Compare commits

...

26 Commits

Author SHA1 Message Date
湛露先生
5fb8fd863a
langchain_openai: clean duplicate code for openai embedding. (#30872)
The `_chunk_size` has not changed by method `self._tokenize`, So i think
these is duplicate code.

Signed-off-by: zhanluxianshen <zhanluxianshen@163.com>
2025-04-27 15:07:41 -04:00
Philipp Schmid
79a537d308
Update Chat and Embedding guides (#31017)
Co-authored-by: Chester Curme <chester.curme@gmail.com>
2025-04-27 18:06:59 +00:00
ccurme
ba2518995d
standard-tests: add condition for image tool message test (#31041)
Require support for [standard
format](https://python.langchain.com/docs/how_to/multimodal_inputs/).
2025-04-27 17:24:43 +00:00
ccurme
04a899ebe3
infra: support third-party integration packages in API ref build (#31021) 2025-04-25 16:02:27 -04:00
Stefano Lottini
a82d987f09
docs: Astra DB, replace leftover links to "community" legacy package + modernize doc loader signature (#30969)
This PR brings some much-needed updates to some of the Astra DB shorter
example notebooks,

- ensuring imports are from the partner package instead of the
(deprecated) community legacy package
- improving the wording in a few related places
- updating the constructor signature introduced with the latest partner
package's AstraDBLoader
- marking the community package counterpart of the LLM caches as
deprecated in the summary table at the end of the page.
2025-04-25 15:45:24 -04:00
ccurme
a60fd06784
docs: document OpenAI flex processing (#31023)
Following https://github.com/langchain-ai/langchain/pull/31005
2025-04-25 15:10:25 -04:00
ccurme
629b7a5a43
openai[patch]: add explicit attribute for service tier (#31005) 2025-04-25 18:38:23 +00:00
ccurme
ab871a7b39
docs: enable milvus in API ref build (#31016)
Reverts langchain-ai/langchain#30996

Should be fixed following
https://github.com/langchain-ai/langchain-milvus/pull/68
2025-04-25 12:48:10 +00:00
Georgi Stefanov
d30c56a8c1
langchain: return attachments in _get_response (#30853)
This is a PR to return the message attachments in _get_response, as when
files are generated these attachments are not returned thus generated
files cannot be retrieved

Fixes issue: https://github.com/langchain-ai/langchain/issues/30851
2025-04-24 21:39:11 -04:00
Abderrahmane Gourragui
09c1991e96
docs: update document examples (#31006)
## Description:

As I was following the docs I found a couple of small issues on the
docs.

this fixes some unused imports on the [extraction
page](https://python.langchain.com/docs/tutorials/extraction/#the-extractor)
and updates the examples on [classification
page](https://python.langchain.com/docs/tutorials/classification/#quickstart)
to be independent from the chat model.
2025-04-24 18:07:55 -04:00
ccurme
a7903280dd
openai[patch]: delete redundant tests (#31004)
These are covered by standard tests.
2025-04-24 17:56:32 +00:00
Kyle Jeong
d0f0d1f966
[docs/community]: langchain docs + browserbaseloader fix (#30973)
Thank you for contributing to LangChain!

- [ ] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core, etc. is
being modified. Use "docs: ..." for purely docs changes, "infra: ..."
for CI changes.
  - Example: "community: add foobar LLM"

community: fix browserbase integration
docs: update docs

- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** Updated BrowserbaseLoader to use the new python sdk.
    - **Issue:** update browserbase integration with langchain
    - **Dependencies:** n/a
    - **Twitter handle:** @kylejeong21

- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.

- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
2025-04-24 13:38:49 -04:00
ccurme
403fae8eec
core: release 0.3.56 (#31000) 2025-04-24 13:22:31 -04:00
Jacob Lee
d6b50ad3f6
docs: Update Google Analytics tag in docs (#31001) 2025-04-24 10:19:10 -07:00
ccurme
10a9c24dae
openai: fix streaming reasoning without summaries (#30999)
Following https://github.com/langchain-ai/langchain/pull/30909: need to
retain "empty" reasoning output when streaming, e.g.,
```python
{'id': 'rs_...', 'summary': [], 'type': 'reasoning'}
```
Tested by existing integration tests, which are currently failing.
2025-04-24 16:01:45 +00:00
ccurme
8fc7a723b9
core: release 0.3.56rc1 (#30998) 2025-04-24 15:09:44 +00:00
ccurme
f4863f82e2
core[patch]: fix edge cases for _is_openai_data_block (#30997) 2025-04-24 10:48:52 -04:00
Philipp Schmid
ae4b6380d9
Documentation: Add Google Gemini dropdown (#30995)
This PR adds Google Gemini (via AI Studio and Gemini API). Feel free to
change the ordering, if needed.

---------

Co-authored-by: Chester Curme <chester.curme@gmail.com>
2025-04-24 10:00:16 -04:00
Philipp Schmid
ffbc64c72a
Documentation: Improve structure of Google integrations page (#30992)
This PR restructures the main Google integrations documentation page
(`docs/docs/integrations/providers/google.mdx`) for better clarity and
updates content.

**Key changes:**

* **Separated Sections:** Divided integrations into distinct `Google
Generative AI (Gemini API & AI Studio)`, `Google Cloud`, and `Other
Google Products` sections.
* **Updated Generative AI:** Refreshed the introduction and the `Google
Generative AI` section with current information and quickstart examples
for the Gemini API via `langchain-google-genai`.
* **Reorganized Content:** Moved non-Cloud Platform specific
integrations (e.g., Drive, GMail, Search tools, ScaNN) to the `Other
Google Products` section.
* **Cleaned Up:** Minor improvements to descriptions and code snippets.

This aims to make it easier for users to find the relevant Google
integrations based on whether they are using the Gemini API directly or
Google Cloud services.

| Before                | After      |
|-----------------------|------------|
| ![Screenshot 2025-04-24 at 14 56
23](https://github.com/user-attachments/assets/ff967ec8-a833-4e8f-8015-61af8a4fac8b)
| ![Screenshot 2025-04-24 at 14 56
15](https://github.com/user-attachments/assets/179163f1-e805-484a-bbf6-99f05e117b36)
|

---------

Co-authored-by: Chester Curme <chester.curme@gmail.com>
2025-04-24 09:58:46 -04:00
Jacob Lee
6b0b317cb5
feat(core): Autogenerate filenames for when converting file content blocks to OpenAI format (#30984)
CC @ccurme

---------

Co-authored-by: Chester Curme <chester.curme@gmail.com>
2025-04-24 13:36:31 +00:00
ccurme
21962e2201
docs: temporarily disable milvus in API ref build (#30996) 2025-04-24 09:31:23 -04:00
Behrad Hemati
1eb0bdadfa
community: add indexname to other functions in opensearch (#30987)
- [x] **PR title**: "community: add indexname to other functions in
opensearch"



- [x] **PR message**:
- **Description:** add ability to over-ride index-name if provided in
the kwargs of sub-functions. When used in WSGI application it's crucial
to be able to dynamically change parameters.


- [ ] **Add tests and docs**:


- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
2025-04-24 08:59:33 -04:00
Nicky Parseghian
7ecdac5240
community: Strip URLs from sitemap. (#30830)
Fixes #30829

- **Description:** Simply strips the loc value when building the
element.
    - **Issue:** Fixes #30829
2025-04-23 18:18:42 -04:00
ccurme
faef3e5d50
core, standard-tests: support PDF and audio input in Chat Completions format (#30979)
Chat models currently implement support for:
- images in OpenAI Chat Completions format
- other multimodal types (e.g., PDF and audio) in a cross-provider
[standard
format](https://python.langchain.com/docs/how_to/multimodal_inputs/)

Here we update core to extend support to PDF and audio input in Chat
Completions format. **If an OAI-format PDF or audio content block is
passed into any chat model, it will be transformed to the LangChain
standard format**. We assume that any chat model supporting OAI-format
PDF or audio has implemented support for the standard format.
2025-04-23 18:32:51 +00:00
Bagatur
d4fc734250
core[patch]: update dict prompt template (#30967)
Align with JS changes made in
https://github.com/langchain-ai/langchainjs/pull/8043
2025-04-23 10:04:50 -07:00
ccurme
4bc70766b5
core, openai: support standard multi-modal blocks in convert_to_openai_messages (#30968) 2025-04-23 11:20:44 -04:00
54 changed files with 2528 additions and 1459 deletions

View File

@ -69,7 +69,7 @@ def main():
clean_target_directories([
p
for p in package_yaml["packages"]
if p["repo"].startswith("langchain-ai/")
if (p["repo"].startswith("langchain-ai/") or p.get("include_in_api_ref"))
and p["repo"] != "langchain-ai/langchain"
])
@ -78,7 +78,7 @@ def main():
p
for p in package_yaml["packages"]
if not p.get("disabled", False)
and p["repo"].startswith("langchain-ai/")
and (p["repo"].startswith("langchain-ai/") or p.get("include_in_api_ref"))
and p["repo"] != "langchain-ai/langchain"
])

View File

@ -26,7 +26,20 @@ jobs:
id: get-unsorted-repos
uses: mikefarah/yq@master
with:
cmd: yq '.packages[].repo' langchain/libs/packages.yml
cmd: |
yq '
.packages[]
| select(
(
(.repo | test("^langchain-ai/"))
and
(.repo != "langchain-ai/langchain")
)
or
(.include_in_api_ref // false)
)
| .repo
' langchain/libs/packages.yml
- name: Parse YAML and checkout repos
env:
@ -38,11 +51,9 @@ jobs:
# Checkout each unique repository that is in langchain-ai org
for repo in $REPOS; do
if [[ "$repo" != "langchain-ai/langchain" && "$repo" == langchain-ai/* ]]; then
REPO_NAME=$(echo $repo | cut -d'/' -f2)
echo "Checking out $repo to $REPO_NAME"
git clone --depth 1 https://github.com/$repo.git $REPO_NAME
fi
REPO_NAME=$(echo $repo | cut -d'/' -f2)
echo "Checking out $repo to $REPO_NAME"
git clone --depth 1 https://github.com/$repo.git $REPO_NAME
done
- name: Setup python ${{ env.PYTHON_VERSION }}

View File

@ -107,7 +107,7 @@ outputs will appear as part of the [AIMessage](/docs/concepts/messages/#aimessag
response object. See for example:
- Generating [audio outputs](/docs/integrations/chat/openai/#audio-generation-preview) with OpenAI;
- Generating [image outputs](/docs/integrations/chat/google_generative_ai/#image-generation) with Google Gemini.
- Generating [image outputs](/docs/integrations/chat/google_generative_ai/#multimodal-usage) with Google Gemini.
#### Tools

