mirror of
https://github.com/hwchase17/langchain.git
synced 2026-02-10 03:00:59 +00:00
Compare commits
12 Commits
langchain-
...
harrison/n
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
10fa55e287 | ||
|
|
8289f09fcd | ||
|
|
a65fb5297e | ||
|
|
dccfcd3f08 | ||
|
|
44a60a6f09 | ||
|
|
26bef498e8 | ||
|
|
4ead6355ba | ||
|
|
1564a286dd | ||
|
|
15230b47c6 | ||
|
|
a6a4b0d58f | ||
|
|
522f99da34 | ||
|
|
82d8a415e3 |
9
libs/langchain_v1/langchain/agents/middleware/_utils.py
Normal file
9
libs/langchain_v1/langchain/agents/middleware/_utils.py
Normal file
@@ -0,0 +1,9 @@
|
||||
def _generate_correction_tool_messages(content: str, tool_calls: list):
|
||||
tool_messages = []
|
||||
for tool_call in tool_calls:
|
||||
tool_messages.append({
|
||||
"role": "tool",
|
||||
"content": content,
|
||||
"tool_call_id": tool_call["id"]
|
||||
})
|
||||
return tool_messages
|
||||
68
libs/langchain_v1/langchain/agents/middleware/deepagents.py
Normal file
68
libs/langchain_v1/langchain/agents/middleware/deepagents.py
Normal file
@@ -0,0 +1,68 @@
|
||||
from langchain.agents.types import AgentMiddleware, AgentState, ModelRequest
|
||||
from typing import NotRequired, Annotated
|
||||
from typing import Literal
|
||||
from typing_extensions import TypedDict
|
||||
|
||||
|
||||
class Todo(TypedDict):
|
||||
"""Todo to track."""
|
||||
|
||||
content: str
|
||||
status: Literal["pending", "in_progress", "completed"]
|
||||
|
||||
|
||||
def file_reducer(l, r):
|
||||
if l is None:
|
||||
return r
|
||||
elif r is None:
|
||||
return l
|
||||
else:
|
||||
return {**l, **r}
|
||||
|
||||
|
||||
class DeepAgentState(AgentState):
|
||||
todos: NotRequired[list[Todo]]
|
||||
files: Annotated[NotRequired[dict[str, str]], file_reducer]
|
||||
|
||||
|
||||
from langchain_core.tools import tool, InjectedToolCallId
|
||||
from langgraph.types import Command
|
||||
from langchain_core.messages import ToolMessage
|
||||
from typing import Annotated, Union
|
||||
from langgraph.prebuilt import InjectedState
|
||||
|
||||
def write_todos(
|
||||
todos: list[Todo], tool_call_id: Annotated[str, InjectedToolCallId]
|
||||
) -> Command:
|
||||
"""write todos"""
|
||||
return Command(
|
||||
update={
|
||||
"todos": todos,
|
||||
"messages": [
|
||||
ToolMessage(f"Updated todo list to {todos}", tool_call_id=tool_call_id)
|
||||
],
|
||||
}
|
||||
)
|
||||
|
||||
|
||||
def ls(state: Annotated[DeepAgentState, InjectedState]) -> list[str]:
|
||||
"""List all files"""
|
||||
return list(state.get("files", {}).keys())
|
||||
|
||||
class DeepAgentMiddleware(AgentMiddleware):
|
||||
|
||||
state_schema = DeepAgentState
|
||||
|
||||
def __init__(self, subagents: list = []):
|
||||
self.subagents = subagents
|
||||
|
||||
@property
|
||||
def tools(self):
|
||||
return [write_todos, ls] + self.subagents
|
||||
|
||||
def modify_model_request(self, request: ModelRequest, state: DeepAgentState) -> ModelRequest:
|
||||
if request.system_prompt:
|
||||
request.system_prompt += "\n\nUse the todo tool to plan as needed"
|
||||
else:
|
||||
request.system_prompt = "Use the todo tool to plan as needed"
|
||||
return request
|
||||
@@ -0,0 +1,22 @@
|
||||
from langchain.agents.types import AgentMiddleware, AgentState, ModelRequest
|
||||
|
||||
class DynamicPrompt(AgentMiddleware):
|
||||
|
||||
def __init__(self, modifier):
|
||||
self.modifier = modifier
|
||||
|
||||
def modify_model_request(self, request: ModelRequest, state) -> ModelRequest:
|
||||
prompt = self.modifier(state)
|
||||
request.system_prompt = prompt
|
||||
return request
|
||||
|
||||
|
||||
class DynamicMessages(AgentMiddleware):
|
||||
|
||||
def __init__(self, modifier):
|
||||
self.modifier = modifier
|
||||
|
||||
def modify_model_request(self, request: ModelRequest, state) -> ModelRequest:
|
||||
messages = self.modifier(state)
|
||||
request.messages = messages
|
||||
return request
|
||||
53
libs/langchain_v1/langchain/agents/middleware/guardrail.py
Normal file
53
libs/langchain_v1/langchain/agents/middleware/guardrail.py
Normal file
@@ -0,0 +1,53 @@
|
||||
from langchain.agents.types import AgentMiddleware, AgentState, ModelRequest, AgentUpdate, AgentJump
|
||||
from typing_extensions import TypedDict
|
||||
|
||||
PROMPT = """Check if the conversation trips any of the guardrails. If it trips multiple, flag the guardrail that is violated the most
|
||||
|
||||
<conversation>
|
||||
{conversation}
|
||||
</conversation>
|
||||
|
||||
<guardrails>
|
||||
{guardrails}
|
||||
</guardrails>"""
|
||||
|
||||
class Guardrail(TypedDict):
|
||||
name: str
|
||||
prompt: str
|
||||
response_str: str
|
||||
|
||||
class InputGuardrailMiddleware(AgentMiddleware):
|
||||
|
||||
def __init__(self, guardrails: list[Guardrail], model):
|
||||
super().__init__()
|
||||
self.guardrails = guardrails
|
||||
self.model = model
|
||||
|
||||
def _convert_to_string(self, state: AgentState):
|
||||
# TODO: improve
|
||||
return str(state['messages'])
|
||||
|
||||
def before_model(self, state: AgentState) -> AgentUpdate | AgentJump | None:
|
||||
conversation = self._convert_to_string(state)
|
||||
guardrails = "\n".join([
|
||||
f"<{guard['name']}>{guard['prompt']}</{guard['name']}>" for guard in self.guardrails
|
||||
])
|
||||
prompt = PROMPT.format(conversation=conversation, guardrails=guardrails)
|
||||
|
||||
class Response(TypedDict):
|
||||
# todo: fix docstring
|
||||
"""flagged should be one of {} or `none`"""
|
||||
flagged: str
|
||||
|
||||
response = self.model.with_structured_output(Response).invoke(prompt)
|
||||
if response['flagged'] == 'none':
|
||||
return
|
||||
else:
|
||||
resp = {g['name']: g['response_str'] for g in self.guardrails}
|
||||
return {
|
||||
"messages": [{"role": 'ai', "content": resp}],
|
||||
"jump_to": "__end__"
|
||||
}
|
||||
|
||||
|
||||
|
||||
@@ -0,0 +1,115 @@
|
||||
from langgraph.prebuilt.interrupt import (
|
||||
ActionRequest,
|
||||
HumanInterrupt,
|
||||
HumanInterruptConfig,
|
||||
HumanResponse,
|
||||
)
|
||||
from langgraph.types import interrupt
|
||||
|
||||
from langchain.agents.types import AgentJump, AgentMiddleware, AgentState, AgentUpdate
|
||||
from langchain.agents.middleware._utils import _generate_correction_tool_messages
|
||||
|
||||
ToolInterruptConfig = dict[str, HumanInterruptConfig]
|
||||
|
||||
|
||||
class HumanInTheLoopMiddleware(AgentMiddleware):
|
||||
def __init__(
|
||||
self,
|
||||
tool_configs: ToolInterruptConfig,
|
||||
message_prefix: str = "Tool execution requires approval",
|
||||
):
|
||||
super().__init__()
|
||||
self.tool_configs = tool_configs
|
||||
self.message_prefix = message_prefix
|
||||
|
||||
def after_model(self, state: AgentState) -> AgentUpdate | AgentJump | None:
|
||||
messages = state["messages"]
|
||||
if not messages:
|
||||
return None
|
||||
|
||||
last_message = messages[-1]
|
||||
|
||||
if not hasattr(last_message, "tool_calls") or not last_message.tool_calls:
|
||||
return None
|
||||
|
||||
# Separate tool calls that need interrupts from those that don't
|
||||
interrupt_tool_calls = []
|
||||
auto_approved_tool_calls = []
|
||||
|
||||
for tool_call in last_message.tool_calls:
|
||||
tool_name = tool_call["name"]
|
||||
if tool_name in self.tool_configs:
|
||||
interrupt_tool_calls.append(tool_call)
|
||||
else:
|
||||
auto_approved_tool_calls.append(tool_call)
|
||||
|
||||
# If no interrupts needed, return early
|
||||
if not interrupt_tool_calls:
|
||||
return None
|
||||
|
||||
approved_tool_calls = auto_approved_tool_calls.copy()
|
||||
|
||||
# Right now, we do not support multiple tool calls with interrupts
|
||||
if len(interrupt_tool_calls) > 1:
|
||||
tool_names = [t['name'] for t in interrupt_tool_calls]
|
||||
msg = f"Called the following tools which require interrupts: {tool_names}\n\nYou may only call ONE tool that requires an interrupt at a time"
|
||||
return {
|
||||
"messages": _generate_correction_tool_messages(msg, last_message.tool_calls),
|
||||
"jump_to": "model"
|
||||
}
|
||||
|
||||
# Right now, we do not support interrupting a tool call if other tool calls exist
|
||||
if auto_approved_tool_calls:
|
||||
tool_names = [t['name'] for t in interrupt_tool_calls]
|
||||
msg = f"Called the following tools which require interrupts: {tool_names}. You also called other tools that do not require interrupts. If you call a tool that requires and interrupt, you may ONLY call that tool."
