mirror of
https://github.com/hwchase17/langchain.git
synced 2026-02-05 08:40:36 +00:00
Compare commits
2 Commits
langchain-
...
update_mod
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
c21b43fb4e | ||
|
|
05eed19605 |
18
.claude/settings.local.json
Normal file
18
.claude/settings.local.json
Normal file
@@ -0,0 +1,18 @@
|
||||
{
|
||||
"permissions": {
|
||||
"allow": [
|
||||
"Bash(uv run:*)",
|
||||
"Bash(make:*)",
|
||||
"WebSearch",
|
||||
"WebFetch(domain:ai.pydantic.dev)",
|
||||
"WebFetch(domain:openai.github.io)",
|
||||
"Bash(uv run:*)",
|
||||
"Bash(python3:*)",
|
||||
"WebFetch(domain:github.com)",
|
||||
"Bash(gh pr view:*)",
|
||||
"Bash(gh pr diff:*)"
|
||||
],
|
||||
"deny": [],
|
||||
"ask": []
|
||||
}
|
||||
}
|
||||
@@ -26,7 +26,7 @@
|
||||
// Use 'forwardPorts' to make a list of ports inside the container available locally.
|
||||
// "forwardPorts": [],
|
||||
// Run commands after the container is created
|
||||
"postCreateCommand": "cd libs/langchain_v1 && uv sync && echo 'LangChain (Python) dev environment ready!'",
|
||||
"postCreateCommand": "uv sync && echo 'LangChain (Python) dev environment ready!'",
|
||||
// Configure tool-specific properties.
|
||||
"customizations": {
|
||||
"vscode": {
|
||||
@@ -42,7 +42,7 @@
|
||||
"GitHub.copilot-chat"
|
||||
],
|
||||
"settings": {
|
||||
"python.defaultInterpreterPath": "libs/langchain_v1/.venv/bin/python",
|
||||
"python.defaultInterpreterPath": ".venv/bin/python",
|
||||
"python.formatting.provider": "none",
|
||||
"[python]": {
|
||||
"editor.formatOnSave": true,
|
||||
|
||||
@@ -1,34 +0,0 @@
|
||||
# Git
|
||||
.git
|
||||
.github
|
||||
|
||||
# Python
|
||||
__pycache__
|
||||
*.pyc
|
||||
*.pyo
|
||||
.venv
|
||||
.mypy_cache
|
||||
.pytest_cache
|
||||
.ruff_cache
|
||||
*.egg-info
|
||||
.tox
|
||||
|
||||
# IDE
|
||||
.idea
|
||||
.vscode
|
||||
|
||||
# Worktree
|
||||
worktree
|
||||
|
||||
# Test artifacts
|
||||
.coverage
|
||||
htmlcov
|
||||
coverage.xml
|
||||
|
||||
# Build artifacts
|
||||
dist
|
||||
build
|
||||
|
||||
# Misc
|
||||
*.log
|
||||
.DS_Store
|
||||
132
.github/CODE_OF_CONDUCT.md
vendored
Normal file
132
.github/CODE_OF_CONDUCT.md
vendored
Normal file
@@ -0,0 +1,132 @@
|
||||
# Contributor Covenant Code of Conduct
|
||||
|
||||
## Our Pledge
|
||||
|
||||
We as members, contributors, and leaders pledge to make participation in our
|
||||
community a harassment-free experience for everyone, regardless of age, body
|
||||
size, visible or invisible disability, ethnicity, sex characteristics, gender
|
||||
identity and expression, level of experience, education, socio-economic status,
|
||||
nationality, personal appearance, race, caste, color, religion, or sexual
|
||||
identity and orientation.
|
||||
|
||||
We pledge to act and interact in ways that contribute to an open, welcoming,
|
||||
diverse, inclusive, and healthy community.
|
||||
|
||||
## Our Standards
|
||||
|
||||
Examples of behavior that contributes to a positive environment for our
|
||||
community include:
|
||||
|
||||
* Demonstrating empathy and kindness toward other people
|
||||
* Being respectful of differing opinions, viewpoints, and experiences
|
||||
* Giving and gracefully accepting constructive feedback
|
||||
* Accepting responsibility and apologizing to those affected by our mistakes,
|
||||
and learning from the experience
|
||||
* Focusing on what is best not just for us as individuals, but for the overall
|
||||
community
|
||||
|
||||
Examples of unacceptable behavior include:
|
||||
|
||||
* The use of sexualized language or imagery, and sexual attention or advances of
|
||||
any kind
|
||||
* Trolling, insulting or derogatory comments, and personal or political attacks
|
||||
* Public or private harassment
|
||||
* Publishing others' private information, such as a physical or email address,
|
||||
without their explicit permission
|
||||
* Other conduct which could reasonably be considered inappropriate in a
|
||||
professional setting
|
||||
|
||||
## Enforcement Responsibilities
|
||||
|
||||
Community leaders are responsible for clarifying and enforcing our standards of
|
||||
acceptable behavior and will take appropriate and fair corrective action in
|
||||
response to any behavior that they deem inappropriate, threatening, offensive,
|
||||
or harmful.
|
||||
|
||||
Community leaders have the right and responsibility to remove, edit, or reject
|
||||
comments, commits, code, wiki edits, issues, and other contributions that are
|
||||
not aligned to this Code of Conduct, and will communicate reasons for moderation
|
||||
decisions when appropriate.
|
||||
|
||||
## Scope
|
||||
|
||||
This Code of Conduct applies within all community spaces, and also applies when
|
||||
an individual is officially representing the community in public spaces.
|
||||
Examples of representing our community include using an official e-mail address,
|
||||
posting via an official social media account, or acting as an appointed
|
||||
representative at an online or offline event.
|
||||
|
||||
## Enforcement
|
||||
|
||||
Instances of abusive, harassing, or otherwise unacceptable behavior may be
|
||||
reported to the community leaders responsible for enforcement at
|
||||
conduct@langchain.dev.
|
||||
All complaints will be reviewed and investigated promptly and fairly.
|
||||
|
||||
All community leaders are obligated to respect the privacy and security of the
|
||||
reporter of any incident.
|
||||
|
||||
## Enforcement Guidelines
|
||||
|
||||
Community leaders will follow these Community Impact Guidelines in determining
|
||||
the consequences for any action they deem in violation of this Code of Conduct:
|
||||
|
||||
### 1. Correction
|
||||
|
||||
**Community Impact**: Use of inappropriate language or other behavior deemed
|
||||
unprofessional or unwelcome in the community.
|
||||
|
||||
**Consequence**: A private, written warning from community leaders, providing
|
||||
clarity around the nature of the violation and an explanation of why the
|
||||
behavior was inappropriate. A public apology may be requested.
|
||||
|
||||
### 2. Warning
|
||||
|
||||
**Community Impact**: A violation through a single incident or series of
|
||||
actions.
|
||||
|
||||
**Consequence**: A warning with consequences for continued behavior. No
|
||||
interaction with the people involved, including unsolicited interaction with
|
||||
those enforcing the Code of Conduct, for a specified period of time. This
|
||||
includes avoiding interactions in community spaces as well as external channels
|
||||
like social media. Violating these terms may lead to a temporary or permanent
|
||||
ban.
|
||||
|
||||
### 3. Temporary Ban
|
||||
|
||||
**Community Impact**: A serious violation of community standards, including
|
||||
sustained inappropriate behavior.
|
||||
|
||||
**Consequence**: A temporary ban from any sort of interaction or public
|
||||
communication with the community for a specified period of time. No public or
|
||||
private interaction with the people involved, including unsolicited interaction
|
||||
with those enforcing the Code of Conduct, is allowed during this period.
|
||||
Violating these terms may lead to a permanent ban.
|
||||
|
||||
### 4. Permanent Ban
|
||||
|
||||
**Community Impact**: Demonstrating a pattern of violation of community
|
||||
standards, including sustained inappropriate behavior, harassment of an
|
||||
individual, or aggression toward or disparagement of classes of individuals.
|
||||
|
||||
**Consequence**: A permanent ban from any sort of public interaction within the
|
||||
community.
|
||||
|
||||
## Attribution
|
||||
|
||||
This Code of Conduct is adapted from the [Contributor Covenant][homepage],
|
||||
version 2.1, available at
|
||||
[https://www.contributor-covenant.org/version/2/1/code_of_conduct.html][v2.1].
|
||||
|
||||
Community Impact Guidelines were inspired by
|
||||
[Mozilla's code of conduct enforcement ladder][Mozilla CoC].
|
||||
|
||||
For answers to common questions about this code of conduct, see the FAQ at
|
||||
[https://www.contributor-covenant.org/faq][FAQ]. Translations are available at
|
||||
[https://www.contributor-covenant.org/translations][translations].
|
||||
|
||||
[homepage]: https://www.contributor-covenant.org
|
||||
[v2.1]: https://www.contributor-covenant.org/version/2/1/code_of_conduct.html
|
||||
[Mozilla CoC]: https://github.com/mozilla/diversity
|
||||
[FAQ]: https://www.contributor-covenant.org/faq
|
||||
[translations]: https://www.contributor-covenant.org/translations
|
||||
6
.github/CONTRIBUTING.md
vendored
Normal file
6
.github/CONTRIBUTING.md
vendored
Normal file
@@ -0,0 +1,6 @@
|
||||
# Contributing to LangChain
|
||||
|
||||
Hi there! Thank you for even being interested in contributing to LangChain.
|
||||
As an open-source project in a rapidly developing field, we are extremely open to contributions, whether they involve new features, improved infrastructure, better documentation, or bug fixes.
|
||||
|
||||
To learn how to contribute to LangChain, please follow the [contribution guide here](https://docs.langchain.com/oss/python/contributing).
|
||||
77
.github/ISSUE_TEMPLATE/bug-report.yml
vendored
77
.github/ISSUE_TEMPLATE/bug-report.yml
vendored
@@ -8,15 +8,16 @@ body:
|
||||
value: |
|
||||
Thank you for taking the time to file a bug report.
|
||||
|
||||
For usage questions, feature requests and general design questions, please use the [LangChain Forum](https://forum.langchain.com/).
|
||||
Use this to report BUGS in LangChain. For usage questions, feature requests and general design questions, please use the [LangChain Forum](https://forum.langchain.com/).
|
||||
|
||||
Check these before submitting to see if your issue has already been reported, fixed or if there's another way to solve your problem:
|
||||
Relevant links to check before filing a bug report to see if your issue has already been reported, fixed or
|
||||
if there's another way to solve your problem:
|
||||
|
||||
* [Documentation](https://docs.langchain.com/oss/python/langchain/overview),
|
||||
* [API Reference Documentation](https://reference.langchain.com/python/),
|
||||
* [LangChain Forum](https://forum.langchain.com/),
|
||||
* [LangChain documentation with the integrated search](https://docs.langchain.com/oss/python/langchain/overview),
|
||||
* [API Reference](https://reference.langchain.com/python/),
|
||||
* [LangChain ChatBot](https://chat.langchain.com/)
|
||||
* [GitHub search](https://github.com/langchain-ai/langchain),
|
||||
* [LangChain Forum](https://forum.langchain.com/),
|
||||
- type: checkboxes
|
||||
id: checks
|
||||
attributes:
|
||||
@@ -35,48 +36,16 @@ body:
|
||||
required: true
|
||||
- label: This is not related to the langchain-community package.
|
||||
required: true
|
||||
- label: I read what a minimal reproducible example is (https://stackoverflow.com/help/minimal-reproducible-example).
|
||||
required: true
|
||||
- label: I posted a self-contained, minimal, reproducible example. A maintainer can copy it and run it AS IS.
|
||||
required: true
|
||||
- type: checkboxes
|
||||
id: package
|
||||
attributes:
|
||||
label: Package (Required)
|
||||
description: |
|
||||
Which `langchain` package(s) is this bug related to? Select at least one.
|
||||
|
||||
Note that if the package you are reporting for is not listed here, it is not in this repository (e.g. `langchain-google-genai` is in [`langchain-ai/langchain-google`](https://github.com/langchain-ai/langchain-google/)).
|
||||
|
||||
Please report issues for other packages to their respective repositories.
|
||||
options:
|
||||
- label: langchain
|
||||
- label: langchain-openai
|
||||
- label: langchain-anthropic
|
||||
- label: langchain-classic
|
||||
- label: langchain-core
|
||||
- label: langchain-cli
|
||||
- label: langchain-model-profiles
|
||||
- label: langchain-tests
|
||||
- label: langchain-text-splitters
|
||||
- label: langchain-chroma
|
||||
- label: langchain-deepseek
|
||||
- label: langchain-exa
|
||||
- label: langchain-fireworks
|
||||
- label: langchain-groq
|
||||
- label: langchain-huggingface
|
||||
- label: langchain-mistralai
|
||||
- label: langchain-nomic
|
||||
- label: langchain-ollama
|
||||
- label: langchain-perplexity
|
||||
- label: langchain-prompty
|
||||
- label: langchain-qdrant
|
||||
- label: langchain-xai
|
||||
- label: Other / not sure / general
|
||||
- type: textarea
|
||||
id: reproduction
|
||||
validations:
|
||||
required: true
|
||||
attributes:
|
||||
label: Example Code (Python)
|
||||
label: Example Code
|
||||
description: |
|
||||
Please add a self-contained, [minimal, reproducible, example](https://stackoverflow.com/help/minimal-reproducible-example) with your use case.
|
||||
|
||||
@@ -84,12 +53,15 @@ body:
|
||||
|
||||
**Important!**
|
||||
|
||||
* Avoid screenshots, as they are hard to read and (more importantly) don't allow others to copy-and-paste your code.
|
||||
* Reduce your code to the minimum required to reproduce the issue if possible.
|
||||
* Avoid screenshots when possible, as they are hard to read and (more importantly) don't allow others to copy-and-paste your code.
|
||||
* Reduce your code to the minimum required to reproduce the issue if possible. This makes it much easier for others to help you.
|
||||
* Use code tags (e.g., ```python ... ```) to correctly [format your code](https://help.github.com/en/github/writing-on-github/creating-and-highlighting-code-blocks#syntax-highlighting).
|
||||
* INCLUDE the language label (e.g. `python`) after the first three backticks to enable syntax highlighting. (e.g., ```python rather than ```).
|
||||
|
||||
(This will be automatically formatted into code, so no need for backticks.)
|
||||
render: python
|
||||
placeholder: |
|
||||
The following code:
|
||||
|
||||
```python
|
||||
from langchain_core.runnables import RunnableLambda
|
||||
|
||||
def bad_code(inputs) -> int:
|
||||
@@ -97,14 +69,17 @@ body:
|
||||
|
||||
chain = RunnableLambda(bad_code)
|
||||
chain.invoke('Hello!')
|
||||
```
|
||||
- type: textarea
|
||||
id: error
|
||||
validations:
|
||||
required: false
|
||||
attributes:
|
||||
label: Error Message and Stack Trace (if applicable)
|
||||
description: |
|
||||
If you are reporting an error, please copy and paste the full error message and
|
||||
stack trace.
|
||||
(This will be automatically formatted into code, so no need for backticks.)
|
||||
render: shell
|
||||
If you are reporting an error, please include the full error message and stack trace.
|
||||
placeholder: |
|
||||
Exception + full stack trace
|
||||
- type: textarea
|
||||
id: description
|
||||
attributes:
|
||||
@@ -124,7 +99,9 @@ body:
|
||||
attributes:
|
||||
label: System Info
|
||||
description: |
|
||||
Please share your system info with us.
|
||||
Please share your system info with us. Do NOT skip this step and please don't trim
|
||||
the output. Most users don't include enough information here and it makes it harder
|
||||
for us to help you.
|
||||
|
||||
Run the following command in your terminal and paste the output here:
|
||||
|
||||
@@ -136,6 +113,8 @@ body:
|
||||
from langchain_core import sys_info
|
||||
sys_info.print_sys_info()
|
||||
```
|
||||
|
||||
alternatively, put the entire output of `pip freeze` here.
|
||||
placeholder: |
|
||||
python -m langchain_core.sys_info
|
||||
validations:
|
||||
|
||||
10
.github/ISSUE_TEMPLATE/config.yml
vendored
10
.github/ISSUE_TEMPLATE/config.yml
vendored
@@ -1,15 +1,9 @@
|
||||
blank_issues_enabled: false
|
||||
version: 2.1
|
||||
contact_links:
|
||||
- name: 📚 Documentation issue
|
||||
url: https://github.com/langchain-ai/docs/issues/new?template=01-langchain.yml
|
||||
- name: 📚 Documentation
|
||||
url: https://github.com/langchain-ai/docs/issues/new?template=langchain.yml
|
||||
about: Report an issue related to the LangChain documentation
|
||||
- name: 💬 LangChain Forum
|
||||
url: https://forum.langchain.com/
|
||||
about: General community discussions and support
|
||||
- name: 📚 LangChain Documentation
|
||||
url: https://docs.langchain.com/oss/python/langchain/overview
|
||||
about: View the official LangChain documentation
|
||||
- name: 📚 API Reference Documentation
|
||||
url: https://reference.langchain.com/python/
|
||||
about: View the official LangChain API reference documentation
|
||||
|
||||
40
.github/ISSUE_TEMPLATE/feature-request.yml
vendored
40
.github/ISSUE_TEMPLATE/feature-request.yml
vendored
@@ -13,11 +13,11 @@ body:
|
||||
Relevant links to check before filing a feature request to see if your request has already been made or
|
||||
if there's another way to achieve what you want:
|
||||
|
||||
* [Documentation](https://docs.langchain.com/oss/python/langchain/overview),
|
||||
* [API Reference Documentation](https://reference.langchain.com/python/),
|
||||
* [LangChain Forum](https://forum.langchain.com/),
|
||||
* [LangChain documentation with the integrated search](https://docs.langchain.com/oss/python/langchain/overview),
|
||||
* [API Reference](https://reference.langchain.com/python/),
|
||||
* [LangChain ChatBot](https://chat.langchain.com/)
|
||||
* [GitHub search](https://github.com/langchain-ai/langchain),
|
||||
* [LangChain Forum](https://forum.langchain.com/),
|
||||
- type: checkboxes
|
||||
id: checks
|
||||
attributes:
|
||||
@@ -34,40 +34,6 @@ body:
|
||||
required: true
|
||||
- label: This is not related to the langchain-community package.
|
||||
required: true
|
||||
- type: checkboxes
|
||||
id: package
|
||||
attributes:
|
||||
label: Package (Required)
|
||||
description: |
|
||||
Which `langchain` package(s) is this request related to? Select at least one.
|
||||
|
||||
Note that if the package you are requesting for is not listed here, it is not in this repository (e.g. `langchain-google-genai` is in `langchain-ai/langchain`).
|
||||
|
||||
Please submit feature requests for other packages to their respective repositories.
|
||||
options:
|
||||
- label: langchain
|
||||
- label: langchain-openai
|
||||
- label: langchain-anthropic
|
||||
- label: langchain-classic
|
||||
- label: langchain-core
|
||||
- label: langchain-cli
|
||||
- label: langchain-model-profiles
|
||||
- label: langchain-tests
|
||||
- label: langchain-text-splitters
|
||||
- label: langchain-chroma
|
||||
- label: langchain-deepseek
|
||||
- label: langchain-exa
|
||||
- label: langchain-fireworks
|
||||
- label: langchain-groq
|
||||
- label: langchain-huggingface
|
||||
- label: langchain-mistralai
|
||||
- label: langchain-nomic
|
||||
- label: langchain-ollama
|
||||
- label: langchain-perplexity
|
||||
- label: langchain-prompty
|
||||
- label: langchain-qdrant
|
||||
- label: langchain-xai
|
||||
- label: Other / not sure / general
|
||||
- type: textarea
|
||||
id: feature-description
|
||||
validations:
|
||||
|
||||
30
.github/ISSUE_TEMPLATE/privileged.yml
vendored
30
.github/ISSUE_TEMPLATE/privileged.yml
vendored
@@ -18,33 +18,3 @@ body:
|
||||
attributes:
|
||||
label: Issue Content
|
||||
description: Add the content of the issue here.
|
||||
- type: checkboxes
|
||||
id: package
|
||||
attributes:
|
||||
label: Package (Required)
|
||||
description: |
|
||||
Please select package(s) that this issue is related to.
|
||||
options:
|
||||
- label: langchain
|
||||
- label: langchain-openai
|
||||
- label: langchain-anthropic
|
||||
- label: langchain-classic
|
||||
- label: langchain-core
|
||||
- label: langchain-cli
|
||||
- label: langchain-model-profiles
|
||||
- label: langchain-tests
|
||||
- label: langchain-text-splitters
|
||||
- label: langchain-chroma
|
||||
- label: langchain-deepseek
|
||||
- label: langchain-exa
|
||||
- label: langchain-fireworks
|
||||
- label: langchain-groq
|
||||
- label: langchain-huggingface
|
||||
- label: langchain-mistralai
|
||||
- label: langchain-nomic
|
||||
- label: langchain-ollama
|
||||
- label: langchain-perplexity
|
||||
- label: langchain-prompty
|
||||
- label: langchain-qdrant
|
||||
- label: langchain-xai
|
||||
- label: Other / not sure / general
|
||||
|
||||
48
.github/ISSUE_TEMPLATE/task.yml
vendored
48
.github/ISSUE_TEMPLATE/task.yml
vendored
@@ -25,13 +25,13 @@ body:
|
||||
label: Task Description
|
||||
description: |
|
||||
Provide a clear and detailed description of the task.
|
||||
|
||||
|
||||
What needs to be done? Be specific about the scope and requirements.
|
||||
placeholder: |
|
||||
This task involves...
|
||||
|
||||
|
||||
The goal is to...
|
||||
|
||||
|
||||
Specific requirements:
|
||||
- ...
|
||||
- ...
|
||||
@@ -43,7 +43,7 @@ body:
|
||||
label: Acceptance Criteria
|
||||
description: |
|
||||
Define the criteria that must be met for this task to be considered complete.
|
||||
|
||||
|
||||
What are the specific deliverables or outcomes expected?
|
||||
placeholder: |
|
||||
This task will be complete when:
|
||||
@@ -58,15 +58,15 @@ body:
|
||||
label: Context and Background
|
||||
description: |
|
||||
Provide any relevant context, background information, or links to related issues/PRs.
|
||||
|
||||
|
||||
Why is this task needed? What problem does it solve?
|
||||
placeholder: |
|
||||
Background:
|
||||
- ...
|
||||
|
||||
|
||||
Related issues/PRs:
|
||||
- #...
|
||||
|
||||
|
||||
Additional context:
|
||||
- ...
|
||||
validations:
|
||||
@@ -77,45 +77,15 @@ body:
|
||||
label: Dependencies
|
||||
description: |
|
||||
List any dependencies or blockers for this task.
|
||||
|
||||
|
||||
Are there other tasks, issues, or external factors that need to be completed first?
|
||||
placeholder: |
|
||||
This task depends on:
|
||||
- [ ] Issue #...
|
||||
- [ ] PR #...
|
||||
- [ ] External dependency: ...
|
||||
|
||||
|
||||
Blocked by:
|
||||
- ...
|
||||
validations:
|
||||
required: false
|
||||
- type: checkboxes
|
||||
id: package
|
||||
attributes:
|
||||
label: Package (Required)
|
||||
description: |
|
||||
Please select package(s) that this task is related to.
|
||||
options:
|
||||
- label: langchain
|
||||
- label: langchain-openai
|
||||
- label: langchain-anthropic
|
||||
- label: langchain-classic
|
||||
- label: langchain-core
|
||||
- label: langchain-cli
|
||||
- label: langchain-model-profiles
|
||||
- label: langchain-tests
|
||||
- label: langchain-text-splitters
|
||||
- label: langchain-chroma
|
||||
- label: langchain-deepseek
|
||||
- label: langchain-exa
|
||||
- label: langchain-fireworks
|
||||
- label: langchain-groq
|
||||
- label: langchain-huggingface
|
||||
- label: langchain-mistralai
|
||||
- label: langchain-nomic
|
||||
- label: langchain-ollama
|
||||
- label: langchain-perplexity
|
||||
- label: langchain-prompty
|
||||
- label: langchain-qdrant
|
||||
- label: langchain-xai
|
||||
- label: Other / not sure / general
|
||||
|
||||
38
.github/PULL_REQUEST_TEMPLATE.md
vendored
38
.github/PULL_REQUEST_TEMPLATE.md
vendored
@@ -1,30 +1,28 @@
|
||||
(Replace this entire block of text)
|
||||
|
||||
Read the full contributing guidelines: https://docs.langchain.com/oss/python/contributing/overview
|
||||
|
||||
Thank you for contributing to LangChain! Follow these steps to have your pull request considered as ready for review.
|
||||
|
||||
1. PR title: Should follow the format: TYPE(SCOPE): DESCRIPTION
|
||||
Thank you for contributing to LangChain! Follow these steps to mark your pull request as ready for review. **If any of these steps are not completed, your PR will not be considered for review.**
|
||||
|
||||
- [ ] **PR title**: Follows the format: {TYPE}({SCOPE}): {DESCRIPTION}
|
||||
- Examples:
|
||||
- fix(anthropic): resolve flag parsing error
|
||||
- feat(core): add multi-tenant support
|
||||
- test(openai): update API usage tests
|
||||
- Allowed TYPE and SCOPE values: https://github.com/langchain-ai/langchain/blob/master/.github/workflows/pr_lint.yml#L15-L33
|
||||
- fix(cli): resolve flag parsing error
|
||||
- docs(openai): update API usage examples
|
||||
- Allowed `{TYPE}` values:
|
||||
- feat, fix, docs, style, refactor, perf, test, build, ci, chore, revert, release
|
||||
- Allowed `{SCOPE}` values (optional):
|
||||
- core, cli, langchain, standard-tests, text-splitters, docs, anthropic, chroma, deepseek, exa, fireworks, groq, huggingface, mistralai, nomic, ollama, openai, perplexity, prompty, qdrant, xai, infra
|
||||
- Once you've written the title, please delete this checklist item; do not include it in the PR.
|
||||
|
||||
2. PR description:
|
||||
- [ ] **PR message**: ***Delete this entire checklist*** and replace with
|
||||
- **Description:** a description of the change. Include a [closing keyword](https://docs.github.com/en/issues/tracking-your-work-with-issues/using-issues/linking-a-pull-request-to-an-issue#linking-a-pull-request-to-an-issue-using-a-keyword) if applicable to a relevant issue.
|
||||
- **Issue:** the issue # it fixes, if applicable (e.g. Fixes #123)
|
||||
- **Dependencies:** any dependencies required for this change
|
||||
|
||||
- Write 1-2 sentences summarizing the change.
|
||||
- If this PR addresses a specific issue, please include "Fixes #ISSUE_NUMBER" in the description to automatically close the issue when the PR is merged.
|
||||
- If there are any breaking changes, please clearly describe them.
|
||||
- If this PR depends on another PR being merged first, please include "Depends on #PR_NUMBER" inthe description.
|
||||
|
||||
3. Run `make format`, `make lint` and `make test` from the root of the package(s) you've modified.
|
||||
|
||||
- We will not consider a PR unless these three are passing in CI.
|
||||
- [ ] **Lint and test**: Run `make format`, `make lint` and `make test` from the root of the package(s) you've modified. **We will not consider a PR unless these three are passing in CI.** See [contribution guidelines](https://docs.langchain.com/oss/python/contributing) for more.
|
||||
|
||||
Additional guidelines:
|
||||
|
||||
- We ask that if you use generative AI for your contribution, you include a disclaimer.
|
||||
- PRs should not touch more than one package unless absolutely necessary.
|
||||
- Do not update the `uv.lock` files unless or add dependencies to `pyproject.toml` files (even optional ones) unless you have explicit permission to do so by a maintainer.
|
||||
- Most PRs should not touch more than one package.
|
||||
- Please do not add dependencies to `pyproject.toml` files (even optional ones) unless they are **required** for unit tests. Likewise, please do not update the `uv.lock` files unless you are adding a required dependency.
|
||||
- Changes should be backwards compatible.
|
||||
- Make sure optional dependencies are imported within a function.
|
||||
|
||||
93
.github/actions/poetry_setup/action.yml
vendored
Normal file
93
.github/actions/poetry_setup/action.yml
vendored
Normal file
@@ -0,0 +1,93 @@
|
||||
# An action for setting up poetry install with caching.
|
||||
# Using a custom action since the default action does not
|
||||
# take poetry install groups into account.
|
||||
# Action code from:
|
||||
# https://github.com/actions/setup-python/issues/505#issuecomment-1273013236
|
||||
name: poetry-install-with-caching
|
||||
description: Poetry install with support for caching of dependency groups.
|
||||
|
||||
inputs:
|
||||
python-version:
|
||||
description: Python version, supporting MAJOR.MINOR only
|
||||
required: true
|
||||
|
||||
poetry-version:
|
||||
description: Poetry version
|
||||
required: true
|
||||
|
||||
cache-key:
|
||||
description: Cache key to use for manual handling of caching
|
||||
required: true
|
||||
|
||||
working-directory:
|
||||
description: Directory whose poetry.lock file should be cached
|
||||
required: true
|
||||
|
||||
runs:
|
||||
using: composite
|
||||
steps:
|
||||
- uses: actions/setup-python@v5
|
||||
name: Setup python ${{ inputs.python-version }}
|
||||
id: setup-python
|
||||
with:
|
||||
python-version: ${{ inputs.python-version }}
|
||||
|
||||
- uses: actions/cache@v4
|
||||
id: cache-bin-poetry
|
||||
name: Cache Poetry binary - Python ${{ inputs.python-version }}
|
||||
env:
|
||||
SEGMENT_DOWNLOAD_TIMEOUT_MIN: "1"
|
||||
with:
|
||||
path: |
|
||||
/opt/pipx/venvs/poetry
|
||||
# This step caches the poetry installation, so make sure it's keyed on the poetry version as well.
|
||||
key: bin-poetry-${{ runner.os }}-${{ runner.arch }}-py-${{ inputs.python-version }}-${{ inputs.poetry-version }}
|
||||
|
||||
- name: Refresh shell hashtable and fixup softlinks
|
||||
if: steps.cache-bin-poetry.outputs.cache-hit == 'true'
|
||||
shell: bash
|
||||
env:
|
||||
POETRY_VERSION: ${{ inputs.poetry-version }}
|
||||
PYTHON_VERSION: ${{ inputs.python-version }}
|
||||
run: |
|
||||
set -eux
|
||||
|
||||
# Refresh the shell hashtable, to ensure correct `which` output.
|
||||
hash -r
|
||||
|
||||
# `actions/cache@v3` doesn't always seem able to correctly unpack softlinks.
|
||||
# Delete and recreate the softlinks pipx expects to have.
|
||||
rm /opt/pipx/venvs/poetry/bin/python
|
||||
cd /opt/pipx/venvs/poetry/bin
|
||||
ln -s "$(which "python$PYTHON_VERSION")" python
|
||||
chmod +x python
|
||||
cd /opt/pipx_bin/
|
||||
ln -s /opt/pipx/venvs/poetry/bin/poetry poetry
|
||||
chmod +x poetry
|
||||
|
||||
# Ensure everything got set up correctly.
|
||||
/opt/pipx/venvs/poetry/bin/python --version
|
||||
/opt/pipx_bin/poetry --version
|
||||
|
||||
- name: Install poetry
|
||||
if: steps.cache-bin-poetry.outputs.cache-hit != 'true'
|
||||
shell: bash
|
||||
env:
|
||||
POETRY_VERSION: ${{ inputs.poetry-version }}
|
||||
PYTHON_VERSION: ${{ inputs.python-version }}
|
||||
# Install poetry using the python version installed by setup-python step.
|
||||
run: pipx install "poetry==$POETRY_VERSION" --python '${{ steps.setup-python.outputs.python-path }}' --verbose
|
||||
|
||||
- name: Restore pip and poetry cached dependencies
|
||||
uses: actions/cache@v4
|
||||
env:
|
||||
SEGMENT_DOWNLOAD_TIMEOUT_MIN: "4"
|
||||
WORKDIR: ${{ inputs.working-directory == '' && '.' || inputs.working-directory }}
|
||||
with:
|
||||
path: |
|
||||
~/.cache/pip
|
||||
~/.cache/pypoetry/virtualenvs
|
||||
~/.cache/pypoetry/cache
|
||||
~/.cache/pypoetry/artifacts
|
||||
${{ env.WORKDIR }}/.venv
|
||||
key: py-deps-${{ runner.os }}-${{ runner.arch }}-py-${{ inputs.python-version }}-poetry-${{ inputs.poetry-version }}-${{ inputs.cache-key }}-${{ hashFiles(format('{0}/**/poetry.lock', env.WORKDIR)) }}
|
||||
2
.github/actions/uv_setup/action.yml
vendored
2
.github/actions/uv_setup/action.yml
vendored
@@ -27,7 +27,7 @@ runs:
|
||||
using: composite
|
||||
steps:
|
||||
- name: Install uv and set the python version
|
||||
uses: astral-sh/setup-uv@v7
|
||||
uses: astral-sh/setup-uv@v6
|
||||
with:
|
||||
version: ${{ env.UV_VERSION }}
|
||||
python-version: ${{ inputs.python-version }}
|
||||
|
||||
330
.github/copilot-instructions.md
vendored
Normal file
330
.github/copilot-instructions.md
vendored
Normal file
@@ -0,0 +1,330 @@
|
||||
# Global Development Guidelines for LangChain Projects
|
||||
|
||||
## Core Development Principles
|
||||
|
||||
### 1. Maintain Stable Public Interfaces ⚠️ CRITICAL
|
||||
|
||||
**Always attempt to preserve function signatures, argument positions, and names for exported/public methods.**
|
||||
|
||||
❌ **Bad - Breaking Change:**
|
||||
|
||||
```python
|
||||
def get_user(id, verbose=False): # Changed from `user_id`
|
||||
pass
|
||||
```
|
||||
|
||||
✅ **Good - Stable Interface:**
|
||||
|
||||
```python
|
||||
def get_user(user_id: str, verbose: bool = False) -> User:
|
||||
"""Retrieve user by ID with optional verbose output."""
|
||||
pass
|
||||
```
|
||||
|
||||
**Before making ANY changes to public APIs:**
|
||||
|
||||
- Check if the function/class is exported in `__init__.py`
|
||||
- Look for existing usage patterns in tests and examples
|
||||
- Use keyword-only arguments for new parameters: `*, new_param: str = "default"`
|
||||
- Mark experimental features clearly with docstring admonitions (using MkDocs Material, like `!!! warning`)
|
||||
|
||||
🧠 *Ask yourself:* "Would this change break someone's code if they used it last week?"
|
||||
|
||||
### 2. Code Quality Standards
|
||||
|
||||
**All Python code MUST include type hints and return types.**
|
||||
|
||||
❌ **Bad:**
|
||||
|
||||
```python
|
||||
def p(u, d):
|
||||
return [x for x in u if x not in d]
|
||||
```
|
||||
|
||||
✅ **Good:**
|
||||
|
||||
```python
|
||||
def filter_unknown_users(users: list[str], known_users: set[str]) -> list[str]:
|
||||
"""Filter out users that are not in the known users set.
|
||||
|
||||
Args:
|
||||
users: List of user identifiers to filter.
|
||||
known_users: Set of known/valid user identifiers.
|
||||
|
||||
Returns:
|
||||
List of users that are not in the known_users set.
|
||||
"""
|
||||
return [user for user in users if user not in known_users]
|
||||
```
|
||||
|
||||
**Style Requirements:**
|
||||
|
||||
- Use descriptive, **self-explanatory variable names**. Avoid overly short or cryptic identifiers.
|
||||
- Attempt to break up complex functions (>20 lines) into smaller, focused functions where it makes sense
|
||||
- Avoid unnecessary abstraction or premature optimization
|
||||
- Follow existing patterns in the codebase you're modifying
|
||||
|
||||
### 3. Testing Requirements
|
||||
|
||||
**Every new feature or bugfix MUST be covered by unit tests.**
|
||||
|
||||
**Test Organization:**
|
||||
|
||||
- Unit tests: `tests/unit_tests/` (no network calls allowed)
|
||||
- Integration tests: `tests/integration_tests/` (network calls permitted)
|
||||
- Use `pytest` as the testing framework
|
||||
|
||||
**Test Quality Checklist:**
|
||||
|
||||
- [ ] Tests fail when your new logic is broken
|
||||
- [ ] Happy path is covered
|
||||
- [ ] Edge cases and error conditions are tested
|
||||
- [ ] Use fixtures/mocks for external dependencies
|
||||
- [ ] Tests are deterministic (no flaky tests)
|
||||
|
||||
Checklist questions:
|
||||
|
||||
- [ ] Does the test suite fail if your new logic is broken?
|
||||
- [ ] Are all expected behaviors exercised (happy path, invalid input, etc)?
|
||||
- [ ] Do tests use fixtures or mocks where needed?
|
||||
|
||||
```python
|
||||
def test_filter_unknown_users():
|
||||
"""Test filtering unknown users from a list."""
|
||||
users = ["alice", "bob", "charlie"]
|
||||
known_users = {"alice", "bob"}
|
||||
|
||||
result = filter_unknown_users(users, known_users)
|
||||
|
||||
assert result == ["charlie"]
|
||||
assert len(result) == 1
|
||||
```
|
||||
|
||||
### 4. Security and Risk Assessment
|
||||
|
||||
**Security Checklist:**
|
||||
|
||||
- No `eval()`, `exec()`, or `pickle` on user-controlled input
|
||||
- Proper exception handling (no bare `except:`) and use a `msg` variable for error messages
|
||||
- Remove unreachable/commented code before committing
|
||||
- Race conditions or resource leaks (file handles, sockets, threads).
|
||||
- Ensure proper resource cleanup (file handles, connections)
|
||||
|
||||
❌ **Bad:**
|
||||
|
||||
```python
|
||||
def load_config(path):
|
||||
with open(path) as f:
|
||||
return eval(f.read()) # ⚠️ Never eval config
|
||||
```
|
||||
|
||||
✅ **Good:**
|
||||
|
||||
```python
|
||||
import json
|
||||
|
||||
def load_config(path: str) -> dict:
|
||||
with open(path) as f:
|
||||
return json.load(f)
|
||||
```
|
||||
|
||||
### 5. Documentation Standards
|
||||
|
||||
**Use Google-style docstrings with Args and Returns sections for all public functions.**
|
||||
|
||||
❌ **Insufficient Documentation:**
|
||||
|
||||
```python
|
||||
def send_email(to, msg):
|
||||
"""Send an email to a recipient."""
|
||||
```
|
||||
|
||||
✅ **Complete Documentation:**
|
||||
|
||||
```python
|
||||
def send_email(to: str, msg: str, *, priority: str = "normal") -> bool:
|
||||
"""
|
||||
Send an email to a recipient with specified priority.
|
||||
|
||||
Args:
|
||||
to: The email address of the recipient.
|
||||
msg: The message body to send.
|
||||
priority: Email priority level.
|
||||
|
||||
Returns:
|
||||
True if email was sent successfully, False otherwise.
|
||||
|
||||
Raises:
|
||||
InvalidEmailError: If the email address format is invalid.
|
||||
SMTPConnectionError: If unable to connect to email server.
|
||||
"""
|
||||
```
|
||||
|
||||
**Documentation Guidelines:**
|
||||
|
||||
- Types go in function signatures, NOT in docstrings
|
||||
- Focus on "why" rather than "what" in descriptions
|
||||
- Document all parameters, return values, and exceptions
|
||||
- Keep descriptions concise but clear
|
||||
|
||||
📌 *Tip:* Keep descriptions concise but clear. Only document return values if non-obvious.
|
||||
|
||||
### 6. Architectural Improvements
|
||||
|
||||
**When you encounter code that could be improved, suggest better designs:**
|
||||
|
||||
❌ **Poor Design:**
|
||||
|
||||
```python
|
||||
def process_data(data, db_conn, email_client, logger):
|
||||
# Function doing too many things
|
||||
validated = validate_data(data)
|
||||
result = db_conn.save(validated)
|
||||
email_client.send_notification(result)
|
||||
logger.log(f"Processed {len(data)} items")
|
||||
return result
|
||||
```
|
||||
|
||||
✅ **Better Design:**
|
||||
|
||||
```python
|
||||
@dataclass
|
||||
class ProcessingResult:
|
||||
"""Result of data processing operation."""
|
||||
items_processed: int
|
||||
success: bool
|
||||
errors: List[str] = field(default_factory=list)
|
||||
|
||||
class DataProcessor:
|
||||
"""Handles data validation, storage, and notification."""
|
||||
|
||||
def __init__(self, db_conn: Database, email_client: EmailClient):
|
||||
self.db = db_conn
|
||||
self.email = email_client
|
||||
|
||||
def process(self, data: List[dict]) -> ProcessingResult:
|
||||
"""Process and store data with notifications.
|
||||
|
||||
Args:
|
||||
data: List of data items to process.
|
||||
|
||||
Returns:
|
||||
ProcessingResult with details of the operation.
|
||||
"""
|
||||
validated = self._validate_data(data)
|
||||
result = self.db.save(validated)
|
||||
self._notify_completion(result)
|
||||
return result
|
||||
```
|
||||
|
||||
**Design Improvement Areas:**
|
||||
|
||||
If there's a **cleaner**, **more scalable**, or **simpler** design, highlight it and suggest improvements that would:
|
||||
|
||||
- Reduce code duplication through shared utilities
|
||||
- Make unit testing easier
|
||||
- Improve separation of concerns (single responsibility)
|
||||
- Make unit testing easier through dependency injection
|
||||
- Add clarity without adding complexity
|
||||
- Prefer dataclasses for structured data
|
||||
|
||||
## Development Tools & Commands
|
||||
|
||||
### Package Management
|
||||
|
||||
```bash
|
||||
# Add package
|
||||
uv add package-name
|
||||
|
||||
# Sync project dependencies
|
||||
uv sync
|
||||
uv lock
|
||||
```
|
||||
|
||||
### Testing
|
||||
|
||||
```bash
|
||||
# Run unit tests (no network)
|
||||
make test
|
||||
|
||||
# Don't run integration tests, as API keys must be set
|
||||
|
||||
# Run specific test file
|
||||
uv run --group test pytest tests/unit_tests/test_specific.py
|
||||
```
|
||||
|
||||
### Code Quality
|
||||
|
||||
```bash
|
||||
# Lint code
|
||||
make lint
|
||||
|
||||
# Format code
|
||||
make format
|
||||
|
||||
# Type checking
|
||||
uv run --group lint mypy .
|
||||
```
|
||||
|
||||
### Dependency Management Patterns
|
||||
|
||||
**Local Development Dependencies:**
|
||||
|
||||
```toml
|
||||
[tool.uv.sources]
|
||||
langchain-core = { path = "../core", editable = true }
|
||||
langchain-tests = { path = "../standard-tests", editable = true }
|
||||
```
|
||||
|
||||
**For tools, use the `@tool` decorator from `langchain_core.tools`:**
|
||||
|
||||
```python
|
||||
from langchain_core.tools import tool
|
||||
|
||||
@tool
|
||||
def search_database(query: str) -> str:
|
||||
"""Search the database for relevant information.
|
||||
|
||||
Args:
|
||||
query: The search query string.
|
||||
"""
|
||||
# Implementation here
|
||||
return results
|
||||
```
|
||||
|
||||
## Commit Standards
|
||||
|
||||
**Use Conventional Commits format for PR titles:**
|
||||
|
||||
- `feat(core): add multi-tenant support`
|
||||
- `!fix(cli): resolve flag parsing error` (breaking change uses exclamation mark)
|
||||
- `docs: update API usage examples`
|
||||
- `docs(openai): update API usage examples`
|
||||
|
||||
## Framework-Specific Guidelines
|
||||
|
||||
- Follow the existing patterns in `langchain_core` for base abstractions
|
||||
- Implement proper streaming support where applicable
|
||||
- Avoid deprecated components
|
||||
|
||||
### Partner Integrations
|
||||
|
||||
- Follow the established patterns in existing partner libraries
|
||||
- Implement standard interfaces (`BaseChatModel`, `BaseEmbeddings`, etc.)
|
||||
- Include comprehensive integration tests
|
||||
- Document API key requirements and authentication
|
||||
|
||||
---
|
||||
|
||||
## Quick Reference Checklist
|
||||
|
||||
Before submitting code changes:
|
||||
|
||||
- [ ] **Breaking Changes**: Verified no public API changes
|
||||
- [ ] **Type Hints**: All functions have complete type annotations
|
||||
- [ ] **Tests**: New functionality is fully tested
|
||||
- [ ] **Security**: No dangerous patterns (eval, silent failures, etc.)
|
||||
- [ ] **Documentation**: Google-style docstrings for public functions
|
||||
- [ ] **Code Quality**: `make lint` and `make format` pass
|
||||
- [ ] **Architecture**: Suggested improvements where applicable
|
||||
- [ ] **Commit Message**: Follows Conventional Commits format
|
||||
96
.github/pr-file-labeler.yml
vendored
96
.github/pr-file-labeler.yml
vendored
@@ -7,12 +7,13 @@ core:
|
||||
- any-glob-to-any-file:
|
||||
- "libs/core/**/*"
|
||||
|
||||
langchain-classic:
|
||||
langchain:
|
||||
- changed-files:
|
||||
- any-glob-to-any-file:
|
||||
- "libs/langchain/**/*"
|
||||
- "libs/langchain_v1/**/*"
|
||||
|
||||
langchain:
|
||||
v1:
|
||||
- changed-files:
|
||||
- any-glob-to-any-file:
|
||||
- "libs/langchain_v1/**/*"
|
||||
@@ -27,11 +28,6 @@ standard-tests:
|
||||
- any-glob-to-any-file:
|
||||
- "libs/standard-tests/**/*"
|
||||
|
||||
model-profiles:
|
||||
- changed-files:
|
||||
- any-glob-to-any-file:
|
||||
- "libs/model-profiles/**/*"
|
||||
|
||||
text-splitters:
|
||||
- changed-files:
|
||||
- any-glob-to-any-file:
|
||||
@@ -43,81 +39,6 @@ integration:
|
||||
- any-glob-to-any-file:
|
||||
- "libs/partners/**/*"
|
||||
|
||||
anthropic:
|
||||
- changed-files:
|
||||
- any-glob-to-any-file:
|
||||
- "libs/partners/anthropic/**/*"
|
||||
|
||||
chroma:
|
||||
- changed-files:
|
||||
- any-glob-to-any-file:
|
||||
- "libs/partners/chroma/**/*"
|
||||
|
||||
deepseek:
|
||||
- changed-files:
|
||||
- any-glob-to-any-file:
|
||||
- "libs/partners/deepseek/**/*"
|
||||
|
||||
exa:
|
||||
- changed-files:
|
||||
- any-glob-to-any-file:
|
||||
- "libs/partners/exa/**/*"
|
||||
|
||||
fireworks:
|
||||
- changed-files:
|
||||
- any-glob-to-any-file:
|
||||
- "libs/partners/fireworks/**/*"
|
||||
|
||||
groq:
|
||||
- changed-files:
|
||||
- any-glob-to-any-file:
|
||||
- "libs/partners/groq/**/*"
|
||||
|
||||
huggingface:
|
||||
- changed-files:
|
||||
- any-glob-to-any-file:
|
||||
- "libs/partners/huggingface/**/*"
|
||||
|
||||
mistralai:
|
||||
- changed-files:
|
||||
- any-glob-to-any-file:
|
||||
- "libs/partners/mistralai/**/*"
|
||||
|
||||
nomic:
|
||||
- changed-files:
|
||||
- any-glob-to-any-file:
|
||||
- "libs/partners/nomic/**/*"
|
||||
|
||||
ollama:
|
||||
- changed-files:
|
||||
- any-glob-to-any-file:
|
||||
- "libs/partners/ollama/**/*"
|
||||
|
||||
openai:
|
||||
- changed-files:
|
||||
- any-glob-to-any-file:
|
||||
- "libs/partners/openai/**/*"
|
||||
|
||||
perplexity:
|
||||
- changed-files:
|
||||
- any-glob-to-any-file:
|
||||
- "libs/partners/perplexity/**/*"
|
||||
|
||||
prompty:
|
||||
- changed-files:
|
||||
- any-glob-to-any-file:
|
||||
- "libs/partners/prompty/**/*"
|
||||
|
||||
qdrant:
|
||||
- changed-files:
|
||||
- any-glob-to-any-file:
|
||||
- "libs/partners/qdrant/**/*"
|
||||
|
||||
xai:
|
||||
- changed-files:
|
||||
- any-glob-to-any-file:
|
||||
- "libs/partners/xai/**/*"
|
||||
|
||||
# Infrastructure and DevOps
|
||||
infra:
|
||||
- changed-files:
|
||||
@@ -148,5 +69,16 @@ documentation:
|
||||
- changed-files:
|
||||
- any-glob-to-any-file:
|
||||
- "**/*.md"
|
||||
- "**/*.rst"
|
||||
- "**/README*"
|
||||
|
||||
# Security related changes
|
||||
security:
|
||||
- changed-files:
|
||||
- any-glob-to-any-file:
|
||||
- "**/*security*"
|
||||
- "**/*auth*"
|
||||
- "**/*credential*"
|
||||
- "**/*secret*"
|
||||
- "**/*token*"
|
||||
- ".github/workflows/security*"
|
||||
|
||||
41
.github/pr-title-labeler.yml
vendored
Normal file
41
.github/pr-title-labeler.yml
vendored
Normal file
@@ -0,0 +1,41 @@
|
||||
# PR title labeler config
|
||||
#
|
||||
# Labels PRs based on conventional commit patterns in titles
|
||||
#
|
||||
# Format: type(scope): description or type!: description (breaking)
|
||||
|
||||
add-missing-labels: true
|
||||
clear-prexisting: false
|
||||
include-commits: false
|
||||
include-title: true
|
||||
label-for-breaking-changes: breaking
|
||||
|
||||
label-mapping:
|
||||
documentation: ["docs"]
|
||||
feature: ["feat"]
|
||||
fix: ["fix"]
|
||||
infra: ["build", "ci", "chore"]
|
||||
integration:
|
||||
[
|
||||
"anthropic",
|
||||
"chroma",
|
||||
"deepseek",
|
||||
"exa",
|
||||
"fireworks",
|
||||
"groq",
|
||||
"huggingface",
|
||||
"mistralai",
|
||||
"nomic",
|
||||
"ollama",
|
||||
"openai",
|
||||
"perplexity",
|
||||
"prompty",
|
||||
"qdrant",
|
||||
"xai",
|
||||
]
|
||||
linting: ["style"]
|
||||
performance: ["perf"]
|
||||
refactor: ["refactor"]
|
||||
release: ["release"]
|
||||
revert: ["revert"]
|
||||
tests: ["test"]
|
||||
24
.github/scripts/check_diff.py
vendored
24
.github/scripts/check_diff.py
vendored
@@ -30,7 +30,6 @@ LANGCHAIN_DIRS = [
|
||||
"libs/text-splitters",
|
||||
"libs/langchain",
|
||||
"libs/langchain_v1",
|
||||
"libs/model-profiles",
|
||||
]
|
||||
|
||||
# When set to True, we are ignoring core dependents
|
||||
@@ -131,20 +130,29 @@ def _get_configs_for_single_dir(job: str, dir_: str) -> List[Dict[str, str]]:
|
||||
return _get_pydantic_test_configs(dir_)
|
||||
|
||||
if job == "codspeed":
|
||||
py_versions = ["3.13"]
|
||||
py_versions = ["3.12"] # 3.13 is not yet supported
|
||||
elif dir_ == "libs/core":
|
||||
py_versions = ["3.10", "3.11", "3.12", "3.13", "3.14"]
|
||||
py_versions = ["3.10", "3.11", "3.12", "3.13"]
|
||||
# custom logic for specific directories
|
||||
elif dir_ in {"libs/partners/chroma"}:
|
||||
|
||||
elif dir_ == "libs/langchain" and job == "extended-tests":
|
||||
py_versions = ["3.10", "3.13"]
|
||||
elif dir_ == "libs/langchain_v1":
|
||||
py_versions = ["3.10", "3.13"]
|
||||
elif dir_ in {"libs/cli"}:
|
||||
py_versions = ["3.10", "3.13"]
|
||||
|
||||
elif dir_ == ".":
|
||||
# unable to install with 3.13 because tokenizers doesn't support 3.13 yet
|
||||
py_versions = ["3.10", "3.12"]
|
||||
else:
|
||||
py_versions = ["3.10", "3.14"]
|
||||
py_versions = ["3.10", "3.13"]
|
||||
|
||||
return [{"working-directory": dir_, "python-version": py_v} for py_v in py_versions]
|
||||
|
||||
|
||||
def _get_pydantic_test_configs(
|
||||
dir_: str, *, python_version: str = "3.12"
|
||||
dir_: str, *, python_version: str = "3.11"
|
||||
) -> List[Dict[str, str]]:
|
||||
with open("./libs/core/uv.lock", "rb") as f:
|
||||
core_uv_lock_data = tomllib.load(f)
|
||||
@@ -298,9 +306,7 @@ if __name__ == "__main__":
|
||||
if not filename.startswith(".")
|
||||
] != ["README.md"]:
|
||||
dirs_to_run["test"].add(f"libs/partners/{partner_dir}")
|
||||
# Skip codspeed for partners without benchmarks or in IGNORED_PARTNERS
|
||||
if partner_dir not in IGNORED_PARTNERS:
|
||||
dirs_to_run["codspeed"].add(f"libs/partners/{partner_dir}")
|
||||
dirs_to_run["codspeed"].add(f"libs/partners/{partner_dir}")
|
||||
# Skip if the directory was deleted or is just a tombstone readme
|
||||
elif file.startswith("libs/"):
|
||||
# Check if this is a root-level file in libs/ (e.g., libs/README.md)
|
||||
|
||||
2
.github/scripts/get_min_versions.py
vendored
2
.github/scripts/get_min_versions.py
vendored
@@ -98,7 +98,7 @@ def _check_python_version_from_requirement(
|
||||
return True
|
||||
else:
|
||||
marker_str = str(requirement.marker)
|
||||
if "python_version" in marker_str or "python_full_version" in marker_str:
|
||||
if "python_version" or "python_full_version" in marker_str:
|
||||
python_version_str = "".join(
|
||||
char
|
||||
for char in marker_str
|
||||
|
||||
@@ -35,7 +35,7 @@ jobs:
|
||||
timeout-minutes: 20
|
||||
name: "Python ${{ inputs.python-version }}"
|
||||
steps:
|
||||
- uses: actions/checkout@v6
|
||||
- uses: actions/checkout@v5
|
||||
|
||||
- name: "🐍 Set up Python ${{ inputs.python-version }} + UV"
|
||||
uses: "./.github/actions/uv_setup"
|
||||
|
||||
8
.github/workflows/_lint.yml
vendored
8
.github/workflows/_lint.yml
vendored
@@ -38,7 +38,7 @@ jobs:
|
||||
timeout-minutes: 20
|
||||
steps:
|
||||
- name: "📋 Checkout Code"
|
||||
uses: actions/checkout@v6
|
||||
uses: actions/checkout@v5
|
||||
|
||||
- name: "🐍 Set up Python ${{ inputs.python-version }} + UV"
|
||||
uses: "./.github/actions/uv_setup"
|
||||
@@ -47,12 +47,6 @@ jobs:
|
||||
cache-suffix: lint-${{ inputs.working-directory }}
|
||||
working-directory: ${{ inputs.working-directory }}
|
||||
|
||||
# - name: "🔒 Verify Lockfile is Up-to-Date"
|
||||
# working-directory: ${{ inputs.working-directory }}
|
||||
# run: |
|
||||
# unset UV_FROZEN
|
||||
# uv lock --check
|
||||
|
||||
- name: "📦 Install Lint & Typing Dependencies"
|
||||
working-directory: ${{ inputs.working-directory }}
|
||||
run: |
|
||||
|
||||
40
.github/workflows/_release.yml
vendored
40
.github/workflows/_release.yml
vendored
@@ -19,7 +19,7 @@ on:
|
||||
required: true
|
||||
type: string
|
||||
description: "From which folder this pipeline executes"
|
||||
default: "libs/langchain_v1"
|
||||
default: "libs/langchain"
|
||||
release-version:
|
||||
required: true
|
||||
type: string
|
||||
@@ -54,7 +54,7 @@ jobs:
|
||||
version: ${{ steps.check-version.outputs.version }}
|
||||
|
||||
steps:
|
||||
- uses: actions/checkout@v6
|
||||
- uses: actions/checkout@v5
|
||||
|
||||
- name: Set up Python + uv
|
||||
uses: "./.github/actions/uv_setup"
|
||||
@@ -77,7 +77,7 @@ jobs:
|
||||
working-directory: ${{ inputs.working-directory }}
|
||||
|
||||
- name: Upload build
|
||||
uses: actions/upload-artifact@v6
|
||||
uses: actions/upload-artifact@v4
|
||||
with:
|
||||
name: dist
|
||||
path: ${{ inputs.working-directory }}/dist/
|
||||
@@ -105,7 +105,7 @@ jobs:
|
||||
outputs:
|
||||
release-body: ${{ steps.generate-release-body.outputs.release-body }}
|
||||
steps:
|
||||
- uses: actions/checkout@v6
|
||||
- uses: actions/checkout@v5
|
||||
with:
|
||||
repository: langchain-ai/langchain
|
||||
path: langchain
|
||||
@@ -149,8 +149,8 @@ jobs:
|
||||
fi
|
||||
fi
|
||||
|
||||
# if PREV_TAG is empty or came out to 0.0.0, let it be empty
|
||||
if [ -z "$PREV_TAG" ] || [ "$PREV_TAG" = "$PKG_NAME==0.0.0" ]; then
|
||||
# if PREV_TAG is empty, let it be empty
|
||||
if [ -z "$PREV_TAG" ]; then
|
||||
echo "No previous tag found - first release"
|
||||
else
|
||||
# confirm prev-tag actually exists in git repo with git tag
|
||||
@@ -179,8 +179,8 @@ jobs:
|
||||
PREV_TAG: ${{ steps.check-tags.outputs.prev-tag }}
|
||||
run: |
|
||||
PREAMBLE="Changes since $PREV_TAG"
|
||||
# if PREV_TAG is empty or 0.0.0, then we are releasing the first version
|
||||
if [ -z "$PREV_TAG" ] || [ "$PREV_TAG" = "$PKG_NAME==0.0.0" ]; then
|
||||
# if PREV_TAG is empty, then we are releasing the first version
|
||||
if [ -z "$PREV_TAG" ]; then
|
||||
PREAMBLE="Initial release"
|
||||
PREV_TAG=$(git rev-list --max-parents=0 HEAD)
|
||||
fi
|
||||
@@ -206,9 +206,9 @@ jobs:
|
||||
id-token: write
|
||||
|
||||
steps:
|
||||
- uses: actions/checkout@v6
|
||||
- uses: actions/checkout@v5
|
||||
|
||||
- uses: actions/download-artifact@v7
|
||||
- uses: actions/download-artifact@v5
|
||||
with:
|
||||
name: dist
|
||||
path: ${{ inputs.working-directory }}/dist/
|
||||
@@ -237,7 +237,7 @@ jobs:
|
||||
contents: read
|
||||
timeout-minutes: 20
|
||||
steps:
|
||||
- uses: actions/checkout@v6
|
||||
- uses: actions/checkout@v5
|
||||
|
||||
# We explicitly *don't* set up caching here. This ensures our tests are
|
||||
# maximally sensitive to catching breakage.
|
||||
@@ -258,7 +258,7 @@ jobs:
|
||||
with:
|
||||
python-version: ${{ env.PYTHON_VERSION }}
|
||||
|
||||
- uses: actions/download-artifact@v7
|
||||
- uses: actions/download-artifact@v5
|
||||
with:
|
||||
name: dist
|
||||
path: ${{ inputs.working-directory }}/dist/
|
||||
@@ -377,7 +377,6 @@ jobs:
|
||||
XAI_API_KEY: ${{ secrets.XAI_API_KEY }}
|
||||
DEEPSEEK_API_KEY: ${{ secrets.DEEPSEEK_API_KEY }}
|
||||
PPLX_API_KEY: ${{ secrets.PPLX_API_KEY }}
|
||||
LANGCHAIN_TESTS_USER_AGENT: ${{ secrets.LANGCHAIN_TESTS_USER_AGENT }}
|
||||
run: make integration_tests
|
||||
working-directory: ${{ inputs.working-directory }}
|
||||
|
||||
@@ -410,9 +409,8 @@ jobs:
|
||||
AZURE_OPENAI_LEGACY_CHAT_DEPLOYMENT_NAME: ${{ secrets.AZURE_OPENAI_LEGACY_CHAT_DEPLOYMENT_NAME }}
|
||||
AZURE_OPENAI_LLM_DEPLOYMENT_NAME: ${{ secrets.AZURE_OPENAI_LLM_DEPLOYMENT_NAME }}
|
||||
AZURE_OPENAI_EMBEDDINGS_DEPLOYMENT_NAME: ${{ secrets.AZURE_OPENAI_EMBEDDINGS_DEPLOYMENT_NAME }}
|
||||
LANGCHAIN_TESTS_USER_AGENT: ${{ secrets.LANGCHAIN_TESTS_USER_AGENT }}
|
||||
steps:
|
||||
- uses: actions/checkout@v6
|
||||
- uses: actions/checkout@v5
|
||||
|
||||
# We implement this conditional as Github Actions does not have good support
|
||||
# for conditionally needing steps. https://github.com/actions/runner/issues/491
|
||||
@@ -430,7 +428,7 @@ jobs:
|
||||
with:
|
||||
python-version: ${{ env.PYTHON_VERSION }}
|
||||
|
||||
- uses: actions/download-artifact@v7
|
||||
- uses: actions/download-artifact@v5
|
||||
if: startsWith(inputs.working-directory, 'libs/core')
|
||||
with:
|
||||
name: dist
|
||||
@@ -444,7 +442,7 @@ jobs:
|
||||
git ls-remote --tags origin "langchain-${{ matrix.partner }}*" \
|
||||
| awk '{print $2}' \
|
||||
| sed 's|refs/tags/||' \
|
||||
| grep -E '[0-9]+\.[0-9]+\.[0-9]+$' \
|
||||
| grep -E '[0-9]+\.[0-9]+\.[0-9]+([a-zA-Z]+[0-9]+)?$' \
|
||||
| sort -Vr \
|
||||
| head -n 1
|
||||
)"
|
||||
@@ -492,14 +490,14 @@ jobs:
|
||||
working-directory: ${{ inputs.working-directory }}
|
||||
|
||||
steps:
|
||||
- uses: actions/checkout@v6
|
||||
- uses: actions/checkout@v5
|
||||
|
||||
- name: Set up Python + uv
|
||||
uses: "./.github/actions/uv_setup"
|
||||
with:
|
||||
python-version: ${{ env.PYTHON_VERSION }}
|
||||
|
||||
- uses: actions/download-artifact@v7
|
||||
- uses: actions/download-artifact@v5
|
||||
with:
|
||||
name: dist
|
||||
path: ${{ inputs.working-directory }}/dist/
|
||||
@@ -532,14 +530,14 @@ jobs:
|
||||
working-directory: ${{ inputs.working-directory }}
|
||||
|
||||
steps:
|
||||
- uses: actions/checkout@v6
|
||||
- uses: actions/checkout@v5
|
||||
|
||||
- name: Set up Python + uv
|
||||
uses: "./.github/actions/uv_setup"
|
||||
with:
|
||||
python-version: ${{ env.PYTHON_VERSION }}
|
||||
|
||||
- uses: actions/download-artifact@v7
|
||||
- uses: actions/download-artifact@v5
|
||||
with:
|
||||
name: dist
|
||||
path: ${{ inputs.working-directory }}/dist/
|
||||
|
||||
2
.github/workflows/_test.yml
vendored
2
.github/workflows/_test.yml
vendored
@@ -33,7 +33,7 @@ jobs:
|
||||
name: "Python ${{ inputs.python-version }}"
|
||||
steps:
|
||||
- name: "📋 Checkout Code"
|
||||
uses: actions/checkout@v6
|
||||
uses: actions/checkout@v5
|
||||
|
||||
- name: "🐍 Set up Python ${{ inputs.python-version }} + UV"
|
||||
uses: "./.github/actions/uv_setup"
|
||||
|
||||
8
.github/workflows/_test_pydantic.yml
vendored
8
.github/workflows/_test_pydantic.yml
vendored
@@ -13,7 +13,7 @@ on:
|
||||
required: false
|
||||
type: string
|
||||
description: "Python version to use"
|
||||
default: "3.12"
|
||||
default: "3.11"
|
||||
pydantic-version:
|
||||
required: true
|
||||
type: string
|
||||
@@ -36,7 +36,7 @@ jobs:
|
||||
name: "Pydantic ~=${{ inputs.pydantic-version }}"
|
||||
steps:
|
||||
- name: "📋 Checkout Code"
|
||||
uses: actions/checkout@v6
|
||||
uses: actions/checkout@v5
|
||||
|
||||
- name: "🐍 Set up Python ${{ inputs.python-version }} + UV"
|
||||
uses: "./.github/actions/uv_setup"
|
||||
@@ -51,9 +51,7 @@ jobs:
|
||||
|
||||
- name: "🔄 Install Specific Pydantic Version"
|
||||
shell: bash
|
||||
env:
|
||||
PYDANTIC_VERSION: ${{ inputs.pydantic-version }}
|
||||
run: VIRTUAL_ENV=.venv uv pip install "pydantic~=$PYDANTIC_VERSION"
|
||||
run: VIRTUAL_ENV=.venv uv pip install pydantic~=${{ inputs.pydantic-version }}
|
||||
|
||||
- name: "🧪 Run Core Tests"
|
||||
shell: bash
|
||||
|
||||
107
.github/workflows/auto-label-by-package.yml
vendored
107
.github/workflows/auto-label-by-package.yml
vendored
@@ -1,107 +0,0 @@
|
||||
name: Auto Label Issues by Package
|
||||
|
||||
on:
|
||||
issues:
|
||||
types: [opened, edited]
|
||||
|
||||
jobs:
|
||||
label-by-package:
|
||||
permissions:
|
||||
issues: write
|
||||
runs-on: ubuntu-latest
|
||||
|
||||
steps:
|
||||
- name: Sync package labels
|
||||
uses: actions/github-script@v8
|
||||
with:
|
||||
script: |
|
||||
const body = context.payload.issue.body || "";
|
||||
|
||||
// Extract text under "### Package"
|
||||
const match = body.match(/### Package\s+([\s\S]*?)\n###/i);
|
||||
if (!match) return;
|
||||
|
||||
const packageSection = match[1].trim();
|
||||
|
||||
// Mapping table for package names to labels
|
||||
const mapping = {
|
||||
"langchain": "langchain",
|
||||
"langchain-openai": "openai",
|
||||
"langchain-anthropic": "anthropic",
|
||||
"langchain-classic": "langchain-classic",
|
||||
"langchain-core": "core",
|
||||
"langchain-cli": "cli",
|
||||
"langchain-model-profiles": "model-profiles",
|
||||
"langchain-tests": "standard-tests",
|
||||
"langchain-text-splitters": "text-splitters",
|
||||
"langchain-chroma": "chroma",
|
||||
"langchain-deepseek": "deepseek",
|
||||
"langchain-exa": "exa",
|
||||
"langchain-fireworks": "fireworks",
|
||||
"langchain-groq": "groq",
|
||||
"langchain-huggingface": "huggingface",
|
||||
"langchain-mistralai": "mistralai",
|
||||
"langchain-nomic": "nomic",
|
||||
"langchain-ollama": "ollama",
|
||||
"langchain-perplexity": "perplexity",
|
||||
"langchain-prompty": "prompty",
|
||||
"langchain-qdrant": "qdrant",
|
||||
"langchain-xai": "xai",
|
||||
};
|
||||
|
||||
// All possible package labels we manage
|
||||
const allPackageLabels = Object.values(mapping);
|
||||
const selectedLabels = [];
|
||||
|
||||
// Check if this is checkbox format (multiple selection)
|
||||
const checkboxMatches = packageSection.match(/- \[x\]\s+([^\n\r]+)/gi);
|
||||
if (checkboxMatches) {
|
||||
// Handle checkbox format
|
||||
for (const match of checkboxMatches) {
|
||||
const packageName = match.replace(/- \[x\]\s+/i, '').trim();
|
||||
const label = mapping[packageName];
|
||||
if (label && !selectedLabels.includes(label)) {
|
||||
selectedLabels.push(label);
|
||||
}
|
||||
}
|
||||
} else {
|
||||
// Handle dropdown format (single selection)
|
||||
const label = mapping[packageSection];
|
||||
if (label) {
|
||||
selectedLabels.push(label);
|
||||
}
|
||||
}
|
||||
|
||||
// Get current issue labels
|
||||
const issue = await github.rest.issues.get({
|
||||
owner: context.repo.owner,
|
||||
repo: context.repo.repo,
|
||||
issue_number: context.issue.number
|
||||
});
|
||||
|
||||
const currentLabels = issue.data.labels.map(label => label.name);
|
||||
const currentPackageLabels = currentLabels.filter(label => allPackageLabels.includes(label));
|
||||
|
||||
// Determine labels to add and remove
|
||||
const labelsToAdd = selectedLabels.filter(label => !currentPackageLabels.includes(label));
|
||||
const labelsToRemove = currentPackageLabels.filter(label => !selectedLabels.includes(label));
|
||||
|
||||
// Add new labels
|
||||
if (labelsToAdd.length > 0) {
|
||||
await github.rest.issues.addLabels({
|
||||
owner: context.repo.owner,
|
||||
repo: context.repo.repo,
|
||||
issue_number: context.issue.number,
|
||||
labels: labelsToAdd
|
||||
});
|
||||
}
|
||||
|
||||
// Remove old labels
|
||||
for (const label of labelsToRemove) {
|
||||
await github.rest.issues.removeLabel({
|
||||
owner: context.repo.owner,
|
||||
repo: context.repo.repo,
|
||||
issue_number: context.issue.number,
|
||||
name: label
|
||||
});
|
||||
}
|
||||
2
.github/workflows/check_core_versions.yml
vendored
2
.github/workflows/check_core_versions.yml
vendored
@@ -18,7 +18,7 @@ jobs:
|
||||
runs-on: ubuntu-latest
|
||||
|
||||
steps:
|
||||
- uses: actions/checkout@v6
|
||||
- uses: actions/checkout@v5
|
||||
|
||||
- name: "✅ Verify pyproject.toml & version.py Match"
|
||||
run: |
|
||||
|
||||
13
.github/workflows/check_diffs.yml
vendored
13
.github/workflows/check_diffs.yml
vendored
@@ -47,7 +47,7 @@ jobs:
|
||||
if: ${{ !contains(github.event.pull_request.labels.*.name, 'ci-ignore') }}
|
||||
steps:
|
||||
- name: "📋 Checkout Code"
|
||||
uses: actions/checkout@v6
|
||||
uses: actions/checkout@v5
|
||||
- name: "🐍 Setup Python 3.11"
|
||||
uses: actions/setup-python@v6
|
||||
with:
|
||||
@@ -141,7 +141,7 @@ jobs:
|
||||
run:
|
||||
working-directory: ${{ matrix.job-configs.working-directory }}
|
||||
steps:
|
||||
- uses: actions/checkout@v6
|
||||
- uses: actions/checkout@v5
|
||||
|
||||
- name: "🐍 Set up Python ${{ matrix.job-configs.python-version }} + UV"
|
||||
uses: "./.github/actions/uv_setup"
|
||||
@@ -182,16 +182,17 @@ jobs:
|
||||
job-configs: ${{ fromJson(needs.build.outputs.codspeed) }}
|
||||
fail-fast: false
|
||||
steps:
|
||||
- uses: actions/checkout@v6
|
||||
- uses: actions/checkout@v5
|
||||
|
||||
# We have to use 3.12 as 3.13 is not yet supported
|
||||
- name: "📦 Install UV Package Manager"
|
||||
uses: astral-sh/setup-uv@v7
|
||||
uses: astral-sh/setup-uv@v6
|
||||
with:
|
||||
python-version: "3.13"
|
||||
python-version: "3.12"
|
||||
|
||||
- uses: actions/setup-python@v6
|
||||
with:
|
||||
python-version: "3.13"
|
||||
python-version: "3.12"
|
||||
|
||||
- name: "📦 Install Test Dependencies"
|
||||
run: uv sync --group test
|
||||
|
||||
30
.github/workflows/integration_tests.yml
vendored
30
.github/workflows/integration_tests.yml
vendored
@@ -23,8 +23,10 @@ permissions:
|
||||
contents: read
|
||||
|
||||
env:
|
||||
POETRY_VERSION: "1.8.4"
|
||||
UV_FROZEN: "true"
|
||||
DEFAULT_LIBS: '["libs/partners/openai", "libs/partners/anthropic", "libs/partners/fireworks", "libs/partners/groq", "libs/partners/mistralai", "libs/partners/xai", "libs/partners/google-vertexai", "libs/partners/google-genai", "libs/partners/aws"]'
|
||||
POETRY_LIBS: ("libs/partners/aws")
|
||||
|
||||
jobs:
|
||||
# Generate dynamic test matrix based on input parameters or defaults
|
||||
@@ -58,6 +60,7 @@ jobs:
|
||||
echo $matrix
|
||||
echo "matrix=$matrix" >> $GITHUB_OUTPUT
|
||||
# Run integration tests against partner libraries with live API credentials
|
||||
# Tests are run with Poetry or UV depending on the library's setup
|
||||
build:
|
||||
if: github.repository_owner == 'langchain-ai' || github.event_name != 'schedule'
|
||||
name: "🐍 Python ${{ matrix.python-version }}: ${{ matrix.working-directory }}"
|
||||
@@ -71,14 +74,14 @@ jobs:
|
||||
working-directory: ${{ fromJSON(needs.compute-matrix.outputs.matrix).working-directory }}
|
||||
|
||||
steps:
|
||||
- uses: actions/checkout@v6
|
||||
- uses: actions/checkout@v5
|
||||
with:
|
||||
path: langchain
|
||||
- uses: actions/checkout@v6
|
||||
- uses: actions/checkout@v5
|
||||
with:
|
||||
repository: langchain-ai/langchain-google
|
||||
path: langchain-google
|
||||
- uses: actions/checkout@v6
|
||||
- uses: actions/checkout@v5
|
||||
with:
|
||||
repository: langchain-ai/langchain-aws
|
||||
path: langchain-aws
|
||||
@@ -92,7 +95,17 @@ jobs:
|
||||
mv langchain-google/libs/vertexai langchain/libs/partners/google-vertexai
|
||||
mv langchain-aws/libs/aws langchain/libs/partners/aws
|
||||
|
||||
- name: "🐍 Set up Python ${{ matrix.python-version }} + Poetry"
|
||||
if: contains(env.POETRY_LIBS, matrix.working-directory)
|
||||
uses: "./langchain/.github/actions/poetry_setup"
|
||||
with:
|
||||
python-version: ${{ matrix.python-version }}
|
||||
poetry-version: ${{ env.POETRY_VERSION }}
|
||||
working-directory: langchain/${{ matrix.working-directory }}
|
||||
cache-key: scheduled
|
||||
|
||||
- name: "🐍 Set up Python ${{ matrix.python-version }} + UV"
|
||||
if: "!contains(env.POETRY_LIBS, matrix.working-directory)"
|
||||
uses: "./langchain/.github/actions/uv_setup"
|
||||
with:
|
||||
python-version: ${{ matrix.python-version }}
|
||||
@@ -110,7 +123,15 @@ jobs:
|
||||
aws-secret-access-key: ${{ secrets.AWS_SECRET_ACCESS_KEY }}
|
||||
aws-region: ${{ secrets.AWS_REGION }}
|
||||
|
||||
- name: "📦 Install Dependencies"
|
||||
- name: "📦 Install Dependencies (Poetry)"
|
||||
if: contains(env.POETRY_LIBS, matrix.working-directory)
|
||||
run: |
|
||||
echo "Running scheduled tests, installing dependencies with poetry..."
|
||||
cd langchain/${{ matrix.working-directory }}
|
||||
poetry install --with=test_integration,test
|
||||
|
||||
- name: "📦 Install Dependencies (UV)"
|
||||
if: "!contains(env.POETRY_LIBS, matrix.working-directory)"
|
||||
run: |
|
||||
echo "Running scheduled tests, installing dependencies with uv..."
|
||||
cd langchain/${{ matrix.working-directory }}
|
||||
@@ -155,7 +176,6 @@ jobs:
|
||||
WATSONX_APIKEY: ${{ secrets.WATSONX_APIKEY }}
|
||||
WATSONX_PROJECT_ID: ${{ secrets.WATSONX_PROJECT_ID }}
|
||||
XAI_API_KEY: ${{ secrets.XAI_API_KEY }}
|
||||
LANGCHAIN_TESTS_USER_AGENT: ${{ secrets.LANGCHAIN_TESTS_USER_AGENT }}
|
||||
run: |
|
||||
cd langchain/${{ matrix.working-directory }}
|
||||
make integration_tests
|
||||
|
||||
17
.github/workflows/pr_lint.yml
vendored
17
.github/workflows/pr_lint.yml
vendored
@@ -26,13 +26,11 @@
|
||||
# * revert — reverts a previous commit
|
||||
# * release — prepare a new release
|
||||
#
|
||||
# Allowed Scope(s) (optional):
|
||||
# core, cli, langchain, langchain_v1, langchain-classic, model-profiles,
|
||||
# standard-tests, text-splitters, docs, anthropic, chroma, deepseek, exa,
|
||||
# fireworks, groq, huggingface, mistralai, nomic, ollama, openai,
|
||||
# perplexity, prompty, qdrant, xai, infra, deps
|
||||
#
|
||||
# Multiple scopes can be used by separating them with a comma.
|
||||
# Allowed Scopes (optional):
|
||||
# core, cli, langchain, langchain_v1, langchain_legacy, standard-tests,
|
||||
# text-splitters, docs, anthropic, chroma, deepseek, exa, fireworks, groq,
|
||||
# huggingface, mistralai, nomic, ollama, openai, perplexity, prompty, qdrant,
|
||||
# xai, infra
|
||||
#
|
||||
# Rules:
|
||||
# 1. The 'Type' must start with a lowercase letter.
|
||||
@@ -81,8 +79,8 @@ jobs:
|
||||
core
|
||||
cli
|
||||
langchain
|
||||
langchain-classic
|
||||
model-profiles
|
||||
langchain_v1
|
||||
langchain_legacy
|
||||
standard-tests
|
||||
text-splitters
|
||||
docs
|
||||
@@ -102,7 +100,6 @@ jobs:
|
||||
qdrant
|
||||
xai
|
||||
infra
|
||||
deps
|
||||
requireScope: false
|
||||
disallowScopes: |
|
||||
release
|
||||
|
||||
4
.github/workflows/v03_api_doc_build.yml
vendored
4
.github/workflows/v03_api_doc_build.yml
vendored
@@ -23,12 +23,12 @@ jobs:
|
||||
permissions:
|
||||
contents: read
|
||||
steps:
|
||||
- uses: actions/checkout@v6
|
||||
- uses: actions/checkout@v5
|
||||
with:
|
||||
ref: v0.3
|
||||
path: langchain
|
||||
|
||||
- uses: actions/checkout@v6
|
||||
- uses: actions/checkout@v5
|
||||
with:
|
||||
repository: langchain-ai/langchain-api-docs-html
|
||||
path: langchain-api-docs-html
|
||||
|
||||
8
.github/workflows/v1_changes.md
vendored
Normal file
8
.github/workflows/v1_changes.md
vendored
Normal file
@@ -0,0 +1,8 @@
|
||||
With the deprecation of v0 docs, the following files will need to be migrated/supported
|
||||
in the new docs repo:
|
||||
|
||||
- run_notebooks.yml: New repo should run Integration tests on code snippets?
|
||||
- people.yml: Need to fix and somehow display on the new docs site
|
||||
- Subsequently, `.github/actions/people/`
|
||||
- _test_doc_imports.yml
|
||||
- check-broken-links.yml
|
||||
5
.gitignore
vendored
5
.gitignore
vendored
@@ -1,8 +1,6 @@
|
||||
.vs/
|
||||
.claude/
|
||||
.idea/
|
||||
#Emacs backup
|
||||
*~
|
||||
# Byte-compiled / optimized / DLL files
|
||||
__pycache__/
|
||||
*.py[cod]
|
||||
@@ -163,6 +161,3 @@ node_modules
|
||||
|
||||
prof
|
||||
virtualenv/
|
||||
scratch/
|
||||
|
||||
.langgraph_api/
|
||||
|
||||
@@ -1,8 +0,0 @@
|
||||
{
|
||||
"mcpServers": {
|
||||
"docs-langchain": {
|
||||
"type": "http",
|
||||
"url": "https://docs.langchain.com/mcp"
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -1,23 +1,4 @@
|
||||
repos:
|
||||
- repo: https://github.com/pre-commit/pre-commit-hooks
|
||||
rev: v4.3.0
|
||||
hooks:
|
||||
- id: no-commit-to-branch # prevent direct commits to protected branches
|
||||
args: ["--branch", "master"]
|
||||
- id: check-yaml # validate YAML syntax
|
||||
args: ["--unsafe"] # allow custom tags
|
||||
- id: check-toml # validate TOML syntax
|
||||
- id: end-of-file-fixer # ensure files end with a newline
|
||||
- id: trailing-whitespace # remove trailing whitespace from lines
|
||||
|
||||
# Text normalization hooks for consistent formatting
|
||||
- repo: https://github.com/sirosen/texthooks
|
||||
rev: 0.6.8
|
||||
hooks:
|
||||
- id: fix-smartquotes # replace curly quotes with straight quotes
|
||||
- id: fix-spaces # replace non-standard spaces (e.g., non-breaking) with regular spaces
|
||||
|
||||
# Per-package format and lint hooks for the monorepo
|
||||
- repo: local
|
||||
hooks:
|
||||
- id: core
|
||||
|
||||
2
.vscode/extensions.json
vendored
2
.vscode/extensions.json
vendored
@@ -6,6 +6,8 @@
|
||||
"ms-toolsai.jupyter",
|
||||
"ms-toolsai.jupyter-keymap",
|
||||
"ms-toolsai.jupyter-renderers",
|
||||
"ms-toolsai.vscode-jupyter-cell-tags",
|
||||
"ms-toolsai.vscode-jupyter-slideshow",
|
||||
"yzhang.markdown-all-in-one",
|
||||
"davidanson.vscode-markdownlint",
|
||||
"bierner.markdown-mermaid",
|
||||
|
||||
417
AGENTS.md
417
AGENTS.md
@@ -1,58 +1,253 @@
|
||||
# Global development guidelines for the LangChain monorepo
|
||||
# Global Development Guidelines for LangChain Projects
|
||||
|
||||
This document provides context to understand the LangChain Python project and assist with development.
|
||||
## Core Development Principles
|
||||
|
||||
## Project architecture and context
|
||||
### 1. Maintain Stable Public Interfaces ⚠️ CRITICAL
|
||||
|
||||
### Monorepo structure
|
||||
**Always attempt to preserve function signatures, argument positions, and names for exported/public methods.**
|
||||
|
||||
This is a Python monorepo with multiple independently versioned packages that use `uv`.
|
||||
❌ **Bad - Breaking Change:**
|
||||
|
||||
```txt
|
||||
langchain/
|
||||
├── libs/
|
||||
│ ├── core/ # `langchain-core` primitives and base abstractions
|
||||
│ ├── langchain/ # `langchain-classic` (legacy, no new features)
|
||||
│ ├── langchain_v1/ # Actively maintained `langchain` package
|
||||
│ ├── partners/ # Third-party integrations
|
||||
│ │ ├── openai/ # OpenAI models and embeddings
|
||||
│ │ ├── anthropic/ # Anthropic (Claude) integration
|
||||
│ │ ├── ollama/ # Local model support
|
||||
│ │ └── ... (other integrations maintained by the LangChain team)
|
||||
│ ├── text-splitters/ # Document chunking utilities
|
||||
│ ├── standard-tests/ # Shared test suite for integrations
|
||||
│ ├── model-profiles/ # Model configuration profiles
|
||||
│ └── cli/ # Command-line interface tools
|
||||
├── .github/ # CI/CD workflows and templates
|
||||
├── .vscode/ # VSCode IDE standard settings and recommended extensions
|
||||
└── README.md # Information about LangChain
|
||||
```python
|
||||
def get_user(id, verbose=False): # Changed from `user_id`
|
||||
pass
|
||||
```
|
||||
|
||||
- **Core layer** (`langchain-core`): Base abstractions, interfaces, and protocols. Users should not need to know about this layer directly.
|
||||
- **Implementation layer** (`langchain`): Concrete implementations and high-level public utilities
|
||||
- **Integration layer** (`partners/`): Third-party service integrations. Note that this monorepo is not exhaustive of all LangChain integrations; some are maintained in separate repos, such as `langchain-ai/langchain-google` and `langchain-ai/langchain-aws`. Usually these repos are cloned at the same level as this monorepo, so if needed, you can refer to their code directly by navigating to `../langchain-google/` from this monorepo.
|
||||
- **Testing layer** (`standard-tests/`): Standardized integration tests for partner integrations
|
||||
✅ **Good - Stable Interface:**
|
||||
|
||||
### Development tools & commands**
|
||||
```python
|
||||
def get_user(user_id: str, verbose: bool = False) -> User:
|
||||
"""Retrieve user by ID with optional verbose output."""
|
||||
pass
|
||||
```
|
||||
|
||||
- `uv` – Fast Python package installer and resolver (replaces pip/poetry)
|
||||
- `make` – Task runner for common development commands. Feel free to look at the `Makefile` for available commands and usage patterns.
|
||||
- `ruff` – Fast Python linter and formatter
|
||||
- `mypy` – Static type checking
|
||||
- `pytest` – Testing framework
|
||||
**Before making ANY changes to public APIs:**
|
||||
|
||||
This monorepo uses `uv` for dependency management. Local development uses editable installs: `[tool.uv.sources]`
|
||||
- Check if the function/class is exported in `__init__.py`
|
||||
- Look for existing usage patterns in tests and examples
|
||||
- Use keyword-only arguments for new parameters: `*, new_param: str = "default"`
|
||||
- Mark experimental features clearly with docstring warnings (using MkDocs Material admonitions, like `!!! warning`)
|
||||
|
||||
Each package in `libs/` has its own `pyproject.toml` and `uv.lock`.
|
||||
🧠 *Ask yourself:* "Would this change break someone's code if they used it last week?"
|
||||
|
||||
### 2. Code Quality Standards
|
||||
|
||||
**All Python code MUST include type hints and return types.**
|
||||
|
||||
❌ **Bad:**
|
||||
|
||||
```python
|
||||
def p(u, d):
|
||||
return [x for x in u if x not in d]
|
||||
```
|
||||
|
||||
✅ **Good:**
|
||||
|
||||
```python
|
||||
def filter_unknown_users(users: list[str], known_users: set[str]) -> list[str]:
|
||||
"""Filter out users that are not in the known users set.
|
||||
|
||||
Args:
|
||||
users: List of user identifiers to filter.
|
||||
known_users: Set of known/valid user identifiers.
|
||||
|
||||
Returns:
|
||||
List of users that are not in the known_users set.
|
||||
"""
|
||||
return [user for user in users if user not in known_users]
|
||||
```
|
||||
|
||||
**Style Requirements:**
|
||||
|
||||
- Use descriptive, **self-explanatory variable names**. Avoid overly short or cryptic identifiers.
|
||||
- Attempt to break up complex functions (>20 lines) into smaller, focused functions where it makes sense
|
||||
- Avoid unnecessary abstraction or premature optimization
|
||||
- Follow existing patterns in the codebase you're modifying
|
||||
|
||||
### 3. Testing Requirements
|
||||
|
||||
**Every new feature or bugfix MUST be covered by unit tests.**
|
||||
|
||||
**Test Organization:**
|
||||
|
||||
- Unit tests: `tests/unit_tests/` (no network calls allowed)
|
||||
- Integration tests: `tests/integration_tests/` (network calls permitted)
|
||||
- Use `pytest` as the testing framework
|
||||
|
||||
**Test Quality Checklist:**
|
||||
|
||||
- [ ] Tests fail when your new logic is broken
|
||||
- [ ] Happy path is covered
|
||||
- [ ] Edge cases and error conditions are tested
|
||||
- [ ] Use fixtures/mocks for external dependencies
|
||||
- [ ] Tests are deterministic (no flaky tests)
|
||||
|
||||
Checklist questions:
|
||||
|
||||
- [ ] Does the test suite fail if your new logic is broken?
|
||||
- [ ] Are all expected behaviors exercised (happy path, invalid input, etc)?
|
||||
- [ ] Do tests use fixtures or mocks where needed?