View File

@ -1,35 +1,26 @@
{
"cells": [
{
"cell_type": "raw",
"id": "afaf8039",
"cell_type": "markdown",
"id": "d982c99f",
"metadata": {},
"source": [
"---\n",
"sidebar_label: Google AI\n",
"sidebar_label: Google Gemini\n",
"---"
]
},
{
"cell_type": "markdown",
"id": "e49f1e0d",
"id": "56a6d990",
"metadata": {},
"source": [
"# ChatGoogleGenerativeAI\n",
"\n",
"This docs will help you get started with Google AI [chat models](/docs/concepts/chat_models). For detailed documentation of all ChatGoogleGenerativeAI features and configurations head to the [API reference](https://python.langchain.com/api_reference/google_genai/chat_models/langchain_google_genai.chat_models.ChatGoogleGenerativeAI.html).\n",
"Access Google's Generative AI models, including the Gemini family, directly via the Gemini API or experiment rapidly using Google AI Studio. The `langchain-google-genai` package provides the LangChain integration for these models. This is often the best starting point for individual developers.\n",
"\n",
"Google AI offers a number of different chat models. For information on the latest models, their features, context windows, etc. head to the [Google AI docs](https://ai.google.dev/gemini-api/docs/models/gemini).\n",
"For information on the latest models, their features, context windows, etc. head to the [Google AI docs](https://ai.google.dev/gemini-api/docs/models/gemini). All examples use the `gemini-2.0-flash` model. Gemini 2.5 Pro and 2.5 Flash can be used via `gemini-2.5-pro-preview-03-25` and `gemini-2.5-flash-preview-04-17`. All model ids can be found in the [Gemini API docs](https://ai.google.dev/gemini-api/docs/models).\n",
"\n",
":::info Google AI vs Google Cloud Vertex AI\n",
"\n",
"Google's Gemini models are accessible through Google AI and through Google Cloud Vertex AI. Using Google AI just requires a Google account and an API key. Using Google Cloud Vertex AI requires a Google Cloud account (with term agreements and billing) but offers enterprise features like customer encryption key, virtual private cloud, and more.\n",
"\n",
"To learn more about the key features of the two APIs see the [Google docs](https://cloud.google.com/vertex-ai/generative-ai/docs/migrate/migrate-google-ai#google-ai).\n",
"\n",
":::\n",
"\n",
"## Overview\n",
"### Integration details\n",
"\n",
"| Class | Package | Local | Serializable | [JS support](https://js.langchain.com/docs/integrations/chat/google_generativeai) | Package downloads | Package latest |\n",
@ -37,23 +28,46 @@
"| [ChatGoogleGenerativeAI](https://python.langchain.com/api_reference/google_genai/chat_models/langchain_google_genai.chat_models.ChatGoogleGenerativeAI.html) | [langchain-google-genai](https://python.langchain.com/api_reference/google_genai/index.html) | ❌ | beta | ✅ | ![PyPI - Downloads](https://img.shields.io/pypi/dm/langchain-google-genai?style=flat-square&label=%20) | ![PyPI - Version](https://img.shields.io/pypi/v/langchain-google-genai?style=flat-square&label=%20) |\n",
"\n",
"### Model features\n",
"\n",
"| [Tool calling](/docs/how_to/tool_calling) | [Structured output](/docs/how_to/structured_output/) | JSON mode | [Image input](/docs/how_to/multimodal_inputs/) | Audio input | Video input | [Token-level streaming](/docs/how_to/chat_streaming/) | Native async | [Token usage](/docs/how_to/chat_token_usage_tracking/) | [Logprobs](/docs/how_to/logprobs/) |\n",
"| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |\n",
"| ✅ | ✅ | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ |\n",
"\n",
"## Setup\n",
"### Setup\n",
"\n",
"To access Google AI models you'll need to create a Google Acount account, get a Google AI API key, and install the `langchain-google-genai` integration package.\n",
"To access Google AI models you'll need to create a Google Account, get a Google AI API key, and install the `langchain-google-genai` integration package.\n",
"\n",
"### Credentials\n",
"\n",
"Head to https://ai.google.dev/gemini-api/docs/api-key to generate a Google AI API key. Once you've done this set the GOOGLE_API_KEY environment variable:"
"**1. Installation:**"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "433e8d2b-9519-4b49-b2c4-7ab65b046c94",
"id": "8d12ce35",
"metadata": {},
"outputs": [],
"source": [
"%pip install -U langchain-google-genai"
]
},
{
"cell_type": "markdown",
"id": "60be0b38",
"metadata": {},
"source": [
"**2. Credentials:**\n",
"\n",
"Head to [https://ai.google.dev/gemini-api/docs/api-key](https://ai.google.dev/gemini-api/docs/api-key) (or via Google AI Studio) to generate a Google AI API key.\n",
"\n",
"### Chat Models\n",
"\n",
"Use the `ChatGoogleGenerativeAI` class to interact with Google's chat models. See the [API reference](https://python.langchain.com/api_reference/google_genai/chat_models/langchain_google_genai.chat_models.ChatGoogleGenerativeAI.html) for full details.\n"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "fb18c875",
"metadata": {},
"outputs": [],
"source": [
@ -66,7 +80,7 @@
},
{
"cell_type": "markdown",
"id": "72ee0c4b-9764-423a-9dbf-95129e185210",
"id": "f050e8db",
"metadata": {},
"source": [
"To enable automated tracing of your model calls, set your [LangSmith](https://docs.smith.langchain.com/) API key:"
@ -75,7 +89,7 @@
{
"cell_type": "code",
"execution_count": null,
"id": "a15d341e-3e26-4ca3-830b-5aab30ed66de",
"id": "82cb346f",
"metadata": {},
"outputs": [],
"source": [
@ -85,27 +99,7 @@
},
{
"cell_type": "markdown",
"id": "0730d6a1-c893-4840-9817-5e5251676d5d",
"metadata": {},
"source": [
"### Installation\n",
"\n",
"The LangChain Google AI integration lives in the `langchain-google-genai` package:"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "652d6238-1f87-422a-b135-f5abbb8652fc",
"metadata": {},
"outputs": [],
"source": [
"%pip install -qU langchain-google-genai"
]
},
{
"cell_type": "markdown",
"id": "a38cde65-254d-4219-a441-068766c0d4b5",
"id": "273cefa0",
"metadata": {},
"source": [
"## Instantiation\n",
@ -115,15 +109,15 @@
},
{
"cell_type": "code",
"execution_count": 2,
"id": "cb09c344-1836-4e0c-acf8-11d13ac1dbae",
"execution_count": 4,
"id": "7d3dc0b3",
"metadata": {},
"outputs": [],
"source": [
"from langchain_google_genai import ChatGoogleGenerativeAI\n",
"\n",
"llm = ChatGoogleGenerativeAI(\n",
" model=\"gemini-2.0-flash-001\",\n",
" model=\"gemini-2.0-flash\",\n",
" temperature=0,\n",
" max_tokens=None,\n",
" timeout=None,\n",
@ -134,7 +128,7 @@
},
{
"cell_type": "markdown",
"id": "2b4f3e15",
"id": "343a8c13",
"metadata": {},
"source": [
"## Invocation"
@ -142,19 +136,17 @@
},
{
"cell_type": "code",
"execution_count": 3,
"id": "62e0dbc3",
"metadata": {
"tags": []
},
"execution_count": 5,
"id": "82c5708c",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"AIMessage(content=\"J'adore la programmation.\", additional_kwargs={}, response_metadata={'prompt_feedback': {'block_reason': 0, 'safety_ratings': []}, 'finish_reason': 'STOP', 'model_name': 'gemini-2.0-flash-001', 'safety_ratings': []}, id='run-61cff164-40be-4f88-a2df-cca58297502f-0', usage_metadata={'input_tokens': 20, 'output_tokens': 7, 'total_tokens': 27, 'input_token_details': {'cache_read': 0}})"
"AIMessage(content=\"J'adore la programmation.\", additional_kwargs={}, response_metadata={'prompt_feedback': {'block_reason': 0, 'safety_ratings': []}, 'finish_reason': 'STOP', 'model_name': 'gemini-2.0-flash', 'safety_ratings': []}, id='run-3b28d4b8-8a62-4e6c-ad4e-b53e6e825749-0', usage_metadata={'input_tokens': 20, 'output_tokens': 7, 'total_tokens': 27, 'input_token_details': {'cache_read': 0}})"
]
},
"execution_count": 3,
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
@ -173,8 +165,8 @@
},
{
"cell_type": "code",
"execution_count": 4,
"id": "d86145b3-bfef-46e8-b227-4dda5c9c2705",
"execution_count": 6,
"id": "49d2d0c2",
"metadata": {},
"outputs": [
{
@ -191,7 +183,7 @@
},
{
"cell_type": "markdown",
"id": "18e2bfc0-7e78-4528-a73f-499ac150dca8",
"id": "ee3f6e1d",
"metadata": {},
"source": [
"## Chaining\n",
@ -201,17 +193,17 @@
},
{
"cell_type": "code",
"execution_count": 5,
"id": "e197d1d7-a070-4c96-9f8a-a0e86d046e0b",
"execution_count": 7,
"id": "3c8407ee",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"AIMessage(content='Ich liebe Programmieren.', additional_kwargs={}, response_metadata={'prompt_feedback': {'block_reason': 0, 'safety_ratings': []}, 'finish_reason': 'STOP', 'model_name': 'gemini-2.0-flash-001', 'safety_ratings': []}, id='run-dd2f8fb9-62d9-4b84-9c97-ed9c34cda313-0', usage_metadata={'input_tokens': 15, 'output_tokens': 7, 'total_tokens': 22, 'input_token_details': {'cache_read': 0}})"
"AIMessage(content='Ich liebe Programmieren.', additional_kwargs={}, response_metadata={'prompt_feedback': {'block_reason': 0, 'safety_ratings': []}, 'finish_reason': 'STOP', 'model_name': 'gemini-2.0-flash', 'safety_ratings': []}, id='run-e5561c6b-2beb-4411-9210-4796b576a7cd-0', usage_metadata={'input_tokens': 15, 'output_tokens': 7, 'total_tokens': 22, 'input_token_details': {'cache_read': 0}})"
]
},
"execution_count": 5,
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
@ -241,22 +233,164 @@
},
{
"cell_type": "markdown",
"id": "41c2ff10-a3ba-4f40-b3aa-7a395854849e",
"id": "bdae9742",
"metadata": {},
"source": [
"## Image generation\n",
"## Multimodal Usage\n",
"\n",
"Some Gemini models (specifically `gemini-2.0-flash-exp`) support image generation capabilities.\n",
"Gemini models can accept multimodal inputs (text, images, audio, video) and, for some models, generate multimodal outputs.\n",
"\n",
"### Text to image\n",
"### Image Input\n",
"\n",
"See a simple usage example below:"
"Provide image inputs along with text using a `HumanMessage` with a list content format. The `gemini-2.0-flash` model can handle images."
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "7589e14d-8d1b-4c82-965f-5558d80cb677",
"execution_count": null,
"id": "6833fe5d",
"metadata": {},
"outputs": [],
"source": [
"import base64\n",
"\n",
"from langchain_core.messages import HumanMessage\n",
"from langchain_google_genai import ChatGoogleGenerativeAI\n",
"\n",
"# Example using a public URL (remains the same)\n",
"message_url = HumanMessage(\n",
" content=[\n",
" {\n",
" \"type\": \"text\",\n",
" \"text\": \"Describe the image at the URL.\",\n",
" },\n",
" {\"type\": \"image_url\", \"image_url\": \"https://picsum.photos/seed/picsum/200/300\"},\n",
" ]\n",
")\n",
"result_url = llm.invoke([message_url])\n",
"print(f\"Response for URL image: {result_url.content}\")\n",
"\n",
"# Example using a local image file encoded in base64\n",
"image_file_path = \"/Users/philschmid/projects/google-gemini/langchain/docs/static/img/agents_vs_chains.png\"\n",
"\n",
"with open(image_file_path, \"rb\") as image_file:\n",
" encoded_image = base64.b64encode(image_file.read()).decode(\"utf-8\")\n",
"\n",
"message_local = HumanMessage(\n",
" content=[\n",
" {\"type\": \"text\", \"text\": \"Describe the local image.\"},\n",
" {\"type\": \"image_url\", \"image_url\": f\"data:image/png;base64,{encoded_image}\"},\n",
" ]\n",
")\n",
"result_local = llm.invoke([message_local])\n",
"print(f\"Response for local image: {result_local.content}\")"
]
},
{
"cell_type": "markdown",
"id": "1b422382",
"metadata": {},
"source": [
"Other supported `image_url` formats:\n",
"- A Google Cloud Storage URI (`gs://...`). Ensure the service account has access.\n",
"- A PIL Image object (the library handles encoding).\n",
"\n",
"### Audio Input\n",
"\n",
"Provide audio file inputs along with text. Use a model like `gemini-2.0-flash`."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "a3461836",
"metadata": {},
"outputs": [],
"source": [
"import base64\n",
"\n",
"from langchain_core.messages import HumanMessage\n",
"\n",
"# Ensure you have an audio file named 'example_audio.mp3' or provide the correct path.\n",
"audio_file_path = \"example_audio.mp3\"\n",
"audio_mime_type = \"audio/mpeg\"\n",
"\n",
"\n",
"with open(audio_file_path, \"rb\") as audio_file:\n",
" encoded_audio = base64.b64encode(audio_file.read()).decode(\"utf-8\")\n",
"\n",
"message = HumanMessage(\n",
" content=[\n",
" {\"type\": \"text\", \"text\": \"Transcribe the audio.\"},\n",
" {\n",
" \"type\": \"media\",\n",
" \"data\": encoded_audio, # Use base64 string directly\n",
" \"mime_type\": audio_mime_type,\n",
" },\n",
" ]\n",
")\n",
"response = llm.invoke([message]) # Uncomment to run\n",
"print(f\"Response for audio: {response.content}\")"
]
},
{
"cell_type": "markdown",
"id": "0d898e27",
"metadata": {},
"source": [
"### Video Input\n",
"\n",
"Provide video file inputs along with text. Use a model like `gemini-2.0-flash`."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "3046e74b",
"metadata": {},
"outputs": [],
"source": [
"import base64\n",
"\n",
"from langchain_core.messages import HumanMessage\n",
"from langchain_google_genai import ChatGoogleGenerativeAI\n",
"\n",
"# Ensure you have a video file named 'example_video.mp4' or provide the correct path.\n",
"video_file_path = \"example_video.mp4\"\n",
"video_mime_type = \"video/mp4\"\n",
"\n",
"\n",
"with open(video_file_path, \"rb\") as video_file:\n",
" encoded_video = base64.b64encode(video_file.read()).decode(\"utf-8\")\n",
"\n",
"message = HumanMessage(\n",
" content=[\n",
" {\"type\": \"text\", \"text\": \"Describe the first few frames of the video.\"},\n",
" {\n",
" \"type\": \"media\",\n",
" \"data\": encoded_video, # Use base64 string directly\n",
" \"mime_type\": video_mime_type,\n",
" },\n",
" ]\n",
")\n",
"response = llm.invoke([message]) # Uncomment to run\n",
"print(f\"Response for video: {response.content}\")"
]
},
{
"cell_type": "markdown",
"id": "2df11d89",
"metadata": {},
"source": [
"### Image Generation (Multimodal Output)\n",
"\n",
"The `gemini-2.0-flash` model can generate text and images inline (image generation is experimental). You need to specify the desired `response_modalities`."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "c0b7180f",
"metadata": {},
"outputs": [
{
@ -266,17 +400,12 @@
"<IPython.core.display.Image object>"
]
},
"metadata": {
"image/png": {
"width": 300
}
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"import base64\n",
"from io import BytesIO\n",
"\n",
"from IPython.display import Image, display\n",
"from langchain_google_genai import ChatGoogleGenerativeAI\n",
@ -301,7 +430,7 @@
},
{
"cell_type": "markdown",
"id": "b14c0d87-cf7e-4d88-bda1-2ab40ec0350a",
"id": "14bf00f1",
"metadata": {},
"source": [
"### Image and text to image\n",
@ -311,8 +440,8 @@
},
{
"cell_type": "code",
"execution_count": 3,
"id": "0f4ed7a5-980c-4b54-b743-0b988909744c",
"execution_count": null,
"id": "d65e195c",
"metadata": {},
"outputs": [
{
@ -322,11 +451,7 @@
"<IPython.core.display.Image object>"
]
},
"metadata": {
"image/png": {
"width": 300
}
},
"metadata": {},
"output_type": "display_data"
}
],
@ -349,7 +474,7 @@
},
{
"cell_type": "markdown",
"id": "a62669d8-becd-495f-8f4a-82d7c5d87969",
"id": "43b54d3f",
"metadata": {},
"source": [
"You can also represent an input image and query in a single message by encoding the base64 data in the [data URI scheme](https://en.wikipedia.org/wiki/Data_URI_scheme):"
@ -357,8 +482,8 @@
},
{
"cell_type": "code",
"execution_count": 9,
"id": "6241da43-e210-43bc-89af-b3c480ea06e9",
"execution_count": null,
"id": "0dfc7e1e",
"metadata": {},
"outputs": [
{
@ -368,11 +493,7 @@
"<IPython.core.display.Image object>"
]
},
"metadata": {
"image/png": {
"width": 300
}
},
"metadata": {},
"output_type": "display_data"
}
],
@ -403,7 +524,7 @@
},
{
"cell_type": "markdown",
"id": "cfe228d3-6773-4283-9788-87bdf6912b1c",
"id": "789818d7",
"metadata": {},
"source": [
"You can also use LangGraph to manage the conversation history for you as in [this tutorial](/docs/tutorials/chatbot/)."
@ -411,7 +532,313 @@
},
{
"cell_type": "markdown",
"id": "d1ee55bc-ffc8-4cfa-801c-993953a08cfd",
"id": "b037e2dc",
"metadata": {},
"source": [
"## Tool Calling\n",
"\n",
"You can equip the model with tools to call."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "b0d759f9",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[{'name': 'get_weather', 'args': {'location': 'San Francisco'}, 'id': 'a6248087-74c5-4b7c-9250-f335e642927c', 'type': 'tool_call'}]\n"
]
},
{
"data": {
"text/plain": [
"AIMessage(content=\"OK. It's sunny in San Francisco.\", additional_kwargs={}, response_metadata={'prompt_feedback': {'block_reason': 0, 'safety_ratings': []}, 'finish_reason': 'STOP', 'model_name': 'gemini-2.0-flash', 'safety_ratings': []}, id='run-ac5bb52c-e244-4c72-9fbc-fb2a9cd7a72e-0', usage_metadata={'input_tokens': 29, 'output_tokens': 11, 'total_tokens': 40, 'input_token_details': {'cache_read': 0}})"
]
},
"execution_count": 28,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from langchain_core.tools import tool\n",
"from langchain_google_genai import ChatGoogleGenerativeAI\n",
"\n",
"\n",
"# Define the tool\n",
"@tool(description=\"Get the current weather in a given location\")\n",
"def get_weather(location: str) -> str:\n",
" return \"It's sunny.\"\n",
"\n",
"\n",
"# Initialize the model and bind the tool\n",
"llm = ChatGoogleGenerativeAI(model=\"gemini-2.0-flash\")\n",
"llm_with_tools = llm.bind_tools([get_weather])\n",
"\n",
"# Invoke the model with a query that should trigger the tool\n",
"query = \"What's the weather in San Francisco?\"\n",
"ai_msg = llm_with_tools.invoke(query)\n",
"\n",
"# Check the tool calls in the response\n",
"print(ai_msg.tool_calls)\n",
"\n",
"# Example tool call message would be needed here if you were actually running the tool\n",
"from langchain_core.messages import ToolMessage\n",
"\n",
"tool_message = ToolMessage(\n",
" content=get_weather(*ai_msg.tool_calls[0][\"args\"]),\n",
" tool_call_id=ai_msg.tool_calls[0][\"id\"],\n",
")\n",
"llm_with_tools.invoke([ai_msg, tool_message]) # Example of passing tool result back"
]
},
{
"cell_type": "markdown",
"id": "91d42b86",
"metadata": {},
"source": [
"## Structured Output\n",
"\n",
"Force the model to respond with a specific structure using Pydantic models."
]
},
{
"cell_type": "code",
"execution_count": 14,
"id": "7457dbe4",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"name='Abraham Lincoln' height_m=1.93\n"
]
}
],
"source": [
"from langchain_core.pydantic_v1 import BaseModel, Field\n",
"from langchain_google_genai import ChatGoogleGenerativeAI\n",
"\n",
"\n",
"# Define the desired structure\n",
"class Person(BaseModel):\n",
" \"\"\"Information about a person.\"\"\"\n",
"\n",
" name: str = Field(..., description=\"The person's name\")\n",
" height_m: float = Field(..., description=\"The person's height in meters\")\n",
"\n",
"\n",
"# Initialize the model\n",
"llm = ChatGoogleGenerativeAI(model=\"gemini-2.0-flash\", temperature=0)\n",
"structured_llm = llm.with_structured_output(Person)\n",
"\n",
"# Invoke the model with a query asking for structured information\n",
"result = structured_llm.invoke(\n",
" \"Who was the 16th president of the USA, and how tall was he in meters?\"\n",
")\n",
"print(result)"
]
},
{
"cell_type": "markdown",
"id": "90d4725e",
"metadata": {},
"source": [
"\n",
"\n",
"## Token Usage Tracking\n",
"\n",
"Access token usage information from the response metadata."
]
},
{
"cell_type": "code",
"execution_count": 18,
"id": "edcc003e",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Prompt engineering is the art and science of crafting effective text prompts to elicit desired and accurate responses from large language models.\n",
"\n",
"Usage Metadata:\n",
"{'input_tokens': 10, 'output_tokens': 24, 'total_tokens': 34, 'input_token_details': {'cache_read': 0}}\n"
]
}
],
"source": [
"from langchain_google_genai import ChatGoogleGenerativeAI\n",
"\n",
"llm = ChatGoogleGenerativeAI(model=\"gemini-2.0-flash\")\n",
"\n",
"result = llm.invoke(\"Explain the concept of prompt engineering in one sentence.\")\n",
"\n",
"print(result.content)\n",
"print(\"\\nUsage Metadata:\")\n",
"print(result.usage_metadata)"
]
},
{
"cell_type": "markdown",
"id": "28950dbc",
"metadata": {},
"source": [
"## Built-in tools\n",
"\n",
"Google Gemini supports a variety of built-in tools ([google search](https://ai.google.dev/gemini-api/docs/grounding/search-suggestions), [code execution](https://ai.google.dev/gemini-api/docs/code-execution?lang=python)), which can be bound to the model in the usual way."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "dd074816",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The next total solar eclipse visible in the United States will occur on August 23, 2044. However, the path of totality will only pass through Montana, North Dakota, and South Dakota.\n",
"\n",
"For a total solar eclipse that crosses a significant portion of the continental U.S., you'll have to wait until August 12, 2045. This eclipse will start in California and end in Florida.\n"
]
}
],
"source": [
"from google.ai.generativelanguage_v1beta.types import Tool as GenAITool\n",
"\n",
"resp = llm.invoke(\n",
" \"When is the next total solar eclipse in US?\",\n",
" tools=[GenAITool(google_search={})],\n",
")\n",
"\n",
"print(resp.content)"
]
},
{
"cell_type": "code",
"execution_count": 43,
"id": "6964be2d",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Executable code: print(2*2)\n",
"\n",
"Code execution result: 4\n",
"\n",
"2*2 is 4.\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"/Users/philschmid/projects/google-gemini/langchain/.venv/lib/python3.9/site-packages/langchain_google_genai/chat_models.py:580: UserWarning: \n",
" ⚠️ Warning: Output may vary each run. \n",
" - 'executable_code': Always present. \n",
" - 'execution_result' & 'image_url': May be absent for some queries. \n",
"\n",
" Validate before using in production.\n",
"\n",
" warnings.warn(\n"
]
}
],
"source": [
"from google.ai.generativelanguage_v1beta.types import Tool as GenAITool\n",
"\n",
"resp = llm.invoke(\n",
" \"What is 2*2, use python\",\n",
" tools=[GenAITool(code_execution={})],\n",
")\n",
"\n",
"for c in resp.content:\n",
" if isinstance(c, dict):\n",
" if c[\"type\"] == \"code_execution_result\":\n",
" print(f\"Code execution result: {c['code_execution_result']}\")\n",
" elif c[\"type\"] == \"executable_code\":\n",
" print(f\"Executable code: {c['executable_code']}\")\n",
" else:\n",
" print(c)"
]
},
{
"cell_type": "markdown",
"id": "a27e6ff4",
"metadata": {},
"source": [
"## Native Async\n",
"\n",
"Use asynchronous methods for non-blocking calls."
]
},
{
"cell_type": "code",
"execution_count": 17,
"id": "c6803e57",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Async Invoke Result: The sky is blue due to a phenomenon called **Rayle...\n",
"\n",
"Async Stream Result:\n",
"The thread is free, it does not wait,\n",
"For answers slow, or tasks of fate.\n",
"A promise made, a future bright,\n",
"It moves ahead, with all its might.\n",
"\n",
"A callback waits, a signal sent,\n",
"When data's read, or job is spent.\n",
"Non-blocking code, a graceful dance,\n",
"Responsive apps, a fleeting glance.\n",
"\n",
"Async Batch Results: ['1 + 1 = 2', '2 + 2 = 4']\n"
]
}
],
"source": [
"from langchain_google_genai import ChatGoogleGenerativeAI\n",
"\n",
"llm = ChatGoogleGenerativeAI(model=\"gemini-2.0-flash\")\n",
"\n",
"\n",
"async def run_async_calls():\n",
" # Async invoke\n",
" result_ainvoke = await llm.ainvoke(\"Why is the sky blue?\")\n",
" print(\"Async Invoke Result:\", result_ainvoke.content[:50] + \"...\")\n",
"\n",
" # Async stream\n",
" print(\"\\nAsync Stream Result:\")\n",
" async for chunk in llm.astream(\n",
" \"Write a short poem about asynchronous programming.\"\n",
" ):\n",
" print(chunk.content, end=\"\", flush=True)\n",
" print(\"\\n\")\n",
"\n",
" # Async batch\n",
" results_abatch = await llm.abatch([\"What is 1+1?\", \"What is 2+2?\"])\n",
" print(\"Async Batch Results:\", [res.content for res in results_abatch])\n",
"\n",
"\n",
"await run_async_calls()"
]
},
{
"cell_type": "markdown",
"id": "99204b32",
"metadata": {},
"source": [
"## Safety Settings\n",
@ -421,8 +848,8 @@
},
{
"cell_type": "code",
"execution_count": 14,
"id": "238b2f96-e573-4fac-bbf2-7e52ad926833",
"execution_count": null,
"id": "d4c14039",
"metadata": {},
"outputs": [],
"source": [
@ -442,7 +869,7 @@
},
{
"cell_type": "markdown",
"id": "5805d40c-deb8-4924-8e72-a294a0482fc9",
"id": "dea38fb1",
"metadata": {},
"source": [
"For an enumeration of the categories and thresholds available, see Google's [safety setting types](https://ai.google.dev/api/python/google/generativeai/types/SafetySettingDict)."
@ -450,7 +877,7 @@
},
{
"cell_type": "markdown",
"id": "3a5bb5ca-c3ae-4a58-be67-2cd18574b9a3",
"id": "d6d0e853",
"metadata": {},
"source": [
"## API reference\n",
@ -461,7 +888,7 @@
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"display_name": ".venv",
"language": "python",
"name": "python3"
},
@ -475,7 +902,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.4"
"version": "3.9.6"
}
},
"nbformat": 4,