|
||||
return {
|
||||
"messages": _generate_correction_tool_messages(msg,
|
||||
last_message.tool_calls),
|
||||
"jump_to": "model"
|
||||
}
|
||||
|
||||
# Only one tool call will need interrupts
|
||||
tool_call = interrupt_tool_calls[0]
|
||||
tool_name = tool_call["name"]
|
||||
tool_args = tool_call["args"]
|
||||
description = f"{self.message_prefix}\n\nTool: {tool_name}\nArgs: {tool_args}"
|
||||
tool_config = self.tool_configs[tool_name]
|
||||
|
||||
request: HumanInterrupt = {
|
||||
"action_request": ActionRequest(
|
||||
action=tool_name,
|
||||
args=tool_args,
|
||||
),
|
||||
"config": tool_config,
|
||||
"description": description,
|
||||
}
|
||||
|
||||
responses: list[HumanResponse] = interrupt([request])
|
||||
response = responses[0]
|
||||
|
||||
if response["type"] == "accept":
|
||||
approved_tool_calls.append(tool_call)
|
||||
elif response["type"] == "edit":
|
||||
edited: ActionRequest = response["args"]
|
||||
new_tool_call = {
|
||||
"type": "tool_call",
|
||||
"name": tool_call["name"],
|
||||
"args": edited["args"],
|
||||
"id": tool_call["id"],
|
||||
}
|
||||
approved_tool_calls.append(new_tool_call)
|
||||
elif response["type"] == "ignore":
|
||||
return {"jump_to": "__end__"}
|
||||
elif response["type"] == "response":
|
||||
tool_message = {
|
||||
"role": "tool",
|
||||
"tool_call_id": tool_call["id"],
|
||||
"content": response["args"],
|
||||
}
|
||||
return {"messages": [tool_message], "jump_to": "model"}
|
||||
else:
|
||||
raise ValueError(f"Unknown response type: {response['type']}")
|
||||
|
||||
last_message.tool_calls = approved_tool_calls
|
||||
|
||||
return {"messages": [last_message]}
|
||||
@@ -0,0 +1,145 @@
|
||||
from langchain.agents.types import AgentMiddleware, AgentState, ModelRequest, AgentUpdate, AgentJump
|
||||
from typing_extensions import TypedDict, Type
|
||||
from langchain.tools import tool
|
||||
from langchain.chat_models import init_chat_model
|
||||
from langchain.agents.middleware._utils import _generate_correction_tool_messages
|
||||
|
||||
_HANDBACK_NAME = "hand_back"
|
||||
|
||||
|
||||
class Agent(TypedDict):
|
||||
name: str
|
||||
description: str
|
||||
prompt: str
|
||||
tools: list
|
||||
model: str
|
||||
model_settings: dict
|
||||
response_format: Type
|
||||
|
||||
|
||||
class SwarmAgentState(AgentState):
|
||||
active_agent: str | None
|
||||
|
||||
|
||||
class SwarmMiddleware(AgentMiddleware):
|
||||
|
||||
state_schema = SwarmAgentState
|
||||
|
||||
def __init__(self, agents: list[Agent], starting_agent: str):
|
||||
self.agents = agents
|
||||
self.starting_agent = starting_agent
|
||||
self.agent_mapping = {a['name']: a for a in agents}
|
||||
|
||||
@property
|
||||
def tools(self):
|
||||
return [t for a in self.agents for t in a['tools']]
|
||||
|
||||
def _get_handoff_tool(self, agent: Agent):
|
||||
@tool(
|
||||
name_or_callable=f"handoff_to_{agent['name']}",
|
||||
description=f"Handoff to agent {agent['name']}. Description of this agent:\n\n{agent['description']}"
|
||||
)
|
||||
def handoff():
|
||||
pass
|
||||
|
||||
return handoff
|
||||
|
||||
def _get_pass_back_tool(self):
|
||||
@tool(name_or_callable=_HANDBACK_NAME,
|
||||
description="Call this if you are unable to handle the current request. You will hand back control of the conversation to your supervisor")
|
||||
def hand_back():
|
||||
pass
|
||||
|
||||
return hand_back
|
||||
|
||||
|
||||
def _get_main_handoff_tools(self):
|
||||
tools = []
|
||||
for agent in self.agents:
|
||||
tools.append(self._get_handoff_tool(agent))
|
||||
return tools
|
||||
|
||||
|
||||
def modify_model_request(self, request: ModelRequest, state: SwarmAgentState) -> ModelRequest:
|
||||
if state.get('active_agent') is None:
|
||||
request.tools = request.tools + self._get_main_handoff_tools()
|
||||
return request
|
||||
active_agent = self.agent_mapping[state['active_agent']]
|
||||
request.system_prompt = active_agent['prompt']
|
||||
request.tools = active_agent['tools'] + self._get_handoff_tool()
|
||||
if 'model' in active_agent:
|
||||
request.model = init_chat_model(active_agent['model'])
|
||||
if 'model_settings' in active_agent:
|
||||
request.model_settings = active_agent['model_settings']
|
||||
if 'response_format' in active_agent:
|
||||
request.response_format = active_agent['response_format']
|
||||
return request
|
||||
|
||||
def after_model(self, state: SwarmAgentState) -> AgentUpdate | AgentJump | None:
|
||||
messages = state["messages"]
|
||||
active_agent = state.get('active_agent')
|
||||
if not messages:
|
||||
return None
|
||||
|
||||
last_message = messages[-1]
|
||||
|
||||
if not hasattr(last_message, "tool_calls") or not last_message.tool_calls:
|
||||
return None
|
||||
if active_agent is not None:
|
||||
handoffs = []
|
||||
for tool_call in last_message.tool_calls:
|
||||
if tool_call['name'] == _HANDBACK_NAME:
|
||||
handoffs.append(tool_call)
|
||||
if len(handoffs) == 0:
|
||||
return None
|
||||
elif len(handoffs) > 1:
|
||||
msg = "Multiple handoffs at the same time are not supported, please just call one at a time."
|
||||
return {
|
||||
"messages": _generate_correction_tool_messages(msg,
|
||||
last_message.tool_calls),
|
||||
"jump_to": "model"
|
||||
}
|
||||
else:
|
||||
tool_call = handoffs[0]
|
||||
return {
|
||||
"messages": [{
|
||||
"role": "tool",
|
||||
"tool_call_id": tool_call["id"],
|
||||
"content": f"Handed back to supervisor",
|
||||
}],
|
||||
"active_agent": None,
|
||||
"jump_to": "model"
|
||||
}
|
||||
handoff_tools = self._get_main_handoff_tools()
|
||||
handoff_tool_names = [t.name for t in handoff_tools]
|
||||
|
||||
handoffs = []
|
||||
for tool_call in last_message.tool_calls:
|
||||
if tool_call['name'] in handoff_tool_names:
|
||||
handoffs.append(tool_call)
|
||||
if len(handoffs) == 0:
|
||||
return
|
||||
elif len(handoffs) > 1:
|
||||
msg = "Multiple handoffs at the same time are not supported, please just call one at a time."
|
||||
return {
|
||||
"messages": _generate_correction_tool_messages(msg,
|
||||
last_message.tool_calls),
|
||||
"jump_to": "model"
|
||||
}
|
||||
else:
|
||||
tool_call = handoffs[0]
|
||||
handoff_to = tool_call['name'][len("handoff_to_"):]
|
||||
return {
|
||||
"messages":[{
|
||||
"role": "tool",
|
||||
"tool_call_id": tool_call["id"],
|
||||
"content": f"Handed off to agent {handoff_to}",
|
||||
}],
|
||||
"active_agent":handoff_to,
|
||||
"jump_to": "model"
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
@@ -0,0 +1,24 @@
|
||||
import operator
|
||||
from typing import Annotated
|
||||
|
||||
from langchain.agents.types import AgentJump, AgentMiddleware, AgentState, AgentUpdate
|
||||
|
||||
|
||||
class State(AgentState):
|
||||
model_request_count: Annotated[int, operator.add]
|
||||
|
||||
|
||||
class ModelRequestLimitMiddleware(AgentMiddleware):
|
||||
"""Terminates after N model requests"""
|
||||
|
||||
state_schema = State
|
||||
|
||||
def __init__(self, max_requests: int = 10):
|
||||
self.max_requests = max_requests
|
||||
|
||||
def before_model(self, state: State) -> AgentUpdate | AgentJump | None:
|
||||
# TODO: want to be able to configure end behavior here
|
||||
if state.get("model_request_count", 0) == self.max_requests:
|
||||
return {"jump_to": "__end__"}
|
||||
|
||||
return {"model_request_count": 1}
|
||||
@@ -0,0 +1,53 @@
|
||||
from typing import Literal
|
||||
|
||||
from langchain.agents.types import AgentMiddleware, AgentState, ModelRequest
|
||||
|
||||
|
||||
class AnthropicPromptCachingMiddleware(AgentMiddleware):
|
||||
"""Prompt Caching Middleware - Optimizes API usage by caching conversation prefixes for Anthropic models.
|
||||
|
||||
Learn more about anthropic prompt caching [here](https://docs.anthropic.com/en/docs/build-with-claude/prompt-caching).
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
type: Literal["ephemeral"] = "ephemeral",
|
||||
ttl: Literal["5m", "1h"] = "5m",
|
||||
min_messages_to_cache: int = 0,
|
||||
):
|
||||
"""Initialize the middleware with cache control settings.
|
||||
|
||||
Args:
|
||||
type: The type of cache to use, only "ephemeral" is supported.
|
||||
ttl: The time to live for the cache, only "5m" and "1h" are supported.
|
||||
min_messages_to_cache: The minimum number of messages until the cache is used, default is 0.
|
||||
"""
|
||||
self.type = type
|
||||
self.ttl = ttl
|
||||
self.min_messages_to_cache = min_messages_to_cache
|
||||
|
||||
def modify_model_request(self, request: ModelRequest, state: AgentState) -> ModelRequest:
|
||||
"""Modify the model request to add cache control blocks."""
|
||||
try:
|
||||
from langchain_anthropic import ChatAnthropic
|
||||
except ImportError:
|
||||
raise ValueError(
|
||||
"AnthropicPromptCachingMiddleware caching middleware only supports Anthropic models."
|
||||
"Please install langchain-anthropic."
|
||||
)
|
||||
|
||||
if not isinstance(request.model, ChatAnthropic):
|
||||
raise ValueError(
|
||||
"AnthropicPromptCachingMiddleware caching middleware only supports Anthropic models, "
|
||||
f"not instances of {type(request.model)}"
|
||||
)
|
||||
|
||||
messages_count = (
|
||||
len(request.messages) + 1 if request.system_prompt else len(request.messages)
|
||||
)
|
||||
if messages_count < self.min_messages_to_cache:
|
||||
return request
|
||||
|
||||
request.model_settings["cache_control"] = {"type": self.type, "ttl": self.ttl}
|
||||
|
||||
return request
|
||||
35
libs/langchain_v1/langchain/agents/middleware/rag.py
Normal file
35
libs/langchain_v1/langchain/agents/middleware/rag.py
Normal file
@@ -0,0 +1,35 @@
|
||||
from langchain.agents.types import AgentMiddleware, AgentState, ModelRequest, AgentJump, AgentUpdate
|
||||
from langchain_core.retrievers import BaseRetriever
|
||||
from langchain_core.tools import tool
|
||||
import uuid
|
||||
|
||||
class RAGMiddleware(AgentMiddleware):
|
||||
|
||||
@classmethod
|
||||
def from_retriever(cls, retriever: BaseRetriever, description: str):
|
||||
@tool(description=description)
|
||||
def retrieve(query: str):
|
||||
return retriever.get_relevant_documents(query)
|
||||
|
||||
return cls(retrieve)
|
||||
|
||||
|
||||
def __init__(self, tool):
|
||||
self.tool = tool
|
||||
|
||||
@property
|
||||
def tools(self):
|
||||
return [self.tool]
|
||||
|
||||
def before_model(self, state: AgentState) -> AgentUpdate | AgentJump | None:
|
||||
if len(state['messages']) == 1:
|
||||
forced_tool_call = {
|
||||
"type": "tool_call",
|
||||
"name": self.tool.name,
|
||||
"args": {"query": state['messages'][0].content},
|
||||
"id": str(uuid.uuid4()),
|
||||
}
|
||||
return {
|
||||
"messages": [{"role": "ai", "content": None, "tool_calls": [forced_tool_call]}],
|
||||
"jump_to": "tools"
|
||||
}
|
||||
14
libs/langchain_v1/langchain/agents/middleware/reflection.py
Normal file
14
libs/langchain_v1/langchain/agents/middleware/reflection.py
Normal file
@@ -0,0 +1,14 @@
|
||||
from langchain.agents.types import AgentMiddleware, AgentState, ModelRequest, AgentUpdate, AgentJump
|
||||
|
||||
class ReflectionMiddleware(AgentMiddleware):
|
||||
|
||||
def __init__(self, reflection_step):
|
||||
self.reflection_step = reflection_step
|
||||
|
||||
def after_model(self, state: AgentState) -> AgentUpdate | AgentJump | None:
|
||||
reflection = self.reflection_step(state)
|
||||
if reflection:
|
||||
return {
|
||||
"messages": [{'role': 'user', 'content': reflection}],
|
||||
"jump_to": "model"
|
||||
}
|
||||
240
libs/langchain_v1/langchain/agents/middleware/summarization.py
Normal file
240
libs/langchain_v1/langchain/agents/middleware/summarization.py
Normal file
@@ -0,0 +1,240 @@
|
||||
import uuid
|
||||
from collections.abc import Callable, Iterable
|
||||
from typing import cast
|
||||
|
||||
from langchain_core.messages import (
|
||||
AIMessage,
|
||||
AnyMessage,
|
||||
MessageLikeRepresentation,
|
||||
ToolMessage,
|
||||
)
|
||||
from langchain_core.messages.utils import count_tokens_approximately, trim_messages
|
||||
from langgraph.graph.message import REMOVE_ALL_MESSAGES, RemoveMessage
|
||||
|
||||
from langchain.agents.types import AgentMiddleware, AgentState
|
||||
from langchain.chat_models import BaseChatModel
|
||||
|
||||
TokenCounter = Callable[[Iterable[MessageLikeRepresentation]], int]
|
||||
|
||||
DEFAULT_SUMMARY_PROMPT = """<role>
|
||||
Context Extraction Assistant
|
||||
</role>
|
||||
|
||||
<primary_objective>
|
||||
Your sole objective in this task is to extract the highest quality/most relevant context from the conversation history below.