|
||||
|
||||
```python
|
||||
def test_filter_unknown_users():
|
||||
"""Test filtering unknown users from a list."""
|
||||
users = ["alice", "bob", "charlie"]
|
||||
known_users = {"alice", "bob"}
|
||||
|
||||
result = filter_unknown_users(users, known_users)
|
||||
|
||||
assert result == ["charlie"]
|
||||
assert len(result) == 1
|
||||
```
|
||||
|
||||
### 4. Security and Risk Assessment
|
||||
|
||||
**Security Checklist:**
|
||||
|
||||
- No `eval()`, `exec()`, or `pickle` on user-controlled input
|
||||
- Proper exception handling (no bare `except:`) and use a `msg` variable for error messages
|
||||
- Remove unreachable/commented code before committing
|
||||
- Race conditions or resource leaks (file handles, sockets, threads).
|
||||
- Ensure proper resource cleanup (file handles, connections)
|
||||
|
||||
❌ **Bad:**
|
||||
|
||||
```python
|
||||
def load_config(path):
|
||||
with open(path) as f:
|
||||
return eval(f.read()) # ⚠️ Never eval config
|
||||
```
|
||||
|
||||
✅ **Good:**
|
||||
|
||||
```python
|
||||
import json
|
||||
|
||||
def load_config(path: str) -> dict:
|
||||
with open(path) as f:
|
||||
return json.load(f)
|
||||
```
|
||||
|
||||
### 5. Documentation Standards
|
||||
|
||||
**Use Google-style docstrings with Args section for all public functions.**
|
||||
|
||||
❌ **Insufficient Documentation:**
|
||||
|
||||
```python
|
||||
def send_email(to, msg):
|
||||
"""Send an email to a recipient."""
|
||||
```
|
||||
|
||||
✅ **Complete Documentation:**
|
||||
|
||||
```python
|
||||
def send_email(to: str, msg: str, *, priority: str = "normal") -> bool:
|
||||
"""
|
||||
Send an email to a recipient with specified priority.
|
||||
|
||||
Args:
|
||||
to: The email address of the recipient.
|
||||
msg: The message body to send.
|
||||
priority: Email priority level (`'low'`, ``'normal'``, `'high'`).
|
||||
|
||||
Returns:
|
||||
True if email was sent successfully, False otherwise.
|
||||
|
||||
Raises:
|
||||
InvalidEmailError: If the email address format is invalid.
|
||||
SMTPConnectionError: If unable to connect to email server.
|
||||
"""
|
||||
```
|
||||
|
||||
**Documentation Guidelines:**
|
||||
|
||||
- Types go in function signatures, NOT in docstrings
|
||||
- Focus on "why" rather than "what" in descriptions
|
||||
- Document all parameters, return values, and exceptions
|
||||
- Keep descriptions concise but clear
|
||||
|
||||
📌 *Tip:* Keep descriptions concise but clear. Only document return values if non-obvious.
|
||||
|
||||
### 6. Architectural Improvements
|
||||
|
||||
**When you encounter code that could be improved, suggest better designs:**
|
||||
|
||||
❌ **Poor Design:**
|
||||
|
||||
```python
|
||||
def process_data(data, db_conn, email_client, logger):
|
||||
# Function doing too many things
|
||||
validated = validate_data(data)
|
||||
result = db_conn.save(validated)
|
||||
email_client.send_notification(result)
|
||||
logger.log(f"Processed {len(data)} items")
|
||||
return result
|
||||
```
|
||||
|
||||
✅ **Better Design:**
|
||||
|
||||
```python
|
||||
@dataclass
|
||||
class ProcessingResult:
|
||||
"""Result of data processing operation."""
|
||||
items_processed: int
|
||||
success: bool
|
||||
errors: List[str] = field(default_factory=list)
|
||||
|
||||
class DataProcessor:
|
||||
"""Handles data validation, storage, and notification."""
|
||||
|
||||
def __init__(self, db_conn: Database, email_client: EmailClient):
|
||||
self.db = db_conn
|
||||
self.email = email_client
|
||||
|
||||
def process(self, data: List[dict]) -> ProcessingResult:
|
||||
"""Process and store data with notifications."""
|
||||
validated = self._validate_data(data)
|
||||
result = self.db.save(validated)
|
||||
self._notify_completion(result)
|
||||
return result
|
||||
```
|
||||
|
||||
**Design Improvement Areas:**
|
||||
|
||||
If there's a **cleaner**, **more scalable**, or **simpler** design, highlight it and suggest improvements that would:
|
||||
|
||||
- Reduce code duplication through shared utilities
|
||||
- Make unit testing easier
|
||||
- Improve separation of concerns (single responsibility)
|
||||
- Make unit testing easier through dependency injection
|
||||
- Add clarity without adding complexity
|
||||
- Prefer dataclasses for structured data
|
||||
|
||||
## Development Tools & Commands
|
||||
|
||||
### Package Management
|
||||
|
||||
```bash
|
||||
# Add package
|
||||
uv add package-name
|
||||
|
||||
# Sync project dependencies
|
||||
uv sync
|
||||
uv lock
|
||||
```
|
||||
|
||||
### Testing
|
||||
|
||||
```bash
|
||||
# Run unit tests (no network)
|
||||
make test
|
||||
|
||||
# Don't run integration tests, as API keys must be set
|
||||
|
||||
# Run specific test file
|
||||
uv run --group test pytest tests/unit_tests/test_specific.py
|
||||
```
|
||||
|
||||
### Code Quality
|
||||
|
||||
```bash
|
||||
# Lint code
|
||||
make lint
|
||||
@@ -64,118 +259,66 @@ make format
|
||||
uv run --group lint mypy .
|
||||
```
|
||||
|
||||
#### Key config files
|
||||
### Dependency Management Patterns
|
||||
|
||||
- pyproject.toml: Main workspace configuration with dependency groups
|
||||
- uv.lock: Locked dependencies for reproducible builds
|
||||
- Makefile: Development tasks
|
||||
**Local Development Dependencies:**
|
||||
|
||||
#### Commit standards
|
||||
|
||||
Suggest PR titles that follow Conventional Commits format. Refer to .github/workflows/pr_lint for allowed types and scopes.
|
||||
|
||||
#### Pull request guidelines
|
||||
|
||||
- Always add a disclaimer to the PR description mentioning how AI agents are involved with the contribution.
|
||||
- Describe the "why" of the changes, why the proposed solution is the right one. Limit prose.
|
||||
- Highlight areas of the proposed changes that require careful review.
|
||||
|
||||
## Core development principles
|
||||
|
||||
### Maintain stable public interfaces
|
||||
|
||||
CRITICAL: Always attempt to preserve function signatures, argument positions, and names for exported/public methods. Do not make breaking changes.
|
||||
|
||||
**Before making ANY changes to public APIs:**
|
||||
|
||||
- Check if the function/class is exported in `__init__.py`
|
||||
- Look for existing usage patterns in tests and examples
|
||||
- Use keyword-only arguments for new parameters: `*, new_param: str = "default"`
|
||||
- Mark experimental features clearly with docstring warnings (using MkDocs Material admonitions, like `!!! warning`)
|
||||
|
||||
Ask: "Would this change break someone's code if they used it last week?"
|
||||
|
||||
### Code quality standards
|
||||
|
||||
All Python code MUST include type hints and return types.
|
||||
|
||||
```python title="Example"
|
||||
def filter_unknown_users(users: list[str], known_users: set[str]) -> list[str]:
|
||||
"""Single line description of the function.
|
||||
|
||||
Any additional context about the function can go here.
|
||||
|
||||
Args:
|
||||
users: List of user identifiers to filter.
|
||||
known_users: Set of known/valid user identifiers.
|
||||
|
||||
Returns:
|
||||
List of users that are not in the known_users set.
|
||||
"""
|
||||
```toml
|
||||
[tool.uv.sources]
|
||||
langchain-core = { path = "../core", editable = true }
|
||||
langchain-tests = { path = "../standard-tests", editable = true }
|
||||
```
|
||||
|
||||
- Use descriptive, self-explanatory variable names.
|
||||
- Follow existing patterns in the codebase you're modifying
|
||||
- Attempt to break up complex functions (>20 lines) into smaller, focused functions where it makes sense
|
||||
**For tools, use the `@tool` decorator from `langchain_core.tools`:**
|
||||
|
||||
### Testing requirements
|
||||
```python
|
||||
from langchain_core.tools import tool
|
||||
|
||||
Every new feature or bugfix MUST be covered by unit tests.
|
||||
|
||||
- Unit tests: `tests/unit_tests/` (no network calls allowed)
|
||||
- Integration tests: `tests/integration_tests/` (network calls permitted)
|
||||
- We use `pytest` as the testing framework; if in doubt, check other existing tests for examples.
|
||||
- The testing file structure should mirror the source code structure.
|
||||
|
||||
**Checklist:**
|
||||
|
||||
- [ ] Tests fail when your new logic is broken
|
||||
- [ ] Happy path is covered
|
||||
- [ ] Edge cases and error conditions are tested
|
||||
- [ ] Use fixtures/mocks for external dependencies
|
||||
- [ ] Tests are deterministic (no flaky tests)
|
||||
- [ ] Does the test suite fail if your new logic is broken?
|
||||
|
||||
### Security and risk assessment
|
||||
|
||||
- No `eval()`, `exec()`, or `pickle` on user-controlled input
|
||||
- Proper exception handling (no bare `except:`) and use a `msg` variable for error messages
|
||||
- Remove unreachable/commented code before committing
|
||||
- Race conditions or resource leaks (file handles, sockets, threads).
|
||||
- Ensure proper resource cleanup (file handles, connections)
|
||||
|
||||
### Documentation standards
|
||||
|
||||
Use Google-style docstrings with Args section for all public functions.
|
||||
|
||||
```python title="Example"
|
||||
def send_email(to: str, msg: str, *, priority: str = "normal") -> bool:
|
||||
"""Send an email to a recipient with specified priority.
|
||||
|
||||
Any additional context about the function can go here.
|
||||
@tool
|
||||
def search_database(query: str) -> str:
|
||||
"""Search the database for relevant information.
|
||||
|
||||
Args:
|
||||
to: The email address of the recipient.
|
||||
msg: The message body to send.
|
||||
priority: Email priority level.
|
||||
|
||||
Returns:
|
||||
`True` if email was sent successfully, `False` otherwise.
|
||||
|
||||
Raises:
|
||||
InvalidEmailError: If the email address format is invalid.
|
||||
SMTPConnectionError: If unable to connect to email server.
|
||||
query: The search query string.
|
||||
"""
|
||||
# Implementation here
|
||||
return results
|
||||
```
|
||||
|
||||
- Types go in function signatures, NOT in docstrings
|
||||
- If a default is present, DO NOT repeat it in the docstring unless there is post-processing or it is set conditionally.
|
||||
- Focus on "why" rather than "what" in descriptions
|
||||
- Document all parameters, return values, and exceptions
|
||||
- Keep descriptions concise but clear
|
||||
- Ensure American English spelling (e.g., "behavior", not "behaviour")
|
||||
## Commit Standards
|
||||
|
||||
## Additional resources
|
||||
**Use Conventional Commits format for PR titles:**
|
||||
|
||||
- **Documentation:** https://docs.langchain.com/oss/python/langchain/overview and source at https://github.com/langchain-ai/docs or `../docs/`. Prefer the local install and use file search tools for best results. If needed, use the docs MCP server as defined in `.mcp.json` for programmatic access.
|
||||
- **Contributing Guide:** [`.github/CONTRIBUTING.md`](https://docs.langchain.com/oss/python/contributing/overview)
|
||||
- `feat(core): add multi-tenant support`
|
||||
- `fix(cli): resolve flag parsing error`
|
||||
- `docs: update API usage examples`
|
||||
- `docs(openai): update API usage examples`
|
||||
|
||||
## Framework-Specific Guidelines
|
||||
|
||||
- Follow the existing patterns in `langchain-core` for base abstractions
|
||||
- Use `langchain_core.callbacks` for execution tracking
|
||||
- Implement proper streaming support where applicable
|
||||
- Avoid deprecated components like legacy `LLMChain`
|
||||
|
||||
### Partner Integrations
|
||||
|
||||
- Follow the established patterns in existing partner libraries
|
||||
- Implement standard interfaces (`BaseChatModel`, `BaseEmbeddings`, etc.)
|
||||
- Include comprehensive integration tests
|
||||
- Document API key requirements and authentication
|
||||
|
||||
---
|
||||
|
||||
## Quick Reference Checklist
|
||||
|
||||
Before submitting code changes:
|
||||
|
||||
- [ ] **Breaking Changes**: Verified no public API changes
|
||||
- [ ] **Type Hints**: All functions have complete type annotations
|
||||
- [ ] **Tests**: New functionality is fully tested
|
||||
- [ ] **Security**: No dangerous patterns (eval, silent failures, etc.)
|
||||
- [ ] **Documentation**: Google-style docstrings for public functions
|
||||
- [ ] **Code Quality**: `make lint` and `make format` pass
|
||||
- [ ] **Architecture**: Suggested improvements where applicable
|
||||
- [ ] **Commit Message**: Follows Conventional Commits format
|
||||
|
||||
417
CLAUDE.md
417
CLAUDE.md
@@ -1,58 +1,253 @@
|
||||
# Global development guidelines for the LangChain monorepo
|
||||
# Global Development Guidelines for LangChain Projects
|
||||
|
||||
This document provides context to understand the LangChain Python project and assist with development.
|
||||
## Core Development Principles
|
||||
|
||||
## Project architecture and context
|
||||
### 1. Maintain Stable Public Interfaces ⚠️ CRITICAL
|
||||
|
||||
### Monorepo structure
|
||||
**Always attempt to preserve function signatures, argument positions, and names for exported/public methods.**
|
||||
|
||||
This is a Python monorepo with multiple independently versioned packages that use `uv`.
|
||||
❌ **Bad - Breaking Change:**
|
||||
|
||||
```txt
|
||||
langchain/
|
||||
├── libs/
|
||||
│ ├── core/ # `langchain-core` primitives and base abstractions
|
||||
│ ├── langchain/ # `langchain-classic` (legacy, no new features)
|
||||
│ ├── langchain_v1/ # Actively maintained `langchain` package
|
||||
│ ├── partners/ # Third-party integrations
|
||||
│ │ ├── openai/ # OpenAI models and embeddings
|
||||
│ │ ├── anthropic/ # Anthropic (Claude) integration
|
||||
│ │ ├── ollama/ # Local model support
|
||||
│ │ └── ... (other integrations maintained by the LangChain team)
|
||||
│ ├── text-splitters/ # Document chunking utilities
|
||||
│ ├── standard-tests/ # Shared test suite for integrations
|
||||
│ ├── model-profiles/ # Model configuration profiles
|
||||
│ └── cli/ # Command-line interface tools
|
||||
├── .github/ # CI/CD workflows and templates
|
||||
├── .vscode/ # VSCode IDE standard settings and recommended extensions
|
||||
└── README.md # Information about LangChain
|
||||
```python
|
||||
def get_user(id, verbose=False): # Changed from `user_id`
|
||||
pass
|
||||
```
|
||||
|
||||
- **Core layer** (`langchain-core`): Base abstractions, interfaces, and protocols. Users should not need to know about this layer directly.
|
||||
- **Implementation layer** (`langchain`): Concrete implementations and high-level public utilities
|
||||
- **Integration layer** (`partners/`): Third-party service integrations. Note that this monorepo is not exhaustive of all LangChain integrations; some are maintained in separate repos, such as `langchain-ai/langchain-google` and `langchain-ai/langchain-aws`. Usually these repos are cloned at the same level as this monorepo, so if needed, you can refer to their code directly by navigating to `../langchain-google/` from this monorepo.
|
||||
- **Testing layer** (`standard-tests/`): Standardized integration tests for partner integrations
|
||||
✅ **Good - Stable Interface:**
|
||||
|
||||
### Development tools & commands**
|
||||
```python
|
||||
def get_user(user_id: str, verbose: bool = False) -> User:
|
||||
"""Retrieve user by ID with optional verbose output."""
|
||||
pass
|
||||
```
|
||||
|
||||
- `uv` – Fast Python package installer and resolver (replaces pip/poetry)
|
||||
- `make` – Task runner for common development commands. Feel free to look at the `Makefile` for available commands and usage patterns.
|
||||
- `ruff` – Fast Python linter and formatter
|
||||
- `mypy` – Static type checking
|
||||
- `pytest` – Testing framework
|
||||
**Before making ANY changes to public APIs:**
|
||||
|
||||
This monorepo uses `uv` for dependency management. Local development uses editable installs: `[tool.uv.sources]`
|
||||
- Check if the function/class is exported in `__init__.py`
|
||||
- Look for existing usage patterns in tests and examples
|
||||
- Use keyword-only arguments for new parameters: `*, new_param: str = "default"`
|
||||
- Mark experimental features clearly with docstring warnings (using MkDocs Material admonitions, like `!!! warning`)
|
||||
|
||||
Each package in `libs/` has its own `pyproject.toml` and `uv.lock`.
|
||||
🧠 *Ask yourself:* "Would this change break someone's code if they used it last week?"
|
||||
|
||||
### 2. Code Quality Standards
|
||||
|
||||
**All Python code MUST include type hints and return types.**
|
||||
|
||||
❌ **Bad:**
|
||||
|
||||
```python
|
||||
def p(u, d):
|
||||
return [x for x in u if x not in d]
|
||||
```
|
||||
|
||||
✅ **Good:**
|
||||
|
||||
```python
|
||||
def filter_unknown_users(users: list[str], known_users: set[str]) -> list[str]:
|
||||
"""Filter out users that are not in the known users set.
|
||||
|
||||
Args:
|
||||
users: List of user identifiers to filter.
|
||||
known_users: Set of known/valid user identifiers.
|
||||
|
||||
Returns:
|
||||
List of users that are not in the known_users set.
|
||||
"""
|
||||
return [user for user in users if user not in known_users]
|
||||
```
|
||||
|
||||
**Style Requirements:**
|
||||
|
||||
- Use descriptive, **self-explanatory variable names**. Avoid overly short or cryptic identifiers.
|
||||
- Attempt to break up complex functions (>20 lines) into smaller, focused functions where it makes sense
|
||||
- Avoid unnecessary abstraction or premature optimization
|
||||
- Follow existing patterns in the codebase you're modifying
|
||||
|
||||
### 3. Testing Requirements
|
||||
|
||||
**Every new feature or bugfix MUST be covered by unit tests.**
|
||||
|
||||
**Test Organization:**
|
||||
|
||||
- Unit tests: `tests/unit_tests/` (no network calls allowed)
|
||||
- Integration tests: `tests/integration_tests/` (network calls permitted)
|
||||
- Use `pytest` as the testing framework
|
||||
|
||||
**Test Quality Checklist:**
|
||||
|
||||
- [ ] Tests fail when your new logic is broken
|
||||
- [ ] Happy path is covered
|
||||
- [ ] Edge cases and error conditions are tested
|
||||
- [ ] Use fixtures/mocks for external dependencies
|
||||
- [ ] Tests are deterministic (no flaky tests)
|
||||
|
||||
Checklist questions:
|
||||
|
||||
- [ ] Does the test suite fail if your new logic is broken?
|
||||
- [ ] Are all expected behaviors exercised (happy path, invalid input, etc)?
|
||||
- [ ] Do tests use fixtures or mocks where needed?
|
||||
|
||||
```python
|
||||
def test_filter_unknown_users():
|
||||
"""Test filtering unknown users from a list."""
|
||||
users = ["alice", "bob", "charlie"]
|
||||
known_users = {"alice", "bob"}
|
||||
|
||||
result = filter_unknown_users(users, known_users)
|
||||
|
||||
assert result == ["charlie"]
|
||||
assert len(result) == 1
|
||||
```
|
||||
|
||||
### 4. Security and Risk Assessment
|
||||
|
||||
**Security Checklist:**
|
||||
|
||||
- No `eval()`, `exec()`, or `pickle` on user-controlled input
|
||||
- Proper exception handling (no bare `except:`) and use a `msg` variable for error messages
|
||||
- Remove unreachable/commented code before committing
|
||||
- Race conditions or resource leaks (file handles, sockets, threads).
|
||||
- Ensure proper resource cleanup (file handles, connections)
|
||||
|
||||
❌ **Bad:**
|
||||
|
||||
```python
|
||||
def load_config(path):
|
||||
with open(path) as f:
|
||||
return eval(f.read()) # ⚠️ Never eval config
|
||||
```
|
||||
|
||||
✅ **Good:**
|
||||
|
||||
```python
|
||||
import json
|
||||
|
||||
def load_config(path: str) -> dict:
|
||||
with open(path) as f:
|
||||
return json.load(f)
|
||||
```
|
||||
|
||||
### 5. Documentation Standards
|
||||
|
||||
**Use Google-style docstrings with Args section for all public functions.**
|
||||
|
||||
❌ **Insufficient Documentation:**
|
||||
|
||||
```python
|
||||
def send_email(to, msg):
|
||||
"""Send an email to a recipient."""
|
||||
```
|
||||
|
||||
✅ **Complete Documentation:**
|
||||
|
||||
```python
|
||||
def send_email(to: str, msg: str, *, priority: str = "normal") -> bool:
|
||||
"""
|
||||
Send an email to a recipient with specified priority.
|
||||
|
||||
Args:
|
||||
to: The email address of the recipient.
|
||||
msg: The message body to send.
|
||||
priority: Email priority level (`'low'`, ``'normal'``, `'high'`).
|
||||
|
||||
Returns:
|
||||
True if email was sent successfully, False otherwise.
|
||||
|
||||
Raises:
|
||||
InvalidEmailError: If the email address format is invalid.
|
||||
SMTPConnectionError: If unable to connect to email server.
|
||||
"""
|
||||
```
|
||||
|
||||
**Documentation Guidelines:**
|
||||
|
||||
- Types go in function signatures, NOT in docstrings
|
||||
- Focus on "why" rather than "what" in descriptions
|
||||
- Document all parameters, return values, and exceptions
|
||||
- Keep descriptions concise but clear
|
||||
|
||||
📌 *Tip:* Keep descriptions concise but clear. Only document return values if non-obvious.
|
||||
|
||||
### 6. Architectural Improvements
|
||||
|
||||
**When you encounter code that could be improved, suggest better designs:**
|
||||
|
||||
❌ **Poor Design:**
|
||||
|
||||
```python
|
||||
def process_data(data, db_conn, email_client, logger):
|
||||
# Function doing too many things
|
||||
validated = validate_data(data)
|
||||
result = db_conn.save(validated)
|
||||
email_client.send_notification(result)
|
||||
logger.log(f"Processed {len(data)} items")
|
||||
return result
|
||||
```
|
||||
|
||||
✅ **Better Design:**
|
||||
|
||||
```python
|
||||
@dataclass
|
||||
class ProcessingResult:
|
||||
"""Result of data processing operation."""
|
||||
items_processed: int
|
||||
success: bool
|
||||
errors: List[str] = field(default_factory=list)
|
||||
|
||||
class DataProcessor:
|
||||
"""Handles data validation, storage, and notification."""
|
||||
|
||||
def __init__(self, db_conn: Database, email_client: EmailClient):
|
||||
self.db = db_conn
|
||||
self.email = email_client
|
||||
|
||||
def process(self, data: List[dict]) -> ProcessingResult:
|
||||
"""Process and store data with notifications."""
|
||||
validated = self._validate_data(data)
|
||||
result = self.db.save(validated)
|
||||
self._notify_completion(result)
|
||||
return result
|
||||
```
|
||||
|
||||
**Design Improvement Areas:**
|
||||
|
||||
If there's a **cleaner**, **more scalable**, or **simpler** design, highlight it and suggest improvements that would:
|
||||
|
||||
- Reduce code duplication through shared utilities
|
||||
- Make unit testing easier
|
||||
- Improve separation of concerns (single responsibility)
|
||||
- Make unit testing easier through dependency injection
|
||||
- Add clarity without adding complexity
|
||||
- Prefer dataclasses for structured data
|
||||
|
||||
## Development Tools & Commands
|
||||
|
||||
### Package Management
|
||||
|
||||
```bash
|
||||
# Add package
|
||||
uv add package-name
|
||||
|
||||
# Sync project dependencies
|
||||
uv sync
|
||||
uv lock
|
||||
```
|
||||
|
||||
### Testing
|
||||
|
||||
```bash
|
||||
# Run unit tests (no network)
|
||||
make test
|
||||
|
||||
# Don't run integration tests, as API keys must be set
|
||||
|
||||
# Run specific test file
|
||||
uv run --group test pytest tests/unit_tests/test_specific.py
|
||||
```
|
||||
|
||||
### Code Quality
|
||||
|
||||
```bash
|
||||
# Lint code
|
||||
make lint
|
||||
@@ -64,118 +259,66 @@ make format
|
||||
uv run --group lint mypy .
|
||||
```
|
||||
|
||||
#### Key config files
|
||||
### Dependency Management Patterns
|
||||
|
||||
- pyproject.toml: Main workspace configuration with dependency groups
|
||||
- uv.lock: Locked dependencies for reproducible builds
|
||||
- Makefile: Development tasks
|
||||
**Local Development Dependencies:**
|
||||
|
||||
#### Commit standards
|
||||
|
||||
Suggest PR titles that follow Conventional Commits format. Refer to .github/workflows/pr_lint for allowed types and scopes.
|
||||
|
||||
#### Pull request guidelines
|
||||
|
||||
- Always add a disclaimer to the PR description mentioning how AI agents are involved with the contribution.
|
||||
- Describe the "why" of the changes, why the proposed solution is the right one. Limit prose.
|
||||
- Highlight areas of the proposed changes that require careful review.
|
||||
|
||||
## Core development principles
|
||||
|
||||
### Maintain stable public interfaces
|
||||
|
||||
CRITICAL: Always attempt to preserve function signatures, argument positions, and names for exported/public methods. Do not make breaking changes.
|
||||
|
||||
**Before making ANY changes to public APIs:**
|
||||
|
||||
- Check if the function/class is exported in `__init__.py`
|
||||
- Look for existing usage patterns in tests and examples
|
||||
- Use keyword-only arguments for new parameters: `*, new_param: str = "default"`
|
||||
- Mark experimental features clearly with docstring warnings (using MkDocs Material admonitions, like `!!! warning`)
|
||||
|
||||
Ask: "Would this change break someone's code if they used it last week?"
|
||||
|
||||
### Code quality standards
|
||||
|
||||
All Python code MUST include type hints and return types.
|
||||
|
||||
```python title="Example"
|
||||
def filter_unknown_users(users: list[str], known_users: set[str]) -> list[str]:
|
||||
"""Single line description of the function.
|
||||
|
||||
Any additional context about the function can go here.
|
||||
|
||||
Args:
|
||||
users: List of user identifiers to filter.
|
||||
known_users: Set of known/valid user identifiers.
|
||||
|
||||
Returns:
|
||||
List of users that are not in the known_users set.
|
||||
"""
|
||||
```toml
|
||||
[tool.uv.sources]
|
||||
langchain-core = { path = "../core", editable = true }
|
||||
langchain-tests = { path = "../standard-tests", editable = true }
|
||||
```
|
||||
|
||||
- Use descriptive, self-explanatory variable names.
|
||||
- Follow existing patterns in the codebase you're modifying
|
||||
- Attempt to break up complex functions (>20 lines) into smaller, focused functions where it makes sense
|
||||
**For tools, use the `@tool` decorator from `langchain_core.tools`:**
|
||||
|
||||
### Testing requirements
|
||||
```python
|
||||
from langchain_core.tools import tool
|
||||
|
||||
Every new feature or bugfix MUST be covered by unit tests.
|
||||
|
||||
- Unit tests: `tests/unit_tests/` (no network calls allowed)
|
||||
- Integration tests: `tests/integration_tests/` (network calls permitted)
|
||||
- We use `pytest` as the testing framework; if in doubt, check other existing tests for examples.
|
||||
- The testing file structure should mirror the source code structure.
|
||||
|
||||
**Checklist:**
|
||||
|
||||
- [ ] Tests fail when your new logic is broken
|
||||
- [ ] Happy path is covered
|
||||
- [ ] Edge cases and error conditions are tested
|
||||
- [ ] Use fixtures/mocks for external dependencies
|
||||
- [ ] Tests are deterministic (no flaky tests)
|
||||
- [ ] Does the test suite fail if your new logic is broken?
|
||||
|
||||
### Security and risk assessment
|
||||
|
||||
- No `eval()`, `exec()`, or `pickle` on user-controlled input
|
||||
- Proper exception handling (no bare `except:`) and use a `msg` variable for error messages
|
||||
- Remove unreachable/commented code before committing
|
||||
- Race conditions or resource leaks (file handles, sockets, threads).
|
||||
- Ensure proper resource cleanup (file handles, connections)
|
||||
|
||||
### Documentation standards
|
||||
|
||||
Use Google-style docstrings with Args section for all public functions.
|
||||
|
||||
```python title="Example"
|
||||
def send_email(to: str, msg: str, *, priority: str = "normal") -> bool:
|
||||
"""Send an email to a recipient with specified priority.
|
||||
|
||||
Any additional context about the function can go here.
|
||||
@tool
|
||||
def search_database(query: str) -> str:
|
||||
"""Search the database for relevant information.
|
||||
|
||||
Args:
|
||||
to: The email address of the recipient.
|
||||
msg: The message body to send.
|
||||
priority: Email priority level.
|
||||
|
||||
Returns:
|
||||
`True` if email was sent successfully, `False` otherwise.
|
||||
|
||||
Raises:
|
||||
InvalidEmailError: If the email address format is invalid.
|
||||
SMTPConnectionError: If unable to connect to email server.
|
||||
query: The search query string.
|
||||
"""
|
||||
# Implementation here
|
||||
return results
|
||||
```
|
||||
|
||||
- Types go in function signatures, NOT in docstrings
|
||||
- If a default is present, DO NOT repeat it in the docstring unless there is post-processing or it is set conditionally.
|
||||
- Focus on "why" rather than "what" in descriptions
|
||||
- Document all parameters, return values, and exceptions
|
||||
- Keep descriptions concise but clear
|
||||
- Ensure American English spelling (e.g., "behavior", not "behaviour")
|
||||
## Commit Standards
|
||||
|
||||
## Additional resources
|
||||
**Use Conventional Commits format for PR titles:**
|
||||
|
||||
- **Documentation:** https://docs.langchain.com/oss/python/langchain/overview and source at https://github.com/langchain-ai/docs or `../docs/`. Prefer the local install and use file search tools for best results. If needed, use the docs MCP server as defined in `.mcp.json` for programmatic access.
|
||||
- **Contributing Guide:** [`.github/CONTRIBUTING.md`](https://docs.langchain.com/oss/python/contributing/overview)
|
||||
- `feat(core): add multi-tenant support`
|
||||
- `fix(cli): resolve flag parsing error`
|
||||
- `docs: update API usage examples`
|
||||
- `docs(openai): update API usage examples`
|
||||
|
||||
## Framework-Specific Guidelines
|
||||
|
||||
- Follow the existing patterns in `langchain-core` for base abstractions
|
||||
- Use `langchain_core.callbacks` for execution tracking
|
||||
- Implement proper streaming support where applicable
|
||||
- Avoid deprecated components like legacy `LLMChain`
|
||||
|
||||
### Partner Integrations
|
||||
|
||||
- Follow the established patterns in existing partner libraries
|
||||
- Implement standard interfaces (`BaseChatModel`, `BaseEmbeddings`, etc.)
|
||||
- Include comprehensive integration tests
|
||||
- Document API key requirements and authentication
|
||||
|
||||
---
|
||||
|
||||
## Quick Reference Checklist
|
||||
|
||||
Before submitting code changes:
|
||||
|
||||
- [ ] **Breaking Changes**: Verified no public API changes
|
||||
- [ ] **Type Hints**: All functions have complete type annotations
|
||||
- [ ] **Tests**: New functionality is fully tested
|
||||
- [ ] **Security**: No dangerous patterns (eval, silent failures, etc.)
|
||||
- [ ] **Documentation**: Google-style docstrings for public functions
|
||||
- [ ] **Code Quality**: `make lint` and `make format` pass
|
||||
- [ ] **Architecture**: Suggested improvements where applicable
|
||||
- [ ] **Commit Message**: Follows Conventional Commits format
|
||||
|
||||
8
MIGRATE.md
Normal file
8
MIGRATE.md
Normal file
@@ -0,0 +1,8 @@
|
||||
# Migrating
|
||||
|
||||
Please see the following guides for migrating LangChain code:
|
||||
|
||||
* Migrate to [LangChain v0.3](https://python.langchain.com/docs/versions/v0_3/)
|
||||
* Migrate to [LangChain v0.2](https://python.langchain.com/docs/versions/v0_2/)
|
||||
* Migrating from [LangChain 0.0.x Chains](https://python.langchain.com/docs/versions/migrating_chains/)
|
||||
* Upgrade to [LangGraph Memory](https://python.langchain.com/docs/versions/migrating_memory/)
|
||||
95
README.md
95
README.md
@@ -1,43 +1,47 @@
|
||||
<div align="center">
|
||||
<a href="https://www.langchain.com/">
|
||||
<picture>
|
||||
<source media="(prefers-color-scheme: light)" srcset=".github/images/logo-dark.svg">
|
||||
<source media="(prefers-color-scheme: dark)" srcset=".github/images/logo-light.svg">
|
||||
<img alt="LangChain Logo" src=".github/images/logo-dark.svg" width="80%">
|
||||
</picture>
|
||||
<p align="center">
|
||||
<picture>
|
||||
<source media="(prefers-color-scheme: light)" srcset=".github/images/logo-dark.svg">
|
||||
<source media="(prefers-color-scheme: dark)" srcset=".github/images/logo-light.svg">
|
||||
<img alt="LangChain Logo" src=".github/images/logo-dark.svg" width="80%">
|
||||
</picture>
|
||||
</p>
|
||||
|
||||
<p align="center">
|
||||
The platform for reliable agents.
|
||||
</p>
|
||||
|
||||
<p align="center">
|
||||
<a href="https://opensource.org/licenses/MIT" target="_blank">
|
||||
<img src="https://img.shields.io/pypi/l/langchain-core?style=flat-square" alt="PyPI - License">
|
||||
</a>
|
||||
</div>
|
||||
<a href="https://pypistats.org/packages/langchain-core" target="_blank">
|
||||
<img src="https://img.shields.io/pepy/dt/langchain" alt="PyPI - Downloads">
|
||||
</a>
|
||||
<a href="https://vscode.dev/redirect?url=vscode://ms-vscode-remote.remote-containers/cloneInVolume?url=https://github.com/langchain-ai/langchain" target="_blank">
|
||||
<img src="https://img.shields.io/static/v1?label=Dev%20Containers&message=Open&color=blue&logo=visualstudiocode&style=flat-square" alt="Open in Dev Containers">
|
||||
</a>
|
||||
<a href="https://codespaces.new/langchain-ai/langchain" target="_blank">
|
||||
<img src="https://github.com/codespaces/badge.svg" alt="Open in Github Codespace" title="Open in Github Codespace" width="150" height="20">
|
||||
</a>
|
||||
<a href="https://codspeed.io/langchain-ai/langchain" target="_blank">
|
||||
<img src="https://img.shields.io/endpoint?url=https://codspeed.io/badge.json" alt="CodSpeed Badge">
|
||||
</a>
|
||||
<a href="https://twitter.com/langchainai" target="_blank">
|
||||
<img src="https://img.shields.io/twitter/url/https/twitter.com/langchainai.svg?style=social&label=Follow%20%40LangChainAI" alt="Twitter / X">
|
||||
</a>
|
||||
</p>
|
||||
|
||||
<div align="center">
|
||||
<h3>The platform for reliable agents.</h3>
|
||||
</div>
|
||||
|
||||
<div align="center">
|
||||
<a href="https://opensource.org/licenses/MIT" target="_blank"><img src="https://img.shields.io/pypi/l/langchain" alt="PyPI - License"></a>
|
||||
<a href="https://pypistats.org/packages/langchain" target="_blank"><img src="https://img.shields.io/pepy/dt/langchain" alt="PyPI - Downloads"></a>
|
||||
<a href="https://pypi.org/project/langchain/#history" target="_blank"><img src="https://img.shields.io/pypi/v/langchain?label=%20" alt="Version"></a>
|
||||
<a href="https://vscode.dev/redirect?url=vscode://ms-vscode-remote.remote-containers/cloneInVolume?url=https://github.com/langchain-ai/langchain" target="_blank"><img src="https://img.shields.io/static/v1?label=Dev%20Containers&message=Open&color=blue&logo=visualstudiocode" alt="Open in Dev Containers"></a>
|
||||
<a href="https://codespaces.new/langchain-ai/langchain" target="_blank"><img src="https://github.com/codespaces/badge.svg" alt="Open in Github Codespace" title="Open in Github Codespace" width="150" height="20"></a>
|
||||
<a href="https://codspeed.io/langchain-ai/langchain" target="_blank"><img src="https://img.shields.io/endpoint?url=https://codspeed.io/badge.json" alt="CodSpeed Badge"></a>
|
||||
<a href="https://twitter.com/langchainai" target="_blank"><img src="https://img.shields.io/twitter/url/https/twitter.com/langchainai.svg?style=social&label=Follow%20%40LangChainAI" alt="Twitter / X"></a>
|
||||
</div>
|
||||
|
||||
LangChain is a framework for building agents and LLM-powered applications. It helps you chain together interoperable components and third-party integrations to simplify AI application development – all while future-proofing decisions as the underlying technology evolves.
|
||||
LangChain is a framework for building LLM-powered applications. It helps you chain together interoperable components and third-party integrations to simplify AI application development — all while future-proofing decisions as the underlying technology evolves.
|
||||
|
||||
```bash
|
||||
pip install langchain
|
||||
pip install -U langchain
|
||||
```
|
||||
|
||||
If you're looking for more advanced customization or agent orchestration, check out [LangGraph](https://docs.langchain.com/oss/python/langgraph/overview), our framework for building controllable agent workflows.
|
||||
|
||||
---
|
||||
|
||||
**Documentation**:
|
||||
**Documentation**: To learn more about LangChain, check out [the docs](https://docs.langchain.com/).
|
||||
|
||||
- [docs.langchain.com](https://docs.langchain.com/oss/python/langchain/overview) – Comprehensive documentation, including conceptual overviews and guides
|
||||
- [reference.langchain.com/python](https://reference.langchain.com/python) – API reference docs for LangChain packages
|
||||
|
||||
**Discussions**: Visit the [LangChain Forum](https://forum.langchain.com) to connect with the community and share all of your technical questions, ideas, and feedback.
|
||||
If you're looking for more advanced customization or agent orchestration, check out [LangGraph](https://langchain-ai.github.io/langgraph/), our framework for building controllable agent workflows.
|
||||
|
||||
> [!NOTE]
|
||||
> Looking for the JS/TS library? Check out [LangChain.js](https://github.com/langchain-ai/langchainjs).
|
||||
@@ -48,27 +52,26 @@ LangChain helps developers build applications powered by LLMs through a standard
|
||||
|
||||
Use LangChain for:
|
||||
|
||||
- **Real-time data augmentation**. Easily connect LLMs to diverse data sources and external/internal systems, drawing from LangChain's vast library of integrations with model providers, tools, vector stores, retrievers, and more.
|
||||
- **Model interoperability**. Swap models in and out as your engineering team experiments to find the best choice for your application's needs. As the industry frontier evolves, adapt quickly – LangChain's abstractions keep you moving without losing momentum.
|
||||
- **Rapid prototyping**. Quickly build and iterate on LLM applications with LangChain's modular, component-based architecture. Test different approaches and workflows without rebuilding from scratch, accelerating your development cycle.
|
||||
- **Production-ready features**. Deploy reliable applications with built-in support for monitoring, evaluation, and debugging through integrations like LangSmith. Scale with confidence using battle-tested patterns and best practices.
|
||||
- **Vibrant community and ecosystem**. Leverage a rich ecosystem of integrations, templates, and community-contributed components. Benefit from continuous improvements and stay up-to-date with the latest AI developments through an active open-source community.
|
||||
- **Flexible abstraction layers**. Work at the level of abstraction that suits your needs - from high-level chains for quick starts to low-level components for fine-grained control. LangChain grows with your application's complexity.
|
||||
- **Real-time data augmentation**. Easily connect LLMs to diverse data sources and external/internal systems, drawing from LangChain’s vast library of integrations with model providers, tools, vector stores, retrievers, and more.
|
||||
- **Model interoperability**. Swap models in and out as your engineering team experiments to find the best choice for your application’s needs. As the industry frontier evolves, adapt quickly — LangChain’s abstractions keep you moving without losing momentum.
|
||||
|
||||
## LangChain ecosystem
|
||||
## LangChain’s ecosystem
|
||||
|
||||
While the LangChain framework can be used standalone, it also integrates seamlessly with any LangChain product, giving developers a full suite of tools when building LLM applications.
|
||||
|
||||
To improve your LLM application development, pair LangChain with:
|
||||
|
||||
- [LangGraph](https://docs.langchain.com/oss/python/langgraph/overview) – Build agents that can reliably handle complex tasks with LangGraph, our low-level agent orchestration framework. LangGraph offers customizable architecture, long-term memory, and human-in-the-loop workflows – and is trusted in production by companies like LinkedIn, Uber, Klarna, and GitLab.
|
||||
- [Integrations](https://docs.langchain.com/oss/python/integrations/providers/overview) – List of LangChain integrations, including chat & embedding models, tools & toolkits, and more
|
||||
- [LangSmith](https://www.langchain.com/langsmith) – Helpful for agent evals and observability. Debug poor-performing LLM app runs, evaluate agent trajectories, gain visibility in production, and improve performance over time.
|
||||
- [LangSmith Deployment](https://docs.langchain.com/langsmith/deployments) – Deploy and scale agents effortlessly with a purpose-built deployment platform for long-running, stateful workflows. Discover, reuse, configure, and share agents across teams – and iterate quickly with visual prototyping in [LangSmith Studio](https://docs.langchain.com/langsmith/studio).
|
||||
- [Deep Agents](https://github.com/langchain-ai/deepagents) *(new!)* – Build agents that can plan, use subagents, and leverage file systems for complex tasks
|
||||
- [LangSmith](https://www.langchain.com/langsmith) - Helpful for agent evals and observability. Debug poor-performing LLM app runs, evaluate agent trajectories, gain visibility in production, and improve performance over time.
|
||||
- [LangGraph](https://langchain-ai.github.io/langgraph/) - Build agents that can reliably handle complex tasks with LangGraph, our low-level agent orchestration framework. LangGraph offers customizable architecture, long-term memory, and human-in-the-loop workflows — and is trusted in production by companies like LinkedIn, Uber, Klarna, and GitLab.
|
||||
- [LangGraph Platform](https://docs.langchain.com/langgraph-platform) - Deploy and scale agents effortlessly with a purpose-built deployment platform for long-running, stateful workflows. Discover, reuse, configure, and share agents across teams — and iterate quickly with visual prototyping in [LangGraph Studio](https://langchain-ai.github.io/langgraph/concepts/langgraph_studio/).
|
||||
|
||||
## Additional resources
|
||||
|
||||
- [API Reference](https://reference.langchain.com/python) – Detailed reference on navigating base packages and integrations for LangChain.
|
||||
- [Contributing Guide](https://docs.langchain.com/oss/python/contributing/overview) – Learn how to contribute to LangChain projects and find good first issues.
|
||||
- [Code of Conduct](https://github.com/langchain-ai/langchain/?tab=coc-ov-file) – Our community guidelines and standards for participation.
|
||||
- [Conceptual Guides](https://docs.langchain.com/oss/python/langchain/overview): Explanations of key
|
||||
concepts behind the LangChain framework.
|
||||
- [Tutorials](https://docs.langchain.com/oss/python/learn): Simple walkthroughs with
|
||||
guided examples on getting started with LangChain.
|
||||
- [API Reference](https://reference.langchain.com/python/): Detailed reference on
|
||||
navigating base packages and integrations for LangChain.
|
||||
- [LangChain Forum](https://forum.langchain.com/): Connect with the community and share all of your technical questions, ideas, and feedback.
|
||||
- [Chat LangChain](https://chat.langchain.com/): Ask questions & chat with our documentation.
|
||||
|
||||
80
SECURITY.md
Normal file
80
SECURITY.md
Normal file
@@ -0,0 +1,80 @@
|
||||
# Security Policy
|
||||
|
||||
LangChain has a large ecosystem of integrations with various external resources like local and remote file systems, APIs and databases. These integrations allow developers to create versatile applications that combine the power of LLMs with the ability to access, interact with and manipulate external resources.
|
||||
|
||||
## Best practices
|
||||
|
||||
When building such applications, developers should remember to follow good security practices:
|
||||
|
||||
* [**Limit Permissions**](https://en.wikipedia.org/wiki/Principle_of_least_privilege): Scope permissions specifically to the application's need. Granting broad or excessive permissions can introduce significant security vulnerabilities. To avoid such vulnerabilities, consider using read-only credentials, disallowing access to sensitive resources, using sandboxing techniques (such as running inside a container), specifying proxy configurations to control external requests, etc., as appropriate for your application.
|
||||
* **Anticipate Potential Misuse**: Just as humans can err, so can Large Language Models (LLMs). Always assume that any system access or credentials may be used in any way allowed by the permissions they are assigned. For example, if a pair of database credentials allows deleting data, it's safest to assume that any LLM able to use those credentials may in fact delete data.
|
||||
* [**Defense in Depth**](https://en.wikipedia.org/wiki/Defense_in_depth_(computing)): No security technique is perfect. Fine-tuning and good chain design can reduce, but not eliminate, the odds that a Large Language Model (LLM) may make a mistake. It's best to combine multiple layered security approaches rather than relying on any single layer of defense to ensure security. For example: use both read-only permissions and sandboxing to ensure that LLMs are only able to access data that is explicitly meant for them to use.
|
||||
|
||||
Risks of not doing so include, but are not limited to:
|
||||
|
||||
* Data corruption or loss.
|
||||
* Unauthorized access to confidential information.
|
||||
* Compromised performance or availability of critical resources.
|
||||
|
||||
Example scenarios with mitigation strategies:
|
||||
|
||||
* A user may ask an agent with access to the file system to delete files that should not be deleted or read the content of files that contain sensitive information. To mitigate, limit the agent to only use a specific directory and only allow it to read or write files that are safe to read or write. Consider further sandboxing the agent by running it in a container.
|
||||
* A user may ask an agent with write access to an external API to write malicious data to the API, or delete data from that API. To mitigate, give the agent read-only API keys, or limit it to only use endpoints that are already resistant to such misuse.
|
||||
* A user may ask an agent with access to a database to drop a table or mutate the schema. To mitigate, scope the credentials to only the tables that the agent needs to access and consider issuing READ-ONLY credentials.
|
||||
|
||||
If you're building applications that access external resources like file systems, APIs or databases, consider speaking with your company's security team to determine how to best design and secure your applications.
|
||||
|
||||
## Reporting OSS Vulnerabilities
|
||||
|
||||
LangChain is partnered with [huntr by Protect AI](https://huntr.com/) to provide
|
||||
a bounty program for our open source projects.
|
||||
|
||||
Please report security vulnerabilities associated with the LangChain
|
||||
open source projects at [huntr](https://huntr.com/bounties/disclose/?target=https%3A%2F%2Fgithub.com%2Flangchain-ai%2Flangchain&validSearch=true).
|
||||
|
||||
Before reporting a vulnerability, please review:
|
||||
|
||||
1) In-Scope Targets and Out-of-Scope Targets below.
|
||||
2) The [langchain-ai/langchain](https://docs.langchain.com/oss/python/contributing/code#repository-structure) monorepo structure.
|
||||
3) The [Best Practices](#best-practices) above to understand what we consider to be a security vulnerability vs. developer responsibility.
|
||||
|
||||
### In-Scope Targets
|
||||
|
||||
The following packages and repositories are eligible for bug bounties:
|
||||
|
||||
* langchain-core
|
||||
* langchain (see exceptions)
|
||||
* langchain-community (see exceptions)
|
||||
* langgraph
|
||||
* langserve
|
||||
|
||||
### Out of Scope Targets
|
||||
|
||||
All out of scope targets defined by huntr as well as:
|
||||
|
||||
* **langchain-experimental**: This repository is for experimental code and is not
|
||||
eligible for bug bounties (see [package warning](https://pypi.org/project/langchain-experimental/)), bug reports to it will be marked as interesting or waste of
|
||||
time and published with no bounty attached.
|
||||
* **tools**: Tools in either langchain or langchain-community are not eligible for bug
|
||||
bounties. This includes the following directories
|
||||
* libs/langchain/langchain/tools
|
||||
* libs/community/langchain_community/tools
|
||||
* Please review the [Best Practices](#best-practices)
|
||||
for more details, but generally tools interact with the real world. Developers are
|
||||
expected to understand the security implications of their code and are responsible
|
||||
for the security of their tools.
|
||||
* Code documented with security notices. This will be decided on a case-by-case basis, but likely will not be eligible for a bounty as the code is already
|
||||
documented with guidelines for developers that should be followed for making their
|
||||
application secure.
|
||||
* Any LangSmith related repositories or APIs (see [Reporting LangSmith Vulnerabilities](#reporting-langsmith-vulnerabilities)).
|
||||
|
||||
## Reporting LangSmith Vulnerabilities
|
||||
|
||||
Please report security vulnerabilities associated with LangSmith by email to `security@langchain.dev`.
|
||||
|
||||
* LangSmith site: [https://smith.langchain.com](https://smith.langchain.com)
|
||||
* SDK client: [https://github.com/langchain-ai/langsmith-sdk](https://github.com/langchain-ai/langsmith-sdk)
|
||||
|
||||
### Other Security Concerns
|
||||
|
||||
For any other security concerns, please contact us at `security@langchain.dev`.
|
||||
@@ -1,20 +0,0 @@
|
||||
# Makefile for libs/ directory
|
||||
# Contains targets that operate across multiple packages
|
||||
|
||||
LANGCHAIN_DIRS = core text-splitters langchain langchain_v1 model-profiles
|
||||
|
||||
.PHONY: lock check-lock
|
||||
|
||||
# Regenerate lockfiles for all core packages
|
||||
lock:
|
||||
@for dir in $(LANGCHAIN_DIRS); do \
|
||||
echo "=== Locking $$dir ==="; \
|
||||
(cd $$dir && uv lock); \
|
||||
done
|
||||
|
||||
# Verify all lockfiles are up-to-date
|
||||
check-lock:
|
||||
@for dir in $(LANGCHAIN_DIRS); do \
|
||||
echo "=== Checking $$dir ==="; \
|
||||
(cd $$dir && uv lock --check) || exit 1; \
|
||||
done
|
||||
@@ -1,30 +1,6 @@
|
||||
# langchain-cli
|
||||
|
||||
[](https://pypi.org/project/langchain-cli/#history)
|
||||
[](https://opensource.org/licenses/MIT)
|
||||
[](https://pypistats.org/packages/langchain-cli)
|
||||
[](https://twitter.com/langchainai)
|
||||
|
||||
## Quick Install
|
||||
|
||||
```bash
|
||||
pip install langchain-cli
|
||||
```
|
||||
|
||||
## 🤔 What is this?
|
||||
|
||||
This package implements the official CLI for LangChain. Right now, it is most useful for getting started with LangChain Templates!
|
||||
|
||||
## 📖 Documentation
|
||||
This package implements the official CLI for LangChain. Right now, it is most useful
|
||||
for getting started with LangChain Templates!
|
||||
|
||||
[CLI Docs](https://github.com/langchain-ai/langchain/blob/master/libs/cli/DOCS.md)
|
||||
|
||||
## 📕 Releases & Versioning
|
||||
|
||||
See our [Releases](https://docs.langchain.com/oss/python/release-policy) and [Versioning](https://docs.langchain.com/oss/python/versioning) policies.
|
||||
|
||||
## 💁 Contributing
|
||||
|
||||
As an open-source project in a rapidly developing field, we are extremely open to contributions, whether it be in the form of a new feature, improved infrastructure, or better documentation.
|
||||
|
||||
For detailed information on how to contribute, see the [Contributing Guide](https://docs.langchain.com/oss/python/contributing/overview).
|
||||
|
||||
@@ -19,8 +19,8 @@ And you should configure credentials by setting the following environment variab
|
||||
```python
|
||||
from __module_name__ import Chat__ModuleName__
|
||||
|
||||
model = Chat__ModuleName__()
|
||||
model.invoke("Sing a ballad of LangChain.")
|
||||
llm = Chat__ModuleName__()
|
||||
llm.invoke("Sing a ballad of LangChain.")
|
||||
```
|
||||
|
||||
## Embeddings
|
||||
@@ -41,6 +41,6 @@ embeddings.embed_query("What is the meaning of life?")
|
||||
```python
|
||||
from __module_name__ import __ModuleName__LLM
|
||||
|
||||
model = __ModuleName__LLM()
|
||||
model.invoke("The meaning of life is")
|
||||
llm = __ModuleName__LLM()
|
||||
llm.invoke("The meaning of life is")
|
||||
```
|
||||
|
||||
@@ -1,264 +1,262 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "raw",
|
||||
"id": "afaf8039",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"---\n",
|
||||
"sidebar_label: __ModuleName__\n",
|
||||
"---"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "e49f1e0d",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Chat__ModuleName__\n",
|
||||
"\n",
|
||||
"- TODO: Make sure API reference link is correct.\n",
|
||||
"\n",
|
||||
"This will help you get started with __ModuleName__ [chat models](/docs/concepts/chat_models). For detailed documentation of all Chat__ModuleName__ features and configurations head to the [API reference](https://python.langchain.com/api_reference/__package_name_short_snake__/chat_models/__module_name__.chat_models.Chat__ModuleName__.html).\n",
|
||||
"\n",
|
||||
"- TODO: Add any other relevant links, like information about models, prices, context windows, etc. See https://python.langchain.com/docs/integrations/chat/openai/ for an example.\n",
|
||||
"\n",
|
||||
"## Overview\n",
|
||||
"### Integration details\n",
|
||||
"\n",
|
||||
"- TODO: Fill in table features.\n",
|
||||
"- TODO: Remove JS support link if not relevant, otherwise ensure link is correct.\n",
|
||||
"- TODO: Make sure API reference links are correct.\n",
|
||||
"\n",
|
||||
"| Class | Package | Local | Serializable | [JS support](https://js.langchain.com/docs/integrations/chat/__package_name_short_snake__) | Package downloads | Package latest |\n",
|
||||
"| :--- | :--- | :---: | :---: | :---: | :---: | :---: |\n",
|
||||
"| [Chat__ModuleName__](https://python.langchain.com/api_reference/__package_name_short_snake__/chat_models/__module_name__.chat_models.Chat__ModuleName__.html) | [__package_name__](https://python.langchain.com/api_reference/__package_name_short_snake__/) | ✅/❌ | beta/❌ | ✅/❌ |  |  |\n",
|
||||
"\n",
|
||||
"### Model features\n",
|
||||
"| [Tool calling](/docs/how_to/tool_calling) | [Structured output](/docs/how_to/structured_output/) | JSON mode | [Image input](/docs/how_to/multimodal_inputs/) | Audio input | Video input | [Token-level streaming](/docs/how_to/chat_streaming/) | Native async | [Token usage](/docs/how_to/chat_token_usage_tracking/) | [Logprobs](/docs/how_to/logprobs/) |\n",
|
||||
"| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |\n",
|
||||
"| ✅/❌ | ✅/❌ | ✅/❌ | ✅/❌ | ✅/❌ | ✅/❌ | ✅/❌ | ✅/❌ | ✅/❌ | ✅/❌ |\n",
|
||||
"\n",
|
||||
"## Setup\n",
|
||||
"\n",
|
||||
"- TODO: Update with relevant info.\n",
|
||||
"\n",
|
||||
"To access __ModuleName__ models you'll need to create a/an __ModuleName__ account, get an API key, and install the `__package_name__` integration package.\n",
|
||||
"\n",
|
||||
"### Credentials\n",
|
||||
"\n",
|
||||
"- TODO: Update with relevant info.\n",
|
||||
"\n",
|
||||
"Head to (TODO: link) to sign up to __ModuleName__ and generate an API key. Once you've done this set the __MODULE_NAME___API_KEY environment variable:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "433e8d2b-9519-4b49-b2c4-7ab65b046c94",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import getpass\n",
|
||||
"import os\n",
|
||||
"\n",
|
||||
"if not os.getenv(\"__MODULE_NAME___API_KEY\"):\n",
|
||||
" os.environ[\"__MODULE_NAME___API_KEY\"] = getpass.getpass(\n",
|
||||
" \"Enter your __ModuleName__ API key: \"\n",
|
||||
" )"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "72ee0c4b-9764-423a-9dbf-95129e185210",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"To enable automated tracing of your model calls, set your [LangSmith](https://docs.smith.langchain.com/) API key:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "a15d341e-3e26-4ca3-830b-5aab30ed66de",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# os.environ[\"LANGSMITH_TRACING\"] = \"true\"\n",
|
||||
"# os.environ[\"LANGSMITH_API_KEY\"] = getpass.getpass(\"Enter your LangSmith API key: \")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "0730d6a1-c893-4840-9817-5e5251676d5d",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Installation\n",
|
||||
"\n",
|
||||
"The LangChain __ModuleName__ integration lives in the `__package_name__` package:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "652d6238-1f87-422a-b135-f5abbb8652fc",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"%pip install -qU __package_name__"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "a38cde65-254d-4219-a441-068766c0d4b5",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Instantiation\n",
|
||||
"\n",
|
||||
"Now we can instantiate our model object and generate chat completions:\n",
|
||||
"\n",
|
||||
"- TODO: Update model instantiation with relevant params."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "cb09c344-1836-4e0c-acf8-11d13ac1dbae",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from __module_name__ import Chat__ModuleName__\n",
|
||||
"\n",
|
||||
"model = Chat__ModuleName__(\n",
|
||||
" model=\"model-name\",\n",
|
||||
" temperature=0,\n",
|
||||
" max_tokens=None,\n",
|
||||
" timeout=None,\n",
|
||||
" max_retries=2,\n",
|
||||
" # other params...\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "2b4f3e15",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Invocation\n",
|
||||
"\n",
|
||||
"- TODO: Run cells so output can be seen."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "62e0dbc3",
|
||||
"metadata": {
|
||||
"tags": []
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"messages = [\n",
|
||||
" (\n",
|
||||
" \"system\",\n",
|
||||
" \"You are a helpful assistant that translates English to French. Translate the user sentence.\",\n",
|
||||
" ),\n",
|
||||
" (\"human\", \"I love programming.\"),\n",
|
||||
"]\n",
|
||||
"ai_msg = model.invoke(messages)\n",
|
||||
"ai_msg"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "d86145b3-bfef-46e8-b227-4dda5c9c2705",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"print(ai_msg.content)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "18e2bfc0-7e78-4528-a73f-499ac150dca8",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Chaining\n",
|
||||
"\n",
|
||||
"We can [chain](/docs/how_to/sequence/) our model with a prompt template like so:\n",
|
||||
"\n",
|
||||
"- TODO: Run cells so output can be seen."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "e197d1d7-a070-4c96-9f8a-a0e86d046e0b",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain_core.prompts import ChatPromptTemplate\n",
|
||||
"\n",
|
||||
"prompt = ChatPromptTemplate(\n",
|
||||
" [\n",
|
||||
" (\n",
|
||||
" \"system\",\n",
|
||||
" \"You are a helpful assistant that translates {input_language} to {output_language}.\",\n",
|
||||
" ),\n",
|
||||
" (\"human\", \"{input}\"),\n",
|
||||
" ]\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"chain = prompt | model\n",
|
||||
"chain.invoke(\n",
|
||||
" {\n",
|
||||
" \"input_language\": \"English\",\n",
|
||||
" \"output_language\": \"German\",\n",
|
||||
" \"input\": \"I love programming.\",\n",
|
||||
" }\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "d1ee55bc-ffc8-4cfa-801c-993953a08cfd",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## TODO: Any functionality specific to this model provider\n",
|
||||
"\n",
|
||||
"E.g. creating/using finetuned models via this provider. Delete if not relevant."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "3a5bb5ca-c3ae-4a58-be67-2cd18574b9a3",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## API reference\n",
|
||||
"\n",
|
||||
"For detailed documentation of all Chat__ModuleName__ features and configurations head to the [API reference](https://python.langchain.com/api_reference/__package_name_short_snake__/chat_models/__module_name__.chat_models.Chat__ModuleName__.html)"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3 (ipykernel)",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.11.9"
|
||||
}
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "raw",
|
||||
"id": "afaf8039",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"---\n",
|
||||
"sidebar_label: __ModuleName__\n",
|
||||
"---"
|
||||
]
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 5
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "e49f1e0d",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Chat__ModuleName__\n",
|
||||
"\n",
|
||||
"- TODO: Make sure API reference link is correct.\n",
|
||||
"\n",
|
||||
"This will help you get started with __ModuleName__ [chat models](/docs/concepts/chat_models). For detailed documentation of all Chat__ModuleName__ features and configurations head to the [API reference](https://python.langchain.com/api_reference/__package_name_short_snake__/chat_models/__module_name__.chat_models.Chat__ModuleName__.html).\n",
|
||||
"\n",
|
||||
"- TODO: Add any other relevant links, like information about models, prices, context windows, etc. See https://python.langchain.com/docs/integrations/chat/openai/ for an example.\n",
|
||||
"\n",
|
||||
"## Overview\n",
|
||||
"### Integration details\n",
|
||||
"\n",
|
||||
"- TODO: Fill in table features.\n",
|
||||
"- TODO: Remove JS support link if not relevant, otherwise ensure link is correct.\n",
|
||||
"- TODO: Make sure API reference links are correct.\n",
|
||||
"\n",
|
||||
"| Class | Package | Local | Serializable | [JS support](https://js.langchain.com/docs/integrations/chat/__package_name_short_snake__) | Package downloads | Package latest |\n",
|
||||
"| :--- | :--- | :---: | :---: | :---: | :---: | :---: |\n",
|
||||
"| [Chat__ModuleName__](https://python.langchain.com/api_reference/__package_name_short_snake__/chat_models/__module_name__.chat_models.Chat__ModuleName__.html) | [__package_name__](https://python.langchain.com/api_reference/__package_name_short_snake__/) | ✅/❌ | beta/❌ | ✅/❌ |  |  |\n",
|
||||
"\n",
|
||||
"### Model features\n",
|
||||
"| [Tool calling](/docs/how_to/tool_calling) | [Structured output](/docs/how_to/structured_output/) | JSON mode | [Image input](/docs/how_to/multimodal_inputs/) | Audio input | Video input | [Token-level streaming](/docs/how_to/chat_streaming/) | Native async | [Token usage](/docs/how_to/chat_token_usage_tracking/) | [Logprobs](/docs/how_to/logprobs/) |\n",
|
||||
"| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |\n",
|
||||
"| ✅/❌ | ✅/❌ | ✅/❌ | ✅/❌ | ✅/❌ | ✅/❌ | ✅/❌ | ✅/❌ | ✅/❌ | ✅/❌ |\n",
|
||||
"\n",
|
||||
"## Setup\n",
|
||||
"\n",
|
||||
"- TODO: Update with relevant info.\n",
|
||||
"\n",
|
||||
"To access __ModuleName__ models you'll need to create a/an __ModuleName__ account, get an API key, and install the `__package_name__` integration package.\n",
|
||||
"\n",
|
||||
"### Credentials\n",
|
||||
"\n",
|
||||
"- TODO: Update with relevant info.\n",
|
||||
"\n",
|
||||
"Head to (TODO: link) to sign up to __ModuleName__ and generate an API key. Once you've done this set the __MODULE_NAME___API_KEY environment variable:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "433e8d2b-9519-4b49-b2c4-7ab65b046c94",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import getpass\n",
|
||||
"import os\n",
|
||||
"\n",
|
||||
"if not os.getenv(\"__MODULE_NAME___API_KEY\"):\n",
|
||||
" os.environ[\"__MODULE_NAME___API_KEY\"] = getpass.getpass(\n",
|
||||
" \"Enter your __ModuleName__ API key: \"\n",
|
||||
" )"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "72ee0c4b-9764-423a-9dbf-95129e185210",
|
||||
"metadata": {},
|
||||
"source": "To enable automated tracing of your model calls, set your [LangSmith](https://docs.smith.langchain.com/) API key:"
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "a15d341e-3e26-4ca3-830b-5aab30ed66de",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# os.environ[\"LANGSMITH_TRACING\"] = \"true\"\n",
|
||||
"# os.environ[\"LANGSMITH_API_KEY\"] = getpass.getpass(\"Enter your LangSmith API key: \")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "0730d6a1-c893-4840-9817-5e5251676d5d",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Installation\n",
|
||||
"\n",
|
||||
"The LangChain __ModuleName__ integration lives in the `__package_name__` package:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "652d6238-1f87-422a-b135-f5abbb8652fc",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"%pip install -qU __package_name__"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "a38cde65-254d-4219-a441-068766c0d4b5",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Instantiation\n",
|
||||
"\n",
|
||||
"Now we can instantiate our model object and generate chat completions:\n",
|
||||
"\n",
|
||||
"- TODO: Update model instantiation with relevant params."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "cb09c344-1836-4e0c-acf8-11d13ac1dbae",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from __module_name__ import Chat__ModuleName__\n",
|
||||
"\n",
|
||||
"llm = Chat__ModuleName__(\n",
|
||||
" model=\"model-name\",\n",
|
||||
" temperature=0,\n",
|
||||
" max_tokens=None,\n",
|
||||
" timeout=None,\n",
|
||||
" max_retries=2,\n",
|
||||
" # other params...\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "2b4f3e15",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Invocation\n",
|
||||
"\n",
|
||||
"- TODO: Run cells so output can be seen."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "62e0dbc3",
|
||||
"metadata": {
|
||||
"tags": []
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"messages = [\n",
|
||||
" (\n",
|
||||
" \"system\",\n",
|
||||
" \"You are a helpful assistant that translates English to French. Translate the user sentence.\",\n",
|
||||
" ),\n",
|
||||
" (\"human\", \"I love programming.\"),\n",
|
||||
"]\n",
|
||||
"ai_msg = llm.invoke(messages)\n",
|
||||
"ai_msg"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "d86145b3-bfef-46e8-b227-4dda5c9c2705",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"print(ai_msg.content)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "18e2bfc0-7e78-4528-a73f-499ac150dca8",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Chaining\n",
|
||||
"\n",
|
||||
"We can [chain](/docs/how_to/sequence/) our model with a prompt template like so:\n",
|
||||
"\n",
|
||||
"- TODO: Run cells so output can be seen."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "e197d1d7-a070-4c96-9f8a-a0e86d046e0b",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain_core.prompts import ChatPromptTemplate\n",
|
||||
"\n",
|
||||
"prompt = ChatPromptTemplate(\n",
|
||||
" [\n",
|
||||
" (\n",
|
||||
" \"system\",\n",
|
||||
" \"You are a helpful assistant that translates {input_language} to {output_language}.\",\n",
|
||||
" ),\n",
|
||||
" (\"human\", \"{input}\"),\n",
|
||||
" ]\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"chain = prompt | llm\n",
|
||||
"chain.invoke(\n",
|
||||
" {\n",
|
||||
" \"input_language\": \"English\",\n",
|
||||
" \"output_language\": \"German\",\n",
|
||||
" \"input\": \"I love programming.\",\n",
|
||||
" }\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "d1ee55bc-ffc8-4cfa-801c-993953a08cfd",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## TODO: Any functionality specific to this model provider\n",
|
||||
"\n",
|
||||
"E.g. creating/using finetuned models via this provider. Delete if not relevant."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "3a5bb5ca-c3ae-4a58-be67-2cd18574b9a3",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## API reference\n",
|
||||
"\n",
|
||||
"For detailed documentation of all Chat__ModuleName__ features and configurations head to the [API reference](https://python.langchain.com/api_reference/__package_name_short_snake__/chat_models/__module_name__.chat_models.Chat__ModuleName__.html)"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3 (ipykernel)",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.11.9"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 5
|
||||
}
|
||||
|
||||
@@ -1,238 +1,236 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "raw",
|
||||
"id": "67db2992",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"---\n",
|
||||
"sidebar_label: __ModuleName__\n",
|
||||
"---"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "9597802c",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# __ModuleName__LLM\n",
|
||||
"\n",
|
||||
"- [ ] TODO: Make sure API reference link is correct\n",
|
||||
"\n",
|
||||
"This will help you get started with __ModuleName__ completion models (LLMs) using LangChain. For detailed documentation on `__ModuleName__LLM` features and configuration options, please refer to the [API reference](https://api.python.langchain.com/en/latest/llms/__module_name__.llms.__ModuleName__LLM.html).\n",
|
||||
"\n",
|
||||
"## Overview\n",
|
||||
"### Integration details\n",
|
||||
"\n",
|
||||
"- TODO: Fill in table features.\n",
|
||||
"- TODO: Remove JS support link if not relevant, otherwise ensure link is correct.\n",
|
||||
"- TODO: Make sure API reference links are correct.\n",
|
||||
"\n",
|
||||
"| Class | Package | Local | Serializable | [JS support](https://js.langchain.com/docs/integrations/llms/__package_name_short_snake__) | Package downloads | Package latest |\n",
|
||||
"| :--- | :--- | :---: | :---: | :---: | :---: | :---: |\n",
|
||||
"| [__ModuleName__LLM](https://api.python.langchain.com/en/latest/llms/__module_name__.llms.__ModuleName__LLM.html) | [__package_name__](https://api.python.langchain.com/en/latest/__package_name_short_snake___api_reference.html) | ✅/❌ | beta/❌ | ✅/❌ |  |  |\n",
|
||||
"\n",
|
||||
"## Setup\n",
|
||||
"\n",
|
||||
"- TODO: Update with relevant info.\n",
|
||||
"\n",
|
||||
"To access __ModuleName__ models you'll need to create a/an __ModuleName__ account, get an API key, and install the `__package_name__` integration package.\n",
|
||||
"\n",
|
||||
"### Credentials\n",
|
||||
"\n",
|
||||
"- TODO: Update with relevant info.\n",
|
||||
"\n",
|
||||
"Head to (TODO: link) to sign up to __ModuleName__ and generate an API key. Once you've done this set the __MODULE_NAME___API_KEY environment variable:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "bc51e756",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import getpass\n",
|
||||
"import os\n",
|
||||
"\n",
|
||||
"if not os.getenv(\"__MODULE_NAME___API_KEY\"):\n",
|
||||
" os.environ[\"__MODULE_NAME___API_KEY\"] = getpass.getpass(\n",
|
||||
" \"Enter your __ModuleName__ API key: \"\n",
|
||||
" )"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "4b6e1ca6",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"To enable automated tracing of your model calls, set your [LangSmith](https://docs.smith.langchain.com/) API key:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "196c2b41",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# os.environ[\"LANGSMITH_TRACING\"] = \"true\"\n",
|
||||
"# os.environ[\"LANGSMITH_API_KEY\"] = getpass.getpass(\"Enter your LangSmith API key: \")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "809c6577",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Installation\n",
|
||||
"\n",
|
||||
"The LangChain __ModuleName__ integration lives in the `__package_name__` package:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "59c710c4",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"%pip install -qU __package_name__"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "0a760037",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Instantiation\n",
|
||||
"\n",
|
||||
"Now we can instantiate our model object and generate chat completions:\n",
|
||||
"\n",
|
||||
"- TODO: Update model instantiation with relevant params."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "a0562a13",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from __module_name__ import __ModuleName__LLM\n",
|
||||
"\n",
|
||||
"model = __ModuleName__LLM(\n",
|
||||
" model=\"model-name\",\n",
|
||||
" temperature=0,\n",
|
||||
" max_tokens=None,\n",
|
||||
" timeout=None,\n",
|
||||
" max_retries=2,\n",
|
||||
" # other params...\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "0ee90032",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Invocation\n",
|
||||
"\n",
|
||||
"- [ ] TODO: Run cells so output can be seen."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "035dea0f",
|
||||
"metadata": {
|
||||
"tags": []
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"input_text = \"__ModuleName__ is an AI company that \"\n",
|
||||
"\n",
|
||||
"completion = model.invoke(input_text)\n",
|
||||
"completion"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "add38532",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Chaining\n",
|
||||
"\n",
|
||||
"We can [chain](/docs/how_to/sequence/) our completion model with a prompt template like so:\n",
|
||||
"\n",
|
||||
"- TODO: Run cells so output can be seen."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "078e9db2",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain_core.prompts import PromptTemplate\n",
|
||||
"\n",
|
||||
"prompt = PromptTemplate(\"How to say {input} in {output_language}:\\n\")\n",
|
||||
"\n",
|
||||
"chain = prompt | model\n",
|
||||
"chain.invoke(\n",
|
||||
" {\n",
|
||||
" \"output_language\": \"German\",\n",
|
||||
" \"input\": \"I love programming.\",\n",
|
||||
" }\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "e99eef30",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## TODO: Any functionality specific to this model provider\n",
|
||||
"\n",
|
||||
"E.g. creating/using finetuned models via this provider. Delete if not relevant"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "e9bdfcef",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## API reference\n",
|
||||
"\n",
|
||||
"For detailed documentation of all `__ModuleName__LLM` features and configurations head to the API reference: https://api.python.langchain.com/en/latest/llms/__module_name__.llms.__ModuleName__LLM.html"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3.11.1 64-bit",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.9.7"
|
||||
},
|
||||
"vscode": {
|
||||
"interpreter": {
|
||||
"hash": "e971737741ff4ec9aff7dc6155a1060a59a8a6d52c757dbbe66bf8ee389494b1"
|
||||
}
|
||||
}
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "raw",
|
||||
"id": "67db2992",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"---\n",
|
||||
"sidebar_label: __ModuleName__\n",
|
||||
"---"
|
||||
]
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 5
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "9597802c",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# __ModuleName__LLM\n",
|
||||
"\n",
|
||||
"- [ ] TODO: Make sure API reference link is correct\n",
|
||||
"\n",
|
||||
"This will help you get started with __ModuleName__ completion models (LLMs) using LangChain. For detailed documentation on `__ModuleName__LLM` features and configuration options, please refer to the [API reference](https://api.python.langchain.com/en/latest/llms/__module_name__.llms.__ModuleName__LLM.html).\n",
|
||||
"\n",
|
||||
"## Overview\n",
|
||||
"### Integration details\n",
|
||||
"\n",
|
||||
"- TODO: Fill in table features.\n",
|
||||
"- TODO: Remove JS support link if not relevant, otherwise ensure link is correct.\n",
|
||||
"- TODO: Make sure API reference links are correct.\n",
|
||||
"\n",
|
||||
"| Class | Package | Local | Serializable | [JS support](https://js.langchain.com/docs/integrations/llms/__package_name_short_snake__) | Package downloads | Package latest |\n",
|
||||
"| :--- | :--- | :---: | :---: | :---: | :---: | :---: |\n",
|
||||
"| [__ModuleName__LLM](https://api.python.langchain.com/en/latest/llms/__module_name__.llms.__ModuleName__LLM.html) | [__package_name__](https://api.python.langchain.com/en/latest/__package_name_short_snake___api_reference.html) | ✅/❌ | beta/❌ | ✅/❌ |  |  |\n",
|
||||
"\n",
|
||||
"## Setup\n",
|
||||
"\n",
|
||||
"- TODO: Update with relevant info.\n",
|
||||
"\n",
|
||||
"To access __ModuleName__ models you'll need to create a/an __ModuleName__ account, get an API key, and install the `__package_name__` integration package.\n",
|
||||
"\n",
|
||||
"### Credentials\n",
|
||||
"\n",
|
||||
"- TODO: Update with relevant info.\n",
|
||||
"\n",
|
||||
"Head to (TODO: link) to sign up to __ModuleName__ and generate an API key. Once you've done this set the __MODULE_NAME___API_KEY environment variable:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "bc51e756",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import getpass\n",
|
||||
"import os\n",
|
||||
"\n",
|
||||
"if not os.getenv(\"__MODULE_NAME___API_KEY\"):\n",
|
||||
" os.environ[\"__MODULE_NAME___API_KEY\"] = getpass.getpass(\n",
|
||||
" \"Enter your __ModuleName__ API key: \"\n",
|
||||
" )"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "4b6e1ca6",
|
||||
"metadata": {},
|
||||
"source": "To enable automated tracing of your model calls, set your [LangSmith](https://docs.smith.langchain.com/) API key:"
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "196c2b41",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# os.environ[\"LANGSMITH_TRACING\"] = \"true\"\n",
|
||||
"# os.environ[\"LANGSMITH_API_KEY\"] = getpass.getpass(\"Enter your LangSmith API key: \")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "809c6577",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Installation\n",
|
||||
"\n",
|
||||
"The LangChain __ModuleName__ integration lives in the `__package_name__` package:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "59c710c4",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"%pip install -qU __package_name__"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "0a760037",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Instantiation\n",
|
||||
"\n",
|
||||
"Now we can instantiate our model object and generate chat completions:\n",
|
||||
"\n",
|
||||
"- TODO: Update model instantiation with relevant params."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "a0562a13",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from __module_name__ import __ModuleName__LLM\n",
|
||||
"\n",
|
||||
"llm = __ModuleName__LLM(\n",
|
||||
" model=\"model-name\",\n",
|
||||
" temperature=0,\n",
|
||||
" max_tokens=None,\n",
|
||||
" timeout=None,\n",
|
||||
" max_retries=2,\n",
|
||||
" # other params...\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "0ee90032",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Invocation\n",
|
||||
"\n",
|
||||
"- [ ] TODO: Run cells so output can be seen."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 4,
|
||||
"id": "035dea0f",
|
||||
"metadata": {
|
||||
"tags": []
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"input_text = \"__ModuleName__ is an AI company that \"\n",
|
||||
"\n",
|
||||
"completion = llm.invoke(input_text)\n",
|
||||
"completion"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "add38532",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Chaining\n",
|
||||
"\n",
|
||||
"We can [chain](/docs/how_to/sequence/) our completion model with a prompt template like so:\n",
|
||||
"\n",
|
||||
"- TODO: Run cells so output can be seen."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "078e9db2",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain_core.prompts import PromptTemplate\n",
|
||||
"\n",
|
||||
"prompt = PromptTemplate(\"How to say {input} in {output_language}:\\n\")\n",
|
||||
"\n",
|
||||
"chain = prompt | llm\n",
|
||||
"chain.invoke(\n",
|
||||
" {\n",
|
||||
" \"output_language\": \"German\",\n",
|
||||
" \"input\": \"I love programming.\",\n",
|
||||
" }\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "e99eef30",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## TODO: Any functionality specific to this model provider\n",
|
||||
"\n",
|
||||
"E.g. creating/using finetuned models via this provider. Delete if not relevant"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "e9bdfcef",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## API reference\n",
|
||||
"\n",
|
||||
"For detailed documentation of all `__ModuleName__LLM` features and configurations head to the API reference: https://api.python.langchain.com/en/latest/llms/__module_name__.llms.__ModuleName__LLM.html"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3.11.1 64-bit",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.9.7"
|
||||
},
|
||||
"vscode": {
|
||||
"interpreter": {
|
||||
"hash": "e971737741ff4ec9aff7dc6155a1060a59a8a6d52c757dbbe66bf8ee389494b1"
|
||||
}
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 5
|
||||
}
|
||||
|
||||
@@ -155,7 +155,7 @@
|
||||
"\n",
|
||||
"from langchain_openai import ChatOpenAI\n",
|
||||
"\n",
|
||||
"model = ChatOpenAI(model=\"gpt-3.5-turbo-0125\", temperature=0)"
|
||||
"llm = ChatOpenAI(model=\"gpt-3.5-turbo-0125\", temperature=0)"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -185,7 +185,7 @@
|
||||
"chain = (\n",
|
||||
" {\"context\": retriever | format_docs, \"question\": RunnablePassthrough()}\n",
|
||||
" | prompt\n",
|
||||
" | model\n",
|
||||
" | llm\n",
|
||||
" | StrOutputParser()\n",
|
||||
")"
|
||||
]
|
||||
|
||||
@@ -1,204 +1,204 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "raw",
|
||||
"metadata": {
|
||||
"vscode": {
|
||||
"languageId": "raw"
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
"---\n",
|
||||
"sidebar_label: __ModuleName__ByteStore\n",
|
||||
"---"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# __ModuleName__ByteStore\n",
|
||||
"\n",
|
||||
"- TODO: Make sure API reference link is correct.\n",
|
||||
"\n",
|
||||
"This will help you get started with __ModuleName__ [key-value stores](/docs/concepts/#key-value-stores). For detailed documentation of all __ModuleName__ByteStore features and configurations head to the [API reference](https://python.langchain.com/v0.2/api_reference/core/stores/langchain_core.stores.__module_name__ByteStore.html).\n",
|
||||
"\n",
|
||||
"- TODO: Add any other relevant links, like information about models, prices, context windows, etc. See https://python.langchain.com/docs/integrations/stores/in_memory/ for an example.\n",
|
||||
"\n",
|
||||
"## Overview\n",
|
||||
"\n",
|
||||
"- TODO: (Optional) A short introduction to the underlying technology/API.\n",
|
||||
"\n",
|
||||
"### Integration details\n",
|
||||
"\n",
|
||||
"- TODO: Fill in table features.\n",
|
||||
"- TODO: Remove JS support link if not relevant, otherwise ensure link is correct.\n",
|
||||
"- TODO: Make sure API reference links are correct.\n",
|
||||
"\n",
|
||||
"| Class | Package | Local | [JS support](https://js.langchain.com/docs/integrations/stores/_package_name_) | Package downloads | Package latest |\n",
|
||||
"| :--- | :--- | :---: | :---: | :---: | :---: |\n",
|
||||
"| [__ModuleName__ByteStore](https://api.python.langchain.com/en/latest/stores/__module_name__.stores.__ModuleName__ByteStore.html) | [__package_name__](https://api.python.langchain.com/en/latest/__package_name_short_snake___api_reference.html) | ✅/❌ | ✅/❌ |  |  |\n",
|
||||
"\n",
|
||||
"## Setup\n",
|
||||
"\n",
|
||||
"- TODO: Update with relevant info.\n",
|
||||
"\n",
|
||||
"To create a __ModuleName__ byte store, you'll need to create a/an __ModuleName__ account, get an API key, and install the `__package_name__` integration package.\n",
|
||||
"\n",
|
||||
"### Credentials\n",
|
||||
"\n",
|
||||
"- TODO: Update with relevant info, or omit if the service does not require any credentials.\n",
|
||||
"\n",
|
||||
"Head to (TODO: link) to sign up to __ModuleName__ and generate an API key. Once you've done this set the __MODULE_NAME___API_KEY environment variable:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import getpass\n",
|
||||
"import os\n",
|
||||
"\n",
|
||||
"if not os.getenv(\"__MODULE_NAME___API_KEY\"):\n",
|
||||
" os.environ[\"__MODULE_NAME___API_KEY\"] = getpass.getpass(\n",
|
||||
" \"Enter your __ModuleName__ API key: \"\n",
|
||||
" )"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Installation\n",
|
||||
"\n",
|
||||
"The LangChain __ModuleName__ integration lives in the `__package_name__` package:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"%pip install -qU __package_name__"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Instantiation\n",
|
||||
"\n",
|
||||
"Now we can instantiate our byte store:\n",
|
||||
"\n",
|
||||
"- TODO: Update model instantiation with relevant params."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from __module_name__ import __ModuleName__ByteStore\n",
|
||||
"\n",
|
||||
"kv_store = __ModuleName__ByteStore(\n",
|
||||
" # params...\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Usage\n",
|
||||
"\n",
|
||||
"- TODO: Run cells so output can be seen.\n",
|
||||
"\n",
|
||||
"You can set data under keys like this using the `mset` method:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"kv_store.mset(\n",
|
||||
" [\n",
|
||||
" [\"key1\", b\"value1\"],\n",
|
||||
" [\"key2\", b\"value2\"],\n",
|
||||
" ]\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"kv_store.mget(\n",
|
||||
" [\n",
|
||||
" \"key1\",\n",
|
||||
" \"key2\",\n",
|
||||
" ]\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"And you can delete data using the `mdelete` method:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"kv_store.mdelete(\n",
|
||||
" [\n",
|
||||
" \"key1\",\n",
|
||||
" \"key2\",\n",
|
||||
" ]\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"kv_store.mget(\n",
|
||||
" [\n",
|
||||
" \"key1\",\n",
|
||||
" \"key2\",\n",
|
||||
" ]\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## TODO: Any functionality specific to this key-value store provider\n",
|
||||
"\n",
|
||||
"E.g. extra initialization. Delete if not relevant."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## API reference\n",
|
||||
"\n",
|
||||
"For detailed documentation of all __ModuleName__ByteStore features and configurations, head to the API reference: https://api.python.langchain.com/en/latest/stores/__module_name__.stores.__ModuleName__ByteStore.html"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"name": "python",
|
||||
"version": "3.10.5"
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "raw",
|
||||
"metadata": {
|
||||
"vscode": {
|
||||
"languageId": "raw"
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
"---\n",
|
||||
"sidebar_label: __ModuleName__ByteStore\n",
|
||||
"---"
|
||||
]
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 2
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# __ModuleName__ByteStore\n",
|
||||
"\n",
|
||||
"- TODO: Make sure API reference link is correct.\n",
|
||||
"\n",
|
||||
"This will help you get started with __ModuleName__ [key-value stores](/docs/concepts/#key-value-stores). For detailed documentation of all __ModuleName__ByteStore features and configurations head to the [API reference](https://python.langchain.com/v0.2/api_reference/core/stores/langchain_core.stores.__module_name__ByteStore.html).\n",
|
||||
"\n",
|
||||
"- TODO: Add any other relevant links, like information about models, prices, context windows, etc. See https://python.langchain.com/docs/integrations/stores/in_memory/ for an example.\n",
|
||||
"\n",
|
||||
"## Overview\n",
|
||||
"\n",
|
||||
"- TODO: (Optional) A short introduction to the underlying technology/API.\n",
|
||||
"\n",
|
||||
"### Integration details\n",
|
||||
"\n",
|
||||
"- TODO: Fill in table features.\n",
|
||||
"- TODO: Remove JS support link if not relevant, otherwise ensure link is correct.\n",
|
||||
"- TODO: Make sure API reference links are correct.\n",
|
||||
"\n",
|
||||
"| Class | Package | Local | [JS support](https://js.langchain.com/docs/integrations/stores/_package_name_) | Package downloads | Package latest |\n",
|
||||
"| :--- | :--- | :---: | :---: | :---: | :---: |\n",
|
||||
"| [__ModuleName__ByteStore](https://api.python.langchain.com/en/latest/stores/__module_name__.stores.__ModuleName__ByteStore.html) | [__package_name__](https://api.python.langchain.com/en/latest/__package_name_short_snake___api_reference.html) | ✅/❌ | ✅/❌ |  |  |\n",
|
||||
"\n",
|
||||
"## Setup\n",
|
||||
"\n",
|
||||
"- TODO: Update with relevant info.\n",
|
||||
"\n",
|
||||
"To create a __ModuleName__ byte store, you'll need to create a/an __ModuleName__ account, get an API key, and install the `__package_name__` integration package.\n",
|
||||
"\n",
|
||||
"### Credentials\n",
|
||||
"\n",
|
||||
"- TODO: Update with relevant info, or omit if the service does not require any credentials.\n",
|
||||
"\n",
|
||||
"Head to (TODO: link) to sign up to __ModuleName__ and generate an API key. Once you've done this set the __MODULE_NAME___API_KEY environment variable:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import getpass\n",
|
||||
"import os\n",
|
||||
"\n",
|
||||
"if not os.getenv(\"__MODULE_NAME___API_KEY\"):\n",
|
||||
" os.environ[\"__MODULE_NAME___API_KEY\"] = getpass.getpass(\n",
|
||||
" \"Enter your __ModuleName__ API key: \"\n",
|
||||
" )"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Installation\n",
|
||||
"\n",
|
||||
"The LangChain __ModuleName__ integration lives in the `__package_name__` package:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"%pip install -qU __package_name__"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Instantiation\n",
|
||||
"\n",
|
||||
"Now we can instantiate our byte store:\n",
|
||||
"\n",
|
||||
"- TODO: Update model instantiation with relevant params."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from __module_name__ import __ModuleName__ByteStore\n",
|
||||
"\n",
|
||||
"kv_store = __ModuleName__ByteStore(\n",
|
||||
" # params...\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Usage\n",
|
||||
"\n",
|
||||
"- TODO: Run cells so output can be seen.\n",
|
||||
"\n",
|
||||
"You can set data under keys like this using the `mset` method:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"kv_store.mset(\n",
|
||||
" [\n",
|
||||
" [\"key1\", b\"value1\"],\n",
|
||||
" [\"key2\", b\"value2\"],\n",
|
||||
" ]\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"kv_store.mget(\n",
|
||||
" [\n",
|
||||
" \"key1\",\n",
|
||||
" \"key2\",\n",
|
||||
" ]\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"And you can delete data using the `mdelete` method:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"kv_store.mdelete(\n",
|
||||
" [\n",
|
||||
" \"key1\",\n",
|
||||
" \"key2\",\n",
|
||||
" ]\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"kv_store.mget(\n",
|
||||
" [\n",
|
||||
" \"key1\",\n",
|
||||
" \"key2\",\n",
|
||||
" ]\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## TODO: Any functionality specific to this key-value store provider\n",
|
||||
"\n",
|
||||
"E.g. extra initialization. Delete if not relevant."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## API reference\n",
|
||||
"\n",
|
||||
"For detailed documentation of all __ModuleName__ByteStore features and configurations, head to the API reference: https://api.python.langchain.com/en/latest/stores/__module_name__.stores.__ModuleName__ByteStore.html"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"name": "python",
|
||||
"version": "3.10.5"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 2
|
||||
}
|
||||
|
||||
@@ -1,271 +1,271 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "raw",
|
||||
"id": "10238e62-3465-4973-9279-606cbb7ccf16",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"---\n",
|
||||
"sidebar_label: __ModuleName__\n",
|
||||
"---"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "a6f91f20",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# __ModuleName__\n",
|
||||
"\n",
|
||||
"- TODO: Make sure API reference link is correct.\n",
|
||||
"\n",
|
||||
"This notebook provides a quick overview for getting started with __ModuleName__ [tool](/docs/integrations/tools/). For detailed documentation of all __ModuleName__ features and configurations head to the [API reference](https://python.langchain.com/v0.2/api_reference/community/tools/langchain_community.tools.__module_name__.tool.__ModuleName__.html).\n",
|
||||
"\n",
|
||||
"- TODO: Add any other relevant links, like information about underlying API, etc.\n",
|
||||
"\n",
|
||||
"## Overview\n",
|
||||
"\n",
|
||||
"### Integration details\n",
|
||||
"\n",
|
||||
"- TODO: Make sure links and features are correct\n",
|
||||
"\n",
|
||||
"| Class | Package | Serializable | [JS support](https://js.langchain.com/docs/integrations/tools/__module_name__) | Package latest |\n",
|
||||
"| :--- | :--- | :---: | :---: | :---: |\n",
|
||||
"| [__ModuleName__](https://python.langchain.com/v0.2/api_reference/community/tools/langchain_community.tools.__module_name__.tool.__ModuleName__.html) | [langchain-community](https://api.python.langchain.com/en/latest/community_api_reference.html) | beta/❌ | ✅/❌ |  |\n",
|
||||
"\n",
|
||||
"### Tool features\n",
|
||||
"\n",
|
||||
"- TODO: Add feature table if it makes sense\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"## Setup\n",
|
||||
"\n",
|
||||
"- TODO: Add any additional deps\n",
|
||||
"\n",
|
||||
"The integration lives in the `langchain-community` package."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "f85b4089",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"%pip install --quiet -U langchain-community"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "b15e9266",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Credentials\n",
|
||||
"\n",
|
||||
"- TODO: Add any credentials that are needed"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 2,
|
||||
"id": "e0b178a2-8816-40ca-b57c-ccdd86dde9c9",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import getpass\n",
|
||||
"import os\n",
|
||||
"\n",
|
||||
"# if not os.environ.get(\"__MODULE_NAME___API_KEY\"):\n",
|
||||
"# os.environ[\"__MODULE_NAME___API_KEY\"] = getpass.getpass(\"__MODULE_NAME__ API key:\\n\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "bc5ab717-fd27-4c59-b912-bdd099541478",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"It's also helpful (but not needed) to set up [LangSmith](https://smith.langchain.com/) for best-in-class observability:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 3,
|
||||
"id": "a6c2f136-6367-4f1f-825d-ae741e1bf281",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# os.environ[\"LANGSMITH_TRACING\"] = \"true\"\n",
|
||||
"# os.environ[\"LANGSMITH_API_KEY\"] = getpass.getpass()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "1c97218f-f366-479d-8bf7-fe9f2f6df73f",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Instantiation\n",
|
||||
"\n",
|
||||
"- TODO: Fill in instantiation params\n",
|
||||
"\n",
|
||||
"Here we show how to instantiate an instance of the __ModuleName__ tool, with "
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 4,
|
||||
"id": "8b3ddfe9-ca79-494c-a7ab-1f56d9407a64",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain_community.tools import __ModuleName__\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"tool = __ModuleName__(...)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "74147a1a",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Invocation\n",
|
||||
"\n",
|
||||
"### [Invoke directly with args](/docs/concepts/tools/#use-the-tool-directly)\n",
|
||||
"\n",
|
||||
"- TODO: Describe what the tool args are, fill them in, run cell"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "65310a8b-eb0c-4d9e-a618-4f4abe2414fc",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"tool.invoke({...})"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "d6e73897",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### [Invoke with ToolCall](/docs/concepts/tool_calling/#tool-execution)\n",
|
||||
"\n",
|
||||
"We can also invoke the tool with a model-generated ToolCall, in which case a ToolMessage will be returned:\n",
|
||||
"\n",
|
||||
"- TODO: Fill in tool args and run cell"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "f90e33a7",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# This is usually generated by a model, but we'll create a tool call directly for demo purposes.\n",
|
||||
"model_generated_tool_call = {\n",
|
||||
" \"args\": {...}, # TODO: FILL IN\n",
|
||||
" \"id\": \"1\",\n",
|
||||
" \"name\": tool.name,\n",
|
||||
" \"type\": \"tool_call\",\n",
|
||||
"}\n",
|
||||
"tool.invoke(model_generated_tool_call)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "659f9fbd-6fcf-445f-aa8c-72d8e60154bd",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Use within an agent\n",
|
||||
"\n",
|
||||
"- TODO: Add user question and run cells\n",
|
||||
"\n",
|
||||
"We can use our tool in an [agent](/docs/concepts/agents/). For this we will need a LLM with [tool-calling](/docs/how_to/tool_calling/) capabilities:\n",
|
||||
"\n",
|
||||
"import ChatModelTabs from \"@theme/ChatModelTabs\";\n",
|
||||
"\n",
|
||||
"<ChatModelTabs customVarName=\"llm\" />\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "af3123ad-7a02-40e5-b58e-7d56e23e5830",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# | output: false\n",
|
||||
"# | echo: false\n",
|
||||
"\n",
|
||||
"# !pip install -qU langchain langchain-openai\n",
|
||||
"from langchain.chat_models import init_chat_model\n",
|
||||
"\n",
|
||||
"model = init_chat_model(model=\"gpt-4o\", model_provider=\"openai\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "bea35fa1",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langgraph.prebuilt import create_react_agent\n",
|
||||
"\n",
|
||||
"tools = [tool]\n",
|
||||
"agent = create_react_agent(model, tools)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "fdbf35b5-3aaf-4947-9ec6-48c21533fb95",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"example_query = \"...\"\n",
|
||||
"\n",
|
||||
"events = agent.stream(\n",
|
||||
" {\"messages\": [(\"user\", example_query)]},\n",
|
||||
" stream_mode=\"values\",\n",
|
||||
")\n",
|
||||
"for event in events:\n",
|
||||
" event[\"messages\"][-1].pretty_print()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "4ac8146c",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## API reference\n",
|
||||
"\n",
|
||||
"For detailed documentation of all __ModuleName__ features and configurations head to the API reference: https://python.langchain.com/v0.2/api_reference/community/tools/langchain_community.tools.__module_name__.tool.__ModuleName__.html"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "poetry-venv-311",
|
||||
"language": "python",
|
||||
"name": "poetry-venv-311"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.11.9"
|
||||
}
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "raw",
|
||||
"id": "10238e62-3465-4973-9279-606cbb7ccf16",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"---\n",
|
||||
"sidebar_label: __ModuleName__\n",
|
||||
"---"
|
||||
]
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 5
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "a6f91f20",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# __ModuleName__\n",
|
||||
"\n",
|
||||
"- TODO: Make sure API reference link is correct.\n",
|
||||
"\n",
|
||||
"This notebook provides a quick overview for getting started with __ModuleName__ [tool](/docs/integrations/tools/). For detailed documentation of all __ModuleName__ features and configurations head to the [API reference](https://python.langchain.com/v0.2/api_reference/community/tools/langchain_community.tools.__module_name__.tool.__ModuleName__.html).\n",
|
||||
"\n",
|
||||
"- TODO: Add any other relevant links, like information about underlying API, etc.\n",
|
||||
"\n",
|
||||
"## Overview\n",
|
||||
"\n",
|
||||
"### Integration details\n",
|
||||
"\n",
|
||||
"- TODO: Make sure links and features are correct\n",
|
||||
"\n",
|
||||
"| Class | Package | Serializable | [JS support](https://js.langchain.com/docs/integrations/tools/__module_name__) | Package latest |\n",
|
||||
"| :--- | :--- | :---: | :---: | :---: |\n",
|
||||
"| [__ModuleName__](https://python.langchain.com/v0.2/api_reference/community/tools/langchain_community.tools.__module_name__.tool.__ModuleName__.html) | [langchain-community](https://api.python.langchain.com/en/latest/community_api_reference.html) | beta/❌ | ✅/❌ |  |\n",
|
||||
"\n",
|
||||
"### Tool features\n",
|
||||
"\n",
|
||||
"- TODO: Add feature table if it makes sense\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"## Setup\n",
|
||||
"\n",
|
||||
"- TODO: Add any additional deps\n",
|
||||
"\n",
|
||||
"The integration lives in the `langchain-community` package."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "f85b4089",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"%pip install --quiet -U langchain-community"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "b15e9266",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Credentials\n",
|
||||
"\n",
|
||||
"- TODO: Add any credentials that are needed"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 2,
|
||||
"id": "e0b178a2-8816-40ca-b57c-ccdd86dde9c9",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import getpass\n",
|
||||
"import os\n",
|
||||
"\n",
|
||||
"# if not os.environ.get(\"__MODULE_NAME___API_KEY\"):\n",
|
||||
"# os.environ[\"__MODULE_NAME___API_KEY\"] = getpass.getpass(\"__MODULE_NAME__ API key:\\n\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "bc5ab717-fd27-4c59-b912-bdd099541478",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"It's also helpful (but not needed) to set up [LangSmith](https://smith.langchain.com/) for best-in-class observability:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 3,
|
||||
"id": "a6c2f136-6367-4f1f-825d-ae741e1bf281",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# os.environ[\"LANGSMITH_TRACING\"] = \"true\"\n",
|
||||
"# os.environ[\"LANGSMITH_API_KEY\"] = getpass.getpass()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "1c97218f-f366-479d-8bf7-fe9f2f6df73f",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Instantiation\n",
|
||||
"\n",
|
||||
"- TODO: Fill in instantiation params\n",
|
||||
"\n",
|
||||
"Here we show how to instantiate an instance of the __ModuleName__ tool, with "
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 4,
|
||||
"id": "8b3ddfe9-ca79-494c-a7ab-1f56d9407a64",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain_community.tools import __ModuleName__\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"tool = __ModuleName__(...)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "74147a1a",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Invocation\n",
|
||||
"\n",
|
||||
"### [Invoke directly with args](/docs/concepts/tools/#use-the-tool-directly)\n",
|
||||
"\n",
|
||||
"- TODO: Describe what the tool args are, fill them in, run cell"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "65310a8b-eb0c-4d9e-a618-4f4abe2414fc",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"tool.invoke({...})"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "d6e73897",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### [Invoke with ToolCall](/docs/concepts/tool_calling/#tool-execution)\n",
|
||||
"\n",
|
||||
"We can also invoke the tool with a model-generated ToolCall, in which case a ToolMessage will be returned:\n",
|
||||
"\n",
|
||||
"- TODO: Fill in tool args and run cell"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "f90e33a7",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# This is usually generated by a model, but we'll create a tool call directly for demo purposes.\n",
|
||||
"model_generated_tool_call = {\n",
|
||||
" \"args\": {...}, # TODO: FILL IN\n",
|
||||
" \"id\": \"1\",\n",
|
||||
" \"name\": tool.name,\n",
|
||||
" \"type\": \"tool_call\",\n",
|
||||
"}\n",
|
||||
"tool.invoke(model_generated_tool_call)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "659f9fbd-6fcf-445f-aa8c-72d8e60154bd",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Use within an agent\n",
|
||||
"\n",
|
||||
"- TODO: Add user question and run cells\n",
|
||||
"\n",
|
||||
"We can use our tool in an [agent](/docs/concepts/agents/). For this we will need a LLM with [tool-calling](/docs/how_to/tool_calling/) capabilities:\n",
|
||||
"\n",
|
||||
"import ChatModelTabs from \"@theme/ChatModelTabs\";\n",
|
||||
"\n",
|
||||
"<ChatModelTabs customVarName=\"llm\" />\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 16,
|
||||
"id": "af3123ad-7a02-40e5-b58e-7d56e23e5830",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# | output: false\n",
|
||||
"# | echo: false\n",
|
||||
"\n",
|
||||
"# !pip install -qU langchain langchain-openai\n",
|
||||
"from langchain.chat_models import init_chat_model\n",
|
||||
"\n",
|
||||
"llm = init_chat_model(model=\"gpt-4o\", model_provider=\"openai\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "bea35fa1",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langgraph.prebuilt import create_react_agent\n",
|
||||
"\n",
|
||||
"tools = [tool]\n",
|
||||
"agent = create_react_agent(llm, tools)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "fdbf35b5-3aaf-4947-9ec6-48c21533fb95",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"example_query = \"...\"\n",
|
||||
"\n",
|
||||
"events = agent.stream(\n",
|
||||
" {\"messages\": [(\"user\", example_query)]},\n",
|
||||
" stream_mode=\"values\",\n",
|
||||
")\n",
|
||||
"for event in events:\n",
|
||||
" event[\"messages\"][-1].pretty_print()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "4ac8146c",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## API reference\n",
|
||||
"\n",
|
||||
"For detailed documentation of all __ModuleName__ features and configurations head to the API reference: https://python.langchain.com/v0.2/api_reference/community/tools/langchain_community.tools.__module_name__.tool.__ModuleName__.html"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "poetry-venv-311",
|
||||
"language": "python",
|
||||
"name": "poetry-venv-311"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.11.9"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 5
|
||||
}
|
||||
|
||||
@@ -295,7 +295,7 @@
|
||||
"source": [
|
||||
"## TODO: Any functionality specific to this vector store\n",
|
||||
"\n",
|
||||
"E.g. creating a persistent database to save to your disk, etc."