View File

@ -1413,6 +1413,23 @@
"second_output_message = llm.invoke(history)"
]
},
{
"cell_type": "markdown",
"id": "90c18d18-b25c-4509-a639-bd652b92f518",
"metadata": {},
"source": [
"## Flex processing\n",
"\n",
"OpenAI offers a variety of [service tiers](https://platform.openai.com/docs/guides/flex-processing). The \"flex\" tier offers cheaper pricing for requests, with the trade-off that responses may take longer and resources might not always be available. This approach is best suited for non-critical tasks, including model testing, data enhancement, or jobs that can be run asynchronously.\n",
"\n",
"To use it, initialize the model with `service_tier=\"flex\"`:\n",
"```python\n",
"llm = ChatOpenAI(model=\"o4-mini\", service_tier=\"flex\")\n",
"```\n",
"\n",
"Note that this is a beta feature that is only available for a subset of models. See OpenAI [docs](https://platform.openai.com/docs/guides/flex-processing) for more detail."
]
},
{
"cell_type": "markdown",
"id": "a796d728-971b-408b-88d5-440015bbb941",
@ -1420,7 +1437,7 @@
"source": [
"## API reference\n",
"\n",
"For detailed documentation of all ChatOpenAI features and configurations head to the API reference: https://python.langchain.com/api_reference/openai/chat_models/langchain_openai.chat_models.base.ChatOpenAI.html"
"For detailed documentation of all ChatOpenAI features and configurations head to the [API reference](https://python.langchain.com/api_reference/openai/chat_models/langchain_openai.chat_models.base.ChatOpenAI.html)."
]
}
],

View File

@ -34,33 +34,46 @@
"id": "juAmbgoWD17u"
},
"source": [
"The AstraDB Document Loader returns a list of Langchain Documents from an AstraDB database.\n",
"The Astra DB Document Loader returns a list of Langchain `Document` objects read from an Astra DB collection.\n",
"\n",
"The Loader takes the following parameters:\n",
"The loader takes the following parameters:\n",
"\n",
"* `api_endpoint`: AstraDB API endpoint. Looks like `https://01234567-89ab-cdef-0123-456789abcdef-us-east1.apps.astra.datastax.com`\n",
"* `token`: AstraDB token. Looks like `AstraCS:6gBhNmsk135....`\n",
"* `api_endpoint`: Astra DB API endpoint. Looks like `https://01234567-89ab-cdef-0123-456789abcdef-us-east1.apps.astra.datastax.com`\n",
"* `token`: Astra DB token. Looks like `AstraCS:aBcD0123...`\n",
"* `collection_name` : AstraDB collection name\n",
"* `namespace`: (Optional) AstraDB namespace\n",
"* `namespace`: (Optional) AstraDB namespace (called _keyspace_ in Astra DB)\n",
"* `filter_criteria`: (Optional) Filter used in the find query\n",
"* `projection`: (Optional) Projection used in the find query\n",
"* `find_options`: (Optional) Options used in the find query\n",
"* `nb_prefetched`: (Optional) Number of documents pre-fetched by the loader\n",
"* `limit`: (Optional) Maximum number of documents to retrieve\n",
"* `extraction_function`: (Optional) A function to convert the AstraDB document to the LangChain `page_content` string. Defaults to `json.dumps`\n",
"\n",
"The following metadata is set to the LangChain Documents metadata output:\n",
"The loader sets the following metadata for the documents it reads:\n",
"\n",
"```python\n",
"{\n",
" metadata : {\n",
" \"namespace\": \"...\", \n",
" \"api_endpoint\": \"...\", \n",
" \"collection\": \"...\"\n",
" }\n",
"metadata={\n",
" \"namespace\": \"...\", \n",
" \"api_endpoint\": \"...\", \n",
" \"collection\": \"...\"\n",
"}\n",
"```"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Setup"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"!pip install \"langchain-astradb>=0.6,<0.7\""
]
},
{
"attachments": {},
"cell_type": "markdown",
@ -71,24 +84,43 @@
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"from langchain_community.document_loaders import AstraDBLoader"
"from langchain_astradb import AstraDBLoader"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"[**API Reference:** `AstraDBLoader`](https://python.langchain.com/api_reference/astradb/document_loaders/langchain_astradb.document_loaders.AstraDBLoader.html#langchain_astradb.document_loaders.AstraDBLoader)"
]
},
{
"cell_type": "code",
"execution_count": 4,
"execution_count": 3,
"metadata": {
"ExecuteTime": {
"end_time": "2024-01-08T12:41:22.643335Z",
"start_time": "2024-01-08T12:40:57.759116Z"
},
"collapsed": false
"collapsed": false,
"jupyter": {
"outputs_hidden": false
}
},
"outputs": [],
"outputs": [
{
"name": "stdin",
"output_type": "stream",
"text": [
"ASTRA_DB_API_ENDPOINT = https://01234567-89ab-cdef-0123-456789abcdef-us-east1.apps.astra.datastax.com\n",
"ASTRA_DB_APPLICATION_TOKEN = ········\n"
]
}
],
"source": [
"from getpass import getpass\n",
"\n",
@ -98,7 +130,7 @@
},
{
"cell_type": "code",
"execution_count": 6,
"execution_count": 4,
"metadata": {
"ExecuteTime": {
"end_time": "2024-01-08T12:42:25.395162Z",
@ -112,19 +144,22 @@
" token=ASTRA_DB_APPLICATION_TOKEN,\n",
" collection_name=\"movie_reviews\",\n",
" projection={\"title\": 1, \"reviewtext\": 1},\n",
" find_options={\"limit\": 10},\n",
" limit=10,\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 7,
"execution_count": 5,
"metadata": {
"ExecuteTime": {
"end_time": "2024-01-08T12:42:30.236489Z",
"start_time": "2024-01-08T12:42:29.612133Z"
},
"collapsed": false
"collapsed": false,
"jupyter": {
"outputs_hidden": false
}
},
"outputs": [],
"source": [
@ -133,7 +168,7 @@
},
{
"cell_type": "code",
"execution_count": 8,
"execution_count": 6,
"metadata": {
"ExecuteTime": {
"end_time": "2024-01-08T12:42:31.369394Z",
@ -144,10 +179,10 @@
{
"data": {
"text/plain": [
"Document(page_content='{\"_id\": \"659bdffa16cbc4586b11a423\", \"title\": \"Dangerous Men\", \"reviewtext\": \"\\\\\"Dangerous Men,\\\\\" the picture\\'s production notes inform, took 26 years to reach the big screen. After having seen it, I wonder: What was the rush?\"}', metadata={'namespace': 'default_keyspace', 'api_endpoint': 'https://01234567-89ab-cdef-0123-456789abcdef-us-east1.apps.astra.datastax.com', 'collection': 'movie_reviews'})"
"Document(metadata={'namespace': 'default_keyspace', 'api_endpoint': 'https://01234567-89ab-cdef-0123-456789abcdef-us-east1.apps.astra.datastax.com', 'collection': 'movie_reviews'}, page_content='{\"_id\": \"659bdffa16cbc4586b11a423\", \"title\": \"Dangerous Men\", \"reviewtext\": \"\\\\\"Dangerous Men,\\\\\" the picture\\'s production notes inform, took 26 years to reach the big screen. After having seen it, I wonder: What was the rush?\"}')"
]
},
"execution_count": 8,
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
@ -179,7 +214,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.18"
"version": "3.12.8"
}
},
"nbformat": 4,

View File

@ -49,7 +49,14 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain_community.document_loaders import BrowserbaseLoader"
"import os\n",
"\n",
"from langchain_community.document_loaders import BrowserbaseLoader\n",
"\n",
"load_dotenv()\n",
"\n",
"BROWSERBASE_API_KEY = os.getenv(\"BROWSERBASE_API_KEY\")\n",
"BROWSERBASE_PROJECT_ID = os.getenv(\"BROWSERBASE_PROJECT_ID\")"
]
},
{
@ -59,6 +66,8 @@
"outputs": [],
"source": [
"loader = BrowserbaseLoader(\n",
" api_key=BROWSERBASE_API_KEY,\n",
" project_id=BROWSERBASE_PROJECT_ID,\n",
" urls=[\n",
" \"https://example.com\",\n",
" ],\n",
@ -78,52 +87,11 @@
"\n",
"- `urls` Required. A list of URLs to fetch.\n",
"- `text_content` Retrieve only text content. Default is `False`.\n",
"- `api_key` Optional. Browserbase API key. Default is `BROWSERBASE_API_KEY` env variable.\n",
"- `project_id` Optional. Browserbase Project ID. Default is `BROWSERBASE_PROJECT_ID` env variable.\n",
"- `api_key` Browserbase API key. Default is `BROWSERBASE_API_KEY` env variable.\n",
"- `project_id` Browserbase Project ID. Default is `BROWSERBASE_PROJECT_ID` env variable.\n",
"- `session_id` Optional. Provide an existing Session ID.\n",
"- `proxy` Optional. Enable/Disable Proxies."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Loading images\n",
"\n",
"You can also load screenshots of webpages (as bytes) for multi-modal models.\n",
"\n",
"Full example using GPT-4V:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from browserbase import Browserbase\n",
"from browserbase.helpers.gpt4 import GPT4VImage, GPT4VImageDetail\n",
"from langchain_core.messages import HumanMessage\n",
"from langchain_openai import ChatOpenAI\n",
"\n",
"chat = ChatOpenAI(model=\"gpt-4-vision-preview\", max_tokens=256)\n",
"browser = Browserbase()\n",
"\n",
"screenshot = browser.screenshot(\"https://browserbase.com\")\n",
"\n",
"result = chat.invoke(\n",
" [\n",
" HumanMessage(\n",
" content=[\n",
" {\"type\": \"text\", \"text\": \"What color is the logo?\"},\n",
" GPT4VImage(screenshot, GPT4VImageDetail.auto),\n",
" ]\n",
" )\n",
" ]\n",
")\n",
"\n",
"print(result.content)"
]
}
],
"metadata": {

View File

@ -3112,8 +3112,8 @@
"|------------|---------|\n",
"| langchain_astradb.cache | [AstraDBCache](https://python.langchain.com/api_reference/astradb/cache/langchain_astradb.cache.AstraDBCache.html) |\n",
"| langchain_astradb.cache | [AstraDBSemanticCache](https://python.langchain.com/api_reference/astradb/cache/langchain_astradb.cache.AstraDBSemanticCache.html) |\n",
"| langchain_community.cache | [AstraDBCache](https://python.langchain.com/api_reference/community/cache/langchain_community.cache.AstraDBCache.html) |\n",
"| langchain_community.cache | [AstraDBSemanticCache](https://python.langchain.com/api_reference/community/cache/langchain_community.cache.AstraDBSemanticCache.html) |\n",
"| langchain_community.cache | [AstraDBCache](https://python.langchain.com/api_reference/community/cache/langchain_community.cache.AstraDBCache.html) (deprecated since `langchain-community==0.0.28`) |\n",
"| langchain_community.cache | [AstraDBSemanticCache](https://python.langchain.com/api_reference/community/cache/langchain_community.cache.AstraDBSemanticCache.html) (deprecated since `langchain-community==0.0.28`) |\n",
"| langchain_community.cache | [AzureCosmosDBSemanticCache](https://python.langchain.com/api_reference/community/cache/langchain_community.cache.AzureCosmosDBSemanticCache.html) |\n",
"| langchain_community.cache | [CassandraCache](https://python.langchain.com/api_reference/community/cache/langchain_community.cache.CassandraCache.html) |\n",
"| langchain_community.cache | [CassandraSemanticCache](https://python.langchain.com/api_reference/community/cache/langchain_community.cache.CassandraSemanticCache.html) |\n",

View File

@ -17,22 +17,22 @@
"id": "f507f58b-bf22-4a48-8daf-68d869bcd1ba",
"metadata": {},
"source": [
"## Setting up\n",
"## Setup\n",
"\n",
"To run this notebook you need a running Astra DB. Get the connection secrets on your Astra dashboard:\n",
"\n",
"- the API Endpoint looks like `https://01234567-89ab-cdef-0123-456789abcdef-us-east1.apps.astra.datastax.com`;\n",
"- the Token looks like `AstraCS:6gBhNmsk135...`."
"- the Database Token looks like `AstraCS:aBcD0123...`."
]
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 1,
"id": "d7092199",
"metadata": {},
"outputs": [],
"source": [
"%pip install --upgrade --quiet \"astrapy>=0.7.1 langchain-community\" "
"!pip install \"langchain-astradb>=0.6,<0.7\""
]
},
{
@ -45,12 +45,12 @@
},
{
"cell_type": "code",
"execution_count": 1,
"execution_count": 2,
"id": "163d97f0",
"metadata": {},
"outputs": [
{
"name": "stdout",
"name": "stdin",
"output_type": "stream",
"text": [
"ASTRA_DB_API_ENDPOINT = https://01234567-89ab-cdef-0123-456789abcdef-us-east1.apps.astra.datastax.com\n",
@ -65,14 +65,6 @@
"ASTRA_DB_APPLICATION_TOKEN = getpass.getpass(\"ASTRA_DB_APPLICATION_TOKEN = \")"
]
},
{
"cell_type": "markdown",
"id": "55860b2d",
"metadata": {},
"source": [
"Depending on whether local or cloud-based Astra DB, create the corresponding database connection \"Session\" object."
]
},
{
"cell_type": "markdown",
"id": "36c163e8",
@ -83,12 +75,12 @@
},
{
"cell_type": "code",
"execution_count": 2,
"execution_count": 3,
"id": "d15e3302",
"metadata": {},
"outputs": [],
"source": [
"from langchain_community.chat_message_histories import AstraDBChatMessageHistory\n",
"from langchain_astradb import AstraDBChatMessageHistory\n",
"\n",
"message_history = AstraDBChatMessageHistory(\n",
" session_id=\"test-session\",\n",
@ -98,22 +90,31 @@
"\n",
"message_history.add_user_message(\"hi!\")\n",
"\n",
"message_history.add_ai_message(\"whats up?\")"
"message_history.add_ai_message(\"hello, how are you?\")"
]
},
{
"cell_type": "markdown",
"id": "53acb4a8-d536-4a58-9fee-7d70033d9c81",
"metadata": {},
"source": [
"[**API Reference:** `AstraDBChatMessageHistory`](https://python.langchain.com/api_reference/astradb/chat_message_histories/langchain_astradb.chat_message_histories.AstraDBChatMessageHistory.html#langchain_astradb.chat_message_histories.AstraDBChatMessageHistory)"
]
},
{
"cell_type": "code",
"execution_count": 3,
"execution_count": 4,
"id": "64fc465e",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[HumanMessage(content='hi!'), AIMessage(content='whats up?')]"
"[HumanMessage(content='hi!', additional_kwargs={}, response_metadata={}),\n",
" AIMessage(content='hello, how are you?', additional_kwargs={}, response_metadata={})]"
]
},
"execution_count": 3,
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
@ -139,7 +140,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.12"
"version": "3.12.8"
}
},
"nbformat": 4,