|
||||
</primary_objective>
|
||||
|
||||
<objective_information>
|
||||
You're nearing the total number of input tokens you can accept, so you must extract the highest quality/most relevant pieces of information from your conversation history.
|
||||
This context will then overwrite the conversation history presented below. Because of this, ensure the context you extract is only the most important information to your overall goal.
|
||||
</objective_information>
|
||||
|
||||
<instructions>
|
||||
The conversation history below will be replaced with the context you extract in this step. Because of this, you must do your very best to extract and record all of the most important context from the conversation history.
|
||||
You want to ensure that you don't repeat any actions you've already completed, so the context you extract from the conversation history should be focused on the most important information to your overall goal.
|
||||
</instructions>
|
||||
|
||||
The user will message you with the full message history you'll be extracting context from, to then replace. Carefully read over it all, and think deeply about what information is most important to your overall goal that should be saved:
|
||||
|
||||
With all of this in mind, please carefully read over the entire conversation history, and extract the most important and relevant context to replace it so that you can free up space in the conversation history.
|
||||
Respond ONLY with the extracted context. Do not include any additional information, or text before or after the extracted context.
|
||||
|
||||
<messages>
|
||||
Messages to summarize:
|
||||
{messages}
|
||||
</messages>"""
|
||||
|
||||
SUMMARY_PREFIX = "## Previous conversation summary:"
|
||||
|
||||
_DEFAULT_MESSAGES_TO_KEEP = 20
|
||||
_DEFAULT_TRIM_TOKEN_LIMIT = 4000
|
||||
_DEFAULT_FALLBACK_MESSAGE_COUNT = 15
|
||||
_SEARCH_RANGE_FOR_TOOL_PAIRS = 5
|
||||
|
||||
|
||||
class SummarizationMiddleware(AgentMiddleware):
|
||||
"""Middleware that summarizes conversation history when token limits are approached.
|
||||
|
||||
This middleware monitors message token counts and automatically summarizes older
|
||||
messages when a threshold is reached, preserving recent messages and maintaining
|
||||
context continuity by ensuring AI/Tool message pairs remain together.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
model: BaseChatModel,
|
||||
max_tokens_before_summary: int | None = None,
|
||||
messages_to_keep: int = _DEFAULT_MESSAGES_TO_KEEP,
|
||||
token_counter: TokenCounter = count_tokens_approximately,
|
||||
summary_prompt: str = DEFAULT_SUMMARY_PROMPT,
|
||||
summary_prefix: str = SUMMARY_PREFIX,
|
||||
):
|
||||
"""Initialize the summarization middleware.
|
||||
|
||||
Args:
|
||||
model: The language model to use for generating summaries.
|
||||
max_tokens_before_summary: Token threshold to trigger summarization.
|
||||
If None, summarization is disabled.
|
||||
messages_to_keep: Number of recent messages to preserve after summarization.
|
||||
token_counter: Function to count tokens in messages.
|
||||
summary_prompt: Prompt template for generating summaries.
|
||||
summary_prefix: Prefix added to system message when including summary.
|
||||
"""
|
||||
super().__init__()
|
||||
self.model = model
|
||||
self.max_tokens_before_summary = max_tokens_before_summary
|
||||
self.messages_to_keep = messages_to_keep
|
||||
self.token_counter = token_counter
|
||||
self.summary_prompt = summary_prompt
|
||||
self.summary_prefix = summary_prefix
|
||||
|
||||
def before_model(self, state: AgentState) -> AgentState | None:
|
||||
"""Process messages before model invocation, potentially triggering summarization."""
|
||||
messages = state["messages"]
|
||||
self._ensure_message_ids(messages)
|
||||
|
||||
total_tokens = self.token_counter(messages)
|
||||
if (
|
||||
self.max_tokens_before_summary is not None
|
||||
and total_tokens < self.max_tokens_before_summary
|
||||
):
|
||||
return None
|
||||
|
||||
cutoff_index = self._find_safe_cutoff(messages)
|
||||
|
||||
if cutoff_index <= 0:
|
||||
return None
|
||||
|
||||
messages_to_summarize, preserved_messages = self._partition_messages(
|
||||
messages, cutoff_index
|
||||
)
|
||||
|
||||
summary = self._create_summary(messages_to_summarize)
|
||||
new_messages = self._build_new_messages(summary)
|
||||
|
||||
return {
|
||||
"messages": [
|
||||
RemoveMessage(id=REMOVE_ALL_MESSAGES),
|
||||
*new_messages,
|
||||
*preserved_messages,
|
||||
]
|
||||
}
|
||||
|
||||
def _build_new_messages(self, summary: str):
|
||||
return [
|
||||
{"role": "user", "content": f"Here is a summary of the conversation to date:\n\n{summary}"}
|
||||
]
|
||||
|
||||
def _ensure_message_ids(self, messages: list[AnyMessage]) -> None:
|
||||
"""Ensure all messages have unique IDs for the add_messages reducer."""
|
||||
for msg in messages:
|
||||
if msg.id is None:
|
||||
msg.id = str(uuid.uuid4())
|
||||
|
||||
def _partition_messages(
|
||||
self,
|
||||
conversation_messages: list[AnyMessage],
|
||||
cutoff_index: int,
|
||||
) -> tuple[list[AnyMessage], list[AnyMessage]]:
|
||||
"""Partition messages into those to summarize and those to preserve."""
|
||||
messages_to_summarize = conversation_messages[:cutoff_index]
|
||||
preserved_messages = conversation_messages[cutoff_index:]
|
||||
|
||||
return messages_to_summarize, preserved_messages
|
||||
|
||||
def _find_safe_cutoff(self, messages: list[AnyMessage]) -> int:
|
||||
"""Find safe cutoff point that preserves AI/Tool message pairs.
|
||||
|
||||
Returns the index where messages can be safely cut without separating
|
||||
related AI and Tool messages. Returns 0 if no safe cutoff is found.
|
||||
"""
|
||||
if len(messages) <= self.messages_to_keep:
|
||||
return 0
|
||||
|
||||
target_cutoff = len(messages) - self.messages_to_keep
|
||||
|
||||
for i in range(target_cutoff, -1, -1):
|
||||
if self._is_safe_cutoff_point(messages, i):
|
||||
return i
|
||||
|
||||
return 0
|
||||
|
||||
def _is_safe_cutoff_point(self, messages: list[AnyMessage], cutoff_index: int) -> bool:
|
||||
"""Check if cutting at index would separate AI/Tool message pairs."""
|
||||
if cutoff_index >= len(messages):
|
||||
return True
|
||||
|
||||
search_start = max(0, cutoff_index - _SEARCH_RANGE_FOR_TOOL_PAIRS)
|
||||
search_end = min(len(messages), cutoff_index + _SEARCH_RANGE_FOR_TOOL_PAIRS)
|
||||
|
||||
for i in range(search_start, search_end):
|
||||
if not self._has_tool_calls(messages[i]):
|
||||
continue
|
||||
|
||||
tool_call_ids = self._extract_tool_call_ids(messages[i])
|
||||
if self._cutoff_separates_tool_pair(messages, i, cutoff_index, tool_call_ids):
|
||||
return False
|
||||
|
||||
return True
|
||||
|
||||
def _has_tool_calls(self, message: AnyMessage) -> bool:
|
||||
"""Check if message is an AI message with tool calls."""
|
||||
return (
|
||||
isinstance(message, AIMessage) and hasattr(message, "tool_calls") and message.tool_calls
|
||||
)
|
||||
|
||||
def _extract_tool_call_ids(self, ai_message: AIMessage) -> set[str]:
|
||||
"""Extract tool call IDs from an AI message."""
|
||||
tool_call_ids = set()
|
||||
for tc in ai_message.tool_calls:
|
||||
call_id = tc.get("id") if isinstance(tc, dict) else getattr(tc, "id", None)
|
||||
if call_id is not None:
|
||||
tool_call_ids.add(call_id)
|
||||
return tool_call_ids
|
||||
|
||||
def _cutoff_separates_tool_pair(
|
||||
self,
|
||||
messages: list[AnyMessage],
|
||||
ai_message_index: int,
|
||||
cutoff_index: int,
|
||||
tool_call_ids: set[str],
|
||||
) -> bool:
|
||||
"""Check if cutoff separates an AI message from its corresponding tool messages."""
|
||||
for j in range(ai_message_index + 1, len(messages)):
|
||||
message = messages[j]
|
||||
if isinstance(message, ToolMessage) and message.tool_call_id in tool_call_ids:
|
||||
ai_before_cutoff = ai_message_index < cutoff_index
|
||||
tool_before_cutoff = j < cutoff_index
|
||||
if ai_before_cutoff != tool_before_cutoff:
|
||||
return True
|
||||
return False
|
||||
|
||||
def _create_summary(self, messages_to_summarize: list[AnyMessage]) -> str:
|
||||
"""Generate summary for the given messages."""
|
||||
if not messages_to_summarize:
|
||||
return "No previous conversation history."
|
||||
|
||||
trimmed_messages = self._trim_messages_for_summary(messages_to_summarize)
|
||||
if not trimmed_messages:
|
||||
return "Previous conversation was too long to summarize."
|
||||
|
||||
try:
|
||||
response = self.model.invoke(self.summary_prompt.format(messages=trimmed_messages))
|
||||
return cast("str", response.content).strip()
|
||||
except Exception as e:
|
||||
return f"Error generating summary: {e!s}"
|
||||
|
||||
def _trim_messages_for_summary(self, messages: list[AnyMessage]) -> list[AnyMessage]:
|
||||
"""Trim messages to fit within summary generation limits."""
