PAGE_CONTENT)
return document
@pytest.mark.requires("faiss")
def test_faiss() -> None:
"""Test end to end construction and search."""
texts = ["foo", "bar", "baz"]
docsearch = FAISS.from_texts(texts, FakeEmbeddings())
index_to_id = docsearch.index_to_docstore_id
expected_docstore = InMemoryDocstore(
{
index_to_id[0]: Document(page_content="foo"),
index_to_id[1]: Document(page_content="bar"),
index_to_id[2]: Document(page_content="baz"),
}
)
assert docsearch.docstore.__dict__ == expected_docstore.__dict__
output = docsearch.similarity_search("foo", k=1)
assert output == [Document(page_content="foo")]
@pytest.mark.requires("faiss")
async def test_faiss_afrom_texts() -> None:
"""Test end to end construction and search."""
texts = ["foo", "bar", "baz"]
docsearch = await FAISS.afrom_texts(texts, FakeEmbeddings())
index_to_id = docsearch.index_to_docstore_id
expected_docstore = InMemoryDocstore(
{
index_to_id[0]: Document(page_content="foo"),
index_to_id[1]: Document(page_content="bar"),
index_to_id[2]: Document(page_content="baz"),
}
)
assert docsearch.docstore.__dict__ == expected_docstore.__dict__
output = await docsearch.asimilarity_search("foo", k=1)
assert output == [Document(page_content="foo")]
@pytest.mark.requires("faiss")
def test_faiss_vector_sim() -> None:
"""Test vector similarity."""
texts = ["foo", "bar", "baz"]
docsearch = FAISS.from_texts(texts, FakeEmbeddings())
index_to_id = docsearch.index_to_docstore_id
expected_docstore = InMemoryDocstore(
{
index_to_id[0]: Document(page_content="foo"),
index_to_id[1]: Document(page_content="bar"),
index_to_id[2]: Document(page_content="baz"),
}
)
assert docsearch.docstore.__dict__ == expected_docstore.__dict__
query_vec = FakeEmbeddings().embed_query(text="foo")
output = docsearch.similarity_search_by_vector(query_vec, k=1)
assert output == [Document(page_content="foo")]
@pytest.mark.requires("faiss")
async def test_faiss_async_vector_sim() -> None:
"""Test vector similarity."""
texts = ["foo", "bar", "baz"]
docsearch = await FAISS.afrom_texts(texts, FakeEmbeddings())
index_to_id = docsearch.index_to_docstore_id
expected_docstore = InMemoryDocstore(
{
index_to_id[0]: Document(page_content="foo"),
index_to_id[1]: Document(page_content="bar"),
index_to_id[2]: Document(page_content="baz"),
}
)
assert docsearch.docstore.__dict__ == expected_docstore.__dict__
query_vec = await FakeEmbeddings().aembed_query(text="foo")
output = await docsearch.asimilarity_search_by_vector(query_vec, k=1)
assert output == [Document(page_content="foo")]
@pytest.mark.requires("faiss")
def test_faiss_vector_sim_with_score_threshold() -> None:
"""Test vector similarity."""
texts = ["foo", "bar", "baz"]
docsearch = FAISS.from_texts(texts, FakeEmbeddings())
index_to_id = docsearch.index_to_docstore_id
expected_docstore = InMemoryDocstore(
{
index_to_id[0]: Document(page_content="foo"),
index_to_id[1]: Document(page_content="bar"),
index_to_id[2]: Document(page_content="baz"),
}
)
assert docsearch.docstore.__dict__ == expected_docstore.__dict__
query_vec = FakeEmbeddings().embed_query(text="foo")
output = docsearch.similarity_search_by_vector(query_vec, k=2, score_threshold=0.2)
assert output == [Document(page_content="foo")]
@pytest.mark.requires("faiss")
async def test_faiss_vector_async_sim_with_score_threshold() -> None:
"""Test vector similarity."""
texts = ["foo", "bar", "baz"]
docsearch = await FAISS.afrom_texts(texts, FakeEmbeddings())
index_to_id = docsearch.index_to_docstore_id
expected_docstore = InMemoryDocstore(
{
index_to_id[0]: Document(page_content="foo"),
index_to_id[1]: Document(page_content="bar"),
index_to_id[2]: Document(page_content="baz"),
}
)
assert docsearch.docstore.__dict__ == expected_docstore.__dict__
query_vec = await FakeEmbeddings().aembed_query(text="foo")
output = await docsearch.asimilarity_search_by_vector(
query_vec, k=2, score_threshold=0.2
)
assert output == [Document(page_content="foo")]
@pytest.mark.requires("faiss")
def test_similarity_search_with_score_by_vector() -> None:
"""Test vector similarity with score by vector."""
texts = ["foo", "bar", "baz"]
docsearch = FAISS.from_texts(texts, FakeEmbeddings())
index_to_id = docsearch.index_to_docstore_id
expected_docstore = InMemoryDocstore(
{
index_to_id[0]: Document(page_content="foo"),
index_to_id[1]: Document(page_content="bar"),
index_to_id[2]: Document(page_content="baz"),
}
)
assert docsearch.docstore.__dict__ == expected_docstore.__dict__
query_vec = FakeEmbeddings().embed_query(text="foo")
output = docsearch.similarity_search_with_score_by_vector(query_vec, k=1)
assert len(output) == 1
assert output[0][0] == Document(page_content="foo")
@pytest.mark.requires("faiss")
async def test_similarity_async_search_with_score_by_vector() -> None:
"""Test vector similarity with score by vector."""
texts = ["foo", "bar", "baz"]
docsearch = await FAISS.afrom_texts(texts, FakeEmbeddings())
index_to_id = docsearch.index_to_docstore_id
expected_docstore = InMemoryDocstore(
{
index_to_id[0]: Document(page_content="foo"),
index_to_id[1]: Document(page_content="bar"),
index_to_id[2]: Document(page_content="baz"),
}
)
assert docsearch.docstore.__dict__ == expected_docstore.__dict__
query_vec = await FakeEmbeddings().aembed_query(text="foo")
output = await docsearch.asimilarity_search_with_score_by_vector(query_vec, k=1)
assert len(output) == 1
assert output[0][0] == Document(page_content="foo")
@pytest.mark.requires("faiss")
def test_similarity_search_with_score_by_vector_with_score_threshold() -> None:
"""Test vector similarity with score by vector."""
texts = ["foo", "bar", "baz"]
docsearch = FAISS.from_texts(texts, FakeEmbeddings())
index_to_id = docsearch.index_to_docstore_id
expected_docstore = InMemoryDocstore(
{
index_to_id[0]: Document(page_content="foo"),
index_to_id[1]: Document(page_content="bar"),
index_to_id[2]: Document(page_content="baz"),
}
)
assert docsearch.docstore.__dict__ == expected_docstore.__dict__
query_vec = FakeEmbeddings().embed_query(text="foo")
output = docsearch.similarity_search_with_score_by_vector(
query_vec,
k=2,
score_threshold=0.2,
)
assert len(output) == 1
assert output[0][0] == Document(page_content="foo")
assert output[0][1] < 0.2
@pytest.mark.requires("faiss")
async def test_sim_asearch_with_score_by_vector_with_score_threshold() -> None:
"""Test vector similarity with score by vector."""
texts = ["foo", "bar", "baz"]
docsearch = await FAISS.afrom_texts(texts, FakeEmbeddings())
index_to_id = docsearch.index_to_docstore_id
expected_docstore = InMemoryDocstore(
{
index_to_id[0]: Document(page_content="foo"),
index_to_id[1]: Document(page_content="bar"),
index_to_id[2]: Document(page_content="baz"),
}
)
assert docsearch.docstore.__dict__ == expected_docstore.__dict__
query_vec = await FakeEmbeddings().aembed_query(text="foo")
output = await docsearch.asimilarity_search_with_score_by_vector(
query_vec,
k=2,
score_threshold=0.2,
)
assert len(output) == 1
assert output[0][0] == Document(page_content="foo")
assert output[0][1] < 0.2
@pytest.mark.requires("faiss")
def test_faiss_mmr() -> None:
texts = ["foo", "foo", "fou", "foy"]
docsearch = FAISS.from_texts(texts, FakeEmbeddings())
query_vec = FakeEmbeddings().embed_query(text="foo")
# make sure we can have k > docstore size
output = docsearch.max_marginal_relevance_search_with_score_by_vector(
query_vec, k=10, lambda_mult=0.1
)
assert len(output) == len(texts)
assert output[0][0] == Document(page_content="foo")
assert output[0][1] == 0.0
assert output[1][0] != Document(page_content="foo")
@pytest.mark.requires("faiss")
async def test_faiss_async_mmr() -> None:
texts = ["foo", "foo", "fou", "foy"]
docsearch = await FAISS.afrom_texts(texts, FakeEmbeddings())
query_vec = await FakeEmbeddings().aembed_query(text="foo")
# make sure we can have k > docstore size
output = await docsearch.amax_marginal_relevance_search_with_score_by_vector(
query_vec, k=10, lambda_mult=0.1
)
assert len(output) == len(texts)
assert output[0][0] == Document(page_content="foo")
assert output[0][1] == 0.0
assert output[1][0] != Document(page_content="foo")
@pytest.mark.requires("faiss")
def test_faiss_mmr_with_metadatas() -> None:
texts = ["foo", "foo", "fou", "foy"]
metadatas = [{"page": i} for i in range(len(texts))]
docsearch = FAISS.from_texts(texts, FakeEmbeddings(), metadatas=metadatas)
query_vec = FakeEmbeddings().embed_query(text="foo")
output = docsearch.max_marginal_relevance_search_with_score_by_vector(
query_vec, k=10, lambda_mult=0.1
)
assert len(output) == len(texts)
assert output[0][0] == Document(page_content="foo", metadata={"page": 0})
assert output[0][1] == 0.0
assert output[1][0] != Document(page_content="foo", metadata={"page": 0})
@pytest.mark.requires("faiss")
async def test_faiss_async_mmr_with_metadatas() -> None:
texts = ["foo", "foo", "fou", "foy"]
metadatas = [{"page": i} for i in range(len(texts))]
docsearch = await FAISS.afrom_texts(texts, FakeEmbeddings(), metadatas=metadatas)
query_vec = await FakeEmbeddings().aembed_query(text="foo")
output = await docsearch.amax_marginal_relevance_search_with_score_by_vector(
query_vec, k=10, lambda_mult=0.1
)
assert len(output) == len(texts)
assert output[0][0] == Document(page_content="foo", metadata={"page": 0})
assert output[0][1] == 0.0
assert output[1][0] != Document(page_content="foo", metadata={"page": 0})
@pytest.mark.requires("faiss")
def test_faiss_mmr_with_metadatas_and_filter() -> None:
texts = ["foo", "foo", "fou", "foy"]
metadatas = [{"page": i} for i in range(len(texts))]
docsearch = FAISS.from_texts(texts, FakeEmbeddings(), metadatas=metadatas)
query_vec = FakeEmbeddings().embed_query(text="foo")
output = docsearch.max_marginal_relevance_search_with_score_by_vector(
query_vec, k=10, lambda_mult=0.1, filter={"page": 1}
)
assert len(output) == 1
assert output[0][0] == Document(page_content="foo", metadata={"page": 1})
assert output[0][1] == 0.0
@pytest.mark.requires("faiss")
async def test_faiss_async_mmr_with_metadatas_and_filter() -> None:
texts = ["foo", "foo", "fou", "foy"]
metadatas = [{"page": i} for i in range(len(texts))]
docsearch = await FAISS.afrom_texts(texts, FakeEmbeddings(), metadatas=metadatas)
query_vec = await FakeEmbeddings().aembed_query(text="foo")
output = await docsearch.amax_marginal_relevance_search_with_score_by_vector(
query_vec, k=10, lambda_mult=0.1, filter={"page": 1}
)
assert len(output) == 1
assert output[0][0] == Document(page_content="foo", metadata={"page": 1})
assert output[0][1] == 0.0
@pytest.mark.requires("faiss")
def test_faiss_mmr_with_metadatas_and_list_filter() -> None:
texts = ["foo", "foo", "fou", "foy"]
metadatas = [{"page": i} if i <= 3 else {"page": 3} for i in range(len(texts))]
docsearch = FAISS.from_texts(texts, FakeEmbeddings(), metadatas=metadatas)
query_vec = FakeEmbeddings().embed_query(text="foo")
output = docsearch.max_marginal_relevance_search_with_score_by_vector(
query_vec, k=10, lambda_mult=0.1, filter={"page": [0, 1, 2]}
)
assert len(output) == 3
assert output[0][0] == Document(page_content="foo", metadata={"page": 0})
assert output[0][1] == 0.0
assert output[1][0] != Document(page_content="foo", metadata={"page": 0})
@pytest.mark.requires("faiss")
async def test_faiss_async_mmr_with_metadatas_and_list_filter() -> None:
texts = ["foo", "foo", "fou", "foy"]
metadatas = [{"page": i} if i <= 3 else {"page": 3} for i in range(len(texts))]
docsearch = await FAISS.afrom_texts(texts, FakeEmbeddings(), metadatas=metadatas)
query_vec = await FakeEmbeddings().aembed_query(text="foo")
output = await docsearch.amax_marginal_relevance_search_with_score_by_vector(
query_vec, k=10, lambda_mult=0.1, filter={"page": [0, 1, 2]}
)
assert len(output) == 3
assert output[0][0] == Document(page_content="foo", metadata={"page": 0})
assert output[0][1] == 0.0
assert output[1][0] != Document(page_content="foo", metadata={"page": 0})
@pytest.mark.requires("faiss")
def test_faiss_with_metadatas() -> None:
"""Test end to end construction and search."""
texts = ["foo", "bar", "baz"]
metadatas = [{"page": i} for i in range(len(texts))]
docsearch = FAISS.from_texts(texts, FakeEmbeddings(), metadatas=metadatas)
expected_docstore = InMemoryDocstore(
{
docsearch.index_to_docstore_id[0]: Document(
page_content="foo", metadata={"page": 0}
),
docsearch.index_to_docstore_id[1]: Document(
page_content="bar", metadata={"page": 1}
),