File diff suppressed because it is too large Load Diff

View File

@ -4,7 +4,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"# Astra DB (Cassandra)\n",
"# Astra DB\n",
"\n",
">[DataStax Astra DB](https://docs.datastax.com/en/astra/home/astra.html) is a serverless vector-capable database built on `Cassandra` and made conveniently available through an easy-to-use JSON API.\n",
"\n",
@ -16,32 +16,46 @@
"metadata": {},
"source": [
"## Creating an Astra DB vector store\n",
"First we'll want to create an Astra DB VectorStore and seed it with some data. We've created a small demo set of documents that contain summaries of movies.\n",
"First, create an Astra DB vector store and seed it with some data.\n",
"\n",
"NOTE: The self-query retriever requires you to have `lark` installed (`pip install lark`). We also need the `astrapy` package."
"We've created a small demo set of documents containing movie summaries.\n",
"\n",
"NOTE: The self-query retriever requires the `lark` package installed (`pip install lark`)."
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"execution_count": null,
"metadata": {
"scrolled": true
},
"outputs": [],
"source": [
"%pip install --upgrade --quiet lark astrapy langchain-openai"
"!pip install \"langchain-astradb>=0.6,<0.7\" \\\n",
" \"langchain_openai>=0.3,<0.4\" \\\n",
" \"lark>=1.2,<2.0\""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We want to use `OpenAIEmbeddings` so we have to get the OpenAI API Key."
"In this example, you'll use the `OpenAIEmbeddings`. Please enter an OpenAI API Key."
]
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 1,
"metadata": {},
"outputs": [],
"outputs": [
{
"name": "stdin",
"output_type": "stream",
"text": [
"OpenAI API Key: ········\n"
]
}
],
"source": [
"import os\n",
"from getpass import getpass\n",
@ -69,14 +83,23 @@
"Create the Astra DB VectorStore:\n",
"\n",
"- the API Endpoint looks like `https://01234567-89ab-cdef-0123-456789abcdef-us-east1.apps.astra.datastax.com`\n",
"- the Token looks like `AstraCS:6gBhNmsk135....`"
"- the Token looks like `AstraCS:aBcD0123...`"
]
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 2,
"metadata": {},
"outputs": [],
"outputs": [
{
"name": "stdin",
"output_type": "stream",
"text": [
"ASTRA_DB_API_ENDPOINT = https://01234567-89ab-cdef-0123-456789abcdef-us-east1.apps.astra.datastax.com\n",
"ASTRA_DB_APPLICATION_TOKEN = ········\n"
]
}
],
"source": [
"ASTRA_DB_API_ENDPOINT = input(\"ASTRA_DB_API_ENDPOINT = \")\n",
"ASTRA_DB_APPLICATION_TOKEN = getpass(\"ASTRA_DB_APPLICATION_TOKEN = \")"
@ -84,11 +107,11 @@
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"from langchain_community.vectorstores import AstraDB\n",
"from langchain_astradb import AstraDBVectorStore\n",
"from langchain_core.documents import Document\n",
"\n",
"docs = [\n",
@ -101,11 +124,13 @@
" metadata={\"year\": 2010, \"director\": \"Christopher Nolan\", \"rating\": 8.2},\n",
" ),\n",
" Document(\n",
" page_content=\"A psychologist / detective gets lost in a series of dreams within dreams within dreams and Inception reused the idea\",\n",
" page_content=\"A psychologist / detective gets lost in a series of dreams within dreams \"\n",
" \"within dreams and Inception reused the idea\",\n",
" metadata={\"year\": 2006, \"director\": \"Satoshi Kon\", \"rating\": 8.6},\n",
" ),\n",
" Document(\n",
" page_content=\"A bunch of normal-sized women are supremely wholesome and some men pine after them\",\n",
" page_content=\"A bunch of normal-sized women are supremely wholesome and some men \"\n",
" \"pine after them\",\n",
" metadata={\"year\": 2019, \"director\": \"Greta Gerwig\", \"rating\": 8.3},\n",
" ),\n",
" Document(\n",
@ -123,7 +148,7 @@
" ),\n",
"]\n",
"\n",
"vectorstore = AstraDB.from_documents(\n",
"vectorstore = AstraDBVectorStore.from_documents(\n",
" docs,\n",
" embeddings,\n",
" collection_name=\"astra_self_query_demo\",\n",
@ -136,13 +161,16 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"## Creating our self-querying retriever\n",
"Now we can instantiate our retriever. To do this we'll need to provide some information upfront about the metadata fields that our documents support and a short description of the document contents."
"## Creating a self-querying retriever\n",
"\n",
"Now you can instantiate the retriever.\n",
"\n",
"To do this, you need to provide some information upfront about the metadata fields that the documents support, along with a short description of the documents' contents."
]
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
@ -174,7 +202,11 @@
"llm = OpenAI(temperature=0)\n",
"\n",
"retriever = SelfQueryRetriever.from_llm(\n",
" llm, vectorstore, document_content_description, metadata_field_info, verbose=True\n",
" llm,\n",
" vectorstore,\n",
" document_content_description,\n",
" metadata_field_info,\n",
" verbose=True,\n",
")"
]
},
@ -183,14 +215,29 @@
"metadata": {},
"source": [
"## Testing it out\n",
"And now we can try actually using our retriever!"
"\n",
"Now you can try actually using our retriever:"
]
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 5,
"metadata": {},
"outputs": [],
"outputs": [
{
"data": {
"text/plain": [
"[Document(id='d7b9ec1edafa467caab524455e8c1f5d', metadata={'year': 1993, 'rating': 7.7, 'genre': 'science fiction'}, page_content='A bunch of scientists bring back dinosaurs and mayhem breaks loose'),\n",
" Document(id='8ad04ef2a73d4f74897a51e49be1a8d2', metadata={'year': 1995, 'genre': 'animated'}, page_content='Toys come alive and have a blast doing so'),\n",
" Document(id='5b07e600d3494506952b60e0a45a0546', metadata={'year': 1979, 'director': 'Andrei Tarkovsky', 'genre': 'science fiction', 'rating': 9.9}, page_content='Three men walk into the Zone, three men walk out of the Zone'),\n",
" Document(id='a0cef19e27c341929098ac4793602829', metadata={'year': 2006, 'director': 'Satoshi Kon', 'rating': 8.6}, page_content='A psychologist / detective gets lost in a series of dreams within dreams within dreams and Inception reused the idea')]"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# This example only specifies a relevant query\n",
"retriever.invoke(\"What are some movies about dinosaurs?\")"
@ -198,9 +245,21 @@
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 6,
"metadata": {},
"outputs": [],
"outputs": [
{
"data": {
"text/plain": [
"[Document(id='5b07e600d3494506952b60e0a45a0546', metadata={'year': 1979, 'director': 'Andrei Tarkovsky', 'genre': 'science fiction', 'rating': 9.9}, page_content='Three men walk into the Zone, three men walk out of the Zone'),\n",
" Document(id='a0cef19e27c341929098ac4793602829', metadata={'year': 2006, 'director': 'Satoshi Kon', 'rating': 8.6}, page_content='A psychologist / detective gets lost in a series of dreams within dreams within dreams and Inception reused the idea')]"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# This example specifies a filter\n",
"retriever.invoke(\"I want to watch a movie rated higher than 8.5\")"
@ -208,9 +267,20 @@
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 7,
"metadata": {},
"outputs": [],
"outputs": [
{
"data": {
"text/plain": [
"[Document(id='0539843fd203484c9be486c2a0e2454c', metadata={'year': 2019, 'director': 'Greta Gerwig', 'rating': 8.3}, page_content='A bunch of normal-sized women are supremely wholesome and some men pine after them')]"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# This example only specifies a query and a filter\n",
"retriever.invoke(\"Has Greta Gerwig directed any movies about women\")"
@ -218,9 +288,21 @@
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 8,
"metadata": {},
"outputs": [],
"outputs": [
{
"data": {
"text/plain": [
"[Document(id='a0cef19e27c341929098ac4793602829', metadata={'year': 2006, 'director': 'Satoshi Kon', 'rating': 8.6}, page_content='A psychologist / detective gets lost in a series of dreams within dreams within dreams and Inception reused the idea'),\n",
" Document(id='5b07e600d3494506952b60e0a45a0546', metadata={'year': 1979, 'director': 'Andrei Tarkovsky', 'genre': 'science fiction', 'rating': 9.9}, page_content='Three men walk into the Zone, three men walk out of the Zone')]"
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# This example specifies a composite filter\n",
"retriever.invoke(\"What's a highly rated (above 8.5), science fiction movie ?\")"
@ -228,9 +310,20 @@
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 9,
"metadata": {},
"outputs": [],
"outputs": [
{
"data": {
"text/plain": [
"[Document(id='8ad04ef2a73d4f74897a51e49be1a8d2', metadata={'year': 1995, 'genre': 'animated'}, page_content='Toys come alive and have a blast doing so')]"
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# This example specifies a query and composite filter\n",
"retriever.invoke(\n",
@ -242,20 +335,20 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"## Filter k\n",
"## Set a limit ('k')\n",
"\n",
"We can also use the self query retriever to specify `k`: the number of documents to fetch.\n",
"you can also use the self-query retriever to specify `k`, the number of documents to fetch.\n",
"\n",
"We can do this by passing `enable_limit=True` to the constructor."
"You achieve this by passing `enable_limit=True` to the constructor."
]
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 10,
"metadata": {},
"outputs": [],
"source": [
"retriever = SelfQueryRetriever.from_llm(\n",
"retriever_k = SelfQueryRetriever.from_llm(\n",
" llm,\n",
" vectorstore,\n",
" document_content_description,\n",
@ -267,12 +360,24 @@
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 11,
"metadata": {},
"outputs": [],
"outputs": [
{
"data": {
"text/plain": [
"[Document(id='d7b9ec1edafa467caab524455e8c1f5d', metadata={'year': 1993, 'rating': 7.7, 'genre': 'science fiction'}, page_content='A bunch of scientists bring back dinosaurs and mayhem breaks loose'),\n",
" Document(id='8ad04ef2a73d4f74897a51e49be1a8d2', metadata={'year': 1995, 'genre': 'animated'}, page_content='Toys come alive and have a blast doing so')]"
]
},
"execution_count": 11,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# This example only specifies a relevant query\n",
"retriever.invoke(\"What are two movies about dinosaurs?\")"
"retriever_k.invoke(\"What are two movies about dinosaurs?\")"
]
},
{
@ -293,7 +398,7 @@
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 12,
"metadata": {
"collapsed": false,
"jupyter": {
@ -322,7 +427,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.12"
"version": "3.12.8"
}
},
"nbformat": 4,

View File

@ -1,13 +1,76 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "8543d632",
"metadata": {},
"source": [
"---\n",
"sidebar_label: Google Gemini\n",
"keywords: [google gemini embeddings]\n",
"---"
]
},
{
"cell_type": "markdown",
"id": "afab8b36-10bb-4795-bc98-75ab2d2081bb",
"metadata": {},
"source": [
"# Google Generative AI Embeddings\n",
"# Google Generative AI Embeddings (AI Studio & Gemini API)\n",
"\n",
"Connect to Google's generative AI embeddings service using the `GoogleGenerativeAIEmbeddings` class, found in the [langchain-google-genai](https://pypi.org/project/langchain-google-genai/) package."
"Connect to Google's generative AI embeddings service using the `GoogleGenerativeAIEmbeddings` class, found in the [langchain-google-genai](https://pypi.org/project/langchain-google-genai/) package.\n",
"\n",
"This will help you get started with Google's Generative AI embedding models (like Gemini) using LangChain. For detailed documentation on `GoogleGenerativeAIEmbeddings` features and configuration options, please refer to the [API reference](https://python.langchain.com/v0.2/api_reference/google_genai/embeddings/langchain_google_genai.embeddings.GoogleGenerativeAIEmbeddings.html).\n",
"\n",
"## Overview\n",
"### Integration details\n",
"\n",
"import { ItemTable } from \"@theme/FeatureTables\";\n",
"\n",
"<ItemTable category=\"text_embedding\" item=\"Google Gemini\" />\n",
"\n",
"## Setup\n",
"\n",
"To access Google Generative AI embedding models you'll need to create a Google Cloud project, enable the Generative Language API, get an API key, and install the `langchain-google-genai` integration package.\n",
"\n",
"### Credentials\n",
"\n",
"To use Google Generative AI models, you must have an API key. You can create one in Google AI Studio. See the [Google documentation](https://ai.google.dev/gemini-api/docs/api-key) for instructions.\n",
"\n",
"Once you have a key, set it as an environment variable `GOOGLE_API_KEY`:\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "47652620",
"metadata": {},
"outputs": [],
"source": [
"import getpass\n",
"import os\n",
"\n",
"if not os.getenv(\"GOOGLE_API_KEY\"):\n",
" os.environ[\"GOOGLE_API_KEY\"] = getpass.getpass(\"Enter your Google API key: \")"
]
},
{
"cell_type": "markdown",
"id": "67283790",
"metadata": {},
"source": [
"To enable automated tracing of your model calls, set your [LangSmith](https://docs.smith.langchain.com/) API key:"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "eccf1968",
"metadata": {},
"outputs": [],
"source": [
"# os.environ[\"LANGSMITH_TRACING\"] = \"true\"\n",
"# os.environ[\"LANGSMITH_API_KEY\"] = getpass.getpass(\"Enter your LangSmith API key: \")"
]
},
{
@ -28,28 +91,6 @@
"%pip install --upgrade --quiet langchain-google-genai"
]
},
{
"cell_type": "markdown",
"id": "25f3f88e-164e-400d-b371-9fa488baba19",
"metadata": {},
"source": [
"## Credentials"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "ec89153f-8999-4aab-a21b-0bfba1cc3893",
"metadata": {},
"outputs": [],
"source": [
"import getpass\n",
"import os\n",
"\n",
"if \"GOOGLE_API_KEY\" not in os.environ:\n",
" os.environ[\"GOOGLE_API_KEY\"] = getpass.getpass(\"Provide your Google API key here\")"
]
},
{
"cell_type": "markdown",
"id": "f2437b22-e364-418a-8c13-490a026cb7b5",
@ -60,17 +101,21 @@
},
{
"cell_type": "code",
"execution_count": 6,
"execution_count": 20,
"id": "eedc551e-a1f3-4fd8-8d65-4e0784c4441b",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[0.05636945, 0.0048285457, -0.0762591, -0.023642512, 0.05329321]"
"[-0.024917153641581535,\n",
" 0.012005362659692764,\n",
" -0.003886754624545574,\n",
" -0.05774897709488869,\n",
" 0.0020742062479257584]"
]
},
"execution_count": 6,
"execution_count": 20,
"metadata": {},
"output_type": "execute_result"
}
@ -78,7 +123,7 @@
"source": [
"from langchain_google_genai import GoogleGenerativeAIEmbeddings\n",
"\n",
"embeddings = GoogleGenerativeAIEmbeddings(model=\"models/text-embedding-004\")\n",
"embeddings = GoogleGenerativeAIEmbeddings(model=\"models/gemini-embedding-exp-03-07\")\n",
"vector = embeddings.embed_query(\"hello, world!\")\n",
"vector[:5]"
]
@ -95,17 +140,17 @@
},
{
"cell_type": "code",
"execution_count": 7,
"execution_count": 5,
"id": "6ec53aba-404f-4778-acd9-5d6664e79ed2",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"(3, 768)"
"(3, 3072)"
]
},
"execution_count": 7,
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
@ -121,6 +166,56 @@
"len(vectors), len(vectors[0])"
]
},
{
"cell_type": "markdown",
"id": "c362bfbf",
"metadata": {},
"source": [
"## Indexing and Retrieval\n",
"\n",
"Embedding models are often used in retrieval-augmented generation (RAG) flows, both as part of indexing data as well as later retrieving it. For more detailed instructions, please see our [RAG tutorials](/docs/tutorials/).\n",
"\n",
"Below, see how to index and retrieve data using the `embeddings` object we initialized above. In this example, we will index and retrieve a sample document in the `InMemoryVectorStore`."
]
},
{
"cell_type": "code",
"execution_count": 21,
"id": "606a7f65",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'LangChain is the framework for building context-aware reasoning applications'"
]
},
"execution_count": 21,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Create a vector store with a sample text\n",
"from langchain_core.vectorstores import InMemoryVectorStore\n",
"\n",
"text = \"LangChain is the framework for building context-aware reasoning applications\"\n",
"\n",
"vectorstore = InMemoryVectorStore.from_texts(\n",
" [text],\n",
" embedding=embeddings,\n",
")\n",
"\n",
"# Use the vectorstore as a retriever\n",
"retriever = vectorstore.as_retriever()\n",
"\n",
"# Retrieve the most similar text\n",
"retrieved_documents = retriever.invoke(\"What is LangChain?\")\n",
"\n",
"# show the retrieved document's content\n",
"retrieved_documents[0].page_content"
]
},
{
"cell_type": "markdown",
"id": "1482486f-5617-498a-8a44-1974d3212dda",
@ -129,70 +224,74 @@
"## Task type\n",
"`GoogleGenerativeAIEmbeddings` optionally support a `task_type`, which currently must be one of:\n",
"\n",
"- task_type_unspecified\n",
"- retrieval_query\n",
"- retrieval_document\n",
"- semantic_similarity\n",
"- classification\n",
"- clustering\n",
"- `SEMANTIC_SIMILARITY`: Used to generate embeddings that are optimized to assess text similarity.\n",
"- `CLASSIFICATION`: Used to generate embeddings that are optimized to classify texts according to preset labels.\n",
"- `CLUSTERING`: Used to generate embeddings that are optimized to cluster texts based on their similarities.\n",
"- `RETRIEVAL_DOCUMENT`, `RETRIEVAL_QUERY`, `QUESTION_ANSWERING`, and `FACT_VERIFICATION`: Used to generate embeddings that are optimized for document search or information retrieval.\n",
"- `CODE_RETRIEVAL_QUERY`: Used to retrieve a code block based on a natural language query, such as sort an array or reverse a linked list. Embeddings of the code blocks are computed using `RETRIEVAL_DOCUMENT`.\n",
"\n",
"By default, we use `retrieval_document` in the `embed_documents` method and `retrieval_query` in the `embed_query` method. If you provide a task type, we will use that for all methods."
"By default, we use `RETRIEVAL_DOCUMENT` in the `embed_documents` method and `RETRIEVAL_QUERY` in the `embed_query` method. If you provide a task type, we will use that for all methods."
]
},
{
"cell_type": "code",
"execution_count": 15,
"id": "a223bb25-2b1b-418e-a570-2f543083132e",
"execution_count": null,
"id": "b7acc5c2",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Note: you may need to restart the kernel to use updated packages.\n"
]
}
],
"outputs": [],
"source": [
"%pip install --upgrade --quiet matplotlib scikit-learn"
]
},
{
"cell_type": "code",
"execution_count": 33,
"execution_count": 19,
"id": "f1f077db-8eb4-49f7-8866-471a8528dcdb",
"metadata": {},
"outputs": [],
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Document 1\n",
"Cosine similarity with query: 0.7892893360164779\n",
"---\n",
"Document 2\n",
"Cosine similarity with query: 0.5438283285204146\n",
"---\n"
]
}
],
"source": [
"from langchain_google_genai import GoogleGenerativeAIEmbeddings\n",
"from sklearn.metrics.pairwise import cosine_similarity\n",
"\n",
"query_embeddings = GoogleGenerativeAIEmbeddings(\n",
" model=\"models/embedding-001\", task_type=\"retrieval_query\"\n",
" model=\"models/gemini-embedding-exp-03-07\", task_type=\"RETRIEVAL_QUERY\"\n",
")\n",
"doc_embeddings = GoogleGenerativeAIEmbeddings(\n",
" model=\"models/embedding-001\", task_type=\"retrieval_document\"\n",
")"
" model=\"models/gemini-embedding-exp-03-07\", task_type=\"RETRIEVAL_DOCUMENT\"\n",
")\n",
"\n",
"q_embed = query_embeddings.embed_query(\"What is the capital of France?\")\n",
"d_embed = doc_embeddings.embed_documents(\n",
" [\"The capital of France is Paris.\", \"Philipp is likes to eat pizza.\"]\n",
")\n",
"\n",
"for i, d in enumerate(d_embed):\n",
" print(f\"Document {i+1}:\")\n",
" print(f\"Cosine similarity with query: {cosine_similarity([q_embed], [d])[0][0]}\")\n",
" print(\"---\")"
]
},
{
"cell_type": "markdown",
"id": "79bd4a5e-75ba-413c-befa-86167c938caf",
"id": "f45ea7b1",
"metadata": {},
"source": [
"All of these will be embedded with the 'retrieval_query' task set\n",
"```python\n",
"query_vecs = [query_embeddings.embed_query(q) for q in [query, query_2, answer_1]]\n",
"```\n",
"All of these will be embedded with the 'retrieval_document' task set\n",
"```python\n",
"doc_vecs = [doc_embeddings.embed_query(q) for q in [query, query_2, answer_1]]\n",
"```"
]
},
{
"cell_type": "markdown",
"id": "9e1fae5e-0f84-4812-89f5-7d4d71affbc1",
"metadata": {},
"source": [
"In retrieval, relative distance matters. In the image above, you can see the difference in similarity scores between the \"relevant doc\" and \"simil stronger delta between the similar query and relevant doc on the latter case."
"## API Reference\n",
"\n",
"For detailed documentation on `GoogleGenerativeAIEmbeddings` features and configuration options, please refer to the [API reference](https://python.langchain.com/api_reference/google_genai/embeddings/langchain_google_genai.embeddings.GoogleGenerativeAIEmbeddings.html).\n"
]
},
{
@ -211,7 +310,7 @@
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"display_name": ".venv",
"language": "python",
"name": "python3"
},
@ -225,7 +324,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.1"
"version": "3.9.6"
}
},
"nbformat": 4,