|
||||
"E.g. creating a persisten database to save to your disk, etc."
|
||||
]
|
||||
},
|
||||
{
|
||||
|
||||
@@ -26,30 +26,30 @@ class Chat__ModuleName__(BaseChatModel):
|
||||
|
||||
# TODO: Replace with relevant packages, env vars.
|
||||
Setup:
|
||||
Install `__package_name__` and set environment variable
|
||||
`__MODULE_NAME___API_KEY`.
|
||||
Install ``__package_name__`` and set environment variable
|
||||
``__MODULE_NAME___API_KEY``.
|
||||
|
||||
```bash
|
||||
pip install -U __package_name__
|
||||
export __MODULE_NAME___API_KEY="your-api-key"
|
||||
```
|
||||
.. code-block:: bash
|
||||
|
||||
pip install -U __package_name__
|
||||
export __MODULE_NAME___API_KEY="your-api-key"
|
||||
|
||||
# TODO: Populate with relevant params.
|
||||
Key init args — completion params:
|
||||
model:
|
||||
model: str
|
||||
Name of __ModuleName__ model to use.
|
||||
temperature:
|
||||
temperature: float
|
||||
Sampling temperature.
|
||||
max_tokens:
|
||||
max_tokens: int | None
|
||||
Max number of tokens to generate.
|
||||
|
||||
# TODO: Populate with relevant params.
|
||||
Key init args — client params:
|
||||
timeout:
|
||||
timeout: float | None
|
||||
Timeout for requests.
|
||||
max_retries:
|
||||
max_retries: int
|
||||
Max number of retries.
|
||||
api_key:
|
||||
api_key: str | None
|
||||
__ModuleName__ API key. If not passed in will be read from env var
|
||||
__MODULE_NAME___API_KEY.
|
||||
|
||||
@@ -57,214 +57,216 @@ class Chat__ModuleName__(BaseChatModel):
|
||||
|
||||
# TODO: Replace with relevant init params.
|
||||
Instantiate:
|
||||
```python
|
||||
from __module_name__ import Chat__ModuleName__
|
||||
.. code-block:: python
|
||||
|
||||
model = Chat__ModuleName__(
|
||||
model="...",
|
||||
temperature=0,
|
||||
max_tokens=None,
|
||||
timeout=None,
|
||||
max_retries=2,
|
||||
# api_key="...",
|
||||
# other params...
|
||||
)
|
||||
```
|
||||
from __module_name__ import Chat__ModuleName__
|
||||
|
||||
llm = Chat__ModuleName__(
|
||||
model="...",
|
||||
temperature=0,
|
||||
max_tokens=None,
|
||||
timeout=None,
|
||||
max_retries=2,
|
||||
# api_key="...",
|
||||
# other params...
|
||||
)
|
||||
|
||||
Invoke:
|
||||
```python
|
||||
messages = [
|
||||
("system", "You are a helpful translator. Translate the user sentence to French."),
|
||||
("human", "I love programming."),
|
||||
]
|
||||
model.invoke(messages)
|
||||
```
|
||||
.. code-block:: python
|
||||
|
||||
```python
|
||||
# TODO: Example output.
|
||||
```
|
||||
messages = [
|
||||
("system", "You are a helpful translator. Translate the user sentence to French."),
|
||||
("human", "I love programming."),
|
||||
]
|
||||
llm.invoke(messages)
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
# TODO: Example output.
|
||||
|
||||
# TODO: Delete if token-level streaming isn't supported.
|
||||
Stream:
|
||||
```python
|
||||
for chunk in model.stream(messages):
|
||||
print(chunk.text, end="")
|
||||
```
|
||||
.. code-block:: python
|
||||
|
||||
```python
|
||||
# TODO: Example output.
|
||||
```
|
||||
for chunk in llm.stream(messages):
|
||||
print(chunk.text, end="")
|
||||
|
||||
```python
|
||||
stream = model.stream(messages)
|
||||
full = next(stream)
|
||||
for chunk in stream:
|
||||
full += chunk
|
||||
full
|
||||
```
|
||||
.. code-block:: python
|
||||
|
||||
```python
|
||||
# TODO: Example output.
|
||||
```
|
||||
# TODO: Example output.
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
stream = llm.stream(messages)
|
||||
full = next(stream)
|
||||
for chunk in stream:
|
||||
full += chunk
|
||||
full
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
# TODO: Example output.
|
||||
|
||||
# TODO: Delete if native async isn't supported.
|
||||
Async:
|
||||
```python
|
||||
await model.ainvoke(messages)
|
||||
.. code-block:: python
|
||||
|
||||
# stream:
|
||||
# async for chunk in (await model.astream(messages))
|
||||
await llm.ainvoke(messages)
|
||||
|
||||
# batch:
|
||||
# await model.abatch([messages])
|
||||
```
|
||||
# stream:
|
||||
# async for chunk in (await llm.astream(messages))
|
||||
|
||||
# batch:
|
||||
# await llm.abatch([messages])
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
# TODO: Example output.
|
||||
|
||||
```python
|
||||
# TODO: Example output.
|
||||
```
|
||||
# TODO: Delete if .bind_tools() isn't supported.
|
||||
Tool calling:
|
||||
```python
|
||||
from pydantic import BaseModel, Field
|
||||
.. code-block:: python
|
||||
|
||||
class GetWeather(BaseModel):
|
||||
'''Get the current weather in a given location'''
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
location: str = Field(..., description="The city and state, e.g. San Francisco, CA")
|
||||
class GetWeather(BaseModel):
|
||||
'''Get the current weather in a given location'''
|
||||
|
||||
class GetPopulation(BaseModel):
|
||||
'''Get the current population in a given location'''
|
||||
location: str = Field(..., description="The city and state, e.g. San Francisco, CA")
|
||||
|
||||
location: str = Field(..., description="The city and state, e.g. San Francisco, CA")
|
||||
class GetPopulation(BaseModel):
|
||||
'''Get the current population in a given location'''
|
||||
|
||||
model_with_tools = model.bind_tools([GetWeather, GetPopulation])
|
||||
ai_msg = model_with_tools.invoke("Which city is hotter today and which is bigger: LA or NY?")
|
||||
ai_msg.tool_calls
|
||||
```
|
||||
location: str = Field(..., description="The city and state, e.g. San Francisco, CA")
|
||||
|
||||
```python
|
||||
# TODO: Example output.
|
||||
```
|
||||
llm_with_tools = llm.bind_tools([GetWeather, GetPopulation])
|
||||
ai_msg = llm_with_tools.invoke("Which city is hotter today and which is bigger: LA or NY?")
|
||||
ai_msg.tool_calls
|
||||
|
||||
See `Chat__ModuleName__.bind_tools()` method for more.
|
||||
.. code-block:: python
|
||||
|
||||
# TODO: Example output.
|
||||
|
||||
See ``Chat__ModuleName__.bind_tools()`` method for more.
|
||||
|
||||
# TODO: Delete if .with_structured_output() isn't supported.
|
||||
Structured output:
|
||||
```python
|
||||
from typing import Optional
|
||||
.. code-block:: python
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
from typing import Optional
|
||||
|
||||
class Joke(BaseModel):
|
||||
'''Joke to tell user.'''
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
setup: str = Field(description="The setup of the joke")
|
||||
punchline: str = Field(description="The punchline to the joke")
|
||||
rating: int | None = Field(description="How funny the joke is, from 1 to 10")
|
||||
class Joke(BaseModel):
|
||||
'''Joke to tell user.'''
|
||||
|
||||
structured_model = model.with_structured_output(Joke)
|
||||
structured_model.invoke("Tell me a joke about cats")
|
||||
```
|
||||
setup: str = Field(description="The setup of the joke")
|
||||
punchline: str = Field(description="The punchline to the joke")
|
||||
rating: int | None = Field(description="How funny the joke is, from 1 to 10")
|
||||
|
||||
```python
|
||||
# TODO: Example output.
|
||||
```
|
||||
structured_llm = llm.with_structured_output(Joke)
|
||||
structured_llm.invoke("Tell me a joke about cats")
|
||||
|
||||
See `Chat__ModuleName__.with_structured_output()` for more.
|
||||
.. code-block:: python
|
||||
|
||||
# TODO: Example output.
|
||||
|
||||
See ``Chat__ModuleName__.with_structured_output()`` for more.
|
||||
|
||||
# TODO: Delete if JSON mode response format isn't supported.
|
||||
JSON mode:
|
||||
```python
|
||||
# TODO: Replace with appropriate bind arg.
|
||||
json_model = model.bind(response_format={"type": "json_object"})
|
||||
ai_msg = json_model.invoke("Return a JSON object with key 'random_ints' and a value of 10 random ints in [0-99]")
|
||||
ai_msg.content
|
||||
```
|
||||
.. code-block:: python
|
||||
|
||||
```python
|
||||
# TODO: Example output.
|
||||
```
|
||||
# TODO: Replace with appropriate bind arg.
|
||||
json_llm = llm.bind(response_format={"type": "json_object"})
|
||||
ai_msg = json_llm.invoke("Return a JSON object with key 'random_ints' and a value of 10 random ints in [0-99]")
|
||||
ai_msg.content
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
# TODO: Example output.
|
||||
|
||||
# TODO: Delete if image inputs aren't supported.
|
||||
Image input:
|
||||
```python
|
||||
import base64
|
||||
import httpx
|
||||
from langchain_core.messages import HumanMessage
|
||||
.. code-block:: python
|
||||
|
||||
image_url = "https://upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Gfp-wisconsin-madison-the-nature-boardwalk.jpg/2560px-Gfp-wisconsin-madison-the-nature-boardwalk.jpg"
|
||||
image_data = base64.b64encode(httpx.get(image_url).content).decode("utf-8")
|
||||
# TODO: Replace with appropriate message content format.
|
||||
message = HumanMessage(
|
||||
content=[
|
||||
{"type": "text", "text": "describe the weather in this image"},
|
||||
{
|
||||
"type": "image_url",
|
||||
"image_url": {"url": f"data:image/jpeg;base64,{image_data}"},
|
||||
},
|
||||
],
|
||||
)
|
||||
ai_msg = model.invoke([message])
|
||||
ai_msg.content
|
||||
```
|
||||
import base64
|
||||
import httpx
|
||||
from langchain_core.messages import HumanMessage
|
||||
|
||||
```python
|
||||
# TODO: Example output.
|
||||
```
|
||||
image_url = "https://upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Gfp-wisconsin-madison-the-nature-boardwalk.jpg/2560px-Gfp-wisconsin-madison-the-nature-boardwalk.jpg"
|
||||
image_data = base64.b64encode(httpx.get(image_url).content).decode("utf-8")
|
||||
# TODO: Replace with appropriate message content format.
|
||||
message = HumanMessage(
|
||||
content=[
|
||||
{"type": "text", "text": "describe the weather in this image"},
|
||||
{
|
||||
"type": "image_url",
|
||||
"image_url": {"url": f"data:image/jpeg;base64,{image_data}"},
|
||||
},
|
||||
],
|
||||
)
|
||||
ai_msg = llm.invoke([message])
|
||||
ai_msg.content
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
# TODO: Example output.
|
||||
|
||||
# TODO: Delete if audio inputs aren't supported.
|
||||
Audio input:
|
||||
```python
|
||||
# TODO: Example input
|
||||
```
|
||||
.. code-block:: python
|
||||
|
||||
```python
|
||||
# TODO: Example output
|
||||
```
|
||||
# TODO: Example input
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
# TODO: Example output
|
||||
|
||||
# TODO: Delete if video inputs aren't supported.
|
||||
Video input:
|
||||
```python
|
||||
# TODO: Example input
|
||||
```
|
||||
.. code-block:: python
|
||||
|
||||
```python
|
||||
# TODO: Example output
|
||||
```
|
||||
# TODO: Example input
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
# TODO: Example output
|
||||
|
||||
# TODO: Delete if token usage metadata isn't supported.
|
||||
Token usage:
|
||||
```python
|
||||
ai_msg = model.invoke(messages)
|
||||
ai_msg.usage_metadata
|
||||
```
|
||||
.. code-block:: python
|
||||
|
||||
```python
|
||||
{'input_tokens': 28, 'output_tokens': 5, 'total_tokens': 33}
|
||||
```
|
||||
ai_msg = llm.invoke(messages)
|
||||
ai_msg.usage_metadata
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
{'input_tokens': 28, 'output_tokens': 5, 'total_tokens': 33}
|
||||
|
||||
# TODO: Delete if logprobs aren't supported.
|
||||
Logprobs:
|
||||
```python
|
||||
# TODO: Replace with appropriate bind arg.
|
||||
logprobs_model = model.bind(logprobs=True)
|
||||
ai_msg = logprobs_model.invoke(messages)
|
||||
ai_msg.response_metadata["logprobs"]
|
||||
```
|
||||
.. code-block:: python
|
||||
|
||||
# TODO: Replace with appropriate bind arg.
|
||||
logprobs_llm = llm.bind(logprobs=True)
|
||||
ai_msg = logprobs_llm.invoke(messages)
|
||||
ai_msg.response_metadata["logprobs"]
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
# TODO: Example output.
|
||||
|
||||
```python
|
||||
# TODO: Example output.
|
||||
```
|
||||
Response metadata
|
||||
```python
|
||||
ai_msg = model.invoke(messages)
|
||||
ai_msg.response_metadata
|
||||
```
|
||||
.. code-block:: python
|
||||
|
||||
```python
|
||||
# TODO: Example output.
|
||||
ai_msg = llm.invoke(messages)
|
||||
ai_msg.response_metadata
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
# TODO: Example output.
|
||||
|
||||
```
|
||||
""" # noqa: E501
|
||||
|
||||
model_name: str = Field(alias="model")
|
||||
@@ -312,11 +314,11 @@ class Chat__ModuleName__(BaseChatModel):
|
||||
Args:
|
||||
messages: the prompt composed of a list of messages.
|
||||
stop: a list of strings on which the model should stop generating.
|
||||
If generation stops due to a stop token, the stop token itself
|
||||
SHOULD BE INCLUDED as part of the output. This is not enforced
|
||||
across models right now, but it's a good practice to follow since
|
||||
it makes it much easier to parse the output of the model
|
||||
downstream and understand why generation stopped.
|
||||
If generation stops due to a stop token, the stop token itself
|
||||
SHOULD BE INCLUDED as part of the output. This is not enforced
|
||||
across models right now, but it's a good practice to follow since
|
||||
it makes it much easier to parse the output of the model
|
||||
downstream and understand why generation stopped.
|
||||
run_manager: A run manager with callbacks for the LLM.
|
||||
"""
|
||||
# Replace this with actual logic to generate a response from a list
|
||||
@@ -360,11 +362,11 @@ class Chat__ModuleName__(BaseChatModel):
|
||||
Args:
|
||||
messages: the prompt composed of a list of messages.
|
||||
stop: a list of strings on which the model should stop generating.
|
||||
If generation stops due to a stop token, the stop token itself
|
||||
SHOULD BE INCLUDED as part of the output. This is not enforced
|
||||
across models right now, but it's a good practice to follow since
|
||||
it makes it much easier to parse the output of the model
|
||||
downstream and understand why generation stopped.
|
||||
If generation stops due to a stop token, the stop token itself
|
||||
SHOULD BE INCLUDED as part of the output. This is not enforced
|
||||
across models right now, but it's a good practice to follow since
|
||||
it makes it much easier to parse the output of the model
|
||||
downstream and understand why generation stopped.
|
||||
run_manager: A run manager with callbacks for the LLM.
|
||||
"""
|
||||
last_message = messages[-1]
|
||||
|
||||
@@ -14,55 +14,55 @@ class __ModuleName__Loader(BaseLoader):
|
||||
|
||||
# TODO: Replace with relevant packages, env vars.
|
||||
Setup:
|
||||
Install `__package_name__` and set environment variable
|
||||
`__MODULE_NAME___API_KEY`.
|
||||
Install ``__package_name__`` and set environment variable
|
||||
``__MODULE_NAME___API_KEY``.
|
||||
|
||||
```bash
|
||||
pip install -U __package_name__
|
||||
export __MODULE_NAME___API_KEY="your-api-key"
|
||||
```
|
||||
.. code-block:: bash
|
||||
|
||||
pip install -U __package_name__
|
||||
export __MODULE_NAME___API_KEY="your-api-key"
|
||||
|
||||
# TODO: Replace with relevant init params.
|
||||
Instantiate:
|
||||
```python
|
||||
from langchain_community.document_loaders import __ModuleName__Loader
|
||||
.. code-block:: python
|
||||
|
||||
loader = __ModuleName__Loader(
|
||||
# required params = ...
|
||||
# other params = ...
|
||||
)
|
||||
```
|
||||
from langchain_community.document_loaders import __ModuleName__Loader
|
||||
|
||||
loader = __ModuleName__Loader(
|
||||
# required params = ...
|
||||
# other params = ...
|
||||
)
|
||||
|
||||
Lazy load:
|
||||
```python
|
||||
docs = []
|
||||
docs_lazy = loader.lazy_load()
|
||||
.. code-block:: python
|
||||
|
||||
# async variant:
|
||||
# docs_lazy = await loader.alazy_load()
|
||||
docs = []
|
||||
docs_lazy = loader.lazy_load()
|
||||
|
||||
for doc in docs_lazy:
|
||||
docs.append(doc)
|
||||
print(docs[0].page_content[:100])
|
||||
print(docs[0].metadata)
|
||||
```
|
||||
# async variant:
|
||||
# docs_lazy = await loader.alazy_load()
|
||||
|
||||
```python
|
||||
TODO: Example output
|
||||
```
|
||||
for doc in docs_lazy:
|
||||
docs.append(doc)
|
||||
print(docs[0].page_content[:100])
|
||||
print(docs[0].metadata)
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
TODO: Example output
|
||||
|
||||
# TODO: Delete if async load is not implemented
|
||||
Async load:
|
||||
```python
|
||||
docs = await loader.aload()
|
||||
print(docs[0].page_content[:100])
|
||||
print(docs[0].metadata)
|
||||
```
|
||||
.. code-block:: python
|
||||
|
||||
```python
|
||||
TODO: Example output
|
||||
docs = await loader.aload()
|
||||
print(docs[0].page_content[:100])
|
||||
print(docs[0].metadata)
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
TODO: Example output
|
||||
|
||||
```
|
||||
"""
|
||||
|
||||
# TODO: This method must be implemented to load documents.
|
||||
|
||||
@@ -8,13 +8,13 @@ class __ModuleName__Embeddings(Embeddings):
|
||||
|
||||
# TODO: Replace with relevant packages, env vars.
|
||||
Setup:
|
||||
Install `__package_name__` and set environment variable
|
||||
`__MODULE_NAME___API_KEY`.
|
||||
Install ``__package_name__`` and set environment variable
|
||||
``__MODULE_NAME___API_KEY``.
|
||||
|
||||
```bash
|
||||
pip install -U __package_name__
|
||||
export __MODULE_NAME___API_KEY="your-api-key"
|
||||
```
|
||||
.. code-block:: bash
|
||||
|
||||
pip install -U __package_name__
|
||||
export __MODULE_NAME___API_KEY="your-api-key"
|
||||
|
||||
# TODO: Populate with relevant params.
|
||||
Key init args — completion params:
|
||||
@@ -25,50 +25,50 @@ class __ModuleName__Embeddings(Embeddings):
|
||||
|
||||
# TODO: Replace with relevant init params.
|
||||
Instantiate:
|
||||
```python
|
||||
from __module_name__ import __ModuleName__Embeddings
|
||||
.. code-block:: python
|
||||
|
||||
embed = __ModuleName__Embeddings(
|
||||
model="...",
|
||||
# api_key="...",
|
||||
# other params...
|
||||
)
|
||||
```
|
||||
from __module_name__ import __ModuleName__Embeddings
|
||||
|
||||
embed = __ModuleName__Embeddings(
|
||||
model="...",
|
||||
# api_key="...",
|
||||
# other params...
|
||||
)
|
||||
|
||||
Embed single text:
|
||||
```python
|
||||
input_text = "The meaning of life is 42"
|
||||
embed.embed_query(input_text)
|
||||
```
|
||||
.. code-block:: python
|
||||
|
||||
```python
|
||||
# TODO: Example output.
|
||||
```
|
||||
input_text = "The meaning of life is 42"
|
||||
embed.embed_query(input_text)
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
# TODO: Example output.
|
||||
|
||||
# TODO: Delete if token-level streaming isn't supported.
|
||||
Embed multiple text:
|
||||
```python
|
||||
input_texts = ["Document 1...", "Document 2..."]
|
||||
embed.embed_documents(input_texts)
|
||||
```
|
||||
.. code-block:: python
|
||||
|
||||
```python
|
||||
# TODO: Example output.
|
||||
```
|
||||
input_texts = ["Document 1...", "Document 2..."]
|
||||
embed.embed_documents(input_texts)
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
# TODO: Example output.
|
||||
|
||||
# TODO: Delete if native async isn't supported.
|
||||
Async:
|
||||
```python
|
||||
await embed.aembed_query(input_text)
|
||||
.. code-block:: python
|
||||
|
||||
# multiple:
|
||||
# await embed.aembed_documents(input_texts)
|
||||
```
|
||||
await embed.aembed_query(input_text)
|
||||
|
||||
```python
|
||||
# TODO: Example output.
|
||||
# multiple:
|
||||
# await embed.aembed_documents(input_texts)
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
# TODO: Example output.
|
||||
|
||||
```
|
||||
"""
|
||||
|
||||
def __init__(self, model: str):
|
||||
|
||||
@@ -14,13 +14,13 @@ class __ModuleName__Retriever(BaseRetriever):
|
||||
|
||||
# TODO: Replace with relevant packages, env vars, etc.
|
||||
Setup:
|
||||
Install `__package_name__` and set environment variable
|
||||
`__MODULE_NAME___API_KEY`.
|
||||
Install ``__package_name__`` and set environment variable
|
||||
``__MODULE_NAME___API_KEY``.
|
||||
|
||||
```bash
|
||||
pip install -U __package_name__
|
||||
export __MODULE_NAME___API_KEY="your-api-key"
|
||||
```
|
||||
.. code-block:: bash
|
||||
|
||||
pip install -U __package_name__
|
||||
export __MODULE_NAME___API_KEY="your-api-key"
|
||||
|
||||
# TODO: Populate with relevant params.
|
||||
Key init args:
|
||||
@@ -31,58 +31,58 @@ class __ModuleName__Retriever(BaseRetriever):
|
||||
|
||||
# TODO: Replace with relevant init params.
|
||||
Instantiate:
|
||||
```python
|
||||
from __package_name__ import __ModuleName__Retriever
|
||||
.. code-block:: python
|
||||
|
||||
retriever = __ModuleName__Retriever(
|
||||
# ...
|
||||
)
|
||||
```
|
||||
from __package_name__ import __ModuleName__Retriever
|
||||
|
||||
retriever = __ModuleName__Retriever(
|
||||
# ...
|
||||
)
|
||||
|
||||
Usage:
|
||||
```python
|
||||
query = "..."
|
||||
.. code-block:: python
|
||||
|
||||
retriever.invoke(query)
|
||||
```
|
||||
query = "..."
|
||||
|
||||
```txt
|
||||
# TODO: Example output.
|
||||
```
|
||||
retriever.invoke(query)
|
||||
|
||||
.. code-block::
|
||||
|
||||
# TODO: Example output.
|
||||
|
||||
Use within a chain:
|
||||
```python
|
||||
from langchain_core.output_parsers import StrOutputParser
|
||||
from langchain_core.prompts import ChatPromptTemplate
|
||||
from langchain_core.runnables import RunnablePassthrough
|
||||
from langchain_openai import ChatOpenAI
|
||||
.. code-block:: python
|
||||
|
||||
prompt = ChatPromptTemplate.from_template(
|
||||
\"\"\"Answer the question based only on the context provided.
|
||||
from langchain_core.output_parsers import StrOutputParser
|
||||
from langchain_core.prompts import ChatPromptTemplate
|
||||
from langchain_core.runnables import RunnablePassthrough
|
||||
from langchain_openai import ChatOpenAI
|
||||
|
||||
Context: {context}
|
||||
prompt = ChatPromptTemplate.from_template(
|
||||
\"\"\"Answer the question based only on the context provided.
|
||||
|
||||
Question: {question}\"\"\"
|
||||
)
|
||||
Context: {context}
|
||||
|
||||
model = ChatOpenAI(model="gpt-3.5-turbo-0125")
|
||||
Question: {question}\"\"\"
|
||||
)
|
||||
|
||||
def format_docs(docs):
|
||||
return "\\n\\n".join(doc.page_content for doc in docs)
|
||||
llm = ChatOpenAI(model="gpt-3.5-turbo-0125")
|
||||
|
||||
chain = (
|
||||
{"context": retriever | format_docs, "question": RunnablePassthrough()}
|
||||
| prompt
|
||||
| model
|
||||
| StrOutputParser()
|
||||
)
|
||||
def format_docs(docs):
|
||||
return "\\n\\n".join(doc.page_content for doc in docs)
|
||||
|
||||
chain.invoke("...")
|
||||
```
|
||||
chain = (
|
||||
{"context": retriever | format_docs, "question": RunnablePassthrough()}
|
||||
| prompt
|
||||
| llm
|
||||
| StrOutputParser()
|
||||
)
|
||||
|
||||
```
|
||||
# TODO: Example output.
|
||||
```
|
||||
chain.invoke("...")
|
||||
|
||||
.. code-block::
|
||||
|
||||
# TODO: Example output.
|
||||
|
||||
"""
|
||||
|
||||
|
||||
@@ -12,13 +12,13 @@ class __ModuleName__Toolkit(BaseToolkit):
|
||||
|
||||
# TODO: Replace with relevant packages, env vars, etc.
|
||||
Setup:
|
||||
Install `__package_name__` and set environment variable
|
||||
`__MODULE_NAME___API_KEY`.
|
||||
Install ``__package_name__`` and set environment variable
|
||||
``__MODULE_NAME___API_KEY``.
|
||||
|
||||
```bash
|
||||
pip install -U __package_name__
|
||||
export __MODULE_NAME___API_KEY="your-api-key"
|
||||
```
|
||||
.. code-block:: bash
|
||||
|
||||
pip install -U __package_name__
|
||||
export __MODULE_NAME___API_KEY="your-api-key"
|
||||
|
||||
# TODO: Populate with relevant params.
|
||||
Key init args:
|
||||
@@ -29,42 +29,42 @@ class __ModuleName__Toolkit(BaseToolkit):
|
||||
|
||||
# TODO: Replace with relevant init params.
|
||||
Instantiate:
|
||||
```python
|
||||
from __package_name__ import __ModuleName__Toolkit
|
||||
.. code-block:: python
|
||||
|
||||
toolkit = __ModuleName__Toolkit(
|
||||
# ...
|
||||
)
|
||||
```
|
||||
from __package_name__ import __ModuleName__Toolkit
|
||||
|
||||
toolkit = __ModuleName__Toolkit(
|
||||
# ...
|
||||
)
|
||||
|
||||
Tools:
|
||||
```python
|
||||
toolkit.get_tools()
|
||||
```
|
||||
.. code-block:: python
|
||||
|
||||
```txt
|
||||
# TODO: Example output.
|
||||
```
|
||||
toolkit.get_tools()
|
||||
|
||||
.. code-block::
|
||||
|
||||
# TODO: Example output.
|
||||
|
||||
Use within an agent:
|
||||
```python
|
||||
from langgraph.prebuilt import create_react_agent
|
||||
.. code-block:: python
|
||||
|
||||
agent_executor = create_react_agent(llm, tools)
|
||||
from langgraph.prebuilt import create_react_agent
|
||||
|
||||
example_query = "..."
|
||||
agent_executor = create_react_agent(llm, tools)
|
||||
|
||||
events = agent_executor.stream(
|
||||
{"messages": [("user", example_query)]},
|
||||
stream_mode="values",
|
||||
)
|
||||
for event in events:
|
||||
event["messages"][-1].pretty_print()
|
||||
```
|
||||
example_query = "..."
|
||||
|
||||
```txt
|
||||
# TODO: Example output.
|
||||
```
|
||||
events = agent_executor.stream(
|
||||
{"messages": [("user", example_query)]},
|
||||
stream_mode="values",
|
||||
)
|
||||
for event in events:
|
||||
event["messages"][-1].pretty_print()
|
||||
|
||||
.. code-block::
|
||||
|
||||
# TODO: Example output.
|
||||
|
||||
"""
|
||||
|
||||
|
||||
@@ -27,42 +27,42 @@ class __ModuleName__Tool(BaseTool): # type: ignore[override]
|
||||
|
||||
Setup:
|
||||
# TODO: Replace with relevant packages, env vars.
|
||||
Install `__package_name__` and set environment variable
|
||||
`__MODULE_NAME___API_KEY`.
|
||||
Install ``__package_name__`` and set environment variable
|
||||
``__MODULE_NAME___API_KEY``.
|
||||
|
||||
```bash
|
||||
pip install -U __package_name__
|
||||
export __MODULE_NAME___API_KEY="your-api-key"
|
||||
```
|
||||
.. code-block:: bash
|
||||
|
||||
pip install -U __package_name__
|
||||
export __MODULE_NAME___API_KEY="your-api-key"
|
||||
|
||||
Instantiation:
|
||||
```python
|
||||
tool = __ModuleName__Tool(
|
||||
# TODO: init params
|
||||
)
|
||||
```
|
||||
.. code-block:: python
|
||||
|
||||
tool = __ModuleName__Tool(
|
||||
# TODO: init params
|
||||
)
|
||||
|
||||
Invocation with args:
|
||||
```python
|
||||
# TODO: invoke args
|
||||
tool.invoke({...})
|
||||
```
|
||||
.. code-block:: python
|
||||
|
||||
```python
|
||||
# TODO: output of invocation
|
||||
```
|
||||
# TODO: invoke args
|
||||
tool.invoke({...})
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
# TODO: output of invocation
|
||||
|
||||
Invocation with ToolCall:
|
||||
|
||||
```python
|
||||
# TODO: invoke args
|
||||
tool.invoke({"args": {...}, "id": "1", "name": tool.name, "type": "tool_call"})
|
||||
```
|
||||
.. code-block:: python
|
||||
|
||||
```python
|
||||
# TODO: output of invocation
|
||||
# TODO: invoke args
|
||||
tool.invoke({"args": {...}, "id": "1", "name": tool.name, "type": "tool_call"})
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
# TODO: output of invocation
|
||||
|
||||
```
|
||||
""" # noqa: E501
|
||||
|
||||
# TODO: Set tool name and description
|
||||
|
||||
@@ -28,133 +28,133 @@ class __ModuleName__VectorStore(VectorStore):
|
||||
|
||||
# TODO: Replace with relevant packages, env vars.
|
||||
Setup:
|
||||
Install `__package_name__` and set environment variable `__MODULE_NAME___API_KEY`.
|
||||
Install ``__package_name__`` and set environment variable ``__MODULE_NAME___API_KEY``.
|
||||
|
||||
```bash
|
||||
pip install -U __package_name__
|
||||
export __MODULE_NAME___API_KEY="your-api-key"
|
||||
```
|
||||
.. code-block:: bash
|
||||
|
||||
pip install -U __package_name__
|
||||
export __MODULE_NAME___API_KEY="your-api-key"
|
||||
|
||||
# TODO: Populate with relevant params.
|
||||
Key init args — indexing params:
|
||||
collection_name:
|
||||
collection_name: str
|
||||
Name of the collection.
|
||||
embedding_function:
|
||||
embedding_function: Embeddings
|
||||
Embedding function to use.
|
||||
|
||||
# TODO: Populate with relevant params.
|
||||
Key init args — client params:
|
||||
client:
|
||||
client: Client | None
|
||||
Client to use.
|
||||
connection_args:
|
||||
connection_args: dict | None
|
||||
Connection arguments.
|
||||
|
||||
# TODO: Replace with relevant init params.
|
||||
Instantiate:
|
||||
```python
|
||||
from __module_name__.vectorstores import __ModuleName__VectorStore
|
||||
from langchain_openai import OpenAIEmbeddings
|
||||
.. code-block:: python
|
||||
|
||||
vector_store = __ModuleName__VectorStore(
|
||||
collection_name="foo",
|
||||
embedding_function=OpenAIEmbeddings(),
|
||||
connection_args={"uri": "./foo.db"},
|
||||
# other params...
|
||||
)
|
||||
```
|
||||
from __module_name__.vectorstores import __ModuleName__VectorStore
|
||||
from langchain_openai import OpenAIEmbeddings
|
||||
|
||||
vector_store = __ModuleName__VectorStore(
|
||||
collection_name="foo",
|
||||
embedding_function=OpenAIEmbeddings(),
|
||||
connection_args={"uri": "./foo.db"},
|
||||
# other params...
|
||||
)
|
||||
|
||||
# TODO: Populate with relevant variables.
|
||||
Add Documents:
|
||||
```python
|
||||
from langchain_core.documents import Document
|
||||
.. code-block:: python
|
||||
|
||||
document_1 = Document(page_content="foo", metadata={"baz": "bar"})
|
||||
document_2 = Document(page_content="thud", metadata={"bar": "baz"})
|
||||
document_3 = Document(page_content="i will be deleted :(")
|
||||
from langchain_core.documents import Document
|
||||
|
||||
documents = [document_1, document_2, document_3]
|
||||
ids = ["1", "2", "3"]
|
||||
vector_store.add_documents(documents=documents, ids=ids)
|
||||
```
|
||||
document_1 = Document(page_content="foo", metadata={"baz": "bar"})
|
||||
document_2 = Document(page_content="thud", metadata={"bar": "baz"})
|
||||
document_3 = Document(page_content="i will be deleted :(")
|
||||
|
||||
documents = [document_1, document_2, document_3]
|
||||
ids = ["1", "2", "3"]
|
||||
vector_store.add_documents(documents=documents, ids=ids)
|
||||
|
||||
# TODO: Populate with relevant variables.
|
||||
Delete Documents:
|
||||
```python
|
||||
vector_store.delete(ids=["3"])
|
||||
```
|
||||
.. code-block:: python
|
||||
|
||||
vector_store.delete(ids=["3"])
|
||||
|
||||
# TODO: Fill out with relevant variables and example output.
|
||||
Search:
|
||||
```python
|
||||
results = vector_store.similarity_search(query="thud",k=1)
|
||||
for doc in results:
|
||||
print(f"* {doc.page_content} [{doc.metadata}]")
|
||||
```
|
||||
.. code-block:: python
|
||||
|
||||
```python
|
||||
# TODO: Example output
|
||||
```
|
||||
results = vector_store.similarity_search(query="thud",k=1)
|
||||
for doc in results:
|
||||
print(f"* {doc.page_content} [{doc.metadata}]")
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
# TODO: Example output
|
||||
|
||||
# TODO: Fill out with relevant variables and example output.
|
||||
Search with filter:
|
||||
```python
|
||||
results = vector_store.similarity_search(query="thud",k=1,filter={"bar": "baz"})
|
||||
for doc in results:
|
||||
print(f"* {doc.page_content} [{doc.metadata}]")
|
||||
```
|
||||
.. code-block:: python
|
||||
|
||||
```python
|
||||
# TODO: Example output
|
||||
```
|
||||
results = vector_store.similarity_search(query="thud",k=1,filter={"bar": "baz"})
|
||||
for doc in results:
|
||||
print(f"* {doc.page_content} [{doc.metadata}]")
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
# TODO: Example output
|
||||
|
||||
# TODO: Fill out with relevant variables and example output.
|
||||
Search with score:
|
||||
```python
|
||||
results = vector_store.similarity_search_with_score(query="qux",k=1)
|
||||
for doc, score in results:
|
||||
print(f"* [SIM={score:3f}] {doc.page_content} [{doc.metadata}]")
|
||||
```
|
||||
.. code-block:: python
|
||||
|
||||
```python
|
||||
# TODO: Example output
|
||||
```
|
||||
results = vector_store.similarity_search_with_score(query="qux",k=1)
|
||||
for doc, score in results:
|
||||
print(f"* [SIM={score:3f}] {doc.page_content} [{doc.metadata}]")
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
# TODO: Example output
|
||||
|
||||
# TODO: Fill out with relevant variables and example output.
|
||||
Async:
|
||||
```python
|
||||
# add documents
|
||||
# await vector_store.aadd_documents(documents=documents, ids=ids)
|
||||
.. code-block:: python
|
||||
|
||||
# delete documents
|
||||
# await vector_store.adelete(ids=["3"])
|
||||
# add documents
|
||||
# await vector_store.aadd_documents(documents=documents, ids=ids)
|
||||
|
||||
# search
|
||||
# results = vector_store.asimilarity_search(query="thud",k=1)
|
||||
# delete documents
|
||||
# await vector_store.adelete(ids=["3"])
|
||||
|
||||
# search with score
|
||||
results = await vector_store.asimilarity_search_with_score(query="qux",k=1)
|
||||
for doc,score in results:
|
||||
print(f"* [SIM={score:3f}] {doc.page_content} [{doc.metadata}]")
|
||||
```
|
||||
# search
|
||||
# results = vector_store.asimilarity_search(query="thud",k=1)
|
||||
|
||||
```python
|
||||
# TODO: Example output
|
||||
```
|
||||
# search with score
|
||||
results = await vector_store.asimilarity_search_with_score(query="qux",k=1)
|
||||
for doc,score in results:
|
||||
print(f"* [SIM={score:3f}] {doc.page_content} [{doc.metadata}]")
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
# TODO: Example output
|
||||
|
||||
# TODO: Fill out with relevant variables and example output.
|
||||
Use as Retriever:
|
||||
```python
|
||||
retriever = vector_store.as_retriever(
|
||||
search_type="mmr",
|
||||
search_kwargs={"k": 1, "fetch_k": 2, "lambda_mult": 0.5},
|
||||
)
|
||||
retriever.invoke("thud")
|
||||
```
|
||||
.. code-block:: python
|
||||
|
||||
```python
|
||||
# TODO: Example output
|
||||
retriever = vector_store.as_retriever(
|
||||
search_type="mmr",
|
||||
search_kwargs={"k": 1, "fetch_k": 2, "lambda_mult": 0.5},
|
||||
)
|
||||
retriever.invoke("thud")
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
# TODO: Example output
|
||||
|
||||
```
|
||||
""" # noqa: E501
|
||||
|
||||
def __init__(self, embedding: Embeddings) -> None:
|
||||
|
||||
@@ -24,7 +24,7 @@ def get_migrations_for_partner_package(pkg_name: str) -> list[tuple[str, str]]:
|
||||
This code works
|
||||
|
||||
Args:
|
||||
pkg_name: The name of the partner package.
|
||||
pkg_name (str): The name of the partner package.
|
||||
|
||||
Returns:
|
||||
List of 2-tuples containing old and new import paths.
|
||||
|
||||
@@ -65,7 +65,7 @@ def is_subclass(class_obj: type, classes_: list[type]) -> bool:
|
||||
classes_: A list of classes to check against.
|
||||
|
||||
Returns:
|
||||
True if `class_obj` is a subclass of any class in `classes_`, `False` otherwise.
|
||||
True if `class_obj` is a subclass of any class in `classes_`, False otherwise.
|
||||
"""
|
||||
return any(
|
||||
issubclass(class_obj, kls)
|
||||
|
||||
@@ -6,8 +6,9 @@ import hashlib
|
||||
import logging
|
||||
import re
|
||||
import shutil
|
||||
from collections.abc import Sequence
|
||||
from pathlib import Path
|
||||
from typing import TYPE_CHECKING, Any, TypedDict
|
||||
from typing import Any, TypedDict
|
||||
|
||||
from git import Repo
|
||||
|
||||
@@ -17,9 +18,6 @@ from langchain_cli.constants import (
|
||||
DEFAULT_GIT_SUBDIRECTORY,
|
||||
)
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from collections.abc import Sequence
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
@@ -184,7 +182,7 @@ def parse_dependencies(
|
||||
inner_branches = _list_arg_to_length(branch, num_deps)
|
||||
|
||||
return list(
|
||||
map( # type: ignore[call-overload, unused-ignore]
|
||||
map( # type: ignore[call-overload]
|
||||
parse_dependency_string,
|
||||
inner_deps,
|
||||
inner_repos,
|
||||
|
||||
@@ -20,13 +20,12 @@ description = "CLI for interacting with LangChain"
|
||||
readme = "README.md"
|
||||
|
||||
[project.urls]
|
||||
Homepage = "https://docs.langchain.com/"
|
||||
Documentation = "https://docs.langchain.com/"
|
||||
Source = "https://github.com/langchain-ai/langchain/tree/master/libs/cli"
|
||||
Changelog = "https://github.com/langchain-ai/langchain/releases?q=%22langchain-cli%3D%3D1%22"
|
||||
Twitter = "https://x.com/LangChainAI"
|
||||
Slack = "https://www.langchain.com/join-community"
|
||||
Reddit = "https://www.reddit.com/r/LangChain/"
|
||||
homepage = "https://docs.langchain.com/"
|
||||
repository = "https://github.com/langchain-ai/langchain/tree/master/libs/cli"
|
||||
changelog = "https://github.com/langchain-ai/langchain/releases?q=%22langchain-cli%3D%3D1%22"
|
||||
twitter = "https://x.com/LangChainAI"
|
||||
slack = "https://www.langchain.com/join-community"
|
||||
reddit = "https://www.reddit.com/r/LangChain/"
|
||||
|
||||
[project.scripts]
|
||||
langchain = "langchain_cli.cli:app"
|
||||
@@ -38,21 +37,19 @@ dev = [
|
||||
"pytest-watcher>=0.3.4,<1.0.0"
|
||||
]
|
||||
lint = [
|
||||
"ruff>=0.14.10,<0.15.0"
|
||||
"ruff>=0.13.1,<0.14",
|
||||
"mypy>=1.18.1,<1.19"
|
||||
]
|
||||
test = [
|
||||
"langchain-core",
|
||||
"langchain-classic"
|
||||
]
|
||||
typing = [
|
||||
"mypy>=1.19.1,<1.20",
|
||||
"langchain-classic"
|
||||
"langchain"
|
||||
]
|
||||
typing = ["langchain"]
|
||||
test_integration = []
|
||||
|
||||
[tool.uv.sources]
|
||||
langchain-core = { path = "../core", editable = true }
|
||||
langchain-classic = { path = "../langchain", editable = true }
|
||||
langchain = { path = "../langchain", editable = true }
|
||||
|
||||
[tool.ruff.format]
|
||||
docstring-code-format = true
|
||||
@@ -66,6 +63,10 @@ ignore = [
|
||||
"FIX002", # Line contains TODO
|
||||
"PERF203", # Rarely useful
|
||||
"PLR09", # Too many something (arg, statements, etc)
|
||||
"RUF012", # Doesn't play well with Pydantic
|
||||
"TC001", # Doesn't play well with Pydantic
|
||||
"TC002", # Doesn't play well with Pydantic
|
||||
"TC003", # Doesn't play well with Pydantic
|
||||
"TD002", # Missing author in TODO
|
||||
"TD003", # Missing issue link in TODO
|
||||
|
||||
|
||||
@@ -1,11 +1,9 @@
|
||||
from __future__ import annotations
|
||||
|
||||
from dataclasses import dataclass
|
||||
from typing import TYPE_CHECKING
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from .file import File
|
||||
from .folder import Folder
|
||||
from .file import File
|
||||
from .folder import Folder
|
||||
|
||||
|
||||
@dataclass
|
||||
|
||||
@@ -1,12 +1,9 @@
|
||||
from __future__ import annotations
|
||||
|
||||
from typing import TYPE_CHECKING
|
||||
from pathlib import Path
|
||||
|
||||
from .file import File
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from pathlib import Path
|
||||
|
||||
|
||||
class Folder:
|
||||
def __init__(self, name: str, *files: Folder | File) -> None:
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
import pytest
|
||||
from langchain_classic._api import suppress_langchain_deprecation_warning as sup2
|
||||
from langchain._api import suppress_langchain_deprecation_warning as sup2
|
||||
from langchain_core._api import suppress_langchain_deprecation_warning as sup1
|
||||
|
||||
from langchain_cli.namespaces.migrate.generate.generic import (
|
||||
|
||||
702
libs/cli/uv.lock
generated
702
libs/cli/uv.lock
generated
@@ -193,8 +193,6 @@ wheels = [
|
||||
{ url = "https://files.pythonhosted.org/packages/7f/91/ae2eb6b7979e2f9b035a9f612cf70f1bf54aad4e1d125129bef1eae96f19/greenlet-3.2.4-cp310-cp310-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:c2ca18a03a8cfb5b25bc1cbe20f3d9a4c80d8c3b13ba3df49ac3961af0b1018d", size = 584358, upload-time = "2025-08-07T13:18:23.708Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/f7/85/433de0c9c0252b22b16d413c9407e6cb3b41df7389afc366ca204dbc1393/greenlet-3.2.4-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:9fe0a28a7b952a21e2c062cd5756d34354117796c6d9215a87f55e38d15402c5", size = 1113550, upload-time = "2025-08-07T13:42:37.467Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/a1/8d/88f3ebd2bc96bf7747093696f4335a0a8a4c5acfcf1b757717c0d2474ba3/greenlet-3.2.4-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:8854167e06950ca75b898b104b63cc646573aa5fef1353d4508ecdd1ee76254f", size = 1137126, upload-time = "2025-08-07T13:18:20.239Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/f1/29/74242b7d72385e29bcc5563fba67dad94943d7cd03552bac320d597f29b2/greenlet-3.2.4-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:f47617f698838ba98f4ff4189aef02e7343952df3a615f847bb575c3feb177a7", size = 1544904, upload-time = "2025-11-04T12:42:04.763Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/c8/e2/1572b8eeab0f77df5f6729d6ab6b141e4a84ee8eb9bc8c1e7918f94eda6d/greenlet-3.2.4-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:af41be48a4f60429d5cad9d22175217805098a9ef7c40bfef44f7669fb9d74d8", size = 1611228, upload-time = "2025-11-04T12:42:08.423Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/d6/6f/b60b0291d9623c496638c582297ead61f43c4b72eef5e9c926ef4565ec13/greenlet-3.2.4-cp310-cp310-win_amd64.whl", hash = "sha256:73f49b5368b5359d04e18d15828eecc1806033db5233397748f4ca813ff1056c", size = 298654, upload-time = "2025-08-07T13:50:00.469Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/a4/de/f28ced0a67749cac23fecb02b694f6473f47686dff6afaa211d186e2ef9c/greenlet-3.2.4-cp311-cp311-macosx_11_0_universal2.whl", hash = "sha256:96378df1de302bc38e99c3a9aa311967b7dc80ced1dcc6f171e99842987882a2", size = 272305, upload-time = "2025-08-07T13:15:41.288Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/09/16/2c3792cba130000bf2a31c5272999113f4764fd9d874fb257ff588ac779a/greenlet-3.2.4-cp311-cp311-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:1ee8fae0519a337f2329cb78bd7a8e128ec0f881073d43f023c7b8d4831d5246", size = 632472, upload-time = "2025-08-07T13:42:55.044Z" },
|
||||
@@ -204,8 +202,6 @@ wheels = [
|
||||
{ url = "https://files.pythonhosted.org/packages/1f/8e/abdd3f14d735b2929290a018ecf133c901be4874b858dd1c604b9319f064/greenlet-3.2.4-cp311-cp311-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:2523e5246274f54fdadbce8494458a2ebdcdbc7b802318466ac5606d3cded1f8", size = 587684, upload-time = "2025-08-07T13:18:25.164Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/5d/65/deb2a69c3e5996439b0176f6651e0052542bb6c8f8ec2e3fba97c9768805/greenlet-3.2.4-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:1987de92fec508535687fb807a5cea1560f6196285a4cde35c100b8cd632cc52", size = 1116647, upload-time = "2025-08-07T13:42:38.655Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/3f/cc/b07000438a29ac5cfb2194bfc128151d52f333cee74dd7dfe3fb733fc16c/greenlet-3.2.4-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:55e9c5affaa6775e2c6b67659f3a71684de4c549b3dd9afca3bc773533d284fa", size = 1142073, upload-time = "2025-08-07T13:18:21.737Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/67/24/28a5b2fa42d12b3d7e5614145f0bd89714c34c08be6aabe39c14dd52db34/greenlet-3.2.4-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:c9c6de1940a7d828635fbd254d69db79e54619f165ee7ce32fda763a9cb6a58c", size = 1548385, upload-time = "2025-11-04T12:42:11.067Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/6a/05/03f2f0bdd0b0ff9a4f7b99333d57b53a7709c27723ec8123056b084e69cd/greenlet-3.2.4-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:03c5136e7be905045160b1b9fdca93dd6727b180feeafda6818e6496434ed8c5", size = 1613329, upload-time = "2025-11-04T12:42:12.928Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/d8/0f/30aef242fcab550b0b3520b8e3561156857c94288f0332a79928c31a52cf/greenlet-3.2.4-cp311-cp311-win_amd64.whl", hash = "sha256:9c40adce87eaa9ddb593ccb0fa6a07caf34015a29bf8d344811665b573138db9", size = 299100, upload-time = "2025-08-07T13:44:12.287Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/44/69/9b804adb5fd0671f367781560eb5eb586c4d495277c93bde4307b9e28068/greenlet-3.2.4-cp312-cp312-macosx_11_0_universal2.whl", hash = "sha256:3b67ca49f54cede0186854a008109d6ee71f66bd57bb36abd6d0a0267b540cdd", size = 274079, upload-time = "2025-08-07T13:15:45.033Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/46/e9/d2a80c99f19a153eff70bc451ab78615583b8dac0754cfb942223d2c1a0d/greenlet-3.2.4-cp312-cp312-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:ddf9164e7a5b08e9d22511526865780a576f19ddd00d62f8a665949327fde8bb", size = 640997, upload-time = "2025-08-07T13:42:56.234Z" },
|
||||
@@ -215,8 +211,6 @@ wheels = [
|
||||
{ url = "https://files.pythonhosted.org/packages/19/0d/6660d55f7373b2ff8152401a83e02084956da23ae58cddbfb0b330978fe9/greenlet-3.2.4-cp312-cp312-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:3b3812d8d0c9579967815af437d96623f45c0f2ae5f04e366de62a12d83a8fb0", size = 607586, upload-time = "2025-08-07T13:18:28.544Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/8e/1a/c953fdedd22d81ee4629afbb38d2f9d71e37d23caace44775a3a969147d4/greenlet-3.2.4-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:abbf57b5a870d30c4675928c37278493044d7c14378350b3aa5d484fa65575f0", size = 1123281, upload-time = "2025-08-07T13:42:39.858Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/3f/c7/12381b18e21aef2c6bd3a636da1088b888b97b7a0362fac2e4de92405f97/greenlet-3.2.4-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:20fb936b4652b6e307b8f347665e2c615540d4b42b3b4c8a321d8286da7e520f", size = 1151142, upload-time = "2025-08-07T13:18:22.981Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/27/45/80935968b53cfd3f33cf99ea5f08227f2646e044568c9b1555b58ffd61c2/greenlet-3.2.4-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:ee7a6ec486883397d70eec05059353b8e83eca9168b9f3f9a361971e77e0bcd0", size = 1564846, upload-time = "2025-11-04T12:42:15.191Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/69/02/b7c30e5e04752cb4db6202a3858b149c0710e5453b71a3b2aec5d78a1aab/greenlet-3.2.4-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:326d234cbf337c9c3def0676412eb7040a35a768efc92504b947b3e9cfc7543d", size = 1633814, upload-time = "2025-11-04T12:42:17.175Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/e9/08/b0814846b79399e585f974bbeebf5580fbe59e258ea7be64d9dfb253c84f/greenlet-3.2.4-cp312-cp312-win_amd64.whl", hash = "sha256:a7d4e128405eea3814a12cc2605e0e6aedb4035bf32697f72deca74de4105e02", size = 299899, upload-time = "2025-08-07T13:38:53.448Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/49/e8/58c7f85958bda41dafea50497cbd59738c5c43dbbea5ee83d651234398f4/greenlet-3.2.4-cp313-cp313-macosx_11_0_universal2.whl", hash = "sha256:1a921e542453fe531144e91e1feedf12e07351b1cf6c9e8a3325ea600a715a31", size = 272814, upload-time = "2025-08-07T13:15:50.011Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/62/dd/b9f59862e9e257a16e4e610480cfffd29e3fae018a68c2332090b53aac3d/greenlet-3.2.4-cp313-cp313-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:cd3c8e693bff0fff6ba55f140bf390fa92c994083f838fece0f63be121334945", size = 641073, upload-time = "2025-08-07T13:42:57.23Z" },
|
||||
@@ -226,8 +220,6 @@ wheels = [
|
||||
{ url = "https://files.pythonhosted.org/packages/ee/43/3cecdc0349359e1a527cbf2e3e28e5f8f06d3343aaf82ca13437a9aa290f/greenlet-3.2.4-cp313-cp313-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:23768528f2911bcd7e475210822ffb5254ed10d71f4028387e5a99b4c6699671", size = 610497, upload-time = "2025-08-07T13:18:31.636Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/b8/19/06b6cf5d604e2c382a6f31cafafd6f33d5dea706f4db7bdab184bad2b21d/greenlet-3.2.4-cp313-cp313-musllinux_1_1_aarch64.whl", hash = "sha256:00fadb3fedccc447f517ee0d3fd8fe49eae949e1cd0f6a611818f4f6fb7dc83b", size = 1121662, upload-time = "2025-08-07T13:42:41.117Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/a2/15/0d5e4e1a66fab130d98168fe984c509249c833c1a3c16806b90f253ce7b9/greenlet-3.2.4-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:d25c5091190f2dc0eaa3f950252122edbbadbb682aa7b1ef2f8af0f8c0afefae", size = 1149210, upload-time = "2025-08-07T13:18:24.072Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/1c/53/f9c440463b3057485b8594d7a638bed53ba531165ef0ca0e6c364b5cc807/greenlet-3.2.4-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:6e343822feb58ac4d0a1211bd9399de2b3a04963ddeec21530fc426cc121f19b", size = 1564759, upload-time = "2025-11-04T12:42:19.395Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/47/e4/3bb4240abdd0a8d23f4f88adec746a3099f0d86bfedb623f063b2e3b4df0/greenlet-3.2.4-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:ca7f6f1f2649b89ce02f6f229d7c19f680a6238af656f61e0115b24857917929", size = 1634288, upload-time = "2025-11-04T12:42:21.174Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/0b/55/2321e43595e6801e105fcfdee02b34c0f996eb71e6ddffca6b10b7e1d771/greenlet-3.2.4-cp313-cp313-win_amd64.whl", hash = "sha256:554b03b6e73aaabec3745364d6239e9e012d64c68ccd0b8430c64ccc14939a8b", size = 299685, upload-time = "2025-08-07T13:24:38.824Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/22/5c/85273fd7cc388285632b0498dbbab97596e04b154933dfe0f3e68156c68c/greenlet-3.2.4-cp314-cp314-macosx_11_0_universal2.whl", hash = "sha256:49a30d5fda2507ae77be16479bdb62a660fa51b1eb4928b524975b3bde77b3c0", size = 273586, upload-time = "2025-08-07T13:16:08.004Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/d1/75/10aeeaa3da9332c2e761e4c50d4c3556c21113ee3f0afa2cf5769946f7a3/greenlet-3.2.4-cp314-cp314-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:299fd615cd8fc86267b47597123e3f43ad79c9d8a22bebdce535e53550763e2f", size = 686346, upload-time = "2025-08-07T13:42:59.944Z" },
|
||||
@@ -235,8 +227,6 @@ wheels = [
|
||||
{ url = "https://files.pythonhosted.org/packages/dc/8b/29aae55436521f1d6f8ff4e12fb676f3400de7fcf27fccd1d4d17fd8fecd/greenlet-3.2.4-cp314-cp314-manylinux2014_s390x.manylinux_2_17_s390x.whl", hash = "sha256:b4a1870c51720687af7fa3e7cda6d08d801dae660f75a76f3845b642b4da6ee1", size = 694659, upload-time = "2025-08-07T13:53:17.759Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/92/2e/ea25914b1ebfde93b6fc4ff46d6864564fba59024e928bdc7de475affc25/greenlet-3.2.4-cp314-cp314-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:061dc4cf2c34852b052a8620d40f36324554bc192be474b9e9770e8c042fd735", size = 695355, upload-time = "2025-08-07T13:18:34.517Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/72/60/fc56c62046ec17f6b0d3060564562c64c862948c9d4bc8aa807cf5bd74f4/greenlet-3.2.4-cp314-cp314-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:44358b9bf66c8576a9f57a590d5f5d6e72fa4228b763d0e43fee6d3b06d3a337", size = 657512, upload-time = "2025-08-07T13:18:33.969Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/23/6e/74407aed965a4ab6ddd93a7ded3180b730d281c77b765788419484cdfeef/greenlet-3.2.4-cp314-cp314-musllinux_1_2_aarch64.whl", hash = "sha256:2917bdf657f5859fbf3386b12d68ede4cf1f04c90c3a6bc1f013dd68a22e2269", size = 1612508, upload-time = "2025-11-04T12:42:23.427Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/0d/da/343cd760ab2f92bac1845ca07ee3faea9fe52bee65f7bcb19f16ad7de08b/greenlet-3.2.4-cp314-cp314-musllinux_1_2_x86_64.whl", hash = "sha256:015d48959d4add5d6c9f6c5210ee3803a830dce46356e3bc326d6776bde54681", size = 1680760, upload-time = "2025-11-04T12:42:25.341Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/e3/a5/6ddab2b4c112be95601c13428db1d8b6608a8b6039816f2ba09c346c08fc/greenlet-3.2.4-cp314-cp314-win_amd64.whl", hash = "sha256:e37ab26028f12dbb0ff65f29a8d3d44a765c61e729647bf2ddfbbed621726f01", size = 303425, upload-time = "2025-08-07T13:32:27.59Z" },
|
||||
]
|
||||
|
||||
@@ -337,21 +327,7 @@ wheels = [
|
||||
|
||||
[[package]]
|
||||
name = "langchain"
|
||||
version = "1.0.0"
|
||||
source = { registry = "https://pypi.org/simple" }
|
||||
dependencies = [
|
||||
{ name = "langchain-core" },
|
||||
{ name = "langgraph" },
|
||||
{ name = "pydantic" },
|
||||
]
|
||||
sdist = { url = "https://files.pythonhosted.org/packages/7d/b8/36078257ba52351608129ee983079a4d77ee69eb1470ee248cd8f5728a31/langchain-1.0.0.tar.gz", hash = "sha256:56bf90d935ac1dda864519372d195ca58757b755dd4c44b87840b67d069085b7", size = 466932, upload-time = "2025-10-17T20:53:20.319Z" }
|
||||
wheels = [
|
||||
{ url = "https://files.pythonhosted.org/packages/c4/4d/2758a16ad01716c0fb3fe9ec205fd530eae4528b35a27ff44837c399e032/langchain-1.0.0-py3-none-any.whl", hash = "sha256:8c95e41250fc86d09a978fbdf999f86c18d50a28a2addc5da88546af00a1ad15", size = 106202, upload-time = "2025-10-17T20:53:18.685Z" },
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "langchain-classic"
|
||||
version = "1.0.1"
|
||||
version = "0.3.27"
|
||||
source = { editable = "../langchain" }
|
||||
dependencies = [
|
||||
{ name = "async-timeout", marker = "python_full_version < '3.11'" },
|
||||
@@ -368,28 +344,20 @@ dependencies = [
|
||||
requires-dist = [
|
||||
{ name = "async-timeout", marker = "python_full_version < '3.11'", specifier = ">=4.0.0,<5.0.0" },
|
||||
{ name = "langchain-anthropic", marker = "extra == 'anthropic'" },
|
||||
{ name = "langchain-aws", marker = "extra == 'aws'" },
|
||||
{ name = "langchain-community", marker = "extra == 'community'" },
|
||||
{ name = "langchain-core", editable = "../core" },
|
||||
{ name = "langchain-deepseek", marker = "extra == 'deepseek'" },
|
||||
{ name = "langchain-fireworks", marker = "extra == 'fireworks'" },
|
||||
{ name = "langchain-google-genai", marker = "extra == 'google-genai'" },
|
||||
{ name = "langchain-google-vertexai", marker = "extra == 'google-vertexai'" },
|
||||
{ name = "langchain-groq", marker = "extra == 'groq'" },
|
||||
{ name = "langchain-huggingface", marker = "extra == 'huggingface'" },
|
||||
{ name = "langchain-mistralai", marker = "extra == 'mistralai'" },
|
||||
{ name = "langchain-ollama", marker = "extra == 'ollama'" },
|
||||
{ name = "langchain-openai", marker = "extra == 'openai'", editable = "../partners/openai" },
|
||||
{ name = "langchain-perplexity", marker = "extra == 'perplexity'" },
|
||||
{ name = "langchain-text-splitters", editable = "../text-splitters" },
|
||||
{ name = "langchain-together", marker = "extra == 'together'" },
|
||||
{ name = "langchain-xai", marker = "extra == 'xai'" },
|
||||
{ name = "langsmith", specifier = ">=0.1.17,<1.0.0" },
|
||||
{ name = "pydantic", specifier = ">=2.7.4,<3.0.0" },
|
||||
{ name = "pyyaml", specifier = ">=5.3.0,<7.0.0" },
|
||||
{ name = "requests", specifier = ">=2.0.0,<3.0.0" },
|
||||
{ name = "sqlalchemy", specifier = ">=1.4.0,<3.0.0" },
|
||||
]
|
||||
provides-extras = ["anthropic", "openai", "google-vertexai", "google-genai", "fireworks", "ollama", "together", "mistralai", "huggingface", "groq", "aws", "deepseek", "xai", "perplexity"]
|
||||
provides-extras = ["community", "anthropic", "openai", "google-vertexai", "google-genai", "together"]
|
||||
|
||||
[package.metadata.requires-dev]
|
||||
dev = [
|
||||
@@ -405,8 +373,10 @@ lint = [
|
||||
{ name = "ruff", specifier = ">=0.13.1,<0.14.0" },
|
||||
]
|
||||
test = [
|
||||
{ name = "blockbuster", specifier = ">=1.5.18,<1.6.0" },
|
||||
{ name = "cffi", marker = "python_full_version < '3.10'", specifier = "<1.17.1" },
|
||||
{ name = "cffi", marker = "python_full_version >= '3.10'" },
|
||||
{ name = "duckdb-engine", specifier = ">=0.9.2,<1.0.0" },
|
||||
{ name = "freezegun", specifier = ">=1.2.2,<2.0.0" },
|
||||
{ name = "langchain-core", editable = "../core" },
|
||||
{ name = "langchain-openai", editable = "../partners/openai" },
|
||||
@@ -441,10 +411,9 @@ test-integration = [
|
||||
{ name = "wrapt", specifier = ">=1.15.0,<2.0.0" },
|
||||
]
|
||||
typing = [
|
||||
{ name = "fastapi", specifier = ">=0.116.1,<1.0.0" },
|
||||
{ name = "langchain-core", editable = "../core" },
|
||||
{ name = "langchain-text-splitters", editable = "../text-splitters" },
|
||||
{ name = "mypy", specifier = ">=1.18.2,<1.19.0" },
|
||||
{ name = "mypy", specifier = ">=1.15.0,<1.16.0" },
|
||||
{ name = "mypy-protobuf", specifier = ">=3.0.0,<4.0.0" },
|
||||
{ name = "numpy", marker = "python_full_version < '3.13'", specifier = ">=1.26.4" },
|
||||
{ name = "numpy", marker = "python_full_version >= '3.13'", specifier = ">=2.1.0" },
|
||||
@@ -475,15 +444,15 @@ dev = [
|
||||
{ name = "pytest-watcher" },
|
||||
]
|
||||
lint = [
|
||||
{ name = "mypy" },
|
||||
{ name = "ruff" },
|
||||
]
|
||||
test = [
|
||||
{ name = "langchain-classic" },
|
||||
{ name = "langchain" },
|
||||
{ name = "langchain-core" },
|
||||
]
|
||||
typing = [
|
||||
{ name = "langchain-classic" },
|
||||
{ name = "mypy" },
|
||||
{ name = "langchain" },
|
||||
]
|
||||
|
||||
[package.metadata]
|
||||
@@ -501,20 +470,20 @@ dev = [
|
||||
{ name = "pytest", specifier = ">=7.4.2,<9.0.0" },
|
||||
{ name = "pytest-watcher", specifier = ">=0.3.4,<1.0.0" },
|
||||
]
|
||||
lint = [{ name = "ruff", specifier = ">=0.14.10,<0.15.0" }]
|
||||
lint = [
|
||||
{ name = "mypy", specifier = ">=1.18.1,<1.19" },
|
||||
{ name = "ruff", specifier = ">=0.13.1,<0.14" },
|
||||
]
|
||||
test = [
|
||||
{ name = "langchain-classic", editable = "../langchain" },
|
||||
{ name = "langchain", editable = "../langchain" },
|
||||
{ name = "langchain-core", editable = "../core" },
|
||||
]
|
||||
test-integration = []
|
||||
typing = [
|
||||
{ name = "langchain-classic", editable = "../langchain" },
|
||||
{ name = "mypy", specifier = ">=1.19.1,<1.20" },
|
||||
]
|
||||
typing = [{ name = "langchain", editable = "../langchain" }]
|
||||
|
||||
[[package]]
|
||||
name = "langchain-core"
|
||||
version = "1.2.5"
|
||||
version = "1.0.0a6"
|
||||
source = { editable = "../core" }
|
||||
dependencies = [
|
||||
{ name = "jsonpatch" },
|
||||
@@ -524,7 +493,6 @@ dependencies = [
|
||||
{ name = "pyyaml" },
|
||||
{ name = "tenacity" },
|
||||
{ name = "typing-extensions" },
|
||||
{ name = "uuid-utils" },
|
||||
]
|
||||
|
||||
[package.metadata]
|
||||
@@ -536,7 +504,6 @@ requires-dist = [
|
||||
{ name = "pyyaml", specifier = ">=5.3.0,<7.0.0" },
|
||||
{ name = "tenacity", specifier = ">=8.1.0,!=8.4.0,<10.0.0" },
|
||||
{ name = "typing-extensions", specifier = ">=4.7.0,<5.0.0" },
|
||||
{ name = "uuid-utils", specifier = ">=0.12.0,<1.0" },
|
||||
]
|
||||
|
||||
[package.metadata.requires-dev]
|
||||
@@ -545,7 +512,7 @@ dev = [
|
||||
{ name = "jupyter", specifier = ">=1.0.0,<2.0.0" },
|
||||
{ name = "setuptools", specifier = ">=67.6.1,<68.0.0" },
|
||||
]
|
||||
lint = [{ name = "ruff", specifier = ">=0.14.10,<0.15.0" }]
|
||||
lint = [{ name = "ruff", specifier = ">=0.13.1,<0.14.0" }]
|
||||
test = [
|
||||
{ name = "blockbuster", specifier = ">=1.5.18,<1.6.0" },
|
||||
{ name = "freezegun", specifier = ">=1.2.2,<2.0.0" },
|
||||
@@ -567,14 +534,14 @@ test = [
|
||||
test-integration = []
|
||||
typing = [
|
||||
{ name = "langchain-text-splitters", directory = "../text-splitters" },
|
||||
{ name = "mypy", specifier = ">=1.19.1,<1.20.0" },
|
||||
{ name = "mypy", specifier = ">=1.18.1,<1.19.0" },
|
||||
{ name = "types-pyyaml", specifier = ">=6.0.12.2,<7.0.0.0" },
|
||||
{ name = "types-requests", specifier = ">=2.28.11.5,<3.0.0.0" },
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "langchain-text-splitters"
|
||||
version = "1.1.0"
|
||||
version = "1.0.0a1"
|
||||
source = { editable = "../text-splitters" }
|
||||
dependencies = [
|
||||
{ name = "langchain-core" },
|
||||
@@ -607,8 +574,8 @@ test-integration = [
|
||||
{ name = "nltk", specifier = ">=3.9.1,<4.0.0" },
|
||||
{ name = "scipy", marker = "python_full_version == '3.12.*'", specifier = ">=1.7.0,<2.0.0" },
|
||||
{ name = "scipy", marker = "python_full_version >= '3.13'", specifier = ">=1.14.1,<2.0.0" },
|
||||
{ name = "sentence-transformers", marker = "python_full_version < '3.14'", specifier = ">=3.0.1,<4.0.0" },
|
||||
{ name = "spacy", marker = "python_full_version < '3.14'", specifier = ">=3.8.7,<4.0.0" },
|
||||
{ name = "sentence-transformers", specifier = ">=3.0.1,<4.0.0" },
|
||||
{ name = "spacy", specifier = ">=3.8.7,<4.0.0" },
|
||||
{ name = "thinc", specifier = ">=8.3.6,<9.0.0" },
|
||||
{ name = "tiktoken", specifier = ">=0.8.0,<1.0.0" },
|
||||
{ name = "transformers", specifier = ">=4.51.3,<5.0.0" },
|
||||
@@ -621,62 +588,6 @@ typing = [
|
||||
{ name = "types-requests", specifier = ">=2.31.0.20240218,<3.0.0.0" },
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "langgraph"
|
||||
version = "1.0.0"
|
||||
source = { registry = "https://pypi.org/simple" }
|
||||
dependencies = [
|
||||
{ name = "langchain-core" },
|
||||
{ name = "langgraph-checkpoint" },
|
||||
{ name = "langgraph-prebuilt" },
|
||||
{ name = "langgraph-sdk" },
|
||||
{ name = "pydantic" },
|
||||
{ name = "xxhash" },
|
||||
]
|
||||
sdist = { url = "https://files.pythonhosted.org/packages/57/f7/7ae10f1832ab1a6a402f451e54d6dab277e28e7d4e4204e070c7897ca71c/langgraph-1.0.0.tar.gz", hash = "sha256:5f83ed0e9bbcc37635bc49cbc9b3d9306605fa07504f955b7a871ed715f9964c", size = 472835, upload-time = "2025-10-17T20:23:38.263Z" }
|
||||
wheels = [
|
||||
{ url = "https://files.pythonhosted.org/packages/07/42/6f6d0fe4eb661b06da8e6c59e58044e9e4221fdbffdcacae864557de961e/langgraph-1.0.0-py3-none-any.whl", hash = "sha256:4d478781832a1bc67e06c3eb571412ec47d7c57a5467d1f3775adf0e9dd4042c", size = 155416, upload-time = "2025-10-17T20:23:36.978Z" },
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "langgraph-checkpoint"
|
||||
version = "2.1.2"
|
||||
source = { registry = "https://pypi.org/simple" }
|
||||
dependencies = [
|
||||
{ name = "langchain-core" },
|
||||
{ name = "ormsgpack" },
|
||||
]
|
||||
sdist = { url = "https://files.pythonhosted.org/packages/29/83/6404f6ed23a91d7bc63d7df902d144548434237d017820ceaa8d014035f2/langgraph_checkpoint-2.1.2.tar.gz", hash = "sha256:112e9d067a6eff8937caf198421b1ffba8d9207193f14ac6f89930c1260c06f9", size = 142420, upload-time = "2025-10-07T17:45:17.129Z" }
|
||||
wheels = [
|
||||
{ url = "https://files.pythonhosted.org/packages/c4/f2/06bf5addf8ee664291e1b9ffa1f28fc9d97e59806dc7de5aea9844cbf335/langgraph_checkpoint-2.1.2-py3-none-any.whl", hash = "sha256:911ebffb069fd01775d4b5184c04aaafc2962fcdf50cf49d524cd4367c4d0c60", size = 45763, upload-time = "2025-10-07T17:45:16.19Z" },
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "langgraph-prebuilt"
|
||||
version = "1.0.0"
|
||||
source = { registry = "https://pypi.org/simple" }
|
||||
dependencies = [
|
||||
{ name = "langchain-core" },
|
||||
{ name = "langgraph-checkpoint" },
|
||||
]
|
||||
sdist = { url = "https://files.pythonhosted.org/packages/02/2d/934b1129e217216a0dfaf0f7df0a10cedf2dfafe6cc8e1ee238cafaaa4a7/langgraph_prebuilt-1.0.0.tar.gz", hash = "sha256:eb75dad9aca0137451ca0395aa8541a665b3f60979480b0431d626fd195dcda2", size = 119927, upload-time = "2025-10-17T20:15:21.429Z" }
|
||||
wheels = [
|
||||
{ url = "https://files.pythonhosted.org/packages/33/2e/ffa698eedc4c355168a9207ee598b2cc74ede92ce2b55c3469ea06978b6e/langgraph_prebuilt-1.0.0-py3-none-any.whl", hash = "sha256:ceaae4c5cee8c1f9b6468f76c114cafebb748aed0c93483b7c450e5a89de9c61", size = 28455, upload-time = "2025-10-17T20:15:20.043Z" },
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "langgraph-sdk"
|
||||
version = "0.2.9"
|
||||
source = { registry = "https://pypi.org/simple" }
|
||||
dependencies = [
|
||||
{ name = "httpx" },
|
||||
{ name = "orjson" },
|
||||
]
|
||||
sdist = { url = "https://files.pythonhosted.org/packages/23/d8/40e01190a73c564a4744e29a6c902f78d34d43dad9b652a363a92a67059c/langgraph_sdk-0.2.9.tar.gz", hash = "sha256:b3bd04c6be4fa382996cd2be8fbc1e7cc94857d2bc6b6f4599a7f2a245975303", size = 99802, upload-time = "2025-09-20T18:49:14.734Z" }
|
||||
wheels = [
|
||||
{ url = "https://files.pythonhosted.org/packages/66/05/b2d34e16638241e6f27a6946d28160d4b8b641383787646d41a3727e0896/langgraph_sdk-0.2.9-py3-none-any.whl", hash = "sha256:fbf302edadbf0fb343596f91c597794e936ef68eebc0d3e1d358b6f9f72a1429", size = 56752, upload-time = "2025-09-20T18:49:13.346Z" },
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "langserve"
|
||||
version = "0.0.51"
|
||||
@@ -717,79 +628,6 @@ wheels = [
|
||||
{ url = "https://files.pythonhosted.org/packages/3e/8e/e7a43d907a147e1f87eebdd6737483f9feba52a5d4b20f69d0bd6f2fa22f/langsmith-0.4.31-py3-none-any.whl", hash = "sha256:64f340bdead21defe5f4a6ca330c11073e35444989169f669508edf45a19025f", size = 386347, upload-time = "2025-09-25T04:18:16.69Z" },
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "librt"
|
||||
version = "0.7.5"
|
||||
source = { registry = "https://pypi.org/simple" }
|
||||
sdist = { url = "https://files.pythonhosted.org/packages/b5/8a/071f6628363d83e803d4783e0cd24fb9c5b798164300fcfaaa47c30659c0/librt-0.7.5.tar.gz", hash = "sha256:de4221a1181fa9c8c4b5f35506ed6f298948f44003d84d2a8b9885d7e01e6cfa", size = 145868, upload-time = "2025-12-25T03:53:16.039Z" }
|
||||
wheels = [
|
||||
{ url = "https://files.pythonhosted.org/packages/88/f2/3248d8419db99ab80bb36266735d1241f766ad5fd993071211f789b618a5/librt-0.7.5-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:81056e01bba1394f1d92904ec61a4078f66df785316275edbaf51d90da8c6e26", size = 54703, upload-time = "2025-12-25T03:51:48.394Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/7b/30/7e179543dbcb1311f84b7e797658ad85cf2d4474c468f5dbafa13f2a98a5/librt-0.7.5-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:d7c72c8756eeb3aefb1b9e3dac7c37a4a25db63640cac0ab6fc18e91a0edf05a", size = 56660, upload-time = "2025-12-25T03:51:49.791Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/15/91/3ba03ac1ac1abd66757a134b3bd56d9674928b163d0e686ea065a2bbb92d/librt-0.7.5-cp310-cp310-manylinux1_i686.manylinux_2_28_i686.manylinux_2_5_i686.whl", hash = "sha256:ddc4a16207f88f9597b397fc1f60781266d13b13de922ff61c206547a29e4bbd", size = 161026, upload-time = "2025-12-25T03:51:51.021Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/0d/6e/b8365f547817d37b44c4be2ffa02630be995ef18be52d72698cecc3640c5/librt-0.7.5-cp310-cp310-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:63055d3dda433ebb314c9f1819942f16a19203c454508fdb2d167613f7017169", size = 169530, upload-time = "2025-12-25T03:51:52.417Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/63/6a/8442eb0b6933c651a06e1888f863971f3391cc11338fdaa6ab969f7d1eac/librt-0.7.5-cp310-cp310-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:9f85f9b5db87b0f52e53c68ad2a0c5a53e00afa439bd54a1723742a2b1021276", size = 183272, upload-time = "2025-12-25T03:51:53.713Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/90/c4/b1166df6ef8e1f68d309f50bf69e8e750a5ea12fe7e2cf202c771ff359fc/librt-0.7.5-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:c566a4672564c5d54d8ab65cdaae5a87ee14c1564c1a2ddc7a9f5811c750f023", size = 179040, upload-time = "2025-12-25T03:51:55.048Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/fc/30/8f3fd9fd975b16c37832d6c248b976d2a0e33f155063781e064f249b37f1/librt-0.7.5-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:fee15c2a190ef389f14928135c6fb2d25cd3fdb7887bfd9a7b444bbdc8c06b96", size = 173506, upload-time = "2025-12-25T03:51:56.407Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/75/71/c3d4d5658f9849bf8e07ffba99f892d49a0c9a4001323ed610db72aedc82/librt-0.7.5-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:584cb3e605ec45ba350962cec853e17be0a25a772f21f09f1e422f7044ae2a7d", size = 193573, upload-time = "2025-12-25T03:51:57.949Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/86/7c/c1c8a0116a2eed3d58c8946c589a8f9e1354b9b825cc92eba58bb15f6fb1/librt-0.7.5-cp310-cp310-win32.whl", hash = "sha256:9c08527055fbb03c641c15bbc5b79dd2942fb6a3bd8dabf141dd7e97eeea4904", size = 42603, upload-time = "2025-12-25T03:51:59.215Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/1d/00/b52c77ca294247420020b829b70465c6e6f2b9d59ab21d8051aac20432da/librt-0.7.5-cp310-cp310-win_amd64.whl", hash = "sha256:dd810f2d39c526c42ea205e0addad5dc08ef853c625387806a29d07f9d150d9b", size = 48977, upload-time = "2025-12-25T03:52:00.519Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/11/89/42b3ccb702a7e5f7a4cf2afc8a0a8f8c5e7d4b4d3a7c3de6357673dddddb/librt-0.7.5-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:f952e1a78c480edee8fb43aa2bf2e84dcd46c917d44f8065b883079d3893e8fc", size = 54705, upload-time = "2025-12-25T03:52:01.433Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/bb/90/c16970b509c3c448c365041d326eeef5aeb2abaed81eb3187b26a3cd13f8/librt-0.7.5-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:75965c1f4efb7234ff52a58b729d245a21e87e4b6a26a0ec08052f02b16274e4", size = 56667, upload-time = "2025-12-25T03:52:02.391Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/ac/2f/da4bdf6c190503f4663fbb781dfae5564a2b1c3f39a2da8e1ac7536ac7bd/librt-0.7.5-cp311-cp311-manylinux1_i686.manylinux_2_28_i686.manylinux_2_5_i686.whl", hash = "sha256:732e0aa0385b59a1b2545159e781c792cc58ce9c134249233a7c7250a44684c4", size = 161705, upload-time = "2025-12-25T03:52:03.395Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/fb/88/c5da8e1f5f22b23d56e1fbd87266799dcf32828d47bf69fabc6f9673c6eb/librt-0.7.5-cp311-cp311-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:cdde31759bd8888f3ef0eebda80394a48961328a17c264dce8cc35f4b9cde35d", size = 171029, upload-time = "2025-12-25T03:52:04.798Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/38/8a/8dfc00a6f1febc094ed9a55a448fc0b3a591b5dfd83be6cfd76d0910b1f0/librt-0.7.5-cp311-cp311-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:df3146d52465b3b6397d25d513f428cb421c18df65b7378667bb5f1e3cc45805", size = 184704, upload-time = "2025-12-25T03:52:05.887Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/ad/57/65dec835ff235f431801064a3b41268f2f5ee0d224dc3bbf46d911af5c1a/librt-0.7.5-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:29c8d2fae11d4379ea207ba7fc69d43237e42cf8a9f90ec6e05993687e6d648b", size = 180720, upload-time = "2025-12-25T03:52:06.925Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/1e/27/92033d169bbcaa0d9a2dd476c179e5171ec22ed574b1b135a3c6104fb7d4/librt-0.7.5-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:bb41f04046b4f22b1e7ba5ef513402cd2e3477ec610e5f92d38fe2bba383d419", size = 174538, upload-time = "2025-12-25T03:52:08.075Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/44/5c/0127098743575d5340624d8d4ec508d4d5ff0877dcee6f55f54bf03e5ed0/librt-0.7.5-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:8bb7883c1e94ceb87c2bf81385266f032da09cd040e804cc002f2c9d6b842e2f", size = 195240, upload-time = "2025-12-25T03:52:09.427Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/47/0f/be028c3e906a8ee6d29a42fd362e6d57d4143057f2bc0c454d489a0f898b/librt-0.7.5-cp311-cp311-win32.whl", hash = "sha256:84d4a6b9efd6124f728558a18e79e7cc5c5d4efc09b2b846c910de7e564f5bad", size = 42941, upload-time = "2025-12-25T03:52:10.527Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/ac/3a/2f0ed57f4c3ae3c841780a95dfbea4cd811c6842d9ee66171ce1af606d25/librt-0.7.5-cp311-cp311-win_amd64.whl", hash = "sha256:ab4b0d3bee6f6ff7017e18e576ac7e41a06697d8dea4b8f3ab9e0c8e1300c409", size = 49244, upload-time = "2025-12-25T03:52:11.832Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/ee/7c/d7932aedfa5a87771f9e2799e7185ec3a322f4a1f4aa87c234159b75c8c8/librt-0.7.5-cp311-cp311-win_arm64.whl", hash = "sha256:730be847daad773a3c898943cf67fb9845a3961d06fb79672ceb0a8cd8624cfa", size = 42614, upload-time = "2025-12-25T03:52:12.745Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/33/9d/cb0a296cee177c0fee7999ada1c1af7eee0e2191372058814a4ca6d2baf0/librt-0.7.5-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:ba1077c562a046208a2dc6366227b3eeae8f2c2ab4b41eaf4fd2fa28cece4203", size = 55689, upload-time = "2025-12-25T03:52:14.041Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/79/5c/d7de4d4228b74c5b81a3fbada157754bb29f0e1f8c38229c669a7f90422a/librt-0.7.5-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:654fdc971c76348a73af5240d8e2529265b9a7ba6321e38dd5bae7b0d4ab3abe", size = 57142, upload-time = "2025-12-25T03:52:15.336Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/e5/b2/5da779184aae369b69f4ae84225f63741662a0fe422e91616c533895d7a4/librt-0.7.5-cp312-cp312-manylinux1_i686.manylinux_2_28_i686.manylinux_2_5_i686.whl", hash = "sha256:6b7b58913d475911f6f33e8082f19dd9b120c4f4a5c911d07e395d67b81c6982", size = 165323, upload-time = "2025-12-25T03:52:16.384Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/5a/40/6d5abc15ab6cc70e04c4d201bb28baffff4cfb46ab950b8e90935b162d58/librt-0.7.5-cp312-cp312-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:b8e0fd344bad57026a8f4ccfaf406486c2fc991838050c2fef156170edc3b775", size = 174218, upload-time = "2025-12-25T03:52:17.518Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/0d/d0/5239a8507e6117a3cb59ce0095bdd258bd2a93d8d4b819a506da06d8d645/librt-0.7.5-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:46aa91813c267c3f60db75d56419b42c0c0b9748ec2c568a0e3588e543fb4233", size = 189007, upload-time = "2025-12-25T03:52:18.585Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/1f/a4/8eed1166ffddbb01c25363e4c4e655f4bac298debe9e5a2dcfaf942438a1/librt-0.7.5-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:ddc0ab9dbc5f9ceaf2bf7a367bf01f2697660e908f6534800e88f43590b271db", size = 183962, upload-time = "2025-12-25T03:52:19.723Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/a1/83/260e60aab2f5ccba04579c5c46eb3b855e51196fde6e2bcf6742d89140a8/librt-0.7.5-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:7a488908a470451338607650f1c064175094aedebf4a4fa37890682e30ce0b57", size = 177611, upload-time = "2025-12-25T03:52:21.18Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/c4/36/6dcfed0df41e9695665462bab59af15b7ed2b9c668d85c7ebadd022cbb76/librt-0.7.5-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:e47fc52602ffc374e69bf1b76536dc99f7f6dd876bd786c8213eaa3598be030a", size = 199273, upload-time = "2025-12-25T03:52:22.25Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/a6/b7/157149c8cffae6bc4293a52e0267860cee2398cb270798d94f1c8a69b9ae/librt-0.7.5-cp312-cp312-win32.whl", hash = "sha256:cda8b025875946ffff5a9a7590bf9acde3eb02cb6200f06a2d3e691ef3d9955b", size = 43191, upload-time = "2025-12-25T03:52:23.643Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/f8/91/197dfeb8d3bdeb0a5344d0d8b3077f183ba5e76c03f158126f6072730998/librt-0.7.5-cp312-cp312-win_amd64.whl", hash = "sha256:b591c094afd0ffda820e931148c9e48dc31a556dc5b2b9b3cc552fa710d858e4", size = 49462, upload-time = "2025-12-25T03:52:24.637Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/03/ea/052a79454cc52081dfaa9a1c4c10a529f7a6a6805b2fac5805fea5b25975/librt-0.7.5-cp312-cp312-win_arm64.whl", hash = "sha256:532ddc6a8a6ca341b1cd7f4d999043e4c71a212b26fe9fd2e7f1e8bb4e873544", size = 42830, upload-time = "2025-12-25T03:52:25.944Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/9f/9a/8f61e16de0ff76590af893cfb5b1aa5fa8b13e5e54433d0809c7033f59ed/librt-0.7.5-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:b1795c4b2789b458fa290059062c2f5a297ddb28c31e704d27e161386469691a", size = 55750, upload-time = "2025-12-25T03:52:26.975Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/05/7c/a8a883804851a066f301e0bad22b462260b965d5c9e7fe3c5de04e6f91f8/librt-0.7.5-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:2fcbf2e135c11f721193aa5f42ba112bb1046afafbffd407cbc81d8d735c74d0", size = 57170, upload-time = "2025-12-25T03:52:27.948Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/d6/5d/b3b47facf5945be294cf8a835b03589f70ee0e791522f99ec6782ed738b3/librt-0.7.5-cp313-cp313-manylinux1_i686.manylinux_2_28_i686.manylinux_2_5_i686.whl", hash = "sha256:c039bbf79a9a2498404d1ae7e29a6c175e63678d7a54013a97397c40aee026c5", size = 165834, upload-time = "2025-12-25T03:52:29.09Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/b4/b6/b26910cd0a4e43e5d02aacaaea0db0d2a52e87660dca08293067ee05601a/librt-0.7.5-cp313-cp313-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:3919c9407faeeee35430ae135e3a78acd4ecaaaa73767529e2c15ca1d73ba325", size = 174820, upload-time = "2025-12-25T03:52:30.463Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/a5/a3/81feddd345d4c869b7a693135a462ae275f964fcbbe793d01ea56a84c2ee/librt-0.7.5-cp313-cp313-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:26b46620e1e0e45af510d9848ea0915e7040605dd2ae94ebefb6c962cbb6f7ec", size = 189609, upload-time = "2025-12-25T03:52:31.492Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/ce/a9/31310796ef4157d1d37648bf4a3b84555319f14cee3e9bad7bdd7bfd9a35/librt-0.7.5-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:9bbb8facc5375476d392990dd6a71f97e4cb42e2ac66f32e860f6e47299d5e89", size = 184589, upload-time = "2025-12-25T03:52:32.59Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/32/22/da3900544cb0ac6ab7a2857850158a0a093b86f92b264aa6c4a4f2355ff3/librt-0.7.5-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:e9e9c988b5ffde7be02180f864cbd17c0b0c1231c235748912ab2afa05789c25", size = 178251, upload-time = "2025-12-25T03:52:33.745Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/db/77/78e02609846e78b9b8c8e361753b3dbac9a07e6d5b567fe518de9e074ab0/librt-0.7.5-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:edf6b465306215b19dbe6c3fb63cf374a8f3e1ad77f3b4c16544b83033bbb67b", size = 199852, upload-time = "2025-12-25T03:52:34.826Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/2a/25/05706f6b346429c951582f1b3561f4d5e1418d0d7ba1a0c181237cd77b3b/librt-0.7.5-cp313-cp313-win32.whl", hash = "sha256:060bde69c3604f694bd8ae21a780fe8be46bb3dbb863642e8dfc75c931ca8eee", size = 43250, upload-time = "2025-12-25T03:52:35.905Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/d9/59/c38677278ac0b9ae1afc611382ef6c9ea87f52ad257bd3d8d65f0eacdc6a/librt-0.7.5-cp313-cp313-win_amd64.whl", hash = "sha256:a82d5a0ee43aeae2116d7292c77cc8038f4841830ade8aa922e098933b468b9e", size = 49421, upload-time = "2025-12-25T03:52:36.895Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/c0/47/1d71113df4a81de5fdfbd3d7244e05d3d67e89f25455c3380ca50b92741e/librt-0.7.5-cp313-cp313-win_arm64.whl", hash = "sha256:3c98a8d0ac9e2a7cb8ff8c53e5d6e8d82bfb2839abf144fdeaaa832f2a12aa45", size = 42827, upload-time = "2025-12-25T03:52:37.856Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/97/ae/8635b4efdc784220f1378be640d8b1a794332f7f6ea81bb4859bf9d18aa7/librt-0.7.5-cp314-cp314-macosx_10_13_x86_64.whl", hash = "sha256:9937574e6d842f359b8585903d04f5b4ab62277a091a93e02058158074dc52f2", size = 55191, upload-time = "2025-12-25T03:52:38.839Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/52/11/ed7ef6955dc2032af37db9b0b31cd5486a138aa792e1bb9e64f0f4950e27/librt-0.7.5-cp314-cp314-macosx_11_0_arm64.whl", hash = "sha256:5cd3afd71e9bc146203b6c8141921e738364158d4aa7cdb9a874e2505163770f", size = 56894, upload-time = "2025-12-25T03:52:39.805Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/24/f1/02921d4a66a1b5dcd0493b89ce76e2762b98c459fe2ad04b67b2ea6fdd39/librt-0.7.5-cp314-cp314-manylinux1_i686.manylinux_2_28_i686.manylinux_2_5_i686.whl", hash = "sha256:9cffa3ef0af29687455161cb446eff059bf27607f95163d6a37e27bcb37180f6", size = 163726, upload-time = "2025-12-25T03:52:40.79Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/65/87/27df46d2756fcb7a82fa7f6ca038a0c6064c3e93ba65b0b86fbf6a4f76a2/librt-0.7.5-cp314-cp314-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:82f3f088482e2229387eadf8215c03f7726d56f69cce8c0c40f0795aebc9b361", size = 172470, upload-time = "2025-12-25T03:52:42.226Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/9f/a9/e65a35e5d423639f4f3d8e17301ff13cc41c2ff97677fe9c361c26dbfbb7/librt-0.7.5-cp314-cp314-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:d7aa33153a5bb0bac783d2c57885889b1162823384e8313d47800a0e10d0070e", size = 186807, upload-time = "2025-12-25T03:52:43.688Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/d7/b0/ac68aa582a996b1241773bd419823290c42a13dc9f494704a12a17ddd7b6/librt-0.7.5-cp314-cp314-musllinux_1_2_aarch64.whl", hash = "sha256:265729b551a2dd329cc47b323a182fb7961af42abf21e913c9dd7d3331b2f3c2", size = 181810, upload-time = "2025-12-25T03:52:45.095Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/e1/c1/03f6717677f20acd2d690813ec2bbe12a2de305f32c61479c53f7b9413bc/librt-0.7.5-cp314-cp314-musllinux_1_2_i686.whl", hash = "sha256:168e04663e126416ba712114050f413ac306759a1791d87b7c11d4428ba75760", size = 175599, upload-time = "2025-12-25T03:52:46.177Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/01/d7/f976ff4c07c59b69bb5eec7e5886d43243075bbef834428124b073471c86/librt-0.7.5-cp314-cp314-musllinux_1_2_x86_64.whl", hash = "sha256:553dc58987d1d853adda8aeadf4db8e29749f0b11877afcc429a9ad892818ae2", size = 196506, upload-time = "2025-12-25T03:52:47.327Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/b7/74/004f068b8888e61b454568b5479f88018fceb14e511ac0609cccee7dd227/librt-0.7.5-cp314-cp314-win32.whl", hash = "sha256:263f4fae9eba277513357c871275b18d14de93fd49bf5e43dc60a97b81ad5eb8", size = 39747, upload-time = "2025-12-25T03:52:48.437Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/37/b1/ea3ec8fcf5f0a00df21f08972af77ad799604a306db58587308067d27af8/librt-0.7.5-cp314-cp314-win_amd64.whl", hash = "sha256:85f485b7471571e99fab4f44eeb327dc0e1f814ada575f3fa85e698417d8a54e", size = 45970, upload-time = "2025-12-25T03:52:49.389Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/5d/30/5e3fb7ac4614a50fc67e6954926137d50ebc27f36419c9963a94f931f649/librt-0.7.5-cp314-cp314-win_arm64.whl", hash = "sha256:49c596cd18e90e58b7caa4d7ca7606049c1802125fcff96b8af73fa5c3870e4d", size = 39075, upload-time = "2025-12-25T03:52:50.395Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/a4/7f/0af0a9306a06c2aabee3a790f5aa560c50ec0a486ab818a572dd3db6c851/librt-0.7.5-cp314-cp314t-macosx_10_13_x86_64.whl", hash = "sha256:54d2aef0b0f5056f130981ad45081b278602ff3657fe16c88529f5058038e802", size = 57375, upload-time = "2025-12-25T03:52:51.439Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/57/1f/c85e510baf6572a3d6ef40c742eacedc02973ed2acdb5dba2658751d9af8/librt-0.7.5-cp314-cp314t-macosx_11_0_arm64.whl", hash = "sha256:0b4791202296ad51ac09a3ff58eb49d9da8e3a4009167a6d76ac418a974e5fd4", size = 59234, upload-time = "2025-12-25T03:52:52.687Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/49/b1/bb6535e4250cd18b88d6b18257575a0239fa1609ebba925f55f51ae08e8e/librt-0.7.5-cp314-cp314t-manylinux1_i686.manylinux_2_28_i686.manylinux_2_5_i686.whl", hash = "sha256:6e860909fea75baef941ee6436e0453612505883b9d0d87924d4fda27865b9a2", size = 183873, upload-time = "2025-12-25T03:52:53.705Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/8e/49/ad4a138cca46cdaa7f0e15fa912ce3ccb4cc0d4090bfeb8ccc35766fa6d5/librt-0.7.5-cp314-cp314t-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:f02c4337bf271c4f06637f5ff254fad2238c0b8e32a3a480ebb2fc5e26f754a5", size = 194609, upload-time = "2025-12-25T03:52:54.884Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/9c/2d/3b3cb933092d94bb2c1d3c9b503d8775f08d806588c19a91ee4d1495c2a8/librt-0.7.5-cp314-cp314t-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:f7f51ffe59f4556243d3cc82d827bde74765f594fa3ceb80ec4de0c13ccd3416", size = 206777, upload-time = "2025-12-25T03:52:55.969Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/3a/52/6e7611d3d1347812233dabc44abca4c8065ee97b83c9790d7ecc3f782bc8/librt-0.7.5-cp314-cp314t-musllinux_1_2_aarch64.whl", hash = "sha256:0b7f080ba30601dfa3e3deed3160352273e1b9bc92e652f51103c3e9298f7899", size = 203208, upload-time = "2025-12-25T03:52:57.036Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/27/aa/466ae4654bd2d45903fbf180815d41e3ae8903e5a1861f319f73c960a843/librt-0.7.5-cp314-cp314t-musllinux_1_2_i686.whl", hash = "sha256:fb565b4219abc8ea2402e61c7ba648a62903831059ed3564fa1245cc245d58d7", size = 196698, upload-time = "2025-12-25T03:52:58.481Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/97/8f/424f7e4525bb26fe0d3e984d1c0810ced95e53be4fd867ad5916776e18a3/librt-0.7.5-cp314-cp314t-musllinux_1_2_x86_64.whl", hash = "sha256:8a3cfb15961e7333ea6ef033dc574af75153b5c230d5ad25fbcd55198f21e0cf", size = 217194, upload-time = "2025-12-25T03:52:59.575Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/9e/33/13a4cb798a171b173f3c94db23adaf13a417130e1493933dc0df0d7fb439/librt-0.7.5-cp314-cp314t-win32.whl", hash = "sha256:118716de5ad6726332db1801bc90fa6d94194cd2e07c1a7822cebf12c496714d", size = 40282, upload-time = "2025-12-25T03:53:01.091Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/5f/f1/62b136301796399d65dad73b580f4509bcbd347dff885a450bff08e80cb6/librt-0.7.5-cp314-cp314t-win_amd64.whl", hash = "sha256:3dd58f7ce20360c6ce0c04f7bd9081c7f9c19fc6129a3c705d0c5a35439f201d", size = 46764, upload-time = "2025-12-25T03:53:02.381Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/49/cb/940431d9410fda74f941f5cd7f0e5a22c63be7b0c10fa98b2b7022b48cb1/librt-0.7.5-cp314-cp314t-win_arm64.whl", hash = "sha256:08153ea537609d11f774d2bfe84af39d50d5c9ca3a4d061d946e0c9d8bce04a1", size = 39728, upload-time = "2025-12-25T03:53:03.306Z" },