|
||||
try:
|
||||
return trim_messages(
|
||||
messages,
|
||||
max_tokens=_DEFAULT_TRIM_TOKEN_LIMIT,
|
||||
token_counter=self.token_counter,
|
||||
start_on="human",
|
||||
strategy="last",
|
||||
allow_partial=True,
|
||||
include_system=True,
|
||||
)
|
||||
except Exception:
|
||||
return messages[-_DEFAULT_FALLBACK_MESSAGE_COUNT:]
|
||||
129
libs/langchain_v1/langchain/agents/middleware/supervisor.py
Normal file
129
libs/langchain_v1/langchain/agents/middleware/supervisor.py
Normal file
@@ -0,0 +1,129 @@
|
||||
import uuid
|
||||
|
||||
from langchain.agents.types import AgentMiddleware, AgentState, ModelRequest, AgentUpdate, AgentJump
|
||||
from typing_extensions import TypedDict, Type
|
||||
from langchain.tools import tool
|
||||
from langchain.chat_models import init_chat_model
|
||||
|
||||
from langchain.agents.middleware._utils import _generate_correction_tool_messages
|
||||
|
||||
|
||||
class Agent(TypedDict):
|
||||
name: str
|
||||
description: str
|
||||
prompt: str
|
||||
tools: list
|
||||
model: str
|
||||
model_settings: dict
|
||||
response_format: Type
|
||||
|
||||
|
||||
class SwarmAgentState(AgentState):
|
||||
active_agent: str | None
|
||||
|
||||
|
||||
class SwarmMiddleware(AgentMiddleware):
|
||||
|
||||
state_schema = SwarmAgentState
|
||||
|
||||
def __init__(self, agents: list[Agent], starting_agent: str):
|
||||
self.agents = agents
|
||||
self.starting_agent = starting_agent
|
||||
self.agent_mapping = {a['name']: a for a in agents}
|
||||
|
||||
@property
|
||||
def tools(self):
|
||||
return [t for a in self.agents for t in a['tools']]
|
||||
|
||||
def _get_handoff_tool(self, agent: Agent):
|
||||
@tool(
|
||||
name_or_callable=f"handoff_to_{agent['name']}",
|
||||
description=f"Handoff to agent {agent['name']}. Description of this agent:\n\n{agent['description']}"
|
||||
)
|
||||
def handoff():
|
||||
pass
|
||||
|
||||
return handoff
|
||||
|
||||
|
||||
def _get_main_handoff_tools(self):
|
||||
tools = []
|
||||
for agent in self.agents:
|
||||
tools.append(self._get_handoff_tool(agent))
|
||||
return tools
|
||||
|
||||
|
||||
def modify_model_request(self, request: ModelRequest, state: SwarmAgentState) -> ModelRequest:
|
||||
if state.get('active_agent') is None:
|
||||
request.tools = request.tools + self._get_main_handoff_tools()
|
||||
return request
|
||||
active_agent = self.agent_mapping[state['active_agent']]
|
||||
request.system_prompt = active_agent['prompt']
|
||||
request.tools = active_agent['tools']
|
||||
if 'model' in active_agent:
|
||||
request.model = init_chat_model(active_agent['model'])
|
||||
if 'model_settings' in active_agent:
|
||||
request.model_settings = active_agent['model_settings']
|
||||
if 'response_format' in active_agent:
|
||||
request.response_format = active_agent['response_format']
|
||||
return request
|
||||
|
||||
def after_model(self, state: SwarmAgentState) -> AgentUpdate | AgentJump | None:
|
||||
messages = state["messages"]
|
||||
active_agent = state.get('active_agent')
|
||||
if not messages:
|
||||
return None
|
||||
|
||||
last_message = messages[-1]
|
||||
|
||||
if not hasattr(last_message, "tool_calls") or not last_message.tool_calls:
|
||||
if active_agent is None:
|
||||
return None
|
||||
else:
|
||||
fake_tool_call_id = str(uuid.uuid4())
|
||||
last_message.tool_calls = [{
|
||||
"type": "tool_call",
|
||||
"name": "hand_back_to_supervisor",
|
||||
"args": {},
|
||||
"id": fake_tool_call_id,
|
||||
}]
|
||||
fake_tool_message = {"role": "tool", "content": "Handed back to supervisor", "tool_call_id": fake_tool_call_id}
|
||||
return {
|
||||
"messages": [last_message, fake_tool_message],
|
||||
"jump_to": "model"
|
||||
}
|
||||
if active_agent is not None:
|
||||
return None
|
||||
handoff_tools = self._get_main_handoff_tools()
|
||||
handoff_tool_names = [t.name for t in handoff_tools]
|
||||
|
||||
handoffs = []
|
||||
for tool_call in last_message.tool_calls:
|
||||
if tool_call['name'] in handoff_tool_names:
|
||||
handoffs.append(tool_call)
|
||||
if len(handoffs) == 0:
|
||||
return
|
||||
elif len(handoffs) > 1:
|
||||
msg = "Multiple handoffs at the same time are not supported, please just call one at a time."
|
||||
return {
|
||||
"messages": _generate_correction_tool_messages(msg,
|
||||
last_message.tool_calls),
|
||||
"jump_to": "model"
|
||||
}
|
||||
else:
|
||||
tool_call = handoffs[0]
|
||||
handoff_to = tool_call['name'][len("handoff_to_"):]
|
||||
return {
|
||||
"messages":[{
|
||||
"role": "tool",
|
||||
"tool_call_id": tool_call["id"],
|
||||
"content": f"Handed off to agent {handoff_to}",
|
||||
}],
|
||||
"active_agent":handoff_to,
|
||||
"jump_to": "model"
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
111
libs/langchain_v1/langchain/agents/middleware/swarm.py
Normal file
111
libs/langchain_v1/langchain/agents/middleware/swarm.py
Normal file
@@ -0,0 +1,111 @@
|
||||
from langchain.agents.types import AgentMiddleware, AgentState, ModelRequest, AgentUpdate, AgentJump
|
||||
from typing_extensions import TypedDict, Type
|
||||
from langchain.tools import tool
|
||||
from langchain.chat_models import init_chat_model
|
||||
from langchain.agents.middleware._utils import _generate_correction_tool_messages
|
||||
|
||||
|
||||
class Agent(TypedDict):
|
||||
name: str
|
||||
description: str
|
||||
prompt: str
|
||||
tools: list
|
||||
model: str
|
||||
model_settings: dict
|
||||
response_format: Type
|
||||
|
||||
|
||||
class SwarmAgentState(AgentState):
|
||||
active_agent: str
|
||||
|
||||
|
||||
class SwarmMiddleware(AgentMiddleware):
|
||||
|
||||
state_schema = SwarmAgentState
|
||||
|
||||
def __init__(self, agents: list[Agent], starting_agent: str):
|
||||
self.agents = agents
|
||||
self.starting_agent = starting_agent
|
||||
self.agent_mapping = {a['name']: a for a in agents}
|
||||
|
||||
@property
|
||||
def tools(self):
|
||||
return [t for a in self.agents for t in a['tools']]
|
||||
|
||||
|
||||
def _get_handoff_tool(self, agent: Agent):
|
||||
@tool(
|
||||
name_or_callable=f"handoff_to_{agent['name']}",
|
||||
description=f"Handoff to agent {agent['name']}. Description of this agent:\n\n{agent['description']}"
|
||||
)
|
||||
def handoff():
|
||||
pass
|
||||
|
||||
return handoff
|
||||
|
||||
|
||||
def _get_handoff_tools(self, active_agent: str):
|
||||
tools = []
|
||||
for agent in self.agents:
|
||||
if agent['name'] != active_agent:
|
||||
tools.append(self._get_handoff_tool(agent))
|
||||
return tools
|
||||
|
||||
|
||||
def modify_model_request(self, request: ModelRequest, state: SwarmAgentState) -> ModelRequest:
|
||||
active_agent_name = state.get('active_agent') or self.starting_agent
|
||||
active_agent = self.agent_mapping[active_agent_name]
|
||||
request.system_prompt = active_agent['prompt']
|
||||
request.tools = active_agent['tools'] + self._get_handoff_tools(active_agent)
|
||||
if 'model' in active_agent:
|
||||
request.model = init_chat_model(active_agent['model'])
|
||||
if 'model_settings' in active_agent:
|
||||
request.model_settings = active_agent['model_settings']
|
||||
if 'response_format' in active_agent:
|
||||
request.response_format = active_agent['response_format']
|
||||
return request
|
||||
|
||||
def after_model(self, state: SwarmAgentState) -> AgentUpdate | AgentJump | None:
|
||||
active_agent = state.get('active_agent') or self.starting_agent
|
||||
messages = state["messages"]
|
||||
if not messages:
|
||||
return None
|
||||
|
||||
last_message = messages[-1]
|
||||
|
||||
if not hasattr(last_message, "tool_calls") or not last_message.tool_calls:
|
||||
return None
|
||||
|
||||
handoff_tools = self._get_handoff_tools(active_agent)
|
||||
handoff_tool_names = [t.name for t in handoff_tools]
|
||||
|
||||
handoffs = []
|
||||
for tool_call in last_message.tool_calls:
|
||||
if tool_call['name'] in handoff_tool_names:
|
||||
handoffs.append(tool_call)
|
||||
if len(handoffs) == 0:
|
||||
return
|
||||
elif len(handoffs) > 1:
|
||||
msg = "Multiple handoffs at the same time are not supported, please just call one at a time."
|
||||
return {
|
||||
"messages": _generate_correction_tool_messages(msg,
|
||||
last_message.tool_calls),
|
||||
"jump_to": "model"
|
||||
}
|
||||
else:
|
||||
tool_call = handoffs[0]
|
||||
handoff_to = tool_call['name'][len("handoff_to_"):]
|
||||
return {
|
||||
"messages":[{
|
||||
"role": "tool",
|
||||
"tool_call_id": tool_call["id"],
|
||||
"content": f"Handed off to agent {handoff_to}",
|
||||
}],
|
||||
"active_agent":handoff_to,
|
||||
"jump_to": "model"
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
@@ -0,0 +1,36 @@
|
||||
from dataclasses import field
|
||||
from typing import cast
|
||||
|
||||
from langchain_core.messages import AIMessage
|
||||
from langgraph.agents.types import AgentJump, AgentMiddleware, AgentState, AgentUpdate
|
||||
|
||||
|
||||
class State(AgentState):
|
||||
tool_call_count: dict[str, int] = field(default_factory=dict)
|
||||
|
||||
|
||||
class ToolCallLimitMiddleware(AgentMiddleware):
|
||||
"""Terminates after a specific tool is called N times"""
|
||||
|
||||
state_schema = State
|
||||
|
||||
def __init__(self, tool_limits: dict[str, int]):
|
||||
self.tool_limits = tool_limits
|
||||
|
||||
def after_model(self, state: State) -> AgentUpdate | AgentJump | None:
|
||||
ai_msg: AIMessage = cast("AIMessage", state["messages"][-1])
|
||||
|
||||
tool_calls = {}
|
||||
for call in ai_msg.tool_calls or []:
|
||||
tool_calls[call["name"]] = tool_calls.get(call["name"], 0) + 1
|
||||
|
||||
aggregate_calls = state["tool_call_count"].copy()
|
||||
for tool_name in tool_calls:
|
||||
aggregate_calls[tool_name] = aggregate_calls.get(tool_name, 0) + 1
|
||||
|
||||
for tool_name, max_calls in self.tool_limits.items():
|
||||
count = aggregate_calls.get(tool_name, 0)
|
||||
if count == max_calls:
|
||||
return {"tool_call_count": aggregate_calls, "jump_to": "__end__"}
|
||||
|
||||
return {"tool_call_count": aggregate_calls}
|
||||
564
libs/langchain_v1/langchain/agents/middleware_agent.py
Normal file
564
libs/langchain_v1/langchain/agents/middleware_agent.py
Normal file
@@ -0,0 +1,564 @@
|
||||
from collections.abc import Callable, Sequence
|
||||
from inspect import signature
|
||||
from typing import Any, Union, cast
|
||||
|
||||
from langchain_core.language_models.chat_models import BaseChatModel
|
||||
from langchain_core.messages import AIMessage, BaseMessage, SystemMessage, ToolMessage
|
||||
from langchain_core.tools import BaseTool
|
||||
from langgraph.constants import END, START
|
||||
from langgraph.graph.state import StateGraph
|
||||
from typing_extensions import TypeVar
|
||||
|
||||
# Import structured output classes from the old implementation
|
||||
from langchain.agents.structured_output import (
|
||||
MultipleStructuredOutputsError,
|
||||
OutputToolBinding,
|
||||
ProviderStrategy,
|
||||
ProviderStrategyBinding,
|
||||
StructuredOutputValidationError,
|
||||
ToolStrategy,
|
||||
)
|
||||
from langchain.agents.tool_node import ToolNode
|
||||
from langchain.agents.types import (
|
||||
AgentJump,
|
||||
AgentMiddleware,
|
||||
AgentState,
|
||||
AgentUpdate,
|
||||
JumpTo,
|
||||
ModelRequest,
|
||||
ResponseFormat,
|
||||
)
|
||||
|
||||
STRUCTURED_OUTPUT_ERROR_TEMPLATE = "Error: {error}\n Please fix your mistakes."