View File

@ -89,7 +89,7 @@
},
{
"cell_type": "code",
"execution_count": 3,
"execution_count": null,
"id": "39f3ce3e",
"metadata": {},
"outputs": [],
@ -118,15 +118,13 @@
" language: str = Field(description=\"The language the text is written in\")\n",
"\n",
"\n",
"# LLM\n",
"llm = ChatOpenAI(temperature=0, model=\"gpt-4o-mini\").with_structured_output(\n",
" Classification\n",
")"
"# Structured LLM\n",
"structured_llm = llm.with_structured_output(Classification)"
]
},
{
"cell_type": "code",
"execution_count": 8,
"execution_count": null,
"id": "5509b6a6",
"metadata": {},
"outputs": [
@ -144,7 +142,7 @@
"source": [
"inp = \"Estoy increiblemente contento de haberte conocido! Creo que seremos muy buenos amigos!\"\n",
"prompt = tagging_prompt.invoke({\"input\": inp})\n",
"response = llm.invoke(prompt)\n",
"response = structured_llm.invoke(prompt)\n",
"\n",
"response"
]
@ -159,7 +157,7 @@
},
{
"cell_type": "code",
"execution_count": 10,
"execution_count": null,
"id": "9154474c",
"metadata": {},
"outputs": [
@ -177,7 +175,7 @@
"source": [
"inp = \"Estoy muy enojado con vos! Te voy a dar tu merecido!\"\n",
"prompt = tagging_prompt.invoke({\"input\": inp})\n",
"response = llm.invoke(prompt)\n",
"response = structured_llm.invoke(prompt)\n",
"\n",
"response.model_dump()"
]

View File

@ -145,15 +145,12 @@
},
{
"cell_type": "code",
"execution_count": 3,
"execution_count": null,
"id": "a5e490f6-35ad-455e-8ae4-2bae021583ff",
"metadata": {},
"outputs": [],
"source": [
"from typing import Optional\n",
"\n",
"from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder\n",
"from pydantic import BaseModel, Field\n",
"\n",
"# Define a custom prompt to provide instructions and any additional context.\n",
"# 1) You can add examples into the prompt template to improve extraction quality\n",

View File

@ -135,6 +135,13 @@ ${llmVarName} = AzureChatOpenAI(
apiKeyName: "AZURE_OPENAI_API_KEY",
packageName: "langchain[openai]",
},
{
value: "google_genai",
label: "Google Gemini",
model: "gemini-2.0-flash",
apiKeyName: "GOOGLE_API_KEY",
packageName: "langchain[google-genai]",
},
{
value: "google_vertexai",
label: "Google Vertex",

View File

@ -366,6 +366,12 @@ const FEATURE_TABLES = {
package: "langchain-openai",
apiLink: "https://python.langchain.com/api_reference/openai/chat_models/langchain_openai.chat_models.base.ChatOpenAI.html"
},
{
name: "Google Gemini",
link: "google-generative-ai",
package: "langchain-google-genai",
apiLink: "https://python.langchain.com/api_reference/google_genai/embeddings/langchain_google_genai.embeddings.GoogleGenerativeAIEmbeddings.html"
},
{
name: "Together",
link: "together",

View File

@ -3,3 +3,4 @@ function gtag(){dataLayer.push(arguments);}
gtag('js', new Date());
gtag('config', 'G-9B66JQQH2F');
gtag('config', 'G-47WX3HKKY2');

View File

@ -1,2 +1,4 @@
httpx
grpcio
aiohttp<3.11
protobuf<3.21

View File

@ -1,4 +1,4 @@
from typing import Iterator, Optional, Sequence
from typing import Any, Dict, Iterator, Optional, Sequence
from langchain_core.documents import Document
@ -8,7 +8,7 @@ from langchain_community.document_loaders.base import BaseLoader
class BrowserbaseLoader(BaseLoader):
"""Load pre-rendered web pages using a headless browser hosted on Browserbase.
Depends on `browserbase` package.
Depends on `browserbase` and `playwright` packages.
Get your API key from https://browserbase.com
"""
@ -24,6 +24,7 @@ class BrowserbaseLoader(BaseLoader):
self.urls = urls
self.text_content = text_content
self.session_id = session_id
self.project_id = project_id
self.proxy = proxy
try:
@ -32,22 +33,57 @@ class BrowserbaseLoader(BaseLoader):
raise ImportError(
"You must run "
"`pip install --upgrade "
"browserbase` "
"browserbase playwright` "
"to use the Browserbase loader."
)
self.browserbase = Browserbase(api_key, project_id)
self.browserbase = Browserbase(api_key=api_key)
def lazy_load(self) -> Iterator[Document]:
"""Load pages from URLs"""
pages = self.browserbase.load_urls(
self.urls, self.text_content, self.session_id, self.proxy
)
for i, page in enumerate(pages):
yield Document(
page_content=page,
metadata={
"url": self.urls[i],
},
try:
from playwright.sync_api import sync_playwright
except ImportError:
raise ImportError(
"playwright is required for BrowserbaseLoader. "
"Please run `pip install --upgrade playwright`."
)
for url in self.urls:
with sync_playwright() as playwright:
# Create or use existing session
if self.session_id:
session = self.browserbase.sessions.retrieve(id=self.session_id)
else:
if not self.project_id:
raise ValueError("project_id is required to create a session")
session_params: Dict[str, Any] = {"project_id": self.project_id}
if self.proxy is not None:
session_params["proxy"] = bool(self.proxy)
session = self.browserbase.sessions.create(**session_params)
# Connect to the remote session
browser = playwright.chromium.connect_over_cdp(session.connect_url)
context = browser.contexts[0]
page = context.pages[0]
# Navigate to URL and get content
page.goto(url)
# Get content based on the text_content flag
if self.text_content:
page_text = page.inner_text("body")
content = str(page_text)
else:
page_html = page.content()
content = str(page_html)
# Close browser
page.close()
browser.close()
yield Document(
page_content=content,
metadata={
"url": url,
},
)

View File

@ -185,7 +185,7 @@ class SitemapLoader(WebBaseLoader):
els.append(
{
tag: prop.text
tag: prop.text.strip()
for tag in ["loc", "lastmod", "changefreq", "priority"]
if (prop := url.find(tag))
}

View File

@ -480,6 +480,8 @@ class OpenSearchVectorSearch(VectorStore):
bulk_size = bulk_size if bulk_size is not None else self.bulk_size
_validate_embeddings_and_bulk_size(len(embeddings), bulk_size)
index_name = kwargs.get("index_name", self.index_name)
if self.index_name is None:
raise ValueError("index_name must be provided.")
text_field = kwargs.get("text_field", "text")
dim = len(embeddings[0])
engine = kwargs.get("engine", self.engine)
@ -522,6 +524,8 @@ class OpenSearchVectorSearch(VectorStore):
bulk_size = bulk_size if bulk_size is not None else self.bulk_size
_validate_embeddings_and_bulk_size(len(embeddings), bulk_size)
index_name = kwargs.get("index_name", self.index_name)
if self.index_name is None:
raise ValueError("index_name must be provided.")
text_field = kwargs.get("text_field", "text")
dim = len(embeddings[0])
engine = kwargs.get("engine", self.engine)
@ -735,12 +739,14 @@ class OpenSearchVectorSearch(VectorStore):
raise ImportError(IMPORT_OPENSEARCH_PY_ERROR)
body = []
index_name = kwargs.get("index_name", self.index_name)
if self.index_name is None:
raise ValueError("index_name must be provided.")
if ids is None:
raise ValueError("ids must be provided.")
for _id in ids:
body.append({"_op_type": "delete", "_index": self.index_name, "_id": _id})
body.append({"_op_type": "delete", "_index": index_name, "_id": _id})
if len(body) > 0:
try:
@ -766,8 +772,10 @@ class OpenSearchVectorSearch(VectorStore):
"""
if ids is None:
raise ValueError("No ids provided to delete.")
actions = [{"delete": {"_index": self.index_name, "_id": id_}} for id_ in ids]
index_name = kwargs.get("index_name", self.index_name)
if self.index_name is None:
raise ValueError("index_name must be provided.")
actions = [{"delete": {"_index": index_name, "_id": id_}} for id_ in ids]
response = await self.async_client.bulk(body=actions, **kwargs)
return not any(
item.get("delete", {}).get("error") for item in response["items"]
@ -1096,6 +1104,8 @@ class OpenSearchVectorSearch(VectorStore):
search_type = kwargs.get("search_type", "approximate_search")
vector_field = kwargs.get("vector_field", "vector_field")
index_name = kwargs.get("index_name", self.index_name)
if self.index_name is None:
raise ValueError("index_name must be provided.")
filter = kwargs.get("filter", {})
if (

View File

@ -1,155 +0,0 @@
import importlib
import inspect
import pkgutil
from types import ModuleType
from langchain_core.load.mapping import SERIALIZABLE_MAPPING
def import_all_modules(package_name: str) -> dict:
package = importlib.import_module(package_name)
classes: dict = {}
def _handle_module(module: ModuleType) -> None:
# Iterate over all members of the module
names = dir(module)
if hasattr(module, "__all__"):
names += list(module.__all__)
names = sorted(set(names))
for name in names:
# Check if it's a class or function
attr = getattr(module, name)
if not inspect.isclass(attr):
continue
if not hasattr(attr, "is_lc_serializable") or not isinstance(attr, type):
continue
if (
isinstance(attr.is_lc_serializable(), bool)
and attr.is_lc_serializable()
):
key = tuple(attr.lc_id())
value = tuple(attr.__module__.split(".") + [attr.__name__])
if key in classes and classes[key] != value:
raise ValueError
classes[key] = value
_handle_module(package)
for importer, modname, ispkg in pkgutil.walk_packages(
package.__path__, package.__name__ + "."
):
try:
module = importlib.import_module(modname)
except ModuleNotFoundError:
continue
_handle_module(module)
return classes
def test_import_all_modules() -> None:
"""Test import all modules works as expected"""
all_modules = import_all_modules("langchain")
filtered_modules = [
k
for k in all_modules
if len(k) == 4 and tuple(k[:2]) == ("langchain", "chat_models")
]
# This test will need to be updated if new serializable classes are added
# to community
assert sorted(filtered_modules) == sorted(
[
("langchain", "chat_models", "azure_openai", "AzureChatOpenAI"),
("langchain", "chat_models", "bedrock", "BedrockChat"),
("langchain", "chat_models", "anthropic", "ChatAnthropic"),
("langchain", "chat_models", "fireworks", "ChatFireworks"),
("langchain", "chat_models", "google_palm", "ChatGooglePalm"),
("langchain", "chat_models", "openai", "ChatOpenAI"),
("langchain", "chat_models", "vertexai", "ChatVertexAI"),
]
)
def test_serializable_mapping() -> None:
to_skip = {
# This should have had a different namespace, as it was never
# exported from the langchain module, but we keep for whoever has
# already serialized it.
("langchain", "prompts", "image", "ImagePromptTemplate"): (
"langchain_core",
"prompts",
"image",
"ImagePromptTemplate",
),
# This is not exported from langchain, only langchain_core
("langchain_core", "prompts", "structured", "StructuredPrompt"): (
"langchain_core",
"prompts",
"structured",
"StructuredPrompt",
),
# This is not exported from langchain, only langchain_core
("langchain", "schema", "messages", "RemoveMessage"): (
"langchain_core",
"messages",
"modifier",
"RemoveMessage",
),
("langchain", "chat_models", "mistralai", "ChatMistralAI"): (
"langchain_mistralai",
"chat_models",
"ChatMistralAI",
),
("langchain_groq", "chat_models", "ChatGroq"): (
"langchain_groq",
"chat_models",
"ChatGroq",
),
("langchain_sambanova", "chat_models", "ChatSambaNovaCloud"): (
"langchain_sambanova",
"chat_models",
"ChatSambaNovaCloud",
),
("langchain_sambanova", "chat_models", "ChatSambaStudio"): (
"langchain_sambanova",
"chat_models",
"ChatSambaStudio",
),
# TODO(0.3): For now we're skipping the below two tests. Need to fix
# so that it only runs when langchain-aws, langchain-google-genai
# are installed.
("langchain", "chat_models", "bedrock", "ChatBedrock"): (
"langchain_aws",
"chat_models",
"bedrock",
"ChatBedrock",
),
("langchain_google_genai", "chat_models", "ChatGoogleGenerativeAI"): (
"langchain_google_genai",
"chat_models",
"ChatGoogleGenerativeAI",
),
}
serializable_modules = import_all_modules("langchain")
missing = set(SERIALIZABLE_MAPPING).difference(
set(serializable_modules).union(to_skip)
)
assert missing == set()
extra = set(serializable_modules).difference(SERIALIZABLE_MAPPING)
assert extra == set()
for k, import_path in serializable_modules.items():
import_dir, import_obj = import_path[:-1], import_path[-1]
# Import module
mod = importlib.import_module(".".join(import_dir))
# Import class
cls = getattr(mod, import_obj)
assert list(k) == cls.lc_id()