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "markdown-it-py"
|
||||
version = "4.0.0"
|
||||
@@ -813,48 +651,47 @@ wheels = [
|
||||
|
||||
[[package]]
|
||||
name = "mypy"
|
||||
version = "1.19.1"
|
||||
version = "1.18.2"
|
||||
source = { registry = "https://pypi.org/simple" }
|
||||
dependencies = [
|
||||
{ name = "librt", marker = "platform_python_implementation != 'PyPy'" },
|
||||
{ name = "mypy-extensions" },
|
||||
{ name = "pathspec" },
|
||||
{ name = "tomli", marker = "python_full_version < '3.11'" },
|
||||
{ name = "typing-extensions" },
|
||||
]
|
||||
sdist = { url = "https://files.pythonhosted.org/packages/f5/db/4efed9504bc01309ab9c2da7e352cc223569f05478012b5d9ece38fd44d2/mypy-1.19.1.tar.gz", hash = "sha256:19d88bb05303fe63f71dd2c6270daca27cb9401c4ca8255fe50d1d920e0eb9ba", size = 3582404, upload-time = "2025-12-15T05:03:48.42Z" }
|
||||
sdist = { url = "https://files.pythonhosted.org/packages/c0/77/8f0d0001ffad290cef2f7f216f96c814866248a0b92a722365ed54648e7e/mypy-1.18.2.tar.gz", hash = "sha256:06a398102a5f203d7477b2923dda3634c36727fa5c237d8f859ef90c42a9924b", size = 3448846, upload-time = "2025-09-19T00:11:10.519Z" }
|
||||
wheels = [
|
||||
{ url = "https://files.pythonhosted.org/packages/2f/63/e499890d8e39b1ff2df4c0c6ce5d371b6844ee22b8250687a99fd2f657a8/mypy-1.19.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:5f05aa3d375b385734388e844bc01733bd33c644ab48e9684faa54e5389775ec", size = 13101333, upload-time = "2025-12-15T05:03:03.28Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/72/4b/095626fc136fba96effc4fd4a82b41d688ab92124f8c4f7564bffe5cf1b0/mypy-1.19.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:022ea7279374af1a5d78dfcab853fe6a536eebfda4b59deab53cd21f6cd9f00b", size = 12164102, upload-time = "2025-12-15T05:02:33.611Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/0c/5b/952928dd081bf88a83a5ccd49aaecfcd18fd0d2710c7ff07b8fb6f7032b9/mypy-1.19.1-cp310-cp310-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:ee4c11e460685c3e0c64a4c5de82ae143622410950d6be863303a1c4ba0e36d6", size = 12765799, upload-time = "2025-12-15T05:03:28.44Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/2a/0d/93c2e4a287f74ef11a66fb6d49c7a9f05e47b0a4399040e6719b57f500d2/mypy-1.19.1-cp310-cp310-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:de759aafbae8763283b2ee5869c7255391fbc4de3ff171f8f030b5ec48381b74", size = 13522149, upload-time = "2025-12-15T05:02:36.011Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/7b/0e/33a294b56aaad2b338d203e3a1d8b453637ac36cb278b45005e0901cf148/mypy-1.19.1-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:ab43590f9cd5108f41aacf9fca31841142c786827a74ab7cc8a2eacb634e09a1", size = 13810105, upload-time = "2025-12-15T05:02:40.327Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/0e/fd/3e82603a0cb66b67c5e7abababce6bf1a929ddf67bf445e652684af5c5a0/mypy-1.19.1-cp310-cp310-win_amd64.whl", hash = "sha256:2899753e2f61e571b3971747e302d5f420c3fd09650e1951e99f823bc3089dac", size = 10057200, upload-time = "2025-12-15T05:02:51.012Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/ef/47/6b3ebabd5474d9cdc170d1342fbf9dddc1b0ec13ec90bf9004ee6f391c31/mypy-1.19.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:d8dfc6ab58ca7dda47d9237349157500468e404b17213d44fc1cb77bce532288", size = 13028539, upload-time = "2025-12-15T05:03:44.129Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/5c/a6/ac7c7a88a3c9c54334f53a941b765e6ec6c4ebd65d3fe8cdcfbe0d0fd7db/mypy-1.19.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:e3f276d8493c3c97930e354b2595a44a21348b320d859fb4a2b9f66da9ed27ab", size = 12083163, upload-time = "2025-12-15T05:03:37.679Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/67/af/3afa9cf880aa4a2c803798ac24f1d11ef72a0c8079689fac5cfd815e2830/mypy-1.19.1-cp311-cp311-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:2abb24cf3f17864770d18d673c85235ba52456b36a06b6afc1e07c1fdcd3d0e6", size = 12687629, upload-time = "2025-12-15T05:02:31.526Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/2d/46/20f8a7114a56484ab268b0ab372461cb3a8f7deed31ea96b83a4e4cfcfca/mypy-1.19.1-cp311-cp311-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:a009ffa5a621762d0c926a078c2d639104becab69e79538a494bcccb62cc0331", size = 13436933, upload-time = "2025-12-15T05:03:15.606Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/5b/f8/33b291ea85050a21f15da910002460f1f445f8007adb29230f0adea279cb/mypy-1.19.1-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:f7cee03c9a2e2ee26ec07479f38ea9c884e301d42c6d43a19d20fb014e3ba925", size = 13661754, upload-time = "2025-12-15T05:02:26.731Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/fd/a3/47cbd4e85bec4335a9cd80cf67dbc02be21b5d4c9c23ad6b95d6c5196bac/mypy-1.19.1-cp311-cp311-win_amd64.whl", hash = "sha256:4b84a7a18f41e167f7995200a1d07a4a6810e89d29859df936f1c3923d263042", size = 10055772, upload-time = "2025-12-15T05:03:26.179Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/06/8a/19bfae96f6615aa8a0604915512e0289b1fad33d5909bf7244f02935d33a/mypy-1.19.1-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:a8174a03289288c1f6c46d55cef02379b478bfbc8e358e02047487cad44c6ca1", size = 13206053, upload-time = "2025-12-15T05:03:46.622Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/a5/34/3e63879ab041602154ba2a9f99817bb0c85c4df19a23a1443c8986e4d565/mypy-1.19.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:ffcebe56eb09ff0c0885e750036a095e23793ba6c2e894e7e63f6d89ad51f22e", size = 12219134, upload-time = "2025-12-15T05:03:24.367Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/89/cc/2db6f0e95366b630364e09845672dbee0cbf0bbe753a204b29a944967cd9/mypy-1.19.1-cp312-cp312-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:b64d987153888790bcdb03a6473d321820597ab8dd9243b27a92153c4fa50fd2", size = 12731616, upload-time = "2025-12-15T05:02:44.725Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/00/be/dd56c1fd4807bc1eba1cf18b2a850d0de7bacb55e158755eb79f77c41f8e/mypy-1.19.1-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:c35d298c2c4bba75feb2195655dfea8124d855dfd7343bf8b8c055421eaf0cf8", size = 13620847, upload-time = "2025-12-15T05:03:39.633Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/6d/42/332951aae42b79329f743bf1da088cd75d8d4d9acc18fbcbd84f26c1af4e/mypy-1.19.1-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:34c81968774648ab5ac09c29a375fdede03ba253f8f8287847bd480782f73a6a", size = 13834976, upload-time = "2025-12-15T05:03:08.786Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/6f/63/e7493e5f90e1e085c562bb06e2eb32cae27c5057b9653348d38b47daaecc/mypy-1.19.1-cp312-cp312-win_amd64.whl", hash = "sha256:b10e7c2cd7870ba4ad9b2d8a6102eb5ffc1f16ca35e3de6bfa390c1113029d13", size = 10118104, upload-time = "2025-12-15T05:03:10.834Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/de/9f/a6abae693f7a0c697dbb435aac52e958dc8da44e92e08ba88d2e42326176/mypy-1.19.1-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:e3157c7594ff2ef1634ee058aafc56a82db665c9438fd41b390f3bde1ab12250", size = 13201927, upload-time = "2025-12-15T05:02:29.138Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/9a/a4/45c35ccf6e1c65afc23a069f50e2c66f46bd3798cbe0d680c12d12935caa/mypy-1.19.1-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:bdb12f69bcc02700c2b47e070238f42cb87f18c0bc1fc4cdb4fb2bc5fd7a3b8b", size = 12206730, upload-time = "2025-12-15T05:03:01.325Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/05/bb/cdcf89678e26b187650512620eec8368fded4cfd99cfcb431e4cdfd19dec/mypy-1.19.1-cp313-cp313-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:f859fb09d9583a985be9a493d5cfc5515b56b08f7447759a0c5deaf68d80506e", size = 12724581, upload-time = "2025-12-15T05:03:20.087Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/d1/32/dd260d52babf67bad8e6770f8e1102021877ce0edea106e72df5626bb0ec/mypy-1.19.1-cp313-cp313-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:c9a6538e0415310aad77cb94004ca6482330fece18036b5f360b62c45814c4ef", size = 13616252, upload-time = "2025-12-15T05:02:49.036Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/71/d0/5e60a9d2e3bd48432ae2b454b7ef2b62a960ab51292b1eda2a95edd78198/mypy-1.19.1-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:da4869fc5e7f62a88f3fe0b5c919d1d9f7ea3cef92d3689de2823fd27e40aa75", size = 13840848, upload-time = "2025-12-15T05:02:55.95Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/98/76/d32051fa65ecf6cc8c6610956473abdc9b4c43301107476ac03559507843/mypy-1.19.1-cp313-cp313-win_amd64.whl", hash = "sha256:016f2246209095e8eda7538944daa1d60e1e8134d98983b9fc1e92c1fc0cb8dd", size = 10135510, upload-time = "2025-12-15T05:02:58.438Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/de/eb/b83e75f4c820c4247a58580ef86fcd35165028f191e7e1ba57128c52782d/mypy-1.19.1-cp314-cp314-macosx_10_15_x86_64.whl", hash = "sha256:06e6170bd5836770e8104c8fdd58e5e725cfeb309f0a6c681a811f557e97eac1", size = 13199744, upload-time = "2025-12-15T05:03:30.823Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/94/28/52785ab7bfa165f87fcbb61547a93f98bb20e7f82f90f165a1f69bce7b3d/mypy-1.19.1-cp314-cp314-macosx_11_0_arm64.whl", hash = "sha256:804bd67b8054a85447c8954215a906d6eff9cabeabe493fb6334b24f4bfff718", size = 12215815, upload-time = "2025-12-15T05:02:42.323Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/0a/c6/bdd60774a0dbfb05122e3e925f2e9e846c009e479dcec4821dad881f5b52/mypy-1.19.1-cp314-cp314-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:21761006a7f497cb0d4de3d8ef4ca70532256688b0523eee02baf9eec895e27b", size = 12740047, upload-time = "2025-12-15T05:03:33.168Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/32/2a/66ba933fe6c76bd40d1fe916a83f04fed253152f451a877520b3c4a5e41e/mypy-1.19.1-cp314-cp314-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:28902ee51f12e0f19e1e16fbe2f8f06b6637f482c459dd393efddd0ec7f82045", size = 13601998, upload-time = "2025-12-15T05:03:13.056Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/e3/da/5055c63e377c5c2418760411fd6a63ee2b96cf95397259038756c042574f/mypy-1.19.1-cp314-cp314-musllinux_1_2_x86_64.whl", hash = "sha256:481daf36a4c443332e2ae9c137dfee878fcea781a2e3f895d54bd3002a900957", size = 13807476, upload-time = "2025-12-15T05:03:17.977Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/cd/09/4ebd873390a063176f06b0dbf1f7783dd87bd120eae7727fa4ae4179b685/mypy-1.19.1-cp314-cp314-win_amd64.whl", hash = "sha256:8bb5c6f6d043655e055be9b542aa5f3bdd30e4f3589163e85f93f3640060509f", size = 10281872, upload-time = "2025-12-15T05:03:05.549Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/8d/f4/4ce9a05ce5ded1de3ec1c1d96cf9f9504a04e54ce0ed55cfa38619a32b8d/mypy-1.19.1-py3-none-any.whl", hash = "sha256:f1235f5ea01b7db5468d53ece6aaddf1ad0b88d9e7462b86ef96fe04995d7247", size = 2471239, upload-time = "2025-12-15T05:03:07.248Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/03/6f/657961a0743cff32e6c0611b63ff1c1970a0b482ace35b069203bf705187/mypy-1.18.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:c1eab0cf6294dafe397c261a75f96dc2c31bffe3b944faa24db5def4e2b0f77c", size = 12807973, upload-time = "2025-09-19T00:10:35.282Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/10/e9/420822d4f661f13ca8900f5fa239b40ee3be8b62b32f3357df9a3045a08b/mypy-1.18.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:7a780ca61fc239e4865968ebc5240bb3bf610ef59ac398de9a7421b54e4a207e", size = 11896527, upload-time = "2025-09-19T00:10:55.791Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/aa/73/a05b2bbaa7005f4642fcfe40fb73f2b4fb6bb44229bd585b5878e9a87ef8/mypy-1.18.2-cp310-cp310-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:448acd386266989ef11662ce3c8011fd2a7b632e0ec7d61a98edd8e27472225b", size = 12507004, upload-time = "2025-09-19T00:11:05.411Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/4f/01/f6e4b9f0d031c11ccbd6f17da26564f3a0f3c4155af344006434b0a05a9d/mypy-1.18.2-cp310-cp310-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:f9e171c465ad3901dc652643ee4bffa8e9fef4d7d0eece23b428908c77a76a66", size = 13245947, upload-time = "2025-09-19T00:10:46.923Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/d7/97/19727e7499bfa1ae0773d06afd30ac66a58ed7437d940c70548634b24185/mypy-1.18.2-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:592ec214750bc00741af1f80cbf96b5013d81486b7bb24cb052382c19e40b428", size = 13499217, upload-time = "2025-09-19T00:09:39.472Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/9f/4f/90dc8c15c1441bf31cf0f9918bb077e452618708199e530f4cbd5cede6ff/mypy-1.18.2-cp310-cp310-win_amd64.whl", hash = "sha256:7fb95f97199ea11769ebe3638c29b550b5221e997c63b14ef93d2e971606ebed", size = 9766753, upload-time = "2025-09-19T00:10:49.161Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/88/87/cafd3ae563f88f94eec33f35ff722d043e09832ea8530ef149ec1efbaf08/mypy-1.18.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:807d9315ab9d464125aa9fcf6d84fde6e1dc67da0b6f80e7405506b8ac72bc7f", size = 12731198, upload-time = "2025-09-19T00:09:44.857Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/0f/e0/1e96c3d4266a06d4b0197ace5356d67d937d8358e2ee3ffac71faa843724/mypy-1.18.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:776bb00de1778caf4db739c6e83919c1d85a448f71979b6a0edd774ea8399341", size = 11817879, upload-time = "2025-09-19T00:09:47.131Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/72/ef/0c9ba89eb03453e76bdac5a78b08260a848c7bfc5d6603634774d9cd9525/mypy-1.18.2-cp311-cp311-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:1379451880512ffce14505493bd9fe469e0697543717298242574882cf8cdb8d", size = 12427292, upload-time = "2025-09-19T00:10:22.472Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/1a/52/ec4a061dd599eb8179d5411d99775bec2a20542505988f40fc2fee781068/mypy-1.18.2-cp311-cp311-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:1331eb7fd110d60c24999893320967594ff84c38ac6d19e0a76c5fd809a84c86", size = 13163750, upload-time = "2025-09-19T00:09:51.472Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/c4/5f/2cf2ceb3b36372d51568f2208c021870fe7834cf3186b653ac6446511839/mypy-1.18.2-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:3ca30b50a51e7ba93b00422e486cbb124f1c56a535e20eff7b2d6ab72b3b2e37", size = 13351827, upload-time = "2025-09-19T00:09:58.311Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/c8/7d/2697b930179e7277529eaaec1513f8de622818696857f689e4a5432e5e27/mypy-1.18.2-cp311-cp311-win_amd64.whl", hash = "sha256:664dc726e67fa54e14536f6e1224bcfce1d9e5ac02426d2326e2bb4e081d1ce8", size = 9757983, upload-time = "2025-09-19T00:10:09.071Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/07/06/dfdd2bc60c66611dd8335f463818514733bc763e4760dee289dcc33df709/mypy-1.18.2-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:33eca32dd124b29400c31d7cf784e795b050ace0e1f91b8dc035672725617e34", size = 12908273, upload-time = "2025-09-19T00:10:58.321Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/81/14/6a9de6d13a122d5608e1a04130724caf9170333ac5a924e10f670687d3eb/mypy-1.18.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:a3c47adf30d65e89b2dcd2fa32f3aeb5e94ca970d2c15fcb25e297871c8e4764", size = 11920910, upload-time = "2025-09-19T00:10:20.043Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/5f/a9/b29de53e42f18e8cc547e38daa9dfa132ffdc64f7250e353f5c8cdd44bee/mypy-1.18.2-cp312-cp312-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:5d6c838e831a062f5f29d11c9057c6009f60cb294fea33a98422688181fe2893", size = 12465585, upload-time = "2025-09-19T00:10:33.005Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/77/ae/6c3d2c7c61ff21f2bee938c917616c92ebf852f015fb55917fd6e2811db2/mypy-1.18.2-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:01199871b6110a2ce984bde85acd481232d17413868c9807e95c1b0739a58914", size = 13348562, upload-time = "2025-09-19T00:10:11.51Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/4d/31/aec68ab3b4aebdf8f36d191b0685d99faa899ab990753ca0fee60fb99511/mypy-1.18.2-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:a2afc0fa0b0e91b4599ddfe0f91e2c26c2b5a5ab263737e998d6817874c5f7c8", size = 13533296, upload-time = "2025-09-19T00:10:06.568Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/9f/83/abcb3ad9478fca3ebeb6a5358bb0b22c95ea42b43b7789c7fb1297ca44f4/mypy-1.18.2-cp312-cp312-win_amd64.whl", hash = "sha256:d8068d0afe682c7c4897c0f7ce84ea77f6de953262b12d07038f4d296d547074", size = 9828828, upload-time = "2025-09-19T00:10:28.203Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/5f/04/7f462e6fbba87a72bc8097b93f6842499c428a6ff0c81dd46948d175afe8/mypy-1.18.2-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:07b8b0f580ca6d289e69209ec9d3911b4a26e5abfde32228a288eb79df129fcc", size = 12898728, upload-time = "2025-09-19T00:10:01.33Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/99/5b/61ed4efb64f1871b41fd0b82d29a64640f3516078f6c7905b68ab1ad8b13/mypy-1.18.2-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:ed4482847168439651d3feee5833ccedbf6657e964572706a2adb1f7fa4dfe2e", size = 11910758, upload-time = "2025-09-19T00:10:42.607Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/3c/46/d297d4b683cc89a6e4108c4250a6a6b717f5fa96e1a30a7944a6da44da35/mypy-1.18.2-cp313-cp313-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:c3ad2afadd1e9fea5cf99a45a822346971ede8685cc581ed9cd4d42eaf940986", size = 12475342, upload-time = "2025-09-19T00:11:00.371Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/83/45/4798f4d00df13eae3bfdf726c9244bcb495ab5bd588c0eed93a2f2dd67f3/mypy-1.18.2-cp313-cp313-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:a431a6f1ef14cf8c144c6b14793a23ec4eae3db28277c358136e79d7d062f62d", size = 13338709, upload-time = "2025-09-19T00:11:03.358Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/d7/09/479f7358d9625172521a87a9271ddd2441e1dab16a09708f056e97007207/mypy-1.18.2-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:7ab28cc197f1dd77a67e1c6f35cd1f8e8b73ed2217e4fc005f9e6a504e46e7ba", size = 13529806, upload-time = "2025-09-19T00:10:26.073Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/71/cf/ac0f2c7e9d0ea3c75cd99dff7aec1c9df4a1376537cb90e4c882267ee7e9/mypy-1.18.2-cp313-cp313-win_amd64.whl", hash = "sha256:0e2785a84b34a72ba55fb5daf079a1003a34c05b22238da94fcae2bbe46f3544", size = 9833262, upload-time = "2025-09-19T00:10:40.035Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/5a/0c/7d5300883da16f0063ae53996358758b2a2df2a09c72a5061fa79a1f5006/mypy-1.18.2-cp314-cp314-macosx_10_13_x86_64.whl", hash = "sha256:62f0e1e988ad41c2a110edde6c398383a889d95b36b3e60bcf155f5164c4fdce", size = 12893775, upload-time = "2025-09-19T00:10:03.814Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/50/df/2cffbf25737bdb236f60c973edf62e3e7b4ee1c25b6878629e88e2cde967/mypy-1.18.2-cp314-cp314-macosx_11_0_arm64.whl", hash = "sha256:8795a039bab805ff0c1dfdb8cd3344642c2b99b8e439d057aba30850b8d3423d", size = 11936852, upload-time = "2025-09-19T00:10:51.631Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/be/50/34059de13dd269227fb4a03be1faee6e2a4b04a2051c82ac0a0b5a773c9a/mypy-1.18.2-cp314-cp314-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:6ca1e64b24a700ab5ce10133f7ccd956a04715463d30498e64ea8715236f9c9c", size = 12480242, upload-time = "2025-09-19T00:11:07.955Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/5b/11/040983fad5132d85914c874a2836252bbc57832065548885b5bb5b0d4359/mypy-1.18.2-cp314-cp314-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:d924eef3795cc89fecf6bedc6ed32b33ac13e8321344f6ddbf8ee89f706c05cb", size = 13326683, upload-time = "2025-09-19T00:09:55.572Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/e9/ba/89b2901dd77414dd7a8c8729985832a5735053be15b744c18e4586e506ef/mypy-1.18.2-cp314-cp314-musllinux_1_2_x86_64.whl", hash = "sha256:20c02215a080e3a2be3aa50506c67242df1c151eaba0dcbc1e4e557922a26075", size = 13514749, upload-time = "2025-09-19T00:10:44.827Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/25/bc/cc98767cffd6b2928ba680f3e5bc969c4152bf7c2d83f92f5a504b92b0eb/mypy-1.18.2-cp314-cp314-win_amd64.whl", hash = "sha256:749b5f83198f1ca64345603118a6f01a4e99ad4bf9d103ddc5a3200cc4614adf", size = 9982959, upload-time = "2025-09-19T00:10:37.344Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/87/e3/be76d87158ebafa0309946c4a73831974d4d6ab4f4ef40c3b53a385a66fd/mypy-1.18.2-py3-none-any.whl", hash = "sha256:22a1748707dd62b58d2ae53562ffc4d7f8bcc727e8ac7cbc69c053ddc874d47e", size = 2352367, upload-time = "2025-09-19T00:10:15.489Z" },
|
||||
]
|
||||
|
||||
[[package]]
|
||||
@@ -943,61 +780,6 @@ wheels = [
|
||||
{ url = "https://files.pythonhosted.org/packages/28/01/d6b274a0635be0468d4dbd9cafe80c47105937a0d42434e805e67cd2ed8b/orjson-3.11.3-cp314-cp314-win_arm64.whl", hash = "sha256:e8f6a7a27d7b7bec81bd5924163e9af03d49bbb63013f107b48eb5d16db711bc", size = 125985, upload-time = "2025-08-26T17:46:16.67Z" },
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "ormsgpack"
|
||||
version = "1.11.0"
|
||||
source = { registry = "https://pypi.org/simple" }
|
||||
sdist = { url = "https://files.pythonhosted.org/packages/65/f8/224c342c0e03e131aaa1a1f19aa2244e167001783a433f4eed10eedd834b/ormsgpack-1.11.0.tar.gz", hash = "sha256:7c9988e78fedba3292541eb3bb274fa63044ef4da2ddb47259ea70c05dee4206", size = 49357, upload-time = "2025-10-08T17:29:15.621Z" }
|
||||
wheels = [
|
||||
{ url = "https://files.pythonhosted.org/packages/ff/3d/6996193cb2babc47fc92456223bef7d141065357ad4204eccf313f47a7b3/ormsgpack-1.11.0-cp310-cp310-macosx_10_12_x86_64.macosx_11_0_arm64.macosx_10_12_universal2.whl", hash = "sha256:03d4e658dd6e1882a552ce1d13cc7b49157414e7d56a4091fbe7823225b08cba", size = 367965, upload-time = "2025-10-08T17:28:06.736Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/35/89/c83b805dd9caebb046f4ceeed3706d0902ed2dbbcf08b8464e89f2c52e05/ormsgpack-1.11.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1bb67eb913c2b703f0ed39607fc56e50724dd41f92ce080a586b4d6149eb3fe4", size = 195209, upload-time = "2025-10-08T17:28:08.395Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/3a/17/427d9c4f77b120f0af01d7a71d8144771c9388c2a81f712048320e31353b/ormsgpack-1.11.0-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:1e54175b92411f73a238e5653a998627f6660de3def37d9dd7213e0fd264ca56", size = 205868, upload-time = "2025-10-08T17:28:09.688Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/82/32/a9ce218478bdbf3fee954159900e24b314ab3064f7b6a217ccb1e3464324/ormsgpack-1.11.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ca2b197f4556e1823d1319869d4c5dc278be335286d2308b0ed88b59a5afcc25", size = 207391, upload-time = "2025-10-08T17:28:11.031Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/7a/d3/4413fe7454711596fdf08adabdfa686580e4656702015108e4975f00a022/ormsgpack-1.11.0-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:bc62388262f58c792fe1e450e1d9dbcc174ed2fb0b43db1675dd7c5ff2319d6a", size = 377078, upload-time = "2025-10-08T17:28:12.39Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/f0/ad/13fae555a45e35ca1ca929a27c9ee0a3ecada931b9d44454658c543f9b9c/ormsgpack-1.11.0-cp310-cp310-musllinux_1_2_armv7l.whl", hash = "sha256:c48bc10af74adfbc9113f3fb160dc07c61ad9239ef264c17e449eba3de343dc2", size = 470776, upload-time = "2025-10-08T17:28:13.484Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/36/60/51178b093ffc4e2ef3381013a67223e7d56224434fba80047249f4a84b26/ormsgpack-1.11.0-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:a608d3a1d4fa4acdc5082168a54513cff91f47764cef435e81a483452f5f7647", size = 380862, upload-time = "2025-10-08T17:28:14.747Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/a6/e3/1cb6c161335e2ae7d711ecfb007a31a3936603626e347c13e5e53b7c7cf8/ormsgpack-1.11.0-cp310-cp310-win_amd64.whl", hash = "sha256:97217b4f7f599ba45916b9c4c4b1d5656e8e2a4d91e2e191d72a7569d3c30923", size = 112058, upload-time = "2025-10-08T17:28:15.777Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/a4/7c/90164d00e8e94b48eff8a17bc2f4be6b71ae356a00904bc69d5e8afe80fb/ormsgpack-1.11.0-cp311-cp311-macosx_10_12_x86_64.macosx_11_0_arm64.macosx_10_12_universal2.whl", hash = "sha256:c7be823f47d8e36648d4bc90634b93f02b7d7cc7480081195f34767e86f181fb", size = 367964, upload-time = "2025-10-08T17:28:16.778Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/7b/c2/fb6331e880a3446c1341e72c77bd5a46da3e92a8e2edf7ea84a4c6c14fff/ormsgpack-1.11.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:68accf15d1b013812755c0eb7a30e1fc2f81eb603a1a143bf0cda1b301cfa797", size = 195209, upload-time = "2025-10-08T17:28:17.796Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/18/50/4943fb5df8cc02da6b7b1ee2c2a7fb13aebc9f963d69280b1bb02b1fb178/ormsgpack-1.11.0-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:805d06fb277d9a4e503c0c707545b49cde66cbb2f84e5cf7c58d81dfc20d8658", size = 205869, upload-time = "2025-10-08T17:28:19.01Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/1c/fa/e7e06835bfea9adeef43915143ce818098aecab0cbd3df584815adf3e399/ormsgpack-1.11.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a1e57cdf003e77acc43643bda151dc01f97147a64b11cdee1380bb9698a7601c", size = 207391, upload-time = "2025-10-08T17:28:20.352Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/33/f0/f28a19e938a14ec223396e94f4782fbcc023f8c91f2ab6881839d3550f32/ormsgpack-1.11.0-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:37fc05bdaabd994097c62e2f3e08f66b03f856a640ede6dc5ea340bd15b77f4d", size = 377081, upload-time = "2025-10-08T17:28:21.926Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/4f/e3/73d1d7287637401b0b6637e30ba9121e1aa1d9f5ea185ed9834ca15d512c/ormsgpack-1.11.0-cp311-cp311-musllinux_1_2_armv7l.whl", hash = "sha256:a6e9db6c73eb46b2e4d97bdffd1368a66f54e6806b563a997b19c004ef165e1d", size = 470779, upload-time = "2025-10-08T17:28:22.993Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/9c/46/7ba7f9721e766dd0dfe4cedf444439447212abffe2d2f4538edeeec8ccbd/ormsgpack-1.11.0-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:e9c44eae5ac0196ffc8b5ed497c75511056508f2303fa4d36b208eb820cf209e", size = 380865, upload-time = "2025-10-08T17:28:24.012Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/a7/7d/bb92a0782bbe0626c072c0320001410cf3f6743ede7dc18f034b1a18edef/ormsgpack-1.11.0-cp311-cp311-win_amd64.whl", hash = "sha256:11d0dfaf40ae7c6de4f7dbd1e4892e2e6a55d911ab1774357c481158d17371e4", size = 112058, upload-time = "2025-10-08T17:28:25.015Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/28/1a/f07c6f74142815d67e1d9d98c5b2960007100408ade8242edac96d5d1c73/ormsgpack-1.11.0-cp311-cp311-win_arm64.whl", hash = "sha256:0c63a3f7199a3099c90398a1bdf0cb577b06651a442dc5efe67f2882665e5b02", size = 105894, upload-time = "2025-10-08T17:28:25.93Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/1e/16/2805ebfb3d2cbb6c661b5fae053960fc90a2611d0d93e2207e753e836117/ormsgpack-1.11.0-cp312-cp312-macosx_10_12_x86_64.macosx_11_0_arm64.macosx_10_12_universal2.whl", hash = "sha256:3434d0c8d67de27d9010222de07fb6810fb9af3bb7372354ffa19257ac0eb83b", size = 368474, upload-time = "2025-10-08T17:28:27.532Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/6f/39/6afae47822dca0ce4465d894c0bbb860a850ce29c157882dbdf77a5dd26e/ormsgpack-1.11.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d2da5bd097e8dbfa4eb0d4ccfe79acd6f538dee4493579e2debfe4fc8f4ca89b", size = 195321, upload-time = "2025-10-08T17:28:28.573Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/f6/54/11eda6b59f696d2f16de469bfbe539c9f469c4b9eef5a513996b5879c6e9/ormsgpack-1.11.0-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:fdbaa0a5a8606a486960b60c24f2d5235d30ac7a8b98eeaea9854bffef14dc3d", size = 206036, upload-time = "2025-10-08T17:28:29.785Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/1e/86/890430f704f84c4699ddad61c595d171ea2fd77a51fbc106f83981e83939/ormsgpack-1.11.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3682f24f800c1837017ee90ce321086b2cbaef88db7d4cdbbda1582aa6508159", size = 207615, upload-time = "2025-10-08T17:28:31.076Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/b6/b9/77383e16c991c0ecb772205b966fc68d9c519e0b5f9c3913283cbed30ffe/ormsgpack-1.11.0-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:fcca21202bb05ccbf3e0e92f560ee59b9331182e4c09c965a28155efbb134993", size = 377195, upload-time = "2025-10-08T17:28:32.436Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/20/e2/15f9f045d4947f3c8a5e0535259fddf027b17b1215367488b3565c573b9d/ormsgpack-1.11.0-cp312-cp312-musllinux_1_2_armv7l.whl", hash = "sha256:c30e5c4655ba46152d722ec7468e8302195e6db362ec1ae2c206bc64f6030e43", size = 470960, upload-time = "2025-10-08T17:28:33.556Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/b8/61/403ce188c4c495bc99dff921a0ad3d9d352dd6d3c4b629f3638b7f0cf79b/ormsgpack-1.11.0-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:7138a341f9e2c08c59368f03d3be25e8b87b3baaf10d30fb1f6f6b52f3d47944", size = 381174, upload-time = "2025-10-08T17:28:34.781Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/14/a8/94c94bc48c68da4374870a851eea03fc5a45eb041182ad4c5ed9acfc05a4/ormsgpack-1.11.0-cp312-cp312-win_amd64.whl", hash = "sha256:d4bd8589b78a11026d47f4edf13c1ceab9088bb12451f34396afe6497db28a27", size = 112314, upload-time = "2025-10-08T17:28:36.259Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/19/d0/aa4cf04f04e4cc180ce7a8d8ddb5a7f3af883329cbc59645d94d3ba157a5/ormsgpack-1.11.0-cp312-cp312-win_arm64.whl", hash = "sha256:e5e746a1223e70f111d4001dab9585ac8639eee8979ca0c8db37f646bf2961da", size = 106072, upload-time = "2025-10-08T17:28:37.518Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/8b/35/e34722edb701d053cf2240f55974f17b7dbfd11fdef72bd2f1835bcebf26/ormsgpack-1.11.0-cp313-cp313-macosx_10_12_x86_64.macosx_11_0_arm64.macosx_10_12_universal2.whl", hash = "sha256:0e7b36ab7b45cb95217ae1f05f1318b14a3e5ef73cb00804c0f06233f81a14e8", size = 368502, upload-time = "2025-10-08T17:28:38.547Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/2f/6a/c2fc369a79d6aba2aa28c8763856c95337ac7fcc0b2742185cd19397212a/ormsgpack-1.11.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:43402d67e03a9a35cc147c8c03f0c377cad016624479e1ee5b879b8425551484", size = 195344, upload-time = "2025-10-08T17:28:39.554Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/8b/6a/0f8e24b7489885534c1a93bdba7c7c434b9b8638713a68098867db9f254c/ormsgpack-1.11.0-cp313-cp313-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:64fd992f932764d6306b70ddc755c1bc3405c4c6a69f77a36acf7af1c8f5ada4", size = 206045, upload-time = "2025-10-08T17:28:40.561Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/99/71/8b460ba264f3c6f82ef5b1920335720094e2bd943057964ce5287d6df83a/ormsgpack-1.11.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0362fb7fe4a29c046c8ea799303079a09372653a1ce5a5a588f3bbb8088368d0", size = 207641, upload-time = "2025-10-08T17:28:41.736Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/50/cf/f369446abaf65972424ed2651f2df2b7b5c3b735c93fc7fa6cfb81e34419/ormsgpack-1.11.0-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:de2f7a65a9d178ed57be49eba3d0fc9b833c32beaa19dbd4ba56014d3c20b152", size = 377211, upload-time = "2025-10-08T17:28:43.12Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/2f/3f/948bb0047ce0f37c2efc3b9bb2bcfdccc61c63e0b9ce8088d4903ba39dcf/ormsgpack-1.11.0-cp313-cp313-musllinux_1_2_armv7l.whl", hash = "sha256:f38cfae95461466055af966fc922d06db4e1654966385cda2828653096db34da", size = 470973, upload-time = "2025-10-08T17:28:44.465Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/31/a4/92a8114d1d017c14aaa403445060f345df9130ca532d538094f38e535988/ormsgpack-1.11.0-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:c88396189d238f183cea7831b07a305ab5c90d6d29b53288ae11200bd956357b", size = 381161, upload-time = "2025-10-08T17:28:46.063Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/d0/64/5b76447da654798bfcfdfd64ea29447ff2b7f33fe19d0e911a83ad5107fc/ormsgpack-1.11.0-cp313-cp313-win_amd64.whl", hash = "sha256:5403d1a945dd7c81044cebeca3f00a28a0f4248b33242a5d2d82111628043725", size = 112321, upload-time = "2025-10-08T17:28:47.393Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/46/5e/89900d06db9ab81e7ec1fd56a07c62dfbdcda398c435718f4252e1dc52a0/ormsgpack-1.11.0-cp313-cp313-win_arm64.whl", hash = "sha256:c57357b8d43b49722b876edf317bdad9e6d52071b523fdd7394c30cd1c67d5a0", size = 106084, upload-time = "2025-10-08T17:28:48.305Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/4c/0b/c659e8657085c8c13f6a0224789f422620cef506e26573b5434defe68483/ormsgpack-1.11.0-cp314-cp314-macosx_10_12_x86_64.macosx_11_0_arm64.macosx_10_12_universal2.whl", hash = "sha256:d390907d90fd0c908211592c485054d7a80990697ef4dff4e436ac18e1aab98a", size = 368497, upload-time = "2025-10-08T17:28:49.297Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/1b/0e/451e5848c7ed56bd287e8a2b5cb5926e54466f60936e05aec6cb299f9143/ormsgpack-1.11.0-cp314-cp314-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6153c2e92e789509098e04c9aa116b16673bd88ec78fbe0031deeb34ab642d10", size = 195385, upload-time = "2025-10-08T17:28:50.314Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/4c/28/90f78cbbe494959f2439c2ec571f08cd3464c05a6a380b0d621c622122a9/ormsgpack-1.11.0-cp314-cp314-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:c2b2c2a065a94d742212b2018e1fecd8f8d72f3c50b53a97d1f407418093446d", size = 206114, upload-time = "2025-10-08T17:28:51.336Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/fb/db/34163f4c0923bea32dafe42cd878dcc66795a3e85669bc4b01c1e2b92a7b/ormsgpack-1.11.0-cp314-cp314-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:110e65b5340f3d7ef8b0009deae3c6b169437e6b43ad5a57fd1748085d29d2ac", size = 207679, upload-time = "2025-10-08T17:28:53.627Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/b6/14/04ee741249b16f380a9b4a0cc19d4134d0b7c74bab27a2117da09e525eb9/ormsgpack-1.11.0-cp314-cp314-musllinux_1_2_aarch64.whl", hash = "sha256:c27e186fca96ab34662723e65b420919910acbbc50fc8e1a44e08f26268cb0e0", size = 377237, upload-time = "2025-10-08T17:28:56.12Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/89/ff/53e588a6aaa833237471caec679582c2950f0e7e1a8ba28c1511b465c1f4/ormsgpack-1.11.0-cp314-cp314-musllinux_1_2_armv7l.whl", hash = "sha256:d56b1f877c13d499052d37a3db2378a97d5e1588d264f5040b3412aee23d742c", size = 471021, upload-time = "2025-10-08T17:28:57.299Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/a6/f9/f20a6d9ef2be04da3aad05e8f5699957e9a30c6d5c043a10a296afa7e890/ormsgpack-1.11.0-cp314-cp314-musllinux_1_2_x86_64.whl", hash = "sha256:c88e28cd567c0a3269f624b4ade28142d5e502c8e826115093c572007af5be0a", size = 381205, upload-time = "2025-10-08T17:28:58.872Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/f8/64/96c07d084b479ac8b7821a77ffc8d3f29d8b5c95ebfdf8db1c03dff02762/ormsgpack-1.11.0-cp314-cp314-win_amd64.whl", hash = "sha256:8811160573dc0a65f62f7e0792c4ca6b7108dfa50771edb93f9b84e2d45a08ae", size = 112374, upload-time = "2025-10-08T17:29:00Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/88/a5/5dcc18b818d50213a3cadfe336bb6163a102677d9ce87f3d2f1a1bee0f8c/ormsgpack-1.11.0-cp314-cp314-win_arm64.whl", hash = "sha256:23e30a8d3c17484cf74e75e6134322255bd08bc2b5b295cc9c442f4bae5f3c2d", size = 106056, upload-time = "2025-10-08T17:29:01.29Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/19/2b/776d1b411d2be50f77a6e6e94a25825cca55dcacfe7415fd691a144db71b/ormsgpack-1.11.0-cp314-cp314t-macosx_10_12_x86_64.macosx_11_0_arm64.macosx_10_12_universal2.whl", hash = "sha256:2905816502adfaf8386a01dd85f936cd378d243f4f5ee2ff46f67f6298dc90d5", size = 368661, upload-time = "2025-10-08T17:29:02.382Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/a9/0c/81a19e6115b15764db3d241788f9fac093122878aaabf872cc545b0c4650/ormsgpack-1.11.0-cp314-cp314t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c04402fb9a0a9b9f18fbafd6d5f8398ee99b3ec619fb63952d3a954bc9d47daa", size = 195539, upload-time = "2025-10-08T17:29:03.472Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/97/86/e5b50247a61caec5718122feb2719ea9d451d30ac0516c288c1dbc6408e8/ormsgpack-1.11.0-cp314-cp314t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a025ec07ac52056ecfd9e57b5cbc6fff163f62cb9805012b56cda599157f8ef2", size = 207718, upload-time = "2025-10-08T17:29:04.545Z" },
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "packaging"
|
||||
version = "25.0"
|
||||
@@ -1027,7 +809,7 @@ wheels = [
|
||||
|
||||
[[package]]
|
||||
name = "pydantic"
|
||||
version = "2.12.3"
|
||||
version = "2.11.9"
|
||||
source = { registry = "https://pypi.org/simple" }
|
||||
dependencies = [
|
||||
{ name = "annotated-types" },
|
||||
@@ -1035,123 +817,96 @@ dependencies = [
|
||||
{ name = "typing-extensions" },
|
||||
{ name = "typing-inspection" },
|
||||
]
|
||||
sdist = { url = "https://files.pythonhosted.org/packages/f3/1e/4f0a3233767010308f2fd6bd0814597e3f63f1dc98304a9112b8759df4ff/pydantic-2.12.3.tar.gz", hash = "sha256:1da1c82b0fc140bb0103bc1441ffe062154c8d38491189751ee00fd8ca65ce74", size = 819383, upload-time = "2025-10-17T15:04:21.222Z" }
|
||||
sdist = { url = "https://files.pythonhosted.org/packages/ff/5d/09a551ba512d7ca404d785072700d3f6727a02f6f3c24ecfd081c7cf0aa8/pydantic-2.11.9.tar.gz", hash = "sha256:6b8ffda597a14812a7975c90b82a8a2e777d9257aba3453f973acd3c032a18e2", size = 788495, upload-time = "2025-09-13T11:26:39.325Z" }
|
||||
wheels = [
|
||||
{ url = "https://files.pythonhosted.org/packages/a1/6b/83661fa77dcefa195ad5f8cd9af3d1a7450fd57cc883ad04d65446ac2029/pydantic-2.12.3-py3-none-any.whl", hash = "sha256:6986454a854bc3bc6e5443e1369e06a3a456af9d339eda45510f517d9ea5c6bf", size = 462431, upload-time = "2025-10-17T15:04:19.346Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/3e/d3/108f2006987c58e76691d5ae5d200dd3e0f532cb4e5fa3560751c3a1feba/pydantic-2.11.9-py3-none-any.whl", hash = "sha256:c42dd626f5cfc1c6950ce6205ea58c93efa406da65f479dcb4029d5934857da2", size = 444855, upload-time = "2025-09-13T11:26:36.909Z" },
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "pydantic-core"
|
||||
version = "2.41.4"
|
||||
version = "2.33.2"
|
||||
source = { registry = "https://pypi.org/simple" }
|
||||
dependencies = [
|
||||
{ name = "typing-extensions" },
|
||||
]
|
||||
sdist = { url = "https://files.pythonhosted.org/packages/df/18/d0944e8eaaa3efd0a91b0f1fc537d3be55ad35091b6a87638211ba691964/pydantic_core-2.41.4.tar.gz", hash = "sha256:70e47929a9d4a1905a67e4b687d5946026390568a8e952b92824118063cee4d5", size = 457557, upload-time = "2025-10-14T10:23:47.909Z" }
|
||||
sdist = { url = "https://files.pythonhosted.org/packages/ad/88/5f2260bdfae97aabf98f1778d43f69574390ad787afb646292a638c923d4/pydantic_core-2.33.2.tar.gz", hash = "sha256:7cb8bc3605c29176e1b105350d2e6474142d7c1bd1d9327c4a9bdb46bf827acc", size = 435195, upload-time = "2025-04-23T18:33:52.104Z" }
|
||||
wheels = [
|
||||
{ url = "https://files.pythonhosted.org/packages/a7/3d/9b8ca77b0f76fcdbf8bc6b72474e264283f461284ca84ac3fde570c6c49a/pydantic_core-2.41.4-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:2442d9a4d38f3411f22eb9dd0912b7cbf4b7d5b6c92c4173b75d3e1ccd84e36e", size = 2111197, upload-time = "2025-10-14T10:19:43.303Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/59/92/b7b0fe6ed4781642232755cb7e56a86e2041e1292f16d9ae410a0ccee5ac/pydantic_core-2.41.4-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:30a9876226dda131a741afeab2702e2d127209bde3c65a2b8133f428bc5d006b", size = 1917909, upload-time = "2025-10-14T10:19:45.194Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/52/8c/3eb872009274ffa4fb6a9585114e161aa1a0915af2896e2d441642929fe4/pydantic_core-2.41.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d55bbac04711e2980645af68b97d445cdbcce70e5216de444a6c4b6943ebcccd", size = 1969905, upload-time = "2025-10-14T10:19:46.567Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/f4/21/35adf4a753bcfaea22d925214a0c5b880792e3244731b3f3e6fec0d124f7/pydantic_core-2.41.4-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:e1d778fb7849a42d0ee5927ab0f7453bf9f85eef8887a546ec87db5ddb178945", size = 2051938, upload-time = "2025-10-14T10:19:48.237Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/7d/d0/cdf7d126825e36d6e3f1eccf257da8954452934ede275a8f390eac775e89/pydantic_core-2.41.4-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:1b65077a4693a98b90ec5ad8f203ad65802a1b9b6d4a7e48066925a7e1606706", size = 2250710, upload-time = "2025-10-14T10:19:49.619Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/2e/1c/af1e6fd5ea596327308f9c8d1654e1285cc3d8de0d584a3c9d7705bf8a7c/pydantic_core-2.41.4-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:62637c769dee16eddb7686bf421be48dfc2fae93832c25e25bc7242e698361ba", size = 2367445, upload-time = "2025-10-14T10:19:51.269Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/d3/81/8cece29a6ef1b3a92f956ea6da6250d5b2d2e7e4d513dd3b4f0c7a83dfea/pydantic_core-2.41.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2dfe3aa529c8f501babf6e502936b9e8d4698502b2cfab41e17a028d91b1ac7b", size = 2072875, upload-time = "2025-10-14T10:19:52.671Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/e3/37/a6a579f5fc2cd4d5521284a0ab6a426cc6463a7b3897aeb95b12f1ba607b/pydantic_core-2.41.4-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:ca2322da745bf2eeb581fc9ea3bbb31147702163ccbcbf12a3bb630e4bf05e1d", size = 2191329, upload-time = "2025-10-14T10:19:54.214Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/ae/03/505020dc5c54ec75ecba9f41119fd1e48f9e41e4629942494c4a8734ded1/pydantic_core-2.41.4-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:e8cd3577c796be7231dcf80badcf2e0835a46665eaafd8ace124d886bab4d700", size = 2151658, upload-time = "2025-10-14T10:19:55.843Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/cb/5d/2c0d09fb53aa03bbd2a214d89ebfa6304be7df9ed86ee3dc7770257f41ee/pydantic_core-2.41.4-cp310-cp310-musllinux_1_1_armv7l.whl", hash = "sha256:1cae8851e174c83633f0833e90636832857297900133705ee158cf79d40f03e6", size = 2316777, upload-time = "2025-10-14T10:19:57.607Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/ea/4b/c2c9c8f5e1f9c864b57d08539d9d3db160e00491c9f5ee90e1bfd905e644/pydantic_core-2.41.4-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:a26d950449aae348afe1ac8be5525a00ae4235309b729ad4d3399623125b43c9", size = 2320705, upload-time = "2025-10-14T10:19:59.016Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/28/c3/a74c1c37f49c0a02c89c7340fafc0ba816b29bd495d1a31ce1bdeacc6085/pydantic_core-2.41.4-cp310-cp310-win32.whl", hash = "sha256:0cf2a1f599efe57fa0051312774280ee0f650e11152325e41dfd3018ef2c1b57", size = 1975464, upload-time = "2025-10-14T10:20:00.581Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/d6/23/5dd5c1324ba80303368f7569e2e2e1a721c7d9eb16acb7eb7b7f85cb1be2/pydantic_core-2.41.4-cp310-cp310-win_amd64.whl", hash = "sha256:a8c2e340d7e454dc3340d3d2e8f23558ebe78c98aa8f68851b04dcb7bc37abdc", size = 2024497, upload-time = "2025-10-14T10:20:03.018Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/62/4c/f6cbfa1e8efacd00b846764e8484fe173d25b8dab881e277a619177f3384/pydantic_core-2.41.4-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:28ff11666443a1a8cf2a044d6a545ebffa8382b5f7973f22c36109205e65dc80", size = 2109062, upload-time = "2025-10-14T10:20:04.486Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/21/f8/40b72d3868896bfcd410e1bd7e516e762d326201c48e5b4a06446f6cf9e8/pydantic_core-2.41.4-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:61760c3925d4633290292bad462e0f737b840508b4f722247d8729684f6539ae", size = 1916301, upload-time = "2025-10-14T10:20:06.857Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/94/4d/d203dce8bee7faeca791671c88519969d98d3b4e8f225da5b96dad226fc8/pydantic_core-2.41.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:eae547b7315d055b0de2ec3965643b0ab82ad0106a7ffd29615ee9f266a02827", size = 1968728, upload-time = "2025-10-14T10:20:08.353Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/65/f5/6a66187775df87c24d526985b3a5d78d861580ca466fbd9d4d0e792fcf6c/pydantic_core-2.41.4-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:ef9ee5471edd58d1fcce1c80ffc8783a650e3e3a193fe90d52e43bb4d87bff1f", size = 2050238, upload-time = "2025-10-14T10:20:09.766Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/5e/b9/78336345de97298cf53236b2f271912ce11f32c1e59de25a374ce12f9cce/pydantic_core-2.41.4-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:15dd504af121caaf2c95cb90c0ebf71603c53de98305621b94da0f967e572def", size = 2249424, upload-time = "2025-10-14T10:20:11.732Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/99/bb/a4584888b70ee594c3d374a71af5075a68654d6c780369df269118af7402/pydantic_core-2.41.4-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:3a926768ea49a8af4d36abd6a8968b8790f7f76dd7cbd5a4c180db2b4ac9a3a2", size = 2366047, upload-time = "2025-10-14T10:20:13.647Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/5f/8d/17fc5de9d6418e4d2ae8c675f905cdafdc59d3bf3bf9c946b7ab796a992a/pydantic_core-2.41.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6916b9b7d134bff5440098a4deb80e4cb623e68974a87883299de9124126c2a8", size = 2071163, upload-time = "2025-10-14T10:20:15.307Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/54/e7/03d2c5c0b8ed37a4617430db68ec5e7dbba66358b629cd69e11b4d564367/pydantic_core-2.41.4-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:5cf90535979089df02e6f17ffd076f07237efa55b7343d98760bde8743c4b265", size = 2190585, upload-time = "2025-10-14T10:20:17.3Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/be/fc/15d1c9fe5ad9266a5897d9b932b7f53d7e5cfc800573917a2c5d6eea56ec/pydantic_core-2.41.4-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:7533c76fa647fade2d7ec75ac5cc079ab3f34879626dae5689b27790a6cf5a5c", size = 2150109, upload-time = "2025-10-14T10:20:19.143Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/26/ef/e735dd008808226c83ba56972566138665b71477ad580fa5a21f0851df48/pydantic_core-2.41.4-cp311-cp311-musllinux_1_1_armv7l.whl", hash = "sha256:37e516bca9264cbf29612539801ca3cd5d1be465f940417b002905e6ed79d38a", size = 2315078, upload-time = "2025-10-14T10:20:20.742Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/90/00/806efdcf35ff2ac0f938362350cd9827b8afb116cc814b6b75cf23738c7c/pydantic_core-2.41.4-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:0c19cb355224037c83642429b8ce261ae108e1c5fbf5c028bac63c77b0f8646e", size = 2318737, upload-time = "2025-10-14T10:20:22.306Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/41/7e/6ac90673fe6cb36621a2283552897838c020db343fa86e513d3f563b196f/pydantic_core-2.41.4-cp311-cp311-win32.whl", hash = "sha256:09c2a60e55b357284b5f31f5ab275ba9f7f70b7525e18a132ec1f9160b4f1f03", size = 1974160, upload-time = "2025-10-14T10:20:23.817Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/e0/9d/7c5e24ee585c1f8b6356e1d11d40ab807ffde44d2db3b7dfd6d20b09720e/pydantic_core-2.41.4-cp311-cp311-win_amd64.whl", hash = "sha256:711156b6afb5cb1cb7c14a2cc2c4a8b4c717b69046f13c6b332d8a0a8f41ca3e", size = 2021883, upload-time = "2025-10-14T10:20:25.48Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/33/90/5c172357460fc28b2871eb4a0fb3843b136b429c6fa827e4b588877bf115/pydantic_core-2.41.4-cp311-cp311-win_arm64.whl", hash = "sha256:6cb9cf7e761f4f8a8589a45e49ed3c0d92d1d696a45a6feaee8c904b26efc2db", size = 1968026, upload-time = "2025-10-14T10:20:27.039Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/e9/81/d3b3e95929c4369d30b2a66a91db63c8ed0a98381ae55a45da2cd1cc1288/pydantic_core-2.41.4-cp312-cp312-macosx_10_12_x86_64.whl", hash = "sha256:ab06d77e053d660a6faaf04894446df7b0a7e7aba70c2797465a0a1af00fc887", size = 2099043, upload-time = "2025-10-14T10:20:28.561Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/58/da/46fdac49e6717e3a94fc9201403e08d9d61aa7a770fab6190b8740749047/pydantic_core-2.41.4-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:c53ff33e603a9c1179a9364b0a24694f183717b2e0da2b5ad43c316c956901b2", size = 1910699, upload-time = "2025-10-14T10:20:30.217Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/1e/63/4d948f1b9dd8e991a5a98b77dd66c74641f5f2e5225fee37994b2e07d391/pydantic_core-2.41.4-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:304c54176af2c143bd181d82e77c15c41cbacea8872a2225dd37e6544dce9999", size = 1952121, upload-time = "2025-10-14T10:20:32.246Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/b2/a7/e5fc60a6f781fc634ecaa9ecc3c20171d238794cef69ae0af79ac11b89d7/pydantic_core-2.41.4-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:025ba34a4cf4fb32f917d5d188ab5e702223d3ba603be4d8aca2f82bede432a4", size = 2041590, upload-time = "2025-10-14T10:20:34.332Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/70/69/dce747b1d21d59e85af433428978a1893c6f8a7068fa2bb4a927fba7a5ff/pydantic_core-2.41.4-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:b9f5f30c402ed58f90c70e12eff65547d3ab74685ffe8283c719e6bead8ef53f", size = 2219869, upload-time = "2025-10-14T10:20:35.965Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/83/6a/c070e30e295403bf29c4df1cb781317b6a9bac7cd07b8d3acc94d501a63c/pydantic_core-2.41.4-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:dd96e5d15385d301733113bcaa324c8bcf111275b7675a9c6e88bfb19fc05e3b", size = 2345169, upload-time = "2025-10-14T10:20:37.627Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/f0/83/06d001f8043c336baea7fd202a9ac7ad71f87e1c55d8112c50b745c40324/pydantic_core-2.41.4-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:98f348cbb44fae6e9653c1055db7e29de67ea6a9ca03a5fa2c2e11a47cff0e47", size = 2070165, upload-time = "2025-10-14T10:20:39.246Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/14/0a/e567c2883588dd12bcbc110232d892cf385356f7c8a9910311ac997ab715/pydantic_core-2.41.4-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:ec22626a2d14620a83ca583c6f5a4080fa3155282718b6055c2ea48d3ef35970", size = 2189067, upload-time = "2025-10-14T10:20:41.015Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/f4/1d/3d9fca34273ba03c9b1c5289f7618bc4bd09c3ad2289b5420481aa051a99/pydantic_core-2.41.4-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:3a95d4590b1f1a43bf33ca6d647b990a88f4a3824a8c4572c708f0b45a5290ed", size = 2132997, upload-time = "2025-10-14T10:20:43.106Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/52/70/d702ef7a6cd41a8afc61f3554922b3ed8d19dd54c3bd4bdbfe332e610827/pydantic_core-2.41.4-cp312-cp312-musllinux_1_1_armv7l.whl", hash = "sha256:f9672ab4d398e1b602feadcffcdd3af44d5f5e6ddc15bc7d15d376d47e8e19f8", size = 2307187, upload-time = "2025-10-14T10:20:44.849Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/68/4c/c06be6e27545d08b802127914156f38d10ca287a9e8489342793de8aae3c/pydantic_core-2.41.4-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:84d8854db5f55fead3b579f04bda9a36461dab0730c5d570e1526483e7bb8431", size = 2305204, upload-time = "2025-10-14T10:20:46.781Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/b0/e5/35ae4919bcd9f18603419e23c5eaf32750224a89d41a8df1a3704b69f77e/pydantic_core-2.41.4-cp312-cp312-win32.whl", hash = "sha256:9be1c01adb2ecc4e464392c36d17f97e9110fbbc906bcbe1c943b5b87a74aabd", size = 1972536, upload-time = "2025-10-14T10:20:48.39Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/1e/c2/49c5bb6d2a49eb2ee3647a93e3dae7080c6409a8a7558b075027644e879c/pydantic_core-2.41.4-cp312-cp312-win_amd64.whl", hash = "sha256:d682cf1d22bab22a5be08539dca3d1593488a99998f9f412137bc323179067ff", size = 2031132, upload-time = "2025-10-14T10:20:50.421Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/06/23/936343dbcba6eec93f73e95eb346810fc732f71ba27967b287b66f7b7097/pydantic_core-2.41.4-cp312-cp312-win_arm64.whl", hash = "sha256:833eebfd75a26d17470b58768c1834dfc90141b7afc6eb0429c21fc5a21dcfb8", size = 1969483, upload-time = "2025-10-14T10:20:52.35Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/13/d0/c20adabd181a029a970738dfe23710b52a31f1258f591874fcdec7359845/pydantic_core-2.41.4-cp313-cp313-macosx_10_12_x86_64.whl", hash = "sha256:85e050ad9e5f6fe1004eec65c914332e52f429bc0ae12d6fa2092407a462c746", size = 2105688, upload-time = "2025-10-14T10:20:54.448Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/00/b6/0ce5c03cec5ae94cca220dfecddc453c077d71363b98a4bbdb3c0b22c783/pydantic_core-2.41.4-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:e7393f1d64792763a48924ba31d1e44c2cfbc05e3b1c2c9abb4ceeadd912cced", size = 1910807, upload-time = "2025-10-14T10:20:56.115Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/68/3e/800d3d02c8beb0b5c069c870cbb83799d085debf43499c897bb4b4aaff0d/pydantic_core-2.41.4-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:94dab0940b0d1fb28bcab847adf887c66a27a40291eedf0b473be58761c9799a", size = 1956669, upload-time = "2025-10-14T10:20:57.874Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/60/a4/24271cc71a17f64589be49ab8bd0751f6a0a03046c690df60989f2f95c2c/pydantic_core-2.41.4-cp313-cp313-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:de7c42f897e689ee6f9e93c4bec72b99ae3b32a2ade1c7e4798e690ff5246e02", size = 2051629, upload-time = "2025-10-14T10:21:00.006Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/68/de/45af3ca2f175d91b96bfb62e1f2d2f1f9f3b14a734afe0bfeff079f78181/pydantic_core-2.41.4-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:664b3199193262277b8b3cd1e754fb07f2c6023289c815a1e1e8fb415cb247b1", size = 2224049, upload-time = "2025-10-14T10:21:01.801Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/af/8f/ae4e1ff84672bf869d0a77af24fd78387850e9497753c432875066b5d622/pydantic_core-2.41.4-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:d95b253b88f7d308b1c0b417c4624f44553ba4762816f94e6986819b9c273fb2", size = 2342409, upload-time = "2025-10-14T10:21:03.556Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/18/62/273dd70b0026a085c7b74b000394e1ef95719ea579c76ea2f0cc8893736d/pydantic_core-2.41.4-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a1351f5bbdbbabc689727cb91649a00cb9ee7203e0a6e54e9f5ba9e22e384b84", size = 2069635, upload-time = "2025-10-14T10:21:05.385Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/30/03/cf485fff699b4cdaea469bc481719d3e49f023241b4abb656f8d422189fc/pydantic_core-2.41.4-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:1affa4798520b148d7182da0615d648e752de4ab1a9566b7471bc803d88a062d", size = 2194284, upload-time = "2025-10-14T10:21:07.122Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/f9/7e/c8e713db32405dfd97211f2fc0a15d6bf8adb7640f3d18544c1f39526619/pydantic_core-2.41.4-cp313-cp313-musllinux_1_1_aarch64.whl", hash = "sha256:7b74e18052fea4aa8dea2fb7dbc23d15439695da6cbe6cfc1b694af1115df09d", size = 2137566, upload-time = "2025-10-14T10:21:08.981Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/04/f7/db71fd4cdccc8b75990f79ccafbbd66757e19f6d5ee724a6252414483fb4/pydantic_core-2.41.4-cp313-cp313-musllinux_1_1_armv7l.whl", hash = "sha256:285b643d75c0e30abda9dc1077395624f314a37e3c09ca402d4015ef5979f1a2", size = 2316809, upload-time = "2025-10-14T10:21:10.805Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/76/63/a54973ddb945f1bca56742b48b144d85c9fc22f819ddeb9f861c249d5464/pydantic_core-2.41.4-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:f52679ff4218d713b3b33f88c89ccbf3a5c2c12ba665fb80ccc4192b4608dbab", size = 2311119, upload-time = "2025-10-14T10:21:12.583Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/f8/03/5d12891e93c19218af74843a27e32b94922195ded2386f7b55382f904d2f/pydantic_core-2.41.4-cp313-cp313-win32.whl", hash = "sha256:ecde6dedd6fff127c273c76821bb754d793be1024bc33314a120f83a3c69460c", size = 1981398, upload-time = "2025-10-14T10:21:14.584Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/be/d8/fd0de71f39db91135b7a26996160de71c073d8635edfce8b3c3681be0d6d/pydantic_core-2.41.4-cp313-cp313-win_amd64.whl", hash = "sha256:d081a1f3800f05409ed868ebb2d74ac39dd0c1ff6c035b5162356d76030736d4", size = 2030735, upload-time = "2025-10-14T10:21:16.432Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/72/86/c99921c1cf6650023c08bfab6fe2d7057a5142628ef7ccfa9921f2dda1d5/pydantic_core-2.41.4-cp313-cp313-win_arm64.whl", hash = "sha256:f8e49c9c364a7edcbe2a310f12733aad95b022495ef2a8d653f645e5d20c1564", size = 1973209, upload-time = "2025-10-14T10:21:18.213Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/36/0d/b5706cacb70a8414396efdda3d72ae0542e050b591119e458e2490baf035/pydantic_core-2.41.4-cp313-cp313t-macosx_11_0_arm64.whl", hash = "sha256:ed97fd56a561f5eb5706cebe94f1ad7c13b84d98312a05546f2ad036bafe87f4", size = 1877324, upload-time = "2025-10-14T10:21:20.363Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/de/2d/cba1fa02cfdea72dfb3a9babb067c83b9dff0bbcb198368e000a6b756ea7/pydantic_core-2.41.4-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a870c307bf1ee91fc58a9a61338ff780d01bfae45922624816878dce784095d2", size = 1884515, upload-time = "2025-10-14T10:21:22.339Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/07/ea/3df927c4384ed9b503c9cc2d076cf983b4f2adb0c754578dfb1245c51e46/pydantic_core-2.41.4-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d25e97bc1f5f8f7985bdc2335ef9e73843bb561eb1fa6831fdfc295c1c2061cf", size = 2042819, upload-time = "2025-10-14T10:21:26.683Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/6a/ee/df8e871f07074250270a3b1b82aad4cd0026b588acd5d7d3eb2fcb1471a3/pydantic_core-2.41.4-cp313-cp313t-win_amd64.whl", hash = "sha256:d405d14bea042f166512add3091c1af40437c2e7f86988f3915fabd27b1e9cd2", size = 1995866, upload-time = "2025-10-14T10:21:28.951Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/fc/de/b20f4ab954d6d399499c33ec4fafc46d9551e11dc1858fb7f5dca0748ceb/pydantic_core-2.41.4-cp313-cp313t-win_arm64.whl", hash = "sha256:19f3684868309db5263a11bace3c45d93f6f24afa2ffe75a647583df22a2ff89", size = 1970034, upload-time = "2025-10-14T10:21:30.869Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/54/28/d3325da57d413b9819365546eb9a6e8b7cbd9373d9380efd5f74326143e6/pydantic_core-2.41.4-cp314-cp314-macosx_10_12_x86_64.whl", hash = "sha256:e9205d97ed08a82ebb9a307e92914bb30e18cdf6f6b12ca4bedadb1588a0bfe1", size = 2102022, upload-time = "2025-10-14T10:21:32.809Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/9e/24/b58a1bc0d834bf1acc4361e61233ee217169a42efbdc15a60296e13ce438/pydantic_core-2.41.4-cp314-cp314-macosx_11_0_arm64.whl", hash = "sha256:82df1f432b37d832709fbcc0e24394bba04a01b6ecf1ee87578145c19cde12ac", size = 1905495, upload-time = "2025-10-14T10:21:34.812Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/fb/a4/71f759cc41b7043e8ecdaab81b985a9b6cad7cec077e0b92cff8b71ecf6b/pydantic_core-2.41.4-cp314-cp314-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:fc3b4cc4539e055cfa39a3763c939f9d409eb40e85813257dcd761985a108554", size = 1956131, upload-time = "2025-10-14T10:21:36.924Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/b0/64/1e79ac7aa51f1eec7c4cda8cbe456d5d09f05fdd68b32776d72168d54275/pydantic_core-2.41.4-cp314-cp314-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:b1eb1754fce47c63d2ff57fdb88c351a6c0150995890088b33767a10218eaa4e", size = 2052236, upload-time = "2025-10-14T10:21:38.927Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/e9/e3/a3ffc363bd4287b80f1d43dc1c28ba64831f8dfc237d6fec8f2661138d48/pydantic_core-2.41.4-cp314-cp314-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:e6ab5ab30ef325b443f379ddb575a34969c333004fca5a1daa0133a6ffaad616", size = 2223573, upload-time = "2025-10-14T10:21:41.574Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/28/27/78814089b4d2e684a9088ede3790763c64693c3d1408ddc0a248bc789126/pydantic_core-2.41.4-cp314-cp314-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:31a41030b1d9ca497634092b46481b937ff9397a86f9f51bd41c4767b6fc04af", size = 2342467, upload-time = "2025-10-14T10:21:44.018Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/92/97/4de0e2a1159cb85ad737e03306717637842c88c7fd6d97973172fb183149/pydantic_core-2.41.4-cp314-cp314-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a44ac1738591472c3d020f61c6df1e4015180d6262ebd39bf2aeb52571b60f12", size = 2063754, upload-time = "2025-10-14T10:21:46.466Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/0f/50/8cb90ce4b9efcf7ae78130afeb99fd1c86125ccdf9906ef64b9d42f37c25/pydantic_core-2.41.4-cp314-cp314-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:d72f2b5e6e82ab8f94ea7d0d42f83c487dc159c5240d8f83beae684472864e2d", size = 2196754, upload-time = "2025-10-14T10:21:48.486Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/34/3b/ccdc77af9cd5082723574a1cc1bcae7a6acacc829d7c0a06201f7886a109/pydantic_core-2.41.4-cp314-cp314-musllinux_1_1_aarch64.whl", hash = "sha256:c4d1e854aaf044487d31143f541f7aafe7b482ae72a022c664b2de2e466ed0ad", size = 2137115, upload-time = "2025-10-14T10:21:50.63Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/ca/ba/e7c7a02651a8f7c52dc2cff2b64a30c313e3b57c7d93703cecea76c09b71/pydantic_core-2.41.4-cp314-cp314-musllinux_1_1_armv7l.whl", hash = "sha256:b568af94267729d76e6ee5ececda4e283d07bbb28e8148bb17adad93d025d25a", size = 2317400, upload-time = "2025-10-14T10:21:52.959Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/2c/ba/6c533a4ee8aec6b812c643c49bb3bd88d3f01e3cebe451bb85512d37f00f/pydantic_core-2.41.4-cp314-cp314-musllinux_1_1_x86_64.whl", hash = "sha256:6d55fb8b1e8929b341cc313a81a26e0d48aa3b519c1dbaadec3a6a2b4fcad025", size = 2312070, upload-time = "2025-10-14T10:21:55.419Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/22/ae/f10524fcc0ab8d7f96cf9a74c880243576fd3e72bd8ce4f81e43d22bcab7/pydantic_core-2.41.4-cp314-cp314-win32.whl", hash = "sha256:5b66584e549e2e32a1398df11da2e0a7eff45d5c2d9db9d5667c5e6ac764d77e", size = 1982277, upload-time = "2025-10-14T10:21:57.474Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/b4/dc/e5aa27aea1ad4638f0c3fb41132f7eb583bd7420ee63204e2d4333a3bbf9/pydantic_core-2.41.4-cp314-cp314-win_amd64.whl", hash = "sha256:557a0aab88664cc552285316809cab897716a372afaf8efdbef756f8b890e894", size = 2024608, upload-time = "2025-10-14T10:21:59.557Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/3e/61/51d89cc2612bd147198e120a13f150afbf0bcb4615cddb049ab10b81b79e/pydantic_core-2.41.4-cp314-cp314-win_arm64.whl", hash = "sha256:3f1ea6f48a045745d0d9f325989d8abd3f1eaf47dd00485912d1a3a63c623a8d", size = 1967614, upload-time = "2025-10-14T10:22:01.847Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/0d/c2/472f2e31b95eff099961fa050c376ab7156a81da194f9edb9f710f68787b/pydantic_core-2.41.4-cp314-cp314t-macosx_11_0_arm64.whl", hash = "sha256:6c1fe4c5404c448b13188dd8bd2ebc2bdd7e6727fa61ff481bcc2cca894018da", size = 1876904, upload-time = "2025-10-14T10:22:04.062Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/4a/07/ea8eeb91173807ecdae4f4a5f4b150a520085b35454350fc219ba79e66a3/pydantic_core-2.41.4-cp314-cp314t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:523e7da4d43b113bf8e7b49fa4ec0c35bf4fe66b2230bfc5c13cc498f12c6c3e", size = 1882538, upload-time = "2025-10-14T10:22:06.39Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/1e/29/b53a9ca6cd366bfc928823679c6a76c7a4c69f8201c0ba7903ad18ebae2f/pydantic_core-2.41.4-cp314-cp314t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5729225de81fb65b70fdb1907fcf08c75d498f4a6f15af005aabb1fdadc19dfa", size = 2041183, upload-time = "2025-10-14T10:22:08.812Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/c7/3d/f8c1a371ceebcaf94d6dd2d77c6cf4b1c078e13a5837aee83f760b4f7cfd/pydantic_core-2.41.4-cp314-cp314t-win_amd64.whl", hash = "sha256:de2cfbb09e88f0f795fd90cf955858fc2c691df65b1f21f0aa00b99f3fbc661d", size = 1993542, upload-time = "2025-10-14T10:22:11.332Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/8a/ac/9fc61b4f9d079482a290afe8d206b8f490e9fd32d4fc03ed4fc698214e01/pydantic_core-2.41.4-cp314-cp314t-win_arm64.whl", hash = "sha256:d34f950ae05a83e0ede899c595f312ca976023ea1db100cd5aa188f7005e3ab0", size = 1973897, upload-time = "2025-10-14T10:22:13.444Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/b0/12/5ba58daa7f453454464f92b3ca7b9d7c657d8641c48e370c3ebc9a82dd78/pydantic_core-2.41.4-graalpy311-graalpy242_311_native-macosx_10_12_x86_64.whl", hash = "sha256:a1b2cfec3879afb742a7b0bcfa53e4f22ba96571c9e54d6a3afe1052d17d843b", size = 2122139, upload-time = "2025-10-14T10:22:47.288Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/21/fb/6860126a77725c3108baecd10fd3d75fec25191d6381b6eb2ac660228eac/pydantic_core-2.41.4-graalpy311-graalpy242_311_native-macosx_11_0_arm64.whl", hash = "sha256:d175600d975b7c244af6eb9c9041f10059f20b8bbffec9e33fdd5ee3f67cdc42", size = 1936674, upload-time = "2025-10-14T10:22:49.555Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/de/be/57dcaa3ed595d81f8757e2b44a38240ac5d37628bce25fb20d02c7018776/pydantic_core-2.41.4-graalpy311-graalpy242_311_native-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0f184d657fa4947ae5ec9c47bd7e917730fa1cbb78195037e32dcbab50aca5ee", size = 1956398, upload-time = "2025-10-14T10:22:52.19Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/2f/1d/679a344fadb9695f1a6a294d739fbd21d71fa023286daeea8c0ed49e7c2b/pydantic_core-2.41.4-graalpy311-graalpy242_311_native-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1ed810568aeffed3edc78910af32af911c835cc39ebbfacd1f0ab5dd53028e5c", size = 2138674, upload-time = "2025-10-14T10:22:54.499Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/c4/48/ae937e5a831b7c0dc646b2ef788c27cd003894882415300ed21927c21efa/pydantic_core-2.41.4-graalpy312-graalpy250_312_native-macosx_10_12_x86_64.whl", hash = "sha256:4f5d640aeebb438517150fdeec097739614421900e4a08db4a3ef38898798537", size = 2112087, upload-time = "2025-10-14T10:22:56.818Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/5e/db/6db8073e3d32dae017da7e0d16a9ecb897d0a4d92e00634916e486097961/pydantic_core-2.41.4-graalpy312-graalpy250_312_native-macosx_11_0_arm64.whl", hash = "sha256:4a9ab037b71927babc6d9e7fc01aea9e66dc2a4a34dff06ef0724a4049629f94", size = 1920387, upload-time = "2025-10-14T10:22:59.342Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/0d/c1/dd3542d072fcc336030d66834872f0328727e3b8de289c662faa04aa270e/pydantic_core-2.41.4-graalpy312-graalpy250_312_native-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e4dab9484ec605c3016df9ad4fd4f9a390bc5d816a3b10c6550f8424bb80b18c", size = 1951495, upload-time = "2025-10-14T10:23:02.089Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/2b/c6/db8d13a1f8ab3f1eb08c88bd00fd62d44311e3456d1e85c0e59e0a0376e7/pydantic_core-2.41.4-graalpy312-graalpy250_312_native-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bd8a5028425820731d8c6c098ab642d7b8b999758e24acae03ed38a66eca8335", size = 2139008, upload-time = "2025-10-14T10:23:04.539Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/5d/d4/912e976a2dd0b49f31c98a060ca90b353f3b73ee3ea2fd0030412f6ac5ec/pydantic_core-2.41.4-pp310-pypy310_pp73-macosx_10_12_x86_64.whl", hash = "sha256:1e5ab4fc177dd41536b3c32b2ea11380dd3d4619a385860621478ac2d25ceb00", size = 2106739, upload-time = "2025-10-14T10:23:06.934Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/71/f0/66ec5a626c81eba326072d6ee2b127f8c139543f1bf609b4842978d37833/pydantic_core-2.41.4-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:3d88d0054d3fa11ce936184896bed3c1c5441d6fa483b498fac6a5d0dd6f64a9", size = 1932549, upload-time = "2025-10-14T10:23:09.24Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/c4/af/625626278ca801ea0a658c2dcf290dc9f21bb383098e99e7c6a029fccfc0/pydantic_core-2.41.4-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7b2a054a8725f05b4b6503357e0ac1c4e8234ad3b0c2ac130d6ffc66f0e170e2", size = 2135093, upload-time = "2025-10-14T10:23:11.626Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/20/f6/2fba049f54e0f4975fef66be654c597a1d005320fa141863699180c7697d/pydantic_core-2.41.4-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:b0d9db5a161c99375a0c68c058e227bee1d89303300802601d76a3d01f74e258", size = 2187971, upload-time = "2025-10-14T10:23:14.437Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/0e/80/65ab839a2dfcd3b949202f9d920c34f9de5a537c3646662bdf2f7d999680/pydantic_core-2.41.4-pp310-pypy310_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:6273ea2c8ffdac7b7fda2653c49682db815aebf4a89243a6feccf5e36c18c347", size = 2147939, upload-time = "2025-10-14T10:23:16.831Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/44/58/627565d3d182ce6dfda18b8e1c841eede3629d59c9d7cbc1e12a03aeb328/pydantic_core-2.41.4-pp310-pypy310_pp73-musllinux_1_1_armv7l.whl", hash = "sha256:4c973add636efc61de22530b2ef83a65f39b6d6f656df97f678720e20de26caa", size = 2311400, upload-time = "2025-10-14T10:23:19.234Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/24/06/8a84711162ad5a5f19a88cead37cca81b4b1f294f46260ef7334ae4f24d3/pydantic_core-2.41.4-pp310-pypy310_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:b69d1973354758007f46cf2d44a4f3d0933f10b6dc9bf15cf1356e037f6f731a", size = 2316840, upload-time = "2025-10-14T10:23:21.738Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/aa/8b/b7bb512a4682a2f7fbfae152a755d37351743900226d29bd953aaf870eaa/pydantic_core-2.41.4-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:3619320641fd212aaf5997b6ca505e97540b7e16418f4a241f44cdf108ffb50d", size = 2149135, upload-time = "2025-10-14T10:23:24.379Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/7e/7d/138e902ed6399b866f7cfe4435d22445e16fff888a1c00560d9dc79a780f/pydantic_core-2.41.4-pp311-pypy311_pp73-macosx_10_12_x86_64.whl", hash = "sha256:491535d45cd7ad7e4a2af4a5169b0d07bebf1adfd164b0368da8aa41e19907a5", size = 2104721, upload-time = "2025-10-14T10:23:26.906Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/47/13/0525623cf94627f7b53b4c2034c81edc8491cbfc7c28d5447fa318791479/pydantic_core-2.41.4-pp311-pypy311_pp73-macosx_11_0_arm64.whl", hash = "sha256:54d86c0cada6aba4ec4c047d0e348cbad7063b87ae0f005d9f8c9ad04d4a92a2", size = 1931608, upload-time = "2025-10-14T10:23:29.306Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/d6/f9/744bc98137d6ef0a233f808bfc9b18cf94624bf30836a18d3b05d08bf418/pydantic_core-2.41.4-pp311-pypy311_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:eca1124aced216b2500dc2609eade086d718e8249cb9696660ab447d50a758bd", size = 2132986, upload-time = "2025-10-14T10:23:32.057Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/17/c8/629e88920171173f6049386cc71f893dff03209a9ef32b4d2f7e7c264bcf/pydantic_core-2.41.4-pp311-pypy311_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:6c9024169becccf0cb470ada03ee578d7348c119a0d42af3dcf9eda96e3a247c", size = 2187516, upload-time = "2025-10-14T10:23:34.871Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/2e/0f/4f2734688d98488782218ca61bcc118329bf5de05bb7fe3adc7dd79b0b86/pydantic_core-2.41.4-pp311-pypy311_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:26895a4268ae5a2849269f4991cdc97236e4b9c010e51137becf25182daac405", size = 2146146, upload-time = "2025-10-14T10:23:37.342Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/ed/f2/ab385dbd94a052c62224b99cf99002eee99dbec40e10006c78575aead256/pydantic_core-2.41.4-pp311-pypy311_pp73-musllinux_1_1_armv7l.whl", hash = "sha256:ca4df25762cf71308c446e33c9b1fdca2923a3f13de616e2a949f38bf21ff5a8", size = 2311296, upload-time = "2025-10-14T10:23:40.145Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/fc/8e/e4f12afe1beeb9823bba5375f8f258df0cc61b056b0195fb1cf9f62a1a58/pydantic_core-2.41.4-pp311-pypy311_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:5a28fcedd762349519276c36634e71853b4541079cab4acaaac60c4421827308", size = 2315386, upload-time = "2025-10-14T10:23:42.624Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/48/f7/925f65d930802e3ea2eb4d5afa4cb8730c8dc0d2cb89a59dc4ed2fcb2d74/pydantic_core-2.41.4-pp311-pypy311_pp73-win_amd64.whl", hash = "sha256:c173ddcd86afd2535e2b695217e82191580663a1d1928239f877f5a1649ef39f", size = 2147775, upload-time = "2025-10-14T10:23:45.406Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/e5/92/b31726561b5dae176c2d2c2dc43a9c5bfba5d32f96f8b4c0a600dd492447/pydantic_core-2.33.2-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:2b3d326aaef0c0399d9afffeb6367d5e26ddc24d351dbc9c636840ac355dc5d8", size = 2028817, upload-time = "2025-04-23T18:30:43.919Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/a3/44/3f0b95fafdaca04a483c4e685fe437c6891001bf3ce8b2fded82b9ea3aa1/pydantic_core-2.33.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:0e5b2671f05ba48b94cb90ce55d8bdcaaedb8ba00cc5359f6810fc918713983d", size = 1861357, upload-time = "2025-04-23T18:30:46.372Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/30/97/e8f13b55766234caae05372826e8e4b3b96e7b248be3157f53237682e43c/pydantic_core-2.33.