|
||||
|
||||
|
||||
def _supports_native_structured_output(model: Union[str, BaseChatModel]) -> bool:
|
||||
"""Check if a model supports native structured output."""
|
||||
model_name: str | None = None
|
||||
if isinstance(model, str):
|
||||
model_name = model
|
||||
elif isinstance(model, BaseChatModel):
|
||||
model_name = getattr(model, "model_name", None)
|
||||
|
||||
return (
|
||||
"grok" in model_name.lower()
|
||||
or any(part in model_name for part in ["gpt-5", "gpt-4.1", "gpt-oss", "o3-pro", "o3-mini"])
|
||||
if model_name
|
||||
else False
|
||||
)
|
||||
|
||||
|
||||
def _handle_structured_output_error(
|
||||
exception: Exception,
|
||||
response_format: ResponseFormat,
|
||||
) -> tuple[bool, str]:
|
||||
"""Handle structured output error. Returns (should_retry, retry_tool_message)."""
|
||||
if not isinstance(response_format, ToolStrategy):
|
||||
return False, ""
|
||||
|
||||
handle_errors = response_format.handle_errors
|
||||
|
||||
if handle_errors is False:
|
||||
return False, ""
|
||||
if handle_errors is True:
|
||||
return True, STRUCTURED_OUTPUT_ERROR_TEMPLATE.format(error=str(exception))
|
||||
if isinstance(handle_errors, str):
|
||||
return True, handle_errors
|
||||
if isinstance(handle_errors, type) and issubclass(handle_errors, Exception):
|
||||
if isinstance(exception, handle_errors):
|
||||
return True, STRUCTURED_OUTPUT_ERROR_TEMPLATE.format(error=str(exception))
|
||||
return False, ""
|
||||
if isinstance(handle_errors, tuple):
|
||||
if any(isinstance(exception, exc_type) for exc_type in handle_errors):
|
||||
return True, STRUCTURED_OUTPUT_ERROR_TEMPLATE.format(error=str(exception))
|
||||
return False, ""
|
||||
if callable(handle_errors):
|
||||
return True, handle_errors(exception)
|
||||
return False, ""
|
||||
|
||||
|
||||
ContextT = TypeVar("ContextT")
|
||||
ResponseT = TypeVar("ResponseT")
|
||||
|
||||
|
||||
def create_agent(
|
||||
*,
|
||||
model: str | BaseChatModel,
|
||||
tools: Sequence[BaseTool | Callable | dict[str, Any]] | ToolNode | None = None,
|
||||
system_prompt: str | None = None,
|
||||
middleware: Sequence[AgentMiddleware] = (),
|
||||
response_format: ResponseFormat[ResponseT] | type[ResponseT] | None = None,
|
||||
context_schema: type[ContextT] | None = None,
|
||||
) -> StateGraph[AgentState[ResponseT], ContextT]:
|
||||
# init chat model
|
||||
if isinstance(model, str):
|
||||
try:
|
||||
from langchain.chat_models import ( # type: ignore[import-not-found]
|
||||
init_chat_model,
|
||||
)
|
||||
except ImportError:
|
||||
raise ImportError(
|
||||
"Please install langchain (`pip install langchain`) to "
|
||||
"use '<provider>:<model>' string syntax for `model` parameter."
|
||||
)
|
||||
|
||||
model = cast("BaseChatModel", init_chat_model(model))
|
||||
|
||||
# Handle tools being None or empty
|
||||
if tools is None:
|
||||
tools = []
|
||||
|
||||
# Setup structured output
|
||||
structured_output_tools: dict[str, OutputToolBinding] = {}
|
||||
native_output_binding: ProviderStrategyBinding | None = None
|
||||
|
||||
if response_format is not None:
|
||||
if not isinstance(response_format, (ToolStrategy, ProviderStrategy)):
|
||||
# Auto-detect strategy based on model capabilities
|
||||
if _supports_native_structured_output(model):
|
||||
response_format = ProviderStrategy(schema=response_format)
|
||||
else:
|
||||
response_format = ToolStrategy(schema=response_format)
|
||||
|
||||
if isinstance(response_format, ToolStrategy):
|
||||
# Setup tools strategy for structured output
|
||||
for response_schema in response_format.schema_specs:
|
||||
structured_tool_info = OutputToolBinding.from_schema_spec(response_schema)
|
||||
structured_output_tools[structured_tool_info.tool.name] = structured_tool_info
|
||||
elif isinstance(response_format, ProviderStrategy):
|
||||
# Setup native strategy
|
||||
native_output_binding = ProviderStrategyBinding.from_schema_spec(
|
||||
response_format.schema_spec
|
||||
)
|
||||
middleware_tools = [t for m in middleware for t in m.tools]
|
||||
# Setup tools
|
||||
if isinstance(tools, list):
|
||||
# Extract builtin provider tools (dict format)
|
||||
builtin_tools = [t for t in tools if isinstance(t, dict)]
|
||||
regular_tools = [t for t in tools if not isinstance(t, dict)]
|
||||
|
||||
# Add structured output tools to regular tools
|
||||
structured_tools = [info.tool for info in structured_output_tools.values()]
|
||||
all_tools = middleware_tools + regular_tools + structured_tools
|
||||
|
||||
if all_tools: # Only create ToolNode if we have tools
|
||||
tool_node = ToolNode(tools=all_tools)
|
||||
else:
|
||||
tool_node = None
|
||||
default_tools = regular_tools + builtin_tools + structured_tools + middleware_tools
|
||||
else:
|
||||
# tools is ToolNode or None
|
||||
tool_node = tools
|
||||
if tool_node:
|
||||
default_tools = list(tool_node.tools_by_name.values()) + middleware_tools
|
||||
# Update tool node to know about tools provided by middleware
|
||||
all_tools = list(tool_node.tools_by_name.values()) + middleware_tools
|
||||
tool_node = ToolNode(all_tools)
|
||||
# Add structured output tools
|
||||
for info in structured_output_tools.values():
|
||||
default_tools.append(info.tool)
|
||||
else:
|
||||
default_tools = (
|
||||
list(structured_output_tools.values()) if structured_output_tools else []
|
||||
) + middleware_tools
|
||||
|
||||
# validate middleware
|
||||
assert len({m.__class__.__name__ for m in middleware}) == len(middleware), (
|
||||
"Please remove duplicate middleware instances."
|
||||
)
|
||||
middleware_w_before = [
|
||||
m for m in middleware if m.__class__.before_model is not AgentMiddleware.before_model
|
||||
]
|
||||
middleware_w_modify_model_request = [
|
||||
m
|
||||
for m in middleware
|
||||
if m.__class__.modify_model_request is not AgentMiddleware.modify_model_request
|
||||
]
|
||||
middleware_w_after = [
|
||||
m for m in middleware if m.__class__.after_model is not AgentMiddleware.after_model
|
||||
]
|
||||
|
||||
# create graph, add nodes
|
||||
graph = StateGraph(
|
||||
AgentState,
|
||||
input_schema=AgentUpdate,
|
||||
output_schema=AgentUpdate,
|
||||
context_schema=context_schema,
|
||||
)
|
||||
|
||||
def _prepare_model_request(state: AgentState) -> tuple[ModelRequest, list[BaseMessage]]:
|
||||
"""Prepare model request and messages."""
|
||||
request = state.get("model_request") or ModelRequest(
|
||||
model=model,
|
||||
tools=default_tools,
|
||||
system_prompt=system_prompt,
|
||||
response_format=response_format,
|
||||
messages=state["messages"],
|
||||
tool_choice=None,
|
||||
)
|
||||
|
||||
# prepare messages
|
||||
messages = request.messages
|
||||
if request.system_prompt:
|
||||
messages = [SystemMessage(request.system_prompt)] + messages
|
||||
|
||||
return request, messages
|
||||
|
||||
def _handle_model_output(
|
||||
state: AgentState, output: AIMessage, request: ModelRequest
|
||||
) -> AgentState:
|
||||
"""Handle model output including structured responses."""
|
||||
# Handle structured output with native strategy
|
||||
if isinstance(response_format, ProviderStrategy):
|
||||
if not output.tool_calls and native_output_binding:
|
||||
structured_response = native_output_binding.parse(output)
|
||||
return {"messages": output, "response": structured_response}
|
||||
if state.get("response") is not None:
|
||||
return {"messages": output, "response": None}
|
||||
return {"messages": output}
|
||||
|
||||
# Handle structured output with tools strategy
|
||||
if isinstance(response_format, ToolStrategy):
|
||||
if isinstance(output, AIMessage) and output.tool_calls:
|
||||
structured_tool_calls = [
|
||||
tc for tc in output.tool_calls if tc["name"] in structured_output_tools
|
||||
]
|
||||
|
||||
if structured_tool_calls:
|
||||
if len(structured_tool_calls) > 1:
|
||||
# Handle multiple structured outputs error
|
||||
tool_names = [tc["name"] for tc in structured_tool_calls]
|
||||
exception = MultipleStructuredOutputsError(tool_names)
|
||||
should_retry, error_message = _handle_structured_output_error(
|
||||
exception, response_format
|
||||
)
|
||||
if not should_retry:
|
||||
raise exception
|
||||
|
||||
# Add error messages and retry
|
||||
tool_messages = [
|
||||
ToolMessage(
|
||||
content=error_message,
|
||||
tool_call_id=tc["id"],
|
||||
name=tc["name"],
|
||||
)
|
||||
for tc in structured_tool_calls
|
||||
]
|
||||
return {"messages": [output] + tool_messages}
|
||||
|
||||
# Handle single structured output
|
||||
tool_call = structured_tool_calls[0]
|
||||
try:
|
||||
structured_tool_binding = structured_output_tools[tool_call["name"]]
|
||||
structured_response = structured_tool_binding.parse(tool_call["args"])
|
||||
|
||||
tool_message_content = (
|
||||
response_format.tool_message_content
|
||||
if response_format.tool_message_content
|
||||
else f"Returning structured response: {structured_response}"
|
||||
)
|
||||
|
||||
return {
|
||||
"messages": [
|
||||
output,
|
||||
ToolMessage(
|
||||
content=tool_message_content,
|
||||
tool_call_id=tool_call["id"],
|
||||
name=tool_call["name"],
|
||||
),
|
||||
],
|
||||
"response": structured_response,
|
||||
}
|
||||
except Exception as exc:
|
||||
exception = StructuredOutputValidationError(tool_call["name"], exc)
|
||||
should_retry, error_message = _handle_structured_output_error(
|
||||
exception, response_format
|
||||
)
|
||||
if not should_retry:
|
||||
raise exception
|
||||
|
||||
return {
|
||||
"messages": [
|
||||
output,
|
||||
ToolMessage(
|
||||
content=error_message,
|
||||
tool_call_id=tool_call["id"],
|
||||
name=tool_call["name"],
|
||||
),
|
||||
],
|
||||
}
|
||||
|
||||
# Standard response handling
|
||||
if state.get("response") is not None:
|
||||
return {"messages": output, "response": None}
|
||||
return {"messages": output}
|
||||
|
||||
def _get_bound_model(request: ModelRequest) -> BaseChatModel:
|
||||
"""Get the model with appropriate tool bindings."""