docsearch.index_to_docstore_id[2]: Document(
page_content="baz", metadata={"page": 2}
),
}
)
assert docsearch.docstore.__dict__ == expected_docstore.__dict__
output = docsearch.similarity_search("foo", k=1)
assert output == [Document(page_content="foo", metadata={"page": 0})]
@pytest.mark.requires("faiss")
async def test_faiss_async_with_metadatas() -> None:
"""Test end to end construction and search."""
texts = ["foo", "bar", "baz"]
metadatas = [{"page": i} for i in range(len(texts))]
docsearch = await FAISS.afrom_texts(texts, FakeEmbeddings(), metadatas=metadatas)
expected_docstore = InMemoryDocstore(
{
docsearch.index_to_docstore_id[0]: Document(
page_content="foo", metadata={"page": 0}
),
docsearch.index_to_docstore_id[1]: Document(
page_content="bar", metadata={"page": 1}
),
docsearch.index_to_docstore_id[2]: Document(
page_content="baz", metadata={"page": 2}
),
}
)
assert docsearch.docstore.__dict__ == expected_docstore.__dict__
output = await docsearch.asimilarity_search("foo", k=1)
assert output == [Document(page_content="foo", metadata={"page": 0})]
@pytest.mark.requires("faiss")
def test_faiss_with_metadatas_and_filter() -> None:
texts = ["foo", "bar", "baz"]
metadatas = [{"page": i} for i in range(len(texts))]
docsearch = FAISS.from_texts(texts, FakeEmbeddings(), metadatas=metadatas)
expected_docstore = InMemoryDocstore(
{
docsearch.index_to_docstore_id[0]: Document(
page_content="foo", metadata={"page": 0}
),
docsearch.index_to_docstore_id[1]: Document(
page_content="bar", metadata={"page": 1}
),
docsearch.index_to_docstore_id[2]: Document(
page_content="baz", metadata={"page": 2}
),
}
)
assert docsearch.docstore.__dict__ == expected_docstore.__dict__
output = docsearch.similarity_search("foo", k=1, filter={"page": 1})
assert output == [Document(page_content="bar", metadata={"page": 1})]
@pytest.mark.requires("faiss")
async def test_faiss_async_with_metadatas_and_filter() -> None:
texts = ["foo", "bar", "baz"]
metadatas = [{"page": i} for i in range(len(texts))]
docsearch = await FAISS.afrom_texts(texts, FakeEmbeddings(), metadatas=metadatas)
expected_docstore = InMemoryDocstore(
{
docsearch.index_to_docstore_id[0]: Document(
page_content="foo", metadata={"page": 0}
),
docsearch.index_to_docstore_id[1]: Document(
page_content="bar", metadata={"page": 1}
),
docsearch.index_to_docstore_id[2]: Document(
page_content="baz", metadata={"page": 2}
),
}
)
assert docsearch.docstore.__dict__ == expected_docstore.__dict__
output = await docsearch.asimilarity_search("foo", k=1, filter={"page": 1})
assert output == [Document(page_content="bar", metadata={"page": 1})]
@pytest.mark.requires("faiss")
def test_faiss_with_metadatas_and_list_filter() -> None:
texts = ["foo", "bar", "baz", "foo", "qux"]
metadatas = [{"page": i} if i <= 3 else {"page": 3} for i in range(len(texts))]
docsearch = FAISS.from_texts(texts, FakeEmbeddings(), metadatas=metadatas)
expected_docstore = InMemoryDocstore(
{
docsearch.index_to_docstore_id[0]: Document(
page_content="foo", metadata={"page": 0}
),
docsearch.index_to_docstore_id[1]: Document(
page_content="bar", metadata={"page": 1}
),
docsearch.index_to_docstore_id[2]: Document(
page_content="baz", metadata={"page": 2}
),
docsearch.index_to_docstore_id[3]: Document(
page_content="foo", metadata={"page": 3}
),
docsearch.index_to_docstore_id[4]: Document(
page_content="qux", metadata={"page": 3}
),
}
)
assert docsearch.docstore.__dict__ == expected_docstore.__dict__
output = docsearch.similarity_search("foor", k=1, filter={"page": [0, 1, 2]})
assert output == [Document(page_content="foo", metadata={"page": 0})]
@pytest.mark.requires("faiss")
async def test_faiss_async_with_metadatas_and_list_filter() -> None:
texts = ["foo", "bar", "baz", "foo", "qux"]
metadatas = [{"page": i} if i <= 3 else {"page": 3} for i in range(len(texts))]
docsearch = await FAISS.afrom_texts(texts, FakeEmbeddings(), metadatas=metadatas)
expected_docstore = InMemoryDocstore(
{
docsearch.index_to_docstore_id[0]: Document(
page_content="foo", metadata={"page": 0}
),
docsearch.index_to_docstore_id[1]: Document(
page_content="bar", metadata={"page": 1}
),
docsearch.index_to_docstore_id[2]: Document(
page_content="baz", metadata={"page": 2}
),
docsearch.index_to_docstore_id[3]: Document(
page_content="foo", metadata={"page": 3}
),
docsearch.index_to_docstore_id[4]: Document(
page_content="qux", metadata={"page": 3}
),
}
)
assert docsearch.docstore.__dict__ == expected_docstore.__dict__
output = await docsearch.asimilarity_search("foor", k=1, filter={"page": [0, 1, 2]})
assert output == [Document(page_content="foo", metadata={"page": 0})]
@pytest.mark.requires("faiss")
def test_faiss_search_not_found() -> None:
"""Test what happens when document is not found."""
texts = ["foo", "bar", "baz"]
docsearch = FAISS.from_texts(texts, FakeEmbeddings())
# Get rid of the docstore to purposefully induce errors.
docsearch.docstore = InMemoryDocstore({})
with pytest.raises(ValueError):
docsearch.similarity_search("foo")
@pytest.mark.requires("faiss")
async def test_faiss_async_search_not_found() -> None:
"""Test what happens when document is not found."""
texts = ["foo", "bar", "baz"]
docsearch = await FAISS.afrom_texts(texts, FakeEmbeddings())
# Get rid of the docstore to purposefully induce errors.
docsearch.docstore = InMemoryDocstore({})
with pytest.raises(ValueError):
await docsearch.asimilarity_search("foo")
@pytest.mark.requires("faiss")
def test_faiss_add_texts() -> None:
"""Test end to end adding of texts."""
# Create initial doc store.
texts = ["foo", "bar", "baz"]
docsearch = FAISS.from_texts(texts, FakeEmbeddings())
# Test adding a similar document as before.
docsearch.add_texts(["foo"])
output = docsearch.similarity_search("foo", k=2)
assert output == [Document(page_content="foo"), Document(page_content="foo")]
@pytest.mark.requires("faiss")
async def test_faiss_async_add_texts() -> None:
"""Test end to end adding of texts."""
# Create initial doc store.
texts = ["foo", "bar", "baz"]
docsearch = await FAISS.afrom_texts(texts, FakeEmbeddings())
# Test adding a similar document as before.
await docsearch.aadd_texts(["foo"])
output = await docsearch.asimilarity_search("foo", k=2)
assert output == [Document(page_content="foo"), Document(page_content="foo")]
@pytest.mark.requires("faiss")
def test_faiss_add_texts_not_supported() -> None:
"""Test adding of texts to a docstore that doesn't support it."""
docsearch = FAISS(FakeEmbeddings(), None, FakeDocstore(), {})
with pytest.raises(ValueError):
docsearch.add_texts(["foo"])
@pytest.mark.requires("faiss")
async def test_faiss_async_add_texts_not_supported() -> None:
"""Test adding of texts to a docstore that doesn't support it."""
docsearch = FAISS(FakeEmbeddings(), None, FakeDocstore(), {})
with pytest.raises(ValueError):
await docsearch.aadd_texts(["foo"])
@pytest.mark.requires("faiss")
def test_faiss_local_save_load() -> None:
"""Test end to end serialization."""
texts = ["foo", "bar", "baz"]
docsearch = FAISS.from_texts(texts, FakeEmbeddings())
temp_timestamp = datetime.datetime.utcnow().strftime("%Y%m%d-%H%M%S")
with tempfile.TemporaryDirectory(suffix="_" + temp_timestamp + "/") as temp_folder:
docsearch.save_local(temp_folder)
new_docsearch = FAISS.load_local(temp_folder, FakeEmbeddings())
assert new_docsearch.index is not None
@pytest.mark.requires("faiss")
async def test_faiss_async_local_save_load() -> None:
"""Test end to end serialization."""
texts = ["foo", "bar", "baz"]
docsearch = await FAISS.afrom_texts(texts, FakeEmbeddings())
temp_timestamp = datetime.datetime.utcnow().strftime("%Y%m%d-%H%M%S")
with tempfile.TemporaryDirectory(suffix="_" + temp_timestamp + "/") as temp_folder:
docsearch.save_local(temp_folder)
new_docsearch = FAISS.load_local(temp_folder, FakeEmbeddings())
assert new_docsearch.index is not None
@pytest.mark.requires("faiss")
def test_faiss_similarity_search_with_relevance_scores() -> None:
"""Test the similarity search with normalized similarities."""
texts = ["foo", "bar", "baz"]
docsearch = FAISS.from_texts(
texts,
FakeEmbeddings(),
relevance_score_fn=lambda score: 1.0 - score / math.sqrt(2),
)
outputs = docsearch.similarity_search_with_relevance_scores("foo", k=1)
output, score = outputs[0]
assert output == Document(page_content="foo")
assert score == 1.0
@pytest.mark.requires("faiss")
async def test_faiss_async_similarity_search_with_relevance_scores() -> None:
"""Test the similarity search with normalized similarities."""
texts = ["foo", "bar", "baz"]
docsearch = await FAISS.afrom_texts(
texts,
FakeEmbeddings(),
relevance_score_fn=lambda score: 1.0 - score / math.sqrt(2),
)
outputs = await docsearch.asimilarity_search_with_relevance_scores("foo", k=1)
output, score = outputs[0]
assert output == Document(page_content="foo")
assert score == 1.0
@pytest.mark.requires("faiss")
def test_faiss_similarity_search_with_relevance_scores_with_threshold() -> None:
"""Test the similarity search with normalized similarities with score threshold."""
texts = ["foo", "bar", "baz"]
docsearch = FAISS.from_texts(
texts,
FakeEmbeddings(),
relevance_score_fn=lambda score: 1.0 - score / math.sqrt(2),
)
outputs = docsearch.similarity_search_with_relevance_scores(
"foo", k=2, score_threshold=0.5
)
assert len(outputs) == 1
output, score = outputs[0]
assert output == Document(page_content="foo")
assert score == 1.0
@pytest.mark.requires("faiss")
async def test_faiss_asimilarity_search_with_relevance_scores_with_threshold() -> None:
"""Test the similarity search with normalized similarities with score threshold."""
texts = ["foo", "bar", "baz"]
docsearch = await FAISS.afrom_texts(
texts,
FakeEmbeddings(),
relevance_score_fn=lambda score: 1.0 - score / math.sqrt(2),
)
outputs = await docsearch.asimilarity_search_with_relevance_scores(
"foo", k=2, score_threshold=0.5
)
assert len(outputs) == 1
output, score = outputs[0]
assert output == Document(page_content="foo")
assert score == 1.0
@pytest.mark.requires("faiss")
def test_faiss_invalid_normalize_fn() -> None:
"""Test the similarity search with normalized similarities."""
texts = ["foo", "bar", "baz"]
docsearch = FAISS.from_texts(
texts, FakeEmbeddings(), relevance_score_fn=lambda _: 2.0
)
with pytest.warns(Warning, match="scores must be between"):
docsearch.similarity_search_with_relevance_scores("foo", k=1)
@pytest.mark.requires("faiss")
async def test_faiss_async_invalid_normalize_fn() -> None:
"""Test the similarity search with normalized similarities."""
texts = ["foo", "bar", "baz"]
docsearch = await FAISS.afrom_texts(
texts, FakeEmbeddings(), relevance_score_fn=lambda _: 2.0
)
with pytest.warns(Warning, match="scores must be between"):
await docsearch.asimilarity_search_with_relevance_scores("foo", k=1)
@pytest.mark.requires("faiss")
def test_missing_normalize_score_fn() -> None:
"""Test doesn't perform similarity search without a valid distance strategy."""
texts = ["foo", "bar", "baz"]
faiss_instance = FAISS.from_texts(texts, FakeEmbeddings(), distance_strategy="fake")
with pytest.raises(ValueError):
faiss_instance.similarity_search_with_relevance_scores("foo", k=2)
@pytest.mark.requires("faiss")
async def test_async_missing_normalize_score_fn() -> None:
"""Test doesn't perform similarity search without a valid distance strategy."""
texts = ["foo", "bar", "baz"]
faiss_instance = await FAISS.afrom_texts(
texts, FakeEmbeddings(), distance_strategy="fake"
)
with pytest.raises(ValueError):
await faiss_instance.asimilarity_search_with_relevance_scores("foo", k=2)
@pytest.mark.requires("faiss")
def test_delete() -> None:
"""Test the similarity search with normalized similarities."""
ids = ["a", "b", "c"]
docsearch = FAISS.from_texts(["foo", "bar", "baz"], FakeEmbeddings(), ids=ids)
docsearch.delete(ids[1:2])
result = docsearch.similarity_search("bar", k=2)
assert sorted([d.page_content for d in result]) == ["baz", "foo"]
assert docsearch.index_to_docstore_id == {0: ids[0], 1: ids[2]}
@pytest.mark.requires("faiss")
async def test_async_delete() -> None:
"""Test the similarity search with normalized similarities."""
ids = ["a", "b", "c"]
docsearch = await FAISS.afrom_texts(
["foo", "bar", "baz"], FakeEmbeddings(), ids=ids
)
docsearch.delete(ids[1:2])
result = await docsearch.asimilarity_search("bar", k=2)
assert sorted([d.page_content for d in result]) == ["baz", "foo"]
assert docsearch.index_to_docstore_id == {0: ids[0], 1: ids[2]}