View File

@ -0,0 +1,139 @@
import re
from collections.abc import Sequence
from typing import Optional
from langchain_core.messages import BaseMessage
def _is_openai_data_block(block: dict) -> bool:
"""Check if the block contains multimodal data in OpenAI Chat Completions format."""
if block.get("type") == "image_url":
if (
(set(block.keys()) <= {"type", "image_url", "detail"})
and (image_url := block.get("image_url"))
and isinstance(image_url, dict)
):
url = image_url.get("url")
if isinstance(url, str):
return True
elif block.get("type") == "file":
if (file := block.get("file")) and isinstance(file, dict):
file_data = file.get("file_data")
if isinstance(file_data, str):
return True
elif block.get("type") == "input_audio": # noqa: SIM102
if (input_audio := block.get("input_audio")) and isinstance(input_audio, dict):
audio_data = input_audio.get("data")
audio_format = input_audio.get("format")
if isinstance(audio_data, str) and isinstance(audio_format, str):
return True
else:
return False
return False
def _parse_data_uri(uri: str) -> Optional[dict]:
"""Parse a data URI into its components. If parsing fails, return None.
Example:
.. code-block:: python
data_uri = "..."
parsed = _parse_data_uri(data_uri)
assert parsed == {
"source_type": "base64",
"mime_type": "image/jpeg",
"data": "/9j/4AAQSkZJRg...",
}
"""
regex = r"^data:(?P<mime_type>[^;]+);base64,(?P<data>.+)$"
match = re.match(regex, uri)
if match is None:
return None
return {
"source_type": "base64",
"data": match.group("data"),
"mime_type": match.group("mime_type"),
}
def _convert_openai_format_to_data_block(block: dict) -> dict:
"""Convert OpenAI image content block to standard data content block.
If parsing fails, pass-through.
Args:
block: The OpenAI image content block to convert.
Returns:
The converted standard data content block.
"""
if block["type"] == "image_url":
parsed = _parse_data_uri(block["image_url"]["url"])
if parsed is not None:
parsed["type"] = "image"
return parsed
return block
if block["type"] == "file":
parsed = _parse_data_uri(block["file"]["file_data"])
if parsed is not None:
parsed["type"] = "file"
if filename := block["file"].get("filename"):
parsed["filename"] = filename
return parsed
return block
if block["type"] == "input_audio":
data = block["input_audio"].get("data")
format = block["input_audio"].get("format")
if data and format:
return {
"type": "audio",
"source_type": "base64",
"data": data,
"mime_type": f"audio/{format}",
}
return block
return block
def _normalize_messages(messages: Sequence[BaseMessage]) -> list[BaseMessage]:
"""Extend support for message formats.
Chat models implement support for images in OpenAI Chat Completions format, as well
as other multimodal data as standard data blocks. This function extends support to
audio and file data in OpenAI Chat Completions format by converting them to standard
data blocks.
"""
formatted_messages = []
for message in messages:
formatted_message = message
if isinstance(message.content, list):
for idx, block in enumerate(message.content):
if (
isinstance(block, dict)
# Subset to (PDF) files and audio, as most relevant chat models
# support images in OAI format (and some may not yet support the
# standard data block format)
and block.get("type") in ("file", "input_audio")
and _is_openai_data_block(block)
):
if formatted_message is message:
formatted_message = message.model_copy()
# Also shallow-copy content
formatted_message.content = list(formatted_message.content)
formatted_message.content[idx] = ( # type: ignore[index] # mypy confused by .model_copy
_convert_openai_format_to_data_block(block)
)
formatted_messages.append(formatted_message)
return formatted_messages

View File

@ -40,6 +40,7 @@ from langchain_core.callbacks import (
Callbacks,
)
from langchain_core.globals import get_llm_cache
from langchain_core.language_models._utils import _normalize_messages
from langchain_core.language_models.base import (
BaseLanguageModel,
LangSmithParams,
@ -489,7 +490,8 @@ class BaseChatModel(BaseLanguageModel[BaseMessage], ABC):
self.rate_limiter.acquire(blocking=True)
try:
for chunk in self._stream(messages, stop=stop, **kwargs):
input_messages = _normalize_messages(messages)
for chunk in self._stream(input_messages, stop=stop, **kwargs):
if chunk.message.id is None:
chunk.message.id = f"run-{run_manager.run_id}"
chunk.message.response_metadata = _gen_info_and_msg_metadata(chunk)
@ -574,8 +576,9 @@ class BaseChatModel(BaseLanguageModel[BaseMessage], ABC):
generation: Optional[ChatGenerationChunk] = None
try:
input_messages = _normalize_messages(messages)
async for chunk in self._astream(
messages,
input_messages,
stop=stop,
**kwargs,
):
@ -753,7 +756,10 @@ class BaseChatModel(BaseLanguageModel[BaseMessage], ABC):
batch_size=len(messages),
)
results = []
for i, m in enumerate(messages):
input_messages = [
_normalize_messages(message_list) for message_list in messages
]
for i, m in enumerate(input_messages):
try:
results.append(
self._generate_with_cache(
@ -865,6 +871,9 @@ class BaseChatModel(BaseLanguageModel[BaseMessage], ABC):
run_id=run_id,
)
input_messages = [
_normalize_messages(message_list) for message_list in messages
]
results = await asyncio.gather(
*[
self._agenerate_with_cache(
@ -873,7 +882,7 @@ class BaseChatModel(BaseLanguageModel[BaseMessage], ABC):
run_manager=run_managers[i] if run_managers else None,
**kwargs,
)
for i, m in enumerate(messages)
for i, m in enumerate(input_messages)
],
return_exceptions=True,
)

View File

@ -540,6 +540,12 @@ SERIALIZABLE_MAPPING: dict[tuple[str, ...], tuple[str, ...]] = {
"chat_models",
"ChatSambaStudio",
),
("langchain_core", "prompts", "message", "_DictMessagePromptTemplate"): (
"langchain_core",
"prompts",
"dict",
"DictPromptTemplate",
),
}
# Needed for backwards compatibility for old versions of LangChain where things

View File

@ -33,6 +33,7 @@ if TYPE_CHECKING:
)
from langchain_core.messages.chat import ChatMessage, ChatMessageChunk
from langchain_core.messages.content_blocks import (
convert_to_openai_data_block,
convert_to_openai_image_block,
is_data_content_block,
)
@ -83,6 +84,7 @@ __all__ = (
"ToolMessageChunk",
"RemoveMessage",
"_message_from_dict",
"convert_to_openai_data_block",
"convert_to_openai_image_block",
"convert_to_messages",
"get_buffer_string",
@ -124,6 +126,7 @@ _dynamic_imports = {
"MessageLikeRepresentation": "utils",
"_message_from_dict": "utils",
"convert_to_messages": "utils",
"convert_to_openai_data_block": "content_blocks",
"convert_to_openai_image_block": "content_blocks",
"convert_to_openai_messages": "utils",
"filter_messages": "utils",

View File

@ -1,5 +1,6 @@
"""Types for content blocks."""
import warnings
from typing import Any, Literal, Union
from pydantic import TypeAdapter, ValidationError
@ -108,3 +109,47 @@ def convert_to_openai_image_block(content_block: dict[str, Any]) -> dict:
}
error_message = "Unsupported source type. Only 'url' and 'base64' are supported."
raise ValueError(error_message)
def convert_to_openai_data_block(block: dict) -> dict:
"""Format standard data content block to format expected by OpenAI."""
if block["type"] == "image":
formatted_block = convert_to_openai_image_block(block)
elif block["type"] == "file":
if block["source_type"] == "base64":
file = {"file_data": f"data:{block['mime_type']};base64,{block['data']}"}
if filename := block.get("filename"):
file["filename"] = filename
elif (metadata := block.get("metadata")) and ("filename" in metadata):
file["filename"] = metadata["filename"]
else:
warnings.warn(
"OpenAI may require a filename for file inputs. Specify a filename "
"in the content block: {'type': 'file', 'source_type': 'base64', "
"'mime_type': 'application/pdf', 'data': '...', "
"'filename': 'my-pdf'}",
stacklevel=1,
)
formatted_block = {"type": "file", "file": file}
elif block["source_type"] == "id":
formatted_block = {"type": "file", "file": {"file_id": block["id"]}}
else:
error_msg = "source_type base64 or id is required for file blocks."
raise ValueError(error_msg)
elif block["type"] == "audio":
if block["source_type"] == "base64":
format = block["mime_type"].split("/")[-1]
formatted_block = {
"type": "input_audio",
"input_audio": {"data": block["data"], "format": format},
}
else:
error_msg = "source_type base64 is required for audio blocks."
raise ValueError(error_msg)
else:
error_msg = f"Block of type {block['type']} is not supported."
raise ValueError(error_msg)
return formatted_block

View File

@ -12,6 +12,7 @@ from __future__ import annotations
import base64
import inspect
import json
import logging
import math
from collections.abc import Iterable, Sequence
from functools import partial
@ -30,6 +31,7 @@ from typing import (
from pydantic import Discriminator, Field, Tag
from langchain_core.exceptions import ErrorCode, create_message
from langchain_core.messages import convert_to_openai_data_block, is_data_content_block
from langchain_core.messages.ai import AIMessage, AIMessageChunk
from langchain_core.messages.base import BaseMessage, BaseMessageChunk
from langchain_core.messages.chat import ChatMessage, ChatMessageChunk
@ -46,6 +48,8 @@ if TYPE_CHECKING:
from langchain_core.prompt_values import PromptValue
from langchain_core.runnables.base import Runnable
logger = logging.getLogger(__name__)
def _get_type(v: Any) -> str:
"""Get the type associated with the object for serialization purposes."""
@ -1067,6 +1071,17 @@ def convert_to_openai_messages(
"image_url": block["image_url"],
}
)
# Standard multi-modal content block
elif is_data_content_block(block):
formatted_block = convert_to_openai_data_block(block)
if (
formatted_block.get("type") == "file"
and "file" in formatted_block
and "filename" not in formatted_block["file"]
):
logger.info("Generating a fallback filename.")
formatted_block["file"]["filename"] = "LC_AUTOGENERATED"
content.append(formatted_block)
# Anthropic and Bedrock converse format
elif (block.get("type") == "image") or "image" in block:
# Anthropic

View File

@ -44,6 +44,7 @@ if TYPE_CHECKING:
MessagesPlaceholder,
SystemMessagePromptTemplate,
)
from langchain_core.prompts.dict import DictPromptTemplate
from langchain_core.prompts.few_shot import (
FewShotChatMessagePromptTemplate,
FewShotPromptTemplate,
@ -68,6 +69,7 @@ __all__ = (
"BasePromptTemplate",
"ChatMessagePromptTemplate",
"ChatPromptTemplate",
"DictPromptTemplate",
"FewShotPromptTemplate",
"FewShotPromptWithTemplates",
"FewShotChatMessagePromptTemplate",
@ -94,6 +96,7 @@ _dynamic_imports = {
"BaseChatPromptTemplate": "chat",
"ChatMessagePromptTemplate": "chat",
"ChatPromptTemplate": "chat",
"DictPromptTemplate": "dict",
"HumanMessagePromptTemplate": "chat",
"MessagesPlaceholder": "chat",
"SystemMessagePromptTemplate": "chat",

View File

@ -37,10 +37,10 @@ from langchain_core.messages import (
from langchain_core.messages.base import get_msg_title_repr
from langchain_core.prompt_values import ChatPromptValue, ImageURL, PromptValue
from langchain_core.prompts.base import BasePromptTemplate
from langchain_core.prompts.dict import DictPromptTemplate
from langchain_core.prompts.image import ImagePromptTemplate
from langchain_core.prompts.message import (
BaseMessagePromptTemplate,
_DictMessagePromptTemplate,
)
from langchain_core.prompts.prompt import PromptTemplate
from langchain_core.prompts.string import (
@ -396,9 +396,7 @@ class _StringImageMessagePromptTemplate(BaseMessagePromptTemplate):
prompt: Union[
StringPromptTemplate,
list[
Union[StringPromptTemplate, ImagePromptTemplate, _DictMessagePromptTemplate]
],
list[Union[StringPromptTemplate, ImagePromptTemplate, DictPromptTemplate]],
]
"""Prompt template."""
additional_kwargs: dict = Field(default_factory=dict)
@ -447,7 +445,12 @@ class _StringImageMessagePromptTemplate(BaseMessagePromptTemplate):
raise ValueError(msg)
prompt = []
for tmpl in template:
if isinstance(tmpl, str) or isinstance(tmpl, dict) and "text" in tmpl:
if (
isinstance(tmpl, str)
or isinstance(tmpl, dict)
and "text" in tmpl
and set(tmpl.keys()) <= {"type", "text"}
):
if isinstance(tmpl, str):
text: str = tmpl
else:
@ -457,7 +460,15 @@ class _StringImageMessagePromptTemplate(BaseMessagePromptTemplate):
text, template_format=template_format
)
)
elif isinstance(tmpl, dict) and "image_url" in tmpl:
elif (
isinstance(tmpl, dict)
and "image_url" in tmpl
and set(tmpl.keys())
<= {
"type",
"image_url",
}
):
img_template = cast("_ImageTemplateParam", tmpl)["image_url"]
input_variables = []
if isinstance(img_template, str):
@ -503,7 +514,7 @@ class _StringImageMessagePromptTemplate(BaseMessagePromptTemplate):
"format."
)
raise ValueError(msg)
data_template_obj = _DictMessagePromptTemplate(
data_template_obj = DictPromptTemplate(
template=cast("dict[str, Any]", tmpl),
template_format=template_format,
)
@ -592,7 +603,7 @@ class _StringImageMessagePromptTemplate(BaseMessagePromptTemplate):
elif isinstance(prompt, ImagePromptTemplate):
formatted = prompt.format(**inputs)
content.append({"type": "image_url", "image_url": formatted})
elif isinstance(prompt, _DictMessagePromptTemplate):
elif isinstance(prompt, DictPromptTemplate):
formatted = prompt.format(**inputs)
content.append(formatted)
return self._msg_class(
@ -624,7 +635,7 @@ class _StringImageMessagePromptTemplate(BaseMessagePromptTemplate):
elif isinstance(prompt, ImagePromptTemplate):
formatted = await prompt.aformat(**inputs)
content.append({"type": "image_url", "image_url": formatted})
elif isinstance(prompt, _DictMessagePromptTemplate):
elif isinstance(prompt, DictPromptTemplate):
formatted = prompt.format(**inputs)
content.append(formatted)
return self._msg_class(

View File

@ -0,0 +1,137 @@
"""Dict prompt template."""
import warnings
from functools import cached_property
from typing import Any, Literal, Optional
from langchain_core.load import dumpd
from langchain_core.prompts.string import (
DEFAULT_FORMATTER_MAPPING,
get_template_variables,
)
from langchain_core.runnables import RunnableConfig, RunnableSerializable
from langchain_core.runnables.config import ensure_config
class DictPromptTemplate(RunnableSerializable[dict, dict]):
"""Template represented by a dict.
Recognizes variables in f-string or mustache formatted string dict values. Does NOT
recognize variables in dict keys. Applies recursively.
"""
template: dict[str, Any]
template_format: Literal["f-string", "mustache"]
@property
def input_variables(self) -> list[str]:
"""Template input variables."""
return _get_input_variables(self.template, self.template_format)
def format(self, **kwargs: Any) -> dict[str, Any]:
"""Format the prompt with the inputs."""
return _insert_input_variables(self.template, kwargs, self.template_format)
async def aformat(self, **kwargs: Any) -> dict[str, Any]:
"""Format the prompt with the inputs."""
return self.format(**kwargs)
def invoke(
self, input: dict, config: Optional[RunnableConfig] = None, **kwargs: Any
) -> dict:
"""Invoke the prompt."""
return self._call_with_config(
lambda x: self.format(**x),
input,
ensure_config(config),
run_type="prompt",
serialized=self._serialized,
**kwargs,
)
@property
def _prompt_type(self) -> str:
return "dict-prompt"
@cached_property
def _serialized(self) -> dict[str, Any]:
return dumpd(self)
@classmethod
def is_lc_serializable(cls) -> bool:
"""Return whether or not the class is serializable.
Returns: True.
"""
return True
@classmethod
def get_lc_namespace(cls) -> list[str]:
"""Serialization namespace."""
return ["langchain_core", "prompts", "dict"]
def pretty_repr(self, *, html: bool = False) -> str:
"""Human-readable representation.
Args:
html: Whether to format as HTML. Defaults to False.
Returns:
Human-readable representation.
"""
raise NotImplementedError
def _get_input_variables(
template: dict, template_format: Literal["f-string", "mustache"]
) -> list[str]:
input_variables = []
for v in template.values():
if isinstance(v, str):
input_variables += get_template_variables(v, template_format)
elif isinstance(v, dict):
input_variables += _get_input_variables(v, template_format)
elif isinstance(v, (list, tuple)):
for x in v:
if isinstance(x, str):
input_variables += get_template_variables(x, template_format)
elif isinstance(x, dict):
input_variables += _get_input_variables(x, template_format)
else:
pass
return list(set(input_variables))
def _insert_input_variables(
template: dict[str, Any],
inputs: dict[str, Any],
template_format: Literal["f-string", "mustache"],
) -> dict[str, Any]:
formatted = {}
formatter = DEFAULT_FORMATTER_MAPPING[template_format]
for k, v in template.items():
if isinstance(v, str):
formatted[k] = formatter(v, **inputs)
elif isinstance(v, dict):
if k == "image_url" and "path" in v:
msg = (
"Specifying image inputs via file path in environments with "
"user-input paths is a security vulnerability. Out of an abundance "
"of caution, the utility has been removed to prevent possible "
"misuse."
)
warnings.warn(msg, stacklevel=2)
formatted[k] = _insert_input_variables(v, inputs, template_format)
elif isinstance(v, (list, tuple)):
formatted_v = []
for x in v:
if isinstance(x, str):
formatted_v.append(formatter(x, **inputs))
elif isinstance(x, dict):
formatted_v.append(
_insert_input_variables(x, inputs, template_format)
)
formatted[k] = type(v)(formatted_v)
else:
formatted[k] = v
return formatted