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0069c9acc3f3981b9ff4cdfaf088e98d83440a4c7ea1bc07460af3d4dc22e72d", size = 1898011, upload-time = "2025-04-23T18:30:47.591Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/9b/a3/99c48cf7bafc991cc3ee66fd544c0aae8dc907b752f1dad2d79b1b5a471f/pydantic_core-2.33.2-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:d53b22f2032c42eaaf025f7c40c2e3b94568ae077a606f006d206a463bc69572", size = 1982730, upload-time = "2025-04-23T18:30:49.328Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/de/8e/a5b882ec4307010a840fb8b58bd9bf65d1840c92eae7534c7441709bf54b/pydantic_core-2.33.2-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:0405262705a123b7ce9f0b92f123334d67b70fd1f20a9372b907ce1080c7ba02", size = 2136178, upload-time = "2025-04-23T18:30:50.907Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/e4/bb/71e35fc3ed05af6834e890edb75968e2802fe98778971ab5cba20a162315/pydantic_core-2.33.2-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:4b25d91e288e2c4e0662b8038a28c6a07eaac3e196cfc4ff69de4ea3db992a1b", size = 2736462, upload-time = "2025-04-23T18:30:52.083Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/31/0d/c8f7593e6bc7066289bbc366f2235701dcbebcd1ff0ef8e64f6f239fb47d/pydantic_core-2.33.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6bdfe4b3789761f3bcb4b1ddf33355a71079858958e3a552f16d5af19768fef2", size = 2005652, upload-time = "2025-04-23T18:30:53.389Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/d2/7a/996d8bd75f3eda405e3dd219ff5ff0a283cd8e34add39d8ef9157e722867/pydantic_core-2.33.2-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:efec8db3266b76ef9607c2c4c419bdb06bf335ae433b80816089ea7585816f6a", size = 2113306, upload-time = "2025-04-23T18:30:54.661Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/ff/84/daf2a6fb2db40ffda6578a7e8c5a6e9c8affb251a05c233ae37098118788/pydantic_core-2.33.2-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:031c57d67ca86902726e0fae2214ce6770bbe2f710dc33063187a68744a5ecac", size = 2073720, upload-time = "2025-04-23T18:30:56.11Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/77/fb/2258da019f4825128445ae79456a5499c032b55849dbd5bed78c95ccf163/pydantic_core-2.33.2-cp310-cp310-musllinux_1_1_armv7l.whl", hash = "sha256:f8de619080e944347f5f20de29a975c2d815d9ddd8be9b9b7268e2e3ef68605a", size = 2244915, upload-time = "2025-04-23T18:30:57.501Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/d8/7a/925ff73756031289468326e355b6fa8316960d0d65f8b5d6b3a3e7866de7/pydantic_core-2.33.2-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:73662edf539e72a9440129f231ed3757faab89630d291b784ca99237fb94db2b", size = 2241884, upload-time = "2025-04-23T18:30:58.867Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/0b/b0/249ee6d2646f1cdadcb813805fe76265745c4010cf20a8eba7b0e639d9b2/pydantic_core-2.33.2-cp310-cp310-win32.whl", hash = "sha256:0a39979dcbb70998b0e505fb1556a1d550a0781463ce84ebf915ba293ccb7e22", size = 1910496, upload-time = "2025-04-23T18:31:00.078Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/66/ff/172ba8f12a42d4b552917aa65d1f2328990d3ccfc01d5b7c943ec084299f/pydantic_core-2.33.2-cp310-cp310-win_amd64.whl", hash = "sha256:b0379a2b24882fef529ec3b4987cb5d003b9cda32256024e6fe1586ac45fc640", size = 1955019, upload-time = "2025-04-23T18:31:01.335Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/3f/8d/71db63483d518cbbf290261a1fc2839d17ff89fce7089e08cad07ccfce67/pydantic_core-2.33.2-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:4c5b0a576fb381edd6d27f0a85915c6daf2f8138dc5c267a57c08a62900758c7", size = 2028584, upload-time = "2025-04-23T18:31:03.106Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/24/2f/3cfa7244ae292dd850989f328722d2aef313f74ffc471184dc509e1e4e5a/pydantic_core-2.33.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:e799c050df38a639db758c617ec771fd8fb7a5f8eaaa4b27b101f266b216a246", size = 1855071, upload-time = "2025-04-23T18:31:04.621Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/b3/d3/4ae42d33f5e3f50dd467761304be2fa0a9417fbf09735bc2cce003480f2a/pydantic_core-2.33.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:dc46a01bf8d62f227d5ecee74178ffc448ff4e5197c756331f71efcc66dc980f", size = 1897823, upload-time = "2025-04-23T18:31:06.377Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/f4/f3/aa5976e8352b7695ff808599794b1fba2a9ae2ee954a3426855935799488/pydantic_core-2.33.2-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:a144d4f717285c6d9234a66778059f33a89096dfb9b39117663fd8413d582dcc", size = 1983792, upload-time = "2025-04-23T18:31:07.93Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/d5/7a/cda9b5a23c552037717f2b2a5257e9b2bfe45e687386df9591eff7b46d28/pydantic_core-2.33.2-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:73cf6373c21bc80b2e0dc88444f41ae60b2f070ed02095754eb5a01df12256de", size = 2136338, upload-time = "2025-04-23T18:31:09.283Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/2b/9f/b8f9ec8dd1417eb9da784e91e1667d58a2a4a7b7b34cf4af765ef663a7e5/pydantic_core-2.33.2-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:3dc625f4aa79713512d1976fe9f0bc99f706a9dee21dfd1810b4bbbf228d0e8a", size = 2730998, upload-time = "2025-04-23T18:31:11.7Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/47/bc/cd720e078576bdb8255d5032c5d63ee5c0bf4b7173dd955185a1d658c456/pydantic_core-2.33.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:881b21b5549499972441da4758d662aeea93f1923f953e9cbaff14b8b9565aef", size = 2003200, upload-time = "2025-04-23T18:31:13.536Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/ca/22/3602b895ee2cd29d11a2b349372446ae9727c32e78a94b3d588a40fdf187/pydantic_core-2.33.2-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:bdc25f3681f7b78572699569514036afe3c243bc3059d3942624e936ec93450e", size = 2113890, upload-time = "2025-04-23T18:31:15.011Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/ff/e6/e3c5908c03cf00d629eb38393a98fccc38ee0ce8ecce32f69fc7d7b558a7/pydantic_core-2.33.2-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:fe5b32187cbc0c862ee201ad66c30cf218e5ed468ec8dc1cf49dec66e160cc4d", size = 2073359, upload-time = "2025-04-23T18:31:16.393Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/12/e7/6a36a07c59ebefc8777d1ffdaf5ae71b06b21952582e4b07eba88a421c79/pydantic_core-2.33.2-cp311-cp311-musllinux_1_1_armv7l.whl", hash = "sha256:bc7aee6f634a6f4a95676fcb5d6559a2c2a390330098dba5e5a5f28a2e4ada30", size = 2245883, upload-time = "2025-04-23T18:31:17.892Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/16/3f/59b3187aaa6cc0c1e6616e8045b284de2b6a87b027cce2ffcea073adf1d2/pydantic_core-2.33.2-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:235f45e5dbcccf6bd99f9f472858849f73d11120d76ea8707115415f8e5ebebf", size = 2241074, upload-time = "2025-04-23T18:31:19.205Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/e0/ed/55532bb88f674d5d8f67ab121a2a13c385df382de2a1677f30ad385f7438/pydantic_core-2.33.2-cp311-cp311-win32.whl", hash = "sha256:6368900c2d3ef09b69cb0b913f9f8263b03786e5b2a387706c5afb66800efd51", size = 1910538, upload-time = "2025-04-23T18:31:20.541Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/fe/1b/25b7cccd4519c0b23c2dd636ad39d381abf113085ce4f7bec2b0dc755eb1/pydantic_core-2.33.2-cp311-cp311-win_amd64.whl", hash = "sha256:1e063337ef9e9820c77acc768546325ebe04ee38b08703244c1309cccc4f1bab", size = 1952909, upload-time = "2025-04-23T18:31:22.371Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/49/a9/d809358e49126438055884c4366a1f6227f0f84f635a9014e2deb9b9de54/pydantic_core-2.33.2-cp311-cp311-win_arm64.whl", hash = "sha256:6b99022f1d19bc32a4c2a0d544fc9a76e3be90f0b3f4af413f87d38749300e65", size = 1897786, upload-time = "2025-04-23T18:31:24.161Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/18/8a/2b41c97f554ec8c71f2a8a5f85cb56a8b0956addfe8b0efb5b3d77e8bdc3/pydantic_core-2.33.2-cp312-cp312-macosx_10_12_x86_64.whl", hash = "sha256:a7ec89dc587667f22b6a0b6579c249fca9026ce7c333fc142ba42411fa243cdc", size = 2009000, upload-time = "2025-04-23T18:31:25.863Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/a1/02/6224312aacb3c8ecbaa959897af57181fb6cf3a3d7917fd44d0f2917e6f2/pydantic_core-2.33.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:3c6db6e52c6d70aa0d00d45cdb9b40f0433b96380071ea80b09277dba021ddf7", size = 1847996, upload-time = "2025-04-23T18:31:27.341Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/d6/46/6dcdf084a523dbe0a0be59d054734b86a981726f221f4562aed313dbcb49/pydantic_core-2.33.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4e61206137cbc65e6d5256e1166f88331d3b6238e082d9f74613b9b765fb9025", size = 1880957, upload-time = "2025-04-23T18:31:28.956Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/ec/6b/1ec2c03837ac00886ba8160ce041ce4e325b41d06a034adbef11339ae422/pydantic_core-2.33.2-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:eb8c529b2819c37140eb51b914153063d27ed88e3bdc31b71198a198e921e011", size = 1964199, upload-time = "2025-04-23T18:31:31.025Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/2d/1d/6bf34d6adb9debd9136bd197ca72642203ce9aaaa85cfcbfcf20f9696e83/pydantic_core-2.33.2-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:c52b02ad8b4e2cf14ca7b3d918f3eb0ee91e63b3167c32591e57c4317e134f8f", size = 2120296, upload-time = "2025-04-23T18:31:32.514Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/e0/94/2bd0aaf5a591e974b32a9f7123f16637776c304471a0ab33cf263cf5591a/pydantic_core-2.33.2-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:96081f1605125ba0855dfda83f6f3df5ec90c61195421ba72223de35ccfb2f88", size = 2676109, upload-time = "2025-04-23T18:31:33.958Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/f9/41/4b043778cf9c4285d59742281a769eac371b9e47e35f98ad321349cc5d61/pydantic_core-2.33.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8f57a69461af2a5fa6e6bbd7a5f60d3b7e6cebb687f55106933188e79ad155c1", size = 2002028, upload-time = "2025-04-23T18:31:39.095Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/cb/d5/7bb781bf2748ce3d03af04d5c969fa1308880e1dca35a9bd94e1a96a922e/pydantic_core-2.33.2-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:572c7e6c8bb4774d2ac88929e3d1f12bc45714ae5ee6d9a788a9fb35e60bb04b", size = 2100044, upload-time = "2025-04-23T18:31:41.034Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/fe/36/def5e53e1eb0ad896785702a5bbfd25eed546cdcf4087ad285021a90ed53/pydantic_core-2.33.2-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:db4b41f9bd95fbe5acd76d89920336ba96f03e149097365afe1cb092fceb89a1", size = 2058881, upload-time = "2025-04-23T18:31:42.757Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/01/6c/57f8d70b2ee57fc3dc8b9610315949837fa8c11d86927b9bb044f8705419/pydantic_core-2.33.2-cp312-cp312-musllinux_1_1_armv7l.whl", hash = "sha256:fa854f5cf7e33842a892e5c73f45327760bc7bc516339fda888c75ae60edaeb6", size = 2227034, upload-time = "2025-04-23T18:31:44.304Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/27/b9/9c17f0396a82b3d5cbea4c24d742083422639e7bb1d5bf600e12cb176a13/pydantic_core-2.33.2-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:5f483cfb75ff703095c59e365360cb73e00185e01aaea067cd19acffd2ab20ea", size = 2234187, upload-time = "2025-04-23T18:31:45.891Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/b0/6a/adf5734ffd52bf86d865093ad70b2ce543415e0e356f6cacabbc0d9ad910/pydantic_core-2.33.2-cp312-cp312-win32.whl", hash = "sha256:9cb1da0f5a471435a7bc7e439b8a728e8b61e59784b2af70d7c169f8dd8ae290", size = 1892628, upload-time = "2025-04-23T18:31:47.819Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/43/e4/5479fecb3606c1368d496a825d8411e126133c41224c1e7238be58b87d7e/pydantic_core-2.33.2-cp312-cp312-win_amd64.whl", hash = "sha256:f941635f2a3d96b2973e867144fde513665c87f13fe0e193c158ac51bfaaa7b2", size = 1955866, upload-time = "2025-04-23T18:31:49.635Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/0d/24/8b11e8b3e2be9dd82df4b11408a67c61bb4dc4f8e11b5b0fc888b38118b5/pydantic_core-2.33.2-cp312-cp312-win_arm64.whl", hash = "sha256:cca3868ddfaccfbc4bfb1d608e2ccaaebe0ae628e1416aeb9c4d88c001bb45ab", size = 1888894, upload-time = "2025-04-23T18:31:51.609Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/46/8c/99040727b41f56616573a28771b1bfa08a3d3fe74d3d513f01251f79f172/pydantic_core-2.33.2-cp313-cp313-macosx_10_12_x86_64.whl", hash = "sha256:1082dd3e2d7109ad8b7da48e1d4710c8d06c253cbc4a27c1cff4fbcaa97a9e3f", size = 2015688, upload-time = "2025-04-23T18:31:53.175Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/3a/cc/5999d1eb705a6cefc31f0b4a90e9f7fc400539b1a1030529700cc1b51838/pydantic_core-2.33.2-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:f517ca031dfc037a9c07e748cefd8d96235088b83b4f4ba8939105d20fa1dcd6", size = 1844808, upload-time = "2025-04-23T18:31:54.79Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/6f/5e/a0a7b8885c98889a18b6e376f344da1ef323d270b44edf8174d6bce4d622/pydantic_core-2.33.2-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0a9f2c9dd19656823cb8250b0724ee9c60a82f3cdf68a080979d13092a3b0fef", size = 1885580, upload-time = "2025-04-23T18:31:57.393Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/3b/2a/953581f343c7d11a304581156618c3f592435523dd9d79865903272c256a/pydantic_core-2.33.2-cp313-cp313-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:2b0a451c263b01acebe51895bfb0e1cc842a5c666efe06cdf13846c7418caa9a", size = 1973859, upload-time = "2025-04-23T18:31:59.065Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/e6/55/f1a813904771c03a3f97f676c62cca0c0a4138654107c1b61f19c644868b/pydantic_core-2.33.2-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:1ea40a64d23faa25e62a70ad163571c0b342b8bf66d5fa612ac0dec4f069d916", size = 2120810, upload-time = "2025-04-23T18:32:00.78Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/aa/c3/053389835a996e18853ba107a63caae0b9deb4a276c6b472931ea9ae6e48/pydantic_core-2.33.2-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:0fb2d542b4d66f9470e8065c5469ec676978d625a8b7a363f07d9a501a9cb36a", size = 2676498, upload-time = "2025-04-23T18:32:02.418Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/eb/3c/f4abd740877a35abade05e437245b192f9d0ffb48bbbbd708df33d3cda37/pydantic_core-2.33.2-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9fdac5d6ffa1b5a83bca06ffe7583f5576555e6c8b3a91fbd25ea7780f825f7d", size = 2000611, upload-time = "2025-04-23T18:32:04.152Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/59/a7/63ef2fed1837d1121a894d0ce88439fe3e3b3e48c7543b2a4479eb99c2bd/pydantic_core-2.33.2-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:04a1a413977ab517154eebb2d326da71638271477d6ad87a769102f7c2488c56", size = 2107924, upload-time = "2025-04-23T18:32:06.129Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/04/8f/2551964ef045669801675f1cfc3b0d74147f4901c3ffa42be2ddb1f0efc4/pydantic_core-2.33.2-cp313-cp313-musllinux_1_1_aarch64.whl", hash = "sha256:c8e7af2f4e0194c22b5b37205bfb293d166a7344a5b0d0eaccebc376546d77d5", size = 2063196, upload-time = "2025-04-23T18:32:08.178Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/26/bd/d9602777e77fc6dbb0c7db9ad356e9a985825547dce5ad1d30ee04903918/pydantic_core-2.33.2-cp313-cp313-musllinux_1_1_armv7l.whl", hash = "sha256:5c92edd15cd58b3c2d34873597a1e20f13094f59cf88068adb18947df5455b4e", size = 2236389, upload-time = "2025-04-23T18:32:10.242Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/42/db/0e950daa7e2230423ab342ae918a794964b053bec24ba8af013fc7c94846/pydantic_core-2.33.2-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:65132b7b4a1c0beded5e057324b7e16e10910c106d43675d9bd87d4f38dde162", size = 2239223, upload-time = "2025-04-23T18:32:12.382Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/58/4d/4f937099c545a8a17eb52cb67fe0447fd9a373b348ccfa9a87f141eeb00f/pydantic_core-2.33.2-cp313-cp313-win32.whl", hash = "sha256:52fb90784e0a242bb96ec53f42196a17278855b0f31ac7c3cc6f5c1ec4811849", size = 1900473, upload-time = "2025-04-23T18:32:14.034Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/a0/75/4a0a9bac998d78d889def5e4ef2b065acba8cae8c93696906c3a91f310ca/pydantic_core-2.33.2-cp313-cp313-win_amd64.whl", hash = "sha256:c083a3bdd5a93dfe480f1125926afcdbf2917ae714bdb80b36d34318b2bec5d9", size = 1955269, upload-time = "2025-04-23T18:32:15.783Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/f9/86/1beda0576969592f1497b4ce8e7bc8cbdf614c352426271b1b10d5f0aa64/pydantic_core-2.33.2-cp313-cp313-win_arm64.whl", hash = "sha256:e80b087132752f6b3d714f041ccf74403799d3b23a72722ea2e6ba2e892555b9", size = 1893921, upload-time = "2025-04-23T18:32:18.473Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/a4/7d/e09391c2eebeab681df2b74bfe6c43422fffede8dc74187b2b0bf6fd7571/pydantic_core-2.33.2-cp313-cp313t-macosx_11_0_arm64.whl", hash = "sha256:61c18fba8e5e9db3ab908620af374db0ac1baa69f0f32df4f61ae23f15e586ac", size = 1806162, upload-time = "2025-04-23T18:32:20.188Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/f1/3d/847b6b1fed9f8ed3bb95a9ad04fbd0b212e832d4f0f50ff4d9ee5a9f15cf/pydantic_core-2.33.2-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:95237e53bb015f67b63c91af7518a62a8660376a6a0db19b89acc77a4d6199f5", size = 1981560, upload-time = "2025-04-23T18:32:22.354Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/6f/9a/e73262f6c6656262b5fdd723ad90f518f579b7bc8622e43a942eec53c938/pydantic_core-2.33.2-cp313-cp313t-win_amd64.whl", hash = "sha256:c2fc0a768ef76c15ab9238afa6da7f69895bb5d1ee83aeea2e3509af4472d0b9", size = 1935777, upload-time = "2025-04-23T18:32:25.088Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/30/68/373d55e58b7e83ce371691f6eaa7175e3a24b956c44628eb25d7da007917/pydantic_core-2.33.2-pp310-pypy310_pp73-macosx_10_12_x86_64.whl", hash = "sha256:5c4aa4e82353f65e548c476b37e64189783aa5384903bfea4f41580f255fddfa", size = 2023982, upload-time = "2025-04-23T18:32:53.14Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/a4/16/145f54ac08c96a63d8ed6442f9dec17b2773d19920b627b18d4f10a061ea/pydantic_core-2.33.2-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:d946c8bf0d5c24bf4fe333af284c59a19358aa3ec18cb3dc4370080da1e8ad29", size = 1858412, upload-time = "2025-04-23T18:32:55.52Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/41/b1/c6dc6c3e2de4516c0bb2c46f6a373b91b5660312342a0cf5826e38ad82fa/pydantic_core-2.33.2-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:87b31b6846e361ef83fedb187bb5b4372d0da3f7e28d85415efa92d6125d6e6d", size = 1892749, upload-time = "2025-04-23T18:32:57.546Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/12/73/8cd57e20afba760b21b742106f9dbdfa6697f1570b189c7457a1af4cd8a0/pydantic_core-2.33.2-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:aa9d91b338f2df0508606f7009fde642391425189bba6d8c653afd80fd6bb64e", size = 2067527, upload-time = "2025-04-23T18:32:59.771Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/e3/d5/0bb5d988cc019b3cba4a78f2d4b3854427fc47ee8ec8e9eaabf787da239c/pydantic_core-2.33.2-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:2058a32994f1fde4ca0480ab9d1e75a0e8c87c22b53a3ae66554f9af78f2fe8c", size = 2108225, upload-time = "2025-04-23T18:33:04.51Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/f1/c5/00c02d1571913d496aabf146106ad8239dc132485ee22efe08085084ff7c/pydantic_core-2.33.2-pp310-pypy310_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:0e03262ab796d986f978f79c943fc5f620381be7287148b8010b4097f79a39ec", size = 2069490, upload-time = "2025-04-23T18:33:06.391Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/22/a8/dccc38768274d3ed3a59b5d06f59ccb845778687652daa71df0cab4040d7/pydantic_core-2.33.2-pp310-pypy310_pp73-musllinux_1_1_armv7l.whl", hash = "sha256:1a8695a8d00c73e50bff9dfda4d540b7dee29ff9b8053e38380426a85ef10052", size = 2237525, upload-time = "2025-04-23T18:33:08.44Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/d4/e7/4f98c0b125dda7cf7ccd14ba936218397b44f50a56dd8c16a3091df116c3/pydantic_core-2.33.2-pp310-pypy310_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:fa754d1850735a0b0e03bcffd9d4b4343eb417e47196e4485d9cca326073a42c", size = 2238446, upload-time = "2025-04-23T18:33:10.313Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/ce/91/2ec36480fdb0b783cd9ef6795753c1dea13882f2e68e73bce76ae8c21e6a/pydantic_core-2.33.2-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:a11c8d26a50bfab49002947d3d237abe4d9e4b5bdc8846a63537b6488e197808", size = 2066678, upload-time = "2025-04-23T18:33:12.224Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/7b/27/d4ae6487d73948d6f20dddcd94be4ea43e74349b56eba82e9bdee2d7494c/pydantic_core-2.33.2-pp311-pypy311_pp73-macosx_10_12_x86_64.whl", hash = "sha256:dd14041875d09cc0f9308e37a6f8b65f5585cf2598a53aa0123df8b129d481f8", size = 2025200, upload-time = "2025-04-23T18:33:14.199Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/f1/b8/b3cb95375f05d33801024079b9392a5ab45267a63400bf1866e7ce0f0de4/pydantic_core-2.33.2-pp311-pypy311_pp73-macosx_11_0_arm64.whl", hash = "sha256:d87c561733f66531dced0da6e864f44ebf89a8fba55f31407b00c2f7f9449593", size = 1859123, upload-time = "2025-04-23T18:33:16.555Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/05/bc/0d0b5adeda59a261cd30a1235a445bf55c7e46ae44aea28f7bd6ed46e091/pydantic_core-2.33.2-pp311-pypy311_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2f82865531efd18d6e07a04a17331af02cb7a651583c418df8266f17a63c6612", size = 1892852, upload-time = "2025-04-23T18:33:18.513Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/3e/11/d37bdebbda2e449cb3f519f6ce950927b56d62f0b84fd9cb9e372a26a3d5/pydantic_core-2.33.2-pp311-pypy311_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2bfb5112df54209d820d7bf9317c7a6c9025ea52e49f46b6a2060104bba37de7", size = 2067484, upload-time = "2025-04-23T18:33:20.475Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/8c/55/1f95f0a05ce72ecb02a8a8a1c3be0579bbc29b1d5ab68f1378b7bebc5057/pydantic_core-2.33.2-pp311-pypy311_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:64632ff9d614e5eecfb495796ad51b0ed98c453e447a76bcbeeb69615079fc7e", size = 2108896, upload-time = "2025-04-23T18:33:22.501Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/53/89/2b2de6c81fa131f423246a9109d7b2a375e83968ad0800d6e57d0574629b/pydantic_core-2.33.2-pp311-pypy311_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:f889f7a40498cc077332c7ab6b4608d296d852182211787d4f3ee377aaae66e8", size = 2069475, upload-time = "2025-04-23T18:33:24.528Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/b8/e9/1f7efbe20d0b2b10f6718944b5d8ece9152390904f29a78e68d4e7961159/pydantic_core-2.33.2-pp311-pypy311_pp73-musllinux_1_1_armv7l.whl", hash = "sha256:de4b83bb311557e439b9e186f733f6c645b9417c84e2eb8203f3f820a4b988bf", size = 2239013, upload-time = "2025-04-23T18:33:26.621Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/3c/b2/5309c905a93811524a49b4e031e9851a6b00ff0fb668794472ea7746b448/pydantic_core-2.33.2-pp311-pypy311_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:82f68293f055f51b51ea42fafc74b6aad03e70e191799430b90c13d643059ebb", size = 2238715, upload-time = "2025-04-23T18:33:28.656Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/32/56/8a7ca5d2cd2cda1d245d34b1c9a942920a718082ae8e54e5f3e5a58b7add/pydantic_core-2.33.2-pp311-pypy311_pp73-win_amd64.whl", hash = "sha256:329467cecfb529c925cf2bbd4d60d2c509bc2fb52a20c1045bf09bb70971a9c1", size = 2066757, upload-time = "2025-04-23T18:33:30.645Z" },
|
||||
]
|
||||
|
||||
[[package]]
|
||||
@@ -1300,28 +1055,28 @@ wheels = [
|
||||
|
||||
[[package]]
|
||||
name = "ruff"
|
||||
version = "0.14.10"
|
||||
version = "0.13.3"
|
||||
source = { registry = "https://pypi.org/simple" }
|
||||
sdist = { url = "https://files.pythonhosted.org/packages/57/08/52232a877978dd8f9cf2aeddce3e611b40a63287dfca29b6b8da791f5e8d/ruff-0.14.10.tar.gz", hash = "sha256:9a2e830f075d1a42cd28420d7809ace390832a490ed0966fe373ba288e77aaf4", size = 5859763, upload-time = "2025-12-18T19:28:57.98Z" }
|
||||
sdist = { url = "https://files.pythonhosted.org/packages/c7/8e/f9f9ca747fea8e3ac954e3690d4698c9737c23b51731d02df999c150b1c9/ruff-0.13.3.tar.gz", hash = "sha256:5b0ba0db740eefdfbcce4299f49e9eaefc643d4d007749d77d047c2bab19908e", size = 5438533, upload-time = "2025-10-02T19:29:31.582Z" }
|
||||
wheels = [
|
||||
{ url = "https://files.pythonhosted.org/packages/60/01/933704d69f3f05ee16ef11406b78881733c186fe14b6a46b05cfcaf6d3b2/ruff-0.14.10-py3-none-linux_armv6l.whl", hash = "sha256:7a3ce585f2ade3e1f29ec1b92df13e3da262178df8c8bdf876f48fa0e8316c49", size = 13527080, upload-time = "2025-12-18T19:29:25.642Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/df/58/a0349197a7dfa603ffb7f5b0470391efa79ddc327c1e29c4851e85b09cc5/ruff-0.14.10-py3-none-macosx_10_12_x86_64.whl", hash = "sha256:674f9be9372907f7257c51f1d4fc902cb7cf014b9980152b802794317941f08f", size = 13797320, upload-time = "2025-12-18T19:29:02.571Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/7b/82/36be59f00a6082e38c23536df4e71cdbc6af8d7c707eade97fcad5c98235/ruff-0.14.10-py3-none-macosx_11_0_arm64.whl", hash = "sha256:d85713d522348837ef9df8efca33ccb8bd6fcfc86a2cde3ccb4bc9d28a18003d", size = 12918434, upload-time = "2025-12-18T19:28:51.202Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/a6/00/45c62a7f7e34da92a25804f813ebe05c88aa9e0c25e5cb5a7d23dd7450e3/ruff-0.14.10-py3-none-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6987ebe0501ae4f4308d7d24e2d0fe3d7a98430f5adfd0f1fead050a740a3a77", size = 13371961, upload-time = "2025-12-18T19:29:04.991Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/40/31/a5906d60f0405f7e57045a70f2d57084a93ca7425f22e1d66904769d1628/ruff-0.14.10-py3-none-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:16a01dfb7b9e4eee556fbfd5392806b1b8550c9b4a9f6acd3dbe6812b193c70a", size = 13275629, upload-time = "2025-12-18T19:29:21.381Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/3e/60/61c0087df21894cf9d928dc04bcd4fb10e8b2e8dca7b1a276ba2155b2002/ruff-0.14.10-py3-none-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7165d31a925b7a294465fa81be8c12a0e9b60fb02bf177e79067c867e71f8b1f", size = 14029234, upload-time = "2025-12-18T19:29:00.132Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/44/84/77d911bee3b92348b6e5dab5a0c898d87084ea03ac5dc708f46d88407def/ruff-0.14.10-py3-none-manylinux_2_17_ppc64.manylinux2014_ppc64.whl", hash = "sha256:c561695675b972effb0c0a45db233f2c816ff3da8dcfbe7dfc7eed625f218935", size = 15449890, upload-time = "2025-12-18T19:28:53.573Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/e9/36/480206eaefa24a7ec321582dda580443a8f0671fdbf6b1c80e9c3e93a16a/ruff-0.14.10-py3-none-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:4bb98fcbbc61725968893682fd4df8966a34611239c9fd07a1f6a07e7103d08e", size = 15123172, upload-time = "2025-12-18T19:29:23.453Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/5c/38/68e414156015ba80cef5473d57919d27dfb62ec804b96180bafdeaf0e090/ruff-0.14.10-py3-none-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:f24b47993a9d8cb858429e97bdf8544c78029f09b520af615c1d261bf827001d", size = 14460260, upload-time = "2025-12-18T19:29:27.808Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/b3/19/9e050c0dca8aba824d67cc0db69fb459c28d8cd3f6855b1405b3f29cc91d/ruff-0.14.10-py3-none-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:59aabd2e2c4fd614d2862e7939c34a532c04f1084476d6833dddef4afab87e9f", size = 14229978, upload-time = "2025-12-18T19:29:11.32Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/51/eb/e8dd1dd6e05b9e695aa9dd420f4577debdd0f87a5ff2fedda33c09e9be8c/ruff-0.14.10-py3-none-manylinux_2_31_riscv64.whl", hash = "sha256:213db2b2e44be8625002dbea33bb9c60c66ea2c07c084a00d55732689d697a7f", size = 14338036, upload-time = "2025-12-18T19:29:09.184Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/6a/12/f3e3a505db7c19303b70af370d137795fcfec136d670d5de5391e295c134/ruff-0.14.10-py3-none-musllinux_1_2_aarch64.whl", hash = "sha256:b914c40ab64865a17a9a5b67911d14df72346a634527240039eb3bd650e5979d", size = 13264051, upload-time = "2025-12-18T19:29:13.431Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/08/64/8c3a47eaccfef8ac20e0484e68e0772013eb85802f8a9f7603ca751eb166/ruff-0.14.10-py3-none-musllinux_1_2_armv7l.whl", hash = "sha256:1484983559f026788e3a5c07c81ef7d1e97c1c78ed03041a18f75df104c45405", size = 13283998, upload-time = "2025-12-18T19:29:06.994Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/12/84/534a5506f4074e5cc0529e5cd96cfc01bb480e460c7edf5af70d2bcae55e/ruff-0.14.10-py3-none-musllinux_1_2_i686.whl", hash = "sha256:c70427132db492d25f982fffc8d6c7535cc2fd2c83fc8888f05caaa248521e60", size = 13601891, upload-time = "2025-12-18T19:28:55.811Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/0d/1e/14c916087d8598917dbad9b2921d340f7884824ad6e9c55de948a93b106d/ruff-0.14.10-py3-none-musllinux_1_2_x86_64.whl", hash = "sha256:5bcf45b681e9f1ee6445d317ce1fa9d6cba9a6049542d1c3d5b5958986be8830", size = 14336660, upload-time = "2025-12-18T19:29:16.531Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/f2/1c/d7b67ab43f30013b47c12b42d1acd354c195351a3f7a1d67f59e54227ede/ruff-0.14.10-py3-none-win32.whl", hash = "sha256:104c49fc7ab73f3f3a758039adea978869a918f31b73280db175b43a2d9b51d6", size = 13196187, upload-time = "2025-12-18T19:29:19.006Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/fb/9c/896c862e13886fae2af961bef3e6312db9ebc6adc2b156fe95e615dee8c1/ruff-0.14.10-py3-none-win_amd64.whl", hash = "sha256:466297bd73638c6bdf06485683e812db1c00c7ac96d4ddd0294a338c62fdc154", size = 14661283, upload-time = "2025-12-18T19:29:30.16Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/74/31/b0e29d572670dca3674eeee78e418f20bdf97fa8aa9ea71380885e175ca0/ruff-0.14.10-py3-none-win_arm64.whl", hash = "sha256:e51d046cf6dda98a4633b8a8a771451107413b0f07183b2bef03f075599e44e6", size = 13729839, upload-time = "2025-12-18T19:28:48.636Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/d2/33/8f7163553481466a92656d35dea9331095122bb84cf98210bef597dd2ecd/ruff-0.13.3-py3-none-linux_armv6l.whl", hash = "sha256:311860a4c5e19189c89d035638f500c1e191d283d0cc2f1600c8c80d6dcd430c", size = 12484040, upload-time = "2025-10-02T19:28:49.199Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/b0/b5/4a21a4922e5dd6845e91896b0d9ef493574cbe061ef7d00a73c61db531af/ruff-0.13.3-py3-none-macosx_10_12_x86_64.whl", hash = "sha256:2bdad6512fb666b40fcadb65e33add2b040fc18a24997d2e47fee7d66f7fcae2", size = 13122975, upload-time = "2025-10-02T19:28:52.446Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/40/90/15649af836d88c9f154e5be87e64ae7d2b1baa5a3ef317cb0c8fafcd882d/ruff-0.13.3-py3-none-macosx_11_0_arm64.whl", hash = "sha256:fc6fa4637284708d6ed4e5e970d52fc3b76a557d7b4e85a53013d9d201d93286", size = 12346621, upload-time = "2025-10-02T19:28:54.712Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/a5/42/bcbccb8141305f9a6d3f72549dd82d1134299177cc7eaf832599700f95a7/ruff-0.13.3-py3-none-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1c9e6469864f94a98f412f20ea143d547e4c652f45e44f369d7b74ee78185838", size = 12574408, upload-time = "2025-10-02T19:28:56.679Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/ce/19/0f3681c941cdcfa2d110ce4515624c07a964dc315d3100d889fcad3bfc9e/ruff-0.13.3-py3-none-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:5bf62b705f319476c78891e0e97e965b21db468b3c999086de8ffb0d40fd2822", size = 12285330, upload-time = "2025-10-02T19:28:58.79Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/10/f8/387976bf00d126b907bbd7725219257feea58650e6b055b29b224d8cb731/ruff-0.13.3-py3-none-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:78cc1abed87ce40cb07ee0667ce99dbc766c9f519eabfd948ed87295d8737c60", size = 13980815, upload-time = "2025-10-02T19:29:01.577Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/0c/a6/7c8ec09d62d5a406e2b17d159e4817b63c945a8b9188a771193b7e1cc0b5/ruff-0.13.3-py3-none-manylinux_2_17_ppc64.manylinux2014_ppc64.whl", hash = "sha256:4fb75e7c402d504f7a9a259e0442b96403fa4a7310ffe3588d11d7e170d2b1e3", size = 14987733, upload-time = "2025-10-02T19:29:04.036Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/97/e5/f403a60a12258e0fd0c2195341cfa170726f254c788673495d86ab5a9a9d/ruff-0.13.3-py3-none-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:17b951f9d9afb39330b2bdd2dd144ce1c1335881c277837ac1b50bfd99985ed3", size = 14439848, upload-time = "2025-10-02T19:29:06.684Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/39/49/3de381343e89364c2334c9f3268b0349dc734fc18b2d99a302d0935c8345/ruff-0.13.3-py3-none-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:6052f8088728898e0a449f0dde8fafc7ed47e4d878168b211977e3e7e854f662", size = 13421890, upload-time = "2025-10-02T19:29:08.767Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/ab/b5/c0feca27d45ae74185a6bacc399f5d8920ab82df2d732a17213fb86a2c4c/ruff-0.13.3-py3-none-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:dc742c50f4ba72ce2a3be362bd359aef7d0d302bf7637a6f942eaa763bd292af", size = 13444870, upload-time = "2025-10-02T19:29:11.234Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/50/a1/b655298a1f3fda4fdc7340c3f671a4b260b009068fbeb3e4e151e9e3e1bf/ruff-0.13.3-py3-none-manylinux_2_31_riscv64.whl", hash = "sha256:8e5640349493b378431637019366bbd73c927e515c9c1babfea3e932f5e68e1d", size = 13691599, upload-time = "2025-10-02T19:29:13.353Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/32/b0/a8705065b2dafae007bcae21354e6e2e832e03eb077bb6c8e523c2becb92/ruff-0.13.3-py3-none-musllinux_1_2_aarch64.whl", hash = "sha256:6b139f638a80eae7073c691a5dd8d581e0ba319540be97c343d60fb12949c8d0", size = 12421893, upload-time = "2025-10-02T19:29:15.668Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/0d/1e/cbe7082588d025cddbb2f23e6dfef08b1a2ef6d6f8328584ad3015b5cebd/ruff-0.13.3-py3-none-musllinux_1_2_armv7l.whl", hash = "sha256:6b547def0a40054825de7cfa341039ebdfa51f3d4bfa6a0772940ed351d2746c", size = 12267220, upload-time = "2025-10-02T19:29:17.583Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/a5/99/4086f9c43f85e0755996d09bdcb334b6fee9b1eabdf34e7d8b877fadf964/ruff-0.13.3-py3-none-musllinux_1_2_i686.whl", hash = "sha256:9cc48a3564423915c93573f1981d57d101e617839bef38504f85f3677b3a0a3e", size = 13177818, upload-time = "2025-10-02T19:29:19.943Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/9b/de/7b5db7e39947d9dc1c5f9f17b838ad6e680527d45288eeb568e860467010/ruff-0.13.3-py3-none-musllinux_1_2_x86_64.whl", hash = "sha256:1a993b17ec03719c502881cb2d5f91771e8742f2ca6de740034433a97c561989", size = 13618715, upload-time = "2025-10-02T19:29:22.527Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/28/d3/bb25ee567ce2f61ac52430cf99f446b0e6d49bdfa4188699ad005fdd16aa/ruff-0.13.3-py3-none-win32.whl", hash = "sha256:f14e0d1fe6460f07814d03c6e32e815bff411505178a1f539a38f6097d3e8ee3", size = 12334488, upload-time = "2025-10-02T19:29:24.782Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/cf/49/12f5955818a1139eed288753479ba9d996f6ea0b101784bb1fe6977ec128/ruff-0.13.3-py3-none-win_amd64.whl", hash = "sha256:621e2e5812b691d4f244638d693e640f188bacbb9bc793ddd46837cea0503dd2", size = 13455262, upload-time = "2025-10-02T19:29:26.882Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/fe/72/7b83242b26627a00e3af70d0394d68f8f02750d642567af12983031777fc/ruff-0.13.3-py3-none-win_arm64.whl", hash = "sha256:9e9e9d699841eaf4c2c798fa783df2fabc680b72059a02ca0ed81c460bc58330", size = 12538484, upload-time = "2025-10-02T19:29:28.951Z" },
|
||||
]
|
||||
|
||||
[[package]]
|
||||
@@ -1526,35 +1281,6 @@ wheels = [
|
||||
{ url = "https://files.pythonhosted.org/packages/a7/c2/fe1e52489ae3122415c51f387e221dd0773709bad6c6cdaa599e8a2c5185/urllib3-2.5.0-py3-none-any.whl", hash = "sha256:e6b01673c0fa6a13e374b50871808eb3bf7046c4b125b216f6bf1cc604cff0dc", size = 129795, upload-time = "2025-06-18T14:07:40.39Z" },
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "uuid-utils"
|
||||
version = "0.12.0"
|
||||
source = { registry = "https://pypi.org/simple" }
|
||||
sdist = { url = "https://files.pythonhosted.org/packages/0b/0e/512fb221e4970c2f75ca9dae412d320b7d9ddc9f2b15e04ea8e44710396c/uuid_utils-0.12.0.tar.gz", hash = "sha256:252bd3d311b5d6b7f5dfce7a5857e27bb4458f222586bb439463231e5a9cbd64", size = 20889, upload-time = "2025-12-01T17:29:55.494Z" }
|
||||
wheels = [
|
||||
{ url = "https://files.pythonhosted.org/packages/8a/43/de5cd49a57b6293b911b6a9a62fc03e55db9f964da7d5882d9edbee1e9d2/uuid_utils-0.12.0-cp39-abi3-macosx_10_12_x86_64.macosx_11_0_arm64.macosx_10_12_universal2.whl", hash = "sha256:3b9b30707659292f207b98f294b0e081f6d77e1fbc760ba5b41331a39045f514", size = 603197, upload-time = "2025-12-01T17:29:30.104Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/02/fa/5fd1d8c9234e44f0c223910808cde0de43bb69f7df1349e49b1afa7f2baa/uuid_utils-0.12.0-cp39-abi3-macosx_10_12_x86_64.whl", hash = "sha256:add3d820c7ec14ed37317375bea30249699c5d08ff4ae4dbee9fc9bce3bfbf65", size = 305168, upload-time = "2025-12-01T17:29:31.384Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/c8/c6/8633ac9942bf9dc97a897b5154e5dcffa58816ec4dd780b3b12b559ff05c/uuid_utils-0.12.0-cp39-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1b8fce83ecb3b16af29c7809669056c4b6e7cc912cab8c6d07361645de12dd79", size = 340580, upload-time = "2025-12-01T17:29:32.362Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/f3/88/8a61307b04b4da1c576373003e6d857a04dade52ab035151d62cb84d5cb5/uuid_utils-0.12.0-cp39-abi3-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:ec921769afcb905035d785582b0791d02304a7850fbd6ce924c1a8976380dfc6", size = 346771, upload-time = "2025-12-01T17:29:33.708Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/1c/fb/aab2dcf94b991e62aa167457c7825b9b01055b884b888af926562864398c/uuid_utils-0.12.0-cp39-abi3-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:6f3b060330f5899a92d5c723547dc6a95adef42433e9748f14c66859a7396664", size = 474781, upload-time = "2025-12-01T17:29:35.237Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/5a/7a/dbd5e49c91d6c86dba57158bbfa0e559e1ddf377bb46dcfd58aea4f0d567/uuid_utils-0.12.0-cp39-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:908dfef7f0bfcf98d406e5dc570c25d2f2473e49b376de41792b6e96c1d5d291", size = 343685, upload-time = "2025-12-01T17:29:36.677Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/1a/19/8c4b1d9f450159733b8be421a4e1fb03533709b80ed3546800102d085572/uuid_utils-0.12.0-cp39-abi3-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:4c6a24148926bd0ca63e8a2dabf4cc9dc329a62325b3ad6578ecd60fbf926506", size = 366482, upload-time = "2025-12-01T17:29:37.979Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/82/43/c79a6e45687647f80a159c8ba34346f287b065452cc419d07d2212d38420/uuid_utils-0.12.0-cp39-abi3-musllinux_1_2_aarch64.whl", hash = "sha256:64a91e632669f059ef605f1771d28490b1d310c26198e46f754e8846dddf12f4", size = 523132, upload-time = "2025-12-01T17:29:39.293Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/5a/a2/b2d75a621260a40c438aa88593827dfea596d18316520a99e839f7a5fb9d/uuid_utils-0.12.0-cp39-abi3-musllinux_1_2_armv7l.whl", hash = "sha256:93c082212470bb4603ca3975916c205a9d7ef1443c0acde8fbd1e0f5b36673c7", size = 614218, upload-time = "2025-12-01T17:29:40.315Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/13/6b/ba071101626edd5a6dabf8525c9a1537ff3d885dbc210540574a03901fef/uuid_utils-0.12.0-cp39-abi3-musllinux_1_2_i686.whl", hash = "sha256:431b1fb7283ba974811b22abd365f2726f8f821ab33f0f715be389640e18d039", size = 546241, upload-time = "2025-12-01T17:29:41.656Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/01/12/9a942b81c0923268e6d85bf98d8f0a61fcbcd5e432fef94fdf4ce2ef8748/uuid_utils-0.12.0-cp39-abi3-musllinux_1_2_x86_64.whl", hash = "sha256:2ffd7838c40149100299fa37cbd8bab5ee382372e8e65a148002a37d380df7c8", size = 511842, upload-time = "2025-12-01T17:29:43.107Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/a9/a7/c326f5163dd48b79368b87d8a05f5da4668dd228a3f5ca9d79d5fee2fc40/uuid_utils-0.12.0-cp39-abi3-win32.whl", hash = "sha256:487f17c0fee6cbc1d8b90fe811874174a9b1b5683bf2251549e302906a50fed3", size = 179088, upload-time = "2025-12-01T17:29:44.492Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/38/92/41c8734dd97213ee1d5ae435cf4499705dc4f2751e3b957fd12376f61784/uuid_utils-0.12.0-cp39-abi3-win_amd64.whl", hash = "sha256:9598e7c9da40357ae8fffc5d6938b1a7017f09a1acbcc95e14af8c65d48c655a", size = 183003, upload-time = "2025-12-01T17:29:45.47Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/c9/f9/52ab0359618987331a1f739af837d26168a4b16281c9c3ab46519940c628/uuid_utils-0.12.0-cp39-abi3-win_arm64.whl", hash = "sha256:c9bea7c5b2aa6f57937ebebeee4d4ef2baad10f86f1b97b58a3f6f34c14b4e84", size = 182975, upload-time = "2025-12-01T17:29:46.444Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/ef/f7/6c55b7722cede3b424df02ed5cddb25c19543abda2f95fa4cfc34a892ae5/uuid_utils-0.12.0-pp311-pypy311_pp73-macosx_10_12_x86_64.macosx_11_0_arm64.macosx_10_12_universal2.whl", hash = "sha256:e2209d361f2996966ab7114f49919eb6aaeabc6041672abbbbf4fdbb8ec1acc0", size = 593065, upload-time = "2025-12-01T17:29:47.507Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/b8/40/ce5fe8e9137dbd5570e0016c2584fca43ad81b11a1cef809a1a1b4952ab7/uuid_utils-0.12.0-pp311-pypy311_pp73-macosx_10_12_x86_64.whl", hash = "sha256:d9636bcdbd6cfcad2b549c352b669412d0d1eb09be72044a2f13e498974863cd", size = 300047, upload-time = "2025-12-01T17:29:48.596Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/fb/9b/31c5d0736d7b118f302c50214e581f40e904305d8872eb0f0c921d50e138/uuid_utils-0.12.0-pp311-pypy311_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8cd8543a3419251fb78e703ce3b15fdfafe1b7c542cf40caf0775e01db7e7674", size = 335165, upload-time = "2025-12-01T17:29:49.755Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/f6/5c/d80b4d08691c9d7446d0ad58fd41503081a662cfd2c7640faf68c64d8098/uuid_utils-0.12.0-pp311-pypy311_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:e98db2d8977c052cb307ae1cb5cc37a21715e8d415dbc65863b039397495a013", size = 341437, upload-time = "2025-12-01T17:29:51.112Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/f6/b3/9dccdc6f3c22f6ef5bd381ae559173f8a1ae185ae89ed1f39f499d9d8b02/uuid_utils-0.12.0-pp311-pypy311_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:f8f2bdf5e4ffeb259ef6d15edae92aed60a1d6f07cbfab465d836f6b12b48da8", size = 469123, upload-time = "2025-12-01T17:29:52.389Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/fd/90/6c35ef65fbc49f8189729839b793a4a74a7dd8c5aa5eb56caa93f8c97732/uuid_utils-0.12.0-pp311-pypy311_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8c3ec53c0cb15e1835870c139317cc5ec06e35aa22843e3ed7d9c74f23f23898", size = 335892, upload-time = "2025-12-01T17:29:53.44Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/6b/c7/e3f3ce05c5af2bf86a0938d22165affe635f4dcbfd5687b1dacc042d3e0e/uuid_utils-0.12.0-pp311-pypy311_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:84e5c0eba209356f7f389946a3a47b2cc2effd711b3fc7c7f155ad9f7d45e8a3", size = 360693, upload-time = "2025-12-01T17:29:54.558Z" },
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "uvicorn"
|
||||
version = "0.37.0"
|
||||
@@ -1601,124 +1327,6 @@ wheels = [
|
||||
{ url = "https://files.pythonhosted.org/packages/33/e8/e40370e6d74ddba47f002a32919d91310d6074130fe4e17dabcafc15cbf1/watchdog-6.0.0-py3-none-win_ia64.whl", hash = "sha256:a1914259fa9e1454315171103c6a30961236f508b9b623eae470268bbcc6a22f", size = 79067, upload-time = "2024-11-01T14:07:11.845Z" },
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "xxhash"
|
||||
version = "3.6.0"
|
||||
source = { registry = "https://pypi.org/simple" }
|
||||
sdist = { url = "https://files.pythonhosted.org/packages/02/84/30869e01909fb37a6cc7e18688ee8bf1e42d57e7e0777636bd47524c43c7/xxhash-3.6.0.tar.gz", hash = "sha256:f0162a78b13a0d7617b2845b90c763339d1f1d82bb04a4b07f4ab535cc5e05d6", size = 85160, upload-time = "2025-10-02T14:37:08.097Z" }
|
||||
wheels = [
|
||||
{ url = "https://files.pythonhosted.org/packages/34/ee/f9f1d656ad168681bb0f6b092372c1e533c4416b8069b1896a175c46e484/xxhash-3.6.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:87ff03d7e35c61435976554477a7f4cd1704c3596a89a8300d5ce7fc83874a71", size = 32845, upload-time = "2025-10-02T14:33:51.573Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/a3/b1/93508d9460b292c74a09b83d16750c52a0ead89c51eea9951cb97a60d959/xxhash-3.6.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:f572dfd3d0e2eb1a57511831cf6341242f5a9f8298a45862d085f5b93394a27d", size = 30807, upload-time = "2025-10-02T14:33:52.964Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/07/55/28c93a3662f2d200c70704efe74aab9640e824f8ce330d8d3943bf7c9b3c/xxhash-3.6.0-cp310-cp310-manylinux1_i686.manylinux_2_28_i686.manylinux_2_5_i686.whl", hash = "sha256:89952ea539566b9fed2bbd94e589672794b4286f342254fad28b149f9615fef8", size = 193786, upload-time = "2025-10-02T14:33:54.272Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/c1/96/fec0be9bb4b8f5d9c57d76380a366f31a1781fb802f76fc7cda6c84893c7/xxhash-3.6.0-cp310-cp310-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:48e6f2ffb07a50b52465a1032c3cf1f4a5683f944acaca8a134a2f23674c2058", size = 212830, upload-time = "2025-10-02T14:33:55.706Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/c4/a0/c706845ba77b9611f81fd2e93fad9859346b026e8445e76f8c6fd057cc6d/xxhash-3.6.0-cp310-cp310-manylinux2014_ppc64le.manylinux_2_17_ppc64le.manylinux_2_28_ppc64le.whl", hash = "sha256:b5b848ad6c16d308c3ac7ad4ba6bede80ed5df2ba8ed382f8932df63158dd4b2", size = 211606, upload-time = "2025-10-02T14:33:57.133Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/67/1e/164126a2999e5045f04a69257eea946c0dc3e86541b400d4385d646b53d7/xxhash-3.6.0-cp310-cp310-manylinux2014_s390x.manylinux_2_17_s390x.manylinux_2_28_s390x.whl", hash = "sha256:a034590a727b44dd8ac5914236a7b8504144447a9682586c3327e935f33ec8cc", size = 444872, upload-time = "2025-10-02T14:33:58.446Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/2d/4b/55ab404c56cd70a2cf5ecfe484838865d0fea5627365c6c8ca156bd09c8f/xxhash-3.6.0-cp310-cp310-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:8a8f1972e75ebdd161d7896743122834fe87378160c20e97f8b09166213bf8cc", size = 193217, upload-time = "2025-10-02T14:33:59.724Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/45/e6/52abf06bac316db33aa269091ae7311bd53cfc6f4b120ae77bac1b348091/xxhash-3.6.0-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:ee34327b187f002a596d7b167ebc59a1b729e963ce645964bbc050d2f1b73d07", size = 210139, upload-time = "2025-10-02T14:34:02.041Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/34/37/db94d490b8691236d356bc249c08819cbcef9273a1a30acf1254ff9ce157/xxhash-3.6.0-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:339f518c3c7a850dd033ab416ea25a692759dc7478a71131fe8869010d2b75e4", size = 197669, upload-time = "2025-10-02T14:34:03.664Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/b7/36/c4f219ef4a17a4f7a64ed3569bc2b5a9c8311abdb22249ac96093625b1a4/xxhash-3.6.0-cp310-cp310-musllinux_1_2_ppc64le.whl", hash = "sha256:bf48889c9630542d4709192578aebbd836177c9f7a4a2778a7d6340107c65f06", size = 210018, upload-time = "2025-10-02T14:34:05.325Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/fd/06/bfac889a374fc2fc439a69223d1750eed2e18a7db8514737ab630534fa08/xxhash-3.6.0-cp310-cp310-musllinux_1_2_s390x.whl", hash = "sha256:5576b002a56207f640636056b4160a378fe36a58db73ae5c27a7ec8db35f71d4", size = 413058, upload-time = "2025-10-02T14:34:06.925Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/c9/d1/555d8447e0dd32ad0930a249a522bb2e289f0d08b6b16204cfa42c1f5a0c/xxhash-3.6.0-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:af1f3278bd02814d6dedc5dec397993b549d6f16c19379721e5a1d31e132c49b", size = 190628, upload-time = "2025-10-02T14:34:08.669Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/d1/15/8751330b5186cedc4ed4b597989882ea05e0408b53fa47bcb46a6125bfc6/xxhash-3.6.0-cp310-cp310-win32.whl", hash = "sha256:aed058764db109dc9052720da65fafe84873b05eb8b07e5e653597951af57c3b", size = 30577, upload-time = "2025-10-02T14:34:10.234Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/bb/cc/53f87e8b5871a6eb2ff7e89c48c66093bda2be52315a8161ddc54ea550c4/xxhash-3.6.0-cp310-cp310-win_amd64.whl", hash = "sha256:e82da5670f2d0d98950317f82a0e4a0197150ff19a6df2ba40399c2a3b9ae5fb", size = 31487, upload-time = "2025-10-02T14:34:11.618Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/9f/00/60f9ea3bb697667a14314d7269956f58bf56bb73864f8f8d52a3c2535e9a/xxhash-3.6.0-cp310-cp310-win_arm64.whl", hash = "sha256:4a082ffff8c6ac07707fb6b671caf7c6e020c75226c561830b73d862060f281d", size = 27863, upload-time = "2025-10-02T14:34:12.619Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/17/d4/cc2f0400e9154df4b9964249da78ebd72f318e35ccc425e9f403c392f22a/xxhash-3.6.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:b47bbd8cf2d72797f3c2772eaaac0ded3d3af26481a26d7d7d41dc2d3c46b04a", size = 32844, upload-time = "2025-10-02T14:34:14.037Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/5e/ec/1cc11cd13e26ea8bc3cb4af4eaadd8d46d5014aebb67be3f71fb0b68802a/xxhash-3.6.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:2b6821e94346f96db75abaa6e255706fb06ebd530899ed76d32cd99f20dc52fa", size = 30809, upload-time = "2025-10-02T14:34:15.484Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/04/5f/19fe357ea348d98ca22f456f75a30ac0916b51c753e1f8b2e0e6fb884cce/xxhash-3.6.0-cp311-cp311-manylinux1_i686.manylinux_2_28_i686.manylinux_2_5_i686.whl", hash = "sha256:d0a9751f71a1a65ce3584e9cae4467651c7e70c9d31017fa57574583a4540248", size = 194665, upload-time = "2025-10-02T14:34:16.541Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/90/3b/d1f1a8f5442a5fd8beedae110c5af7604dc37349a8e16519c13c19a9a2de/xxhash-3.6.0-cp311-cp311-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:8b29ee68625ab37b04c0b40c3fafdf24d2f75ccd778333cfb698f65f6c463f62", size = 213550, upload-time = "2025-10-02T14:34:17.878Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/c4/ef/3a9b05eb527457d5db13a135a2ae1a26c80fecd624d20f3e8dcc4cb170f3/xxhash-3.6.0-cp311-cp311-manylinux2014_ppc64le.manylinux_2_17_ppc64le.manylinux_2_28_ppc64le.whl", hash = "sha256:6812c25fe0d6c36a46ccb002f40f27ac903bf18af9f6dd8f9669cb4d176ab18f", size = 212384, upload-time = "2025-10-02T14:34:19.182Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/0f/18/ccc194ee698c6c623acbf0f8c2969811a8a4b6185af5e824cd27b9e4fd3e/xxhash-3.6.0-cp311-cp311-manylinux2014_s390x.manylinux_2_17_s390x.manylinux_2_28_s390x.whl", hash = "sha256:4ccbff013972390b51a18ef1255ef5ac125c92dc9143b2d1909f59abc765540e", size = 445749, upload-time = "2025-10-02T14:34:20.659Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/a5/86/cf2c0321dc3940a7aa73076f4fd677a0fb3e405cb297ead7d864fd90847e/xxhash-3.6.0-cp311-cp311-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:297b7fbf86c82c550e12e8fb71968b3f033d27b874276ba3624ea868c11165a8", size = 193880, upload-time = "2025-10-02T14:34:22.431Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/82/fb/96213c8560e6f948a1ecc9a7613f8032b19ee45f747f4fca4eb31bb6d6ed/xxhash-3.6.0-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:dea26ae1eb293db089798d3973a5fc928a18fdd97cc8801226fae705b02b14b0", size = 210912, upload-time = "2025-10-02T14:34:23.937Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/40/aa/4395e669b0606a096d6788f40dbdf2b819d6773aa290c19e6e83cbfc312f/xxhash-3.6.0-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:7a0b169aafb98f4284f73635a8e93f0735f9cbde17bd5ec332480484241aaa77", size = 198654, upload-time = "2025-10-02T14:34:25.644Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/67/74/b044fcd6b3d89e9b1b665924d85d3f400636c23590226feb1eb09e1176ce/xxhash-3.6.0-cp311-cp311-musllinux_1_2_ppc64le.whl", hash = "sha256:08d45aef063a4531b785cd72de4887766d01dc8f362a515693df349fdb825e0c", size = 210867, upload-time = "2025-10-02T14:34:27.203Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/bc/fd/3ce73bf753b08cb19daee1eb14aa0d7fe331f8da9c02dd95316ddfe5275e/xxhash-3.6.0-cp311-cp311-musllinux_1_2_s390x.whl", hash = "sha256:929142361a48ee07f09121fe9e96a84950e8d4df3bb298ca5d88061969f34d7b", size = 414012, upload-time = "2025-10-02T14:34:28.409Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/ba/b3/5a4241309217c5c876f156b10778f3ab3af7ba7e3259e6d5f5c7d0129eb2/xxhash-3.6.0-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:51312c768403d8540487dbbfb557454cfc55589bbde6424456951f7fcd4facb3", size = 191409, upload-time = "2025-10-02T14:34:29.696Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/c0/01/99bfbc15fb9abb9a72b088c1d95219fc4782b7d01fc835bd5744d66dd0b8/xxhash-3.6.0-cp311-cp311-win32.whl", hash = "sha256:d1927a69feddc24c987b337ce81ac15c4720955b667fe9b588e02254b80446fd", size = 30574, upload-time = "2025-10-02T14:34:31.028Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/65/79/9d24d7f53819fe301b231044ea362ce64e86c74f6e8c8e51320de248b3e5/xxhash-3.6.0-cp311-cp311-win_amd64.whl", hash = "sha256:26734cdc2d4ffe449b41d186bbeac416f704a482ed835d375a5c0cb02bc63fef", size = 31481, upload-time = "2025-10-02T14:34:32.062Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/30/4e/15cd0e3e8772071344eab2961ce83f6e485111fed8beb491a3f1ce100270/xxhash-3.6.0-cp311-cp311-win_arm64.whl", hash = "sha256:d72f67ef8bf36e05f5b6c65e8524f265bd61071471cd4cf1d36743ebeeeb06b7", size = 27861, upload-time = "2025-10-02T14:34:33.555Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/9a/07/d9412f3d7d462347e4511181dea65e47e0d0e16e26fbee2ea86a2aefb657/xxhash-3.6.0-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:01362c4331775398e7bb34e3ab403bc9ee9f7c497bc7dee6272114055277dd3c", size = 32744, upload-time = "2025-10-02T14:34:34.622Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/79/35/0429ee11d035fc33abe32dca1b2b69e8c18d236547b9a9b72c1929189b9a/xxhash-3.6.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:b7b2df81a23f8cb99656378e72501b2cb41b1827c0f5a86f87d6b06b69f9f204", size = 30816, upload-time = "2025-10-02T14:34:36.043Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/b7/f2/57eb99aa0f7d98624c0932c5b9a170e1806406cdbcdb510546634a1359e0/xxhash-3.6.0-cp312-cp312-manylinux1_i686.manylinux_2_28_i686.manylinux_2_5_i686.whl", hash = "sha256:dc94790144e66b14f67b10ac8ed75b39ca47536bf8800eb7c24b50271ea0c490", size = 194035, upload-time = "2025-10-02T14:34:37.354Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/4c/ed/6224ba353690d73af7a3f1c7cdb1fc1b002e38f783cb991ae338e1eb3d79/xxhash-3.6.0-cp312-cp312-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:93f107c673bccf0d592cdba077dedaf52fe7f42dcd7676eba1f6d6f0c3efffd2", size = 212914, upload-time = "2025-10-02T14:34:38.6Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/38/86/fb6b6130d8dd6b8942cc17ab4d90e223653a89aa32ad2776f8af7064ed13/xxhash-3.6.0-cp312-cp312-manylinux2014_ppc64le.manylinux_2_17_ppc64le.manylinux_2_28_ppc64le.whl", hash = "sha256:2aa5ee3444c25b69813663c9f8067dcfaa2e126dc55e8dddf40f4d1c25d7effa", size = 212163, upload-time = "2025-10-02T14:34:39.872Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/ee/dc/e84875682b0593e884ad73b2d40767b5790d417bde603cceb6878901d647/xxhash-3.6.0-cp312-cp312-manylinux2014_s390x.manylinux_2_17_s390x.manylinux_2_28_s390x.whl", hash = "sha256:f7f99123f0e1194fa59cc69ad46dbae2e07becec5df50a0509a808f90a0f03f0", size = 445411, upload-time = "2025-10-02T14:34:41.569Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/11/4f/426f91b96701ec2f37bb2b8cec664eff4f658a11f3fa9d94f0a887ea6d2b/xxhash-3.6.0-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:49e03e6fe2cac4a1bc64952dd250cf0dbc5ef4ebb7b8d96bce82e2de163c82a2", size = 193883, upload-time = "2025-10-02T14:34:43.249Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/53/5a/ddbb83eee8e28b778eacfc5a85c969673e4023cdeedcfcef61f36731610b/xxhash-3.6.0-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:bd17fede52a17a4f9a7bc4472a5867cb0b160deeb431795c0e4abe158bc784e9", size = 210392, upload-time = "2025-10-02T14:34:45.042Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/1e/c2/ff69efd07c8c074ccdf0a4f36fcdd3d27363665bcdf4ba399abebe643465/xxhash-3.6.0-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:6fb5f5476bef678f69db04f2bd1efbed3030d2aba305b0fc1773645f187d6a4e", size = 197898, upload-time = "2025-10-02T14:34:46.302Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/58/ca/faa05ac19b3b622c7c9317ac3e23954187516298a091eb02c976d0d3dd45/xxhash-3.6.0-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:843b52f6d88071f87eba1631b684fcb4b2068cd2180a0224122fe4ef011a9374", size = 210655, upload-time = "2025-10-02T14:34:47.571Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/d4/7a/06aa7482345480cc0cb597f5c875b11a82c3953f534394f620b0be2f700c/xxhash-3.6.0-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:7d14a6cfaf03b1b6f5f9790f76880601ccc7896aff7ab9cd8978a939c1eb7e0d", size = 414001, upload-time = "2025-10-02T14:34:49.273Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/23/07/63ffb386cd47029aa2916b3d2f454e6cc5b9f5c5ada3790377d5430084e7/xxhash-3.6.0-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:418daf3db71e1413cfe211c2f9a528456936645c17f46b5204705581a45390ae", size = 191431, upload-time = "2025-10-02T14:34:50.798Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/0f/93/14fde614cadb4ddf5e7cebf8918b7e8fac5ae7861c1875964f17e678205c/xxhash-3.6.0-cp312-cp312-win32.whl", hash = "sha256:50fc255f39428a27299c20e280d6193d8b63b8ef8028995323bf834a026b4fbb", size = 30617, upload-time = "2025-10-02T14:34:51.954Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/13/5d/0d125536cbe7565a83d06e43783389ecae0c0f2ed037b48ede185de477c0/xxhash-3.6.0-cp312-cp312-win_amd64.whl", hash = "sha256:c0f2ab8c715630565ab8991b536ecded9416d615538be8ecddce43ccf26cbc7c", size = 31534, upload-time = "2025-10-02T14:34:53.276Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/54/85/6ec269b0952ec7e36ba019125982cf11d91256a778c7c3f98a4c5043d283/xxhash-3.6.0-cp312-cp312-win_arm64.whl", hash = "sha256:eae5c13f3bc455a3bbb68bdc513912dc7356de7e2280363ea235f71f54064829", size = 27876, upload-time = "2025-10-02T14:34:54.371Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/33/76/35d05267ac82f53ae9b0e554da7c5e281ee61f3cad44c743f0fcd354f211/xxhash-3.6.0-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:599e64ba7f67472481ceb6ee80fa3bd828fd61ba59fb11475572cc5ee52b89ec", size = 32738, upload-time = "2025-10-02T14:34:55.839Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/31/a8/3fbce1cd96534a95e35d5120637bf29b0d7f5d8fa2f6374e31b4156dd419/xxhash-3.6.0-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:7d8b8aaa30fca4f16f0c84a5c8d7ddee0e25250ec2796c973775373257dde8f1", size = 30821, upload-time = "2025-10-02T14:34:57.219Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/0c/ea/d387530ca7ecfa183cb358027f1833297c6ac6098223fd14f9782cd0015c/xxhash-3.6.0-cp313-cp313-manylinux1_i686.manylinux_2_28_i686.manylinux_2_5_i686.whl", hash = "sha256:d597acf8506d6e7101a4a44a5e428977a51c0fadbbfd3c39650cca9253f6e5a6", size = 194127, upload-time = "2025-10-02T14:34:59.21Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/ba/0c/71435dcb99874b09a43b8d7c54071e600a7481e42b3e3ce1eb5226a5711a/xxhash-3.6.0-cp313-cp313-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:858dc935963a33bc33490128edc1c12b0c14d9c7ebaa4e387a7869ecc4f3e263", size = 212975, upload-time = "2025-10-02T14:35:00.816Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/84/7a/c2b3d071e4bb4a90b7057228a99b10d51744878f4a8a6dd643c8bd897620/xxhash-3.6.0-cp313-cp313-manylinux2014_ppc64le.manylinux_2_17_ppc64le.manylinux_2_28_ppc64le.whl", hash = "sha256:ba284920194615cb8edf73bf52236ce2e1664ccd4a38fdb543506413529cc546", size = 212241, upload-time = "2025-10-02T14:35:02.207Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/81/5f/640b6eac0128e215f177df99eadcd0f1b7c42c274ab6a394a05059694c5a/xxhash-3.6.0-cp313-cp313-manylinux2014_s390x.manylinux_2_17_s390x.manylinux_2_28_s390x.whl", hash = "sha256:4b54219177f6c6674d5378bd862c6aedf64725f70dd29c472eaae154df1a2e89", size = 445471, upload-time = "2025-10-02T14:35:03.61Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/5e/1e/3c3d3ef071b051cc3abbe3721ffb8365033a172613c04af2da89d5548a87/xxhash-3.6.0-cp313-cp313-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:42c36dd7dbad2f5238950c377fcbf6811b1cdb1c444fab447960030cea60504d", size = 193936, upload-time = "2025-10-02T14:35:05.013Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/2c/bd/4a5f68381939219abfe1c22a9e3a5854a4f6f6f3c4983a87d255f21f2e5d/xxhash-3.6.0-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:f22927652cba98c44639ffdc7aaf35828dccf679b10b31c4ad72a5b530a18eb7", size = 210440, upload-time = "2025-10-02T14:35:06.239Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/eb/37/b80fe3d5cfb9faff01a02121a0f4d565eb7237e9e5fc66e73017e74dcd36/xxhash-3.6.0-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:b45fad44d9c5c119e9c6fbf2e1c656a46dc68e280275007bbfd3d572b21426db", size = 197990, upload-time = "2025-10-02T14:35:07.735Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/d7/fd/2c0a00c97b9e18f72e1f240ad4e8f8a90fd9d408289ba9c7c495ed7dc05c/xxhash-3.6.0-cp313-cp313-musllinux_1_2_ppc64le.whl", hash = "sha256:6f2580ffab1a8b68ef2b901cde7e55fa8da5e4be0977c68f78fc80f3c143de42", size = 210689, upload-time = "2025-10-02T14:35:09.438Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/93/86/5dd8076a926b9a95db3206aba20d89a7fc14dd5aac16e5c4de4b56033140/xxhash-3.6.0-cp313-cp313-musllinux_1_2_s390x.whl", hash = "sha256:40c391dd3cd041ebc3ffe6f2c862f402e306eb571422e0aa918d8070ba31da11", size = 414068, upload-time = "2025-10-02T14:35:11.162Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/af/3c/0bb129170ee8f3650f08e993baee550a09593462a5cddd8e44d0011102b1/xxhash-3.6.0-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:f205badabde7aafd1a31e8ca2a3e5a763107a71c397c4481d6a804eb5063d8bd", size = 191495, upload-time = "2025-10-02T14:35:12.971Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/e9/3a/6797e0114c21d1725e2577508e24006fd7ff1d8c0c502d3b52e45c1771d8/xxhash-3.6.0-cp313-cp313-win32.whl", hash = "sha256:2577b276e060b73b73a53042ea5bd5203d3e6347ce0d09f98500f418a9fcf799", size = 30620, upload-time = "2025-10-02T14:35:14.129Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/86/15/9bc32671e9a38b413a76d24722a2bf8784a132c043063a8f5152d390b0f9/xxhash-3.6.0-cp313-cp313-win_amd64.whl", hash = "sha256:757320d45d2fbcce8f30c42a6b2f47862967aea7bf458b9625b4bbe7ee390392", size = 31542, upload-time = "2025-10-02T14:35:15.21Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/39/c5/cc01e4f6188656e56112d6a8e0dfe298a16934b8c47a247236549a3f7695/xxhash-3.6.0-cp313-cp313-win_arm64.whl", hash = "sha256:457b8f85dec5825eed7b69c11ae86834a018b8e3df5e77783c999663da2f96d6", size = 27880, upload-time = "2025-10-02T14:35:16.315Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/f3/30/25e5321c8732759e930c555176d37e24ab84365482d257c3b16362235212/xxhash-3.6.0-cp313-cp313t-macosx_10_13_x86_64.whl", hash = "sha256:a42e633d75cdad6d625434e3468126c73f13f7584545a9cf34e883aa1710e702", size = 32956, upload-time = "2025-10-02T14:35:17.413Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/9f/3c/0573299560d7d9f8ab1838f1efc021a280b5ae5ae2e849034ef3dee18810/xxhash-3.6.0-cp313-cp313t-macosx_11_0_arm64.whl", hash = "sha256:568a6d743219e717b07b4e03b0a828ce593833e498c3b64752e0f5df6bfe84db", size = 31072, upload-time = "2025-10-02T14:35:18.844Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/7a/1c/52d83a06e417cd9d4137722693424885cc9878249beb3a7c829e74bf7ce9/xxhash-3.6.0-cp313-cp313t-manylinux1_i686.manylinux_2_28_i686.manylinux_2_5_i686.whl", hash = "sha256:bec91b562d8012dae276af8025a55811b875baace6af510412a5e58e3121bc54", size = 196409, upload-time = "2025-10-02T14:35:20.31Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/e3/8e/c6d158d12a79bbd0b878f8355432075fc82759e356ab5a111463422a239b/xxhash-3.6.0-cp313-cp313t-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:78e7f2f4c521c30ad5e786fdd6bae89d47a32672a80195467b5de0480aa97b1f", size = 215736, upload-time = "2025-10-02T14:35:21.616Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/bc/68/c4c80614716345d55071a396cf03d06e34b5f4917a467faf43083c995155/xxhash-3.6.0-cp313-cp313t-manylinux2014_ppc64le.manylinux_2_17_ppc64le.manylinux_2_28_ppc64le.whl", hash = "sha256:3ed0df1b11a79856df5ffcab572cbd6b9627034c1c748c5566fa79df9048a7c5", size = 214833, upload-time = "2025-10-02T14:35:23.32Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/7e/e9/ae27c8ffec8b953efa84c7c4a6c6802c263d587b9fc0d6e7cea64e08c3af/xxhash-3.6.0-cp313-cp313t-manylinux2014_s390x.manylinux_2_17_s390x.manylinux_2_28_s390x.whl", hash = "sha256:0e4edbfc7d420925b0dd5e792478ed393d6e75ff8fc219a6546fb446b6a417b1", size = 448348, upload-time = "2025-10-02T14:35:25.111Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/d7/6b/33e21afb1b5b3f46b74b6bd1913639066af218d704cc0941404ca717fc57/xxhash-3.6.0-cp313-cp313t-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:fba27a198363a7ef87f8c0f6b171ec36b674fe9053742c58dd7e3201c1ab30ee", size = 196070, upload-time = "2025-10-02T14:35:26.586Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/96/b6/fcabd337bc5fa624e7203aa0fa7d0c49eed22f72e93229431752bddc83d9/xxhash-3.6.0-cp313-cp313t-musllinux_1_2_aarch64.whl", hash = "sha256:794fe9145fe60191c6532fa95063765529770edcdd67b3d537793e8004cabbfd", size = 212907, upload-time = "2025-10-02T14:35:28.087Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/4b/d3/9ee6160e644d660fcf176c5825e61411c7f62648728f69c79ba237250143/xxhash-3.6.0-cp313-cp313t-musllinux_1_2_i686.whl", hash = "sha256:6105ef7e62b5ac73a837778efc331a591d8442f8ef5c7e102376506cb4ae2729", size = 200839, upload-time = "2025-10-02T14:35:29.857Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/0d/98/e8de5baa5109394baf5118f5e72ab21a86387c4f89b0e77ef3e2f6b0327b/xxhash-3.6.0-cp313-cp313t-musllinux_1_2_ppc64le.whl", hash = "sha256:f01375c0e55395b814a679b3eea205db7919ac2af213f4a6682e01220e5fe292", size = 213304, upload-time = "2025-10-02T14:35:31.222Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/7b/1d/71056535dec5c3177eeb53e38e3d367dd1d16e024e63b1cee208d572a033/xxhash-3.6.0-cp313-cp313t-musllinux_1_2_s390x.whl", hash = "sha256:d706dca2d24d834a4661619dcacf51a75c16d65985718d6a7d73c1eeeb903ddf", size = 416930, upload-time = "2025-10-02T14:35:32.517Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/dc/6c/5cbde9de2cd967c322e651c65c543700b19e7ae3e0aae8ece3469bf9683d/xxhash-3.6.0-cp313-cp313t-musllinux_1_2_x86_64.whl", hash = "sha256:5f059d9faeacd49c0215d66f4056e1326c80503f51a1532ca336a385edadd033", size = 193787, upload-time = "2025-10-02T14:35:33.827Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/19/fa/0172e350361d61febcea941b0cc541d6e6c8d65d153e85f850a7b256ff8a/xxhash-3.6.0-cp313-cp313t-win32.whl", hash = "sha256:1244460adc3a9be84731d72b8e80625788e5815b68da3da8b83f78115a40a7ec", size = 30916, upload-time = "2025-10-02T14:35:35.107Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/ad/e6/e8cf858a2b19d6d45820f072eff1bea413910592ff17157cabc5f1227a16/xxhash-3.6.0-cp313-cp313t-win_amd64.whl", hash = "sha256:b1e420ef35c503869c4064f4a2f2b08ad6431ab7b229a05cce39d74268bca6b8", size = 31799, upload-time = "2025-10-02T14:35:36.165Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/56/15/064b197e855bfb7b343210e82490ae672f8bc7cdf3ddb02e92f64304ee8a/xxhash-3.6.0-cp313-cp313t-win_arm64.whl", hash = "sha256:ec44b73a4220623235f67a996c862049f375df3b1052d9899f40a6382c32d746", size = 28044, upload-time = "2025-10-02T14:35:37.195Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/7e/5e/0138bc4484ea9b897864d59fce9be9086030825bc778b76cb5a33a906d37/xxhash-3.6.0-cp314-cp314-macosx_10_13_x86_64.whl", hash = "sha256:a40a3d35b204b7cc7643cbcf8c9976d818cb47befcfac8bbefec8038ac363f3e", size = 32754, upload-time = "2025-10-02T14:35:38.245Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/18/d7/5dac2eb2ec75fd771957a13e5dda560efb2176d5203f39502a5fc571f899/xxhash-3.6.0-cp314-cp314-macosx_11_0_arm64.whl", hash = "sha256:a54844be970d3fc22630b32d515e79a90d0a3ddb2644d8d7402e3c4c8da61405", size = 30846, upload-time = "2025-10-02T14:35:39.6Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/fe/71/8bc5be2bb00deb5682e92e8da955ebe5fa982da13a69da5a40a4c8db12fb/xxhash-3.6.0-cp314-cp314-manylinux1_i686.manylinux_2_28_i686.manylinux_2_5_i686.whl", hash = "sha256:016e9190af8f0a4e3741343777710e3d5717427f175adfdc3e72508f59e2a7f3", size = 194343, upload-time = "2025-10-02T14:35:40.69Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/e7/3b/52badfb2aecec2c377ddf1ae75f55db3ba2d321c5e164f14461c90837ef3/xxhash-3.6.0-cp314-cp314-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:4f6f72232f849eb9d0141e2ebe2677ece15adfd0fa599bc058aad83c714bb2c6", size = 213074, upload-time = "2025-10-02T14:35:42.29Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/a2/2b/ae46b4e9b92e537fa30d03dbc19cdae57ed407e9c26d163895e968e3de85/xxhash-3.6.0-cp314-cp314-manylinux2014_ppc64le.manylinux_2_17_ppc64le.manylinux_2_28_ppc64le.whl", hash = "sha256:63275a8aba7865e44b1813d2177e0f5ea7eadad3dd063a21f7cf9afdc7054063", size = 212388, upload-time = "2025-10-02T14:35:43.929Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/f5/80/49f88d3afc724b4ac7fbd664c8452d6db51b49915be48c6982659e0e7942/xxhash-3.6.0-cp314-cp314-manylinux2014_s390x.manylinux_2_17_s390x.manylinux_2_28_s390x.whl", hash = "sha256:3cd01fa2aa00d8b017c97eb46b9a794fbdca53fc14f845f5a328c71254b0abb7", size = 445614, upload-time = "2025-10-02T14:35:45.216Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/ed/ba/603ce3961e339413543d8cd44f21f2c80e2a7c5cfe692a7b1f2cccf58f3c/xxhash-3.6.0-cp314-cp314-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:0226aa89035b62b6a86d3c68df4d7c1f47a342b8683da2b60cedcddb46c4d95b", size = 194024, upload-time = "2025-10-02T14:35:46.959Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/78/d1/8e225ff7113bf81545cfdcd79eef124a7b7064a0bba53605ff39590b95c2/xxhash-3.6.0-cp314-cp314-musllinux_1_2_aarch64.whl", hash = "sha256:c6e193e9f56e4ca4923c61238cdaced324f0feac782544eb4c6d55ad5cc99ddd", size = 210541, upload-time = "2025-10-02T14:35:48.301Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/6f/58/0f89d149f0bad89def1a8dd38feb50ccdeb643d9797ec84707091d4cb494/xxhash-3.6.0-cp314-cp314-musllinux_1_2_i686.whl", hash = "sha256:9176dcaddf4ca963d4deb93866d739a343c01c969231dbe21680e13a5d1a5bf0", size = 198305, upload-time = "2025-10-02T14:35:49.584Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/11/38/5eab81580703c4df93feb5f32ff8fa7fe1e2c51c1f183ee4e48d4bb9d3d7/xxhash-3.6.0-cp314-cp314-musllinux_1_2_ppc64le.whl", hash = "sha256:c1ce4009c97a752e682b897aa99aef84191077a9433eb237774689f14f8ec152", size = 210848, upload-time = "2025-10-02T14:35:50.877Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/5e/6b/953dc4b05c3ce678abca756416e4c130d2382f877a9c30a20d08ee6a77c0/xxhash-3.6.0-cp314-cp314-musllinux_1_2_s390x.whl", hash = "sha256:8cb2f4f679b01513b7adbb9b1b2f0f9cdc31b70007eaf9d59d0878809f385b11", size = 414142, upload-time = "2025-10-02T14:35:52.15Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/08/a9/238ec0d4e81a10eb5026d4a6972677cbc898ba6c8b9dbaec12ae001b1b35/xxhash-3.6.0-cp314-cp314-musllinux_1_2_x86_64.whl", hash = "sha256:653a91d7c2ab54a92c19ccf43508b6a555440b9be1bc8be553376778be7f20b5", size = 191547, upload-time = "2025-10-02T14:35:53.547Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/f1/ee/3cf8589e06c2164ac77c3bf0aa127012801128f1feebf2a079272da5737c/xxhash-3.6.0-cp314-cp314-win32.whl", hash = "sha256:a756fe893389483ee8c394d06b5ab765d96e68fbbfe6fde7aa17e11f5720559f", size = 31214, upload-time = "2025-10-02T14:35:54.746Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/02/5d/a19552fbc6ad4cb54ff953c3908bbc095f4a921bc569433d791f755186f1/xxhash-3.6.0-cp314-cp314-win_amd64.whl", hash = "sha256:39be8e4e142550ef69629c9cd71b88c90e9a5db703fecbcf265546d9536ca4ad", size = 32290, upload-time = "2025-10-02T14:35:55.791Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/b1/11/dafa0643bc30442c887b55baf8e73353a344ee89c1901b5a5c54a6c17d39/xxhash-3.6.0-cp314-cp314-win_arm64.whl", hash = "sha256:25915e6000338999236f1eb68a02a32c3275ac338628a7eaa5a269c401995679", size = 28795, upload-time = "2025-10-02T14:35:57.162Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/2c/db/0e99732ed7f64182aef4a6fb145e1a295558deec2a746265dcdec12d191e/xxhash-3.6.0-cp314-cp314t-macosx_10_13_x86_64.whl", hash = "sha256:c5294f596a9017ca5a3e3f8884c00b91ab2ad2933cf288f4923c3fd4346cf3d4", size = 32955, upload-time = "2025-10-02T14:35:58.267Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/55/f4/2a7c3c68e564a099becfa44bb3d398810cc0ff6749b0d3cb8ccb93f23c14/xxhash-3.6.0-cp314-cp314t-macosx_11_0_arm64.whl", hash = "sha256:1cf9dcc4ab9cff01dfbba78544297a3a01dafd60f3bde4e2bfd016cf7e4ddc67", size = 31072, upload-time = "2025-10-02T14:35:59.382Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/c6/d9/72a29cddc7250e8a5819dad5d466facb5dc4c802ce120645630149127e73/xxhash-3.6.0-cp314-cp314t-manylinux1_i686.manylinux_2_28_i686.manylinux_2_5_i686.whl", hash = "sha256:01262da8798422d0685f7cef03b2bd3f4f46511b02830861df548d7def4402ad", size = 196579, upload-time = "2025-10-02T14:36:00.838Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/63/93/b21590e1e381040e2ca305a884d89e1c345b347404f7780f07f2cdd47ef4/xxhash-3.6.0-cp314-cp314t-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:51a73fb7cb3a3ead9f7a8b583ffd9b8038e277cdb8cb87cf890e88b3456afa0b", size = 215854, upload-time = "2025-10-02T14:36:02.207Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/ce/b8/edab8a7d4fa14e924b29be877d54155dcbd8b80be85ea00d2be3413a9ed4/xxhash-3.6.0-cp314-cp314t-manylinux2014_ppc64le.manylinux_2_17_ppc64le.manylinux_2_28_ppc64le.whl", hash = "sha256:b9c6df83594f7df8f7f708ce5ebeacfc69f72c9fbaaababf6cf4758eaada0c9b", size = 214965, upload-time = "2025-10-02T14:36:03.507Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/27/67/dfa980ac7f0d509d54ea0d5a486d2bb4b80c3f1bb22b66e6a05d3efaf6c0/xxhash-3.6.0-cp314-cp314t-manylinux2014_s390x.manylinux_2_17_s390x.manylinux_2_28_s390x.whl", hash = "sha256:627f0af069b0ea56f312fd5189001c24578868643203bca1abbc2c52d3a6f3ca", size = 448484, upload-time = "2025-10-02T14:36:04.828Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/8c/63/8ffc2cc97e811c0ca5d00ab36604b3ea6f4254f20b7bc658ca825ce6c954/xxhash-3.6.0-cp314-cp314t-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:aa912c62f842dfd013c5f21a642c9c10cd9f4c4e943e0af83618b4a404d9091a", size = 196162, upload-time = "2025-10-02T14:36:06.182Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/4b/77/07f0e7a3edd11a6097e990f6e5b815b6592459cb16dae990d967693e6ea9/xxhash-3.6.0-cp314-cp314t-musllinux_1_2_aarch64.whl", hash = "sha256:b465afd7909db30168ab62afe40b2fcf79eedc0b89a6c0ab3123515dc0df8b99", size = 213007, upload-time = "2025-10-02T14:36:07.733Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/ae/d8/bc5fa0d152837117eb0bef6f83f956c509332ce133c91c63ce07ee7c4873/xxhash-3.6.0-cp314-cp314t-musllinux_1_2_i686.whl", hash = "sha256:a881851cf38b0a70e7c4d3ce81fc7afd86fbc2a024f4cfb2a97cf49ce04b75d3", size = 200956, upload-time = "2025-10-02T14:36:09.106Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/26/a5/d749334130de9411783873e9b98ecc46688dad5db64ca6e04b02acc8b473/xxhash-3.6.0-cp314-cp314t-musllinux_1_2_ppc64le.whl", hash = "sha256:9b3222c686a919a0f3253cfc12bb118b8b103506612253b5baeaac10d8027cf6", size = 213401, upload-time = "2025-10-02T14:36:10.585Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/89/72/abed959c956a4bfc72b58c0384bb7940663c678127538634d896b1195c10/xxhash-3.6.0-cp314-cp314t-musllinux_1_2_s390x.whl", hash = "sha256:c5aa639bc113e9286137cec8fadc20e9cd732b2cc385c0b7fa673b84fc1f2a93", size = 417083, upload-time = "2025-10-02T14:36:12.276Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/0c/b3/62fd2b586283b7d7d665fb98e266decadf31f058f1cf6c478741f68af0cb/xxhash-3.6.0-cp314-cp314t-musllinux_1_2_x86_64.whl", hash = "sha256:5c1343d49ac102799905e115aee590183c3921d475356cb24b4de29a4bc56518", size = 193913, upload-time = "2025-10-02T14:36:14.025Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/9a/9a/c19c42c5b3f5a4aad748a6d5b4f23df3bed7ee5445accc65a0fb3ff03953/xxhash-3.6.0-cp314-cp314t-win32.whl", hash = "sha256:5851f033c3030dd95c086b4a36a2683c2ff4a799b23af60977188b057e467119", size = 31586, upload-time = "2025-10-02T14:36:15.603Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/03/d6/4cc450345be9924fd5dc8c590ceda1db5b43a0a889587b0ae81a95511360/xxhash-3.6.0-cp314-cp314t-win_amd64.whl", hash = "sha256:0444e7967dac37569052d2409b00a8860c2135cff05502df4da80267d384849f", size = 32526, upload-time = "2025-10-02T14:36:16.708Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/0f/c9/7243eb3f9eaabd1a88a5a5acadf06df2d83b100c62684b7425c6a11bcaa8/xxhash-3.6.0-cp314-cp314t-win_arm64.whl", hash = "sha256:bb79b1e63f6fd84ec778a4b1916dfe0a7c3fdb986c06addd5db3a0d413819d95", size = 28898, upload-time = "2025-10-02T14:36:17.843Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/93/1e/8aec23647a34a249f62e2398c42955acd9b4c6ed5cf08cbea94dc46f78d2/xxhash-3.6.0-pp311-pypy311_pp73-macosx_10_15_x86_64.whl", hash = "sha256:0f7b7e2ec26c1666ad5fc9dbfa426a6a3367ceaf79db5dd76264659d509d73b0", size = 30662, upload-time = "2025-10-02T14:37:01.743Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/b8/0b/b14510b38ba91caf43006209db846a696ceea6a847a0c9ba0a5b1adc53d6/xxhash-3.6.0-pp311-pypy311_pp73-manylinux1_i686.manylinux_2_28_i686.manylinux_2_5_i686.whl", hash = "sha256:5dc1e14d14fa0f5789ec29a7062004b5933964bb9b02aae6622b8f530dc40296", size = 41056, upload-time = "2025-10-02T14:37:02.879Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/50/55/15a7b8a56590e66ccd374bbfa3f9ffc45b810886c8c3b614e3f90bd2367c/xxhash-3.6.0-pp311-pypy311_pp73-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:881b47fc47e051b37d94d13e7455131054b56749b91b508b0907eb07900d1c13", size = 36251, upload-time = "2025-10-02T14:37:04.44Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/62/b2/5ac99a041a29e58e95f907876b04f7067a0242cb85b5f39e726153981503/xxhash-3.6.0-pp311-pypy311_pp73-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:c6dc31591899f5e5666f04cc2e529e69b4072827085c1ef15294d91a004bc1bd", size = 32481, upload-time = "2025-10-02T14:37:05.869Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/7b/d9/8d95e906764a386a3d3b596f3c68bb63687dfca806373509f51ce8eea81f/xxhash-3.6.0-pp311-pypy311_pp73-win_amd64.whl", hash = "sha256:15e0dac10eb9309508bfc41f7f9deaa7755c69e35af835db9cb10751adebc35d", size = 31565, upload-time = "2025-10-02T14:37:06.966Z" },
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "zstandard"
|
||||
version = "0.25.0"
|
||||
|
||||
@@ -1,14 +1,7 @@
|
||||
# 🦜🍎️ LangChain Core
|
||||
|
||||
[](https://pypi.org/project/langchain-core/#history)
|
||||
[](https://opensource.org/licenses/MIT)
|
||||
[](https://opensource.org/licenses/MIT)
|
||||
[](https://pypistats.org/packages/langchain-core)
|
||||
[](https://twitter.com/langchainai)
|
||||
|
||||
Looking for the JS/TS version? Check out [LangChain.js](https://github.com/langchain-ai/langchainjs).