View File

@@ -0,0 +1,13 @@
from langchain_community import vectorstores
from langchain_core.vectorstores import VectorStore
def test_all_imports() -> None:
"""Simple test to make sure all things can be imported."""
for cls in vectorstores.__all__:
if cls not in [
"AlibabaCloudOpenSearchSettings",
"ClickhouseSettings",
"MyScaleSettings",
]:
assert issubclass(getattr(vectorstores, cls), VectorStore)

View File

@@ -0,0 +1,49 @@
"""
**Utility functions** for LangChain.
These functions do not depend on any other LangChain module.
"""
from langchain_core.utils.env import get_from_dict_or_env, get_from_env
from langchain_core.utils.formatting import StrictFormatter, formatter
from langchain_core.utils.input import (
get_bolded_text,
get_color_mapping,
get_colored_text,
print_text,
)
from langchain_core.utils.loading import try_load_from_hub
from langchain_core.utils.strings import comma_list, stringify_dict, stringify_value
from langchain_core.utils.utils import (
build_extra_kwargs,
check_package_version,
convert_to_secret_str,
get_pydantic_field_names,
guard_import,
mock_now,
raise_for_status_with_text,
xor_args,
)
__all__ = [
"StrictFormatter",
"check_package_version",
"convert_to_secret_str",
"formatter",
"get_bolded_text",
"get_color_mapping",
"get_colored_text",
"get_pydantic_field_names",
"guard_import",
"mock_now",
"print_text",
"raise_for_status_with_text",
"xor_args",
"try_load_from_hub",
"build_extra_kwargs",
"get_from_env",
"get_from_dict_or_env",
"stringify_dict",
"comma_list",
"stringify_value",
]

View File

@@ -0,0 +1,45 @@
from __future__ import annotations
import os
from typing import Any, Dict, Optional
def env_var_is_set(env_var: str) -> bool:
"""Check if an environment variable is set.
Args:
env_var (str): The name of the environment variable.
Returns:
bool: True if the environment variable is set, False otherwise.
"""
return env_var in os.environ and os.environ[env_var] not in (
"",
"0",
"false",
"False",
)
def get_from_dict_or_env(
data: Dict[str, Any], key: str, env_key: str, default: Optional[str] = None
) -> str:
"""Get a value from a dictionary or an environment variable."""
if key in data and data[key]:
return data[key]
else:
return get_from_env(key, env_key, default=default)
def get_from_env(key: str, env_key: str, default: Optional[str] = None) -> str:
"""Get a value from a dictionary or an environment variable."""
if env_key in os.environ and os.environ[env_key]:
return os.environ[env_key]
elif default is not None:
return default
else:
raise ValueError(
f"Did not find {key}, please add an environment variable"
f" `{env_key}` which contains it, or pass"
f" `{key}` as a named parameter."
)

View File

@@ -0,0 +1,28 @@
from langchain_core.utils import __all__
EXPECTED_ALL = [
"StrictFormatter",
"check_package_version",
"convert_to_secret_str",
"formatter",
"get_bolded_text",
"get_color_mapping",
"get_colored_text",
"get_pydantic_field_names",
"guard_import",
"mock_now",
"print_text",
"raise_for_status_with_text",
"xor_args",
"try_load_from_hub",
"build_extra_kwargs",
"get_from_dict_or_env",
"get_from_env",
"stringify_dict",
"comma_list",
"stringify_value"
]
def test_all_imports() -> None:
assert set(__all__) == set(EXPECTED_ALL)

View File

@@ -0,0 +1,83 @@
"""**Callback handlers** allow listening to events in LangChain.
**Class hierarchy:**
.. code-block::
BaseCallbackHandler --> <name>CallbackHandler # Example: AimCallbackHandler
"""
from langchain_core.callbacks import StdOutCallbackHandler, StreamingStdOutCallbackHandler
from langchain_core.tracers.langchain import LangChainTracer
from langchain_core.tracers.context import (
collect_runs,
tracing_enabled,
tracing_v2_enabled,
)
from langchain_community.callbacks.aim_callback import AimCallbackHandler
from langchain_community.callbacks.argilla_callback import ArgillaCallbackHandler
from langchain_community.callbacks.arize_callback import ArizeCallbackHandler
from langchain_community.callbacks.arthur_callback import ArthurCallbackHandler
from langchain_community.callbacks.clearml_callback import ClearMLCallbackHandler
from langchain_community.callbacks.comet_ml_callback import CometCallbackHandler
from langchain_community.callbacks.context_callback import ContextCallbackHandler
from langchain_community.callbacks.file import FileCallbackHandler
from langchain_community.callbacks.flyte_callback import FlyteCallbackHandler
from langchain_community.callbacks.human import HumanApprovalCallbackHandler
from langchain_community.callbacks.infino_callback import InfinoCallbackHandler
from langchain_community.callbacks.labelstudio_callback import LabelStudioCallbackHandler
from langchain_community.callbacks.llmonitor_callback import LLMonitorCallbackHandler
from langchain_community.callbacks.mlflow_callback import MlflowCallbackHandler
from langchain_community.callbacks.openai_info import OpenAICallbackHandler
from langchain_community.callbacks.promptlayer_callback import PromptLayerCallbackHandler
from langchain_community.callbacks.sagemaker_callback import SageMakerCallbackHandler
from langchain_community.callbacks.streaming_aiter import AsyncIteratorCallbackHandler
from langchain_community.callbacks.streaming_stdout_final_only import (
FinalStreamingStdOutCallbackHandler,
)
from langchain_community.callbacks.streamlit import LLMThoughtLabeler, StreamlitCallbackHandler
from langchain_community.callbacks.trubrics_callback import TrubricsCallbackHandler
from langchain_community.callbacks.wandb_callback import WandbCallbackHandler
from langchain_community.callbacks.whylabs_callback import WhyLabsCallbackHandler
from langchain_community.callbacks.manager import (
get_openai_callback,
wandb_tracing_enabled,
)
__all__ = [
"AimCallbackHandler",
"ArgillaCallbackHandler",
"ArizeCallbackHandler",
"PromptLayerCallbackHandler",
"ArthurCallbackHandler",
"ClearMLCallbackHandler",
"CometCallbackHandler",
"ContextCallbackHandler",
"FileCallbackHandler",
"HumanApprovalCallbackHandler",
"InfinoCallbackHandler",
"MlflowCallbackHandler",
"LLMonitorCallbackHandler",
"OpenAICallbackHandler",
"StdOutCallbackHandler",
"AsyncIteratorCallbackHandler",
"StreamingStdOutCallbackHandler",
"FinalStreamingStdOutCallbackHandler",
"LLMThoughtLabeler",
"LangChainTracer",
"StreamlitCallbackHandler",
"WandbCallbackHandler",
"WhyLabsCallbackHandler",
"get_openai_callback",
"tracing_enabled",
"tracing_v2_enabled",
"collect_runs",
"wandb_tracing_enabled",
"FlyteCallbackHandler",
"SageMakerCallbackHandler",
"LabelStudioCallbackHandler",
"TrubricsCallbackHandler",
]

View File

@@ -0,0 +1,68 @@
from __future__ import annotations
from langchain_core.callbacks.manager import (
AsyncCallbackManager,
AsyncCallbackManagerForChainGroup,
AsyncCallbackManagerForChainRun,
AsyncCallbackManagerForLLMRun,
AsyncCallbackManagerForRetrieverRun,
AsyncCallbackManagerForToolRun,
AsyncParentRunManager,
AsyncRunManager,
BaseRunManager,
CallbackManager,
CallbackManagerForChainGroup,
CallbackManagerForChainRun,
CallbackManagerForLLMRun,
CallbackManagerForRetrieverRun,
CallbackManagerForToolRun,
Callbacks,
ParentRunManager,
RunManager,
ahandle_event,
atrace_as_chain_group,
handle_event,
trace_as_chain_group,
)
from langchain_core.tracers.context import (
collect_runs,
tracing_enabled,
tracing_v2_enabled,
)
from langchain_core.utils.env import env_var_is_set
from langchain_community.callbacks.manager import (
get_openai_callback,
wandb_tracing_enabled,
)
__all__ = [
"BaseRunManager",
"RunManager",
"ParentRunManager",
"AsyncRunManager",
"AsyncParentRunManager",
"CallbackManagerForLLMRun",
"AsyncCallbackManagerForLLMRun",
"CallbackManagerForChainRun",
"AsyncCallbackManagerForChainRun",
"CallbackManagerForToolRun",
"AsyncCallbackManagerForToolRun",
"CallbackManagerForRetrieverRun",
"AsyncCallbackManagerForRetrieverRun",
"CallbackManager",
"CallbackManagerForChainGroup",
"AsyncCallbackManager",
"AsyncCallbackManagerForChainGroup",
"tracing_enabled",
"tracing_v2_enabled",
"collect_runs",
"atrace_as_chain_group",
"trace_as_chain_group",
"handle_event",
"ahandle_event",
"Callbacks",
"env_var_is_set",
"get_openai_callback",
"wandb_tracing_enabled",
]

View File

@@ -0,0 +1,36 @@
from langchain.callbacks.manager import __all__
EXPECTED_ALL = [
"BaseRunManager",
"RunManager",
"ParentRunManager",
"AsyncRunManager",
"AsyncParentRunManager",
"CallbackManagerForLLMRun",
"AsyncCallbackManagerForLLMRun",
"CallbackManagerForChainRun",
"AsyncCallbackManagerForChainRun",
"CallbackManagerForToolRun",
"AsyncCallbackManagerForToolRun",
"CallbackManagerForRetrieverRun",
"AsyncCallbackManagerForRetrieverRun",
"CallbackManager",
"CallbackManagerForChainGroup",
"AsyncCallbackManager",
"AsyncCallbackManagerForChainGroup",
"tracing_enabled",
"tracing_v2_enabled",
"collect_runs",
"atrace_as_chain_group",
"trace_as_chain_group",
"handle_event",
"ahandle_event",
"env_var_is_set",
"Callbacks",
"get_openai_callback",
"wandb_tracing_enabled",
]
def test_all_imports() -> None:
assert set(__all__) == set(EXPECTED_ALL)