|
||||
if isinstance(response_format, ProviderStrategy):
|
||||
# Use native structured output
|
||||
kwargs = response_format.to_model_kwargs()
|
||||
return request.model.bind_tools(
|
||||
request.tools, strict=True, **kwargs, **request.model_settings
|
||||
)
|
||||
if isinstance(response_format, ToolStrategy):
|
||||
tool_choice = "any" if structured_output_tools else request.tool_choice
|
||||
return request.model.bind_tools(
|
||||
request.tools, tool_choice=tool_choice, **request.model_settings
|
||||
)
|
||||
# Standard model binding
|
||||
if request.tools:
|
||||
return request.model.bind_tools(
|
||||
request.tools, tool_choice=request.tool_choice, **request.model_settings
|
||||
)
|
||||
return request.model.bind(**request.model_settings)
|
||||
|
||||
def model_request(state: AgentState) -> AgentState:
|
||||
"""Sync model request handler."""
|
||||
request, messages = _prepare_model_request(state)
|
||||
model_ = _get_bound_model(request)
|
||||
output = model_.invoke(messages)
|
||||
return _handle_model_output(state, output, request)
|
||||
|
||||
async def amodel_request(state: AgentState) -> AgentState:
|
||||
"""Async model request handler."""
|
||||
request, messages = _prepare_model_request(state)
|
||||
model_ = _get_bound_model(request)
|
||||
output = await model_.ainvoke(messages)
|
||||
return _handle_model_output(state, output, request)
|
||||
|
||||
# Use sync or async based on model capabilities
|
||||
from langgraph._internal._runnable import RunnableCallable
|
||||
|
||||
graph.add_node("model_request", RunnableCallable(model_request, amodel_request))
|
||||
|
||||
# Only add tools node if we have tools
|
||||
if tool_node is not None:
|
||||
graph.add_node("tools", tool_node)
|
||||
|
||||
# Add middleware nodes
|
||||
for m in middleware:
|
||||
if m.__class__.before_model is not AgentMiddleware.before_model:
|
||||
graph.add_node(
|
||||
f"{m.__class__.__name__}.before_model",
|
||||
m.before_model,
|
||||
input_schema=m.state_schema,
|
||||
)
|
||||
if m.__class__.modify_model_request is not AgentMiddleware.modify_model_request:
|
||||
|
||||
def modify_model_request_node(state: AgentState) -> dict[str, ModelRequest]:
|
||||
default_model_request = ModelRequest(
|
||||
model=model,
|
||||
tools=default_tools,
|
||||
system_prompt=system_prompt,
|
||||
response_format=response_format,
|
||||
messages=state["messages"],
|
||||
tool_choice=None,
|
||||
)
|
||||
|
||||
return {
|
||||
"model_request": m.modify_model_request(
|
||||
state.get("model_request") or default_model_request, state
|
||||
)
|
||||
}
|
||||
|
||||
graph.add_node(
|
||||
f"{m.__class__.__name__}.modify_model_request",
|
||||
modify_model_request_node,
|
||||
input_schema=m.state_schema,
|
||||
)
|
||||
|
||||
if m.__class__.after_model is not AgentMiddleware.after_model:
|
||||
graph.add_node(
|
||||
f"{m.__class__.__name__}.after_model",
|
||||
m.after_model,
|
||||
input_schema=m.state_schema,
|
||||
)
|
||||
|
||||
# add start edge
|
||||
first_node = (
|
||||
f"{middleware_w_before[0].__class__.__name__}.before_model"
|
||||
if middleware_w_before
|
||||
else f"{middleware_w_modify_model_request[0].__class__.__name__}.modify_model_request"
|
||||
if middleware_w_modify_model_request
|
||||
else "model_request"
|
||||
)
|
||||
last_node = (
|
||||
f"{middleware_w_after[0].__class__.__name__}.after_model"
|
||||
if middleware_w_after
|
||||
else "model_request"
|
||||
)
|
||||
graph.add_edge(START, first_node)
|
||||
|
||||
# add conditional edges only if tools exist
|
||||
if tool_node is not None:
|
||||
graph.add_conditional_edges(
|
||||
"tools",
|
||||
_make_tools_to_model_edge(tool_node, first_node, structured_output_tools),
|
||||
[first_node, END],
|
||||
)
|
||||
graph.add_conditional_edges(
|
||||
last_node,
|
||||
_make_model_to_tools_edge(first_node, structured_output_tools),
|
||||
[first_node, "tools", END],
|
||||
)
|
||||
else:
|
||||
if last_node == "model_request":
|
||||
# If no tools, just go to END from model
|
||||
graph.add_edge(last_node, END)
|
||||
else:
|
||||
# If after_model, then need to check for jump_to
|
||||
_add_middleware_edge(
|
||||
graph,
|
||||
middleware_w_after[0].after_model,
|
||||
f"{middleware_w_after[0].__class__.__name__}.after_model",
|
||||
END,
|
||||
first_node,
|
||||
tools_available=tool_node is not None,
|
||||
|
||||
)
|
||||
|
||||
|
||||
# Add middleware edges (same as before)
|
||||
if middleware_w_before:
|
||||
for m1, m2 in zip(middleware_w_before, middleware_w_before[1:], strict=False):
|
||||
_add_middleware_edge(
|
||||
graph,
|
||||
m1.before_model,
|
||||
f"{m1.__class__.__name__}.before_model",
|
||||
f"{m2.__class__.__name__}.before_model",
|
||||
first_node,
|
||||
tools_available=tool_node is not None,
|
||||
)
|
||||
if middleware_w_modify_model_request:
|
||||
first_modify = middleware_w_modify_model_request[0]
|
||||
next_node = f"{first_modify.__class__.__name__}.modify_model_request"
|
||||
else:
|
||||
next_node = "model_request"
|
||||
_add_middleware_edge(
|
||||
graph,
|
||||
middleware_w_before[-1].before_model,
|
||||
f"{middleware_w_before[-1].__class__.__name__}.before_model",
|
||||
next_node,
|
||||
first_node,
|
||||
tools_available=tool_node is not None,
|
||||
)
|
||||
|
||||
if middleware_w_modify_model_request:
|
||||
for m1, m2 in zip(
|
||||
middleware_w_modify_model_request, middleware_w_modify_model_request[1:], strict=False
|
||||
):
|
||||
_add_middleware_edge(
|
||||
graph,
|
||||
m1.modify_model_request,
|
||||
f"{m1.__class__.__name__}.modify_model_request",
|
||||
f"{m2.__class__.__name__}.modify_model_request",
|
||||
first_node,
|
||||
tools_available=tool_node is not None,
|
||||
)
|
||||
_add_middleware_edge(
|
||||
graph,
|
||||
middleware_w_modify_model_request[-1].modify_model_request,
|
||||
f"{middleware_w_modify_model_request[-1].__class__.__name__}.modify_model_request",
|
||||
"model_request",
|
||||
first_node,
|
||||
tools_available=tool_node is not None,
|
||||
)
|
||||
|
||||
if middleware_w_after:
|
||||
graph.add_edge("model_request", f"{middleware_w_after[-1].__class__.__name__}.after_model")
|
||||
for idx in range(len(middleware_w_after) - 1, 0, -1):
|
||||
m1 = middleware_w_after[idx]
|
||||
m2 = middleware_w_after[idx - 1]
|
||||
_add_middleware_edge(
|
||||
graph,
|
||||
m1.after_model,
|
||||
f"{m1.__class__.__name__}.after_model",
|
||||
f"{m2.__class__.__name__}.after_model",
|
||||
first_node,
|
||||
tools_available=tool_node is not None,
|
||||
)
|
||||
|
||||
return graph
|
||||
|
||||
|
||||
def _resolve_jump(jump_to: JumpTo | None, first_node: str) -> str | None:
|
||||
if jump_to == "model":
|
||||
return first_node
|
||||
if jump_to:
|
||||
return jump_to
|
||||
|
||||
|
||||
def _make_model_to_tools_edge(
|
||||
first_node: str, structured_output_tools: dict[str, OutputToolBinding]
|
||||
) -> Callable[[AgentState], str | None]:
|
||||
def model_to_tools(state: AgentState) -> str | None:
|
||||
if jump_to := state.get("jump_to"):
|
||||
return _resolve_jump(jump_to, first_node)
|
||||
|
||||
message = state["messages"][-1]
|
||||
|
||||
# Check if this is a ToolMessage from structured output - if so, end
|
||||
if isinstance(message, ToolMessage) and message.name in structured_output_tools:
|
||||
return END
|
||||
|
||||
# Check for tool calls
|
||||
if isinstance(message, AIMessage) and message.tool_calls:
|
||||
# If all tool calls are for structured output, don't go to tools
|
||||
non_structured_calls = [
|
||||
tc for tc in message.tool_calls if tc["name"] not in structured_output_tools
|
||||
]
|
||||
if non_structured_calls:
|
||||
return "tools"
|
||||
|
||||
return END
|
||||
|
||||
return model_to_tools
|
||||
|
||||
|
||||
def _make_tools_to_model_edge(
|
||||
tool_node: ToolNode, next_node: str, structured_output_tools: dict[str, OutputToolBinding]
|
||||
) -> Callable[[AgentState], str | None]:
|
||||
def tools_to_model(state: AgentState) -> str | None:
|
||||
ai_message = [m for m in state["messages"] if isinstance(m, AIMessage)][-1]
|
||||
if all(
|
||||
tool_node.tools_by_name[c["name"]].return_direct
|
||||
for c in ai_message.tool_calls
|
||||
if c["name"] in tool_node.tools_by_name
|
||||
):
|
||||
return END
|
||||
|
||||
return next_node
|
||||
|
||||
return tools_to_model
|
||||
|
||||
|
||||
def _add_middleware_edge(
|
||||
graph: StateGraph,
|
||||
method: Callable[[AgentState], AgentUpdate | AgentJump | None],
|
||||
name: str,
|
||||
default_destination: str,
|
||||
model_destination: str,
|
||||
tools_available: bool,
|
||||
) -> None:
|
||||
sig = signature(method)
|
||||
uses_jump = sig.return_annotation is AgentJump or AgentJump in getattr(
|
||||
sig.return_annotation, "__args__", ()
|
||||
)
|
||||
|
||||
if uses_jump:
|
||||
|
||||
def jump_edge(state: AgentState) -> str:
|
||||
return _resolve_jump(state.get("jump_to"), model_destination) or default_destination
|
||||
|
||||
destinations = [default_destination]
|
||||
if END != default_destination:
|
||||
destinations.append(END)
|
||||
if tools_available:
|
||||
destinations.append("tools")
|
||||
if name != model_destination:
|
||||
destinations.append(model_destination)
|
||||
|
||||
graph.add_conditional_edges(name, jump_edge, destinations)
|
||||
else:
|
||||
graph.add_edge(name, default_destination)
|
||||
@@ -45,6 +45,7 @@ from langgraph.typing import ContextT, StateT
|
||||
from pydantic import BaseModel
|
||||
from typing_extensions import NotRequired, TypedDict, TypeVar
|
||||
|
||||
from langchain.agents.middleware_agent import create_agent as create_middleware_agent
|
||||
from langchain.agents.structured_output import (
|
||||
MultipleStructuredOutputsError,
|
||||
OutputToolBinding,
|
||||
@@ -55,6 +56,7 @@ from langchain.agents.structured_output import (
|
||||
ToolStrategy,
|
||||
)
|
||||
from langchain.agents.tool_node import ToolNode
|
||||
from langchain.agents.types import AgentMiddleware
|
||||
from langchain.chat_models import init_chat_model
|
||||
|
||||
if TYPE_CHECKING:
|
||||
@@ -908,6 +910,7 @@ def create_agent( # noqa: D417
|
||||
],
|
||||
tools: Union[Sequence[Union[BaseTool, Callable, dict[str, Any]]], ToolNode],
|
||||
*,
|
||||
middleware: Sequence[AgentMiddleware] = (),
|
||||
prompt: Prompt | None = None,
|
||||
response_format: Union[
|
||||
ToolStrategy[StructuredResponseT],
|
||||
@@ -1114,6 +1117,29 @@ def create_agent( # noqa: D417
|
||||
print(chunk)
|
||||
```
|
||||
"""
|
||||
if middleware:
|
||||
assert isinstance(model, str | BaseChatModel)
|
||||
assert isinstance(prompt, str | None)
|
||||
assert not isinstance(response_format, tuple)
|
||||
assert pre_model_hook is None
|
||||
assert post_model_hook is None
|
||||
assert state_schema is None
|
||||
return create_middleware_agent( # type: ignore[return-value]
|
||||
model=model,
|
||||
tools=tools,
|
||||
system_prompt=prompt,
|
||||
middleware=middleware,
|
||||
response_format=response_format,
|
||||
context_schema=context_schema,
|
||||
).compile(
|
||||
checkpointer=checkpointer,
|
||||
store=store,
|
||||
name=name,
|
||||
interrupt_after=interrupt_after,
|
||||
interrupt_before=interrupt_before,
|
||||
debug=debug,
|
||||
)
|
||||
|
||||
# Handle deprecated config_schema parameter
|
||||
if (config_schema := deprecated_kwargs.pop("config_schema", MISSING)) is not MISSING:
|
||||
warn(
|
||||
|
||||
67
libs/langchain_v1/langchain/agents/types.py
Normal file
67
libs/langchain_v1/langchain/agents/types.py
Normal file
@@ -0,0 +1,67 @@
|
||||
from __future__ import annotations
|
||||
|
||||
from dataclasses import dataclass, field
|
||||
from typing import Annotated, Any, ClassVar, Generic, Literal
|
||||
|
||||
from langchain_core.language_models.chat_models import BaseChatModel
|
||||
from langchain_core.messages import AnyMessage
|
||||
from langchain_core.tools import BaseTool
|
||||
from langgraph.channels.ephemeral_value import EphemeralValue
|
||||
from langgraph.graph.message import Messages, add_messages
|
||||
from typing_extensions import TypedDict, TypeVar
|
||||
|
||||
from langchain.agents.structured_output import ResponseFormat
|
||||
|
||||
JumpTo = Literal["tools", "model", "__end__"]
|
||||
ResponseT = TypeVar("ResponseT")
|
||||
|
||||
|
||||
@dataclass
|
||||
class ModelRequest:
|
||||
model: BaseChatModel
|
||||
system_prompt: str
|
||||
messages: list[AnyMessage] # excluding system prompt
|
||||
tool_choice: Any
|
||||
tools: list[BaseTool]
|
||||
response_format: ResponseFormat | None
|
||||
model_settings: dict[str, Any] = field(default_factory=dict)
|
||||
|
||||
|
||||
class AgentState(TypedDict, Generic[ResponseT], total=False):