|
||||
|
||||
To help you ship LangChain apps to production faster, check out [LangSmith](https://smith.langchain.com).
|
||||
[LangSmith](https://smith.langchain.com) is a unified developer platform for building, testing, and monitoring LLM applications.
|
||||
|
||||
## Quick Install
|
||||
|
||||
@@ -16,14 +9,16 @@ To help you ship LangChain apps to production faster, check out [LangSmith](http
|
||||
pip install langchain-core
|
||||
```
|
||||
|
||||
## 🤔 What is this?
|
||||
## What is it?
|
||||
|
||||
LangChain Core contains the base abstractions that power the LangChain ecosystem.
|
||||
LangChain Core contains the base abstractions that power the the LangChain ecosystem.
|
||||
|
||||
These abstractions are designed to be as modular and simple as possible.
|
||||
|
||||
The benefit of having these abstractions is that any provider can implement the required interface and then easily be used in the rest of the LangChain ecosystem.
|
||||
|
||||
For full documentation see the [API reference](https://reference.langchain.com/python/).
|
||||
|
||||
## ⛰️ Why build on top of LangChain Core?
|
||||
|
||||
The LangChain ecosystem is built on top of `langchain-core`. Some of the benefits:
|
||||
@@ -32,16 +27,12 @@ The LangChain ecosystem is built on top of `langchain-core`. Some of the benefit
|
||||
- **Stability**: We are committed to a stable versioning scheme, and will communicate any breaking changes with advance notice and version bumps.
|
||||
- **Battle-tested**: Core components have the largest install base in the LLM ecosystem, and are used in production by many companies.
|
||||
|
||||
## 📖 Documentation
|
||||
|
||||
For full documentation, see the [API reference](https://reference.langchain.com/python/langchain_core/). For conceptual guides, tutorials, and examples on using LangChain, see the [LangChain Docs](https://docs.langchain.com/oss/python/langchain/overview).
|
||||
|
||||
## 📕 Releases & Versioning
|
||||
|
||||
See our [Releases](https://docs.langchain.com/oss/python/release-policy) and [Versioning](https://docs.langchain.com/oss/python/versioning) policies.
|
||||
See our [Releases](https://docs.langchain.com/oss/python/release-policy) and [Versioning Policy](https://docs.langchain.com/oss/python/versioning).
|
||||
|
||||
## 💁 Contributing
|
||||
|
||||
As an open-source project in a rapidly developing field, we are extremely open to contributions, whether it be in the form of a new feature, improved infrastructure, or better documentation.
|
||||
|
||||
For detailed information on how to contribute, see the [Contributing Guide](https://docs.langchain.com/oss/python/contributing/overview).
|
||||
For detailed information on how to contribute, see the [Contributing Guide](https://docs.langchain.com/oss/python/contributing).
|
||||
|
||||
@@ -6,6 +6,7 @@ This module is only relevant for LangChain developers, not for users.
|
||||
|
||||
This module and its submodules are for internal use only. Do not use them in your
|
||||
own code. We may change the API at any time with no warning.
|
||||
|
||||
"""
|
||||
|
||||
from typing import TYPE_CHECKING
|
||||
@@ -58,20 +59,6 @@ _dynamic_imports = {
|
||||
|
||||
|
||||
def __getattr__(attr_name: str) -> object:
|
||||
"""Dynamically import and return an attribute from a submodule.
|
||||
|
||||
This function enables lazy loading of API functions from submodules, reducing
|
||||
initial import time and circular dependency issues.
|
||||
|
||||
Args:
|
||||
attr_name: Name of the attribute to import.
|
||||
|
||||
Returns:
|
||||
The imported attribute object.
|
||||
|
||||
Raises:
|
||||
AttributeError: If the attribute is not a valid dynamic import.
|
||||
"""
|
||||
module_name = _dynamic_imports.get(attr_name)
|
||||
result = import_attr(attr_name, module_name, __spec__.parent)
|
||||
globals()[attr_name] = result
|
||||
@@ -79,9 +66,4 @@ def __getattr__(attr_name: str) -> object:
|
||||
|
||||
|
||||
def __dir__() -> list[str]:
|
||||
"""Return a list of available attributes for this module.
|
||||
|
||||
Returns:
|
||||
List of attribute names that can be imported from this module.
|
||||
"""
|
||||
return list(__all__)
|
||||
|
||||
@@ -51,26 +51,29 @@ def beta(
|
||||
own (annotation-emitting) `C.__init__`).
|
||||
|
||||
Args:
|
||||
message:
|
||||
message : str, optional
|
||||
Override the default beta message. The %(since)s,
|
||||
%(name)s, %(alternative)s, %(obj_type)s, %(addendum)s,
|
||||
and %(removal)s format specifiers will be replaced by the
|
||||
values of the respective arguments passed to this function.
|
||||
name:
|
||||
name : str, optional
|
||||
The name of the beta object.
|
||||
obj_type:
|
||||
obj_type : str, optional
|
||||
The object type being beta.
|
||||
addendum:
|
||||
addendum : str, optional
|
||||
Additional text appended directly to the final message.
|
||||
|
||||
Returns:
|
||||
A decorator which can be used to mark functions or classes as beta.
|
||||
|
||||
```python
|
||||
@beta
|
||||
def the_function_to_annotate():
|
||||
pass
|
||||
```
|
||||
Examples:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
@beta
|
||||
def the_function_to_annotate():
|
||||
pass
|
||||
|
||||
"""
|
||||
|
||||
def beta(
|
||||
|
||||
@@ -28,27 +28,6 @@ from pydantic.v1.fields import FieldInfo as FieldInfoV1
|
||||
from langchain_core._api.internal import is_caller_internal
|
||||
|
||||
|
||||
def _build_deprecation_message(
|
||||
*,
|
||||
alternative: str = "",
|
||||
alternative_import: str = "",
|
||||
) -> str:
|
||||
"""Build a simple deprecation message for `__deprecated__` attribute.
|
||||
|
||||
Args:
|
||||
alternative: An alternative API name.
|
||||
alternative_import: A fully qualified import path for the alternative.
|
||||
|
||||
Returns:
|
||||
A deprecation message string for IDE/type checker display.
|
||||
"""
|
||||
if alternative_import:
|
||||
return f"Use {alternative_import} instead."
|
||||
if alternative:
|
||||
return f"Use {alternative} instead."
|
||||
return "Deprecated."
|
||||
|
||||
|
||||
class LangChainDeprecationWarning(DeprecationWarning):
|
||||
"""A class for issuing deprecation warnings for LangChain users."""
|
||||
|
||||
@@ -102,57 +81,63 @@ def deprecated(
|
||||
) -> Callable[[T], T]:
|
||||
"""Decorator to mark a function, a class, or a property as deprecated.
|
||||
|
||||
When deprecating a classmethod, a staticmethod, or a property, the `@deprecated`
|
||||
decorator should go *under* `@classmethod` and `@staticmethod` (i.e., `deprecated`
|
||||
should directly decorate the underlying callable), but *over* `@property`.
|
||||
When deprecating a classmethod, a staticmethod, or a property, the
|
||||
`@deprecated` decorator should go *under* `@classmethod` and
|
||||
`@staticmethod` (i.e., `deprecated` should directly decorate the
|
||||
underlying callable), but *over* `@property`.
|
||||
|
||||
When deprecating a class `C` intended to be used as a base class in a multiple
|
||||
inheritance hierarchy, `C` *must* define an `__init__` method (if `C` instead
|
||||
inherited its `__init__` from its own base class, then `@deprecated` would mess up
|
||||
`__init__` inheritance when installing its own (deprecation-emitting) `C.__init__`).
|
||||
When deprecating a class `C` intended to be used as a base class in a
|
||||
multiple inheritance hierarchy, `C` *must* define an `__init__` method
|
||||
(if `C` instead inherited its `__init__` from its own base class, then
|
||||
`@deprecated` would mess up `__init__` inheritance when installing its
|
||||
own (deprecation-emitting) `C.__init__`).
|
||||
|
||||
Parameters are the same as for `warn_deprecated`, except that *obj_type* defaults to
|
||||
'class' if decorating a class, 'attribute' if decorating a property, and 'function'
|
||||
otherwise.
|
||||
Parameters are the same as for `warn_deprecated`, except that *obj_type*
|
||||
defaults to 'class' if decorating a class, 'attribute' if decorating a
|
||||
property, and 'function' otherwise.
|
||||
|
||||
Args:
|
||||
since: The release at which this API became deprecated.
|
||||
message: Override the default deprecation message.
|
||||
|
||||
The `%(since)s`, `%(name)s`, `%(alternative)s`, `%(obj_type)s`,
|
||||
`%(addendum)s`, and `%(removal)s` format specifiers will be replaced by the
|
||||
since : str
|
||||
The release at which this API became deprecated.
|
||||
message : str, optional
|
||||
Override the default deprecation message. The %(since)s,
|
||||
%(name)s, %(alternative)s, %(obj_type)s, %(addendum)s,
|
||||
and %(removal)s format specifiers will be replaced by the
|
||||
values of the respective arguments passed to this function.
|
||||
name: The name of the deprecated object.
|
||||
alternative: An alternative API that the user may use in place of the deprecated
|
||||
API.
|
||||
|
||||
The deprecation warning will tell the user about this alternative if
|
||||
provided.
|
||||
alternative_import: An alternative import that the user may use instead.
|
||||
pending: If `True`, uses a `PendingDeprecationWarning` instead of a
|
||||
`DeprecationWarning`.
|
||||
|
||||
Cannot be used together with removal.
|
||||
obj_type: The object type being deprecated.
|
||||
addendum: Additional text appended directly to the final message.
|
||||
removal: The expected removal version.
|
||||
|
||||
With the default (an empty string), a removal version is automatically
|
||||
computed from since. Set to other Falsy values to not schedule a removal
|
||||
date.
|
||||
|
||||
Cannot be used together with pending.
|
||||
package: The package of the deprecated object.
|
||||
name : str, optional
|
||||
The name of the deprecated object.
|
||||
alternative : str, optional
|
||||
An alternative API that the user may use in place of the
|
||||
deprecated API. The deprecation warning will tell the user
|
||||
about this alternative if provided.
|
||||
alternative_import: str, optional
|
||||
An alternative import that the user may use instead.
|
||||
pending : bool, optional
|
||||
If `True`, uses a `PendingDeprecationWarning` instead of a
|
||||
DeprecationWarning. Cannot be used together with removal.
|
||||
obj_type : str, optional
|
||||
The object type being deprecated.
|
||||
addendum : str, optional
|
||||
Additional text appended directly to the final message.
|
||||
removal : str, optional
|
||||
The expected removal version. With the default (an empty
|
||||
string), a removal version is automatically computed from
|
||||
since. Set to other Falsy values to not schedule a removal
|
||||
date. Cannot be used together with pending.
|
||||
package: str, optional
|
||||
The package of the deprecated object.
|
||||
|
||||
Returns:
|
||||
A decorator to mark a function or class as deprecated.
|
||||
|
||||
Example:
|
||||
```python
|
||||
@deprecated("1.4.0")
|
||||
def the_function_to_deprecate():
|
||||
pass
|
||||
```
|
||||
Examples:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
@deprecated("1.4.0")
|
||||
def the_function_to_deprecate():
|
||||
pass
|
||||
|
||||
"""
|
||||
_validate_deprecation_params(
|
||||
removal, alternative, alternative_import, pending=pending
|
||||
@@ -241,11 +226,6 @@ def deprecated(
|
||||
obj.__init__ = functools.wraps(obj.__init__)( # type: ignore[misc]
|
||||
warn_if_direct_instance
|
||||
)
|
||||
# Set __deprecated__ for PEP 702 (IDE/type checker support)
|
||||
obj.__deprecated__ = _build_deprecation_message( # type: ignore[attr-defined]
|
||||
alternative=alternative,
|
||||
alternative_import=alternative_import,
|
||||
)
|
||||
return obj
|
||||
|
||||
elif isinstance(obj, FieldInfoV1):
|
||||
@@ -338,15 +318,12 @@ def deprecated(
|
||||
|
||||
def finalize(wrapper: Callable[..., Any], new_doc: str) -> T: # noqa: ARG001
|
||||
"""Finalize the property."""
|
||||
prop = _DeprecatedProperty(
|
||||
fget=obj.fget, fset=obj.fset, fdel=obj.fdel, doc=new_doc
|
||||
return cast(
|
||||
"T",
|
||||
_DeprecatedProperty(
|
||||
fget=obj.fget, fset=obj.fset, fdel=obj.fdel, doc=new_doc
|
||||
),
|
||||
)
|
||||
# Set __deprecated__ for PEP 702 (IDE/type checker support)
|
||||
prop.__deprecated__ = _build_deprecation_message( # type: ignore[attr-defined]
|
||||
alternative=alternative,
|
||||
alternative_import=alternative_import,
|
||||
)
|
||||
return cast("T", prop)
|
||||
|
||||
else:
|
||||
_name = _name or cast("type | Callable", obj).__qualname__
|
||||
@@ -369,11 +346,6 @@ def deprecated(
|
||||
"""
|
||||
wrapper = functools.wraps(wrapped)(wrapper)
|
||||
wrapper.__doc__ = new_doc
|
||||
# Set __deprecated__ for PEP 702 (IDE/type checker support)
|
||||
wrapper.__deprecated__ = _build_deprecation_message( # type: ignore[attr-defined]
|
||||
alternative=alternative,
|
||||
alternative_import=alternative_import,
|
||||
)
|
||||
return cast("T", wrapper)
|
||||
|
||||
old_doc = inspect.cleandoc(old_doc or "").strip("\n")
|
||||
@@ -429,7 +401,7 @@ def deprecated(
|
||||
|
||||
@contextlib.contextmanager
|
||||
def suppress_langchain_deprecation_warning() -> Generator[None, None, None]:
|
||||
"""Context manager to suppress `LangChainDeprecationWarning`."""
|
||||
"""Context manager to suppress LangChainDeprecationWarning."""
|
||||
with warnings.catch_warnings():
|
||||
warnings.simplefilter("ignore", LangChainDeprecationWarning)
|
||||
warnings.simplefilter("ignore", LangChainPendingDeprecationWarning)
|
||||
@@ -452,33 +424,35 @@ def warn_deprecated(
|
||||
"""Display a standardized deprecation.
|
||||
|
||||
Args:
|
||||
since: The release at which this API became deprecated.
|
||||
message: Override the default deprecation message.
|
||||
|
||||
The `%(since)s`, `%(name)s`, `%(alternative)s`, `%(obj_type)s`,
|
||||
`%(addendum)s`, and `%(removal)s` format specifiers will be replaced by the
|
||||
since:
|
||||
The release at which this API became deprecated.
|
||||
message:
|
||||
Override the default deprecation message. The %(since)s,
|
||||
%(name)s, %(alternative)s, %(obj_type)s, %(addendum)s,
|
||||
and %(removal)s format specifiers will be replaced by the
|
||||
values of the respective arguments passed to this function.
|
||||
name: The name of the deprecated object.
|
||||
alternative: An alternative API that the user may use in place of the
|
||||
deprecated API.
|
||||
|
||||
The deprecation warning will tell the user about this alternative if
|
||||
provided.
|
||||
alternative_import: An alternative import that the user may use instead.
|
||||
pending: If `True`, uses a `PendingDeprecationWarning` instead of a
|
||||
`DeprecationWarning`.
|
||||
|
||||
Cannot be used together with removal.
|
||||
obj_type: The object type being deprecated.
|
||||
addendum: Additional text appended directly to the final message.
|
||||
removal: The expected removal version.
|
||||
|
||||
With the default (an empty string), a removal version is automatically
|
||||
computed from since. Set to other Falsy values to not schedule a removal
|
||||
date.
|
||||
|
||||
Cannot be used together with pending.
|
||||
package: The package of the deprecated object.
|
||||
name:
|
||||
The name of the deprecated object.
|
||||
alternative:
|
||||
An alternative API that the user may use in place of the
|
||||
deprecated API. The deprecation warning will tell the user
|
||||
about this alternative if provided.
|
||||
alternative_import:
|
||||
An alternative import that the user may use instead.
|
||||
pending:
|
||||
If `True`, uses a `PendingDeprecationWarning` instead of a
|
||||
DeprecationWarning. Cannot be used together with removal.
|
||||
obj_type:
|
||||
The object type being deprecated.
|
||||
addendum:
|
||||
Additional text appended directly to the final message.
|
||||
removal:
|
||||
The expected removal version. With the default (an empty
|
||||
string), a removal version is automatically computed from
|
||||
since. Set to other Falsy values to not schedule a removal
|
||||
date. Cannot be used together with pending.
|
||||
package:
|
||||
The package of the deprecated object.
|
||||
"""
|
||||
if not pending:
|
||||
if not removal:
|
||||
@@ -563,8 +537,8 @@ def rename_parameter(
|
||||
"""Decorator indicating that parameter *old* of *func* is renamed to *new*.
|
||||
|
||||
The actual implementation of *func* should use *new*, not *old*. If *old* is passed
|
||||
to *func*, a `DeprecationWarning` is emitted, and its value is used, even if *new*
|
||||
is also passed by keyword.
|
||||
to *func*, a DeprecationWarning is emitted, and its value is used, even if *new* is
|
||||
also passed by keyword.
|
||||
|
||||
Args:
|
||||
since: The version in which the parameter was renamed.
|
||||
@@ -576,10 +550,12 @@ def rename_parameter(
|
||||
A decorator indicating that a parameter was renamed.
|
||||
|
||||
Example:
|
||||
```python
|
||||
@_api.rename_parameter("3.1", "bad_name", "good_name")
|
||||
def func(good_name): ...
|
||||
```
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
@_api.rename_parameter("3.1", "bad_name", "good_name")
|
||||
def func(good_name): ...
|
||||
|
||||
"""
|
||||
|
||||
def decorator(f: Callable[_P, _R]) -> Callable[_P, _R]:
|
||||
|
||||
@@ -1,5 +1,4 @@
|
||||
import inspect
|
||||
from typing import cast
|
||||
|
||||
|
||||
def is_caller_internal(depth: int = 2) -> bool:
|
||||
@@ -17,7 +16,7 @@ def is_caller_internal(depth: int = 2) -> bool:
|
||||
return False
|
||||
# Directly access the module name from the frame's global variables
|
||||
module_globals = frame.f_globals
|
||||
caller_module_name = cast("str", module_globals.get("__name__", ""))
|
||||
caller_module_name = module_globals.get("__name__", "")
|
||||
return caller_module_name.startswith("langchain")
|
||||
finally:
|
||||
del frame
|
||||
|
||||
@@ -1,24 +1,25 @@
|
||||
"""Schema definitions for representing agent actions, observations, and return values.
|
||||
|
||||
!!! warning
|
||||
The schema definitions are provided for backwards compatibility.
|
||||
**ATTENTION** The schema definitions are provided for backwards compatibility.
|
||||
|
||||
!!! warning
|
||||
New agents should be built using the
|
||||
[`langchain` library](https://pypi.org/project/langchain/), which provides a
|
||||
[langgraph library](https://github.com/langchain-ai/langgraph), which provides a
|
||||
simpler and more flexible way to define agents.
|
||||
|
||||
See docs on [building agents](https://docs.langchain.com/oss/python/langchain/agents).
|
||||
Please see the
|
||||
[migration guide](https://python.langchain.com/docs/how_to/migrate_agent/) for
|
||||
information on how to migrate existing agents to modern langgraph agents.
|
||||
|
||||
Agents use language models to choose a sequence of actions to take.
|
||||
|
||||
A basic agent works in the following manner:
|
||||
|
||||
1. Given a prompt an agent uses an LLM to request an action to take
|
||||
(e.g., a tool to run).
|
||||
(e.g., a tool to run).
|
||||
2. The agent executes the action (e.g., runs the tool), and receives an observation.
|
||||
3. The agent returns the observation to the LLM, which can then be used to generate
|
||||
the next action.
|
||||
the next action.
|
||||
4. When the agent reaches a stopping condition, it returns a final return value.
|
||||
|
||||
The schemas for the agents themselves are defined in langchain.agents.agent.
|
||||
@@ -52,42 +53,40 @@ class AgentAction(Serializable):
|
||||
"""The input to pass in to the Tool."""
|
||||
log: str
|
||||
"""Additional information to log about the action.
|
||||
|
||||
This log can be used in a few ways. First, it can be used to audit what exactly the
|
||||
LLM predicted to lead to this `(tool, tool_input)`.
|
||||
|
||||
Second, it can be used in future iterations to show the LLMs prior thoughts. This is
|
||||
useful when `(tool, tool_input)` does not contain full information about the LLM
|
||||
prediction (for example, any `thought` before the tool/tool_input).
|
||||
"""
|
||||
This log can be used in a few ways. First, it can be used to audit
|
||||
what exactly the LLM predicted to lead to this (tool, tool_input).
|
||||
Second, it can be used in future iterations to show the LLMs prior
|
||||
thoughts. This is useful when (tool, tool_input) does not contain
|
||||
full information about the LLM prediction (for example, any `thought`
|
||||
before the tool/tool_input)."""
|
||||
type: Literal["AgentAction"] = "AgentAction"
|
||||
|
||||
# Override init to support instantiation by position for backward compat.
|
||||
def __init__(self, tool: str, tool_input: str | dict, log: str, **kwargs: Any):
|
||||
"""Create an `AgentAction`.
|
||||
"""Create an AgentAction.
|
||||
|
||||
Args:
|
||||
tool: The name of the tool to execute.
|
||||
tool_input: The input to pass in to the `Tool`.
|
||||
tool_input: The input to pass in to the Tool.
|
||||
log: Additional information to log about the action.
|
||||
"""
|
||||
super().__init__(tool=tool, tool_input=tool_input, log=log, **kwargs)
|
||||
|
||||
@classmethod
|
||||
def is_lc_serializable(cls) -> bool:
|
||||
"""`AgentAction` is serializable.
|
||||
"""AgentAction is serializable.
|
||||
|
||||
Returns:
|
||||
`True`
|
||||
True
|
||||
"""
|
||||
return True
|
||||
|
||||
@classmethod
|
||||
def get_lc_namespace(cls) -> list[str]:
|
||||
"""Get the namespace of the LangChain object.
|
||||
"""Get the namespace of the langchain object.
|
||||
|
||||
Returns:
|
||||
`["langchain", "schema", "agent"]`
|
||||
``["langchain", "schema", "agent"]``
|
||||
"""
|
||||
return ["langchain", "schema", "agent"]
|
||||
|
||||
@@ -100,23 +99,19 @@ class AgentAction(Serializable):
|
||||
class AgentActionMessageLog(AgentAction):
|
||||
"""Representation of an action to be executed by an agent.
|
||||
|
||||
This is similar to `AgentAction`, but includes a message log consisting of
|
||||
chat messages.
|
||||
|
||||
This is useful when working with `ChatModels`, and is used to reconstruct
|
||||
conversation history from the agent's perspective.
|
||||
This is similar to AgentAction, but includes a message log consisting of
|
||||
chat messages. This is useful when working with ChatModels, and is used
|
||||
to reconstruct conversation history from the agent's perspective.
|
||||
"""
|
||||
|
||||
message_log: Sequence[BaseMessage]
|
||||
"""Similar to log, this can be used to pass along extra information about what exact
|
||||
messages were predicted by the LLM before parsing out the `(tool, tool_input)`.
|
||||
|
||||
This is again useful if `(tool, tool_input)` cannot be used to fully recreate the
|
||||
LLM prediction, and you need that LLM prediction (for future agent iteration).
|
||||
|
||||
"""Similar to log, this can be used to pass along extra
|
||||
information about what exact messages were predicted by the LLM
|
||||
before parsing out the (tool, tool_input). This is again useful
|
||||
if (tool, tool_input) cannot be used to fully recreate the LLM
|
||||
prediction, and you need that LLM prediction (for future agent iteration).
|
||||
Compared to `log`, this is useful when the underlying LLM is a
|
||||
chat model (and therefore returns messages rather than a string).
|
||||
"""
|
||||
ChatModel (and therefore returns messages rather than a string)."""
|
||||
# Ignoring type because we're overriding the type from AgentAction.
|
||||
# And this is the correct thing to do in this case.
|
||||
# The type literal is used for serialization purposes.
|
||||
@@ -124,12 +119,12 @@ class AgentActionMessageLog(AgentAction):
|
||||
|
||||
|
||||
class AgentStep(Serializable):
|
||||
"""Result of running an `AgentAction`."""
|
||||
"""Result of running an AgentAction."""
|
||||
|
||||
action: AgentAction
|
||||
"""The `AgentAction` that was executed."""
|
||||
"""The AgentAction that was executed."""
|
||||
observation: Any
|
||||
"""The result of the `AgentAction`."""
|
||||
"""The result of the AgentAction."""
|
||||
|
||||
@property
|
||||
def messages(self) -> Sequence[BaseMessage]:
|
||||
@@ -138,22 +133,19 @@ class AgentStep(Serializable):
|
||||
|
||||
|
||||
class AgentFinish(Serializable):
|
||||
"""Final return value of an `ActionAgent`.
|
||||
"""Final return value of an ActionAgent.
|
||||
|
||||
Agents return an `AgentFinish` when they have reached a stopping condition.
|
||||
Agents return an AgentFinish when they have reached a stopping condition.
|
||||
"""
|
||||
|
||||
return_values: dict
|
||||
"""Dictionary of return values."""
|
||||
log: str
|
||||
"""Additional information to log about the return value.
|
||||
|
||||
This is used to pass along the full LLM prediction, not just the parsed out
|
||||
return value.
|
||||
|
||||
For example, if the full LLM prediction was `Final Answer: 2` you may want to just
|
||||
return `2` as a return value, but pass along the full string as a `log` (for
|
||||
debugging or observability purposes).
|
||||
return value. For example, if the full LLM prediction was
|
||||
`Final Answer: 2` you may want to just return `2` as a return value, but pass
|
||||
along the full string as a `log` (for debugging or observability purposes).
|
||||
"""
|
||||
type: Literal["AgentFinish"] = "AgentFinish"
|
||||
|
||||
@@ -163,15 +155,15 @@ class AgentFinish(Serializable):
|
||||
|
||||
@classmethod
|
||||
def is_lc_serializable(cls) -> bool:
|
||||
"""Return `True` as this class is serializable."""
|
||||
"""Return True as this class is serializable."""
|
||||
return True
|
||||
|
||||
@classmethod
|
||||
def get_lc_namespace(cls) -> list[str]:
|
||||
"""Get the namespace of the LangChain object.
|
||||
"""Get the namespace of the langchain object.
|
||||
|
||||
Returns:
|
||||
`["langchain", "schema", "agent"]`
|
||||
``["langchain", "schema", "agent"]``
|
||||
"""
|
||||
return ["langchain", "schema", "agent"]
|
||||
|
||||
@@ -211,7 +203,7 @@ def _convert_agent_observation_to_messages(
|
||||
observation: Observation to convert to a message.
|
||||
|
||||
Returns:
|
||||
`AIMessage` that corresponds to the original tool invocation.
|
||||
AIMessage that corresponds to the original tool invocation.
|
||||
"""
|
||||
if isinstance(agent_action, AgentActionMessageLog):
|
||||
return [_create_function_message(agent_action, observation)]
|
||||
@@ -234,7 +226,7 @@ def _create_function_message(
|
||||
observation: the result of the tool invocation.
|
||||
|
||||
Returns:
|
||||
`FunctionMessage` that corresponds to the original tool invocation.
|
||||
FunctionMessage that corresponds to the original tool invocation.
|
||||
"""
|
||||
if not isinstance(observation, str):
|
||||
try:
|
||||
|
||||
@@ -1,18 +1,24 @@
|
||||
"""Optional caching layer for language models.
|
||||
"""Cache classes.
|
||||
|
||||
Distinct from provider-based [prompt caching](https://docs.langchain.com/oss/python/langchain/models#prompt-caching).
|
||||
!!! warning
|
||||
Beta Feature!
|
||||
|
||||
!!! warning "Beta feature"
|
||||
**Cache** provides an optional caching layer for LLMs.
|
||||
|
||||
This is a beta feature. Please be wary of deploying experimental code to production
|
||||
unless you've taken appropriate precautions.
|
||||
Cache is useful for two reasons:
|
||||
|
||||
A cache is useful for two reasons:
|
||||
- It can save you money by reducing the number of API calls you make to the LLM
|
||||
provider if you're often requesting the same completion multiple times.
|
||||
- It can speed up your application by reducing the number of API calls you make
|
||||
to the LLM provider.
|
||||
|
||||
1. It can save you money by reducing the number of API calls you make to the LLM
|
||||
provider if you're often requesting the same completion multiple times.
|
||||
2. It can speed up your application by reducing the number of API calls you make to the
|
||||
LLM provider.
|
||||
Cache directly competes with Memory. See documentation for Pros and Cons.
|
||||
|
||||
**Class hierarchy:**
|
||||
|
||||
.. code-block::
|
||||
|
||||
BaseCache --> <name>Cache # Examples: InMemoryCache, RedisCache, GPTCache
|
||||
"""
|
||||
|
||||
from __future__ import annotations
|
||||
@@ -34,8 +40,8 @@ class BaseCache(ABC):
|
||||
|
||||
The cache interface consists of the following methods:
|
||||
|
||||
- lookup: Look up a value based on a prompt and `llm_string`.
|
||||
- update: Update the cache based on a prompt and `llm_string`.
|
||||
- lookup: Look up a value based on a prompt and llm_string.
|
||||
- update: Update the cache based on a prompt and llm_string.
|
||||
- clear: Clear the cache.
|
||||
|
||||
In addition, the cache interface provides an async version of each method.
|
||||
@@ -47,46 +53,43 @@ class BaseCache(ABC):
|
||||
|
||||
@abstractmethod
|
||||
def lookup(self, prompt: str, llm_string: str) -> RETURN_VAL_TYPE | None:
|
||||
"""Look up based on `prompt` and `llm_string`.
|
||||
"""Look up based on prompt and llm_string.
|
||||
|
||||
A cache implementation is expected to generate a key from the 2-tuple
|
||||
of `prompt` and `llm_string` (e.g., by concatenating them with a delimiter).
|
||||
of prompt and llm_string (e.g., by concatenating them with a delimiter).
|
||||
|
||||
Args:
|
||||
prompt: A string representation of the prompt.
|
||||
In the case of a chat model, the prompt is a non-trivial
|
||||
prompt: a string representation of the prompt.
|
||||
In the case of a Chat model, the prompt is a non-trivial
|
||||
serialization of the prompt into the language model.
|
||||
llm_string: A string representation of the LLM configuration.
|
||||
|
||||
This is used to capture the invocation parameters of the LLM
|
||||
(e.g., model name, temperature, stop tokens, max tokens, etc.).
|
||||
|
||||
These invocation parameters are serialized into a string representation.
|
||||
These invocation parameters are serialized into a string
|
||||
representation.
|
||||
|
||||
Returns:
|
||||
On a cache miss, return `None`. On a cache hit, return the cached value.
|
||||
The cached value is a list of `Generation` (or subclasses).
|
||||
On a cache miss, return None. On a cache hit, return the cached value.
|
||||
The cached value is a list of Generations (or subclasses).
|
||||
"""
|
||||
|
||||
@abstractmethod
|
||||
def update(self, prompt: str, llm_string: str, return_val: RETURN_VAL_TYPE) -> None:
|
||||
"""Update cache based on `prompt` and `llm_string`.
|
||||
"""Update cache based on prompt and llm_string.
|
||||
|
||||
The prompt and llm_string are used to generate a key for the cache.
|
||||
The key should match that of the lookup method.
|
||||
|
||||
Args:
|
||||
prompt: A string representation of the prompt.
|
||||
In the case of a chat model, the prompt is a non-trivial
|
||||
prompt: a string representation of the prompt.
|
||||
In the case of a Chat model, the prompt is a non-trivial
|
||||
serialization of the prompt into the language model.
|
||||
llm_string: A string representation of the LLM configuration.
|
||||
|
||||
This is used to capture the invocation parameters of the LLM
|
||||
(e.g., model name, temperature, stop tokens, max tokens, etc.).
|
||||
|
||||
These invocation parameters are serialized into a string
|
||||
representation.
|
||||
return_val: The value to be cached. The value is a list of `Generation`
|
||||
return_val: The value to be cached. The value is a list of Generations
|
||||
(or subclasses).
|
||||
"""
|
||||
|
||||
@@ -95,49 +98,45 @@ class BaseCache(ABC):
|
||||
"""Clear cache that can take additional keyword arguments."""
|
||||
|
||||
async def alookup(self, prompt: str, llm_string: str) -> RETURN_VAL_TYPE | None:
|
||||
"""Async look up based on `prompt` and `llm_string`.
|
||||
"""Async look up based on prompt and llm_string.
|
||||
|
||||
A cache implementation is expected to generate a key from the 2-tuple
|
||||
of `prompt` and `llm_string` (e.g., by concatenating them with a delimiter).
|
||||
of prompt and llm_string (e.g., by concatenating them with a delimiter).
|
||||
|
||||
Args:
|
||||
prompt: A string representation of the prompt.
|
||||
In the case of a chat model, the prompt is a non-trivial
|
||||
prompt: a string representation of the prompt.
|
||||
In the case of a Chat model, the prompt is a non-trivial
|
||||
serialization of the prompt into the language model.
|
||||
llm_string: A string representation of the LLM configuration.
|
||||
|
||||
This is used to capture the invocation parameters of the LLM
|
||||
(e.g., model name, temperature, stop tokens, max tokens, etc.).
|
||||
|
||||
These invocation parameters are serialized into a string
|
||||
representation.
|
||||
|
||||
Returns:
|
||||
On a cache miss, return `None`. On a cache hit, return the cached value.
|
||||
The cached value is a list of `Generation` (or subclasses).
|
||||
On a cache miss, return None. On a cache hit, return the cached value.
|
||||
The cached value is a list of Generations (or subclasses).
|
||||
"""
|
||||
return await run_in_executor(None, self.lookup, prompt, llm_string)
|
||||
|
||||
async def aupdate(
|
||||
self, prompt: str, llm_string: str, return_val: RETURN_VAL_TYPE
|
||||
) -> None:
|
||||
"""Async update cache based on `prompt` and `llm_string`.
|
||||
"""Async update cache based on prompt and llm_string.
|
||||
|
||||
The prompt and llm_string are used to generate a key for the cache.
|
||||
The key should match that of the look up method.
|
||||
|
||||
Args:
|
||||
prompt: A string representation of the prompt.
|
||||
In the case of a chat model, the prompt is a non-trivial
|
||||
prompt: a string representation of the prompt.
|
||||
In the case of a Chat model, the prompt is a non-trivial
|
||||
serialization of the prompt into the language model.
|
||||
llm_string: A string representation of the LLM configuration.
|
||||
|
||||
This is used to capture the invocation parameters of the LLM
|
||||
(e.g., model name, temperature, stop tokens, max tokens, etc.).
|
||||
|
||||
These invocation parameters are serialized into a string
|
||||
representation.
|
||||
return_val: The value to be cached. The value is a list of `Generation`
|
||||
return_val: The value to be cached. The value is a list of Generations
|
||||
(or subclasses).
|
||||
"""
|
||||
return await run_in_executor(None, self.update, prompt, llm_string, return_val)
|
||||
@@ -157,9 +156,10 @@ class InMemoryCache(BaseCache):
|
||||
maxsize: The maximum number of items to store in the cache.
|
||||
If `None`, the cache has no maximum size.
|
||||
If the cache exceeds the maximum size, the oldest items are removed.
|
||||
Default is None.
|
||||
|
||||
Raises:
|
||||
ValueError: If `maxsize` is less than or equal to `0`.
|
||||
ValueError: If maxsize is less than or equal to 0.
|
||||
"""
|
||||
self._cache: dict[tuple[str, str], RETURN_VAL_TYPE] = {}
|
||||
if maxsize is not None and maxsize <= 0:
|
||||
@@ -168,28 +168,28 @@ class InMemoryCache(BaseCache):
|
||||
self._maxsize = maxsize
|
||||
|
||||
def lookup(self, prompt: str, llm_string: str) -> RETURN_VAL_TYPE | None:
|
||||
"""Look up based on `prompt` and `llm_string`.
|
||||
"""Look up based on prompt and llm_string.
|
||||
|
||||
Args:
|
||||
prompt: A string representation of the prompt.
|
||||
In the case of a chat model, the prompt is a non-trivial
|
||||
prompt: a string representation of the prompt.
|
||||
In the case of a Chat model, the prompt is a non-trivial
|
||||
serialization of the prompt into the language model.
|
||||
llm_string: A string representation of the LLM configuration.
|
||||
|
||||
Returns:
|
||||
On a cache miss, return `None`. On a cache hit, return the cached value.
|
||||
On a cache miss, return None. On a cache hit, return the cached value.
|
||||
"""
|
||||
return self._cache.get((prompt, llm_string), None)
|
||||
|
||||
def update(self, prompt: str, llm_string: str, return_val: RETURN_VAL_TYPE) -> None:
|
||||
"""Update cache based on `prompt` and `llm_string`.
|
||||
"""Update cache based on prompt and llm_string.
|
||||
|
||||
Args:
|
||||
prompt: A string representation of the prompt.
|
||||
In the case of a chat model, the prompt is a non-trivial
|
||||
prompt: a string representation of the prompt.
|
||||
In the case of a Chat model, the prompt is a non-trivial
|
||||
serialization of the prompt into the language model.
|
||||
llm_string: A string representation of the LLM configuration.
|
||||
return_val: The value to be cached. The value is a list of `Generation`
|
||||
return_val: The value to be cached. The value is a list of Generations
|
||||
(or subclasses).
|
||||
"""
|
||||
if self._maxsize is not None and len(self._cache) == self._maxsize:
|
||||
@@ -202,30 +202,30 @@ class InMemoryCache(BaseCache):
|
||||
self._cache = {}
|
||||
|
||||
async def alookup(self, prompt: str, llm_string: str) -> RETURN_VAL_TYPE | None:
|
||||
"""Async look up based on `prompt` and `llm_string`.
|
||||
"""Async look up based on prompt and llm_string.
|
||||
|
||||
Args:
|
||||
prompt: A string representation of the prompt.
|
||||
In the case of a chat model, the prompt is a non-trivial
|
||||
prompt: a string representation of the prompt.
|
||||
In the case of a Chat model, the prompt is a non-trivial
|
||||
serialization of the prompt into the language model.
|
||||
llm_string: A string representation of the LLM configuration.
|
||||
|
||||
Returns:
|
||||
On a cache miss, return `None`. On a cache hit, return the cached value.
|
||||
On a cache miss, return None. On a cache hit, return the cached value.
|
||||
"""
|
||||
return self.lookup(prompt, llm_string)
|
||||
|
||||
async def aupdate(
|
||||
self, prompt: str, llm_string: str, return_val: RETURN_VAL_TYPE
|
||||
) -> None:
|
||||
"""Async update cache based on `prompt` and `llm_string`.
|
||||
"""Async update cache based on prompt and llm_string.
|
||||
|
||||
Args:
|
||||
prompt: A string representation of the prompt.
|
||||
In the case of a chat model, the prompt is a non-trivial
|
||||
prompt: a string representation of the prompt.
|
||||
In the case of a Chat model, the prompt is a non-trivial
|
||||
serialization of the prompt into the language model.
|
||||
llm_string: A string representation of the LLM configuration.
|
||||
return_val: The value to be cached. The value is a list of `Generation`
|
||||
return_val: The value to be cached. The value is a list of Generations
|
||||
(or subclasses).
|
||||
"""
|
||||
self.update(prompt, llm_string, return_val)
|
||||
|
||||
@@ -1,4 +1,11 @@
|
||||
"""**Callback handlers** allow listening to events in LangChain."""
|
||||
"""**Callback handlers** allow listening to events in LangChain.
|
||||
|
||||
**Class hierarchy:**
|
||||
|
||||
.. code-block::
|
||||
|
||||
BaseCallbackHandler --> <name>CallbackHandler # Example: AimCallbackHandler
|
||||
"""
|
||||
|
||||
from typing import TYPE_CHECKING
|
||||
|
||||
|
||||
@@ -5,12 +5,13 @@ from __future__ import annotations
|
||||
import logging
|
||||
from typing import TYPE_CHECKING, Any
|
||||
|
||||
from typing_extensions import Self
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from collections.abc import Sequence
|
||||
from uuid import UUID
|
||||
|
||||
from tenacity import RetryCallState
|
||||
from typing_extensions import Self
|
||||
|
||||
from langchain_core.agents import AgentAction, AgentFinish
|
||||
from langchain_core.documents import Document
|
||||
@@ -34,10 +35,10 @@ class RetrieverManagerMixin:
|
||||
"""Run when Retriever errors.
|
||||
|
||||
Args:
|
||||
error: The error that occurred.
|
||||
run_id: The run ID. This is the ID of the current run.
|
||||
parent_run_id: The parent run ID. This is the ID of the parent run.
|
||||
**kwargs: Additional keyword arguments.
|
||||
error (BaseException): The error that occurred.
|
||||
run_id (UUID): The run ID. This is the ID of the current run.
|
||||
parent_run_id (UUID): The parent run ID. This is the ID of the parent run.
|
||||
kwargs (Any): Additional keyword arguments.
|
||||
"""
|
||||
|
||||
def on_retriever_end(
|
||||
@@ -51,10 +52,10 @@ class RetrieverManagerMixin:
|
||||
"""Run when Retriever ends running.
|
||||
|
||||
Args:
|
||||
documents: The documents retrieved.
|
||||
run_id: The run ID. This is the ID of the current run.
|
||||
parent_run_id: The parent run ID. This is the ID of the parent run.
|
||||
**kwargs: Additional keyword arguments.
|
||||
documents (Sequence[Document]): The documents retrieved.
|
||||
run_id (UUID): The run ID. This is the ID of the current run.
|
||||
parent_run_id (UUID): The parent run ID. This is the ID of the parent run.
|
||||
kwargs (Any): Additional keyword arguments.
|
||||
"""
|
||||
|
||||
|
||||
@@ -75,11 +76,12 @@ class LLMManagerMixin:
|
||||
For both chat models and non-chat models (legacy LLMs).
|
||||
|
||||
Args:
|
||||
token: The new token.
|
||||
chunk: The new generated chunk, containing content and other information.
|
||||
run_id: The run ID. This is the ID of the current run.
|
||||
parent_run_id: The parent run ID. This is the ID of the parent run.
|
||||
**kwargs: Additional keyword arguments.
|
||||
token (str): The new token.
|
||||
chunk (GenerationChunk | ChatGenerationChunk): The new generated chunk,
|
||||
containing content and other information.
|
||||
run_id (UUID): The run ID. This is the ID of the current run.
|
||||
parent_run_id (UUID): The parent run ID. This is the ID of the parent run.
|
||||
kwargs (Any): Additional keyword arguments.
|
||||
"""
|
||||
|
||||
def on_llm_end(
|
||||
@@ -93,10 +95,10 @@ class LLMManagerMixin:
|
||||
"""Run when LLM ends running.
|
||||
|
||||
Args:
|
||||
response: The response which was generated.
|
||||
run_id: The run ID. This is the ID of the current run.
|
||||
parent_run_id: The parent run ID. This is the ID of the parent run.
|
||||
**kwargs: Additional keyword arguments.
|
||||
response (LLMResult): The response which was generated.
|
||||
run_id (UUID): The run ID. This is the ID of the current run.
|
||||
parent_run_id (UUID): The parent run ID. This is the ID of the parent run.
|
||||
kwargs (Any): Additional keyword arguments.
|
||||
"""
|
||||
|
||||
def on_llm_error(
|
||||
@@ -110,10 +112,10 @@ class LLMManagerMixin:
|
||||
"""Run when LLM errors.
|
||||
|
||||
Args:
|
||||
error: The error that occurred.
|
||||
run_id: The run ID. This is the ID of the current run.
|
||||
parent_run_id: The parent run ID. This is the ID of the parent run.
|
||||
**kwargs: Additional keyword arguments.
|
||||
error (BaseException): The error that occurred.
|
||||
run_id (UUID): The run ID. This is the ID of the current run.
|
||||
parent_run_id (UUID): The parent run ID. This is the ID of the parent run.
|
||||
kwargs (Any): Additional keyword arguments.
|
||||
"""
|
||||
|
||||
|
||||
@@ -131,10 +133,10 @@ class ChainManagerMixin:
|
||||
"""Run when chain ends running.
|
||||
|
||||
Args:
|
||||
outputs: The outputs of the chain.
|
||||
run_id: The run ID. This is the ID of the current run.
|
||||
parent_run_id: The parent run ID. This is the ID of the parent run.
|
||||
**kwargs: Additional keyword arguments.
|
||||
outputs (dict[str, Any]): The outputs of the chain.
|
||||
run_id (UUID): The run ID. This is the ID of the current run.
|
||||
parent_run_id (UUID): The parent run ID. This is the ID of the parent run.
|
||||
kwargs (Any): Additional keyword arguments.
|
||||
"""
|
||||
|
||||
def on_chain_error(
|
||||
@@ -148,10 +150,10 @@ class ChainManagerMixin:
|
||||
"""Run when chain errors.
|
||||
|
||||
Args:
|
||||
error: The error that occurred.
|
||||
run_id: The run ID. This is the ID of the current run.
|
||||
parent_run_id: The parent run ID. This is the ID of the parent run.
|
||||
**kwargs: Additional keyword arguments.
|
||||
error (BaseException): The error that occurred.
|
||||
run_id (UUID): The run ID. This is the ID of the current run.
|
||||
parent_run_id (UUID): The parent run ID. This is the ID of the parent run.
|
||||
kwargs (Any): Additional keyword arguments.
|
||||
"""
|
||||
|
||||
def on_agent_action(
|
||||
@@ -165,10 +167,10 @@ class ChainManagerMixin:
|
||||
"""Run on agent action.
|
||||
|
||||
Args:
|
||||
action: The agent action.
|
||||
run_id: The run ID. This is the ID of the current run.
|
||||
parent_run_id: The parent run ID. This is the ID of the parent run.
|
||||
**kwargs: Additional keyword arguments.
|
||||
action (AgentAction): The agent action.
|
||||
run_id (UUID): The run ID. This is the ID of the current run.
|
||||
parent_run_id (UUID): The parent run ID. This is the ID of the parent run.
|
||||
kwargs (Any): Additional keyword arguments.
|
||||
"""
|
||||
|
||||
def on_agent_finish(
|
||||
@@ -182,10 +184,10 @@ class ChainManagerMixin:
|
||||
"""Run on the agent end.
|
||||
|
||||
Args:
|
||||
finish: The agent finish.
|
||||
run_id: The run ID. This is the ID of the current run.
|
||||
parent_run_id: The parent run ID. This is the ID of the parent run.
|
||||
**kwargs: Additional keyword arguments.
|
||||
finish (AgentFinish): The agent finish.
|
||||
run_id (UUID): The run ID. This is the ID of the current run.
|
||||
parent_run_id (UUID): The parent run ID. This is the ID of the parent run.
|
||||
kwargs (Any): Additional keyword arguments.
|
||||
"""
|
||||
|
||||
|
||||
@@ -203,10 +205,10 @@ class ToolManagerMixin:
|
||||
"""Run when the tool ends running.
|
||||
|
||||
Args:
|
||||
output: The output of the tool.
|
||||
run_id: The run ID. This is the ID of the current run.
|
||||
parent_run_id: The parent run ID. This is the ID of the parent run.
|
||||
**kwargs: Additional keyword arguments.
|
||||
output (Any): The output of the tool.
|
||||
run_id (UUID): The run ID. This is the ID of the current run.
|
||||
parent_run_id (UUID): The parent run ID. This is the ID of the parent run.
|
||||
kwargs (Any): Additional keyword arguments.
|
||||
"""
|
||||
|
||||
def on_tool_error(
|
||||
@@ -220,10 +222,10 @@ class ToolManagerMixin:
|
||||
"""Run when tool errors.
|
||||
|
||||
Args:
|
||||
error: The error that occurred.
|
||||
run_id: The run ID. This is the ID of the current run.
|
||||
parent_run_id: The parent run ID. This is the ID of the parent run.
|
||||
**kwargs: Additional keyword arguments.
|
||||
error (BaseException): The error that occurred.
|
||||
run_id (UUID): The run ID. This is the ID of the current run.
|
||||
parent_run_id (UUID): The parent run ID. This is the ID of the parent run.
|
||||
kwargs (Any): Additional keyword arguments.
|
||||
"""
|
||||
|
||||
|
||||
@@ -246,16 +248,16 @@ class CallbackManagerMixin:
|
||||
!!! warning
|
||||
This method is called for non-chat models (regular LLMs). If you're
|
||||
implementing a handler for a chat model, you should use
|
||||
`on_chat_model_start` instead.
|
||||
``on_chat_model_start`` instead.
|
||||
|
||||
Args:
|
||||
serialized: The serialized LLM.
|
||||
prompts: The prompts.
|
||||
run_id: The run ID. This is the ID of the current run.
|
||||
parent_run_id: The parent run ID. This is the ID of the parent run.
|
||||
tags: The tags.
|
||||
metadata: The metadata.
|
||||
**kwargs: Additional keyword arguments.
|
||||
serialized (dict[str, Any]): The serialized LLM.
|
||||
prompts (list[str]): The prompts.
|
||||
run_id (UUID): The run ID. This is the ID of the current run.
|
||||
parent_run_id (UUID): The parent run ID. This is the ID of the parent run.
|
||||
tags (list[str] | None): The tags.
|
||||
metadata (dict[str, Any] | None): The metadata.
|
||||
kwargs (Any): Additional keyword arguments.
|
||||
"""
|
||||
|
||||
def on_chat_model_start(
|
||||
@@ -273,16 +275,16 @@ class CallbackManagerMixin:
|
||||
|
||||
!!! warning
|
||||
This method is called for chat models. If you're implementing a handler for
|
||||
a non-chat model, you should use `on_llm_start` instead.
|
||||
a non-chat model, you should use ``on_llm_start`` instead.
|
||||
|
||||
Args:
|
||||
serialized: The serialized chat model.
|
||||
messages: The messages.
|
||||
run_id: The run ID. This is the ID of the current run.
|
||||
parent_run_id: The parent run ID. This is the ID of the parent run.
|
||||
tags: The tags.
|
||||
metadata: The metadata.
|
||||
**kwargs: Additional keyword arguments.
|
||||
serialized (dict[str, Any]): The serialized chat model.
|
||||
messages (list[list[BaseMessage]]): The messages.
|
||||
run_id (UUID): The run ID. This is the ID of the current run.
|
||||
parent_run_id (UUID): The parent run ID. This is the ID of the parent run.
|
||||
tags (list[str] | None): The tags.
|
||||
metadata (dict[str, Any] | None): The metadata.
|
||||
kwargs (Any): Additional keyword arguments.
|
||||
"""
|
||||
# NotImplementedError is thrown intentionally
|
||||
# Callback handler will fall back to on_llm_start if this is exception is thrown
|
||||
@@ -303,13 +305,13 @@ class CallbackManagerMixin:
|
||||
"""Run when the Retriever starts running.
|
||||
|
||||
Args:
|
||||
serialized: The serialized Retriever.
|
||||
query: The query.
|
||||
run_id: The run ID. This is the ID of the current run.
|
||||
parent_run_id: The parent run ID. This is the ID of the parent run.
|
||||
tags: The tags.
|
||||
metadata: The metadata.
|
||||
**kwargs: Additional keyword arguments.
|
||||
serialized (dict[str, Any]): The serialized Retriever.
|
||||
query (str): The query.
|
||||
run_id (UUID): The run ID. This is the ID of the current run.
|
||||
parent_run_id (UUID): The parent run ID. This is the ID of the parent run.
|
||||
tags (list[str] | None): The tags.
|
||||
metadata (dict[str, Any] | None): The metadata.
|
||||
kwargs (Any): Additional keyword arguments.
|
||||
"""
|
||||
|
||||
def on_chain_start(
|
||||
@@ -326,13 +328,13 @@ class CallbackManagerMixin:
|
||||
"""Run when a chain starts running.
|
||||
|
||||
Args:
|
||||
serialized: The serialized chain.
|
||||
inputs: The inputs.
|
||||
run_id: The run ID. This is the ID of the current run.
|
||||
parent_run_id: The parent run ID. This is the ID of the parent run.
|
||||
tags: The tags.
|
||||
metadata: The metadata.
|
||||
**kwargs: Additional keyword arguments.
|
||||
serialized (dict[str, Any]): The serialized chain.
|
||||
inputs (dict[str, Any]): The inputs.
|
||||
run_id (UUID): The run ID. This is the ID of the current run.
|
||||
parent_run_id (UUID): The parent run ID. This is the ID of the parent run.
|
||||
tags (list[str] | None): The tags.
|
||||
metadata (dict[str, Any] | None): The metadata.
|
||||
kwargs (Any): Additional keyword arguments.
|
||||
"""
|
||||
|
||||
def on_tool_start(
|
||||
@@ -350,14 +352,14 @@ class CallbackManagerMixin:
|
||||
"""Run when the tool starts running.
|
||||
|
||||
Args:
|
||||
serialized: The serialized chain.
|
||||
input_str: The input string.
|
||||
run_id: The run ID. This is the ID of the current run.
|
||||
parent_run_id: The parent run ID. This is the ID of the parent run.
|
||||
tags: The tags.
|
||||
metadata: The metadata.
|
||||
inputs: The inputs.
|
||||
**kwargs: Additional keyword arguments.
|
||||
serialized (dict[str, Any]): The serialized tool.
|
||||
input_str (str): The input string.
|
||||
run_id (UUID): The run ID. This is the ID of the current run.
|
||||
parent_run_id (UUID): The parent run ID. This is the ID of the parent run.
|
||||
tags (list[str] | None): The tags.
|
||||
metadata (dict[str, Any] | None): The metadata.
|
||||
inputs (dict[str, Any] | None): The inputs.
|
||||
kwargs (Any): Additional keyword arguments.
|
||||
"""
|
||||
|
||||
|
||||
@@ -375,10 +377,10 @@ class RunManagerMixin:
|
||||
"""Run on an arbitrary text.
|
||||
|
||||
Args:
|
||||
text: The text.
|
||||
run_id: The run ID. This is the ID of the current run.
|
||||
parent_run_id: The parent run ID. This is the ID of the parent run.
|
||||
**kwargs: Additional keyword arguments.
|
||||
text (str): The text.
|
||||
run_id (UUID): The run ID. This is the ID of the current run.
|
||||
parent_run_id (UUID): The parent run ID. This is the ID of the parent run.
|
||||
kwargs (Any): Additional keyword arguments.
|
||||
"""
|
||||
|
||||
def on_retry(
|
||||
@@ -392,10 +394,10 @@ class RunManagerMixin:
|
||||
"""Run on a retry event.
|
||||
|
||||
Args:
|
||||
retry_state: The retry state.
|
||||
run_id: The run ID. This is the ID of the current run.
|
||||
parent_run_id: The parent run ID. This is the ID of the parent run.
|
||||
**kwargs: Additional keyword arguments.
|
||||
retry_state (RetryCallState): The retry state.
|
||||
run_id (UUID): The run ID. This is the ID of the current run.
|
||||
parent_run_id (UUID): The parent run ID. This is the ID of the parent run.
|
||||
kwargs (Any): Additional keyword arguments.
|
||||
"""
|
||||
|
||||
def on_custom_event(
|
||||
@@ -413,12 +415,14 @@ class RunManagerMixin:
|
||||
Args:
|
||||
name: The name of the custom event.
|
||||
data: The data for the custom event. Format will match
|
||||
the format specified by the user.
|
||||
the format specified by the user.
|
||||
run_id: The ID of the run.
|
||||
tags: The tags associated with the custom event
|
||||
(includes inherited tags).
|
||||
metadata: The metadata associated with the custom event
|
||||
(includes inherited metadata).
|
||||
|
||||
!!! version-added "Added in version 0.2.15"
|
||||
"""
|
||||
|
||||
|
||||
@@ -493,16 +497,16 @@ class AsyncCallbackHandler(BaseCallbackHandler):
|
||||
!!! warning
|
||||
This method is called for non-chat models (regular LLMs). If you're
|
||||
implementing a handler for a chat model, you should use
|
||||
`on_chat_model_start` instead.
|
||||
``on_chat_model_start`` instead.
|
||||
|
||||
Args:
|
||||
serialized: The serialized LLM.
|
||||
prompts: The prompts.
|
||||
run_id: The run ID. This is the ID of the current run.
|
||||
parent_run_id: The parent run ID. This is the ID of the parent run.
|
||||
tags: The tags.
|
||||
metadata: The metadata.
|
||||
**kwargs: Additional keyword arguments.
|
||||
serialized (dict[str, Any]): The serialized LLM.
|
||||
prompts (list[str]): The prompts.
|
||||
run_id (UUID): The run ID. This is the ID of the current run.
|
||||
parent_run_id (UUID): The parent run ID. This is the ID of the parent run.
|
||||
tags (list[str] | None): The tags.
|
||||
metadata (dict[str, Any] | None): The metadata.
|
||||
kwargs (Any): Additional keyword arguments.
|
||||
"""
|
||||
|
||||
async def on_chat_model_start(
|
||||
@@ -520,16 +524,16 @@ class AsyncCallbackHandler(BaseCallbackHandler):
|
||||
|
||||
!!! warning
|
||||
This method is called for chat models. If you're implementing a handler for
|
||||
a non-chat model, you should use `on_llm_start` instead.
|
||||
a non-chat model, you should use ``on_llm_start`` instead.
|
||||
|
||||
Args:
|
||||
serialized: The serialized chat model.
|
||||
messages: The messages.
|
||||
run_id: The run ID. This is the ID of the current run.
|
||||
parent_run_id: The parent run ID. This is the ID of the parent run.
|
||||
tags: The tags.
|
||||
metadata: The metadata.
|
||||
**kwargs: Additional keyword arguments.
|
||||
serialized (dict[str, Any]): The serialized chat model.
|
||||
messages (list[list[BaseMessage]]): The messages.
|
||||
run_id (UUID): The run ID. This is the ID of the current run.
|
||||
parent_run_id (UUID): The parent run ID. This is the ID of the parent run.
|
||||
tags (list[str] | None): The tags.
|
||||
metadata (dict[str, Any] | None): The metadata.
|
||||
kwargs (Any): Additional keyword arguments.
|
||||
"""
|
||||
# NotImplementedError is thrown intentionally
|
||||
# Callback handler will fall back to on_llm_start if this is exception is thrown
|
||||
@@ -551,12 +555,13 @@ class AsyncCallbackHandler(BaseCallbackHandler):
|
||||
For both chat models and non-chat models (legacy LLMs).
|
||||
|
||||
Args:
|
||||
token: The new token.
|
||||
chunk: The new generated chunk, containing content and other information.
|
||||
run_id: The run ID. This is the ID of the current run.
|
||||
parent_run_id: The parent run ID. This is the ID of the parent run.
|
||||
tags: The tags.
|
||||
**kwargs: Additional keyword arguments.
|
||||
token (str): The new token.
|
||||
chunk (GenerationChunk | ChatGenerationChunk): The new generated chunk,
|
||||
containing content and other information.
|
||||
run_id (UUID): The run ID. This is the ID of the current run.
|
||||
parent_run_id (UUID): The parent run ID. This is the ID of the parent run.
|
||||
tags (list[str] | None): The tags.
|
||||
kwargs (Any): Additional keyword arguments.
|
||||
"""
|
||||
|
||||
async def on_llm_end(
|
||||
@@ -571,11 +576,11 @@ class AsyncCallbackHandler(BaseCallbackHandler):
|
||||
"""Run when the model ends running.
|
||||
|
||||
Args:
|
||||
response: The response which was generated.
|
||||
run_id: The run ID. This is the ID of the current run.
|
||||
parent_run_id: The parent run ID. This is the ID of the parent run.
|
||||
tags: The tags.
|
||||
**kwargs: Additional keyword arguments.
|
||||
response (LLMResult): The response which was generated.
|
||||
run_id (UUID): The run ID. This is the ID of the current run.
|
||||
parent_run_id (UUID): The parent run ID. This is the ID of the parent run.
|
||||
tags (list[str] | None): The tags.
|
||||
kwargs (Any): Additional keyword arguments.
|
||||
"""
|
||||
|
||||
async def on_llm_error(
|
||||
@@ -594,7 +599,7 @@ class AsyncCallbackHandler(BaseCallbackHandler):
|
||||
run_id: The run ID. This is the ID of the current run.
|
||||
parent_run_id: The parent run ID. This is the ID of the parent run.
|
||||
tags: The tags.
|
||||
**kwargs: Additional keyword arguments.
|
||||
kwargs (Any): Additional keyword arguments.
|
||||
- response (LLMResult): The response which was generated before
|
||||
the error occurred.
|
||||
"""
|
||||
@@ -613,13 +618,13 @@ class AsyncCallbackHandler(BaseCallbackHandler):
|
||||
"""Run when a chain starts running.
|
||||
|
||||
Args:
|
||||
serialized: The serialized chain.
|
||||
inputs: The inputs.
|
||||
run_id: The run ID. This is the ID of the current run.
|
||||
parent_run_id: The parent run ID. This is the ID of the parent run.
|
||||
tags: The tags.
|
||||
metadata: The metadata.
|
||||
**kwargs: Additional keyword arguments.
|
||||
serialized (dict[str, Any]): The serialized chain.
|
||||
inputs (dict[str, Any]): The inputs.
|
||||
run_id (UUID): The run ID. This is the ID of the current run.
|
||||
parent_run_id (UUID): The parent run ID. This is the ID of the parent run.
|
||||
tags (list[str] | None): The tags.
|
||||
metadata (dict[str, Any] | None): The metadata.
|
||||
kwargs (Any): Additional keyword arguments.
|
||||
"""
|
||||
|
||||
async def on_chain_end(
|
||||
@@ -634,11 +639,11 @@ class AsyncCallbackHandler(BaseCallbackHandler):
|
||||
"""Run when a chain ends running.
|
||||
|
||||
Args:
|
||||
outputs: The outputs of the chain.
|
||||
run_id: The run ID. This is the ID of the current run.
|
||||
parent_run_id: The parent run ID. This is the ID of the parent run.
|
||||
tags: The tags.
|
||||
**kwargs: Additional keyword arguments.
|
||||
outputs (dict[str, Any]): The outputs of the chain.
|
||||
run_id (UUID): The run ID. This is the ID of the current run.
|
||||
parent_run_id (UUID): The parent run ID. This is the ID of the parent run.
|
||||
tags (list[str] | None): The tags.
|
||||
kwargs (Any): Additional keyword arguments.
|
||||
"""
|
||||
|
||||
async def on_chain_error(
|
||||
@@ -653,11 +658,11 @@ class AsyncCallbackHandler(BaseCallbackHandler):
|
||||
"""Run when chain errors.
|
||||
|
||||
Args:
|
||||
error: The error that occurred.
|
||||
run_id: The run ID. This is the ID of the current run.
|
||||
parent_run_id: The parent run ID. This is the ID of the parent run.
|
||||
tags: The tags.
|
||||
**kwargs: Additional keyword arguments.
|
||||
error (BaseException): The error that occurred.
|
||||
run_id (UUID): The run ID. This is the ID of the current run.
|
||||
parent_run_id (UUID): The parent run ID. This is the ID of the parent run.
|
||||
tags (list[str] | None): The tags.
|
||||
kwargs (Any): Additional keyword arguments.
|
||||
"""
|
||||
|
||||
async def on_tool_start(
|
||||
@@ -675,14 +680,14 @@ class AsyncCallbackHandler(BaseCallbackHandler):
|
||||
"""Run when the tool starts running.
|
||||
|
||||
Args:
|
||||
serialized: The serialized tool.
|
||||
input_str: The input string.
|
||||
run_id: The run ID. This is the ID of the current run.
|
||||
parent_run_id: The parent run ID. This is the ID of the parent run.
|
||||
tags: The tags.
|
||||
metadata: The metadata.
|
||||
inputs: The inputs.
|
||||
**kwargs: Additional keyword arguments.
|
||||
serialized (dict[str, Any]): The serialized tool.
|
||||
input_str (str): The input string.
|
||||
run_id (UUID): The run ID. This is the ID of the current run.
|
||||
parent_run_id (UUID): The parent run ID. This is the ID of the parent run.
|
||||
tags (list[str] | None): The tags.
|
||||
metadata (dict[str, Any] | None): The metadata.
|
||||
inputs (dict[str, Any] | None): The inputs.
|
||||
kwargs (Any): Additional keyword arguments.
|
||||
"""
|
||||
|
||||
async def on_tool_end(
|
||||
@@ -697,11 +702,11 @@ class AsyncCallbackHandler(BaseCallbackHandler):
|
||||
"""Run when the tool ends running.
|
||||
|
||||
Args:
|
||||
output: The output of the tool.
|
||||
run_id: The run ID. This is the ID of the current run.
|
||||
parent_run_id: The parent run ID. This is the ID of the parent run.
|
||||
tags: The tags.
|
||||
**kwargs: Additional keyword arguments.
|
||||
output (Any): The output of the tool.
|
||||
run_id (UUID): The run ID. This is the ID of the current run.
|
||||
parent_run_id (UUID): The parent run ID. This is the ID of the parent run.
|
||||
tags (list[str] | None): The tags.
|
||||
kwargs (Any): Additional keyword arguments.
|
||||
"""
|
||||
|
||||
async def on_tool_error(
|
||||
@@ -716,11 +721,11 @@ class AsyncCallbackHandler(BaseCallbackHandler):
|
||||
"""Run when tool errors.
|
||||
|
||||
Args:
|
||||
error: The error that occurred.
|
||||
run_id: The run ID. This is the ID of the current run.
|
||||
parent_run_id: The parent run ID. This is the ID of the parent run.
|
||||
tags: The tags.
|
||||
**kwargs: Additional keyword arguments.
|
||||
error (BaseException): The error that occurred.
|
||||
run_id (UUID): The run ID. This is the ID of the current run.
|
||||
parent_run_id (UUID): The parent run ID. This is the ID of the parent run.
|
||||
tags (list[str] | None): The tags.
|
||||
kwargs (Any): Additional keyword arguments.
|
||||
"""
|
||||
|
||||
async def on_text(
|
||||
@@ -735,11 +740,11 @@ class AsyncCallbackHandler(BaseCallbackHandler):
|
||||
"""Run on an arbitrary text.
|
||||
|
||||
Args:
|
||||
text: The text.
|
||||
run_id: The run ID. This is the ID of the current run.
|
||||
parent_run_id: The parent run ID. This is the ID of the parent run.
|
||||
tags: The tags.
|
||||
**kwargs: Additional keyword arguments.
|
||||
text (str): The text.
|
||||
run_id (UUID): The run ID. This is the ID of the current run.
|
||||
parent_run_id (UUID): The parent run ID. This is the ID of the parent run.
|
||||
tags (list[str] | None): The tags.
|
||||
kwargs (Any): Additional keyword arguments.
|
||||
"""
|
||||
|
||||
async def on_retry(
|
||||
@@ -753,10 +758,10 @@ class AsyncCallbackHandler(BaseCallbackHandler):
|
||||
"""Run on a retry event.
|
||||
|
||||
Args:
|
||||
retry_state: The retry state.
|
||||
run_id: The run ID. This is the ID of the current run.
|
||||
parent_run_id: The parent run ID. This is the ID of the parent run.
|
||||
**kwargs: Additional keyword arguments.
|
||||
retry_state (RetryCallState): The retry state.
|
||||
run_id (UUID): The run ID. This is the ID of the current run.
|
||||
parent_run_id (UUID): The parent run ID. This is the ID of the parent run.
|
||||
kwargs (Any): Additional keyword arguments.
|
||||
"""
|
||||
|
||||
async def on_agent_action(
|
||||
@@ -771,11 +776,11 @@ class AsyncCallbackHandler(BaseCallbackHandler):
|
||||
"""Run on agent action.
|
||||
|
||||
Args:
|
||||
action: The agent action.
|
||||
run_id: The run ID. This is the ID of the current run.
|
||||
parent_run_id: The parent run ID. This is the ID of the parent run.
|
||||
tags: The tags.
|
||||
**kwargs: Additional keyword arguments.
|
||||
action (AgentAction): The agent action.
|
||||
run_id (UUID): The run ID. This is the ID of the current run.
|
||||
parent_run_id (UUID): The parent run ID. This is the ID of the parent run.
|
||||
tags (list[str] | None): The tags.
|
||||
kwargs (Any): Additional keyword arguments.
|
||||
"""
|
||||
|
||||
async def on_agent_finish(
|
||||
@@ -790,11 +795,11 @@ class AsyncCallbackHandler(BaseCallbackHandler):
|
||||
"""Run on the agent end.
|
||||
|
||||
Args:
|
||||
finish: The agent finish.
|
||||
run_id: The run ID. This is the ID of the current run.
|
||||
parent_run_id: The parent run ID. This is the ID of the parent run.
|
||||
tags: The tags.
|
||||
**kwargs: Additional keyword arguments.
|
||||
finish (AgentFinish): The agent finish.
|
||||
run_id (UUID): The run ID. This is the ID of the current run.
|
||||
parent_run_id (UUID): The parent run ID. This is the ID of the parent run.
|
||||
tags (list[str] | None): The tags.
|
||||
kwargs (Any): Additional keyword arguments.
|
||||
"""
|
||||
|
||||
async def on_retriever_start(
|
||||
@@ -811,13 +816,13 @@ class AsyncCallbackHandler(BaseCallbackHandler):
|
||||
"""Run on the retriever start.
|
||||
|
||||
Args:
|
||||
serialized: The serialized retriever.
|
||||
query: The query.
|
||||
run_id: The run ID. This is the ID of the current run.
|
||||
parent_run_id: The parent run ID. This is the ID of the parent run.
|
||||
tags: The tags.
|
||||
metadata: The metadata.
|
||||
**kwargs: Additional keyword arguments.
|
||||
serialized (dict[str, Any]): The serialized retriever.
|
||||
query (str): The query.
|
||||
run_id (UUID): The run ID. This is the ID of the current run.
|
||||
parent_run_id (UUID): The parent run ID. This is the ID of the parent run.
|
||||
tags (list[str] | None): The tags.
|
||||
metadata (dict[str, Any] | None): The metadata.
|
||||
kwargs (Any): Additional keyword arguments.
|
||||
"""
|
||||
|
||||
async def on_retriever_end(
|
||||
@@ -832,11 +837,11 @@ class AsyncCallbackHandler(BaseCallbackHandler):
|
||||
"""Run on the retriever end.
|
||||
|
||||
Args:
|
||||
documents: The documents retrieved.
|
||||
run_id: The run ID. This is the ID of the current run.
|
||||
parent_run_id: The parent run ID. This is the ID of the parent run.
|
||||
tags: The tags.
|
||||
**kwargs: Additional keyword arguments.
|
||||
documents (Sequence[Document]): The documents retrieved.
|
||||
run_id (UUID): The run ID. This is the ID of the current run.
|
||||
parent_run_id (UUID): The parent run ID. This is the ID of the parent run.
|
||||
tags (list[str] | None): The tags.
|
||||
kwargs (Any): Additional keyword arguments.
|
||||
"""
|
||||
|
||||
async def on_retriever_error(
|
||||
@@ -851,11 +856,11 @@ class AsyncCallbackHandler(BaseCallbackHandler):
|
||||
"""Run on retriever error.