View File

@@ -0,0 +1,75 @@
"""Test LLM chain."""
from tempfile import TemporaryDirectory
from typing import Dict, List, Union
from unittest.mock import patch
import pytest
from langchain_core.output_parsers import BaseOutputParser
from langchain_core.prompts import PromptTemplate
from langchain.chains.llm import LLMChain
from tests.unit_tests.llms.fake_llm import FakeLLM
class FakeOutputParser(BaseOutputParser):
"""Fake output parser class for testing."""
def parse(self, text: str) -> Union[str, List[str], Dict[str, str]]:
"""Parse by splitting."""
return text.split()
@pytest.fixture
def fake_llm_chain() -> LLMChain:
"""Fake LLM chain for testing purposes."""
prompt = PromptTemplate(input_variables=["bar"], template="This is a {bar}:")
return LLMChain(prompt=prompt, llm=FakeLLM(), output_key="text1")
@patch(
"langchain_community.llms.loading.get_type_to_cls_dict",
lambda: {"fake": lambda: FakeLLM},
)
def test_serialization(fake_llm_chain: LLMChain) -> None:
"""Test serialization."""
from langchain.chains.loading import load_chain
with TemporaryDirectory() as temp_dir:
file = temp_dir + "/llm.json"
fake_llm_chain.save(file)
loaded_chain = load_chain(file)
assert loaded_chain == fake_llm_chain
def test_missing_inputs(fake_llm_chain: LLMChain) -> None:
"""Test error is raised if inputs are missing."""
with pytest.raises(ValueError):
fake_llm_chain({"foo": "bar"})
def test_valid_call(fake_llm_chain: LLMChain) -> None:
"""Test valid call of LLM chain."""
output = fake_llm_chain({"bar": "baz"})
assert output == {"bar": "baz", "text1": "foo"}
# Test with stop words.
output = fake_llm_chain({"bar": "baz", "stop": ["foo"]})
# Response should be `bar` now.
assert output == {"bar": "baz", "stop": ["foo"], "text1": "bar"}
def test_predict_method(fake_llm_chain: LLMChain) -> None:
"""Test predict method works."""
output = fake_llm_chain.predict(bar="baz")
assert output == "foo"
def test_predict_and_parse() -> None:
"""Test parsing ability."""
prompt = PromptTemplate(
input_variables=["foo"], template="{foo}", output_parser=FakeOutputParser()
)
llm = FakeLLM(queries={"foo": "foo bar"})
chain = LLMChain(prompt=prompt, llm=llm)
output = chain.predict_and_parse(foo="foo")
assert output == ["foo", "bar"]

View File

@@ -0,0 +1,114 @@
"""A unit test meant to catch accidental introduction of non-optional dependencies."""
from pathlib import Path
from typing import Any, Dict, Mapping
import pytest
import toml
HERE = Path(__file__).parent
PYPROJECT_TOML = HERE / "../../pyproject.toml"
@pytest.fixture()
def poetry_conf() -> Dict[str, Any]:
"""Load the pyproject.toml file."""
with open(PYPROJECT_TOML) as f:
return toml.load(f)["tool"]["poetry"]
def test_required_dependencies(poetry_conf: Mapping[str, Any]) -> None:
"""A test that checks if a new non-optional dependency is being introduced.
If this test is triggered, it means that a contributor is trying to introduce a new
required dependency. This should be avoided in most situations.
"""
# Get the dependencies from the [tool.poetry.dependencies] section
dependencies = poetry_conf["dependencies"]
is_required = {
package_name: isinstance(requirements, str)
or not requirements.get("optional", False)
for package_name, requirements in dependencies.items()
}
required_dependencies = [
package_name for package_name, required in is_required.items() if required
]
assert sorted(required_dependencies) == sorted(
[
"PyYAML",
"SQLAlchemy",
"aiohttp",
"async-timeout",
"dataclasses-json",
"jsonpatch",
"langchain-core",
"langsmith",
"numpy",
"pydantic",
"python",
"requests",
"tenacity",
"langchain-community",
"langchain-openai",
]
)
unrequired_dependencies = [
package_name for package_name, required in is_required.items() if not required
]
in_extras = [dep for group in poetry_conf["extras"].values() for dep in group]
assert set(unrequired_dependencies) == set(in_extras)
def test_test_group_dependencies(poetry_conf: Mapping[str, Any]) -> None:
"""Check if someone is attempting to add additional test dependencies.
Only dependencies associated with test running infrastructure should be added
to the test group; e.g., pytest, pytest-cov etc.
Examples of dependencies that should NOT be included: boto3, azure, postgres, etc.
"""
test_group_deps = sorted(poetry_conf["group"]["test"]["dependencies"])
assert test_group_deps == sorted(
[
"duckdb-engine",
"freezegun",
"langchain-core",
"lark",
"pandas",
"pytest",
"pytest-asyncio",
"pytest-cov",
"pytest-dotenv",
"pytest-mock",
"pytest-socket",
"pytest-watcher",
"responses",
"syrupy",
"requests-mock",
]
)
def test_imports() -> None:
"""Test that you can import all top level things okay."""
from langchain_core.prompts import BasePromptTemplate # noqa: F401
from langchain.agents import OpenAIFunctionsAgent # noqa: F401
from langchain.callbacks import OpenAICallbackHandler # noqa: F401
from langchain.chains import LLMChain # noqa: F401
from langchain.chat_models import ChatOpenAI # noqa: F401
from langchain.document_loaders import BSHTMLLoader # noqa: F401
from langchain.embeddings import OpenAIEmbeddings # noqa: F401
from langchain.llms import OpenAI # noqa: F401
from langchain.retrievers import VespaRetriever # noqa: F401
from langchain.tools import DuckDuckGoSearchResults # noqa: F401
from langchain.utilities import (
SearchApiAPIWrapper, # noqa: F401
SerpAPIWrapper, # noqa: F401
)
from langchain.vectorstores import FAISS # noqa: F401

View File

@@ -0,0 +1,20 @@
from langchain_openai.chat_models import AzureChatOpenAI, ChatOpenAI, _import_tiktoken
from langchain_openai.embeddings import AzureOpenAIEmbeddings, OpenAIEmbeddings
from langchain_openai.functions import (
convert_pydantic_to_openai_function,
convert_pydantic_to_openai_tool,
)
from langchain_openai.llms import AzureOpenAI, BaseOpenAI, OpenAI
__all__ = [
"_import_tiktoken",
"OpenAI",
"AzureOpenAI",
"ChatOpenAI",
"AzureChatOpenAI",
"OpenAIEmbeddings",
"AzureOpenAIEmbeddings",
"convert_pydantic_to_openai_function",
"convert_pydantic_to_openai_tool",
"BaseOpenAI",
]

View File

@@ -0,0 +1,17 @@
from langchain_openai.chat_models.azure import AzureChatOpenAI
from langchain_openai.chat_models.base import (
ChatOpenAI,
_convert_delta_to_message_chunk,
_create_retry_decorator,
_import_tiktoken,
acompletion_with_retry,
)
__all__ = [
"_create_retry_decorator",
"acompletion_with_retry",
"_convert_delta_to_message_chunk",
"_import_tiktoken",
"ChatOpenAI",
"AzureChatOpenAI",
]

View File

@@ -0,0 +1,21 @@
from langchain_openai.embeddings.azure import AzureOpenAIEmbeddings
from langchain_openai.embeddings.base import (
OpenAIEmbeddings,
_async_retry_decorator,
_check_response,
_create_retry_decorator,
_is_openai_v1,
async_embed_with_retry,
embed_with_retry,
)
__all__ = [
"_create_retry_decorator",
"_async_retry_decorator",
"_check_response",
"embed_with_retry",
"async_embed_with_retry",
"_is_openai_v1",
"OpenAIEmbeddings",
"AzureOpenAIEmbeddings",
]

View File

@@ -0,0 +1,27 @@
from langchain_openai.llms.base import (
AzureOpenAI,
BaseOpenAI,
OpenAI,
OpenAIChat,
_create_retry_decorator,
_stream_response_to_generation_chunk,
_streaming_response_template,
_update_response,
acompletion_with_retry,
completion_with_retry,
update_token_usage,
)
__all__ = [
"update_token_usage",
"_stream_response_to_generation_chunk",
"_update_response",
"_streaming_response_template",
"_create_retry_decorator",
"completion_with_retry",
"acompletion_with_retry",
"OpenAIChat",
"OpenAI",
"AzureOpenAI",
"BaseOpenAI",
]

View File

@@ -6,9 +6,7 @@ import pytest
from langchain_core.messages import BaseMessage, HumanMessage
from langchain_core.outputs import ChatGeneration, ChatResult, LLMResult
from langchain.callbacks.manager import CallbackManager
from langchain.chat_models import AzureChatOpenAI
from tests.unit_tests.callbacks.fake_callback_handler import FakeCallbackHandler
from langchain_openai.chat_models import AzureChatOpenAI
OPENAI_API_VERSION = os.environ.get("AZURE_OPENAI_API_VERSION", "")
OPENAI_API_BASE = os.environ.get("AZURE_OPENAI_API_BASE", "")
@@ -71,52 +69,6 @@ def test_chat_openai_multiple_completions() -> None:
assert isinstance(generation.message.content, str)
@pytest.mark.scheduled
def test_chat_openai_streaming() -> None:
"""Test that streaming correctly invokes on_llm_new_token callback."""
callback_handler = FakeCallbackHandler()
callback_manager = CallbackManager([callback_handler])
chat = _get_llm(
max_tokens=10,
streaming=True,
temperature=0,
callback_manager=callback_manager,
verbose=True,
)
message = HumanMessage(content="Hello")
response = chat([message])
assert callback_handler.llm_streams > 0
assert isinstance(response, BaseMessage)
@pytest.mark.scheduled
def test_chat_openai_streaming_generation_info() -> None:
"""Test that generation info is preserved when streaming."""
class _FakeCallback(FakeCallbackHandler):
saved_things: dict = {}
def on_llm_end(
self,
*args: Any,
**kwargs: Any,
) -> Any:
# Save the generation
self.saved_things["generation"] = args[0]
callback = _FakeCallback()
callback_manager = CallbackManager([callback])
chat = _get_llm(
max_tokens=2,
temperature=0,
callback_manager=callback_manager,
)
list(chat.stream("hi"))
generation = callback.saved_things["generation"]
# `Hello!` is two tokens, assert that that is what is returned
assert generation.generations[0][0].text == "Hello!"
@pytest.mark.scheduled
async def test_async_chat_openai() -> None:
"""Test async generation."""
@@ -133,31 +85,6 @@ async def test_async_chat_openai() -> None:
assert generation.text == generation.message.content
@pytest.mark.scheduled
async def test_async_chat_openai_streaming() -> None:
"""Test that streaming correctly invokes on_llm_new_token callback."""
callback_handler = FakeCallbackHandler()
callback_manager = CallbackManager([callback_handler])
chat = _get_llm(
max_tokens=10,
streaming=True,
temperature=0,
callback_manager=callback_manager,
verbose=True,
)
message = HumanMessage(content="Hello")
response = await chat.agenerate([[message], [message]])
assert callback_handler.llm_streams > 0
assert isinstance(response, LLMResult)
assert len(response.generations) == 2
for generations in response.generations:
assert len(generations) == 1
for generation in generations:
assert isinstance(generation, ChatGeneration)
assert isinstance(generation.text, str)
assert generation.text == generation.message.content
@pytest.mark.scheduled
def test_openai_streaming(llm: AzureChatOpenAI) -> None:
"""Test streaming tokens from OpenAI."""