|
||||
# TODO: import change allowing for required / not required and still registering reducer properly
|
||||
# do we want to use total = False or require NotRequired?
|
||||
messages: Annotated[list[AnyMessage], add_messages]
|
||||
model_request: Annotated[ModelRequest | None, EphemeralValue]
|
||||
jump_to: Annotated[JumpTo | None, EphemeralValue]
|
||||
|
||||
# TODO: structured response maybe?
|
||||
response: ResponseT
|
||||
|
||||
|
||||
StateT = TypeVar("StateT", bound=AgentState)
|
||||
|
||||
|
||||
class AgentMiddleware(Generic[StateT]):
|
||||
# TODO: I thought this should be a ClassVar[type[StateT]] but inherently class vars can't use type vars
|
||||
# bc they're instance dependent
|
||||
state_schema: ClassVar[type] = AgentState
|
||||
tools: list[BaseTool] = []
|
||||
|
||||
def before_model(self, state: StateT) -> AgentUpdate | AgentJump | None:
|
||||
pass
|
||||
|
||||
def modify_model_request(self, request: ModelRequest, state: StateT) -> ModelRequest:
|
||||
return request
|
||||
|
||||
def after_model(self, state: StateT) -> AgentUpdate | AgentJump | None:
|
||||
pass
|
||||
|
||||
|
||||
class AgentUpdate(TypedDict, total=False):
|
||||
messages: Messages
|
||||
response: dict
|
||||
|
||||
|
||||
class AgentJump(TypedDict, total=False):
|
||||
messages: Messages
|
||||
jump_to: JumpTo
|
||||
112
libs/langchain_v1/langchain/chat_models/fake.py
Normal file
112
libs/langchain_v1/langchain/chat_models/fake.py
Normal file
@@ -0,0 +1,112 @@
|
||||
import json
|
||||
from collections.abc import Callable, Sequence
|
||||
from dataclasses import asdict, is_dataclass
|
||||
from typing import (
|
||||
Any,
|
||||
Generic,
|
||||
Literal,
|
||||
TypeVar,
|
||||
Union,
|
||||
)
|
||||
|
||||
from langchain_core.callbacks import CallbackManagerForLLMRun
|
||||
from langchain_core.language_models import BaseChatModel, LanguageModelInput
|
||||
from langchain_core.messages import (
|
||||
AIMessage,
|
||||
BaseMessage,
|
||||
ToolCall,
|
||||
)
|
||||
from langchain_core.outputs import ChatGeneration, ChatResult
|
||||
from langchain_core.runnables import Runnable
|
||||
from langchain_core.tools import BaseTool
|
||||
from pydantic import BaseModel
|
||||
|
||||
StructuredResponseT = TypeVar("StructuredResponseT")
|
||||
|
||||
|
||||
class FakeToolCallingModel(BaseChatModel, Generic[StructuredResponseT]):
|
||||
tool_calls: Union[list[list[ToolCall]], list[list[dict]]] | None = None
|
||||
structured_response: StructuredResponseT | None = None
|
||||
index: int = 0
|
||||
tool_style: Literal["openai", "anthropic"] = "openai"
|
||||
tools: list = []
|
||||
|
||||
def _generate(
|
||||
self,
|
||||
messages: list[BaseMessage],
|
||||
stop: list[str] | None = None,
|
||||
run_manager: CallbackManagerForLLMRun | None = None,
|
||||
**kwargs: Any,
|
||||
) -> ChatResult:
|
||||
"""Top Level call"""
|
||||
rf = kwargs.get("response_format")
|
||||
is_native = isinstance(rf, dict) and rf.get("type") == "json_schema"
|
||||
|
||||
if self.tool_calls:
|
||||
if is_native:
|
||||
tool_calls = (
|
||||
self.tool_calls[self.index] if self.index < len(self.tool_calls) else []
|
||||
)
|
||||
else:
|
||||
tool_calls = self.tool_calls[self.index % len(self.tool_calls)]
|
||||
else:
|
||||
tool_calls = []
|
||||
|
||||
if is_native and not tool_calls:
|
||||
if isinstance(self.structured_response, BaseModel):
|
||||
content_obj = self.structured_response.model_dump()
|
||||
elif is_dataclass(self.structured_response):
|
||||
content_obj = asdict(self.structured_response)
|
||||
elif isinstance(self.structured_response, dict):
|
||||
content_obj = self.structured_response
|
||||
message = AIMessage(content=json.dumps(content_obj), id=str(self.index))
|
||||
else:
|
||||
messages_string = "-".join([m.content for m in messages]) + str(kwargs) + str(self.tools)
|
||||
message = AIMessage(
|
||||
content=messages_string,
|
||||
id=str(self.index),
|
||||
tool_calls=tool_calls.copy(),
|
||||
)
|
||||
self.index += 1
|
||||
return ChatResult(generations=[ChatGeneration(message=message)])
|
||||
|
||||
@property
|
||||
def _llm_type(self) -> str:
|
||||
return "fake-tool-call-model"
|
||||
|
||||
def bind_tools(
|
||||
self,
|
||||
tools: Sequence[Union[dict[str, Any], type[BaseModel], Callable, BaseTool]],
|
||||
**kwargs: Any,
|
||||
) -> Runnable[LanguageModelInput, BaseMessage]:
|
||||
self.tools = tools
|
||||
if len(tools) == 0:
|
||||
msg = "Must provide at least one tool"
|
||||
raise ValueError(msg)
|
||||
|
||||
tool_dicts = []
|
||||
for tool in tools:
|
||||
if isinstance(tool, dict):
|
||||
tool_dicts.append(tool)
|
||||
continue
|
||||
if not isinstance(tool, BaseTool):
|
||||
continue
|
||||
|
||||
# NOTE: this is a simplified tool spec for testing purposes only
|
||||
if self.tool_style == "openai":
|
||||
tool_dicts.append(
|
||||
{
|
||||
"type": "function",
|
||||
"function": {
|
||||
"name": tool.name,
|
||||
},
|
||||
}
|
||||
)
|
||||
elif self.tool_style == "anthropic":
|
||||
tool_dicts.append(
|
||||
{
|
||||
"name": tool.name,
|
||||
}
|
||||
)
|
||||
|
||||
return self.bind(tools=tool_dicts)
|
||||
9
libs/langchain_v1/scripts/deepagent.py
Normal file
9
libs/langchain_v1/scripts/deepagent.py
Normal file
@@ -0,0 +1,9 @@
|
||||
from langchain.agents import create_agent
|
||||
from langchain.agents.middleware.deepagents import DeepAgentMiddleware
|
||||
from langchain.chat_models.fake import FakeToolCallingModel
|
||||
|
||||
model = FakeToolCallingModel()
|
||||
agent = create_agent(model, [], middleware=[DeepAgentMiddleware()])
|
||||
|
||||
for s in agent.stream({"messages": [{"role": "user", "content": "hi"}]}, stream_mode="debug"):
|
||||
print(s)
|
||||
24
libs/langchain_v1/scripts/rag.py
Normal file
24
libs/langchain_v1/scripts/rag.py
Normal file
@@ -0,0 +1,24 @@
|
||||
from langchain_core.callbacks import CallbackManagerForRetrieverRun
|
||||
from langchain_core.documents import Document
|
||||
|
||||
from langchain.agents import create_agent
|
||||
from langchain.agents.middleware.rag import RAGMiddleware
|
||||
from langchain.chat_models.fake import FakeToolCallingModel
|
||||
from langchain_core.retrievers import BaseRetriever
|
||||
|
||||
tool_calls = [[{"args": {}, "id": "1", "name": "handoff_to_foo2"}], []]
|
||||
|
||||
class FakeRetriever(BaseRetriever):
|
||||
|
||||
def _get_relevant_documents(self, query: str, *,
|
||||
run_manager: CallbackManagerForRetrieverRun) -> list[
|
||||
Document]:
|
||||
return [Document(page_content="foo")]
|
||||
|
||||
|
||||
model = FakeToolCallingModel()
|
||||
middleware = RAGMiddleware.from_retriever(FakeRetriever(), "foo")
|
||||
agent = create_agent(model, [], middleware=[middleware])
|
||||
print(agent.get_graph())
|
||||
for s in agent.stream({"messages": [{"role": "user", "content": "hi"}]}, stream_mode="debug"):
|
||||
print(s)
|
||||
15
libs/langchain_v1/scripts/swarm.py
Normal file
15
libs/langchain_v1/scripts/swarm.py
Normal file
@@ -0,0 +1,15 @@
|
||||
from langchain.agents import create_agent
|
||||
from langchain.agents.middleware.swarm import SwarmMiddleware
|
||||
from langchain.chat_models.fake import FakeToolCallingModel
|
||||
|
||||
tool_calls = [[{"args": {}, "id": "1", "name": "handoff_to_foo2"}], []]
|
||||
model = FakeToolCallingModel(tool_calls=tool_calls)
|
||||
subagents = [
|
||||
{"name": "foo1", "description": "bar1", "prompt": "hi", "tools": []},
|
||||
{"name": "foo2", "description": "bar1", "prompt": "bye", "tools": []}
|
||||
]
|
||||
middleware = SwarmMiddleware(agents=subagents, starting_agent="foo1")
|
||||
agent = create_agent(model, [], middleware=[middleware])
|
||||
print(agent.get_graph())
|
||||
for s in agent.stream({"messages": [{"role": "user", "content": "hi"}]}, stream_mode="debug"):
|
||||
print(s)
|
||||
49
test_summarization.py
Normal file
49
test_summarization.py
Normal file
@@ -0,0 +1,49 @@
|
||||
from langchain.agents.middleware_agent import create_agent
|
||||
from langchain_core.runnables import RunnableConfig
|
||||
from langchain_openai import ChatOpenAI
|
||||
from langgraph.checkpoint.memory import InMemorySaver
|
||||
|
||||
from langchain.agents.middleware.summarization import SummarizationMiddleware
|
||||
|
||||
|
||||
agent = create_agent(
|
||||
model=ChatOpenAI(model="gpt-4.1-mini"),
|
||||
system_prompt="You are a helpful assistant. Please reply nicely.",
|
||||
middleware=[
|
||||
SummarizationMiddleware(
|
||||
model=ChatOpenAI(model="gpt-4.1-mini"), messages_to_keep=3
|
||||
)
|
||||
],
|
||||
)
|
||||
agent = agent.compile(checkpointer=InMemorySaver())
|
||||
|
||||
config: RunnableConfig = {"configurable": {"thread_id": "long_convo"}}
|
||||
|
||||
config = {"configurable": {"thread_id": "1"}}
|
||||
agent.invoke({"messages": "hi, my name is bob"}, config)
|
||||
agent.invoke({"messages": "my favorite food is pizza"}, config)
|
||||
agent.invoke({"messages": "my favorite color is blue"}, config)
|
||||
agent.invoke({"messages": "my favorite animal is a dog"}, config)
|
||||
final_response = agent.invoke({"messages": "what's my name?"}, config)
|
||||
|
||||
for msg in final_response["messages"]:
|
||||
msg.pretty_print()
|
||||
|
||||
"""
|
||||
================================ System Message ================================
|
||||
|
||||
## Previous conversation summary:
|
||||
User name: Bob. User's favorite food is pizza. User's favorite color is blue.