|
||||
|
||||
Args:
|
||||
error: The error that occurred.
|
||||
run_id: The run ID. This is the ID of the current run.
|
||||
parent_run_id: The parent run ID. This is the ID of the parent run.
|
||||
tags: The tags.
|
||||
**kwargs: Additional keyword arguments.
|
||||
error (BaseException): The error that occurred.
|
||||
run_id (UUID): The run ID. This is the ID of the current run.
|
||||
parent_run_id (UUID): The parent run ID. This is the ID of the parent run.
|
||||
tags (list[str] | None): The tags.
|
||||
kwargs (Any): Additional keyword arguments.
|
||||
"""
|
||||
|
||||
async def on_custom_event(
|
||||
@@ -873,12 +878,14 @@ class AsyncCallbackHandler(BaseCallbackHandler):
|
||||
Args:
|
||||
name: The name of the custom event.
|
||||
data: The data for the custom event. Format will match
|
||||
the format specified by the user.
|
||||
the format specified by the user.
|
||||
run_id: The ID of the run.
|
||||
tags: The tags associated with the custom event
|
||||
(includes inherited tags).
|
||||
metadata: The metadata associated with the custom event
|
||||
(includes inherited metadata).
|
||||
|
||||
!!! version-added "Added in version 0.2.15"
|
||||
"""
|
||||
|
||||
|
||||
@@ -936,53 +943,58 @@ class BaseCallbackManager(CallbackManagerMixin):
|
||||
within merge_configs.
|
||||
|
||||
Returns:
|
||||
The merged callback manager of the same type as the current object.
|
||||
BaseCallbackManager: The merged callback manager of the same type
|
||||
as the current object.
|
||||
|
||||
Example: Merging two callback managers.
|
||||
|
||||
```python
|
||||
from langchain_core.callbacks.manager import (
|
||||
CallbackManager,
|
||||
trace_as_chain_group,
|
||||
)
|
||||
from langchain_core.callbacks.stdout import StdOutCallbackHandler
|
||||
.. code-block:: python
|
||||
|
||||
manager = CallbackManager(handlers=[StdOutCallbackHandler()], tags=["tag2"])
|
||||
with trace_as_chain_group("My Group Name", tags=["tag1"]) as group_manager:
|
||||
merged_manager = group_manager.merge(manager)
|
||||
print(merged_manager.handlers)
|
||||
# [
|
||||
# <langchain_core.callbacks.stdout.StdOutCallbackHandler object at ...>,
|
||||
# <langchain_core.callbacks.streaming_stdout.StreamingStdOutCallbackHandler object at ...>,
|
||||
# ]
|
||||
from langchain_core.callbacks.manager import (
|
||||
CallbackManager,
|
||||
trace_as_chain_group,
|
||||
)
|
||||
from langchain_core.callbacks.stdout import StdOutCallbackHandler
|
||||
|
||||
manager = CallbackManager(
|
||||
handlers=[StdOutCallbackHandler()], tags=["tag2"]
|
||||
)
|
||||
with trace_as_chain_group(
|
||||
"My Group Name", tags=["tag1"]
|
||||
) as group_manager:
|
||||
merged_manager = group_manager.merge(manager)
|
||||
print(merged_manager.handlers)
|
||||
# [
|
||||
# <langchain_core.callbacks.stdout.StdOutCallbackHandler object at ...>,
|
||||
# <langchain_core.callbacks.streaming_stdout.StreamingStdOutCallbackHandler object at ...>,
|
||||
# ]
|
||||
|
||||
print(merged_manager.tags)
|
||||
# ['tag2', 'tag1']
|
||||
|
||||
print(merged_manager.tags)
|
||||
# ['tag2', 'tag1']
|
||||
```
|
||||
""" # noqa: E501
|
||||
# Combine handlers and inheritable_handlers separately, using sets
|
||||
# to deduplicate (order not preserved)
|
||||
combined_handlers = list(set(self.handlers) | set(other.handlers))
|
||||
combined_inheritable = list(
|
||||
set(self.inheritable_handlers) | set(other.inheritable_handlers)
|
||||
)
|
||||
|
||||
return self.__class__(
|
||||
manager = self.__class__(
|
||||
parent_run_id=self.parent_run_id or other.parent_run_id,
|
||||
handlers=combined_handlers,
|
||||
inheritable_handlers=combined_inheritable,
|
||||
handlers=[],
|
||||
inheritable_handlers=[],
|
||||
tags=list(set(self.tags + other.tags)),
|
||||
inheritable_tags=list(set(self.inheritable_tags + other.inheritable_tags)),
|
||||
metadata={
|
||||
**self.metadata,
|
||||
**other.metadata,
|
||||
},
|
||||
inheritable_metadata={
|
||||
**self.inheritable_metadata,
|
||||
**other.inheritable_metadata,
|
||||
},
|
||||
)
|
||||
|
||||
handlers = self.handlers + other.handlers
|
||||
inheritable_handlers = self.inheritable_handlers + other.inheritable_handlers
|
||||
|
||||
for handler in handlers:
|
||||
manager.add_handler(handler)
|
||||
|
||||
for handler in inheritable_handlers:
|
||||
manager.add_handler(handler, inherit=True)
|
||||
return manager
|
||||
|
||||
@property
|
||||
def is_async(self) -> bool:
|
||||
"""Whether the callback manager is async."""
|
||||
@@ -996,8 +1008,8 @@ class BaseCallbackManager(CallbackManagerMixin):
|
||||
"""Add a handler to the callback manager.
|
||||
|
||||
Args:
|
||||
handler: The handler to add.
|
||||
inherit: Whether to inherit the handler.
|
||||
handler (BaseCallbackHandler): The handler to add.
|
||||
inherit (bool): Whether to inherit the handler. Default is True.
|
||||
"""
|
||||
if handler not in self.handlers:
|
||||
self.handlers.append(handler)
|
||||
@@ -1008,7 +1020,7 @@ class BaseCallbackManager(CallbackManagerMixin):
|
||||
"""Remove a handler from the callback manager.
|
||||
|
||||
Args:
|
||||
handler: The handler to remove.
|
||||
handler (BaseCallbackHandler): The handler to remove.
|
||||
"""
|
||||
if handler in self.handlers:
|
||||
self.handlers.remove(handler)
|
||||
@@ -1023,8 +1035,8 @@ class BaseCallbackManager(CallbackManagerMixin):
|
||||
"""Set handlers as the only handlers on the callback manager.
|
||||
|
||||
Args:
|
||||
handlers: The handlers to set.
|
||||
inherit: Whether to inherit the handlers.
|
||||
handlers (list[BaseCallbackHandler]): The handlers to set.
|
||||
inherit (bool): Whether to inherit the handlers. Default is True.
|
||||
"""
|
||||
self.handlers = []
|
||||
self.inheritable_handlers = []
|
||||
@@ -1039,8 +1051,8 @@ class BaseCallbackManager(CallbackManagerMixin):
|
||||
"""Set handler as the only handler on the callback manager.
|
||||
|
||||
Args:
|
||||
handler: The handler to set.
|
||||
inherit: Whether to inherit the handler.
|
||||
handler (BaseCallbackHandler): The handler to set.
|
||||
inherit (bool): Whether to inherit the handler. Default is True.
|
||||
"""
|
||||
self.set_handlers([handler], inherit=inherit)
|
||||
|
||||
@@ -1052,8 +1064,8 @@ class BaseCallbackManager(CallbackManagerMixin):
|
||||
"""Add tags to the callback manager.
|
||||
|
||||
Args:
|
||||
tags: The tags to add.
|
||||
inherit: Whether to inherit the tags.
|
||||
tags (list[str]): The tags to add.
|
||||
inherit (bool): Whether to inherit the tags. Default is True.
|
||||
"""
|
||||
for tag in tags:
|
||||
if tag in self.tags:
|
||||
@@ -1066,7 +1078,7 @@ class BaseCallbackManager(CallbackManagerMixin):
|
||||
"""Remove tags from the callback manager.
|
||||
|
||||
Args:
|
||||
tags: The tags to remove.
|
||||
tags (list[str]): The tags to remove.
|
||||
"""
|
||||
for tag in tags:
|
||||
if tag in self.tags:
|
||||
@@ -1082,8 +1094,8 @@ class BaseCallbackManager(CallbackManagerMixin):
|
||||
"""Add metadata to the callback manager.
|
||||
|
||||
Args:
|
||||
metadata: The metadata to add.
|
||||
inherit: Whether to inherit the metadata.
|
||||
metadata (dict[str, Any]): The metadata to add.
|
||||
inherit (bool): Whether to inherit the metadata. Default is True.
|
||||
"""
|
||||
self.metadata.update(metadata)
|
||||
if inherit:
|
||||
@@ -1093,7 +1105,7 @@ class BaseCallbackManager(CallbackManagerMixin):
|
||||
"""Remove metadata from the callback manager.
|
||||
|
||||
Args:
|
||||
keys: The keys to remove.
|
||||
keys (list[str]): The keys to remove.
|
||||
"""
|
||||
for key in keys:
|
||||
self.metadata.pop(key, None)
|
||||
|
||||
@@ -27,27 +27,27 @@ class FileCallbackHandler(BaseCallbackHandler):
|
||||
Examples:
|
||||
Using as a context manager (recommended):
|
||||
|
||||
```python
|
||||
with FileCallbackHandler("output.txt") as handler:
|
||||
# Use handler with your chain/agent
|
||||
chain.invoke(inputs, config={"callbacks": [handler]})
|
||||
```
|
||||
.. code-block:: python
|
||||
|
||||
with FileCallbackHandler("output.txt") as handler:
|
||||
# Use handler with your chain/agent
|
||||
chain.invoke(inputs, config={"callbacks": [handler]})
|
||||
|
||||
Direct instantiation (deprecated):
|
||||
|
||||
```python
|
||||
handler = FileCallbackHandler("output.txt")
|
||||
# File remains open until handler is garbage collected
|
||||
try:
|
||||
chain.invoke(inputs, config={"callbacks": [handler]})
|
||||
finally:
|
||||
handler.close() # Explicit cleanup recommended
|
||||
```
|
||||
.. code-block:: python
|
||||
|
||||
handler = FileCallbackHandler("output.txt")
|
||||
# File remains open until handler is garbage collected
|
||||
try:
|
||||
chain.invoke(inputs, config={"callbacks": [handler]})
|
||||
finally:
|
||||
handler.close() # Explicit cleanup recommended
|
||||
|
||||
Args:
|
||||
filename: The file path to write to.
|
||||
mode: The file open mode. Defaults to `'a'` (append).
|
||||
color: Default color for text output.
|
||||
color: Default color for text output. Defaults to `None`.
|
||||
|
||||
!!! note
|
||||
When not used as a context manager, a deprecation warning will be issued
|
||||
@@ -64,7 +64,7 @@ class FileCallbackHandler(BaseCallbackHandler):
|
||||
Args:
|
||||
filename: Path to the output file.
|
||||
mode: File open mode (e.g., `'w'`, `'a'`, `'x'`). Defaults to `'a'`.
|
||||
color: Default text color for output.
|
||||
color: Default text color for output. Defaults to `None`.
|
||||
|
||||
"""
|
||||
self.filename = filename
|
||||
@@ -132,7 +132,7 @@ class FileCallbackHandler(BaseCallbackHandler):
|
||||
Args:
|
||||
text: The text to write to the file.
|
||||
color: Optional color for the text. Defaults to `self.color`.
|
||||
end: String appended after the text.
|
||||
end: String appended after the text. Defaults to `""`.
|
||||
file: Optional file to write to. Defaults to `self.file`.
|
||||
|
||||
Raises:
|
||||
@@ -239,7 +239,7 @@ class FileCallbackHandler(BaseCallbackHandler):
|
||||
text: The text to write.
|
||||
color: Color override for this specific output. If `None`, uses
|
||||
`self.color`.
|
||||
end: String appended after the text.
|
||||
end: String appended after the text. Defaults to `""`.
|
||||
**kwargs: Additional keyword arguments.
|
||||
|
||||
"""
|
||||
|
||||
File diff suppressed because it is too large
Load Diff
@@ -20,7 +20,7 @@ class StdOutCallbackHandler(BaseCallbackHandler):
|
||||
"""Initialize callback handler.
|
||||
|
||||
Args:
|
||||
color: The color to use for the text.
|
||||
color: The color to use for the text. Defaults to `None`.
|
||||
"""
|
||||
self.color = color
|
||||
|
||||
@@ -31,9 +31,9 @@ class StdOutCallbackHandler(BaseCallbackHandler):
|
||||
"""Print out that we are entering a chain.
|
||||
|
||||
Args:
|
||||
serialized: The serialized chain.
|
||||
inputs: The inputs to the chain.
|
||||
**kwargs: Additional keyword arguments.
|
||||
serialized (dict[str, Any]): The serialized chain.
|
||||
inputs (dict[str, Any]): The inputs to the chain.
|
||||
**kwargs (Any): Additional keyword arguments.
|
||||
"""
|
||||
if "name" in kwargs:
|
||||
name = kwargs["name"]
|
||||
@@ -48,8 +48,8 @@ class StdOutCallbackHandler(BaseCallbackHandler):
|
||||
"""Print out that we finished a chain.
|
||||
|
||||
Args:
|
||||
outputs: The outputs of the chain.
|
||||
**kwargs: Additional keyword arguments.
|
||||
outputs (dict[str, Any]): The outputs of the chain.
|
||||
**kwargs (Any): Additional keyword arguments.
|
||||
"""
|
||||
print("\n\033[1m> Finished chain.\033[0m") # noqa: T201
|
||||
|
||||
@@ -60,9 +60,9 @@ class StdOutCallbackHandler(BaseCallbackHandler):
|
||||
"""Run on agent action.
|
||||
|
||||
Args:
|
||||
action: The agent action.
|
||||
color: The color to use for the text.
|
||||
**kwargs: Additional keyword arguments.
|
||||
action (AgentAction): The agent action.
|
||||
color (str | None): The color to use for the text. Defaults to `None`.
|
||||
**kwargs (Any): Additional keyword arguments.
|
||||
"""
|
||||
print_text(action.log, color=color or self.color)
|
||||
|
||||
@@ -78,11 +78,12 @@ class StdOutCallbackHandler(BaseCallbackHandler):
|
||||
"""If not the final action, print out observation.
|
||||
|
||||
Args:
|
||||
output: The output to print.
|
||||
color: The color to use for the text.
|
||||
observation_prefix: The observation prefix.
|
||||
llm_prefix: The LLM prefix.
|
||||
**kwargs: Additional keyword arguments.
|
||||
output (Any): The output to print.
|
||||
color (str | None): The color to use for the text. Defaults to `None`.
|
||||
observation_prefix (str | None): The observation prefix.
|
||||
Defaults to `None`.
|
||||
llm_prefix (str | None): The LLM prefix. Defaults to `None`.
|
||||
**kwargs (Any): Additional keyword arguments.
|
||||
"""
|
||||
output = str(output)
|
||||
if observation_prefix is not None:
|
||||
@@ -102,10 +103,10 @@ class StdOutCallbackHandler(BaseCallbackHandler):
|
||||
"""Run when the agent ends.
|
||||
|
||||
Args:
|
||||
text: The text to print.
|
||||
color: The color to use for the text.
|
||||
end: The end character to use.
|
||||
**kwargs: Additional keyword arguments.
|
||||
text (str): The text to print.
|
||||
color (str | None): The color to use for the text. Defaults to `None`.
|
||||
end (str): The end character to use. Defaults to "".
|
||||
**kwargs (Any): Additional keyword arguments.
|
||||
"""
|
||||
print_text(text, color=color or self.color, end=end)
|
||||
|
||||
@@ -116,8 +117,8 @@ class StdOutCallbackHandler(BaseCallbackHandler):
|
||||
"""Run on the agent end.
|
||||
|
||||
Args:
|
||||
finish: The agent finish.
|
||||
color: The color to use for the text.
|
||||
**kwargs: Additional keyword arguments.
|
||||
finish (AgentFinish): The agent finish.
|
||||
color (str | None): The color to use for the text. Defaults to `None`.
|
||||
**kwargs (Any): Additional keyword arguments.
|
||||
"""
|
||||
print_text(finish.log, color=color or self.color, end="\n")
|
||||
|
||||
@@ -24,9 +24,9 @@ class StreamingStdOutCallbackHandler(BaseCallbackHandler):
|
||||
"""Run when LLM starts running.
|
||||
|
||||
Args:
|
||||
serialized: The serialized LLM.
|
||||
prompts: The prompts to run.
|
||||
**kwargs: Additional keyword arguments.
|
||||
serialized (dict[str, Any]): The serialized LLM.
|
||||
prompts (list[str]): The prompts to run.
|
||||
**kwargs (Any): Additional keyword arguments.
|
||||
"""
|
||||
|
||||
def on_chat_model_start(
|
||||
@@ -38,9 +38,9 @@ class StreamingStdOutCallbackHandler(BaseCallbackHandler):
|
||||
"""Run when LLM starts running.
|
||||
|
||||
Args:
|
||||
serialized: The serialized LLM.
|
||||
messages: The messages to run.
|
||||
**kwargs: Additional keyword arguments.
|
||||
serialized (dict[str, Any]): The serialized LLM.
|
||||
messages (list[list[BaseMessage]]): The messages to run.
|
||||
**kwargs (Any): Additional keyword arguments.
|
||||
"""
|
||||
|
||||
@override
|
||||
@@ -48,8 +48,8 @@ class StreamingStdOutCallbackHandler(BaseCallbackHandler):
|
||||
"""Run on new LLM token. Only available when streaming is enabled.
|
||||
|
||||
Args:
|
||||
token: The new token.
|
||||
**kwargs: Additional keyword arguments.
|
||||
token (str): The new token.
|
||||
**kwargs (Any): Additional keyword arguments.
|
||||
"""
|
||||
sys.stdout.write(token)
|
||||
sys.stdout.flush()
|
||||
@@ -58,16 +58,16 @@ class StreamingStdOutCallbackHandler(BaseCallbackHandler):
|
||||
"""Run when LLM ends running.
|
||||
|
||||
Args:
|
||||
response: The response from the LLM.
|
||||
**kwargs: Additional keyword arguments.
|
||||
response (LLMResult): The response from the LLM.
|
||||
**kwargs (Any): Additional keyword arguments.
|
||||
"""
|
||||
|
||||
def on_llm_error(self, error: BaseException, **kwargs: Any) -> None:
|
||||
"""Run when LLM errors.
|
||||
|
||||
Args:
|
||||
error: The error that occurred.
|
||||
**kwargs: Additional keyword arguments.
|
||||
error (BaseException): The error that occurred.
|
||||
**kwargs (Any): Additional keyword arguments.
|
||||
"""
|
||||
|
||||
def on_chain_start(
|
||||
@@ -76,25 +76,25 @@ class StreamingStdOutCallbackHandler(BaseCallbackHandler):
|
||||
"""Run when a chain starts running.
|
||||
|
||||
Args:
|
||||
serialized: The serialized chain.
|
||||
inputs: The inputs to the chain.
|
||||
**kwargs: Additional keyword arguments.
|
||||
serialized (dict[str, Any]): The serialized chain.
|
||||
inputs (dict[str, Any]): The inputs to the chain.
|
||||
**kwargs (Any): Additional keyword arguments.
|
||||
"""
|
||||
|
||||
def on_chain_end(self, outputs: dict[str, Any], **kwargs: Any) -> None:
|
||||
"""Run when a chain ends running.
|
||||
|
||||
Args:
|
||||
outputs: The outputs of the chain.
|
||||
**kwargs: Additional keyword arguments.
|
||||
outputs (dict[str, Any]): The outputs of the chain.
|
||||
**kwargs (Any): Additional keyword arguments.
|
||||
"""
|
||||
|
||||
def on_chain_error(self, error: BaseException, **kwargs: Any) -> None:
|
||||
"""Run when chain errors.
|
||||
|
||||
Args:
|
||||
error: The error that occurred.
|
||||
**kwargs: Additional keyword arguments.
|
||||
error (BaseException): The error that occurred.
|
||||
**kwargs (Any): Additional keyword arguments.
|
||||
"""
|
||||
|
||||
def on_tool_start(
|
||||
@@ -103,47 +103,47 @@ class StreamingStdOutCallbackHandler(BaseCallbackHandler):
|
||||
"""Run when the tool starts running.
|
||||
|
||||
Args:
|
||||
serialized: The serialized tool.
|
||||
input_str: The input string.
|
||||
**kwargs: Additional keyword arguments.
|
||||
serialized (dict[str, Any]): The serialized tool.
|
||||
input_str (str): The input string.
|
||||
**kwargs (Any): Additional keyword arguments.
|
||||
"""
|
||||
|
||||
def on_agent_action(self, action: AgentAction, **kwargs: Any) -> Any:
|
||||
"""Run on agent action.
|
||||
|
||||
Args:
|
||||
action: The agent action.
|
||||
**kwargs: Additional keyword arguments.
|
||||
action (AgentAction): The agent action.
|
||||
**kwargs (Any): Additional keyword arguments.
|
||||
"""
|
||||
|
||||
def on_tool_end(self, output: Any, **kwargs: Any) -> None:
|
||||
"""Run when tool ends running.
|
||||
|
||||
Args:
|
||||
output: The output of the tool.
|
||||
**kwargs: Additional keyword arguments.
|
||||
output (Any): The output of the tool.
|
||||
**kwargs (Any): Additional keyword arguments.
|
||||
"""
|
||||
|
||||
def on_tool_error(self, error: BaseException, **kwargs: Any) -> None:
|
||||
"""Run when tool errors.
|
||||
|
||||
Args:
|
||||
error: The error that occurred.
|
||||
**kwargs: Additional keyword arguments.
|
||||
error (BaseException): The error that occurred.
|
||||
**kwargs (Any): Additional keyword arguments.
|
||||
"""
|
||||
|
||||
def on_text(self, text: str, **kwargs: Any) -> None:
|
||||
"""Run on an arbitrary text.
|
||||
|
||||
Args:
|
||||
text: The text to print.
|
||||
**kwargs: Additional keyword arguments.
|
||||
text (str): The text to print.
|
||||
**kwargs (Any): Additional keyword arguments.
|
||||
"""
|
||||
|
||||
def on_agent_finish(self, finish: AgentFinish, **kwargs: Any) -> None:
|
||||
"""Run on the agent end.
|
||||
|
||||
Args:
|
||||
finish: The agent finish.
|
||||
**kwargs: Additional keyword arguments.
|
||||
finish (AgentFinish): The agent finish.
|
||||
**kwargs (Any): Additional keyword arguments.
|
||||
"""
|
||||
|
||||
@@ -19,31 +19,32 @@ class UsageMetadataCallbackHandler(BaseCallbackHandler):
|
||||
"""Callback Handler that tracks AIMessage.usage_metadata.
|
||||
|
||||
Example:
|
||||
```python
|
||||
from langchain.chat_models import init_chat_model
|
||||
from langchain_core.callbacks import UsageMetadataCallbackHandler
|
||||
.. code-block:: python
|
||||
|
||||
llm_1 = init_chat_model(model="openai:gpt-4o-mini")
|
||||
llm_2 = init_chat_model(model="anthropic:claude-3-5-haiku-20241022")
|
||||
from langchain.chat_models import init_chat_model
|
||||
from langchain_core.callbacks import UsageMetadataCallbackHandler
|
||||
|
||||
callback = UsageMetadataCallbackHandler()
|
||||
result_1 = llm_1.invoke("Hello", config={"callbacks": [callback]})
|
||||
result_2 = llm_2.invoke("Hello", config={"callbacks": [callback]})
|
||||
callback.usage_metadata
|
||||
```
|
||||
```txt
|
||||
{'gpt-4o-mini-2024-07-18': {'input_tokens': 8,
|
||||
'output_tokens': 10,
|
||||
'total_tokens': 18,
|
||||
'input_token_details': {'audio': 0, 'cache_read': 0},
|
||||
'output_token_details': {'audio': 0, 'reasoning': 0}},
|
||||
'claude-3-5-haiku-20241022': {'input_tokens': 8,
|
||||
'output_tokens': 21,
|
||||
'total_tokens': 29,
|
||||
'input_token_details': {'cache_read': 0, 'cache_creation': 0}}}
|
||||
```
|
||||
llm_1 = init_chat_model(model="openai:gpt-4o-mini")
|
||||
llm_2 = init_chat_model(model="anthropic:claude-3-5-haiku-latest")
|
||||
|
||||
!!! version-added "Added in `langchain-core` 0.3.49"
|
||||
callback = UsageMetadataCallbackHandler()
|
||||
result_1 = llm_1.invoke("Hello", config={"callbacks": [callback]})
|
||||
result_2 = llm_2.invoke("Hello", config={"callbacks": [callback]})
|
||||
callback.usage_metadata
|
||||
|
||||
.. code-block::
|
||||
|
||||
{'gpt-4o-mini-2024-07-18': {'input_tokens': 8,
|
||||
'output_tokens': 10,
|
||||
'total_tokens': 18,
|
||||
'input_token_details': {'audio': 0, 'cache_read': 0},
|
||||
'output_token_details': {'audio': 0, 'reasoning': 0}},
|
||||
'claude-3-5-haiku-20241022': {'input_tokens': 8,
|
||||
'output_tokens': 21,
|
||||
'total_tokens': 29,
|
||||
'input_token_details': {'cache_read': 0, 'cache_creation': 0}}}
|
||||
|
||||
!!! version-added "Added in version 0.3.49"
|
||||
|
||||
"""
|
||||
|
||||
@@ -95,46 +96,42 @@ def get_usage_metadata_callback(
|
||||
"""Get usage metadata callback.
|
||||
|
||||
Get context manager for tracking usage metadata across chat model calls using
|
||||
[`AIMessage.usage_metadata`][langchain.messages.AIMessage.usage_metadata].
|
||||
``AIMessage.usage_metadata``.
|
||||
|
||||
Args:
|
||||
name: The name of the context variable.
|
||||
name (str): The name of the context variable. Defaults to
|
||||
``'usage_metadata_callback'``.
|
||||
|
||||
Yields:
|
||||
The usage metadata callback.
|
||||
|
||||
Example:
|
||||
```python
|
||||
from langchain.chat_models import init_chat_model
|
||||
from langchain_core.callbacks import get_usage_metadata_callback
|
||||
.. code-block:: python
|
||||
|
||||
llm_1 = init_chat_model(model="openai:gpt-4o-mini")
|
||||
llm_2 = init_chat_model(model="anthropic:claude-3-5-haiku-20241022")
|
||||
from langchain.chat_models import init_chat_model
|
||||
from langchain_core.callbacks import get_usage_metadata_callback
|
||||
|
||||
with get_usage_metadata_callback() as cb:
|
||||
llm_1.invoke("Hello")
|
||||
llm_2.invoke("Hello")
|
||||
print(cb.usage_metadata)
|
||||
```
|
||||
```txt
|
||||
{
|
||||
"gpt-4o-mini-2024-07-18": {
|
||||
"input_tokens": 8,
|
||||
"output_tokens": 10,
|
||||
"total_tokens": 18,
|
||||
"input_token_details": {"audio": 0, "cache_read": 0},
|
||||
"output_token_details": {"audio": 0, "reasoning": 0},
|
||||
},
|
||||
"claude-3-5-haiku-20241022": {
|
||||
"input_tokens": 8,
|
||||
"output_tokens": 21,
|
||||
"total_tokens": 29,
|
||||
"input_token_details": {"cache_read": 0, "cache_creation": 0},
|
||||
},
|
||||
}
|
||||
```
|
||||
llm_1 = init_chat_model(model="openai:gpt-4o-mini")
|
||||
llm_2 = init_chat_model(model="anthropic:claude-3-5-haiku-latest")
|
||||
|
||||
!!! version-added "Added in `langchain-core` 0.3.49"
|
||||
with get_usage_metadata_callback() as cb:
|
||||
llm_1.invoke("Hello")
|
||||
llm_2.invoke("Hello")
|
||||
print(cb.usage_metadata)
|
||||
|
||||
.. code-block::
|
||||
|
||||
{'gpt-4o-mini-2024-07-18': {'input_tokens': 8,
|
||||
'output_tokens': 10,
|
||||
'total_tokens': 18,
|
||||
'input_token_details': {'audio': 0, 'cache_read': 0},
|
||||
'output_token_details': {'audio': 0, 'reasoning': 0}},
|
||||
'claude-3-5-haiku-20241022': {'input_tokens': 8,
|
||||
'output_tokens': 21,
|
||||
'total_tokens': 29,
|
||||
'input_token_details': {'cache_read': 0, 'cache_creation': 0}}}
|
||||
|
||||
!!! version-added "Added in version 0.3.49"
|
||||
|
||||
"""
|
||||
usage_metadata_callback_var: ContextVar[UsageMetadataCallbackHandler | None] = (
|
||||
|
||||
@@ -1,4 +1,18 @@
|
||||
"""**Chat message history** stores a history of the message interactions in a chat."""
|
||||
"""**Chat message history** stores a history of the message interactions in a chat.
|
||||
|
||||
**Class hierarchy:**
|
||||
|
||||
.. code-block::
|
||||
|
||||
BaseChatMessageHistory --> <name>ChatMessageHistory # Examples: FileChatMessageHistory, PostgresChatMessageHistory
|
||||
|
||||
**Main helpers:**
|
||||
|
||||
.. code-block::
|
||||
|
||||
AIMessage, HumanMessage, BaseMessage
|
||||
|
||||
""" # noqa: E501
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
@@ -49,45 +63,46 @@ class BaseChatMessageHistory(ABC):
|
||||
|
||||
Example: Shows a default implementation.
|
||||
|
||||
```python
|
||||
import json
|
||||
import os
|
||||
from langchain_core.messages import messages_from_dict, message_to_dict
|
||||
.. code-block:: python
|
||||
|
||||
import json
|
||||
import os
|
||||
from langchain_core.messages import messages_from_dict, message_to_dict
|
||||
|
||||
|
||||
class FileChatMessageHistory(BaseChatMessageHistory):
|
||||
storage_path: str
|
||||
session_id: str
|
||||
class FileChatMessageHistory(BaseChatMessageHistory):
|
||||
storage_path: str
|
||||
session_id: str
|
||||
|
||||
@property
|
||||
def messages(self) -> list[BaseMessage]:
|
||||
try:
|
||||
with open(
|
||||
os.path.join(self.storage_path, self.session_id),
|
||||
"r",
|
||||
encoding="utf-8",
|
||||
) as f:
|
||||
messages_data = json.load(f)
|
||||
return messages_from_dict(messages_data)
|
||||
except FileNotFoundError:
|
||||
return []
|
||||
@property
|
||||
def messages(self) -> list[BaseMessage]:
|
||||
try:
|
||||
with open(
|
||||
os.path.join(self.storage_path, self.session_id),
|
||||
"r",
|
||||
encoding="utf-8",
|
||||
) as f:
|
||||
messages_data = json.load(f)
|
||||
return messages_from_dict(messages_data)
|
||||
except FileNotFoundError:
|
||||
return []
|
||||
|
||||
def add_messages(self, messages: Sequence[BaseMessage]) -> None:
|
||||
all_messages = list(self.messages) # Existing messages
|
||||
all_messages.extend(messages) # Add new messages
|
||||
def add_messages(self, messages: Sequence[BaseMessage]) -> None:
|
||||
all_messages = list(self.messages) # Existing messages
|
||||
all_messages.extend(messages) # Add new messages
|
||||
|
||||
serialized = [message_to_dict(message) for message in all_messages]
|
||||
file_path = os.path.join(self.storage_path, self.session_id)
|
||||
os.makedirs(os.path.dirname(file_path), exist_ok=True)
|
||||
with open(file_path, "w", encoding="utf-8") as f:
|
||||
json.dump(serialized, f)
|
||||
serialized = [message_to_dict(message) for message in all_messages]
|
||||
file_path = os.path.join(self.storage_path, self.session_id)
|
||||
os.makedirs(os.path.dirname(file_path), exist_ok=True)
|
||||
with open(file_path, "w", encoding="utf-8") as f:
|
||||
json.dump(serialized, f)
|
||||
|
||||
def clear(self) -> None:
|
||||
file_path = os.path.join(self.storage_path, self.session_id)
|
||||
os.makedirs(os.path.dirname(file_path), exist_ok=True)
|
||||
with open(file_path, "w", encoding="utf-8") as f:
|
||||
json.dump([], f)
|
||||
|
||||
def clear(self) -> None:
|
||||
file_path = os.path.join(self.storage_path, self.session_id)
|
||||
os.makedirs(os.path.dirname(file_path), exist_ok=True)
|
||||
with open(file_path, "w", encoding="utf-8") as f:
|
||||
json.dump([], f)
|
||||
```
|
||||
"""
|
||||
|
||||
messages: list[BaseMessage]
|
||||
@@ -115,13 +130,13 @@ class BaseChatMessageHistory(ABC):
|
||||
"""Convenience method for adding a human message string to the store.
|
||||
|
||||
!!! note
|
||||
This is a convenience method. Code should favor the bulk `add_messages`
|
||||
This is a convenience method. Code should favor the bulk ``add_messages``
|
||||
interface instead to save on round-trips to the persistence layer.
|
||||
|
||||
This method may be deprecated in a future release.
|
||||
|
||||
Args:
|
||||
message: The `HumanMessage` to add to the store.
|
||||
message: The human message to add to the store.
|
||||
"""
|
||||
if isinstance(message, HumanMessage):
|
||||
self.add_message(message)
|
||||
@@ -129,16 +144,16 @@ class BaseChatMessageHistory(ABC):
|
||||
self.add_message(HumanMessage(content=message))
|
||||
|
||||
def add_ai_message(self, message: AIMessage | str) -> None:
|
||||
"""Convenience method for adding an `AIMessage` string to the store.
|
||||
"""Convenience method for adding an AI message string to the store.
|
||||
|
||||
!!! note
|
||||
This is a convenience method. Code should favor the bulk `add_messages`
|
||||
This is a convenience method. Code should favor the bulk ``add_messages``
|
||||
interface instead to save on round-trips to the persistence layer.
|
||||
|
||||
This method may be deprecated in a future release.
|
||||
|
||||
Args:
|
||||
message: The `AIMessage` to add.
|
||||
message: The AI message to add.
|
||||
"""
|
||||
if isinstance(message, AIMessage):
|
||||
self.add_message(message)
|
||||
@@ -153,7 +168,7 @@ class BaseChatMessageHistory(ABC):
|
||||
|
||||
Raises:
|
||||
NotImplementedError: If the sub-class has not implemented an efficient
|
||||
`add_messages` method.
|
||||
add_messages method.
|
||||
"""
|
||||
if type(self).add_messages != BaseChatMessageHistory.add_messages:
|
||||
# This means that the sub-class has implemented an efficient add_messages
|
||||
@@ -173,7 +188,7 @@ class BaseChatMessageHistory(ABC):
|
||||
in an efficient manner to avoid unnecessary round-trips to the underlying store.
|
||||
|
||||
Args:
|
||||
messages: A sequence of `BaseMessage` objects to store.
|
||||
messages: A sequence of BaseMessage objects to store.
|
||||
"""
|
||||
for message in messages:
|
||||
self.add_message(message)
|
||||
@@ -182,7 +197,7 @@ class BaseChatMessageHistory(ABC):
|
||||
"""Async add a list of messages.
|
||||
|
||||
Args:
|
||||
messages: A sequence of `BaseMessage` objects to store.
|
||||
messages: A sequence of BaseMessage objects to store.
|
||||
"""
|
||||
await run_in_executor(None, self.add_messages, messages)
|
||||
|
||||
|
||||
@@ -27,7 +27,7 @@ class BaseLoader(ABC): # noqa: B024
|
||||
"""Interface for Document Loader.
|
||||
|
||||
Implementations should implement the lazy-loading method using generators
|
||||
to avoid loading all documents into memory at once.
|
||||
to avoid loading all Documents into memory at once.
|
||||
|
||||
`load` is provided just for user convenience and should not be overridden.
|
||||
"""
|
||||
@@ -35,40 +35,38 @@ class BaseLoader(ABC): # noqa: B024
|
||||
# Sub-classes should not implement this method directly. Instead, they
|
||||
# should implement the lazy load method.
|
||||
def load(self) -> list[Document]:
|
||||
"""Load data into `Document` objects.
|
||||
"""Load data into Document objects.
|
||||
|
||||
Returns:
|
||||
The documents.
|
||||
the documents.
|
||||
"""
|
||||
return list(self.lazy_load())
|
||||
|
||||
async def aload(self) -> list[Document]:
|
||||
"""Load data into `Document` objects.
|
||||
"""Load data into Document objects.
|
||||
|
||||
Returns:
|
||||
The documents.
|
||||
the documents.
|
||||
"""
|
||||
return [document async for document in self.alazy_load()]
|
||||
|
||||
def load_and_split(
|
||||
self, text_splitter: TextSplitter | None = None
|
||||
) -> list[Document]:
|
||||
"""Load `Document` and split into chunks. Chunks are returned as `Document`.
|
||||
"""Load Documents and split into chunks. Chunks are returned as Documents.
|
||||
|
||||
!!! danger
|
||||
|
||||
Do not override this method. It should be considered to be deprecated!
|
||||
Do not override this method. It should be considered to be deprecated!
|
||||
|
||||
Args:
|
||||
text_splitter: `TextSplitter` instance to use for splitting documents.
|
||||
Defaults to `RecursiveCharacterTextSplitter`.
|
||||
text_splitter: TextSplitter instance to use for splitting documents.
|
||||
Defaults to RecursiveCharacterTextSplitter.
|
||||
|
||||
Raises:
|
||||
ImportError: If `langchain-text-splitters` is not installed
|
||||
and no `text_splitter` is provided.
|
||||
ImportError: If langchain-text-splitters is not installed
|
||||
and no text_splitter is provided.
|
||||
|
||||
Returns:
|
||||
List of `Document`.
|
||||
List of Documents.
|
||||
"""
|
||||
if text_splitter is None:
|
||||
if not _HAS_TEXT_SPLITTERS:
|
||||
@@ -88,10 +86,10 @@ class BaseLoader(ABC): # noqa: B024
|
||||
# Attention: This method will be upgraded into an abstractmethod once it's
|
||||
# implemented in all the existing subclasses.
|
||||
def lazy_load(self) -> Iterator[Document]:
|
||||
"""A lazy loader for `Document`.
|
||||
"""A lazy loader for Documents.
|
||||
|
||||
Yields:
|
||||
The `Document` objects.
|
||||
the documents.
|
||||
"""
|
||||
if type(self).load != BaseLoader.load:
|
||||
return iter(self.load())
|
||||
@@ -99,10 +97,10 @@ class BaseLoader(ABC): # noqa: B024
|
||||
raise NotImplementedError(msg)
|
||||
|
||||
async def alazy_load(self) -> AsyncIterator[Document]:
|
||||
"""A lazy loader for `Document`.
|
||||
"""A lazy loader for Documents.
|
||||
|
||||
Yields:
|
||||
The `Document` objects.
|
||||
the documents.
|
||||
"""
|
||||
iterator = await run_in_executor(None, self.lazy_load)
|
||||
done = object()
|
||||
@@ -117,7 +115,7 @@ class BaseBlobParser(ABC):
|
||||
"""Abstract interface for blob parsers.
|
||||
|
||||
A blob parser provides a way to parse raw data stored in a blob into one
|
||||
or more `Document` objects.
|
||||
or more documents.
|
||||
|
||||
The parser can be composed with blob loaders, making it easy to reuse
|
||||
a parser independent of how the blob was originally loaded.
|
||||
@@ -130,25 +128,25 @@ class BaseBlobParser(ABC):
|
||||
Subclasses are required to implement this method.
|
||||
|
||||
Args:
|
||||
blob: `Blob` instance
|
||||
blob: Blob instance
|
||||
|
||||
Returns:
|
||||
Generator of `Document` objects
|
||||
Generator of documents
|
||||
"""
|
||||
|
||||
def parse(self, blob: Blob) -> list[Document]:
|
||||
"""Eagerly parse the blob into a `Document` or list of `Document` objects.
|
||||
"""Eagerly parse the blob into a document or documents.
|
||||
|
||||
This is a convenience method for interactive development environment.
|
||||
|
||||
Production applications should favor the `lazy_parse` method instead.
|
||||
Production applications should favor the lazy_parse method instead.
|
||||
|
||||
Subclasses should generally not over-ride this parse method.
|
||||
|
||||
Args:
|
||||
blob: `Blob` instance
|
||||
blob: Blob instance
|
||||
|
||||
Returns:
|
||||
List of `Document` objects
|
||||
List of documents
|
||||
"""
|
||||
return list(self.lazy_parse(blob))
|
||||
|
||||
@@ -28,7 +28,7 @@ class BlobLoader(ABC):
|
||||
def yield_blobs(
|
||||
self,
|
||||
) -> Iterable[Blob]:
|
||||
"""A lazy loader for raw data represented by LangChain's `Blob` object.
|
||||
"""A lazy loader for raw data represented by LangChain's Blob object.
|
||||
|
||||
Returns:
|
||||
A generator over blobs
|
||||
|
||||
@@ -11,31 +11,33 @@ from typing_extensions import override
|
||||
|
||||
from langchain_core.document_loaders.base import BaseLoader
|
||||
from langchain_core.documents import Document
|
||||
from langchain_core.tracers._compat import pydantic_to_dict
|
||||
|
||||
|
||||
class LangSmithLoader(BaseLoader):
|
||||
"""Load LangSmith Dataset examples as `Document` objects.
|
||||
"""Load LangSmith Dataset examples as Documents.
|
||||
|
||||
Loads the example inputs as the `Document` page content and places the entire
|
||||
example into the `Document` metadata. This allows you to easily create few-shot
|
||||
example retrievers from the loaded documents.
|
||||
Loads the example inputs as the Document page content and places the entire example
|
||||
into the Document metadata. This allows you to easily create few-shot example
|
||||
retrievers from the loaded documents.
|
||||
|
||||
??? note "Lazy loading example"
|
||||
??? note "Lazy load"
|
||||
|
||||
```python
|
||||
from langchain_core.document_loaders import LangSmithLoader
|
||||
.. code-block:: python
|
||||
|
||||
loader = LangSmithLoader(dataset_id="...", limit=100)
|
||||
docs = []
|
||||
for doc in loader.lazy_load():
|
||||
docs.append(doc)
|
||||
```
|
||||
from langchain_core.document_loaders import LangSmithLoader
|
||||
|
||||
```python
|
||||
# -> [Document("...", metadata={"inputs": {...}, "outputs": {...}, ...}), ...]
|
||||
```
|
||||
"""
|
||||
loader = LangSmithLoader(dataset_id="...", limit=100)
|
||||
docs = []
|
||||
for doc in loader.lazy_load():
|
||||
docs.append(doc)
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
# -> [Document("...", metadata={"inputs": {...}, "outputs": {...}, ...}), ...]
|
||||
|
||||
!!! version-added "Added in version 0.2.34"
|
||||
|
||||
""" # noqa: E501
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
@@ -58,25 +60,26 @@ class LangSmithLoader(BaseLoader):
|
||||
"""Create a LangSmith loader.
|
||||
|
||||
Args:
|
||||
dataset_id: The ID of the dataset to filter by.
|
||||
dataset_name: The name of the dataset to filter by.
|
||||
dataset_id: The ID of the dataset to filter by. Defaults to `None`.
|
||||
dataset_name: The name of the dataset to filter by. Defaults to `None`.
|
||||
content_key: The inputs key to set as Document page content. `'.'` characters
|
||||
are interpreted as nested keys. E.g. `content_key="first.second"` will
|
||||
result in
|
||||
`Document(page_content=format_content(example.inputs["first"]["second"]))`
|
||||
format_content: Function for converting the content extracted from the example
|
||||
inputs into a string. Defaults to JSON-encoding the contents.
|
||||
example_ids: The IDs of the examples to filter by.
|
||||
as_of: The dataset version tag or timestamp to retrieve the examples as of.
|
||||
Response examples will only be those that were present at the time of
|
||||
the tagged (or timestamped) version.
|
||||
example_ids: The IDs of the examples to filter by. Defaults to `None`.
|
||||
as_of: The dataset version tag OR
|
||||
timestamp to retrieve the examples as of.
|
||||
Response examples will only be those that were present at the time
|
||||
of the tagged (or timestamped) version.
|
||||
splits: A list of dataset splits, which are
|
||||
divisions of your dataset such as `train`, `test`, or `validation`.
|
||||
divisions of your dataset such as 'train', 'test', or 'validation'.
|
||||
Returns examples only from the specified splits.
|
||||
inline_s3_urls: Whether to inline S3 URLs.
|
||||
offset: The offset to start from.
|
||||
inline_s3_urls: Whether to inline S3 URLs. Defaults to `True`.
|
||||
offset: The offset to start from. Defaults to 0.
|
||||
limit: The maximum number of examples to return.
|
||||
metadata: Metadata to filter by.
|
||||
metadata: Metadata to filter by. Defaults to `None`.
|
||||
filter: A structured filter string to apply to the examples.
|
||||
client: LangSmith Client. If not provided will be initialized from below args.
|
||||
client_kwargs: Keyword args to pass to LangSmith client init. Should only be
|
||||
@@ -119,14 +122,14 @@ class LangSmithLoader(BaseLoader):
|
||||
for key in self.content_key:
|
||||
content = content[key]
|
||||
content_str = self.format_content(content)
|
||||
metadata = pydantic_to_dict(example)
|
||||
metadata = example.dict()
|
||||
# Stringify datetime and UUID types.
|
||||
for k in ("dataset_id", "created_at", "modified_at", "source_run_id", "id"):
|
||||
metadata[k] = str(metadata[k]) if metadata[k] else metadata[k]
|
||||
yield Document(content_str, metadata=metadata)
|
||||
|
||||
|
||||
def _stringify(x: str | dict[str, Any]) -> str:
|
||||
def _stringify(x: str | dict) -> str:
|
||||
if isinstance(x, str):
|
||||
return x
|
||||
try:
|
||||
|
||||
@@ -1,28 +1,8 @@
|
||||
"""Documents module for data retrieval and processing workflows.
|
||||
"""Documents module.
|
||||
|
||||
This module provides core abstractions for handling data in retrieval-augmented
|
||||
generation (RAG) pipelines, vector stores, and document processing workflows.
|
||||
**Document** module is a collection of classes that handle documents
|
||||
and their transformations.
|
||||
|
||||
!!! warning "Documents vs. message content"
|
||||
This module is distinct from `langchain_core.messages.content`, which provides
|
||||
multimodal content blocks for **LLM chat I/O** (text, images, audio, etc. within
|
||||
messages).
|
||||
|
||||
**Key distinction:**
|
||||
|
||||
- **Documents** (this module): For **data retrieval and processing workflows**
|
||||
- Vector stores, retrievers, RAG pipelines
|
||||
- Text chunking, embedding, and semantic search
|
||||
- Example: Chunks of a PDF stored in a vector database
|
||||
|
||||
- **Content Blocks** (`messages.content`): For **LLM conversational I/O**
|
||||
- Multimodal message content sent to/from models
|
||||
- Tool calls, reasoning, citations within chat
|
||||
- Example: An image sent to a vision model in a chat message (via
|
||||
[`ImageContentBlock`][langchain.messages.ImageContentBlock])
|
||||
|
||||
While both can represent similar data types (text, files), they serve different
|
||||
architectural purposes in LangChain applications.
|
||||
"""
|
||||
|
||||
from typing import TYPE_CHECKING
|
||||
|
||||
@@ -1,16 +1,4 @@
|
||||
"""Base classes for media and documents.
|
||||
|
||||
This module contains core abstractions for **data retrieval and processing workflows**:
|
||||
|
||||
- `BaseMedia`: Base class providing `id` and `metadata` fields
|
||||
- `Blob`: Raw data loading (files, binary data) - used by document loaders
|
||||
- `Document`: Text content for retrieval (RAG, vector stores, semantic search)
|
||||
|
||||
!!! note "Not for LLM chat messages"
|
||||
These classes are for data processing pipelines, not LLM I/O. For multimodal
|
||||
content in chat messages (images, audio in conversations), see
|
||||
`langchain.messages` content blocks instead.
|
||||
"""
|
||||
"""Base classes for media and documents."""
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
@@ -31,23 +19,27 @@ PathLike = str | PurePath
|
||||
|
||||
|
||||
class BaseMedia(Serializable):
|
||||
"""Base class for content used in retrieval and data processing workflows.
|
||||
"""Use to represent media content.
|
||||
|
||||
Provides common fields for content that needs to be stored, indexed, or searched.
|
||||
Media objects can be used to represent raw data, such as text or binary data.
|
||||
|
||||
!!! note
|
||||
For multimodal content in **chat messages** (images, audio sent to/from LLMs),
|
||||
use `langchain.messages` content blocks instead.
|
||||
LangChain Media objects allow associating metadata and an optional identifier
|
||||
with the content.
|
||||
|
||||
The presence of an ID and metadata make it easier to store, index, and search
|
||||
over the content in a structured way.
|
||||
"""
|
||||
|
||||
# The ID field is optional at the moment.
|
||||
# It will likely become required in a future major release after
|
||||
# it has been adopted by enough VectorStore implementations.
|
||||
# it has been adopted by enough vectorstore implementations.
|
||||
id: str | None = Field(default=None, coerce_numbers_to_str=True)
|
||||
"""An optional identifier for the document.
|
||||
|
||||
Ideally this should be unique across the document collection and formatted
|
||||
as a UUID, but this will not be enforced.
|
||||
|
||||
!!! version-added "Added in version 0.2.11"
|
||||
"""
|
||||
|
||||
metadata: dict = Field(default_factory=dict)
|
||||
@@ -55,70 +47,72 @@ class BaseMedia(Serializable):
|
||||
|
||||
|
||||
class Blob(BaseMedia):
|
||||
"""Raw data abstraction for document loading and file processing.
|
||||
"""Blob represents raw data by either reference or value.
|
||||
|
||||
Represents raw bytes or text, either in-memory or by file reference. Used
|
||||
primarily by document loaders to decouple data loading from parsing.
|
||||
Provides an interface to materialize the blob in different representations, and
|
||||
help to decouple the development of data loaders from the downstream parsing of
|
||||
the raw data.
|
||||
|
||||
Inspired by [Mozilla's `Blob`](https://developer.mozilla.org/en-US/docs/Web/API/Blob)
|
||||
Inspired by: https://developer.mozilla.org/en-US/docs/Web/API/Blob
|
||||
|
||||
???+ example "Initialize a blob from in-memory data"
|
||||
Example: Initialize a blob from in-memory data
|
||||
|
||||
```python
|
||||
from langchain_core.documents import Blob
|
||||
.. code-block:: python
|
||||
|
||||
blob = Blob.from_data("Hello, world!")
|
||||
from langchain_core.documents import Blob
|
||||
|
||||
# Read the blob as a string
|
||||
print(blob.as_string())
|
||||
blob = Blob.from_data("Hello, world!")
|
||||
|
||||
# Read the blob as bytes
|
||||
print(blob.as_bytes())
|
||||
# Read the blob as a string
|
||||
print(blob.as_string())
|
||||
|
||||
# Read the blob as a byte stream
|
||||
with blob.as_bytes_io() as f:
|
||||
print(f.read())
|
||||
```
|
||||
# Read the blob as bytes
|
||||
print(blob.as_bytes())
|
||||
|
||||
??? example "Load from memory and specify MIME type and metadata"
|
||||
# Read the blob as a byte stream
|
||||
with blob.as_bytes_io() as f:
|
||||
print(f.read())
|
||||
|
||||
```python
|
||||
from langchain_core.documents import Blob
|
||||
Example: Load from memory and specify mime-type and metadata
|
||||
|
||||
blob = Blob.from_data(
|
||||
data="Hello, world!",
|
||||
mime_type="text/plain",
|
||||
metadata={"source": "https://example.com"},
|
||||
)
|
||||
```
|
||||
.. code-block:: python
|
||||
|
||||
??? example "Load the blob from a file"
|
||||
from langchain_core.documents import Blob
|
||||
|
||||
```python
|
||||
from langchain_core.documents import Blob
|
||||
blob = Blob.from_data(
|
||||
data="Hello, world!",
|
||||
mime_type="text/plain",
|
||||
metadata={"source": "https://example.com"},
|
||||
)
|
||||
|
||||
blob = Blob.from_path("path/to/file.txt")
|
||||
Example: Load the blob from a file
|
||||
|
||||
# Read the blob as a string
|
||||
print(blob.as_string())
|
||||
.. code-block:: python
|
||||
|
||||
# Read the blob as bytes
|
||||
print(blob.as_bytes())
|
||||
from langchain_core.documents import Blob
|
||||
|
||||
blob = Blob.from_path("path/to/file.txt")
|
||||
|
||||
# Read the blob as a string
|
||||
print(blob.as_string())
|
||||
|
||||
# Read the blob as bytes
|
||||
print(blob.as_bytes())
|
||||
|
||||
# Read the blob as a byte stream
|
||||
with blob.as_bytes_io() as f:
|
||||
print(f.read())
|
||||
|
||||
# Read the blob as a byte stream
|
||||
with blob.as_bytes_io() as f:
|
||||
print(f.read())
|
||||
```
|
||||
"""
|
||||
|
||||
data: bytes | str | None = None
|
||||
"""Raw data associated with the `Blob`."""
|
||||
"""Raw data associated with the blob."""
|
||||
mimetype: str | None = None
|
||||
"""MIME type, not to be confused with a file extension."""
|
||||
"""MimeType not to be confused with a file extension."""
|
||||
encoding: str = "utf-8"
|
||||
"""Encoding to use if decoding the bytes into a string.
|
||||
|
||||
Uses `utf-8` as default encoding if decoding to string.
|
||||
Use utf-8 as default encoding, if decoding to string.
|
||||
"""
|
||||
path: PathLike | None = None
|
||||
"""Location where the original content was found."""
|
||||
@@ -132,9 +126,9 @@ class Blob(BaseMedia):
|
||||
def source(self) -> str | None:
|
||||
"""The source location of the blob as string if known otherwise none.
|
||||
|
||||
If a path is associated with the `Blob`, it will default to the path location.
|
||||
If a path is associated with the blob, it will default to the path location.
|
||||
|
||||
Unless explicitly set via a metadata field called `'source'`, in which
|
||||
Unless explicitly set via a metadata field called "source", in which
|
||||
case that value will be used instead.
|
||||
"""
|
||||
if self.metadata and "source" in self.metadata:
|
||||
@@ -218,15 +212,15 @@ class Blob(BaseMedia):
|
||||
"""Load the blob from a path like object.
|
||||
|
||||
Args:
|
||||
path: Path-like object to file to be read
|
||||
path: path like object to file to be read
|
||||
encoding: Encoding to use if decoding the bytes into a string
|
||||
mime_type: If provided, will be set as the MIME type of the data
|
||||
guess_type: If `True`, the MIME type will be guessed from the file
|
||||
extension, if a MIME type was not provided
|
||||
metadata: Metadata to associate with the `Blob`
|
||||
mime_type: if provided, will be set as the mime-type of the data
|
||||
guess_type: If `True`, the mimetype will be guessed from the file extension,
|
||||
if a mime-type was not provided
|
||||
metadata: Metadata to associate with the blob
|
||||
|
||||
Returns:
|
||||
`Blob` instance
|
||||
Blob instance
|
||||
"""
|
||||
if mime_type is None and guess_type:
|
||||
mimetype = mimetypes.guess_type(path)[0] if guess_type else None
|
||||
@@ -252,17 +246,17 @@ class Blob(BaseMedia):
|
||||
path: str | None = None,
|
||||
metadata: dict | None = None,
|
||||
) -> Blob:
|
||||
"""Initialize the `Blob` from in-memory data.
|
||||
"""Initialize the blob from in-memory data.
|
||||
|
||||
Args:
|
||||
data: The in-memory data associated with the `Blob`
|
||||
data: the in-memory data associated with the blob
|
||||
encoding: Encoding to use if decoding the bytes into a string
|
||||
mime_type: If provided, will be set as the MIME type of the data
|
||||
path: If provided, will be set as the source from which the data came
|
||||
metadata: Metadata to associate with the `Blob`
|
||||
mime_type: if provided, will be set as the mime-type of the data
|
||||
path: if provided, will be set as the source from which the data came
|
||||
metadata: Metadata to associate with the blob
|
||||
|
||||
Returns:
|
||||
`Blob` instance
|
||||
Blob instance
|
||||
"""
|
||||
return cls(
|
||||
data=data,
|
||||
@@ -283,18 +277,16 @@ class Blob(BaseMedia):
|
||||
class Document(BaseMedia):
|
||||
"""Class for storing a piece of text and associated metadata.
|
||||
|
||||
!!! note
|
||||
`Document` is for **retrieval workflows**, not chat I/O. For sending text
|
||||
to an LLM in a conversation, use message types from `langchain.messages`.
|
||||
|
||||
Example:
|
||||
```python
|
||||
from langchain_core.documents import Document
|
||||
|
||||
document = Document(
|
||||
page_content="Hello, world!", metadata={"source": "https://example.com"}
|
||||
)
|
||||
```
|
||||
.. code-block:: python
|
||||
|
||||
from langchain_core.documents import Document
|
||||
|
||||
document = Document(
|
||||
page_content="Hello, world!", metadata={"source": "https://example.com"}
|
||||
)
|
||||
|
||||
"""
|
||||
|
||||
page_content: str
|
||||
@@ -309,12 +301,12 @@ class Document(BaseMedia):
|
||||
|
||||
@classmethod
|
||||
def is_lc_serializable(cls) -> bool:
|
||||
"""Return `True` as this class is serializable."""
|
||||
"""Return True as this class is serializable."""
|
||||
return True
|
||||
|
||||
@classmethod
|
||||
def get_lc_namespace(cls) -> list[str]:
|
||||
"""Get the namespace of the LangChain object.
|
||||
"""Get the namespace of the langchain object.
|
||||
|
||||
Returns:
|
||||
["langchain", "schema", "document"]
|
||||
@@ -322,10 +314,10 @@ class Document(BaseMedia):
|
||||
return ["langchain", "schema", "document"]
|
||||
|
||||
def __str__(self) -> str:
|
||||
"""Override `__str__` to restrict it to page_content and metadata.
|
||||
"""Override __str__ to restrict it to page_content and metadata.
|
||||
|
||||
Returns:
|
||||
A string representation of the `Document`.
|
||||
A string representation of the Document.
|
||||
"""
|
||||
# The format matches pydantic format for __str__.
|
||||
#
|
||||
|
||||
@@ -21,14 +21,14 @@ class BaseDocumentCompressor(BaseModel, ABC):
|
||||
|
||||
This abstraction is primarily used for post-processing of retrieved documents.
|
||||
|
||||
`Document` objects matching a given query are first retrieved.
|
||||
Documents matching a given query are first retrieved.
|
||||
|
||||
Then the list of documents can be further processed.
|
||||
|
||||
For example, one could re-rank the retrieved documents using an LLM.
|
||||
|
||||
!!! note
|
||||
Users should favor using a `RunnableLambda` instead of sub-classing from this
|
||||
Users should favor using a RunnableLambda instead of sub-classing from this
|
||||
interface.
|
||||
|
||||
"""
|
||||
@@ -43,9 +43,9 @@ class BaseDocumentCompressor(BaseModel, ABC):
|
||||
"""Compress retrieved documents given the query context.
|
||||
|
||||
Args:
|
||||
documents: The retrieved `Document` objects.
|
||||
documents: The retrieved documents.
|
||||
query: The query context.
|
||||
callbacks: Optional `Callbacks` to run during compression.
|
||||
callbacks: Optional callbacks to run during compression.
|
||||
|
||||
Returns:
|
||||
The compressed documents.
|
||||
@@ -61,9 +61,9 @@ class BaseDocumentCompressor(BaseModel, ABC):
|
||||
"""Async compress retrieved documents given the query context.
|
||||
|
||||
Args:
|
||||
documents: The retrieved `Document` objects.
|
||||
documents: The retrieved documents.
|
||||
query: The query context.
|
||||
callbacks: Optional `Callbacks` to run during compression.
|
||||
callbacks: Optional callbacks to run during compression.
|
||||
|
||||
Returns:
|
||||
The compressed documents.
|
||||
|
||||
@@ -16,38 +16,39 @@ if TYPE_CHECKING:
|
||||
class BaseDocumentTransformer(ABC):
|
||||
"""Abstract base class for document transformation.
|
||||
|
||||
A document transformation takes a sequence of `Document` objects and returns a
|
||||
sequence of transformed `Document` objects.
|
||||
A document transformation takes a sequence of Documents and returns a
|
||||
sequence of transformed Documents.
|
||||
|
||||
Example:
|
||||
```python
|
||||
class EmbeddingsRedundantFilter(BaseDocumentTransformer, BaseModel):
|
||||
embeddings: Embeddings
|
||||
similarity_fn: Callable = cosine_similarity
|
||||
similarity_threshold: float = 0.95
|
||||
.. code-block:: python
|
||||
|
||||
class Config:
|
||||
arbitrary_types_allowed = True
|
||||
class EmbeddingsRedundantFilter(BaseDocumentTransformer, BaseModel):
|
||||
embeddings: Embeddings
|
||||
similarity_fn: Callable = cosine_similarity
|
||||
similarity_threshold: float = 0.95
|
||||
|
||||
def transform_documents(
|
||||
self, documents: Sequence[Document], **kwargs: Any
|
||||
) -> Sequence[Document]:
|
||||
stateful_documents = get_stateful_documents(documents)
|
||||
embedded_documents = _get_embeddings_from_stateful_docs(
|
||||
self.embeddings, stateful_documents
|
||||
)
|
||||
included_idxs = _filter_similar_embeddings(
|
||||
embedded_documents,
|
||||
self.similarity_fn,
|
||||
self.similarity_threshold,
|
||||
)
|
||||
return [stateful_documents[i] for i in sorted(included_idxs)]
|
||||
class Config:
|
||||
arbitrary_types_allowed = True
|
||||
|
||||
def transform_documents(
|
||||
self, documents: Sequence[Document], **kwargs: Any
|
||||
) -> Sequence[Document]:
|
||||
stateful_documents = get_stateful_documents(documents)
|
||||
embedded_documents = _get_embeddings_from_stateful_docs(
|
||||
self.embeddings, stateful_documents
|
||||
)
|
||||
included_idxs = _filter_similar_embeddings(
|
||||
embedded_documents,
|
||||
self.similarity_fn,
|
||||
self.similarity_threshold,
|
||||
)
|
||||
return [stateful_documents[i] for i in sorted(included_idxs)]
|
||||
|
||||
async def atransform_documents(
|
||||
self, documents: Sequence[Document], **kwargs: Any
|
||||
) -> Sequence[Document]:
|
||||
raise NotImplementedError
|
||||
|
||||
async def atransform_documents(
|
||||
self, documents: Sequence[Document], **kwargs: Any
|
||||
) -> Sequence[Document]:
|
||||
raise NotImplementedError
|
||||
```
|
||||
"""
|
||||
|
||||
@abstractmethod
|
||||
@@ -57,10 +58,10 @@ class BaseDocumentTransformer(ABC):
|
||||
"""Transform a list of documents.
|
||||
|
||||
Args:
|
||||
documents: A sequence of `Document` objects to be transformed.
|
||||
documents: A sequence of Documents to be transformed.
|
||||
|
||||
Returns:
|
||||
A sequence of transformed `Document` objects.
|
||||
A sequence of transformed Documents.
|
||||
"""
|
||||
|
||||
async def atransform_documents(
|
||||
@@ -69,10 +70,10 @@ class BaseDocumentTransformer(ABC):
|
||||
"""Asynchronously transform a list of documents.
|
||||
|
||||
Args:
|
||||
documents: A sequence of `Document` objects to be transformed.
|
||||
documents: A sequence of Documents to be transformed.
|
||||
|
||||
Returns:
|
||||
A sequence of transformed `Document` objects.
|
||||
A sequence of transformed Documents.
|
||||
"""
|
||||
return await run_in_executor(
|
||||
None, self.transform_documents, documents, **kwargs
|
||||
|
||||
@@ -18,38 +18,40 @@ class FakeEmbeddings(Embeddings, BaseModel):
|
||||
|
||||
This embedding model creates embeddings by sampling from a normal distribution.
|
||||
|
||||
!!! danger "Toy model"
|
||||
Do not use this outside of testing, as it is not a real embedding model.
|
||||
Do not use this outside of testing, as it is not a real embedding model.
|
||||
|
||||
Instantiate:
|
||||
```python
|
||||
from langchain_core.embeddings import FakeEmbeddings
|
||||
.. code-block:: python
|
||||
|
||||
embed = FakeEmbeddings(size=100)
|
||||
```
|
||||
from langchain_core.embeddings import FakeEmbeddings
|
||||
|
||||
embed = FakeEmbeddings(size=100)
|
||||
|
||||
Embed single text:
|
||||
```python
|
||||
input_text = "The meaning of life is 42"
|
||||
vector = embed.embed_query(input_text)
|
||||
print(vector[:3])
|
||||
```
|
||||
```python
|
||||
[-0.700234640213188, -0.581266257710429, -1.1328482266445354]
|
||||
```
|
||||
.. code-block:: python
|
||||
|
||||
input_text = "The meaning of life is 42"
|
||||
vector = embed.embed_query(input_text)
|
||||
print(vector[:3])
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
[-0.700234640213188, -0.581266257710429, -1.1328482266445354]
|
||||
|
||||
Embed multiple texts:
|
||||
```python
|
||||
input_texts = ["Document 1...", "Document 2..."]
|
||||
vectors = embed.embed_documents(input_texts)
|
||||
print(len(vectors))
|
||||
# The first 3 coordinates for the first vector
|
||||
print(vectors[0][:3])
|
||||
```
|
||||
```python
|
||||
2
|
||||
[-0.5670477847544458, -0.31403828652395727, -0.5840547508955257]
|
||||
```
|
||||
.. code-block:: python
|
||||
|
||||
input_texts = ["Document 1...", "Document 2..."]
|
||||
vectors = embed.embed_documents(input_texts)
|
||||
print(len(vectors))
|
||||
# The first 3 coordinates for the first vector
|
||||
print(vectors[0][:3])
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
2
|
||||
[-0.5670477847544458, -0.31403828652395727, -0.5840547508955257]
|
||||
|
||||
"""
|
||||
|
||||
size: int
|
||||
@@ -73,38 +75,40 @@ class DeterministicFakeEmbedding(Embeddings, BaseModel):
|
||||
This embedding model creates embeddings by sampling from a normal distribution
|
||||
with a seed based on the hash of the text.
|
||||
|
||||
!!! danger "Toy model"
|
||||
Do not use this outside of testing, as it is not a real embedding model.
|
||||
Do not use this outside of testing, as it is not a real embedding model.
|
||||
|
||||
Instantiate:
|
||||
```python
|
||||
from langchain_core.embeddings import DeterministicFakeEmbedding
|
||||
.. code-block:: python
|
||||
|
||||
embed = DeterministicFakeEmbedding(size=100)
|
||||
```
|
||||
from langchain_core.embeddings import DeterministicFakeEmbedding
|
||||
|
||||
embed = DeterministicFakeEmbedding(size=100)
|
||||
|
||||
Embed single text:
|
||||
```python
|
||||
input_text = "The meaning of life is 42"
|
||||
vector = embed.embed_query(input_text)
|
||||
print(vector[:3])
|
||||
```
|
||||
```python
|
||||
[-0.700234640213188, -0.581266257710429, -1.1328482266445354]
|
||||
```
|
||||
.. code-block:: python
|
||||
|
||||
input_text = "The meaning of life is 42"
|
||||
vector = embed.embed_query(input_text)
|
||||
print(vector[:3])
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
[-0.700234640213188, -0.581266257710429, -1.1328482266445354]
|
||||
|
||||
Embed multiple texts:
|
||||
```python
|
||||
input_texts = ["Document 1...", "Document 2..."]
|
||||
vectors = embed.embed_documents(input_texts)
|
||||
print(len(vectors))
|
||||
# The first 3 coordinates for the first vector
|
||||
print(vectors[0][:3])
|
||||
```
|
||||
```python
|
||||
2
|
||||
[-0.5670477847544458, -0.31403828652395727, -0.5840547508955257]
|
||||
```
|
||||
.. code-block:: python
|
||||
|
||||
input_texts = ["Document 1...", "Document 2..."]
|
||||
vectors = embed.embed_documents(input_texts)
|
||||
print(len(vectors))
|
||||
# The first 3 coordinates for the first vector
|
||||
print(vectors[0][:3])
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
2
|
||||
[-0.5670477847544458, -0.31403828652395727, -0.5840547508955257]
|
||||
|
||||
"""
|
||||
|
||||
size: int
|
||||
|
||||
@@ -11,7 +11,7 @@ from langchain_core.prompts.prompt import PromptTemplate
|
||||
|
||||
|
||||
def _get_length_based(text: str) -> int:
|
||||
return len(re.split(r"\n| ", text))
|
||||
return len(re.split("\n| ", text))
|
||||
|
||||
|
||||
class LengthBasedExampleSelector(BaseExampleSelector, BaseModel):
|
||||
@@ -29,7 +29,7 @@ class LengthBasedExampleSelector(BaseExampleSelector, BaseModel):
|
||||
max_length: int = 2048
|
||||
"""Max length for the prompt, beyond which examples are cut."""
|
||||
|
||||
example_text_lengths: list[int] = Field(default_factory=list)
|
||||
example_text_lengths: list[int] = Field(default_factory=list) # :meta private:
|
||||
"""Length of each example."""
|
||||
|
||||
def add_example(self, example: dict[str, str]) -> None:
|
||||
|
||||
@@ -41,7 +41,7 @@ class _VectorStoreExampleSelector(BaseExampleSelector, BaseModel, ABC):
|
||||
"""Optional keys to filter input to. If provided, the search is based on
|
||||
the input variables instead of all variables."""
|
||||
vectorstore_kwargs: dict[str, Any] | None = None
|
||||
"""Extra arguments passed to similarity_search function of the `VectorStore`."""
|
||||
"""Extra arguments passed to similarity_search function of the vectorstore."""
|
||||
|
||||
model_config = ConfigDict(
|
||||
arbitrary_types_allowed=True,
|
||||
@@ -154,12 +154,12 @@ class SemanticSimilarityExampleSelector(_VectorStoreExampleSelector):
|
||||
examples: List of examples to use in the prompt.
|
||||
embeddings: An initialized embedding API interface, e.g. OpenAIEmbeddings().
|
||||
vectorstore_cls: A vector store DB interface class, e.g. FAISS.
|
||||
k: Number of examples to select.
|
||||
k: Number of examples to select. Default is 4.
|
||||
input_keys: If provided, the search is based on the input variables
|
||||
instead of all variables.
|
||||
example_keys: If provided, keys to filter examples to.
|
||||
vectorstore_kwargs: Extra arguments passed to similarity_search function
|
||||
of the `VectorStore`.
|
||||
of the vectorstore.
|
||||
vectorstore_cls_kwargs: optional kwargs containing url for vector store
|
||||
|
||||
Returns:
|
||||
@@ -198,12 +198,12 @@ class SemanticSimilarityExampleSelector(_VectorStoreExampleSelector):
|
||||
examples: List of examples to use in the prompt.
|
||||
embeddings: An initialized embedding API interface, e.g. OpenAIEmbeddings().
|
||||
vectorstore_cls: A vector store DB interface class, e.g. FAISS.
|
||||
k: Number of examples to select.
|
||||
k: Number of examples to select. Default is 4.
|
||||
input_keys: If provided, the search is based on the input variables
|
||||
instead of all variables.
|
||||
example_keys: If provided, keys to filter examples to.
|
||||
vectorstore_kwargs: Extra arguments passed to similarity_search function
|
||||
of the `VectorStore`.
|
||||
of the vectorstore.
|
||||
vectorstore_cls_kwargs: optional kwargs containing url for vector store
|
||||
|
||||
Returns:
|
||||
@@ -285,13 +285,14 @@ class MaxMarginalRelevanceExampleSelector(_VectorStoreExampleSelector):
|
||||
examples: List of examples to use in the prompt.
|
||||
embeddings: An initialized embedding API interface, e.g. OpenAIEmbeddings().
|
||||
vectorstore_cls: A vector store DB interface class, e.g. FAISS.
|
||||
k: Number of examples to select.
|
||||
fetch_k: Number of `Document` objects to fetch to pass to MMR algorithm.
|
||||
k: Number of examples to select. Default is 4.
|
||||
fetch_k: Number of Documents to fetch to pass to MMR algorithm.
|
||||
Default is 20.
|
||||
input_keys: If provided, the search is based on the input variables
|
||||
instead of all variables.
|
||||
example_keys: If provided, keys to filter examples to.
|
||||
vectorstore_kwargs: Extra arguments passed to similarity_search function
|
||||
of the `VectorStore`.
|
||||
of the vectorstore.
|
||||
vectorstore_cls_kwargs: optional kwargs containing url for vector store
|
||||
|
||||
Returns:
|
||||
@@ -332,13 +333,14 @@ class MaxMarginalRelevanceExampleSelector(_VectorStoreExampleSelector):
|
||||
examples: List of examples to use in the prompt.
|
||||
embeddings: An initialized embedding API interface, e.g. OpenAIEmbeddings().
|
||||
vectorstore_cls: A vector store DB interface class, e.g. FAISS.
|
||||
k: Number of examples to select.
|
||||
fetch_k: Number of `Document` objects to fetch to pass to MMR algorithm.
|
||||
k: Number of examples to select. Default is 4.
|
||||
fetch_k: Number of Documents to fetch to pass to MMR algorithm.
|
||||
Default is 20.
|
||||
input_keys: If provided, the search is based on the input variables
|
||||
instead of all variables.
|
||||
example_keys: If provided, keys to filter examples to.
|
||||
vectorstore_kwargs: Extra arguments passed to similarity_search function
|
||||
of the `VectorStore`.
|
||||
of the vectorstore.
|
||||
vectorstore_cls_kwargs: optional kwargs containing url for vector store
|
||||
|
||||
Returns:
|
||||
|
||||
@@ -16,10 +16,9 @@ class OutputParserException(ValueError, LangChainException): # noqa: N818
|
||||
"""Exception that output parsers should raise to signify a parsing error.
|
||||
|
||||
This exists to differentiate parsing errors from other code or execution errors
|
||||
that also may arise inside the output parser.
|
||||
|
||||
`OutputParserException` will be available to catch and handle in ways to fix the
|
||||
parsing error, while other errors will be raised.
|
||||
that also may arise inside the output parser. OutputParserExceptions will be
|
||||
available to catch and handle in ways to fix the parsing error, while other
|
||||
errors will be raised.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
@@ -29,24 +28,24 @@ class OutputParserException(ValueError, LangChainException): # noqa: N818
|
||||
llm_output: str | None = None,
|
||||
send_to_llm: bool = False, # noqa: FBT001,FBT002
|
||||
):
|
||||
"""Create an `OutputParserException`.
|
||||
"""Create an OutputParserException.
|
||||
|
||||
Args:
|
||||
error: The error that's being re-raised or an error message.
|
||||
observation: String explanation of error which can be passed to a model to
|
||||
try and remediate the issue.
|
||||
observation: String explanation of error which can be passed to a
|
||||
model to try and remediate the issue. Defaults to `None`.
|
||||
llm_output: String model output which is error-ing.
|
||||
|
||||
Defaults to `None`.
|
||||
send_to_llm: Whether to send the observation and llm_output back to an Agent
|
||||
after an `OutputParserException` has been raised.
|
||||
|
||||
after an OutputParserException has been raised.
|
||||
This gives the underlying model driving the agent the context that the
|
||||
previous output was improperly structured, in the hopes that it will
|
||||
update the output to the correct format.
|
||||
Defaults to `False`.
|
||||
|
||||
Raises:
|
||||
ValueError: If `send_to_llm` is `True` but either observation or
|
||||
`llm_output` are not provided.
|
||||
ValueError: If ``send_to_llm`` is True but either observation or
|
||||
``llm_output`` are not provided.
|
||||
"""
|
||||
if isinstance(error, str):
|
||||
error = create_message(
|
||||
@@ -68,11 +67,11 @@ class ErrorCode(Enum):
|
||||
"""Error codes."""
|
||||
|
||||
INVALID_PROMPT_INPUT = "INVALID_PROMPT_INPUT"
|
||||
INVALID_TOOL_RESULTS = "INVALID_TOOL_RESULTS" # Used in JS; not Py (yet)
|
||||
INVALID_TOOL_RESULTS = "INVALID_TOOL_RESULTS"
|
||||
MESSAGE_COERCION_FAILURE = "MESSAGE_COERCION_FAILURE"
|
||||
MODEL_AUTHENTICATION = "MODEL_AUTHENTICATION" # Used in JS; not Py (yet)
|
||||
MODEL_NOT_FOUND = "MODEL_NOT_FOUND" # Used in JS; not Py (yet)
|
||||
MODEL_RATE_LIMIT = "MODEL_RATE_LIMIT" # Used in JS; not Py (yet)
|
||||
MODEL_AUTHENTICATION = "MODEL_AUTHENTICATION"
|
||||
MODEL_NOT_FOUND = "MODEL_NOT_FOUND"
|
||||
MODEL_RATE_LIMIT = "MODEL_RATE_LIMIT"
|
||||
OUTPUT_PARSING_FAILURE = "OUTPUT_PARSING_FAILURE"
|
||||
|
||||
|
||||
@@ -88,6 +87,6 @@ def create_message(*, message: str, error_code: ErrorCode) -> str:
|
||||
"""
|
||||
return (
|
||||
f"{message}\n"
|
||||
"For troubleshooting, visit: https://docs.langchain.com/oss/python/langchain"
|
||||
f"/errors/{error_code.value} "
|
||||
"For troubleshooting, visit: https://python.langchain.com/docs/"
|
||||
f"troubleshooting/errors/{error_code.value} "
|
||||
)
|
||||
|
||||
@@ -1,7 +1,7 @@
|
||||
"""Code to help indexing data into a vectorstore.
|
||||
|
||||
This package contains helper logic to help deal with indexing data into
|
||||
a `VectorStore` while avoiding duplicated content and over-writing content
|
||||
a vectorstore while avoiding duplicated content and over-writing content
|
||||
if it's unchanged.
|
||||
"""
|
||||
|
||||
|
||||
@@ -6,9 +6,16 @@ import hashlib
|
||||
import json
|
||||
import uuid
|
||||
import warnings
|
||||
from collections.abc import (
|
||||
AsyncIterable,
|
||||
AsyncIterator,
|
||||
Callable,
|
||||
Iterable,
|
||||
Iterator,
|
||||
Sequence,
|
||||
)
|
||||
from itertools import islice
|
||||
from typing import (
|
||||
TYPE_CHECKING,
|
||||
Any,
|
||||
Literal,
|
||||
TypedDict,
|
||||
@@ -22,16 +29,6 @@ from langchain_core.exceptions import LangChainException
|
||||
from langchain_core.indexing.base import DocumentIndex, RecordManager
|
||||
from langchain_core.vectorstores import VectorStore
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from collections.abc import (
|
||||
AsyncIterable,
|
||||
AsyncIterator,
|
||||
Callable,
|
||||
Iterable,
|
||||
Iterator,
|
||||
Sequence,
|
||||
)
|
||||
|
||||
# Magic UUID to use as a namespace for hashing.
|
||||
# Used to try and generate a unique UUID for each document
|
||||
# from hashing the document content and metadata.
|
||||
@@ -242,17 +239,6 @@ def _delete(
|
||||
vector_store: VectorStore | DocumentIndex,
|
||||
ids: list[str],
|
||||
) -> None:
|
||||
"""Delete documents from a vector store or document index by their IDs.
|
||||
|
||||
Args:
|
||||
vector_store: The vector store or document index to delete from.
|
||||
ids: List of document IDs to delete.
|
||||
|
||||
Raises:
|
||||
IndexingException: If the delete operation fails.
|
||||
TypeError: If the `vector_store` is neither a `VectorStore` nor a
|
||||
`DocumentIndex`.
|
||||
"""
|
||||
if isinstance(vector_store, VectorStore):
|
||||
delete_ok = vector_store.delete(ids)
|
||||
if delete_ok is not None and delete_ok is False:
|
||||
@@ -312,59 +298,61 @@ def index(
|
||||
For the time being, documents are indexed using their hashes, and users
|
||||
are not able to specify the uid of the document.
|
||||
|
||||
!!! warning "Behavior changed in `langchain-core` 0.3.25"
|
||||
|
||||
!!! warning "Behavior changed in 0.3.25"
|
||||
Added `scoped_full` cleanup mode.
|
||||
|
||||
!!! warning
|
||||
|
||||
* In full mode, the loader should be returning
|
||||
the entire dataset, and not just a subset of the dataset.
|
||||
Otherwise, the auto_cleanup will remove documents that it is not
|
||||
supposed to.
|
||||
the entire dataset, and not just a subset of the dataset.
|
||||
Otherwise, the auto_cleanup will remove documents that it is not
|
||||
supposed to.
|
||||
* In incremental mode, if documents associated with a particular
|
||||
source id appear across different batches, the indexing API
|
||||
will do some redundant work. This will still result in the
|
||||
correct end state of the index, but will unfortunately not be
|
||||
100% efficient. For example, if a given document is split into 15
|
||||
chunks, and we index them using a batch size of 5, we'll have 3 batches
|
||||
all with the same source id. In general, to avoid doing too much
|
||||
redundant work select as big a batch size as possible.
|
||||
source id appear across different batches, the indexing API
|
||||
will do some redundant work. This will still result in the
|
||||
correct end state of the index, but will unfortunately not be
|
||||
100% efficient. For example, if a given document is split into 15
|
||||
chunks, and we index them using a batch size of 5, we'll have 3 batches
|
||||
all with the same source id. In general, to avoid doing too much
|
||||
redundant work select as big a batch size as possible.
|
||||
* The `scoped_full` mode is suitable if determining an appropriate batch size
|
||||
is challenging or if your data loader cannot return the entire dataset at
|
||||
once. This mode keeps track of source IDs in memory, which should be fine
|
||||
for most use cases. If your dataset is large (10M+ docs), you will likely
|
||||
need to parallelize the indexing process regardless.
|
||||
is challenging or if your data loader cannot return the entire dataset at
|
||||
once. This mode keeps track of source IDs in memory, which should be fine
|
||||
for most use cases. If your dataset is large (10M+ docs), you will likely
|
||||
need to parallelize the indexing process regardless.
|
||||
|
||||
Args:
|
||||
docs_source: Data loader or iterable of documents to index.
|
||||
record_manager: Timestamped set to keep track of which documents were
|
||||
updated.
|
||||
vector_store: `VectorStore` or DocumentIndex to index the documents into.
|
||||
batch_size: Batch size to use when indexing.
|
||||
cleanup: How to handle clean up of documents.
|
||||
vector_store: VectorStore or DocumentIndex to index the documents into.
|
||||
batch_size: Batch size to use when indexing. Default is 100.
|
||||
cleanup: How to handle clean up of documents. Default is None.
|
||||
|
||||
- incremental: Cleans up all documents that haven't been updated AND
|
||||
that are associated with source IDs that were seen during indexing.
|
||||
Clean up is done continuously during indexing helping to minimize the
|
||||
probability of users seeing duplicated content.
|
||||
that are associated with source ids that were seen during indexing.
|
||||
Clean up is done continuously during indexing helping to minimize the
|
||||
probability of users seeing duplicated content.
|
||||
- full: Delete all documents that have not been returned by the loader
|
||||
during this run of indexing.
|
||||
Clean up runs after all documents have been indexed.
|
||||
This means that users may see duplicated content during indexing.
|
||||
during this run of indexing.
|
||||
Clean up runs after all documents have been indexed.
|
||||
This means that users may see duplicated content during indexing.
|
||||
- scoped_full: Similar to Full, but only deletes all documents
|
||||
that haven't been updated AND that are associated with
|
||||
source IDs that were seen during indexing.
|
||||
that haven't been updated AND that are associated with
|
||||
source ids that were seen during indexing.
|
||||
- None: Do not delete any documents.
|
||||
source_id_key: Optional key that helps identify the original source
|
||||
of the document.
|
||||
of the document. Default is None.
|
||||
cleanup_batch_size: Batch size to use when cleaning up documents.
|
||||
Default is 1_000.
|
||||
force_update: Force update documents even if they are present in the
|
||||
record manager. Useful if you are re-indexing with updated embeddings.
|
||||
Default is False.
|
||||
key_encoder: Hashing algorithm to use for hashing the document content and
|
||||
metadata. Options include "blake2b", "sha256", and "sha512".
|
||||
metadata. Default is "sha1".
|
||||
Other options include "blake2b", "sha256", and "sha512".
|
||||
|
||||
!!! version-added "Added in `langchain-core` 0.3.66"
|
||||
!!! version-added "Added in version 0.3.66"
|
||||
|
||||
key_encoder: Hashing algorithm to use for hashing the document.
|
||||
If not provided, a default encoder using SHA-1 will be used.
|
||||
@@ -378,10 +366,10 @@ def index(
|
||||
When changing the key encoder, you must change the
|
||||
index as well to avoid duplicated documents in the cache.
|
||||
upsert_kwargs: Additional keyword arguments to pass to the add_documents
|
||||
method of the `VectorStore` or the upsert method of the DocumentIndex.
|
||||
method of the VectorStore or the upsert method of the DocumentIndex.
|
||||
For example, you can use this to specify a custom vector_field:
|
||||
upsert_kwargs={"vector_field": "embedding"}
|
||||
!!! version-added "Added in `langchain-core` 0.3.10"
|
||||
!!! version-added "Added in version 0.3.10"
|
||||
|
||||
Returns:
|
||||
Indexing result which contains information about how many documents
|
||||
@@ -390,10 +378,10 @@ def index(
|
||||
Raises:
|
||||
ValueError: If cleanup mode is not one of 'incremental', 'full' or None
|
||||
ValueError: If cleanup mode is incremental and source_id_key is None.
|
||||
ValueError: If `VectorStore` does not have
|
||||
ValueError: If vectorstore does not have
|
||||
"delete" and "add_documents" required methods.
|
||||
ValueError: If source_id_key is not None, but is not a string or callable.
|
||||
TypeError: If `vectorstore` is not a `VectorStore` or a DocumentIndex.
|
||||
TypeError: If `vectorstore` is not a VectorStore or a DocumentIndex.
|
||||
AssertionError: If `source_id` is None when cleanup mode is incremental.
|
||||
(should be unreachable code).
|
||||
"""
|
||||
@@ -430,7 +418,7 @@ def index(
|
||||
raise ValueError(msg)
|
||||
|
||||
if type(destination).delete == VectorStore.delete:
|
||||
# Checking if the VectorStore has overridden the default delete method
|
||||
# Checking if the vectorstore has overridden the default delete method
|
||||
# implementation which just raises a NotImplementedError
|
||||
msg = "Vectorstore has not implemented the delete method"
|
||||
raise ValueError(msg)
|
||||
@@ -481,11 +469,11 @@ def index(
|
||||
]
|
||||
|
||||
if cleanup in {"incremental", "scoped_full"}:
|
||||
# Source IDs are required.
|
||||
# source ids are required.
|
||||
for source_id, hashed_doc in zip(source_ids, hashed_docs, strict=False):
|
||||
if source_id is None:
|
||||
msg = (
|
||||
f"Source IDs are required when cleanup mode is "
|
||||
f"Source ids are required when cleanup mode is "
|
||||
f"incremental or scoped_full. "
|
||||
f"Document that starts with "
|
||||
f"content: {hashed_doc.page_content[:100]} "
|
||||
@@ -494,7 +482,7 @@ def index(
|
||||
raise ValueError(msg)
|
||||
if cleanup == "scoped_full":
|
||||
scoped_full_cleanup_source_ids.add(source_id)
|
||||
# Source IDs cannot be None after for loop above.
|
||||
# source ids cannot be None after for loop above.
|
||||
source_ids = cast("Sequence[str]", source_ids)
|
||||
|
||||
exists_batch = record_manager.exists(
|
||||
@@ -553,7 +541,7 @@ def index(
|
||||
# If source IDs are provided, we can do the deletion incrementally!
|
||||
if cleanup == "incremental":
|
||||
# Get the uids of the documents that were not returned by the loader.
|
||||
# mypy isn't good enough to determine that source IDs cannot be None
|
||||
# mypy isn't good enough to determine that source ids cannot be None
|
||||
# here due to a check that's happening above, so we check again.
|
||||
for source_id in source_ids:
|
||||
if source_id is None:
|
||||
@@ -651,59 +639,61 @@ async def aindex(
|
||||
For the time being, documents are indexed using their hashes, and users
|
||||
are not able to specify the uid of the document.
|
||||
|
||||
!!! warning "Behavior changed in `langchain-core` 0.3.25"
|
||||
|
||||
!!! warning "Behavior changed in 0.3.25"
|
||||
Added `scoped_full` cleanup mode.