View File

@@ -1,26 +1,16 @@
"""Test ChatOpenAI wrapper."""
from typing import Any, List, Optional, Union
from typing import Optional
import pytest
from langchain_core.messages import BaseMessage, HumanMessage, SystemMessage
from langchain_core.outputs import (
ChatGeneration,
ChatGenerationChunk,
ChatResult,
GenerationChunk,
LLMResult,
)
from langchain_core.prompts import ChatPromptTemplate, HumanMessagePromptTemplate
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.pydantic_v1 import BaseModel, Field
from langchain.callbacks.base import AsyncCallbackHandler
from langchain.callbacks.manager import CallbackManager
from langchain.chains.openai_functions import (
create_openai_fn_chain,
)
from langchain.chat_models.openai import ChatOpenAI
from langchain.output_parsers.openai_functions import JsonOutputFunctionsParser
from tests.unit_tests.callbacks.fake_callback_handler import FakeCallbackHandler
from langchain_openai.chat_models import ChatOpenAI
@pytest.mark.scheduled
@@ -94,51 +84,6 @@ def test_chat_openai_multiple_completions() -> None:
assert isinstance(generation.message.content, str)
@pytest.mark.scheduled
def test_chat_openai_streaming() -> None:
"""Test that streaming correctly invokes on_llm_new_token callback."""
callback_handler = FakeCallbackHandler()
callback_manager = CallbackManager([callback_handler])
chat = ChatOpenAI(
max_tokens=10,
streaming=True,
temperature=0,
callback_manager=callback_manager,
verbose=True,
)
message = HumanMessage(content="Hello")
response = chat([message])
assert callback_handler.llm_streams > 0
assert isinstance(response, BaseMessage)
@pytest.mark.scheduled
def test_chat_openai_streaming_generation_info() -> None:
"""Test that generation info is preserved when streaming."""
class _FakeCallback(FakeCallbackHandler):
saved_things: dict = {}
def on_llm_end(
self,
*args: Any,
**kwargs: Any,
) -> Any:
# Save the generation
self.saved_things["generation"] = args[0]
callback = _FakeCallback()
callback_manager = CallbackManager([callback])
chat = ChatOpenAI(
max_tokens=2,
temperature=0,
callback_manager=callback_manager,
)
list(chat.stream("hi"))
generation = callback.saved_things["generation"]
# `Hello!` is two tokens, assert that that is what is returned
assert generation.generations[0][0].text == "Hello!"
def test_chat_openai_llm_output_contains_model_name() -> None:
"""Test llm_output contains model_name."""
@@ -187,131 +132,6 @@ async def test_async_chat_openai() -> None:
assert generation.text == generation.message.content
@pytest.mark.scheduled
async def test_async_chat_openai_streaming() -> None:
"""Test that streaming correctly invokes on_llm_new_token callback."""
callback_handler = FakeCallbackHandler()
callback_manager = CallbackManager([callback_handler])
chat = ChatOpenAI(
max_tokens=10,
streaming=True,
temperature=0,
callback_manager=callback_manager,
verbose=True,
)
message = HumanMessage(content="Hello")
response = await chat.agenerate([[message], [message]])
assert callback_handler.llm_streams > 0
assert isinstance(response, LLMResult)
assert len(response.generations) == 2
for generations in response.generations:
assert len(generations) == 1
for generation in generations:
assert isinstance(generation, ChatGeneration)
assert isinstance(generation.text, str)
assert generation.text == generation.message.content
@pytest.mark.scheduled
async def test_async_chat_openai_streaming_with_function() -> None:
"""Test ChatOpenAI wrapper with multiple completions."""
class MyCustomAsyncHandler(AsyncCallbackHandler):
def __init__(self) -> None:
super().__init__()
self._captured_tokens: List[str] = []
self._captured_chunks: List[
Optional[Union[ChatGenerationChunk, GenerationChunk]]
] = []
def on_llm_new_token(
self,
token: str,
*,
chunk: Optional[Union[ChatGenerationChunk, GenerationChunk]] = None,
**kwargs: Any,
) -> Any:
self._captured_tokens.append(token)
self._captured_chunks.append(chunk)
json_schema = {
"title": "Person",
"description": "Identifying information about a person.",
"type": "object",
"properties": {
"name": {
"title": "Name",
"description": "The person's name",
"type": "string",
},
"age": {
"title": "Age",
"description": "The person's age",
"type": "integer",
},
"fav_food": {
"title": "Fav Food",
"description": "The person's favorite food",
"type": "string",
},
},
"required": ["name", "age"],
}
callback_handler = MyCustomAsyncHandler()
callback_manager = CallbackManager([callback_handler])
chat = ChatOpenAI(
max_tokens=10,
n=1,
callback_manager=callback_manager,
streaming=True,
)
prompt_msgs = [
SystemMessage(
content="You are a world class algorithm for "
"extracting information in structured formats."
),
HumanMessage(
content="Use the given format to extract "
"information from the following input:"
),
HumanMessagePromptTemplate.from_template("{input}"),
HumanMessage(content="Tips: Make sure to answer in the correct format"),
]
prompt = ChatPromptTemplate(messages=prompt_msgs)
function: Any = {
"name": "output_formatter",
"description": (
"Output formatter. Should always be used to format your response to the"
" user."
),
"parameters": json_schema,
}
chain = create_openai_fn_chain(
[function],
chat,
prompt,
output_parser=None,
)
message = HumanMessage(content="Sally is 13 years old")
response = await chain.agenerate([{"input": message}])
assert isinstance(response, LLMResult)
assert len(response.generations) == 1
for generations in response.generations:
assert len(generations) == 1
for generation in generations:
assert isinstance(generation, ChatGeneration)
assert isinstance(generation.text, str)
assert generation.text == generation.message.content
assert len(callback_handler._captured_tokens) > 0
assert len(callback_handler._captured_chunks) > 0
assert all([chunk is not None for chunk in callback_handler._captured_chunks])
@pytest.mark.scheduled
async def test_async_chat_openai_bind_functions() -> None:
@@ -339,17 +159,13 @@ async def test_async_chat_openai_bind_functions() -> None:
]
)
chain = prompt | chat | JsonOutputFunctionsParser(args_only=True)
chain = prompt | chat
message = HumanMessage(content="Sally is 13 years old")
response = await chain.abatch([{"input": message}])
assert isinstance(response, list)
assert len(response) == 1
for generation in response:
assert isinstance(generation, dict)
assert "name" in generation
assert "age" in generation
def test_chat_openai_extra_kwargs() -> None:

View File

@@ -5,9 +5,7 @@ from typing import Any, Generator
import pytest
from langchain_core.outputs import LLMResult
from langchain.callbacks.manager import CallbackManager
from langchain.llms import AzureOpenAI
from tests.unit_tests.callbacks.fake_callback_handler import FakeCallbackHandler
from langchain_openai.llms import AzureOpenAI
OPENAI_API_VERSION = os.environ.get("AZURE_OPENAI_API_VERSION", "")
OPENAI_API_BASE = os.environ.get("AZURE_OPENAI_API_BASE", "")
@@ -135,40 +133,9 @@ def test_openai_streaming_call() -> None:
assert isinstance(output, str)
def test_openai_streaming_callback() -> None:
"""Test that streaming correctly invokes on_llm_new_token callback."""
callback_handler = FakeCallbackHandler()
callback_manager = CallbackManager([callback_handler])
llm = _get_llm(
max_tokens=10,
streaming=True,
temperature=0,
callback_manager=callback_manager,
verbose=True,
)
llm("Write me a sentence with 100 words.")
assert callback_handler.llm_streams == 11
@pytest.mark.scheduled
async def test_openai_async_generate() -> None:
"""Test async generation."""
llm = _get_llm(max_tokens=10)
output = await llm.agenerate(["Hello, how are you?"])
assert isinstance(output, LLMResult)
async def test_openai_async_streaming_callback() -> None:
"""Test that streaming correctly invokes on_llm_new_token callback."""
callback_handler = FakeCallbackHandler()
callback_manager = CallbackManager([callback_handler])
llm = _get_llm(
max_tokens=10,
streaming=True,
temperature=0,
callback_manager=callback_manager,
verbose=True,
)
result = await llm.agenerate(["Write me a sentence with 100 words."])
assert callback_handler.llm_streams == 11
assert isinstance(result, LLMResult)

View File

@@ -1,17 +1,11 @@
"""Test OpenAI API wrapper."""
from pathlib import Path
from typing import Generator
import pytest
from langchain_core.outputs import LLMResult
from langchain.callbacks.manager import CallbackManager
from langchain.chat_models.openai import ChatOpenAI
from langchain.llms.loading import load_llm
from langchain.llms.openai import OpenAI
from tests.unit_tests.callbacks.fake_callback_handler import (
FakeCallbackHandler,
)
from langchain_openai.chat_models import ChatOpenAI
from langchain_openai.llms import OpenAI
@pytest.mark.scheduled
@@ -79,14 +73,6 @@ def test_openai_stop_error() -> None:
llm("write an ordered list of five items", stop=["\n"])
def test_saving_loading_llm(tmp_path: Path) -> None:
"""Test saving/loading an OpenAI LLM."""
llm = OpenAI(max_tokens=10)
llm.save(file_path=tmp_path / "openai.yaml")
loaded_llm = load_llm(tmp_path / "openai.yaml")
assert loaded_llm == llm
@pytest.mark.scheduled
def test_openai_streaming() -> None:
"""Test streaming tokens from OpenAI."""
@@ -193,20 +179,6 @@ def test_openai_streaming_call() -> None:
assert isinstance(output, str)
def test_openai_streaming_callback() -> None:
"""Test that streaming correctly invokes on_llm_new_token callback."""
callback_handler = FakeCallbackHandler()
callback_manager = CallbackManager([callback_handler])
llm = OpenAI(
max_tokens=10,
streaming=True,
temperature=0,
callback_manager=callback_manager,
verbose=True,
)
llm("Write me a sentence with 100 words.")
assert callback_handler.llm_streams == 10
@pytest.mark.scheduled
async def test_openai_async_generate() -> None:
@@ -216,21 +188,6 @@ async def test_openai_async_generate() -> None:
assert isinstance(output, LLMResult)
async def test_openai_async_streaming_callback() -> None:
"""Test that streaming correctly invokes on_llm_new_token callback."""
callback_handler = FakeCallbackHandler()
callback_manager = CallbackManager([callback_handler])
llm = OpenAI(
max_tokens=10,
streaming=True,
temperature=0,
callback_manager=callback_manager,
verbose=True,
)
result = await llm.agenerate(["Write me a sentence with 100 words."])
assert callback_handler.llm_streams == 10
assert isinstance(result, LLMResult)
def test_openai_modelname_to_contextsize_valid() -> None:
"""Test model name to context size on a valid model."""

View File

@@ -4,15 +4,11 @@ from typing import Any
from unittest.mock import MagicMock, patch
import pytest
from langchain_core.language_models import llms as base
from tenacity import wait_none
from langchain.llms import base
from langchain.llms.openai import OpenAI
from langchain.utils.openai import is_openai_v1
from tests.unit_tests.callbacks.fake_callback_handler import (
FakeAsyncCallbackHandler,
FakeCallbackHandler,
)
from langchain_openai.llms import OpenAI
from langchain_openai.utils import is_openai_v1
os.environ["OPENAI_API_KEY"] = "foo"
@@ -24,7 +20,6 @@ def _openai_v1_installed() -> bool:
return False
@pytest.mark.requires("openai")
def test_openai_model_param() -> None:
llm = OpenAI(model="foo")
assert llm.model_name == "foo"
@@ -32,19 +27,16 @@ def test_openai_model_param() -> None:
assert llm.model_name == "foo"
@pytest.mark.requires("openai")
def test_openai_model_kwargs() -> None:
llm = OpenAI(model_kwargs={"foo": "bar"})
assert llm.model_kwargs == {"foo": "bar"}
@pytest.mark.requires("openai")
def test_openai_invalid_model_kwargs() -> None:
with pytest.raises(ValueError):
OpenAI(model_kwargs={"model_name": "foo"})
@pytest.mark.requires("openai")
def test_openai_incorrect_field() -> None:
with pytest.warns(match="not default parameter"):
llm = OpenAI(foo="bar")
@@ -78,7 +70,6 @@ def _patched_retry(*args: Any, **kwargs: Any) -> Any:
@pytest.mark.skipif(
_openai_v1_installed(), reason="Retries only handled by LangChain for openai<1"
)
@pytest.mark.requires("openai")
def test_openai_retries(mock_completion: dict) -> None:
llm = OpenAI()
mock_client = MagicMock()
@@ -95,7 +86,6 @@ def test_openai_retries(mock_completion: dict) -> None:
return mock_completion
mock_client.create = raise_once
callback_handler = FakeCallbackHandler()
# Patch the retry to avoid waiting during a unit test
with patch.object(base, "retry", _patched_retry):
@@ -104,17 +94,15 @@ def test_openai_retries(mock_completion: dict) -> None:
"client",
mock_client,
):
res = llm.predict("bar", callbacks=[callback_handler])
res = llm.predict("bar")
assert res == "Bar Baz"
assert completed
assert raised
assert callback_handler.retries == 1
@pytest.mark.skipif(
_openai_v1_installed(), reason="Retries only handled by LangChain for openai<1"
)
@pytest.mark.requires("openai")
async def test_openai_async_retries(mock_completion: dict) -> None:
llm = OpenAI()
mock_client = MagicMock()
@@ -132,7 +120,6 @@ async def test_openai_async_retries(mock_completion: dict) -> None:
return mock_completion
mock_client.acreate = araise_once
callback_handler = FakeAsyncCallbackHandler()
# Patch the retry to avoid waiting during a unit test
with patch.object(base, "retry", _patched_retry):
with patch.object(
@@ -140,8 +127,7 @@ async def test_openai_async_retries(mock_completion: dict) -> None:
"client",
mock_client,
):
res = await llm.apredict("bar", callbacks=[callback_handler])
res = await llm.apredict("bar")
assert res == "Bar Baz"
assert completed
assert raised
assert callback_handler.retries == 1