|
||||
================================ Human Message =================================
|
||||
|
||||
my favorite animal is a dog
|
||||
================================== Ai Message ==================================
|
||||
|
||||
Dogs are wonderful companions, Bob! Do you have a favorite breed, or maybe a dog of your own?
|
||||
================================ Human Message =================================
|
||||
|
||||
what's my name?
|
||||
================================== Ai Message ==================================
|
||||
|
||||
Your name is Bob! How can I assist you today, Bob?
|
||||
"""
|
||||
31
testing_caching.py
Normal file
31
testing_caching.py
Normal file
@@ -0,0 +1,31 @@
|
||||
from langchain_anthropic import ChatAnthropic
|
||||
from langchain.agents.middleware.prompt_caching import AnthropicPromptCachingMiddleware
|
||||
from langchain.agents import create_agent
|
||||
from langchain_core.messages import HumanMessage, AIMessage
|
||||
from langgraph.checkpoint.memory import InMemorySaver
|
||||
|
||||
LONG_PROMPT = """
|
||||
Please be a helpful assistant.
|
||||
|
||||
""" + "a" * (100 * 60) # 100 chars per line * 60 lines
|
||||
|
||||
agent = create_agent(
|
||||
model=ChatAnthropic(model="claude-sonnet-4-20250514"),
|
||||
tools=[],
|
||||
prompt=LONG_PROMPT,
|
||||
middleware=[AnthropicPromptCachingMiddleware(type="ephemeral", ttl="5m", min_messages_to_cache=3)],
|
||||
checkpointer=InMemorySaver(),
|
||||
)
|
||||
|
||||
config = {"configurable": {"thread_id": "abc"}}
|
||||
|
||||
agent.invoke({"messages": [HumanMessage("Hello")]}, config)
|
||||
agent.invoke({"messages": [HumanMessage("Hello")]}, config)
|
||||
result3 = agent.invoke({"messages": [HumanMessage("Hello")]}, config)
|
||||
|
||||
|
||||
for msg in result3["messages"]:
|
||||
msg.pretty_print()
|
||||
|
||||
if isinstance(msg, AIMessage):
|
||||
print(f"usage: {msg.response_metadata['usage']}")
|
||||
163
testing_middleware.py
Normal file
163
testing_middleware.py
Normal file
@@ -0,0 +1,163 @@
|
||||
from langchain.agents.middleware_agent import create_agent
|
||||
from langchain_openai import ChatOpenAI
|
||||
from langchain_core.messages import HumanMessage
|
||||
from langchain_core.tools import tool
|
||||
import operator
|
||||
from dataclasses import dataclass
|
||||
from typing import Annotated
|
||||
from pydantic import BaseModel
|
||||
from langchain.agents.structured_output import ToolStrategy
|
||||
|
||||
from langchain.agents.middleware.model_call_limits import ModelRequestLimitMiddleware
|
||||
|
||||
|
||||
|
||||
@tool
|
||||
def get_weather(city: str) -> str:
|
||||
"""Get the weather for a given city"""
|
||||
|
||||
return f"The weather in {city} is sunny."
|
||||
|
||||
|
||||
class WeatherResponse(BaseModel):
|
||||
city: str
|
||||
weather: str
|
||||
|
||||
|
||||
# state extension (note we only make 3 tool calls below)
|
||||
|
||||
agent = create_agent(
|
||||
model=ChatOpenAI(model="gpt-4o"),
|
||||
tools=[get_weather],
|
||||
system_prompt="You are a weather agent. You are tasked with fetching the weather for a given city.",
|
||||
middleware=[ModelRequestLimitMiddleware(max_requests=3)],
|
||||
)
|
||||
agent = agent.compile()
|
||||
|
||||
result = agent.invoke(
|
||||
{
|
||||
"messages": [
|
||||
HumanMessage(content="Please check the weather in SF, NYC, LA, and Boston.")
|
||||
]
|
||||
}
|
||||
)
|
||||
for msg in result["messages"]:
|
||||
msg.pretty_print()
|
||||
|
||||
"""
|
||||
================================ Human Message =================================
|
||||
|
||||
Please check the weather in SF, NYC, LA, and Boston.
|
||||
================================== Ai Message ==================================
|
||||
Tool Calls:
|
||||
get_weather (call_7LddqyVgqxjTYm84UUfFBFZA)
|
||||
Call ID: call_7LddqyVgqxjTYm84UUfFBFZA
|
||||
Args:
|
||||
city: San Francisco
|
||||
================================= Tool Message =================================
|
||||
Name: get_weather
|
||||
|
||||
The weather in San Francisco is sunny.
|
||||
================================== Ai Message ==================================
|
||||
Tool Calls:
|
||||
get_weather (call_gUL7CHn6YqE80M9M5G5miA3k)
|
||||
Call ID: call_gUL7CHn6YqE80M9M5G5miA3k
|
||||
Args:
|
||||
city: New York City
|
||||
================================= Tool Message =================================
|
||||
Name: get_weather
|
||||
|
||||
The weather in New York City is sunny.
|
||||
================================== Ai Message ==================================
|
||||
Tool Calls:
|
||||
get_weather (call_asOAXRkPbBWBdt4SzQGPYQab)
|
||||
Call ID: call_asOAXRkPbBWBdt4SzQGPYQab
|
||||
Args:
|
||||
city: Los Angeles
|
||||
================================= Tool Message =================================
|
||||
Name: get_weather
|
||||
|
||||
The weather in Los Angeles is sunny.
|
||||
"""
|
||||
|
||||
# structured response
|
||||
|
||||
|
||||
agent = create_agent(
|
||||
model=ChatOpenAI(model="gpt-4o"),
|
||||
tools=[get_weather],
|
||||
system_prompt="You are a weather agent. You are tasked with fetching the weather for a given city.",
|
||||
middleware=[ModelRequestLimitMiddleware(max_requests=3)],
|
||||
response_format=ToolStrategy(WeatherResponse),
|
||||
)
|
||||
agent = agent.compile()
|
||||
|
||||
result = agent.invoke(
|
||||
{
|
||||
"messages": [
|
||||
HumanMessage(content="Please check the weather in SF")
|
||||
]
|
||||
}
|
||||
)
|
||||
|
||||
print(repr(result["response"]))
|
||||
#> WeatherResponse(city='SF', weather='sunny')
|
||||
|
||||
|
||||
# builtin provider tool support (web search for ex)
|
||||
|
||||
agent = create_agent(
|
||||
model=ChatOpenAI(model="gpt-4o"),
|
||||
tools=[{"type": "web_search_preview"}],
|
||||
system_prompt="You are a weather agent. You are tasked with fetching the weather for a given city. Please use the web search tool to fetch the weather.",
|
||||
# response_format=WeatherResponse,
|
||||
)
|
||||
agent = agent.compile()
|
||||
|
||||
result = agent.invoke(
|
||||
{
|
||||
"messages": [
|
||||
HumanMessage(content="What is the weather in SF?")
|
||||
]
|
||||
}
|
||||
)
|
||||
for msg in result["messages"]:
|
||||
msg.pretty_print()
|
||||
|
||||
"""
|
||||
================================ Human Message =================================
|
||||
|
||||
What is the weather in SF?
|
||||
================================== Ai Message ==================================
|
||||
|
||||
[{'type': 'text', 'text': 'As of 1:58 PM PDT on Friday, September 5, 2025, the weather in San Francisco, CA, is mostly cloudy with a temperature of 66°F (19°C). ([weather.com](https://weather.com/weather/today/l/San%2BFrancisco%2BCA?canonicalCityId=e7784799733d2133bcb75674a102b347&utm_source=openai))\n\n## Weather for San Francisco, CA:\nCurrent Conditions: Cloudy, 58°F (14°C)\n\nDaily Forecast:\n* Friday, September 5: Low: 60°F (15°C), High: 69°F (20°C), Description: Low clouds breaking for some sun\n* Saturday, September 6: Low: 61°F (16°C), High: 69°F (21°C), Description: Areas of low clouds, then sun and pleasant\n* Sunday, September 7: Low: 63°F (17°C), High: 72°F (22°C), Description: Areas of low clouds, then sun and pleasant\n* Monday, September 8: Low: 63°F (17°C), High: 71°F (21°C), Description: Low clouds breaking for some sun\n* Tuesday, September 9: Low: 60°F (16°C), High: 70°F (21°C), Description: Morning low clouds followed by clouds giving way to some sun\n* Wednesday, September 10: Low: 56°F (13°C), High: 68°F (20°C), Description: Mostly cloudy with a shower in places\n* Thursday, September 11: Low: 56°F (13°C), High: 69°F (21°C), Description: Partly sunny\n ', 'annotations': [{'end_index': 274, 'start_index': 134, 'title': 'Weather Forecast and Conditions for San Francisco, CA - The Weather Channel | Weather.com', 'type': 'url_citation', 'url': 'https://weather.com/weather/today/l/San%2BFrancisco%2BCA?canonicalCityId=e7784799733d2133bcb75674a102b347&utm_source=openai'}]}]
|
||||
"""
|
||||
|
||||
# system prompt and tools as None
|
||||
|
||||
agent = create_agent(
|
||||
model=ChatOpenAI(model="gpt-4o"),
|
||||
tools=None,
|
||||
system_prompt=None,
|
||||
middleware=[ModelRequestLimitMiddleware(max_requests=3)],
|
||||
)
|
||||
agent = agent.compile()
|
||||
|
||||
result = agent.invoke(
|
||||
{
|
||||
"messages": [
|
||||
HumanMessage(content="What is 2 + 2?")
|
||||
]
|
||||
}
|
||||
)
|
||||
result["messages"][-1].pretty_print()
|
||||
"""
|
||||
================================== Ai Message ==================================
|
||||
|
||||
2 + 2 equals 4.
|
||||
"""
|
||||
|
||||
# a call and call model
|
||||
|
||||
|
||||
|
||||
Reference in New Issue
Block a user