|
||||
|
||||
!!! warning
|
||||
|
||||
* In full mode, the loader should be returning
|
||||
the entire dataset, and not just a subset of the dataset.
|
||||
Otherwise, the auto_cleanup will remove documents that it is not
|
||||
supposed to.
|
||||
the entire dataset, and not just a subset of the dataset.
|
||||
Otherwise, the auto_cleanup will remove documents that it is not
|
||||
supposed to.
|
||||
* In incremental mode, if documents associated with a particular
|
||||
source id appear across different batches, the indexing API
|
||||
will do some redundant work. This will still result in the
|
||||
correct end state of the index, but will unfortunately not be
|
||||
100% efficient. For example, if a given document is split into 15
|
||||
chunks, and we index them using a batch size of 5, we'll have 3 batches
|
||||
all with the same source id. In general, to avoid doing too much
|
||||
redundant work select as big a batch size as possible.
|
||||
source id appear across different batches, the indexing API
|
||||
will do some redundant work. This will still result in the
|
||||
correct end state of the index, but will unfortunately not be
|
||||
100% efficient. For example, if a given document is split into 15
|
||||
chunks, and we index them using a batch size of 5, we'll have 3 batches
|
||||
all with the same source id. In general, to avoid doing too much
|
||||
redundant work select as big a batch size as possible.
|
||||
* The `scoped_full` mode is suitable if determining an appropriate batch size
|
||||
is challenging or if your data loader cannot return the entire dataset at
|
||||
once. This mode keeps track of source IDs in memory, which should be fine
|
||||
for most use cases. If your dataset is large (10M+ docs), you will likely
|
||||
need to parallelize the indexing process regardless.
|
||||
is challenging or if your data loader cannot return the entire dataset at
|
||||
once. This mode keeps track of source IDs in memory, which should be fine
|
||||
for most use cases. If your dataset is large (10M+ docs), you will likely
|
||||
need to parallelize the indexing process regardless.
|
||||
|
||||
Args:
|
||||
docs_source: Data loader or iterable of documents to index.
|
||||
record_manager: Timestamped set to keep track of which documents were
|
||||
updated.
|
||||
vector_store: `VectorStore` or DocumentIndex to index the documents into.
|
||||
batch_size: Batch size to use when indexing.
|
||||
cleanup: How to handle clean up of documents.
|
||||
vector_store: VectorStore or DocumentIndex to index the documents into.
|
||||
batch_size: Batch size to use when indexing. Default is 100.
|
||||
cleanup: How to handle clean up of documents. Default is None.
|
||||
|
||||
- incremental: Cleans up all documents that haven't been updated AND
|
||||
that are associated with source IDs that were seen during indexing.
|
||||
Clean up is done continuously during indexing helping to minimize the
|
||||
probability of users seeing duplicated content.
|
||||
that are associated with source ids that were seen during indexing.
|
||||
Clean up is done continuously during indexing helping to minimize the
|
||||
probability of users seeing duplicated content.
|
||||
- full: Delete all documents that have not been returned by the loader
|
||||
during this run of indexing.
|
||||
Clean up runs after all documents have been indexed.
|
||||
This means that users may see duplicated content during indexing.
|
||||
during this run of indexing.
|
||||
Clean up runs after all documents have been indexed.
|
||||
This means that users may see duplicated content during indexing.
|
||||
- scoped_full: Similar to Full, but only deletes all documents
|
||||
that haven't been updated AND that are associated with
|
||||
source IDs that were seen during indexing.
|
||||
that haven't been updated AND that are associated with
|
||||
source ids that were seen during indexing.
|
||||
- None: Do not delete any documents.
|
||||
source_id_key: Optional key that helps identify the original source
|
||||
of the document.
|
||||
of the document. Default is None.
|
||||
cleanup_batch_size: Batch size to use when cleaning up documents.
|
||||
Default is 1_000.
|
||||
force_update: Force update documents even if they are present in the
|
||||
record manager. Useful if you are re-indexing with updated embeddings.
|
||||
Default is False.
|
||||
key_encoder: Hashing algorithm to use for hashing the document content and
|
||||
metadata. Options include "blake2b", "sha256", and "sha512".
|
||||
metadata. Default is "sha1".
|
||||
Other options include "blake2b", "sha256", and "sha512".
|
||||
|
||||
!!! version-added "Added in `langchain-core` 0.3.66"
|
||||
!!! version-added "Added in version 0.3.66"
|
||||
|
||||
key_encoder: Hashing algorithm to use for hashing the document.
|
||||
If not provided, a default encoder using SHA-1 will be used.
|
||||
@@ -717,10 +707,10 @@ async def aindex(
|
||||
When changing the key encoder, you must change the
|
||||
index as well to avoid duplicated documents in the cache.
|
||||
upsert_kwargs: Additional keyword arguments to pass to the add_documents
|
||||
method of the `VectorStore` or the upsert method of the DocumentIndex.
|
||||
method of the VectorStore or the upsert method of the DocumentIndex.
|
||||
For example, you can use this to specify a custom vector_field:
|
||||
upsert_kwargs={"vector_field": "embedding"}
|
||||
!!! version-added "Added in `langchain-core` 0.3.10"
|
||||
!!! version-added "Added in version 0.3.10"
|
||||
|
||||
Returns:
|
||||
Indexing result which contains information about how many documents
|
||||
@@ -729,10 +719,10 @@ async def aindex(
|
||||
Raises:
|
||||
ValueError: If cleanup mode is not one of 'incremental', 'full' or None
|
||||
ValueError: If cleanup mode is incremental and source_id_key is None.
|
||||
ValueError: If `VectorStore` does not have
|
||||
ValueError: If vectorstore does not have
|
||||
"adelete" and "aadd_documents" required methods.
|
||||
ValueError: If source_id_key is not None, but is not a string or callable.
|
||||
TypeError: If `vector_store` is not a `VectorStore` or DocumentIndex.
|
||||
TypeError: If `vector_store` is not a VectorStore or DocumentIndex.
|
||||
AssertionError: If `source_id_key` is None when cleanup mode is
|
||||
incremental or `scoped_full` (should be unreachable).
|
||||
"""
|
||||
@@ -773,7 +763,7 @@ async def aindex(
|
||||
type(destination).adelete == VectorStore.adelete
|
||||
and type(destination).delete == VectorStore.delete
|
||||
):
|
||||
# Checking if the VectorStore has overridden the default adelete or delete
|
||||
# Checking if the vectorstore has overridden the default adelete or delete
|
||||
# methods implementation which just raises a NotImplementedError
|
||||
msg = "Vectorstore has not implemented the adelete or delete method"
|
||||
raise ValueError(msg)
|
||||
@@ -831,11 +821,11 @@ async def aindex(
|
||||
]
|
||||
|
||||
if cleanup in {"incremental", "scoped_full"}:
|
||||
# If the cleanup mode is incremental, source IDs are required.
|
||||
# If the cleanup mode is incremental, source ids are required.
|
||||
for source_id, hashed_doc in zip(source_ids, hashed_docs, strict=False):
|
||||
if source_id is None:
|
||||
msg = (
|
||||
f"Source IDs are required when cleanup mode is "
|
||||
f"Source ids are required when cleanup mode is "
|
||||
f"incremental or scoped_full. "
|
||||
f"Document that starts with "
|
||||
f"content: {hashed_doc.page_content[:100]} "
|
||||
@@ -844,7 +834,7 @@ async def aindex(
|
||||
raise ValueError(msg)
|
||||
if cleanup == "scoped_full":
|
||||
scoped_full_cleanup_source_ids.add(source_id)
|
||||
# Source IDs cannot be None after for loop above.
|
||||
# source ids cannot be None after for loop above.
|
||||
source_ids = cast("Sequence[str]", source_ids)
|
||||
|
||||
exists_batch = await record_manager.aexists(
|
||||
@@ -904,7 +894,7 @@ async def aindex(
|
||||
if cleanup == "incremental":
|
||||
# Get the uids of the documents that were not returned by the loader.
|
||||
|
||||
# mypy isn't good enough to determine that source IDs cannot be None
|
||||
# mypy isn't good enough to determine that source ids cannot be None
|
||||
# here due to a check that's happening above, so we check again.
|
||||
for source_id in source_ids:
|
||||
if source_id is None:
|
||||
|
||||
@@ -25,7 +25,7 @@ class RecordManager(ABC):
|
||||
The record manager abstraction is used by the langchain indexing API.
|
||||
|
||||
The record manager keeps track of which documents have been
|
||||
written into a `VectorStore` and when they were written.
|
||||
written into a vectorstore and when they were written.
|
||||
|
||||
The indexing API computes hashes for each document and stores the hash
|
||||
together with the write time and the source id in the record manager.
|
||||
@@ -37,7 +37,7 @@ class RecordManager(ABC):
|
||||
already been indexed, and to only index new documents.
|
||||
|
||||
The main benefit of this abstraction is that it works across many vectorstores.
|
||||
To be supported, a `VectorStore` needs to only support the ability to add and
|
||||
To be supported, a vectorstore needs to only support the ability to add and
|
||||
delete documents by ID. Using the record manager, the indexing API will
|
||||
be able to delete outdated documents and avoid redundant indexing of documents
|
||||
that have already been indexed.
|
||||
@@ -45,13 +45,13 @@ class RecordManager(ABC):
|
||||
The main constraints of this abstraction are:
|
||||
|
||||
1. It relies on the time-stamps to determine which documents have been
|
||||
indexed and which have not. This means that the time-stamps must be
|
||||
monotonically increasing. The timestamp should be the timestamp
|
||||
as measured by the server to minimize issues.
|
||||
indexed and which have not. This means that the time-stamps must be
|
||||
monotonically increasing. The timestamp should be the timestamp
|
||||
as measured by the server to minimize issues.
|
||||
2. The record manager is currently implemented separately from the
|
||||
vectorstore, which means that the overall system becomes distributed
|
||||
and may create issues with consistency. For example, writing to
|
||||
record manager succeeds, but corresponding writing to `VectorStore` fails.
|
||||
vectorstore, which means that the overall system becomes distributed
|
||||
and may create issues with consistency. For example, writing to
|
||||
record manager succeeds, but corresponding writing to vectorstore fails.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
@@ -61,7 +61,7 @@ class RecordManager(ABC):
|
||||
"""Initialize the record manager.
|
||||
|
||||
Args:
|
||||
namespace: The namespace for the record manager.
|
||||
namespace (str): The namespace for the record manager.
|
||||
"""
|
||||
self.namespace = namespace
|
||||
|
||||
@@ -244,7 +244,7 @@ class InMemoryRecordManager(RecordManager):
|
||||
"""Initialize the in-memory record manager.
|
||||
|
||||
Args:
|
||||
namespace: The namespace for the record manager.
|
||||
namespace (str): The namespace for the record manager.
|
||||
"""
|
||||
super().__init__(namespace)
|
||||
# Each key points to a dictionary
|
||||
@@ -278,10 +278,10 @@ class InMemoryRecordManager(RecordManager):
|
||||
Args:
|
||||
keys: A list of record keys to upsert.
|
||||
group_ids: A list of group IDs corresponding to the keys.
|
||||
|
||||
Defaults to `None`.
|
||||
time_at_least: Optional timestamp. Implementation can use this
|
||||
to optionally verify that the timestamp IS at least this time
|
||||
in the system that stores.
|
||||
in the system that stores. Defaults to `None`.
|
||||
E.g., use to validate that the time in the postgres database
|
||||
is equal to or larger than the given timestamp, if not
|
||||
raise an error.
|
||||
@@ -315,10 +315,10 @@ class InMemoryRecordManager(RecordManager):
|
||||
Args:
|
||||
keys: A list of record keys to upsert.
|
||||
group_ids: A list of group IDs corresponding to the keys.
|
||||
|
||||
Defaults to `None`.
|
||||
time_at_least: Optional timestamp. Implementation can use this
|
||||
to optionally verify that the timestamp IS at least this time
|
||||
in the system that stores.
|
||||
in the system that stores. Defaults to `None`.
|
||||
E.g., use to validate that the time in the postgres database
|
||||
is equal to or larger than the given timestamp, if not
|
||||
raise an error.
|
||||
@@ -361,13 +361,13 @@ class InMemoryRecordManager(RecordManager):
|
||||
|
||||
Args:
|
||||
before: Filter to list records updated before this time.
|
||||
|
||||
Defaults to `None`.
|
||||
after: Filter to list records updated after this time.
|
||||
|
||||
Defaults to `None`.
|
||||
group_ids: Filter to list records with specific group IDs.
|
||||
|
||||
Defaults to `None`.
|
||||
limit: optional limit on the number of records to return.
|
||||
|
||||
Defaults to `None`.
|
||||
|
||||
Returns:
|
||||
A list of keys for the matching records.
|
||||
@@ -397,13 +397,13 @@ class InMemoryRecordManager(RecordManager):
|
||||
|
||||
Args:
|
||||
before: Filter to list records updated before this time.
|
||||
|
||||
Defaults to `None`.
|
||||
after: Filter to list records updated after this time.
|
||||
|
||||
Defaults to `None`.
|
||||
group_ids: Filter to list records with specific group IDs.
|
||||
|
||||
Defaults to `None`.
|
||||
limit: optional limit on the number of records to return.
|
||||
|
||||
Defaults to `None`.
|
||||
|
||||
Returns:
|
||||
A list of keys for the matching records.
|
||||
@@ -460,7 +460,7 @@ class UpsertResponse(TypedDict):
|
||||
class DeleteResponse(TypedDict, total=False):
|
||||
"""A generic response for delete operation.
|
||||
|
||||
The fields in this response are optional and whether the `VectorStore`
|
||||
The fields in this response are optional and whether the vectorstore
|
||||
returns them or not is up to the implementation.
|
||||
"""
|
||||
|
||||
@@ -508,6 +508,8 @@ class DocumentIndex(BaseRetriever):
|
||||
1. Storing document in the index.
|
||||
2. Fetching document by ID.
|
||||
3. Searching for document using a query.
|
||||
|
||||
!!! version-added "Added in version 0.2.29"
|
||||
"""
|
||||
|
||||
@abc.abstractmethod
|
||||
@@ -518,40 +520,40 @@ class DocumentIndex(BaseRetriever):
|
||||
if it is provided. If the ID is not provided, the upsert method is free
|
||||
to generate an ID for the content.
|
||||
|
||||
When an ID is specified and the content already exists in the `VectorStore`,
|
||||
When an ID is specified and the content already exists in the vectorstore,
|
||||
the upsert method should update the content with the new data. If the content
|
||||
does not exist, the upsert method should add the item to the `VectorStore`.
|
||||
does not exist, the upsert method should add the item to the vectorstore.
|
||||
|
||||
Args:
|
||||
items: Sequence of documents to add to the `VectorStore`.
|
||||
items: Sequence of documents to add to the vectorstore.
|
||||
**kwargs: Additional keyword arguments.
|
||||
|
||||
Returns:
|
||||
A response object that contains the list of IDs that were
|
||||
successfully added or updated in the `VectorStore` and the list of IDs that
|
||||
UpsertResponse: A response object that contains the list of IDs that were
|
||||
successfully added or updated in the vectorstore and the list of IDs that
|
||||
failed to be added or updated.
|
||||
"""
|
||||
|
||||
async def aupsert(
|
||||
self, items: Sequence[Document], /, **kwargs: Any
|
||||
) -> UpsertResponse:
|
||||
"""Add or update documents in the `VectorStore`. Async version of `upsert`.
|
||||
"""Add or update documents in the vectorstore. Async version of upsert.
|
||||
|
||||
The upsert functionality should utilize the ID field of the item
|
||||
if it is provided. If the ID is not provided, the upsert method is free
|
||||
to generate an ID for the item.
|
||||
|
||||
When an ID is specified and the item already exists in the `VectorStore`,
|
||||
When an ID is specified and the item already exists in the vectorstore,
|
||||
the upsert method should update the item with the new data. If the item
|
||||
does not exist, the upsert method should add the item to the `VectorStore`.
|
||||
does not exist, the upsert method should add the item to the vectorstore.
|
||||
|
||||
Args:
|
||||
items: Sequence of documents to add to the `VectorStore`.
|
||||
items: Sequence of documents to add to the vectorstore.
|
||||
**kwargs: Additional keyword arguments.
|
||||
|
||||
Returns:
|
||||
A response object that contains the list of IDs that were
|
||||
successfully added or updated in the `VectorStore` and the list of IDs that
|
||||
UpsertResponse: A response object that contains the list of IDs that were
|
||||
successfully added or updated in the vectorstore and the list of IDs that
|
||||
failed to be added or updated.
|
||||
"""
|
||||
return await run_in_executor(
|
||||
@@ -568,13 +570,13 @@ class DocumentIndex(BaseRetriever):
|
||||
Calling delete without any input parameters should raise a ValueError!
|
||||
|
||||
Args:
|
||||
ids: List of IDs to delete.
|
||||
**kwargs: Additional keyword arguments. This is up to the implementation.
|
||||
ids: List of ids to delete.
|
||||
kwargs: Additional keyword arguments. This is up to the implementation.
|
||||
For example, can include an option to delete the entire index,
|
||||
or else issue a non-blocking delete etc.
|
||||
|
||||
Returns:
|
||||
A response object that contains the list of IDs that were
|
||||
DeleteResponse: A response object that contains the list of IDs that were
|
||||
successfully deleted and the list of IDs that failed to be deleted.
|
||||
"""
|
||||
|
||||
@@ -586,12 +588,12 @@ class DocumentIndex(BaseRetriever):
|
||||
Calling adelete without any input parameters should raise a ValueError!
|
||||
|
||||
Args:
|
||||
ids: List of IDs to delete.
|
||||
**kwargs: Additional keyword arguments. This is up to the implementation.
|
||||
ids: List of ids to delete.
|
||||
kwargs: Additional keyword arguments. This is up to the implementation.
|
||||
For example, can include an option to delete the entire index.
|
||||
|
||||
Returns:
|
||||
A response object that contains the list of IDs that were
|
||||
DeleteResponse: A response object that contains the list of IDs that were
|
||||
successfully deleted and the list of IDs that failed to be deleted.
|
||||
"""
|
||||
return await run_in_executor(
|
||||
@@ -622,10 +624,10 @@ class DocumentIndex(BaseRetriever):
|
||||
|
||||
Args:
|
||||
ids: List of IDs to get.
|
||||
**kwargs: Additional keyword arguments. These are up to the implementation.
|
||||
kwargs: Additional keyword arguments. These are up to the implementation.
|
||||
|
||||
Returns:
|
||||
List of documents that were found.
|
||||
list[Document]: List of documents that were found.
|
||||
"""
|
||||
|
||||
async def aget(
|
||||
@@ -648,10 +650,10 @@ class DocumentIndex(BaseRetriever):
|
||||
|
||||
Args:
|
||||
ids: List of IDs to get.
|
||||
**kwargs: Additional keyword arguments. These are up to the implementation.
|
||||
kwargs: Additional keyword arguments. These are up to the implementation.
|
||||
|
||||
Returns:
|
||||
List of documents that were found.
|
||||
list[Document]: List of documents that were found.
|
||||
"""
|
||||
return await run_in_executor(
|
||||
None,
|
||||
|
||||
@@ -23,6 +23,8 @@ class InMemoryDocumentIndex(DocumentIndex):
|
||||
|
||||
It provides a simple search API that returns documents by the number of
|
||||
counts the given query appears in the document.
|
||||
|
||||
!!! version-added "Added in version 0.2.29"
|
||||
"""
|
||||
|
||||
store: dict[str, Document] = Field(default_factory=dict)
|
||||
@@ -62,10 +64,10 @@ class InMemoryDocumentIndex(DocumentIndex):
|
||||
"""Delete by IDs.
|
||||
|
||||
Args:
|
||||
ids: List of IDs to delete.
|
||||
ids: List of ids to delete.
|
||||
|
||||
Raises:
|
||||
ValueError: If IDs is None.
|
||||
ValueError: If ids is None.
|
||||
|
||||
Returns:
|
||||
A response object that contains the list of IDs that were successfully
|
||||
|
||||
@@ -1,32 +1,45 @@
|
||||
"""Core language model abstractions.
|
||||
"""Language models.
|
||||
|
||||
LangChain has two main classes to work with language models: chat models and
|
||||
"old-fashioned" LLMs (string-in, string-out).
|
||||
**Language Model** is a type of model that can generate text or complete
|
||||
text prompts.
|
||||
|
||||
**Chat models**
|
||||
LangChain has two main classes to work with language models: **Chat Models**
|
||||
and "old-fashioned" **LLMs**.
|
||||
|
||||
**Chat Models**
|
||||
|
||||
Language models that use a sequence of messages as inputs and return chat messages
|
||||
as outputs (as opposed to using plain text).
|
||||
as outputs (as opposed to using plain text). These are traditionally newer models (
|
||||
older models are generally LLMs, see below). Chat models support the assignment of
|
||||
distinct roles to conversation messages, helping to distinguish messages from the AI,
|
||||
users, and instructions such as system messages.
|
||||
|
||||
Chat models support the assignment of distinct roles to conversation messages, helping
|
||||
to distinguish messages from the AI, users, and instructions such as system messages.
|
||||
The key abstraction for chat models is `BaseChatModel`. Implementations
|
||||
should inherit from this class. Please see LangChain how-to guides with more
|
||||
information on how to implement a custom chat model.
|
||||
|
||||
The key abstraction for chat models is
|
||||
[`BaseChatModel`][langchain_core.language_models.BaseChatModel]. Implementations should
|
||||
inherit from this class.
|
||||
To implement a custom Chat Model, inherit from `BaseChatModel`. See
|
||||
the following guide for more information on how to implement a custom Chat Model:
|
||||
|
||||
See existing [chat model integrations](https://docs.langchain.com/oss/python/integrations/chat).
|
||||
https://python.langchain.com/docs/how_to/custom_chat_model/
|
||||
|
||||
**LLMs (legacy)**
|
||||
**LLMs**
|
||||
|
||||
Language models that takes a string as input and returns a string.
|
||||
These are traditionally older models (newer models generally are Chat Models,
|
||||
see below).
|
||||
|
||||
Although the underlying models are string in, string out, the LangChain wrappers
|
||||
also allow these models to take messages as input. This gives them the same interface
|
||||
as Chat Models. When messages are passed in as input, they will be formatted into a
|
||||
string under the hood before being passed to the underlying model.
|
||||
|
||||
To implement a custom LLM, inherit from `BaseLLM` or `LLM`.
|
||||
Please see the following guide for more information on how to implement a custom LLM:
|
||||
|
||||
https://python.langchain.com/docs/how_to/custom_llm/
|
||||
|
||||
These are traditionally older models (newer models generally are chat models).
|
||||
|
||||
Although the underlying models are string in, string out, the LangChain wrappers also
|
||||
allow these models to take messages as input. This gives them the same interface as
|
||||
chat models. When messages are passed in as input, they will be formatted into a string
|
||||
under the hood before being passed to the underlying model.
|
||||
"""
|
||||
|
||||
from typing import TYPE_CHECKING
|
||||
@@ -55,10 +68,6 @@ if TYPE_CHECKING:
|
||||
ParrotFakeChatModel,
|
||||
)
|
||||
from langchain_core.language_models.llms import LLM, BaseLLM
|
||||
from langchain_core.language_models.model_profile import (
|
||||
ModelProfile,
|
||||
ModelProfileRegistry,
|
||||
)
|
||||
|
||||
__all__ = (
|
||||
"LLM",
|
||||
@@ -74,8 +83,6 @@ __all__ = (
|
||||
"LanguageModelInput",
|
||||
"LanguageModelLike",
|
||||
"LanguageModelOutput",
|
||||
"ModelProfile",
|
||||
"ModelProfileRegistry",
|
||||
"ParrotFakeChatModel",
|
||||
"SimpleChatModel",
|
||||
"get_tokenizer",
|
||||
@@ -98,8 +105,6 @@ _dynamic_imports = {
|
||||
"GenericFakeChatModel": "fake_chat_models",
|
||||
"ParrotFakeChatModel": "fake_chat_models",
|
||||
"LLM": "llms",
|
||||
"ModelProfile": "model_profile",
|
||||
"ModelProfileRegistry": "model_profile",
|
||||
"BaseLLM": "llms",
|
||||
"is_openai_data_block": "_utils",
|
||||
}
|
||||
|
||||
@@ -35,7 +35,7 @@ def is_openai_data_block(
|
||||
different type, this function will return False.
|
||||
|
||||
Returns:
|
||||
`True` if the block is a valid OpenAI data block and matches the filter_
|
||||
True if the block is a valid OpenAI data block and matches the filter_
|
||||
(if provided).
|
||||
|
||||
"""
|
||||
@@ -89,20 +89,21 @@ class ParsedDataUri(TypedDict):
|
||||
def _parse_data_uri(uri: str) -> ParsedDataUri | None:
|
||||
"""Parse a data URI into its components.
|
||||
|
||||
If parsing fails, return `None`. If either MIME type or data is missing, return
|
||||
`None`.
|
||||
If parsing fails, return None. If either MIME type or data is missing, return None.
|
||||
|
||||
Example:
|
||||
```python
|
||||
data_uri = "..."
|
||||
parsed = _parse_data_uri(data_uri)
|
||||
|
||||
assert parsed == {
|
||||
"source_type": "base64",
|
||||
"mime_type": "image/jpeg",
|
||||
"data": "/9j/4AAQSkZJRg...",
|
||||
}
|
||||
```
|
||||
.. code-block:: python
|
||||
|
||||
data_uri = "..."
|
||||
parsed = _parse_data_uri(data_uri)
|
||||
|
||||
assert parsed == {
|
||||
"source_type": "base64",
|
||||
"mime_type": "image/jpeg",
|
||||
"data": "/9j/4AAQSkZJRg...",
|
||||
}
|
||||
|
||||
"""
|
||||
regex = r"^data:(?P<mime_type>[^;]+);base64,(?P<data>.+)$"
|
||||
match = re.match(regex, uri)
|
||||
@@ -139,8 +140,7 @@ def _normalize_messages(
|
||||
directly; this may change in the future
|
||||
- LangChain v0 standard content blocks for backward compatibility
|
||||
|
||||
!!! warning "Behavior changed in `langchain-core` 1.0.0"
|
||||
|
||||
!!! warning "Behavior changed in 1.0.0"
|
||||
In previous versions, this function returned messages in LangChain v0 format.
|
||||
Now, it returns messages in LangChain v1 format, which upgraded chat models now
|
||||
expect to receive when passing back in message history. For backward
|
||||
@@ -150,48 +150,48 @@ def _normalize_messages(
|
||||
|
||||
`URLContentBlock`:
|
||||
|
||||
```python
|
||||
{
|
||||
mime_type: NotRequired[str]
|
||||
type: Literal['image', 'audio', 'file'],
|
||||
source_type: Literal['url'],
|
||||
url: str,
|
||||
}
|
||||
```
|
||||
.. codeblock::
|
||||
|
||||
{
|
||||
mime_type: NotRequired[str]
|
||||
type: Literal['image', 'audio', 'file'],
|
||||
source_type: Literal['url'],
|
||||
url: str,
|
||||
}
|
||||
|
||||
`Base64ContentBlock`:
|
||||
|
||||
```python
|
||||
{
|
||||
mime_type: NotRequired[str]
|
||||
type: Literal['image', 'audio', 'file'],
|
||||
source_type: Literal['base64'],
|
||||
data: str,
|
||||
}
|
||||
```
|
||||
.. codeblock::
|
||||
|
||||
{
|
||||
mime_type: NotRequired[str]
|
||||
type: Literal['image', 'audio', 'file'],
|
||||
source_type: Literal['base64'],
|
||||
data: str,
|
||||
}
|
||||
|
||||
`IDContentBlock`:
|
||||
|
||||
(In practice, this was never used)
|
||||
|
||||
```python
|
||||
{
|
||||
type: Literal["image", "audio", "file"],
|
||||
source_type: Literal["id"],
|
||||
id: str,
|
||||
}
|
||||
```
|
||||
.. codeblock::
|
||||
|
||||
{
|
||||
type: Literal['image', 'audio', 'file'],
|
||||
source_type: Literal['id'],
|
||||
id: str,
|
||||
}
|
||||
|
||||
`PlainTextContentBlock`:
|
||||
|
||||
```python
|
||||
{
|
||||
mime_type: NotRequired[str]
|
||||
type: Literal['file'],
|
||||
source_type: Literal['text'],
|
||||
url: str,
|
||||
}
|
||||
```
|
||||
.. codeblock::
|
||||
|
||||
{
|
||||
mime_type: NotRequired[str]
|
||||
type: Literal['file'],
|
||||
source_type: Literal['text'],
|
||||
url: str,
|
||||
}
|
||||
|
||||
If a v1 message is passed in, it will be returned as-is, meaning it is safe to
|
||||
always pass in v1 messages to this function for assurance.
|
||||
|
||||
@@ -12,14 +12,13 @@ from typing import (
|
||||
Literal,
|
||||
TypeAlias,
|
||||
TypeVar,
|
||||
cast,
|
||||
)
|
||||
|
||||
from pydantic import BaseModel, ConfigDict, Field, field_validator
|
||||
from typing_extensions import TypedDict, override
|
||||
|
||||
from langchain_core.caches import BaseCache # noqa: TC001
|
||||
from langchain_core.callbacks import Callbacks # noqa: TC001
|
||||
from langchain_core.caches import BaseCache
|
||||
from langchain_core.callbacks import Callbacks
|
||||
from langchain_core.globals import get_verbose
|
||||
from langchain_core.messages import (
|
||||
AIMessage,
|
||||
@@ -93,20 +92,13 @@ def _get_token_ids_default_method(text: str) -> list[int]:
|
||||
tokenizer = get_tokenizer()
|
||||
|
||||
# tokenize the text using the GPT-2 tokenizer
|
||||
return cast("list[int]", tokenizer.encode(text))
|
||||
return tokenizer.encode(text)
|
||||
|
||||
|
||||
LanguageModelInput = PromptValue | str | Sequence[MessageLikeRepresentation]
|
||||
"""Input to a language model."""
|
||||
|
||||
LanguageModelOutput = BaseMessage | str
|
||||
"""Output from a language model."""
|
||||
|
||||
LanguageModelLike = Runnable[LanguageModelInput, LanguageModelOutput]
|
||||
"""Input/output interface for a language model."""
|
||||
|
||||
LanguageModelOutputVar = TypeVar("LanguageModelOutputVar", AIMessage, str)
|
||||
"""Type variable for the output of a language model."""
|
||||
|
||||
|
||||
def _get_verbosity() -> bool:
|
||||
@@ -131,20 +123,16 @@ class BaseLanguageModel(
|
||||
* If instance of `BaseCache`, will use the provided cache.
|
||||
|
||||
Caching is not currently supported for streaming methods of models.
|
||||
"""
|
||||
|
||||
"""
|
||||
verbose: bool = Field(default_factory=_get_verbosity, exclude=True, repr=False)
|
||||
"""Whether to print out response text."""
|
||||
|
||||
callbacks: Callbacks = Field(default=None, exclude=True)
|
||||
"""Callbacks to add to the run trace."""
|
||||
|
||||
tags: list[str] | None = Field(default=None, exclude=True)
|
||||
"""Tags to add to the run trace."""
|
||||
|
||||
metadata: dict[str, Any] | None = Field(default=None, exclude=True)
|
||||
"""Metadata to add to the run trace."""
|
||||
|
||||
custom_get_token_ids: Callable[[str], list[int]] | None = Field(
|
||||
default=None, exclude=True
|
||||
)
|
||||
@@ -158,7 +146,7 @@ class BaseLanguageModel(
|
||||
def set_verbose(cls, verbose: bool | None) -> bool: # noqa: FBT001
|
||||
"""If verbose is `None`, set it.
|
||||
|
||||
This allows users to pass in `None` as verbose to access the global setting.
|
||||
This allows users to pass in None as verbose to access the global setting.
|
||||
|
||||
Args:
|
||||
verbose: The verbosity setting to use.
|
||||
@@ -198,29 +186,22 @@ class BaseLanguageModel(
|
||||
1. Take advantage of batched calls,
|
||||
2. Need more output from the model than just the top generated value,
|
||||
3. Are building chains that are agnostic to the underlying language model
|
||||
type (e.g., pure text completion models vs chat models).
|
||||
type (e.g., pure text completion models vs chat models).
|
||||
|
||||
Args:
|
||||
prompts: List of `PromptValue` objects.
|
||||
|
||||
A `PromptValue` is an object that can be converted to match the format
|
||||
of any language model (string for pure text generation models and
|
||||
`BaseMessage` objects for chat models).
|
||||
stop: Stop words to use when generating.
|
||||
|
||||
Model output is cut off at the first occurrence of any of these
|
||||
substrings.
|
||||
callbacks: `Callbacks` to pass through.
|
||||
|
||||
Used for executing additional functionality, such as logging or
|
||||
streaming, throughout generation.
|
||||
**kwargs: Arbitrary additional keyword arguments.
|
||||
|
||||
These are usually passed to the model provider API call.
|
||||
prompts: List of PromptValues. A PromptValue is an object that can be
|
||||
converted to match the format of any language model (string for pure
|
||||
text generation models and BaseMessages for chat models).
|
||||
stop: Stop words to use when generating. Model output is cut off at the
|
||||
first occurrence of any of these substrings.
|
||||
callbacks: Callbacks to pass through. Used for executing additional
|
||||
functionality, such as logging or streaming, throughout generation.
|
||||
**kwargs: Arbitrary additional keyword arguments. These are usually passed
|
||||
to the model provider API call.
|
||||
|
||||
Returns:
|
||||
An `LLMResult`, which contains a list of candidate `Generation` objects for
|
||||
each input prompt and additional model provider-specific output.
|
||||
An LLMResult, which contains a list of candidate Generations for each input
|
||||
prompt and additional model provider-specific output.
|
||||
|
||||
"""
|
||||
|
||||
@@ -242,29 +223,22 @@ class BaseLanguageModel(
|
||||
1. Take advantage of batched calls,
|
||||
2. Need more output from the model than just the top generated value,
|
||||
3. Are building chains that are agnostic to the underlying language model
|
||||
type (e.g., pure text completion models vs chat models).
|
||||
type (e.g., pure text completion models vs chat models).
|
||||
|
||||
Args:
|
||||
prompts: List of `PromptValue` objects.
|
||||
|
||||
A `PromptValue` is an object that can be converted to match the format
|
||||
of any language model (string for pure text generation models and
|
||||
`BaseMessage` objects for chat models).
|
||||
stop: Stop words to use when generating.
|
||||
|
||||
Model output is cut off at the first occurrence of any of these
|
||||
substrings.
|
||||
callbacks: `Callbacks` to pass through.
|
||||
|
||||
Used for executing additional functionality, such as logging or
|
||||
streaming, throughout generation.
|
||||
**kwargs: Arbitrary additional keyword arguments.
|
||||
|
||||
These are usually passed to the model provider API call.
|
||||
prompts: List of PromptValues. A PromptValue is an object that can be
|
||||
converted to match the format of any language model (string for pure
|
||||
text generation models and BaseMessages for chat models).
|
||||
stop: Stop words to use when generating. Model output is cut off at the
|
||||
first occurrence of any of these substrings.
|
||||
callbacks: Callbacks to pass through. Used for executing additional
|
||||
functionality, such as logging or streaming, throughout generation.
|
||||
**kwargs: Arbitrary additional keyword arguments. These are usually passed
|
||||
to the model provider API call.
|
||||
|
||||
Returns:
|
||||
An `LLMResult`, which contains a list of candidate `Generation` objects for
|
||||
each input prompt and additional model provider-specific output.
|
||||
An `LLMResult`, which contains a list of candidate Generations for each
|
||||
input prompt and additional model provider-specific output.
|
||||
|
||||
"""
|
||||
|
||||
@@ -282,14 +256,15 @@ class BaseLanguageModel(
|
||||
return self.lc_attributes
|
||||
|
||||
def get_token_ids(self, text: str) -> list[int]:
|
||||
"""Return the ordered IDs of the tokens in a text.
|
||||
"""Return the ordered ids of the tokens in a text.
|
||||
|
||||
Args:
|
||||
text: The string input to tokenize.
|
||||
|
||||
Returns:
|
||||
A list of IDs corresponding to the tokens in the text, in order they occur
|
||||
in the text.
|
||||
A list of ids corresponding to the tokens in the text, in order they occur
|
||||
in the text.
|
||||
|
||||
"""
|
||||
if self.custom_get_token_ids is not None:
|
||||
return self.custom_get_token_ids(text)
|
||||
@@ -300,9 +275,6 @@ class BaseLanguageModel(
|
||||
|
||||
Useful for checking if an input fits in a model's context window.
|
||||
|
||||
This should be overridden by model-specific implementations to provide accurate
|
||||
token counts via model-specific tokenizers.
|
||||
|
||||
Args:
|
||||
text: The string input to tokenize.
|
||||
|
||||
@@ -321,17 +293,9 @@ class BaseLanguageModel(
|
||||
|
||||
Useful for checking if an input fits in a model's context window.
|
||||
|
||||
This should be overridden by model-specific implementations to provide accurate
|
||||
token counts via model-specific tokenizers.
|
||||
|
||||
!!! note
|
||||
|
||||
* The base implementation of `get_num_tokens_from_messages` ignores tool
|
||||
schemas.
|
||||
* The base implementation of `get_num_tokens_from_messages` adds additional
|
||||
prefixes to messages in represent user roles, which will add to the
|
||||
overall token count. Model-specific implementations may choose to
|
||||
handle this differently.
|
||||
The base implementation of `get_num_tokens_from_messages` ignores tool
|
||||
schemas.
|
||||
|
||||
Args:
|
||||
messages: The message inputs to tokenize.
|
||||
|
||||
@@ -33,7 +33,6 @@ from langchain_core.language_models.base import (
|
||||
LangSmithParams,
|
||||
LanguageModelInput,
|
||||
)
|
||||
from langchain_core.language_models.model_profile import ModelProfile
|
||||
from langchain_core.load import dumpd, dumps
|
||||
from langchain_core.messages import (
|
||||
AIMessage,
|
||||
@@ -89,10 +88,7 @@ def _generate_response_from_error(error: BaseException) -> list[ChatGeneration]:
|
||||
try:
|
||||
metadata["body"] = response.json()
|
||||
except Exception:
|
||||
try:
|
||||
metadata["body"] = getattr(response, "text", None)
|
||||
except Exception:
|
||||
metadata["body"] = None
|
||||
metadata["body"] = getattr(response, "text", None)
|
||||
if hasattr(response, "headers"):
|
||||
try:
|
||||
metadata["headers"] = dict(response.headers)
|
||||
@@ -112,7 +108,7 @@ def _generate_response_from_error(error: BaseException) -> list[ChatGeneration]:
|
||||
|
||||
|
||||
def _format_for_tracing(messages: list[BaseMessage]) -> list[BaseMessage]:
|
||||
"""Format messages for tracing in `on_chat_model_start`.
|
||||
"""Format messages for tracing in ``on_chat_model_start``.
|
||||
|
||||
- Update image content blocks to OpenAI Chat Completions format (backward
|
||||
compatibility).
|
||||
@@ -189,7 +185,7 @@ def generate_from_stream(stream: Iterator[ChatGenerationChunk]) -> ChatResult:
|
||||
ValueError: If no generations are found in the stream.
|
||||
|
||||
Returns:
|
||||
Chat result.
|
||||
ChatResult: Chat result.
|
||||
|
||||
"""
|
||||
generation = next(stream, None)
|
||||
@@ -217,7 +213,7 @@ async def agenerate_from_stream(
|
||||
stream: Iterator of `ChatGenerationChunk`.
|
||||
|
||||
Returns:
|
||||
Chat result.
|
||||
ChatResult: Chat result.
|
||||
|
||||
"""
|
||||
chunks = [chunk async for chunk in stream]
|
||||
@@ -244,52 +240,79 @@ def _format_ls_structured_output(ls_structured_output_format: dict | None) -> di
|
||||
|
||||
|
||||
class BaseChatModel(BaseLanguageModel[AIMessage], ABC):
|
||||
r"""Base class for chat models.
|
||||
"""Base class for chat models.
|
||||
|
||||
Key imperative methods:
|
||||
Methods that actually call the underlying model.
|
||||
|
||||
This table provides a brief overview of the main imperative methods. Please see the base `Runnable` reference for full documentation.
|
||||
+---------------------------+----------------------------------------------------------------+---------------------------------------------------------------------+--------------------------------------------------------------------------------------------------+
|
||||
| Method | Input | Output | Description |
|
||||
+===========================+================================================================+=====================================================================+==================================================================================================+
|
||||
| `invoke` | str | list[dict | tuple | BaseMessage] | PromptValue | BaseMessage | A single chat model call. |
|
||||
+---------------------------+----------------------------------------------------------------+---------------------------------------------------------------------+--------------------------------------------------------------------------------------------------+
|
||||
| `ainvoke` | ''' | BaseMessage | Defaults to running invoke in an async executor. |
|
||||
+---------------------------+----------------------------------------------------------------+---------------------------------------------------------------------+--------------------------------------------------------------------------------------------------+
|
||||
| `stream` | ''' | Iterator[BaseMessageChunk] | Defaults to yielding output of invoke. |
|
||||
+---------------------------+----------------------------------------------------------------+---------------------------------------------------------------------+--------------------------------------------------------------------------------------------------+
|
||||
| `astream` | ''' | AsyncIterator[BaseMessageChunk] | Defaults to yielding output of ainvoke. |
|
||||
+---------------------------+----------------------------------------------------------------+---------------------------------------------------------------------+--------------------------------------------------------------------------------------------------+
|
||||
| `astream_events` | ''' | AsyncIterator[StreamEvent] | Event types: 'on_chat_model_start', 'on_chat_model_stream', 'on_chat_model_end'. |
|
||||
+---------------------------+----------------------------------------------------------------+---------------------------------------------------------------------+--------------------------------------------------------------------------------------------------+
|
||||
| `batch` | list['''] | list[BaseMessage] | Defaults to running invoke in concurrent threads. |
|
||||
+---------------------------+----------------------------------------------------------------+---------------------------------------------------------------------+--------------------------------------------------------------------------------------------------+
|
||||
| `abatch` | list['''] | list[BaseMessage] | Defaults to running ainvoke in concurrent threads. |
|
||||
+---------------------------+----------------------------------------------------------------+---------------------------------------------------------------------+--------------------------------------------------------------------------------------------------+
|
||||
| `batch_as_completed` | list['''] | Iterator[tuple[int, Union[BaseMessage, Exception]]] | Defaults to running invoke in concurrent threads. |
|
||||
+---------------------------+----------------------------------------------------------------+---------------------------------------------------------------------+--------------------------------------------------------------------------------------------------+
|
||||
| `abatch_as_completed` | list['''] | AsyncIterator[tuple[int, Union[BaseMessage, Exception]]] | Defaults to running ainvoke in concurrent threads. |
|
||||
+---------------------------+----------------------------------------------------------------+---------------------------------------------------------------------+--------------------------------------------------------------------------------------------------+
|
||||
|
||||
| Method | Input | Output | Description |
|
||||
| ---------------------- | ------------------------------------------------------------ | ---------------------------------------------------------- | -------------------------------------------------------------------------------- |
|
||||
| `invoke` | `str` \| `list[dict | tuple | BaseMessage]` \| `PromptValue` | `BaseMessage` | A single chat model call. |
|
||||
| `ainvoke` | `'''` | `BaseMessage` | Defaults to running `invoke` in an async executor. |
|
||||
| `stream` | `'''` | `Iterator[BaseMessageChunk]` | Defaults to yielding output of `invoke`. |
|
||||
| `astream` | `'''` | `AsyncIterator[BaseMessageChunk]` | Defaults to yielding output of `ainvoke`. |
|
||||
| `astream_events` | `'''` | `AsyncIterator[StreamEvent]` | Event types: `on_chat_model_start`, `on_chat_model_stream`, `on_chat_model_end`. |
|
||||
| `batch` | `list[''']` | `list[BaseMessage]` | Defaults to running `invoke` in concurrent threads. |
|
||||
| `abatch` | `list[''']` | `list[BaseMessage]` | Defaults to running `ainvoke` in concurrent threads. |
|
||||
| `batch_as_completed` | `list[''']` | `Iterator[tuple[int, Union[BaseMessage, Exception]]]` | Defaults to running `invoke` in concurrent threads. |
|
||||
| `abatch_as_completed` | `list[''']` | `AsyncIterator[tuple[int, Union[BaseMessage, Exception]]]` | Defaults to running `ainvoke` in concurrent threads. |
|
||||
This table provides a brief overview of the main imperative methods. Please see the base Runnable reference for full documentation.
|
||||
|
||||
Key declarative methods:
|
||||
Methods for creating another `Runnable` using the chat model.
|
||||
Methods for creating another Runnable using the ChatModel.
|
||||
|
||||
+----------------------------------+-----------------------------------------------------------------------------------------------------------+
|
||||
| Method | Description |
|
||||
+==================================+===========================================================================================================+
|
||||
| `bind_tools` | Create ChatModel that can call tools. |
|
||||
+----------------------------------+-----------------------------------------------------------------------------------------------------------+
|
||||
| `with_structured_output` | Create wrapper that structures model output using schema. |
|
||||
+----------------------------------+-----------------------------------------------------------------------------------------------------------+
|
||||
| `with_retry` | Create wrapper that retries model calls on failure. |
|
||||
+----------------------------------+-----------------------------------------------------------------------------------------------------------+
|
||||
| `with_fallbacks` | Create wrapper that falls back to other models on failure. |
|
||||
+----------------------------------+-----------------------------------------------------------------------------------------------------------+
|
||||
| `configurable_fields` | Specify init args of the model that can be configured at runtime via the RunnableConfig. |
|
||||
+----------------------------------+-----------------------------------------------------------------------------------------------------------+
|
||||
| `configurable_alternatives` | Specify alternative models which can be swapped in at runtime via the RunnableConfig. |
|
||||
+----------------------------------+-----------------------------------------------------------------------------------------------------------+
|
||||
|
||||
This table provides a brief overview of the main declarative methods. Please see the reference for each method for full documentation.
|
||||
|
||||
| Method | Description |
|
||||
| ---------------------------- | ------------------------------------------------------------------------------------------ |
|
||||
| `bind_tools` | Create chat model that can call tools. |
|
||||
| `with_structured_output` | Create wrapper that structures model output using schema. |
|
||||
| `with_retry` | Create wrapper that retries model calls on failure. |
|
||||
| `with_fallbacks` | Create wrapper that falls back to other models on failure. |
|
||||
| `configurable_fields` | Specify init args of the model that can be configured at runtime via the `RunnableConfig`. |
|
||||
| `configurable_alternatives` | Specify alternative models which can be swapped in at runtime via the `RunnableConfig`. |
|
||||
|
||||
Creating custom chat model:
|
||||
Custom chat model implementations should inherit from this class.
|
||||
Please reference the table below for information about which
|
||||
methods and properties are required or optional for implementations.
|
||||
|
||||
| Method/Property | Description | Required |
|
||||
| -------------------------------- | ------------------------------------------------------------------ | ----------------- |
|
||||
+----------------------------------+--------------------------------------------------------------------+-------------------+
|
||||
| Method/Property | Description | Required/Optional |
|
||||
+==================================+====================================================================+===================+
|
||||
| `_generate` | Use to generate a chat result from a prompt | Required |
|
||||
+----------------------------------+--------------------------------------------------------------------+-------------------+
|
||||
| `_llm_type` (property) | Used to uniquely identify the type of the model. Used for logging. | Required |
|
||||
+----------------------------------+--------------------------------------------------------------------+-------------------+
|
||||
| `_identifying_params` (property) | Represent model parameterization for tracing purposes. | Optional |
|
||||
+----------------------------------+--------------------------------------------------------------------+-------------------+
|
||||
| `_stream` | Use to implement streaming | Optional |
|
||||
+----------------------------------+--------------------------------------------------------------------+-------------------+
|
||||
| `_agenerate` | Use to implement a native async method | Optional |
|
||||
+----------------------------------+--------------------------------------------------------------------+-------------------+
|
||||
| `_astream` | Use to implement async version of `_stream` | Optional |
|
||||
+----------------------------------+--------------------------------------------------------------------+-------------------+
|
||||
|
||||
Follow the guide for more information on how to implement a custom Chat Model:
|
||||
[Guide](https://python.langchain.com/docs/how_to/custom_chat_model/).
|
||||
|
||||
""" # noqa: E501
|
||||
|
||||
@@ -304,9 +327,9 @@ class BaseChatModel(BaseLanguageModel[AIMessage], ABC):
|
||||
|
||||
- If `True`, will always bypass streaming case.
|
||||
- If `'tool_calling'`, will bypass streaming case only when the model is called
|
||||
with a `tools` keyword argument. In other words, LangChain will automatically
|
||||
switch to non-streaming behavior (`invoke`) only when the tools argument is
|
||||
provided. This offers the best of both worlds.
|
||||
with a `tools` keyword argument. In other words, LangChain will automatically
|
||||
switch to non-streaming behavior (`invoke`) only when the tools argument is
|
||||
provided. This offers the best of both worlds.
|
||||
- If `False` (Default), will always use streaming case if available.
|
||||
|
||||
The main reason for this flag is that code might be written using `stream` and
|
||||
@@ -319,50 +342,30 @@ class BaseChatModel(BaseLanguageModel[AIMessage], ABC):
|
||||
)
|
||||
"""Version of `AIMessage` output format to store in message content.
|
||||
|
||||
`AIMessage.content_blocks` will lazily parse the contents of `content` into a
|
||||
`AIMessage.content_blocks` will lazily parse the contents of ``content`` into a
|
||||
standard format. This flag can be used to additionally store the standard format
|
||||
in message content, e.g., for serialization purposes.
|
||||
|
||||
Supported values:
|
||||
|
||||
- `'v0'`: provider-specific format in content (can lazily-parse with
|
||||
`content_blocks`)
|
||||
- `'v1'`: standardized format in content (consistent with `content_blocks`)
|
||||
`.content_blocks`)
|
||||
- `'v1'`: standardized format in content (consistent with `.content_blocks`)
|
||||
|
||||
Partner packages (e.g.,
|
||||
[`langchain-openai`](https://pypi.org/project/langchain-openai)) can also use this
|
||||
field to roll out new content formats in a backward-compatible way.
|
||||
Partner packages (e.g., `langchain-openai`) can also use this field to roll out
|
||||
new content formats in a backward-compatible way.
|
||||
|
||||
!!! version-added "Added in `langchain-core` 1.0.0"
|
||||
!!! version-added "Added in version 1.0"
|
||||
|
||||
"""
|
||||
|
||||
profile: ModelProfile | None = Field(default=None, exclude=True)
|
||||
"""Profile detailing model capabilities.
|
||||
|
||||
!!! warning "Beta feature"
|
||||
|
||||
This is a beta feature. The format of model profiles is subject to change.
|
||||
|
||||
If not specified, automatically loaded from the provider package on initialization
|
||||
if data is available.
|
||||
|
||||
Example profile data includes context window sizes, supported modalities, or support
|
||||
for tool calling, structured output, and other features.
|
||||
|
||||
!!! version-added "Added in `langchain-core` 1.1.0"
|
||||
"""
|
||||
|
||||
model_config = ConfigDict(
|
||||
arbitrary_types_allowed=True,
|
||||
)
|
||||
|
||||
@cached_property
|
||||
def _serialized(self) -> dict[str, Any]:
|
||||
# self is always a Serializable object in this case, thus the result is
|
||||
# guaranteed to be a dict since dumps uses the default callback, which uses
|
||||
# obj.to_json which always returns TypedDict subclasses
|
||||
return cast("dict[str, Any]", dumpd(self))
|
||||
return dumpd(self)
|
||||
|
||||
# --- Runnable methods ---
|
||||
|
||||
@@ -465,7 +468,7 @@ class BaseChatModel(BaseLanguageModel[AIMessage], ABC):
|
||||
|
||||
# Check if a runtime streaming flag has been passed in.
|
||||
if "stream" in kwargs:
|
||||
return bool(kwargs["stream"])
|
||||
return kwargs["stream"]
|
||||
|
||||
if "streaming" in self.model_fields_set:
|
||||
streaming_value = getattr(self, "streaming", None)
|
||||
@@ -551,7 +554,7 @@ class BaseChatModel(BaseLanguageModel[AIMessage], ABC):
|
||||
):
|
||||
if block["type"] != index_type:
|
||||
index_type = block["type"]
|
||||
index += 1
|
||||
index = index + 1
|
||||
if "index" not in block:
|
||||
block["index"] = index
|
||||
run_manager.on_llm_new_token(
|
||||
@@ -683,7 +686,7 @@ class BaseChatModel(BaseLanguageModel[AIMessage], ABC):
|
||||
):
|
||||
if block["type"] != index_type:
|
||||
index_type = block["type"]
|
||||
index += 1
|
||||
index = index + 1
|
||||
if "index" not in block:
|
||||
block["index"] = index
|
||||
await run_manager.on_llm_new_token(
|
||||
@@ -734,7 +737,7 @@ class BaseChatModel(BaseLanguageModel[AIMessage], ABC):
|
||||
|
||||
# --- Custom methods ---
|
||||
|
||||
def _combine_llm_outputs(self, _llm_outputs: list[dict | None], /) -> dict:
|
||||
def _combine_llm_outputs(self, llm_outputs: list[dict | None]) -> dict: # noqa: ARG002
|
||||
return {}
|
||||
|
||||
def _convert_cached_generations(self, cache_val: list) -> list[ChatGeneration]:
|
||||
@@ -861,29 +864,24 @@ class BaseChatModel(BaseLanguageModel[AIMessage], ABC):
|
||||
1. Take advantage of batched calls,
|
||||
2. Need more output from the model than just the top generated value,
|
||||
3. Are building chains that are agnostic to the underlying language model
|
||||
type (e.g., pure text completion models vs chat models).
|
||||
type (e.g., pure text completion models vs chat models).
|
||||
|
||||
Args:
|
||||
messages: List of list of messages.
|
||||
stop: Stop words to use when generating.
|
||||
|
||||
Model output is cut off at the first occurrence of any of these
|
||||
substrings.
|
||||
callbacks: `Callbacks` to pass through.
|
||||
|
||||
Used for executing additional functionality, such as logging or
|
||||
streaming, throughout generation.
|
||||
stop: Stop words to use when generating. Model output is cut off at the
|
||||
first occurrence of any of these substrings.
|
||||
callbacks: Callbacks to pass through. Used for executing additional
|
||||
functionality, such as logging or streaming, throughout generation.
|
||||
tags: The tags to apply.
|
||||
metadata: The metadata to apply.
|
||||
run_name: The name of the run.
|
||||
run_id: The ID of the run.
|
||||
**kwargs: Arbitrary additional keyword arguments.
|
||||
|
||||
These are usually passed to the model provider API call.
|
||||
**kwargs: Arbitrary additional keyword arguments. These are usually passed
|
||||
to the model provider API call.
|
||||
|
||||
Returns:
|
||||
An `LLMResult`, which contains a list of candidate `Generations` for each
|
||||
input prompt and additional model provider-specific output.
|
||||
An LLMResult, which contains a list of candidate Generations for each input
|
||||
prompt and additional model provider-specific output.
|
||||
|
||||
"""
|
||||
ls_structured_output_format = kwargs.pop(
|
||||
@@ -984,29 +982,24 @@ class BaseChatModel(BaseLanguageModel[AIMessage], ABC):
|
||||
1. Take advantage of batched calls,
|
||||
2. Need more output from the model than just the top generated value,
|
||||
3. Are building chains that are agnostic to the underlying language model
|
||||
type (e.g., pure text completion models vs chat models).
|
||||
type (e.g., pure text completion models vs chat models).
|
||||
|
||||
Args:
|
||||
messages: List of list of messages.
|
||||
stop: Stop words to use when generating.
|
||||
|
||||
Model output is cut off at the first occurrence of any of these
|
||||
substrings.
|
||||
callbacks: `Callbacks` to pass through.
|
||||
|
||||
Used for executing additional functionality, such as logging or
|
||||
streaming, throughout generation.
|
||||
stop: Stop words to use when generating. Model output is cut off at the
|
||||
first occurrence of any of these substrings.
|
||||
callbacks: Callbacks to pass through. Used for executing additional
|
||||
functionality, such as logging or streaming, throughout generation.
|
||||
tags: The tags to apply.
|
||||
metadata: The metadata to apply.
|
||||
run_name: The name of the run.
|
||||
run_id: The ID of the run.
|
||||
**kwargs: Arbitrary additional keyword arguments.
|
||||
|
||||
These are usually passed to the model provider API call.
|
||||
**kwargs: Arbitrary additional keyword arguments. These are usually passed
|
||||
to the model provider API call.
|
||||
|
||||
Returns:
|
||||
An `LLMResult`, which contains a list of candidate `Generations` for each
|
||||
input prompt and additional model provider-specific output.
|
||||
An LLMResult, which contains a list of candidate Generations for each input
|
||||
prompt and additional model provider-specific output.
|
||||
|
||||
"""
|
||||
ls_structured_output_format = kwargs.pop(
|
||||
@@ -1191,7 +1184,7 @@ class BaseChatModel(BaseLanguageModel[AIMessage], ABC):
|
||||
):
|
||||
if block["type"] != index_type:
|
||||
index_type = block["type"]
|
||||
index += 1
|
||||
index = index + 1
|
||||
if "index" not in block:
|
||||
block["index"] = index
|
||||
if run_manager:
|
||||
@@ -1309,7 +1302,7 @@ class BaseChatModel(BaseLanguageModel[AIMessage], ABC):
|
||||
):
|
||||
if block["type"] != index_type:
|
||||
index_type = block["type"]
|
||||
index += 1
|
||||
index = index + 1
|
||||
if "index" not in block:
|
||||
block["index"] = index
|
||||
if run_manager:
|
||||
@@ -1535,137 +1528,125 @@ class BaseChatModel(BaseLanguageModel[AIMessage], ABC):
|
||||
Args:
|
||||
schema: The output schema. Can be passed in as:
|
||||
|
||||
- An OpenAI function/tool schema,
|
||||
- A JSON Schema,
|
||||
- A `TypedDict` class,
|
||||
- Or a Pydantic class.
|
||||
- an OpenAI function/tool schema,
|
||||
- a JSON Schema,
|
||||
- a `TypedDict` class,
|
||||
- or a Pydantic class.
|
||||
|
||||
If `schema` is a Pydantic class then the model output will be a
|
||||
If ``schema`` is a Pydantic class then the model output will be a
|
||||
Pydantic instance of that class, and the model-generated fields will be
|
||||
validated by the Pydantic class. Otherwise the model output will be a
|
||||
dict and will not be validated.
|
||||
|
||||
See `langchain_core.utils.function_calling.convert_to_openai_tool` for
|
||||
more on how to properly specify types and descriptions of schema fields
|
||||
when specifying a Pydantic or `TypedDict` class.
|
||||
dict and will not be validated. See `langchain_core.utils.function_calling.convert_to_openai_tool`
|
||||
for more on how to properly specify types and descriptions of
|
||||
schema fields when specifying a Pydantic or `TypedDict` class.
|
||||
|
||||
include_raw:
|
||||
If `False` then only the parsed structured output is returned.
|
||||
|
||||
If an error occurs during model output parsing it will be raised.
|
||||
|
||||
If `True` then both the raw model response (a `BaseMessage`) and the
|
||||
parsed model response will be returned.
|
||||
|
||||
If an error occurs during output parsing it will be caught and returned
|
||||
as well.
|
||||
|
||||
The final output is always a `dict` with keys `'raw'`, `'parsed'`, and
|
||||
`'parsing_error'`.
|
||||
If `False` then only the parsed structured output is returned. If
|
||||
an error occurs during model output parsing it will be raised. If `True`
|
||||
then both the raw model response (a BaseMessage) and the parsed model
|
||||
response will be returned. If an error occurs during output parsing it
|
||||
will be caught and returned as well. The final output is always a dict
|
||||
with keys ``'raw'``, ``'parsed'``, and ``'parsing_error'``.
|
||||
|
||||
Raises:
|
||||
ValueError: If there are any unsupported `kwargs`.
|
||||
ValueError: If there are any unsupported ``kwargs``.
|
||||
NotImplementedError: If the model does not implement
|
||||
`with_structured_output()`.
|
||||
``with_structured_output()``.
|
||||
|
||||
Returns:
|
||||
A `Runnable` that takes same inputs as a
|
||||
`langchain_core.language_models.chat.BaseChatModel`. If `include_raw` is
|
||||
`False` and `schema` is a Pydantic class, `Runnable` outputs an instance
|
||||
of `schema` (i.e., a Pydantic object). Otherwise, if `include_raw` is
|
||||
`False` then `Runnable` outputs a `dict`.
|
||||
A Runnable that takes same inputs as a `langchain_core.language_models.chat.BaseChatModel`.
|
||||
|
||||
If `include_raw` is `True`, then `Runnable` outputs a `dict` with keys:
|
||||
If ``include_raw`` is False and ``schema`` is a Pydantic class, Runnable outputs
|
||||
an instance of ``schema`` (i.e., a Pydantic object).
|
||||
|
||||
- `'raw'`: `BaseMessage`
|
||||
- `'parsed'`: `None` if there was a parsing error, otherwise the type
|
||||
depends on the `schema` as described above.
|
||||
- `'parsing_error'`: `BaseException | None`
|
||||
Otherwise, if ``include_raw`` is False then Runnable outputs a dict.
|
||||
|
||||
???+ example "Pydantic schema (`include_raw=False`)"
|
||||
If ``include_raw`` is True, then Runnable outputs a dict with keys:
|
||||
|
||||
```python
|
||||
from pydantic import BaseModel
|
||||
- ``'raw'``: BaseMessage
|
||||
- ``'parsed'``: None if there was a parsing error, otherwise the type depends on the ``schema`` as described above.
|
||||
- ``'parsing_error'``: BaseException | None
|
||||
|
||||
Example: Pydantic schema (include_raw=False):
|
||||
.. code-block:: python
|
||||
|
||||
from pydantic import BaseModel
|
||||
|
||||
|
||||
class AnswerWithJustification(BaseModel):
|
||||
'''An answer to the user question along with justification for the answer.'''
|
||||
class AnswerWithJustification(BaseModel):
|
||||
'''An answer to the user question along with justification for the answer.'''
|
||||
|
||||
answer: str
|
||||
justification: str
|
||||
answer: str
|
||||
justification: str
|
||||
|
||||
|
||||
model = ChatModel(model="model-name", temperature=0)
|
||||
structured_model = model.with_structured_output(AnswerWithJustification)
|
||||
llm = ChatModel(model="model-name", temperature=0)
|
||||
structured_llm = llm.with_structured_output(AnswerWithJustification)
|
||||
|
||||
structured_model.invoke(
|
||||
"What weighs more a pound of bricks or a pound of feathers"
|
||||
)
|
||||
structured_llm.invoke(
|
||||
"What weighs more a pound of bricks or a pound of feathers"
|
||||
)
|
||||
|
||||
# -> AnswerWithJustification(
|
||||
# answer='They weigh the same',
|
||||
# justification='Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume or density of the objects may differ.'
|
||||
# )
|
||||
```
|
||||
# -> AnswerWithJustification(
|
||||
# answer='They weigh the same',
|
||||
# justification='Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume or density of the objects may differ.'
|
||||
# )
|
||||
|
||||
??? example "Pydantic schema (`include_raw=True`)"
|
||||
Example: Pydantic schema (include_raw=True):
|
||||
.. code-block:: python
|
||||
|
||||
```python
|
||||
from pydantic import BaseModel
|
||||
from pydantic import BaseModel
|
||||
|
||||
|
||||
class AnswerWithJustification(BaseModel):
|
||||
'''An answer to the user question along with justification for the answer.'''
|
||||
class AnswerWithJustification(BaseModel):
|
||||
'''An answer to the user question along with justification for the answer.'''
|
||||
|
||||
answer: str
|
||||
justification: str
|
||||
answer: str
|
||||
justification: str
|
||||
|
||||
|
||||
model = ChatModel(model="model-name", temperature=0)
|
||||
structured_model = model.with_structured_output(
|
||||
AnswerWithJustification, include_raw=True
|
||||
)
|
||||
llm = ChatModel(model="model-name", temperature=0)
|
||||
structured_llm = llm.with_structured_output(
|
||||
AnswerWithJustification, include_raw=True
|
||||
)
|
||||
|
||||
structured_model.invoke(
|
||||
"What weighs more a pound of bricks or a pound of feathers"
|
||||
)
|
||||
# -> {
|
||||
# 'raw': AIMessage(content='', additional_kwargs={'tool_calls': [{'id': 'call_Ao02pnFYXD6GN1yzc0uXPsvF', 'function': {'arguments': '{"answer":"They weigh the same.","justification":"Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume or density of the objects may differ."}', 'name': 'AnswerWithJustification'}, 'type': 'function'}]}),
|
||||
# 'parsed': AnswerWithJustification(answer='They weigh the same.', justification='Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume or density of the objects may differ.'),
|
||||
# 'parsing_error': None
|
||||
# }
|
||||
```
|
||||
structured_llm.invoke(
|
||||
"What weighs more a pound of bricks or a pound of feathers"
|
||||
)
|
||||
# -> {
|
||||
# 'raw': AIMessage(content='', additional_kwargs={'tool_calls': [{'id': 'call_Ao02pnFYXD6GN1yzc0uXPsvF', 'function': {'arguments': '{"answer":"They weigh the same.","justification":"Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume or density of the objects may differ."}', 'name': 'AnswerWithJustification'}, 'type': 'function'}]}),
|
||||
# 'parsed': AnswerWithJustification(answer='They weigh the same.', justification='Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume or density of the objects may differ.'),
|
||||
# 'parsing_error': None
|
||||
# }
|
||||
|
||||
??? example "Dictionary schema (`include_raw=False`)"
|
||||
Example: Dict schema (include_raw=False):
|
||||
.. code-block:: python
|
||||
|
||||
```python
|
||||
from pydantic import BaseModel
|
||||
from langchain_core.utils.function_calling import convert_to_openai_tool
|
||||
from pydantic import BaseModel
|
||||
from langchain_core.utils.function_calling import convert_to_openai_tool
|
||||
|
||||
|
||||
class AnswerWithJustification(BaseModel):
|
||||
'''An answer to the user question along with justification for the answer.'''
|
||||
class AnswerWithJustification(BaseModel):
|
||||
'''An answer to the user question along with justification for the answer.'''
|
||||
|
||||
answer: str
|
||||
justification: str
|
||||
answer: str
|
||||
justification: str
|
||||
|
||||
|
||||
dict_schema = convert_to_openai_tool(AnswerWithJustification)
|
||||
model = ChatModel(model="model-name", temperature=0)
|
||||
structured_model = model.with_structured_output(dict_schema)
|
||||
dict_schema = convert_to_openai_tool(AnswerWithJustification)
|
||||
llm = ChatModel(model="model-name", temperature=0)
|
||||
structured_llm = llm.with_structured_output(dict_schema)
|
||||
|
||||
structured_model.invoke(
|
||||
"What weighs more a pound of bricks or a pound of feathers"
|
||||
)
|
||||
# -> {
|
||||
# 'answer': 'They weigh the same',
|
||||
# 'justification': 'Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume and density of the two substances differ.'
|
||||
# }
|
||||
```
|
||||
structured_llm.invoke(
|
||||
"What weighs more a pound of bricks or a pound of feathers"
|
||||
)
|
||||
# -> {
|
||||
# 'answer': 'They weigh the same',
|
||||
# 'justification': 'Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume and density of the two substances differ.'
|
||||
# }
|
||||
|
||||
!!! warning "Behavior changed in `langchain-core` 0.2.26"
|
||||
|
||||
Added support for `TypedDict` class.
|
||||
!!! warning "Behavior changed in 0.2.26"
|
||||
Added support for TypedDict class.
|
||||
|
||||
""" # noqa: E501
|
||||
_ = kwargs.pop("method", None)
|
||||
@@ -1712,7 +1693,7 @@ class SimpleChatModel(BaseChatModel):
|
||||
|
||||
!!! note
|
||||
This implementation is primarily here for backwards compatibility. For new
|
||||
implementations, please use `BaseChatModel` directly.
|
||||
implementations, please use ``BaseChatModel`` directly.
|
||||
|
||||
"""
|
||||
|
||||
@@ -1764,12 +1745,9 @@ def _gen_info_and_msg_metadata(
|
||||
}
|
||||
|
||||
|
||||
_MAX_CLEANUP_DEPTH = 100
|
||||
|
||||
|
||||
def _cleanup_llm_representation(serialized: Any, depth: int) -> None:
|
||||
"""Remove non-serializable objects from a serialized object."""
|
||||
if depth > _MAX_CLEANUP_DEPTH: # Don't cooperate for pathological cases
|
||||
if depth > 100: # Don't cooperate for pathological cases
|
||||
return
|
||||
|
||||
if not isinstance(serialized, dict):
|
||||
|
||||
@@ -1,4 +1,4 @@
|
||||
"""Fake chat models for testing purposes."""
|
||||
"""Fake ChatModel for testing purposes."""
|
||||
|
||||
import asyncio
|
||||
import re
|
||||
@@ -19,7 +19,7 @@ from langchain_core.runnables import RunnableConfig
|
||||
|
||||
|
||||
class FakeMessagesListChatModel(BaseChatModel):
|
||||
"""Fake chat model for testing purposes."""
|
||||
"""Fake ``ChatModel`` for testing purposes."""
|
||||
|
||||
responses: list[BaseMessage]
|
||||
"""List of responses to **cycle** through in order."""
|
||||
@@ -57,7 +57,7 @@ class FakeListChatModelError(Exception):
|
||||
|
||||
|
||||
class FakeListChatModel(SimpleChatModel):
|
||||
"""Fake chat model for testing purposes."""
|
||||
"""Fake ChatModel for testing purposes."""
|
||||
|
||||
responses: list[str]
|
||||
"""List of responses to **cycle** through in order."""
|
||||
@@ -228,10 +228,10 @@ class GenericFakeChatModel(BaseChatModel):
|
||||
"""Generic fake chat model that can be used to test the chat model interface.
|
||||
|
||||
* Chat model should be usable in both sync and async tests
|
||||
* Invokes `on_llm_new_token` to allow for testing of callback related code for new
|
||||
tokens.
|
||||
* Invokes ``on_llm_new_token`` to allow for testing of callback related code for new
|
||||
tokens.
|
||||
* Includes logic to break messages into message chunk to facilitate testing of
|
||||
streaming.
|
||||
streaming.
|
||||
|
||||
"""
|
||||
|
||||
@@ -242,7 +242,7 @@ class GenericFakeChatModel(BaseChatModel):
|
||||
to make the interface more generic if needed.
|
||||
|
||||
!!! note
|
||||
if you want to pass a list, you can use `iter` to convert it to an iterator.
|
||||
if you want to pass a list, you can use ``iter`` to convert it to an iterator.
|
||||
|
||||
!!! warning
|
||||
Streaming is not implemented yet. We should try to implement it in the future by
|
||||
|
||||
@@ -1,7 +1,4 @@
|
||||
"""Base interface for traditional large language models (LLMs) to expose.
|
||||
|
||||
These are traditionally older models (newer models generally are chat models).
|
||||
"""
|
||||
"""Base interface for large language models to expose."""
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
@@ -61,8 +58,6 @@ if TYPE_CHECKING:
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
_background_tasks: set[asyncio.Task] = set()
|
||||
|
||||
|
||||
@functools.lru_cache
|
||||
def _log_error_once(msg: str) -> None:
|
||||
@@ -79,8 +74,8 @@ def create_base_retry_decorator(
|
||||
|
||||
Args:
|
||||
error_types: List of error types to retry on.
|
||||
max_retries: Number of retries.
|
||||
run_manager: Callback manager for the run.
|
||||
max_retries: Number of retries. Default is 1.
|
||||
run_manager: Callback manager for the run. Default is None.
|
||||
|
||||
Returns:
|
||||
A retry decorator.
|
||||
@@ -96,17 +91,13 @@ def create_base_retry_decorator(
|
||||
if isinstance(run_manager, AsyncCallbackManagerForLLMRun):
|
||||
coro = run_manager.on_retry(retry_state)
|
||||
try:
|
||||
try:
|
||||
loop = asyncio.get_event_loop()
|
||||
except RuntimeError:
|
||||
asyncio.run(coro)
|
||||
loop = asyncio.get_event_loop()
|
||||
if loop.is_running():
|
||||
# TODO: Fix RUF006 - this task should have a reference
|
||||
# and be awaited somewhere
|
||||
loop.create_task(coro) # noqa: RUF006
|
||||
else:
|
||||
if loop.is_running():
|
||||
task = loop.create_task(coro)
|
||||
_background_tasks.add(task)
|
||||
task.add_done_callback(_background_tasks.discard)
|
||||
else:
|
||||
asyncio.run(coro)
|
||||
asyncio.run(coro)
|
||||
except Exception as e:
|
||||
_log_error_once(f"Error in on_retry: {e}")
|
||||
else:
|
||||
@@ -162,7 +153,7 @@ def get_prompts(
|
||||
Args:
|
||||
params: Dictionary of parameters.
|
||||
prompts: List of prompts.
|
||||
cache: Cache object.
|
||||
cache: Cache object. Default is None.
|
||||
|
||||
Returns:
|
||||
A tuple of existing prompts, llm_string, missing prompt indexes,
|
||||
@@ -198,7 +189,7 @@ async def aget_prompts(
|
||||
Args:
|
||||
params: Dictionary of parameters.
|
||||
prompts: List of prompts.
|
||||
cache: Cache object.
|
||||
cache: Cache object. Default is None.
|
||||
|
||||
Returns:
|
||||
A tuple of existing prompts, llm_string, missing prompt indexes,
|
||||
@@ -301,10 +292,7 @@ class BaseLLM(BaseLanguageModel[str], ABC):
|
||||
|
||||
@functools.cached_property
|
||||
def _serialized(self) -> dict[str, Any]:
|
||||
# self is always a Serializable object in this case, thus the result is
|
||||
# guaranteed to be a dict since dumps uses the default callback, which uses
|
||||
# obj.to_json which always returns TypedDict subclasses
|
||||
return cast("dict[str, Any]", dumpd(self))
|
||||
return dumpd(self)
|
||||
|
||||
# --- Runnable methods ---
|
||||
|
||||
@@ -656,12 +644,9 @@ class BaseLLM(BaseLanguageModel[str], ABC):
|
||||
|
||||
Args:
|
||||
prompts: The prompts to generate from.
|
||||
stop: Stop words to use when generating.
|
||||
|
||||
Model output is cut off at the first occurrence of any of these
|
||||
substrings.
|
||||
|
||||
If stop tokens are not supported consider raising `NotImplementedError`.
|
||||
stop: Stop words to use when generating. Model output is cut off at the
|
||||
first occurrence of any of the stop substrings.
|
||||
If stop tokens are not supported consider raising NotImplementedError.
|
||||
run_manager: Callback manager for the run.
|
||||
|
||||
Returns:
|
||||
@@ -679,12 +664,9 @@ class BaseLLM(BaseLanguageModel[str], ABC):
|
||||
|
||||
Args:
|
||||
prompts: The prompts to generate from.
|
||||
stop: Stop words to use when generating.
|
||||
|
||||
Model output is cut off at the first occurrence of any of these
|
||||
substrings.
|
||||
|
||||
If stop tokens are not supported consider raising `NotImplementedError`.
|
||||
stop: Stop words to use when generating. Model output is cut off at the
|
||||
first occurrence of any of the stop substrings.
|
||||
If stop tokens are not supported consider raising NotImplementedError.
|
||||
run_manager: Callback manager for the run.
|
||||
|
||||
Returns:
|
||||
@@ -716,14 +698,11 @@ class BaseLLM(BaseLanguageModel[str], ABC):
|
||||
|
||||
Args:
|
||||
prompt: The prompt to generate from.
|
||||
stop: Stop words to use when generating.
|
||||
|
||||
Model output is cut off at the first occurrence of any of these
|
||||
substrings.
|
||||
stop: Stop words to use when generating. Model output is cut off at the
|
||||
first occurrence of any of these substrings.
|
||||
run_manager: Callback manager for the run.
|
||||
**kwargs: Arbitrary additional keyword arguments.
|
||||
|
||||
These are usually passed to the model provider API call.
|
||||
**kwargs: Arbitrary additional keyword arguments. These are usually passed
|
||||
to the model provider API call.
|
||||
|
||||
Yields:
|
||||
Generation chunks.
|
||||
@@ -745,14 +724,11 @@ class BaseLLM(BaseLanguageModel[str], ABC):
|
||||
|
||||
Args:
|
||||
prompt: The prompt to generate from.
|
||||
stop: Stop words to use when generating.
|
||||
|
||||
Model output is cut off at the first occurrence of any of these
|
||||
substrings.
|
||||
stop: Stop words to use when generating. Model output is cut off at the
|
||||
first occurrence of any of these substrings.
|
||||
run_manager: Callback manager for the run.
|
||||
**kwargs: Arbitrary additional keyword arguments.
|
||||
|
||||
These are usually passed to the model provider API call.
|
||||
**kwargs: Arbitrary additional keyword arguments. These are usually passed
|
||||
to the model provider API call.
|
||||
|
||||
Yields:
|
||||
Generation chunks.
|
||||
@@ -859,18 +835,14 @@ class BaseLLM(BaseLanguageModel[str], ABC):
|
||||
1. Take advantage of batched calls,
|
||||
2. Need more output from the model than just the top generated value,
|
||||
3. Are building chains that are agnostic to the underlying language model
|
||||
type (e.g., pure text completion models vs chat models).
|
||||
type (e.g., pure text completion models vs chat models).
|
||||
|
||||
Args:
|
||||
prompts: List of string prompts.
|
||||
stop: Stop words to use when generating.
|
||||
|
||||
Model output is cut off at the first occurrence of any of these
|
||||
substrings.
|
||||
callbacks: `Callbacks` to pass through.
|
||||
|
||||
Used for executing additional functionality, such as logging or
|
||||
streaming, throughout generation.
|
||||
stop: Stop words to use when generating. Model output is cut off at the
|
||||
first occurrence of any of these substrings.
|
||||
callbacks: Callbacks to pass through. Used for executing additional
|
||||
functionality, such as logging or streaming, throughout generation.
|
||||
tags: List of tags to associate with each prompt. If provided, the length
|
||||
of the list must match the length of the prompts list.
|
||||
metadata: List of metadata dictionaries to associate with each prompt. If
|
||||
@@ -880,18 +852,17 @@ class BaseLLM(BaseLanguageModel[str], ABC):
|
||||
length of the list must match the length of the prompts list.
|
||||
run_id: List of run IDs to associate with each prompt. If provided, the
|
||||
length of the list must match the length of the prompts list.
|
||||
**kwargs: Arbitrary additional keyword arguments.
|
||||
|
||||
These are usually passed to the model provider API call.
|
||||
**kwargs: Arbitrary additional keyword arguments. These are usually passed
|
||||
to the model provider API call.
|
||||
|
||||
Raises:
|
||||
ValueError: If prompts is not a list.
|
||||
ValueError: If the length of `callbacks`, `tags`, `metadata`, or
|
||||
`run_name` (if provided) does not match the length of prompts.
|
||||
ValueError: If the length of ``callbacks``, ``tags``, ``metadata``, or
|
||||
``run_name`` (if provided) does not match the length of prompts.
|
||||
|
||||
Returns:
|
||||
An `LLMResult`, which contains a list of candidate `Generations` for each
|
||||
input prompt and additional model provider-specific output.
|
||||
An LLMResult, which contains a list of candidate Generations for each input
|
||||
prompt and additional model provider-specific output.
|
||||
"""
|
||||
if not isinstance(prompts, list):
|
||||
msg = (
|
||||
@@ -1134,18 +1105,14 @@ class BaseLLM(BaseLanguageModel[str], ABC):
|
||||
1. Take advantage of batched calls,
|
||||
2. Need more output from the model than just the top generated value,
|
||||
3. Are building chains that are agnostic to the underlying language model
|
||||
type (e.g., pure text completion models vs chat models).
|
||||
type (e.g., pure text completion models vs chat models).
|
||||
|
||||
Args:
|
||||
prompts: List of string prompts.
|
||||
stop: Stop words to use when generating.
|
||||
|
||||
Model output is cut off at the first occurrence of any of these
|
||||
substrings.
|
||||
callbacks: `Callbacks` to pass through.
|
||||
|
||||
Used for executing additional functionality, such as logging or
|
||||
streaming, throughout generation.
|
||||
stop: Stop words to use when generating. Model output is cut off at the
|
||||
first occurrence of any of these substrings.
|
||||
callbacks: Callbacks to pass through. Used for executing additional
|
||||
functionality, such as logging or streaming, throughout generation.
|
||||
tags: List of tags to associate with each prompt. If provided, the length
|
||||
of the list must match the length of the prompts list.
|
||||
metadata: List of metadata dictionaries to associate with each prompt. If
|
||||
@@ -1155,17 +1122,16 @@ class BaseLLM(BaseLanguageModel[str], ABC):
|
||||
length of the list must match the length of the prompts list.
|
||||
run_id: List of run IDs to associate with each prompt. If provided, the
|
||||
length of the list must match the length of the prompts list.
|
||||
**kwargs: Arbitrary additional keyword arguments.
|
||||
|
||||
These are usually passed to the model provider API call.
|
||||
**kwargs: Arbitrary additional keyword arguments. These are usually passed
|
||||
to the model provider API call.
|
||||
|
||||
Raises:
|
||||
ValueError: If the length of `callbacks`, `tags`, `metadata`, or
|
||||
`run_name` (if provided) does not match the length of prompts.
|
||||
ValueError: If the length of ``callbacks``, ``tags``, ``metadata``, or
|
||||
``run_name`` (if provided) does not match the length of prompts.
|
||||
|
||||
Returns:
|
||||
An `LLMResult`, which contains a list of candidate `Generations` for each
|
||||
input prompt and additional model provider-specific output.
|
||||
An LLMResult, which contains a list of candidate Generations for each input
|
||||
prompt and additional model provider-specific output.
|
||||
"""
|
||||
if isinstance(metadata, list):
|
||||
metadata = [
|
||||
@@ -1374,9 +1340,11 @@ class BaseLLM(BaseLanguageModel[str], ABC):
|
||||
ValueError: If the file path is not a string or Path object.
|
||||
|
||||
Example:
|
||||
```python
|
||||
llm.save(file_path="path/llm.yaml")
|
||||
```
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
llm.save(file_path="path/llm.yaml")
|
||||
|
||||
"""
|
||||
# Convert file to Path object.
|
||||
save_path = Path(file_path)
|
||||
@@ -1421,6 +1389,11 @@ class LLM(BaseLLM):
|
||||
`astream` will use `_astream` if provided, otherwise it will implement
|
||||
a fallback behavior that will use `_stream` if `_stream` is implemented,
|
||||
and use `_acall` if `_stream` is not implemented.
|
||||
|
||||
Please see the following guide for more information on how to
|
||||
implement a custom LLM:
|
||||
|
||||
https://python.langchain.com/docs/how_to/custom_llm/
|
||||
"""
|
||||
|
||||
@abstractmethod
|
||||
@@ -1437,16 +1410,12 @@ class LLM(BaseLLM):
|
||||
|
||||
Args:
|
||||
prompt: The prompt to generate from.
|
||||
stop: Stop words to use when generating.
|
||||
|
||||
Model output is cut off at the first occurrence of any of these
|
||||
substrings.
|
||||
|
||||
If stop tokens are not supported consider raising `NotImplementedError`.
|
||||
stop: Stop words to use when generating. Model output is cut off at the
|
||||
first occurrence of any of the stop substrings.
|
||||
If stop tokens are not supported consider raising NotImplementedError.
|
||||
run_manager: Callback manager for the run.
|
||||
**kwargs: Arbitrary additional keyword arguments.
|
||||
|
||||
These are usually passed to the model provider API call.
|
||||
**kwargs: Arbitrary additional keyword arguments. These are usually passed
|
||||
to the model provider API call.
|
||||
|
||||
Returns:
|
||||
The model output as a string. SHOULD NOT include the prompt.
|
||||
@@ -1467,16 +1436,12 @@ class LLM(BaseLLM):
|
||||
|
||||
Args:
|
||||
prompt: The prompt to generate from.
|
||||
stop: Stop words to use when generating.
|
||||
|
||||
Model output is cut off at the first occurrence of any of these
|
||||
substrings.
|
||||
|
||||
If stop tokens are not supported consider raising `NotImplementedError`.
|
||||
stop: Stop words to use when generating. Model output is cut off at the
|
||||
first occurrence of any of the stop substrings.
|
||||
If stop tokens are not supported consider raising NotImplementedError.
|
||||
run_manager: Callback manager for the run.
|
||||
**kwargs: Arbitrary additional keyword arguments.
|
||||
|
||||
These are usually passed to the model provider API call.
|
||||
**kwargs: Arbitrary additional keyword arguments. These are usually passed
|
||||
to the model provider API call.
|
||||
|
||||
Returns:
|
||||
The model output as a string. SHOULD NOT include the prompt.
|
||||
|
||||
@@ -1,85 +0,0 @@
|
||||
"""Model profile types and utilities."""
|
||||
|
||||
from typing_extensions import TypedDict
|
||||
|
||||
|
||||
class ModelProfile(TypedDict, total=False):
|
||||
"""Model profile.
|
||||
|
||||
!!! warning "Beta feature"
|
||||
|
||||
This is a beta feature. The format of model profiles is subject to change.
|
||||
|
||||
Provides information about chat model capabilities, such as context window sizes
|
||||
and supported features.
|
||||
"""
|
||||
|
||||
# --- Input constraints ---
|
||||
|
||||
max_input_tokens: int
|
||||
"""Maximum context window (tokens)"""
|
||||
|
||||
image_inputs: bool
|
||||
"""Whether image inputs are supported."""
|
||||
# TODO: add more detail about formats?
|
||||
|
||||
image_url_inputs: bool
|
||||
"""Whether [image URL inputs](https://docs.langchain.com/oss/python/langchain/models#multimodal)
|
||||
are supported."""
|
||||
|
||||
pdf_inputs: bool
|
||||
"""Whether [PDF inputs](https://docs.langchain.com/oss/python/langchain/models#multimodal)
|
||||
are supported."""
|
||||
# TODO: add more detail about formats? e.g. bytes or base64
|
||||
|
||||
audio_inputs: bool
|
||||
"""Whether [audio inputs](https://docs.langchain.com/oss/python/langchain/models#multimodal)
|
||||
are supported."""
|
||||
# TODO: add more detail about formats? e.g. bytes or base64
|
||||
|
||||
video_inputs: bool
|
||||
"""Whether [video inputs](https://docs.langchain.com/oss/python/langchain/models#multimodal)
|
||||
are supported."""
|
||||
# TODO: add more detail about formats? e.g. bytes or base64
|
||||
|
||||
image_tool_message: bool
|
||||
"""Whether images can be included in tool messages."""
|
||||
|
||||
pdf_tool_message: bool
|
||||
"""Whether PDFs can be included in tool messages."""
|
||||
|
||||
# --- Output constraints ---
|
||||
|
||||
max_output_tokens: int
|
||||
"""Maximum output tokens"""
|
||||
|
||||
reasoning_output: bool
|
||||
"""Whether the model supports [reasoning / chain-of-thought](https://docs.langchain.com/oss/python/langchain/models#reasoning)"""
|
||||
|
||||
image_outputs: bool
|
||||
"""Whether [image outputs](https://docs.langchain.com/oss/python/langchain/models#multimodal)
|
||||
are supported."""
|
||||
|
||||
audio_outputs: bool
|
||||
"""Whether [audio outputs](https://docs.langchain.com/oss/python/langchain/models#multimodal)
|
||||
are supported."""
|
||||
|
||||
video_outputs: bool
|
||||
"""Whether [video outputs](https://docs.langchain.com/oss/python/langchain/models#multimodal)
|
||||
are supported."""
|
||||
|
||||
# --- Tool calling ---
|
||||
tool_calling: bool
|
||||
"""Whether the model supports [tool calling](https://docs.langchain.com/oss/python/langchain/models#tool-calling)"""
|
||||
|
||||
tool_choice: bool
|
||||
"""Whether the model supports [tool choice](https://docs.langchain.com/oss/python/langchain/models#forcing-tool-calls)"""
|
||||
|
||||
# --- Structured output ---
|
||||
structured_output: bool
|
||||
"""Whether the model supports a native [structured output](https://docs.langchain.com/oss/python/langchain/models#structured-outputs)
|
||||
feature"""
|
||||
|
||||
|
||||
ModelProfileRegistry = dict[str, ModelProfile]
|
||||
"""Registry mapping model identifiers or names to their ModelProfile."""
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user