View File

@@ -0,0 +1,318 @@
#!/bin/bash
cd libs
# cleanup anything existing
git checkout master -- langchain/{langchain,tests}
git checkout master -- core/{langchain_core,tests}
git checkout master -- experimental/{langchain_experimental,tests}
rm -rf community/{langchain_community,tests}
rm -rf partners/openai/{langchain_openai,tests}
# make new dirs
mkdir -p community/langchain_community
touch community/langchain_community/__init__.py
touch community/README.md
mkdir -p community/tests
touch community/tests/__init__.py
mkdir community/tests/unit_tests
touch community/tests/unit_tests/__init__.py
mkdir community/tests/integration_tests/
touch community/tests/integration_tests/__init__.py
mkdir -p community/langchain_community/utils
touch community/langchain_community/utils/__init__.py
mkdir -p community/tests/unit_tests/utils
touch community/tests/unit_tests/utils/__init__.py
mkdir -p community/langchain_community/indexes
touch community/langchain_community/indexes/__init__.py
mkdir community/tests/unit_tests/indexes
touch community/tests/unit_tests/indexes/__init__.py
# import core stuff from core
cd langchain
git grep -l 'from langchain.pydantic_v1' | xargs sed -i '' 's/from langchain.pydantic_v1/from langchain_core.pydantic_v1/g'
git grep -l 'from langchain.tools.base' | xargs sed -i '' 's/from langchain.tools.base/from langchain_core.tools/g'
git grep -l 'from langchain.chat_models.base' | xargs sed -i '' 's/from langchain.chat_models.base/from langchain_core.language_models.chat_models/g'
git grep -l 'from langchain.llms.base' | xargs sed -i '' 's/from langchain.llms.base/from langchain_core.language_models.llms/g'
git grep -l 'from langchain.embeddings.base' | xargs sed -i '' 's/from langchain.embeddings.base/from langchain_core.embeddings/g'
git grep -l 'from langchain.vectorstores.base' | xargs sed -i '' 's/from langchain.vectorstores.base/from langchain_core.vectorstores/g'
git grep -l 'from langchain.agents.tools' | xargs sed -i '' 's/from langchain.agents.tools/from langchain_core.tools/g'
git grep -l 'from langchain.schema.output' | xargs sed -i '' 's/from langchain.schema.output/from langchain_core.outputs/g'
git grep -l 'from langchain.schema.messages' | xargs sed -i '' 's/from langchain.schema.messages/from langchain_core.messages/g'
git grep -l 'from langchain.schema.embeddings' | xargs sed -i '' 's/from langchain.schema.embeddings/from langchain_core.embeddings/g'
# mv stuff to community
cd ..
mv langchain/langchain/chat_loaders community/langchain_community
mv langchain/langchain/document_loaders community/langchain_community
mv langchain/langchain/docstore community/langchain_community
mv langchain/langchain/document_transformers community/langchain_community
mv langchain/langchain/embeddings community/langchain_community
mv langchain/langchain/graphs community/langchain_community
mv langchain/langchain/llms community/langchain_community
mv langchain/langchain/chat_models community/langchain_community
mv langchain/langchain/memory/chat_message_histories community/langchain_community
mv langchain/langchain/storage community/langchain_community
mv langchain/langchain/tools community/langchain_community
mv langchain/langchain/utilities community/langchain_community
mv langchain/langchain/vectorstores community/langchain_community
mv langchain/langchain/adapters community/langchain_community
mv langchain/langchain/agents/agent_toolkits community/langchain_community
mv langchain/langchain/cache.py community/langchain_community
mv langchain/langchain/callbacks community/langchain_community/callbacks
mv langchain/langchain/indexes/base.py community/langchain_community/indexes
mv langchain/langchain/indexes/_sql_record_manager.py community/langchain_community/indexes
mv langchain/langchain/utils/math.py community/langchain_community/utils
# mv stuff to openai
mv langchain/langchain/utils/openai.py partners/openai/langchain_openai/utils.py
mv langchain/langchain/utils/openai_functions.py partners/openai/langchain_openai/functions.py
# mv stuff to core
mv langchain/langchain/utils/json_schema.py core/langchain_core/utils
mv langchain/langchain/utils/html.py core/langchain_core/utils
mv langchain/langchain/utils/strings.py core/langchain_core/utils
cat langchain/langchain/utils/env.py >> core/langchain_core/utils/env.py
rm langchain/langchain/utils/env.py
# mv unit tests to community
mv langchain/tests/unit_tests/chat_loaders community/tests/unit_tests
mv langchain/tests/unit_tests/document_loaders community/tests/unit_tests
mv langchain/tests/unit_tests/docstore community/tests/unit_tests
mv langchain/tests/unit_tests/document_transformers community/tests/unit_tests
mv langchain/tests/unit_tests/embeddings community/tests/unit_tests
mv langchain/tests/unit_tests/graphs community/tests/unit_tests
mv langchain/tests/unit_tests/llms community/tests/unit_tests
mv langchain/tests/unit_tests/chat_models community/tests/unit_tests
mv langchain/tests/unit_tests/memory/chat_message_histories community/tests/unit_tests
mv langchain/tests/unit_tests/storage community/tests/unit_tests
mv langchain/tests/unit_tests/tools community/tests/unit_tests
mv langchain/tests/unit_tests/utilities community/tests/unit_tests
mv langchain/tests/unit_tests/vectorstores community/tests/unit_tests
mv langchain/tests/unit_tests/callbacks community/tests/unit_tests
mv langchain/tests/unit_tests/indexes/test_sql_record_manager.py community/tests/unit_tests/indexes
mv langchain/tests/unit_tests/utils/test_math.py community/tests/unit_tests/utils
# cp some test helpers back to langchain
mkdir -p langchain/tests/unit_tests/llms
cp {community,langchain}/tests/unit_tests/llms/fake_llm.py
cp {community,langchain}/tests/unit_tests/llms/fake_chat_model.py
mkdir -p langchain/tests/unit_tests/callbacks
cp {community,langchain}/tests/unit_tests/callbacks/fake_callback_handler.py
# mv unit tests to core
mv langchain/tests/unit_tests/utils/test_json_schema.py core/tests/unit_tests/utils
mv langchain/tests/unit_tests/utils/test_html.py core/tests/unit_tests/utils
# mv integration tests to community
mv langchain/tests/integration_tests/document_loaders community/tests/integration_tests
mv langchain/tests/integration_tests/embeddings community/tests/integration_tests
mv langchain/tests/integration_tests/graphs community/tests/integration_tests
mv langchain/tests/integration_tests/llms community/tests/integration_tests
mv langchain/tests/integration_tests/chat_models community/tests/integration_tests
mv langchain/tests/integration_tests/memory/chat_message_histories community/tests/integration_tests
mv langchain/tests/integration_tests/storage community/tests/integration_tests
mv langchain/tests/integration_tests/tools community/tests/integration_tests
mv langchain/tests/integration_tests/utilities community/tests/integration_tests
mv langchain/tests/integration_tests/vectorstores community/tests/integration_tests
mv langchain/tests/integration_tests/adapters community/tests/integration_tests
mv langchain/tests/integration_tests/callbacks community/tests/integration_tests
mv langchain/tests/integration_tests/{test_kuzu,test_nebulagraph}.py community/tests/integration_tests/graphs
touch community/tests/integration_tests/{chat_message_histories,tools}/__init__.py
# import new core stuff from core (everywhere)
git grep -l 'from langchain.utils.json_schema' | xargs sed -i '' 's/from langchain.utils.json_schema/from langchain_core.utils.json_schema/g'
git grep -l 'from langchain.utils.html' | xargs sed -i '' 's/from langchain.utils.html/from langchain_core.utils.html/g'
git grep -l 'from langchain.utils.strings' | xargs sed -i '' 's/from langchain.utils.strings/from langchain_core.utils.strings/g'
git grep -l 'from langchain.utils.env' | xargs sed -i '' 's/from langchain.utils.env/from langchain_core.utils.env/g'
git add community
cd community
# import core stuff from core
git grep -l 'from langchain.pydantic_v1' | xargs sed -i '' 's/from langchain.pydantic_v1/from langchain_core.pydantic_v1/g'
git grep -l 'from langchain.callbacks.base' | xargs sed -i '' 's/from langchain.callbacks.base/from langchain_core.callbacks/g'
git grep -l 'from langchain.callbacks.stdout' | xargs sed -i '' 's/from langchain.callbacks.stdout/from langchain_core.callbacks/g'
git grep -l 'from langchain.callbacks.streaming_stdout' | xargs sed -i '' 's/from langchain.callbacks.streaming_stdout/from langchain_core.callbacks/g'
git grep -l 'from langchain.callbacks.manager' | xargs sed -i '' 's/from langchain.callbacks.manager/from langchain_core.callbacks/g'
git grep -l 'from langchain.callbacks.tracers.base' | xargs sed -i '' 's/from langchain.callbacks.tracers.base/from langchain_core.tracers/g'
git grep -l 'from langchain.tools.base' | xargs sed -i '' 's/from langchain.tools.base/from langchain_core.tools/g'
git grep -l 'from langchain.agents.tools' | xargs sed -i '' 's/from langchain.agents.tools/from langchain_core.tools/g'
git grep -l 'from langchain.schema.output' | xargs sed -i '' 's/from langchain.schema.output/from langchain_core.outputs/g'
git grep -l 'from langchain.schema.messages' | xargs sed -i '' 's/from langchain.schema.messages/from langchain_core.messages/g'
# import openai stuff from openai
git grep -l 'from langchain.utils.math' | xargs sed -i '' 's/from langchain.utils.math/from langchain_community.utils.math/g'
git grep -l 'from langchain.utils.openai_functions' | xargs sed -i '' 's/from langchain.utils.openai_functions/from langchain_openai.functions/g'
git grep -l 'from langchain.utils.openai' | xargs sed -i '' 's/from langchain.utils.openai/from langchain_openai.utils/g'
git grep -l 'from langchain.chat_models.openai' | xargs sed -i '' 's/from\ langchain.chat_models.openai/from langchain_openai.chat_models/g'
git grep -l 'from langchain.chat_models import ChatOpenAI' | xargs sed -i '' 's/from\ langchain.chat_models\ import\ ChatOpenAI/from langchain_openai.chat_models import ChatOpenAI/g'
git grep -l 'from langchain.chat_models import AzureChatOpenAI' | xargs sed -i '' 's/from\ langchain.chat_models\ import\ AzureChatOpenAI/from langchain_openai.chat_models import AzureChatOpenAI/g'
git grep -l 'from langchain.llms import OpenAI' | xargs sed -i '' 's/from\ langchain.llms\ import\ OpenAI/from langchain_openai.llms import OpenAI/g'
git grep -l 'from langchain.llms import AzureOpenAI' | xargs sed -i '' 's/from\ langchain.llms\ import\ AzureOpenAI/from langchain_openai.llms import AzureOpenAI/g'
git grep -l 'from langchain.embeddings import OpenAIEmbeddings' | xargs sed -i '' 's/from\ langchain.embeddings\ import\ OpenAIEmbeddings/from langchain_openai.embeddings import OpenAIEmbeddings/g'
git grep -l 'from langchain.embeddings import AzureOpenAIEmbeddings' | xargs sed -i '' 's/from\ langchain.embeddings\ import\ AzureOpenAIEmbeddings/from langchain_openai.embeddings import AzureOpenAIEmbeddings/g'
git grep -l 'from langchain.chat_models.azure_openai' | xargs sed -i '' 's/from\ langchain.chat_models.azure_openai/from langchain_openai.chat_models/g'
git grep -l 'from langchain.embeddings.openai' | xargs sed -i '' 's/from langchain.embeddings.openai/from langchain_openai.embeddings/g'
git grep -l 'from langchain.embeddings.azure_openai' | xargs sed -i '' 's/from langchain.embeddings.azure_openai/from langchain_openai.embeddings/g'
git grep -l 'from langchain.adapters.openai' | xargs sed -i '' 's/from langchain.adapters.openai/from langchain_openai.adapters/g'
git grep -l 'from langchain.adapters import openai' | xargs sed -i '' 's/from\ langchain.adapters\ import\ openai/from\ langchain_openai\ import\ adapters/g'
git grep -l 'from langchain.llms.openai' | xargs sed -i '' 's/from langchain.llms.openai/from langchain_openai.llms/g'
git grep -l 'from langchain.utils' | xargs sed -i '' 's/from langchain.utils/from langchain_core.utils/g'
git grep -l 'from langchain\.' | xargs sed -i '' 's/from langchain\./from langchain_community./g'
git grep -l 'from langchain_community.memory.chat_message_histories' | xargs sed -i '' 's/from langchain_community.memory.chat_message_histories/from langchain_community.chat_message_histories/g'
git grep -l 'from langchain_community.agents.agent_toolkits' | xargs sed -i '' 's/from langchain_community.agents.agent_toolkits/from langchain_community.agent_toolkits/g'
git grep -l 'from langchain_community\.text_splitter' | xargs sed -i '' 's/from langchain_community\.text_splitter/from langchain.text_splitter/g'
git grep -l 'from langchain_community\.chains' | xargs sed -i '' 's/from langchain_community\.chains/from langchain.chains/g'
git grep -l 'from langchain_community\.agents' | xargs sed -i '' 's/from langchain_community\.agents/from langchain.agents/g'
git grep -l 'from langchain_community\.memory' | xargs sed -i '' 's/from langchain_community\.memory/from langchain.memory/g'
git grep -l 'langchain\.__version__' | xargs sed -i '' 's/langchain\.__version__/langchain_community.__version__/g'
git grep -l 'langchain\.document_loaders' | xargs sed -i '' 's/langchain\.document_loaders/langchain_community.document_loaders/g'
git grep -l 'langchain\.callbacks' | xargs sed -i '' 's/langchain\.callbacks/langchain_community.callbacks/g'
git grep -l 'langchain\.tools' | xargs sed -i '' 's/langchain\.tools/langchain_community.tools/g'
git grep -l 'langchain\.llms' | xargs sed -i '' 's/langchain\.llms/langchain_community.llms/g'
git grep -l 'import langchain$' | xargs sed -i '' 's/import\ langchain$/import\ langchain_community/g'
git grep -l 'from\ langchain\ ' | xargs sed -i '' 's/from\ langchain\ /from\ langchain_community\ /g'
git grep -l 'langchain_core.language_models.llmsten' | xargs sed -i '' 's/langchain_core.language_models.llmsten/langchain_community.llms.baseten/g'
# update all moved langchain files to re-export classes and functions
cd ../langchain
git checkout master -- langchain
python ../../.scripts/community_split/update_imports.py langchain/chat_loaders langchain_community.chat_loaders
python ../../.scripts/community_split/update_imports.py langchain/callbacks langchain_community.callbacks
python ../../.scripts/community_split/update_imports.py langchain/document_loaders langchain_community.document_loaders
python ../../.scripts/community_split/update_imports.py langchain/docstore langchain_community.docstore
python ../../.scripts/community_split/update_imports.py langchain/document_transformers langchain_community.document_transformers
python ../../.scripts/community_split/update_imports.py langchain/embeddings langchain_community.embeddings
python ../../.scripts/community_split/update_imports.py langchain/graphs langchain_community.graphs
python ../../.scripts/community_split/update_imports.py langchain/llms langchain_community.llms
python ../../.scripts/community_split/update_imports.py langchain/chat_models langchain_community.chat_models
python ../../.scripts/community_split/update_imports.py langchain/memory/chat_message_histories langchain_community.chat_message_histories
python ../../.scripts/community_split/update_imports.py langchain/storage langchain_community.storage
python ../../.scripts/community_split/update_imports.py langchain/tools langchain_community.tools
python ../../.scripts/community_split/update_imports.py langchain/utilities langchain_community.utilities
python ../../.scripts/community_split/update_imports.py langchain/vectorstores langchain_community.vectorstores
python ../../.scripts/community_split/update_imports.py langchain/adapters langchain_community.adapters
python ../../.scripts/community_split/update_imports.py langchain/agents/agent_toolkits langchain_community.agent_toolkits
python ../../.scripts/community_split/update_imports.py langchain/cache.py langchain_community.cache
python ../../.scripts/community_split/update_imports.py langchain/utils/math.py langchain_community.utils.math
python ../../.scripts/community_split/update_imports.py langchain/utils/json_schema.py langchain_core.utils.json_schema
python ../../.scripts/community_split/update_imports.py langchain/utils/html.py langchain_core.utils.html
python ../../.scripts/community_split/update_imports.py langchain/utils/env.py langchain_core.utils.env
python ../../.scripts/community_split/update_imports.py langchain/utils/strings.py langchain_core.utils.strings
python ../../.scripts/community_split/update_imports.py langchain/utils/openai.py langchain_openai.utils
python ../../.scripts/community_split/update_imports.py langchain/utils/openai_functions.py langchain_openai.functions
# update core and openai imports
git grep -l 'from langchain.llms.base ' | xargs sed -i '' 's/from langchain.llms.base /from langchain_core.language_models.llms /g'
git grep -l 'from langchain.chat_models.base ' | xargs sed -i '' 's/from langchain.chat_models.base /from langchain_core.language_models.chat_models /g'
git grep -l 'from langchain.tools.base' | xargs sed -i '' 's/from langchain.tools.base/from langchain_core.tools/g'
git grep -l 'from langchain_community.llms.openai' | xargs sed -i '' 's/from langchain_community.llms.openai/from langchain_openai.llms/g'
git grep -l 'from langchain_community.chat_models.openai' | xargs sed -i '' 's/from langchain_community.chat_models.openai/from langchain_openai.chat_models/g'
git grep -l 'from langchain_community.chat_models.azure_openai' | xargs sed -i '' 's/from langchain_community.chat_models.azure_openai/from langchain_openai.chat_models/g'
git grep -l 'from langchain_community.embeddings.openai' | xargs sed -i '' 's/from langchain_community.embeddings.openai/from langchain_openai.embeddings/g'
git grep -l 'from langchain_community.embeddings.azure_openai' | xargs sed -i '' 's/from langchain_community.embeddings.azure_openai/from langchain_openai.embeddings/g'
git grep -l 'from langchain_community.adapters.openai' | xargs sed -i '' 's/from langchain_community.adapters.openai/from langchain_openai.adapters/g'
git grep -l 'langchain_core.language_models.llmsten' | xargs sed -i '' 's/langchain_core.language_models.llmsten/langchain_community.llms.baseten/g'
cd ..
mv community/langchain_community/utilities/loading.py langchain/langchain/utilities
mv community/langchain_community/utilities/asyncio.py langchain/langchain/utilities
# move from community to openai
mv community/langchain_community/chat_models/openai.py partners/openai/langchain_openai/chat_models/base.py
mv community/langchain_community/chat_models/azure_openai.py partners/openai/langchain_openai/chat_models/azure.py
mv community/langchain_community/llms/openai.py partners/openai/langchain_openai/llms/base.py
mv community/langchain_community/embeddings/openai.py partners/openai/langchain_openai/embeddings/base.py
mv community/langchain_community/embeddings/azure_openai.py partners/openai/langchain_openai/embeddings/azure.py
mv community/langchain_community/adapters/openai.py partners/openai/langchain_openai/adapters.py
# move tests from community to openai
mv community/langchain_community/chat_models/openai.py partners/openai/langchain_openai/chat_models/base.py
mv community/tests/unit_tests/chat_models/test_openai.py partners/openai/tests/unit_tests/chat_models/test_base.py
mv community/tests/integration_tests/chat_models/test_openai.py partners/openai/tests/integration_tests/chat_models/test_base.py
mv community/tests/unit_tests/chat_models/test_azureopenai.py partners/openai/tests/unit_tests/chat_models/test_azure.py
mv community/tests/integration_tests/chat_models/test_azure_openai.py partners/openai/tests/integration_tests/chat_models/test_azure.py
mv community/tests/unit_tests/llms/test_openai.py partners/openai/tests/unit_tests/llms/test_base.py
mv community/tests/integration_tests/llms/test_openai.py partners/openai/tests/integration_tests/llms/test_base.py
mv community/tests/integration_tests/llms/test_azure_openai.py partners/openai/tests/integration_tests/llms/test_azure.py
mv community/tests/unit_tests/embeddings/test_openai.py partners/openai/tests/unit_tests/embeddings/test_base.py
mv community/tests/integration_tests/embeddings/test_openai.py partners/openai/tests/integration_tests/embeddings/test_base.py
mv community/tests/integration_tests/embeddings/test_azure_openai.py partners/openai/tests/integration_tests/embeddings/test_azure.py
mkdir -p partners/openai/tests/integration_tests/adapters
mv community/tests/integration_tests/adapters/{__init__,test_openai}.py partners/openai/tests/integration_tests/adapters
git add partners core
# rm files from community that just export core classes
rm community/langchain_community/{chat_models,llms,tools,embeddings,vectorstores,callbacks}/base.py
rm community/tests/unit_tests/{chat_models,llms,tools,callbacks}/test_base.py
rm community/tests/unit_tests/callbacks/test_manager.py
rm community/langchain_community/callbacks/{stdout,streaming_stdout}.py
rm community/langchain_community/callbacks/tracers/{base,evaluation,langchain,langchain_v1,log_stream,root_listeners,run_collector,schemas,stdout}.py
# keep export tests in langchain
git checkout master -- langchain/tests/unit_tests/{chat_models,llms,tools,callbacks,document_loaders}/test_base.py
git checkout master -- langchain/tests/unit_tests/{callbacks,docstore,document_loaders,document_transformers,embeddings,graphs,llms,chat_models,storage,tools,utilities,vectorstores}/test_imports.py
git checkout master -- langchain/tests/unit_tests/callbacks/test_manager.py
git checkout master -- langchain/tests/unit_tests/document_loaders/blob_loaders/test_public_api.py
git checkout master -- langchain/tests/unit_tests/document_loaders/parsers/test_public_api.py
git checkout master -- langchain/tests/unit_tests/vectorstores/test_public_api.py
git checkout master -- langchain/tests/unit_tests/schema
touch langchain/tests/unit_tests/{llms,chat_models,tools,callbacks,runnables,document_loaders,docstore,document_transformers,embeddings,graphs,storage,utilities,vectorstores}/__init__.py
touch langchain/tests/unit_tests/document_loaders/{blob_loaders,parsers}/__init__.py
# cp lint scripts
cp -r core/scripts community
cp -r core/scripts partners/openai
# circular imports
sed -i '' 's/from\ langchain_openai.chat_models\ /from\ langchain_openai.chat_models.base\ /g' partners/openai/langchain_openai/chat_models/azure.py
sed -i '' 's/from\ langchain_openai.embeddings\ /from\ langchain_openai.embeddings.base\ /g' partners/openai/langchain_openai/embeddings/azure.py
# rm requires marker in openai
git grep -l '@pytest\.mark\.requires' partners/openai | xargs sed -i '' 's/@pytest\.mark\.requires("openai")//g'
# cp test helpers
cp -r langchain/tests/integration_tests/examples community/tests
cp -r langchain/tests/integration_tests/examples community/tests/integration_tests
cp -r langchain/tests/unit_tests/examples community/tests/unit_tests
cp langchain/tests/unit_tests/conftest.py community/tests/unit_tests
cp langchain/tests/integration_tests/test_compile.py community/tests/integration_tests
cp langchain/tests/integration_tests/test_compile.py partners/openai/tests/integration_tests
cp community/tests/integration_tests/vectorstores/fake_embeddings.py langchain/tests/integration_tests/cache/
# cp manually changed files
cp -r ../.scripts/community_split/libs/* .
# mv some tests to integrations
mv community/tests/{unit_tests,integration_tests}/document_loaders/test_telegram.py
mv community/tests/{unit_tests,integration_tests}/document_loaders/parsers/test_docai.py
mv community/tests/{unit_tests,integration_tests}/chat_message_histories/test_streamlit.py
# fix some final tests
g grep -l 'integration_tests\.vectorstores\.fake_embeddings' community/tests | xargs sed -i '' 's/integration_tests\.vectorstores\.fake_embeddings/integration_tests.cache.fake_embeddings/g'
sed -i '' 's/llms\.loading\.get_type_to_cls_dict/llms.get_type_to_cls_dict/g' langchain/tests/unit_tests/chains/test_llm.py
# format
cd core
make format
cd ../langchain
make format
cd ../experimental
make format
cd ../community
make format
cd ../partners/openai
make format
cd ../..
sed -E -i '' '1 s/(.*)/\1\ \ \#\ noqa\:\ E501/g' langchain/langchain/agents/agent_toolkits/conversational_retrieval/openai_functions.py
touch community/langchain_community/agent_toolkits/amadeus/__init__.py