View File

@ -3,14 +3,10 @@
from __future__ import annotations
from abc import ABC, abstractmethod
from typing import TYPE_CHECKING, Any, Literal
from typing import TYPE_CHECKING, Any
from langchain_core.load import Serializable
from langchain_core.messages import BaseMessage, convert_to_messages
from langchain_core.prompts.string import (
DEFAULT_FORMATTER_MAPPING,
get_template_variables,
)
from langchain_core.messages import BaseMessage
from langchain_core.utils.interactive_env import is_interactive_env
if TYPE_CHECKING:
@ -98,89 +94,3 @@ class BaseMessagePromptTemplate(Serializable, ABC):
prompt = ChatPromptTemplate(messages=[self])
return prompt + other
class _DictMessagePromptTemplate(BaseMessagePromptTemplate):
"""Template represented by a dict that recursively fills input vars in string vals.
Special handling of image_url dicts to load local paths. These look like:
``{"type": "image_url", "image_url": {"path": "..."}}``
"""
template: dict[str, Any]
template_format: Literal["f-string", "mustache"]
def format_messages(self, **kwargs: Any) -> list[BaseMessage]:
msg_dict = _insert_input_variables(self.template, kwargs, self.template_format)
return convert_to_messages([msg_dict])
@property
def input_variables(self) -> list[str]:
return _get_input_variables(self.template, self.template_format)
@property
def _prompt_type(self) -> str:
return "message-dict-prompt"
@classmethod
def get_lc_namespace(cls) -> list[str]:
return ["langchain_core", "prompts", "message"]
def format(
self,
**kwargs: Any,
) -> dict[str, Any]:
"""Format the prompt with the inputs."""
return _insert_input_variables(self.template, kwargs, self.template_format)
def _get_input_variables(
template: dict, template_format: Literal["f-string", "mustache"]
) -> list[str]:
input_variables = []
for v in template.values():
if isinstance(v, str):
input_variables += get_template_variables(v, template_format)
elif isinstance(v, dict):
input_variables += _get_input_variables(v, template_format)
elif isinstance(v, (list, tuple)):
for x in v:
if isinstance(x, str):
input_variables += get_template_variables(x, template_format)
elif isinstance(x, dict):
input_variables += _get_input_variables(x, template_format)
return list(set(input_variables))
def _insert_input_variables(
template: dict[str, Any],
inputs: dict[str, Any],
template_format: Literal["f-string", "mustache"],
) -> dict[str, Any]:
formatted = {}
formatter = DEFAULT_FORMATTER_MAPPING[template_format]
for k, v in template.items():
if isinstance(v, str):
formatted[k] = formatter(v, **inputs)
elif isinstance(v, dict):
# No longer support loading local images.
if k == "image_url" and "path" in v:
msg = (
"Specifying image inputs via file path in environments with "
"user-input paths is a security vulnerability. Out of an abundance "
"of caution, the utility has been removed to prevent possible "
"misuse."
)
raise ValueError(msg)
formatted[k] = _insert_input_variables(v, inputs, template_format)
elif isinstance(v, (list, tuple)):
formatted_v = []
for x in v:
if isinstance(x, str):
formatted_v.append(formatter(x, **inputs))
elif isinstance(x, dict):
formatted_v.append(
_insert_input_variables(x, inputs, template_format)
)
formatted[k] = type(v)(formatted_v)
return formatted

View File

@ -1,3 +1,3 @@
"""langchain-core version information and utilities."""
VERSION = "0.3.55"
VERSION = "0.3.56"

View File

@ -17,7 +17,7 @@ dependencies = [
"pydantic<3.0.0,>=2.7.4; python_full_version >= \"3.12.4\"",
]
name = "langchain-core"
version = "0.3.55"
version = "0.3.56"
description = "Building applications with LLMs through composability"
readme = "README.md"

View File

@ -13,6 +13,7 @@ from langchain_core.language_models import (
FakeListChatModel,
ParrotFakeChatModel,
)
from langchain_core.language_models._utils import _normalize_messages
from langchain_core.language_models.fake_chat_models import FakeListChatModelError
from langchain_core.messages import (
AIMessage,
@ -455,3 +456,143 @@ def test_trace_images_in_openai_format() -> None:
"url": "https://example.com/image.png",
}
]
def test_extend_support_to_openai_multimodal_formats() -> None:
"""Test that chat models normalize OpenAI file and audio inputs."""
llm = ParrotFakeChatModel()
messages = [
{
"role": "user",
"content": [
{"type": "text", "text": "Hello"},
{
"type": "image_url",
"image_url": {"url": "https://example.com/image.png"},
},
{
"type": "image_url",
"image_url": {"url": "..."},
},
{
"type": "file",
"file": {
"filename": "draconomicon.pdf",
"file_data": "data:application/pdf;base64,<base64 string>",
},
},
{
"type": "file",
"file": {
"file_data": "data:application/pdf;base64,<base64 string>",
},
},
{
"type": "file",
"file": {"file_id": "<file id>"},
},
{
"type": "input_audio",
"input_audio": {"data": "<base64 data>", "format": "wav"},
},
],
},
]
expected_content = [
{"type": "text", "text": "Hello"},
{
"type": "image_url",
"image_url": {"url": "https://example.com/image.png"},
},
{
"type": "image_url",
"image_url": {"url": "..."},
},
{
"type": "file",
"source_type": "base64",
"data": "<base64 string>",
"mime_type": "application/pdf",
"filename": "draconomicon.pdf",
},
{
"type": "file",
"source_type": "base64",
"data": "<base64 string>",
"mime_type": "application/pdf",
},
{
"type": "file",
"file": {"file_id": "<file id>"},
},
{
"type": "audio",
"source_type": "base64",
"data": "<base64 data>",
"mime_type": "audio/wav",
},
]
response = llm.invoke(messages)
assert response.content == expected_content
# Test no mutation
assert messages[0]["content"] == [
{"type": "text", "text": "Hello"},
{
"type": "image_url",
"image_url": {"url": "https://example.com/image.png"},
},
{
"type": "image_url",
"image_url": {"url": "..."},
},
{
"type": "file",
"file": {
"filename": "draconomicon.pdf",
"file_data": "data:application/pdf;base64,<base64 string>",
},
},
{
"type": "file",
"file": {
"file_data": "data:application/pdf;base64,<base64 string>",
},
},
{
"type": "file",
"file": {"file_id": "<file id>"},
},
{
"type": "input_audio",
"input_audio": {"data": "<base64 data>", "format": "wav"},
},
]
def test_normalize_messages_edge_cases() -> None:
# Test some blocks that should pass through
messages = [
HumanMessage(
content=[
{
"type": "file",
"file": "uri",
},
{
"type": "input_file",
"file_data": "uri",
"filename": "file-name",
},
{
"type": "input_audio",
"input_audio": "uri",
},
{
"type": "input_image",
"image_url": "uri",
},
]
)
]
assert messages == _normalize_messages(messages)

View File

@ -33,6 +33,7 @@ EXPECTED_ALL = [
"filter_messages",
"merge_message_runs",
"trim_messages",
"convert_to_openai_data_block",
"convert_to_openai_image_block",
"convert_to_openai_messages",
]

View File

@ -1186,6 +1186,76 @@ def test_convert_to_openai_messages_developer() -> None:
assert result == [{"role": "developer", "content": "a"}] * 2
def test_convert_to_openai_messages_multimodal() -> None:
messages = [
HumanMessage(
content=[
{"type": "text", "text": "Text message"},
{
"type": "image",
"source_type": "url",
"url": "https://example.com/test.png",
},
{
"type": "image",
"source_type": "base64",
"data": "<base64 string>",
"mime_type": "image/png",
},
{
"type": "file",
"source_type": "base64",
"data": "<base64 string>",
"mime_type": "application/pdf",
"filename": "test.pdf",
},
{
"type": "file",
"source_type": "id",
"id": "file-abc123",
},
{
"type": "audio",
"source_type": "base64",
"data": "<base64 string>",
"mime_type": "audio/wav",
},
]
)
]
result = convert_to_openai_messages(messages, text_format="block")
assert len(result) == 1
message = result[0]
assert len(message["content"]) == 6
# Test adding filename
messages = [
HumanMessage(
content=[
{
"type": "file",
"source_type": "base64",
"data": "<base64 string>",
"mime_type": "application/pdf",
},
]
)
]
with pytest.warns(match="filename"):
result = convert_to_openai_messages(messages, text_format="block")
assert len(result) == 1
message = result[0]
assert len(message["content"]) == 1
block = message["content"][0]
assert block == {
"type": "file",
"file": {
"file_data": "data:application/pdf;base64,<base64 string>",
"filename": "LC_AUTOGENERATED",
},
}
def test_count_tokens_approximately_empty_messages() -> None:
# Test with empty message list
assert count_tokens_approximately([]) == 0

View File

@ -3135,6 +3135,27 @@
'name': 'PromptTemplate',
'type': 'constructor',
}),
dict({
'id': list([
'langchain_core',
'prompts',
'dict',
'DictPromptTemplate',
]),
'kwargs': dict({
'template': dict({
'cache_control': dict({
'type': '{foo}',
}),
'text': "What's in this image?",
'type': 'text',
}),
'template_format': 'f-string',
}),
'lc': 1,
'name': 'DictPromptTemplate',
'type': 'constructor',
}),
dict({
'id': list([
'langchain',

View File

@ -973,6 +973,11 @@ def test_chat_tmpl_serdes(snapshot: SnapshotAssertion) -> None:
"hello",
{"text": "What's in this image?"},
{"type": "text", "text": "What's in this image?"},
{
"type": "text",
"text": "What's in this image?",
"cache_control": {"type": "{foo}"},
},
{
"type": "image_url",
"image_url": "data:image/jpeg;base64,{my_image}",
@ -1012,7 +1017,7 @@ def test_chat_tmpl_serdes(snapshot: SnapshotAssertion) -> None:
@pytest.mark.xfail(
reason=(
"In a breaking release, we can update `_convert_to_message_template` to use "
"_DictMessagePromptTemplate for all `dict` inputs, allowing for templatization "
"DictPromptTemplate for all `dict` inputs, allowing for templatization "
"of message attributes outside content blocks. That would enable the below "
"test to pass."
)

View File

@ -0,0 +1,34 @@
from langchain_core.load import load
from langchain_core.prompts.dict import DictPromptTemplate
def test__dict_message_prompt_template_fstring() -> None:
template = {
"type": "text",
"text": "{text1}",
"cache_control": {"type": "{cache_type}"},
}
prompt = DictPromptTemplate(template=template, template_format="f-string")
expected = {
"type": "text",
"text": "important message",
"cache_control": {"type": "ephemeral"},
}
actual = prompt.format(text1="important message", cache_type="ephemeral")
assert actual == expected
def test_deserialize_legacy() -> None:
ser = {
"type": "constructor",
"lc": 1,
"id": ["langchain_core", "prompts", "message", "_DictMessagePromptTemplate"],
"kwargs": {
"template_format": "f-string",
"template": {"type": "audio", "audio": "{audio_data}"},
},
}
expected = DictPromptTemplate(
template={"type": "audio", "audio": "{audio_data}"}, template_format="f-string"
)
assert load(ser) == expected

View File

@ -6,6 +6,7 @@ EXPECTED_ALL = [
"BasePromptTemplate",
"ChatMessagePromptTemplate",
"ChatPromptTemplate",
"DictPromptTemplate",
"FewShotPromptTemplate",
"FewShotPromptWithTemplates",
"FewShotChatMessagePromptTemplate",

View File

@ -1,61 +0,0 @@
from pathlib import Path
from langchain_core.messages import AIMessage, BaseMessage, ToolMessage
from langchain_core.prompts.message import _DictMessagePromptTemplate
CUR_DIR = Path(__file__).parent.absolute().resolve()
def test__dict_message_prompt_template_fstring() -> None:
template = {
"role": "assistant",
"content": [
{"type": "text", "text": "{text1}", "cache_control": {"type": "ephemeral"}},
],
"name": "{name1}",
"tool_calls": [
{
"name": "{tool_name1}",
"args": {"arg1": "{tool_arg1}"},
"id": "1",
"type": "tool_call",
}
],
}
prompt = _DictMessagePromptTemplate(template=template, template_format="f-string")
expected: BaseMessage = AIMessage(
[
{
"type": "text",
"text": "important message",
"cache_control": {"type": "ephemeral"},
},
],
name="foo",
tool_calls=[
{
"name": "do_stuff",
"args": {"arg1": "important arg1"},
"id": "1",
"type": "tool_call",
}
],
)
actual = prompt.format_messages(
text1="important message",
name1="foo",
tool_arg1="important arg1",
tool_name1="do_stuff",
)[0]
assert actual == expected
template = {
"role": "tool",
"content": "{content1}",
"tool_call_id": "1",
"name": "{name1}",
}
prompt = _DictMessagePromptTemplate(template=template, template_format="f-string")
expected = ToolMessage("foo", name="bar", tool_call_id="1")
actual = prompt.format_messages(content1="foo", name1="bar")[0]
assert actual == expected

View File

@ -937,7 +937,7 @@ wheels = [
[[package]]
name = "langchain-core"
version = "0.3.55"
version = "0.3.56"
source = { editable = "." }
dependencies = [
{ name = "jsonpatch" },
@ -1104,7 +1104,7 @@ test-integration = [
]
typing = [
{ name = "lxml-stubs", specifier = ">=0.5.1,<1.0.0" },
{ name = "mypy", specifier = ">=1.10,<2.0" },
{ name = "mypy", specifier = ">=1.15,<2.0" },
{ name = "tiktoken", specifier = ">=0.8.0,<1.0.0" },
{ name = "types-requests", specifier = ">=2.31.0.20240218,<3.0.0.0" },
]

View File

@ -584,6 +584,9 @@ class OpenAIAssistantRunnable(RunnableSerializable[dict, OutputType]):
answer: Any = [
msg_content for msg in new_messages for msg_content in msg.content
]
attachments = [
attachment for msg in new_messages for attachment in msg.attachments
]
if all(
(
isinstance(content, openai.types.beta.threads.TextContentBlock)
@ -601,6 +604,7 @@ class OpenAIAssistantRunnable(RunnableSerializable[dict, OutputType]):
"output": answer,
"thread_id": run.thread_id,
"run_id": run.id,
"attachments": attachments,
},
log="",
run_id=run.id,

View File

@ -119,6 +119,7 @@ def test_configurable() -> None:
"reasoning_effort": None,
"frequency_penalty": None,
"seed": None,
"service_tier": None,
"logprobs": None,
"top_logprobs": None,
"logit_bias": None,

View File

@ -549,6 +549,7 @@ packages:
- name: langchain-tavily
path: .
repo: tavily-ai/langchain-tavily
include_in_api_ref: true
downloads: 13796
downloads_updated_at: '2025-04-22T15:25:24.644345+00:00'
- name: langchain-zotero-retriever