View File

@@ -0,0 +1,85 @@
import ast
import os
import sys
from pathlib import Path
class ImportTransformer(ast.NodeTransformer):
def __init__(self, public_items, module_name):
self.public_items = public_items
self.module_name = module_name
def visit_Module(self, node):
imports = [
ast.ImportFrom(
module=self.module_name,
names=[ast.alias(name=item, asname=None)],
level=0,
)
for item in self.public_items
]
all_assignment = ast.Assign(
targets=[ast.Name(id="__all__", ctx=ast.Store())],
value=ast.List(
elts=[ast.Str(s=item) for item in self.public_items], ctx=ast.Load()
),
)
node.body = imports + [all_assignment]
return node
def find_public_classes_and_methods(file_path):
with open(file_path, "r") as file:
node = ast.parse(file.read(), filename=file_path)
public_items = []
for item in node.body:
if isinstance(item, ast.ClassDef) or isinstance(item, ast.FunctionDef):
public_items.append(item.name)
if (
isinstance(item, ast.Assign)
and hasattr(item.targets[0], "id")
and item.targets[0].id not in ("__all__", "logger")
):
public_items.append(item.targets[0].id)
return public_items or None
def process_file(file_path, module_name):
public_items = find_public_classes_and_methods(file_path)
if public_items is None:
return
with open(file_path, "r") as file:
contents = file.read()
tree = ast.parse(contents, filename=file_path)
tree = ImportTransformer(public_items, module_name).visit(tree)
tree = ast.fix_missing_locations(tree)
with open(file_path, "w") as file:
file.write(ast.unparse(tree))
def process_directory(directory_path, base_module_name):
if Path(directory_path).is_file():
process_file(directory_path, base_module_name)
else:
for root, dirs, files in os.walk(directory_path):
for filename in files:
if filename.endswith(".py") and not filename.startswith("_"):
file_path = os.path.join(root, filename)
relative_path = os.path.relpath(file_path, directory_path)
module_name = f"{base_module_name}.{os.path.splitext(relative_path)[0].replace(os.sep, '.')}"
process_file(file_path, module_name)
if __name__ == "__main__":
if len(sys.argv) != 3:
print("Usage: python script_name.py <directory_path> <base_module_name>")
sys.exit(1)
directory_path = sys.argv[1]
base_module_name = sys.argv[2]
process_directory(directory_path, base_module_name)

64
libs/community/Makefile Normal file
View File

@@ -0,0 +1,64 @@
.PHONY: all format lint test tests test_watch integration_tests docker_tests help extended_tests
# Default target executed when no arguments are given to make.
all: help
# Define a variable for the test file path.
TEST_FILE ?= tests/unit_tests/
test:
poetry run pytest $(TEST_FILE)
tests:
poetry run pytest $(TEST_FILE)
test_watch:
poetry run ptw --snapshot-update --now . -- -vv -x tests/unit_tests
extended_tests:
poetry run pytest --only-extended tests/unit_tests
######################
# LINTING AND FORMATTING
######################
# Define a variable for Python and notebook files.
PYTHON_FILES=.
MYPY_CACHE=.mypy_cache
lint format: PYTHON_FILES=.
lint_diff format_diff: PYTHON_FILES=$(shell git diff --relative=libs/community -name-only --diff-filter=d master | grep -E '\.py$$|\.ipynb$$')
lint_package: PYTHON_FILES=langchain_community
lint_tests: PYTHON_FILES=tests
lint_tests: MYPY_CACHE=.mypy_cache_test
lint lint_diff lint_package lint_tests:
./scripts/check_pydantic.sh .
./scripts/check_imports.sh
poetry run ruff .
[ "$(PYTHON_FILES)" = "" ] || poetry run ruff format $(PYTHON_FILES) --diff
[ "$(PYTHON_FILES)" = "" ] || poetry run ruff --select I $(PYTHON_FILES)
[ "$(PYTHON_FILES)" = "" ] || mkdir $(MYPY_CACHE) || poetry run mypy $(PYTHON_FILES) --cache-dir $(MYPY_CACHE)
format format_diff:
poetry run ruff format $(PYTHON_FILES)
poetry run ruff --select I --fix $(PYTHON_FILES)
spell_check:
poetry run codespell --toml pyproject.toml
spell_fix:
poetry run codespell --toml pyproject.toml -w
######################
# HELP
######################
help:
@echo '----'
@echo 'format - run code formatters'
@echo 'lint - run linters'
@echo 'test - run unit tests'
@echo 'tests - run unit tests'
@echo 'test TEST_FILE=<test_file> - run all tests in file'
@echo 'test_watch - run unit tests in watch mode'

View File

@@ -0,0 +1,9 @@
"""Main entrypoint into package."""
from importlib import metadata
try:
__version__ = metadata.version(__package__)
except metadata.PackageNotFoundError:
# Case where package metadata is not available.
__version__ = ""
del metadata # optional, avoids polluting the results of dir(__package__)

View File

@@ -0,0 +1,123 @@
"""Agent toolkits contain integrations with various resources and services.
LangChain has a large ecosystem of integrations with various external resources
like local and remote file systems, APIs and databases.
These integrations allow developers to create versatile applications that combine the
power of LLMs with the ability to access, interact with and manipulate external
resources.
When developing an application, developers should inspect the capabilities and
permissions of the tools that underlie the given agent toolkit, and determine
whether permissions of the given toolkit are appropriate for the application.
See [Security](https://python.langchain.com/docs/security) for more information.
"""
from pathlib import Path
from typing import Any
from langchain_core._api.path import as_import_path
from langchain_community.agent_toolkits.ainetwork.toolkit import AINetworkToolkit
from langchain_community.agent_toolkits.amadeus.toolkit import AmadeusToolkit
from langchain_community.agent_toolkits.azure_cognitive_services import (
AzureCognitiveServicesToolkit,
)
from langchain_community.agent_toolkits.conversational_retrieval.openai_functions import ( # noqa: E501
create_conversational_retrieval_agent,
)
from langchain_community.agent_toolkits.file_management.toolkit import (
FileManagementToolkit,
)
from langchain_community.agent_toolkits.gmail.toolkit import GmailToolkit
from langchain_community.agent_toolkits.jira.toolkit import JiraToolkit
from langchain_community.agent_toolkits.json.base import create_json_agent
from langchain_community.agent_toolkits.json.toolkit import JsonToolkit
from langchain_community.agent_toolkits.multion.toolkit import MultionToolkit
from langchain_community.agent_toolkits.nasa.toolkit import NasaToolkit
from langchain_community.agent_toolkits.nla.toolkit import NLAToolkit
from langchain_community.agent_toolkits.office365.toolkit import O365Toolkit
from langchain_community.agent_toolkits.openapi.base import create_openapi_agent
from langchain_community.agent_toolkits.openapi.toolkit import OpenAPIToolkit
from langchain_community.agent_toolkits.playwright.toolkit import (
PlayWrightBrowserToolkit,
)
from langchain_community.agent_toolkits.powerbi.base import create_pbi_agent
from langchain_community.agent_toolkits.powerbi.chat_base import create_pbi_chat_agent
from langchain_community.agent_toolkits.powerbi.toolkit import PowerBIToolkit
from langchain_community.agent_toolkits.slack.toolkit import SlackToolkit
from langchain_community.agent_toolkits.spark_sql.base import create_spark_sql_agent
from langchain_community.agent_toolkits.spark_sql.toolkit import SparkSQLToolkit
from langchain_community.agent_toolkits.sql.base import create_sql_agent
from langchain_community.agent_toolkits.sql.toolkit import SQLDatabaseToolkit
from langchain_community.agent_toolkits.steam.toolkit import SteamToolkit
from langchain_community.agent_toolkits.vectorstore.base import (
create_vectorstore_agent,
create_vectorstore_router_agent,
)
from langchain_community.agent_toolkits.vectorstore.toolkit import (
VectorStoreInfo,
VectorStoreRouterToolkit,
VectorStoreToolkit,
)
from langchain_community.agent_toolkits.zapier.toolkit import ZapierToolkit
from langchain_community.tools.retriever import create_retriever_tool
DEPRECATED_AGENTS = [
"create_csv_agent",
"create_pandas_dataframe_agent",
"create_xorbits_agent",
"create_python_agent",
"create_spark_dataframe_agent",
]
def __getattr__(name: str) -> Any:
"""Get attr name."""
if name in DEPRECATED_AGENTS:
relative_path = as_import_path(Path(__file__).parent, suffix=name)
old_path = "langchain." + relative_path
new_path = "langchain_experimental." + relative_path
raise ImportError(
f"{name} has been moved to langchain experimental. "
"See https://github.com/langchain-ai/langchain/discussions/11680"
"for more information.\n"
f"Please update your import statement from: `{old_path}` to `{new_path}`."
)
raise AttributeError(f"{name} does not exist")
__all__ = [
"AINetworkToolkit",
"AmadeusToolkit",
"AzureCognitiveServicesToolkit",
"FileManagementToolkit",
"GmailToolkit",
"JiraToolkit",
"JsonToolkit",
"MultionToolkit",
"NasaToolkit",
"NLAToolkit",
"O365Toolkit",
"OpenAPIToolkit",
"PlayWrightBrowserToolkit",
"PowerBIToolkit",
"SlackToolkit",
"SteamToolkit",
"SQLDatabaseToolkit",
"SparkSQLToolkit",
"VectorStoreInfo",
"VectorStoreRouterToolkit",
"VectorStoreToolkit",
"ZapierToolkit",
"create_json_agent",
"create_openapi_agent",
"create_pbi_agent",
"create_pbi_chat_agent",
"create_spark_sql_agent",
"create_sql_agent",
"create_vectorstore_agent",
"create_vectorstore_router_agent",
"create_conversational_retrieval_agent",
"create_retriever_tool",
]

View File

@@ -0,0 +1 @@
"""AINetwork toolkit."""

View File

@@ -0,0 +1,53 @@
from __future__ import annotations
from typing import TYPE_CHECKING, List, Literal, Optional
from langchain_core.pydantic_v1 import root_validator
from langchain_community.agent_toolkits.base import BaseToolkit
from langchain_community.tools import BaseTool
from langchain_community.tools.ainetwork.app import AINAppOps
from langchain_community.tools.ainetwork.owner import AINOwnerOps
from langchain_community.tools.ainetwork.rule import AINRuleOps
from langchain_community.tools.ainetwork.transfer import AINTransfer
from langchain_community.tools.ainetwork.utils import authenticate
from langchain_community.tools.ainetwork.value import AINValueOps
if TYPE_CHECKING:
from ain.ain import Ain
class AINetworkToolkit(BaseToolkit):
"""Toolkit for interacting with AINetwork Blockchain.
*Security Note*: This toolkit contains tools that can read and modify
the state of a service; e.g., by reading, creating, updating, deleting
data associated with this service.
See https://python.langchain.com/docs/security for more information.
"""
network: Optional[Literal["mainnet", "testnet"]] = "testnet"
interface: Optional[Ain] = None
@root_validator(pre=True)
def set_interface(cls, values: dict) -> dict:
if not values.get("interface"):
values["interface"] = authenticate(network=values.get("network", "testnet"))
return values
class Config:
"""Pydantic config."""
validate_all = True
arbitrary_types_allowed = True
def get_tools(self) -> List[BaseTool]:
"""Get the tools in the toolkit."""
return [
AINAppOps(),
AINOwnerOps(),
AINRuleOps(),
AINTransfer(),
AINValueOps(),
]

View File

@@ -0,0 +1,32 @@
from __future__ import annotations
from typing import TYPE_CHECKING, List
from langchain_core.pydantic_v1 import Field
from langchain_community.agent_toolkits.base import BaseToolkit
from langchain_community.tools import BaseTool
from langchain_community.tools.amadeus.closest_airport import AmadeusClosestAirport
from langchain_community.tools.amadeus.flight_search import AmadeusFlightSearch
from langchain_community.tools.amadeus.utils import authenticate
if TYPE_CHECKING:
from amadeus import Client
class AmadeusToolkit(BaseToolkit):
"""Toolkit for interacting with Amadeus which offers APIs for travel."""
client: Client = Field(default_factory=authenticate)
class Config:
"""Pydantic config."""
arbitrary_types_allowed = True
def get_tools(self) -> List[BaseTool]:
"""Get the tools in the toolkit."""
return [
AmadeusClosestAirport(),
AmadeusFlightSearch(),
]

View File

@@ -0,0 +1,34 @@
from __future__ import annotations
import sys
from typing import List
from langchain_core.tools import BaseTool
from langchain_community.agent_toolkits.base import BaseToolkit
from langchain_community.tools.azure_cognitive_services import (
AzureCogsFormRecognizerTool,
AzureCogsImageAnalysisTool,
AzureCogsSpeech2TextTool,
AzureCogsText2SpeechTool,
AzureCogsTextAnalyticsHealthTool,
)
class AzureCognitiveServicesToolkit(BaseToolkit):
"""Toolkit for Azure Cognitive Services."""
def get_tools(self) -> List[BaseTool]:
"""Get the tools in the toolkit."""
tools: List[BaseTool] = [
AzureCogsFormRecognizerTool(),
AzureCogsSpeech2TextTool(),
AzureCogsText2SpeechTool(),
AzureCogsTextAnalyticsHealthTool(),
]
# TODO: Remove check once azure-ai-vision supports MacOS.
if sys.platform.startswith("linux") or sys.platform.startswith("win"):
tools.append(AzureCogsImageAnalysisTool())
return tools

View File

@@ -0,0 +1,15 @@
"""Toolkits for agents."""
from abc import ABC, abstractmethod
from typing import List
from langchain_core.pydantic_v1 import BaseModel
from langchain_community.tools import BaseTool
class BaseToolkit(BaseModel, ABC):
"""Base Toolkit representing a collection of related tools."""
@abstractmethod
def get_tools(self) -> List[BaseTool]:
"""Get the tools in the toolkit."""

Some files were not shown because too many files have changed in this diff Show More