View File

@ -61,7 +61,7 @@ from langchain_core.messages import (
ToolCall,
ToolMessage,
ToolMessageChunk,
convert_to_openai_image_block,
convert_to_openai_data_block,
is_data_content_block,
)
from langchain_core.messages.ai import (
@ -186,45 +186,6 @@ def _convert_dict_to_message(_dict: Mapping[str, Any]) -> BaseMessage:
return ChatMessage(content=_dict.get("content", ""), role=role, id=id_) # type: ignore[arg-type]
def _format_data_content_block(block: dict) -> dict:
"""Format standard data content block to format expected by OpenAI."""
if block["type"] == "image":
formatted_block = convert_to_openai_image_block(block)
elif block["type"] == "file":
if block["source_type"] == "base64":
file = {"file_data": f"data:{block['mime_type']};base64,{block['data']}"}
if filename := block.get("filename"):
file["filename"] = filename
elif (metadata := block.get("metadata")) and ("filename" in metadata):
file["filename"] = metadata["filename"]
else:
warnings.warn(
"OpenAI may require a filename for file inputs. Specify a filename "
"in the content block: {'type': 'file', 'source_type': 'base64', "
"'mime_type': 'application/pdf', 'data': '...', "
"'filename': 'my-pdf'}"
)
formatted_block = {"type": "file", "file": file}
elif block["source_type"] == "id":
formatted_block = {"type": "file", "file": {"file_id": block["id"]}}
else:
raise ValueError("source_type base64 or id is required for file blocks.")
elif block["type"] == "audio":
if block["source_type"] == "base64":
format = block["mime_type"].split("/")[-1]
formatted_block = {
"type": "input_audio",
"input_audio": {"data": block["data"], "format": format},
}
else:
raise ValueError("source_type base64 is required for audio blocks.")
else:
raise ValueError(f"Block of type {block['type']} is not supported.")
return formatted_block
def _format_message_content(content: Any) -> Any:
"""Format message content."""
if content and isinstance(content, list):
@ -238,7 +199,7 @@ def _format_message_content(content: Any) -> Any:
):
continue
elif isinstance(block, dict) and is_data_content_block(block):
formatted_content.append(_format_data_content_block(block))
formatted_content.append(convert_to_openai_data_block(block))
# Anthropic image blocks
elif (
isinstance(block, dict)
@ -577,6 +538,10 @@ class BaseChatOpenAI(BaseChatModel):
However this does not prevent a user from directly passed in the parameter during
invocation.
"""
service_tier: Optional[str] = None
"""Latency tier for request. Options are 'auto', 'default', or 'flex'. Relevant
for users of OpenAI's scale tier service.
"""
use_responses_api: Optional[bool] = None
"""Whether to use the Responses API instead of the Chat API.
@ -694,6 +659,7 @@ class BaseChatOpenAI(BaseChatModel):
"n": self.n,
"temperature": self.temperature,
"reasoning_effort": self.reasoning_effort,
"service_tier": self.service_tier,
}
params = {
@ -2365,6 +2331,27 @@ class ChatOpenAI(BaseChatOpenAI): # type: ignore[override]
"logprobs": None,
}
.. dropdown:: Flex processing
OpenAI offers a variety of
`service tiers <https://platform.openai.com/docs/guides/flex-processing>`_.
The "flex" tier offers cheaper pricing for requests, with the trade-off that
responses may take longer and resources might not always be available.
This approach is best suited for non-critical tasks, including model testing,
data enhancement, or jobs that can be run asynchronously.
To use it, initialize the model with ``service_tier="flex"``:
.. code-block:: python
from langchain_openai import ChatOpenAI
llm = ChatOpenAI(model="o4-mini", service_tier="flex")
Note that this is a beta feature that is only available for a subset of models.
See OpenAI `docs <https://platform.openai.com/docs/guides/flex-processing>`_
for more detail.
""" # noqa: E501
max_tokens: Optional[int] = Field(default=None, alias="max_completion_tokens")
@ -3450,14 +3437,16 @@ def _convert_responses_chunk_to_generation_chunk(
)
elif chunk.type == "response.refusal.done":
additional_kwargs["refusal"] = chunk.refusal
elif chunk.type == "response.output_item.added" and chunk.item.type == "reasoning":
additional_kwargs["reasoning"] = chunk.item.model_dump(
exclude_none=True, mode="json"
)
elif chunk.type == "response.reasoning_summary_part.added":
additional_kwargs["reasoning"] = {
"type": "reasoning",
"id": chunk.item_id,
# langchain-core uses the `index` key to aggregate text blocks.
"summary": [
{"index": chunk.summary_index, "type": "summary_text", "text": ""}
],
]
}
elif chunk.type == "response.reasoning_summary_text.delta":
additional_kwargs["reasoning"] = {

View File

@ -517,7 +517,6 @@ class OpenAIEmbeddings(BaseModel, Embeddings):
_chunk_size = chunk_size or self.chunk_size
_iter, tokens, indices = self._tokenize(texts, _chunk_size)
batched_embeddings: list[list[float]] = []
_chunk_size = chunk_size or self.chunk_size
for i in range(0, len(tokens), _chunk_size):
response = await self.async_client.create(
input=tokens[i : i + _chunk_size], **self._invocation_params

View File

@ -170,48 +170,6 @@ def test_chat_openai_invalid_streaming_params() -> None:
ChatOpenAI(max_tokens=MAX_TOKEN_COUNT, streaming=True, temperature=0, n=5) # type: ignore[call-arg]
@pytest.mark.scheduled
async def test_async_chat_openai() -> None:
"""Test async generation."""
chat = ChatOpenAI(max_tokens=MAX_TOKEN_COUNT, n=2) # type: ignore[call-arg]
message = HumanMessage(content="Hello")
response = await chat.agenerate([[message], [message]])
assert isinstance(response, LLMResult)
assert len(response.generations) == 2
assert response.llm_output
for generations in response.generations:
assert len(generations) == 2
for generation in generations:
assert isinstance(generation, ChatGeneration)
assert isinstance(generation.text, str)
assert generation.text == generation.message.content
@pytest.mark.scheduled
async def test_async_chat_openai_streaming() -> None:
"""Test that streaming correctly invokes on_llm_new_token callback."""
callback_handler = FakeCallbackHandler()
callback_manager = CallbackManager([callback_handler])
chat = ChatOpenAI(
max_tokens=MAX_TOKEN_COUNT, # type: ignore[call-arg]
streaming=True,
temperature=0,
callback_manager=callback_manager,
verbose=True,
)
message = HumanMessage(content="Hello")
response = await chat.agenerate([[message], [message]])
assert callback_handler.llm_streams > 0
assert isinstance(response, LLMResult)
assert len(response.generations) == 2
for generations in response.generations:
assert len(generations) == 1
for generation in generations:
assert isinstance(generation, ChatGeneration)
assert isinstance(generation.text, str)
assert generation.text == generation.message.content
@pytest.mark.scheduled
async def test_async_chat_openai_bind_functions() -> None:
"""Test ChatOpenAI wrapper with multiple completions."""
@ -244,34 +202,6 @@ async def test_async_chat_openai_bind_functions() -> None:
assert isinstance(generation, AIMessage)
@pytest.mark.scheduled
def test_openai_streaming() -> None:
"""Test streaming tokens from OpenAI."""
llm = ChatOpenAI(max_tokens=MAX_TOKEN_COUNT) # type: ignore[call-arg]
for token in llm.stream("I'm Pickle Rick"):
assert isinstance(token.content, str)
@pytest.mark.scheduled
async def test_openai_astream() -> None:
"""Test streaming tokens from OpenAI."""
llm = ChatOpenAI(max_tokens=MAX_TOKEN_COUNT) # type: ignore[call-arg]
async for token in llm.astream("I'm Pickle Rick"):
assert isinstance(token.content, str)
@pytest.mark.scheduled
async def test_openai_abatch() -> None:
"""Test streaming tokens from ChatOpenAI."""
llm = ChatOpenAI(max_tokens=MAX_TOKEN_COUNT) # type: ignore[call-arg]
result = await llm.abatch(["I'm Pickle Rick", "I'm not Pickle Rick"])
for token in result:
assert isinstance(token.content, str)
@pytest.mark.scheduled
@pytest.mark.parametrize("use_responses_api", [False, True])
async def test_openai_abatch_tags(use_responses_api: bool) -> None:
@ -285,31 +215,15 @@ async def test_openai_abatch_tags(use_responses_api: bool) -> None:
assert isinstance(token.text(), str)
@pytest.mark.scheduled
def test_openai_batch() -> None:
"""Test batch tokens from ChatOpenAI."""
llm = ChatOpenAI(max_tokens=MAX_TOKEN_COUNT) # type: ignore[call-arg]
result = llm.batch(["I'm Pickle Rick", "I'm not Pickle Rick"])
for token in result:
assert isinstance(token.content, str)
@pytest.mark.scheduled
async def test_openai_ainvoke() -> None:
"""Test invoke tokens from ChatOpenAI."""
llm = ChatOpenAI(max_tokens=MAX_TOKEN_COUNT) # type: ignore[call-arg]
result = await llm.ainvoke("I'm Pickle Rick", config={"tags": ["foo"]})
assert isinstance(result.content, str)
@pytest.mark.scheduled
@pytest.mark.flaky(retries=3, delay=1)
def test_openai_invoke() -> None:
"""Test invoke tokens from ChatOpenAI."""
llm = ChatOpenAI(max_tokens=MAX_TOKEN_COUNT) # type: ignore[call-arg]
llm = ChatOpenAI(
model="o4-mini",
service_tier="flex", # Also test service_tier
)
result = llm.invoke("I'm Pickle Rick", config=dict(tags=["foo"]))
result = llm.invoke("Hello", config=dict(tags=["foo"]))
assert isinstance(result.content, str)
# assert no response headers if include_response_headers is not set
@ -413,15 +327,6 @@ async def test_astream() -> None:
await _test_stream(llm.astream("Hello", stream_usage=False), expect_usage=False)
async def test_abatch() -> None:
"""Test streaming tokens from ChatOpenAI."""
llm = ChatOpenAI()
result = await llm.abatch(["I'm Pickle Rick", "I'm not Pickle Rick"])
for token in result:
assert isinstance(token.content, str)
async def test_abatch_tags() -> None:
"""Test batch tokens from ChatOpenAI."""
llm = ChatOpenAI()
@ -433,33 +338,6 @@ async def test_abatch_tags() -> None:
assert isinstance(token.content, str)
def test_batch() -> None:
"""Test batch tokens from ChatOpenAI."""
llm = ChatOpenAI()
result = llm.batch(["I'm Pickle Rick", "I'm not Pickle Rick"])
for token in result:
assert isinstance(token.content, str)
async def test_ainvoke() -> None:
"""Test invoke tokens from ChatOpenAI."""
llm = ChatOpenAI()
result = await llm.ainvoke("I'm Pickle Rick", config={"tags": ["foo"]})
assert isinstance(result.content, str)
assert result.response_metadata.get("model_name") is not None
def test_invoke() -> None:
"""Test invoke tokens from ChatOpenAI."""
llm = ChatOpenAI()
result = llm.invoke("I'm Pickle Rick", config=dict(tags=["foo"]))
assert isinstance(result.content, str)
assert result.response_metadata.get("model_name") is not None
def test_response_metadata() -> None:
llm = ChatOpenAI()
result = llm.invoke([HumanMessage(content="I'm PickleRick")], logprobs=True)
@ -985,45 +863,6 @@ def test_json_schema_openai_format(
assert isinstance(result, dict)
def test_json_mode() -> None:
llm = ChatOpenAI(model="gpt-4o-mini", temperature=0)
response = llm.invoke(
"Return this as json: {'a': 1}. Do not return anything other than json. Do not include markdown codeblocks.", # noqa: E501
response_format={"type": "json_object"},
)
assert isinstance(response.content, str)
assert json.loads(response.content) == {"a": 1}
# Test streaming
full: Optional[BaseMessageChunk] = None
for chunk in llm.stream(
"Return this as json: {'a': 1}", response_format={"type": "json_object"}
):
full = chunk if full is None else full + chunk
assert isinstance(full, AIMessageChunk)
assert isinstance(full.content, str)
assert json.loads(full.content) == {"a": 1}
async def test_json_mode_async() -> None:
llm = ChatOpenAI(model="gpt-4o-mini", temperature=0)
response = await llm.ainvoke(
"Return this as json: {'a': 1}. Do not return anything other than json. Do not include markdown codeblocks." # noqa: E501
)
assert isinstance(response.content, str)
assert json.loads(response.content) == {"a": 1}
# Test streaming
full: Optional[BaseMessageChunk] = None
async for chunk in llm.astream(
"Return this as json: {'a': 1}", response_format={"type": "json_object"}
):
full = chunk if full is None else full + chunk
assert isinstance(full, AIMessageChunk)
assert isinstance(full.content, str)
assert json.loads(full.content) == {"a": 1}
def test_audio_output_modality() -> None:
llm = ChatOpenAI(
model="gpt-4o-audio-preview",

View File

@ -103,6 +103,21 @@ class TestOpenAIStandard(ChatModelIntegrationTests):
)
_ = model.invoke([message])
# Test OpenAI Chat Completions format
message = HumanMessage(
[
{"type": "text", "text": "Summarize this document:"},
{
"type": "file",
"file": {
"filename": "test file.pdf",
"file_data": f"data:application/pdf;base64,{pdf_data}",
},
},
]
)
_ = model.invoke([message])
def _invoke(llm: ChatOpenAI, input_: str, stream: bool) -> AIMessage:
if stream:

View File

@ -1732,3 +1732,9 @@ def test__construct_responses_api_input_multiple_message_types() -> None:
# assert no mutation has occurred
assert messages_copy == messages
def test_service_tier() -> None:
llm = ChatOpenAI(model="o4-mini", service_tier="flex")
payload = llm._get_request_payload([HumanMessage("Hello")])
assert payload["service_tier"] == "flex"

View File

@ -476,6 +476,25 @@ class ChatModelIntegrationTests(ChatModelTests):
name="random_image",
)
(OpenAI Chat Completions format), as well as
.. code-block:: python
ToolMessage(
content=[
{
"type": "image",
"source_type": "base64",
"data": image_data,
"mime_type": "image/jpeg",
},
],
tool_call_id="1",
name="random_image",
)
(standard format).
If set to ``True``, the chat model will be tested with message sequences that
include ToolMessages of this form.
@ -2036,6 +2055,24 @@ class ChatModelIntegrationTests(ChatModelTests):
)
_ = model.invoke([message])
# Test OpenAI Chat Completions format
message = HumanMessage(
[
{
"type": "text",
"text": "Summarize this document:",
},
{
"type": "file",
"file": {
"filename": "test file.pdf",
"file_data": f"data:application/pdf;base64,{pdf_data}",
},
},
]
)
_ = model.invoke([message])
def test_audio_inputs(self, model: BaseChatModel) -> None:
"""Test that the model can process audio inputs.
@ -2093,6 +2130,21 @@ class ChatModelIntegrationTests(ChatModelTests):
)
_ = model.invoke([message])
# Test OpenAI Chat Completions format
message = HumanMessage(
[
{
"type": "text",
"text": "Describe this audio:",
},
{
"type": "input_audio",
"input_audio": {"data": audio_data, "format": "wav"},
},
]
)
_ = model.invoke([message])
def test_image_inputs(self, model: BaseChatModel) -> None:
"""Test that the model can process image inputs.
@ -2221,6 +2273,26 @@ class ChatModelIntegrationTests(ChatModelTests):
name="random_image",
)
containing image content blocks in OpenAI Chat Completions format, in addition
to messages of the form:
.. code-block:: python
ToolMessage(
content=[
{
"type": "image",
"source_type": "base64",
"data": image_data,
"mime_type": "image/jpeg",
},
],
tool_call_id="1",
name="random_image",
)
containing image content blocks in standard format.
This test can be skipped by setting the ``supports_image_tool_message`` property
to False (see Configuration below).
@ -2247,31 +2319,56 @@ class ChatModelIntegrationTests(ChatModelTests):
pytest.skip("Model does not support image tool message.")
image_url = "https://upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Gfp-wisconsin-madison-the-nature-boardwalk.jpg/2560px-Gfp-wisconsin-madison-the-nature-boardwalk.jpg"
image_data = base64.b64encode(httpx.get(image_url).content).decode("utf-8")
messages = [
HumanMessage("get a random image using the tool and describe the weather"),
AIMessage(
[],
tool_calls=[
{"type": "tool_call", "id": "1", "name": "random_image", "args": {}}
],
),
ToolMessage(
content=[
{
"type": "image_url",
"image_url": {"url": f"data:image/jpeg;base64,{image_data}"},
},
],
tool_call_id="1",
name="random_image",
),
]
def random_image() -> str:
"""Return a random image."""
return ""
# Support both OpenAI and standard formats
oai_format_message = ToolMessage(
content=[
{
"type": "image_url",
"image_url": {"url": f"data:image/jpeg;base64,{image_data}"},
},
],
tool_call_id="1",
name="random_image",
)
model.bind_tools([random_image]).invoke(messages)
standard_format_message = ToolMessage(
content=[
{
"type": "image",
"source_type": "base64",
"data": image_data,
"mime_type": "image/jpeg",
},
],
tool_call_id="1",
name="random_image",
)
for tool_message in [oai_format_message, standard_format_message]:
messages = [
HumanMessage(
"get a random image using the tool and describe the weather"
),
AIMessage(
[],
tool_calls=[
{
"type": "tool_call",
"id": "1",
"name": "random_image",
"args": {},
}
],
),
tool_message,
]
def random_image() -> str:
"""Return a random image."""
return ""
_ = model.bind_tools([random_image]).invoke(messages)
def test_anthropic_inputs(self, model: BaseChatModel) -> None:
"""Test that model can process Anthropic-style message histories.

View File

@ -568,6 +568,25 @@ class ChatModelUnitTests(ChatModelTests):
name="random_image",
)
(OpenAI Chat Completions format), as well as
.. code-block:: python
ToolMessage(
content=[
{
"type": "image",
"source_type": "base64",
"data": image_data,
"mime_type": "image/jpeg",
},
],
tool_call_id="1",
name="random_image",
)
(standard format).
If set to ``True``, the chat model will be tested with message sequences that
include ToolMessages of this form.

View File

@ -1,4 +1,5 @@
version = 1
revision = 1
requires-python = ">=3.9, <4.0"
resolution-markers = [
"python_full_version >= '3.13' and platform_python_implementation == 'PyPy'",
@ -2178,7 +2179,7 @@ wheels = [
[[package]]
name = "langchain"
version = "0.3.23"
version = "0.3.24"
source = { editable = "libs/langchain" }
dependencies = [
{ name = "async-timeout", marker = "python_full_version < '3.11'" },
@ -2219,6 +2220,7 @@ requires-dist = [
{ name = "requests", specifier = ">=2,<3" },
{ name = "sqlalchemy", specifier = ">=1.4,<3" },
]
provides-extras = ["community", "anthropic", "openai", "azure-ai", "cohere", "google-vertexai", "google-genai", "fireworks", "ollama", "together", "mistralai", "huggingface", "groq", "aws", "deepseek", "xai", "perplexity"]
[package.metadata.requires-dev]
codespell = [{ name = "codespell", specifier = ">=2.2.0,<3.0.0" }]
@ -2393,7 +2395,7 @@ typing = [
[[package]]
name = "langchain-community"
version = "0.3.21"
version = "0.3.22"
source = { editable = "libs/community" }
dependencies = [
{ name = "aiohttp" },
@ -2484,7 +2486,7 @@ typing = [
[[package]]
name = "langchain-core"
version = "0.3.54"
version = "0.3.55"
source = { editable = "libs/core" }
dependencies = [
{ name = "jsonpatch" },