mirror of
https://github.com/hwchase17/langchain.git
synced 2026-02-08 02:00:06 +00:00
Compare commits
1 Commits
langchain-
...
erick/auto
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
bfabf99aa3 |
@@ -12,7 +12,7 @@
|
||||
|
||||
// The optional 'workspaceFolder' property is the path VS Code should open by default when
|
||||
// connected. This is typically a file mount in .devcontainer/docker-compose.yml
|
||||
"workspaceFolder": "/workspaces/langchain",
|
||||
"workspaceFolder": "/workspaces/${localWorkspaceFolderBasename}",
|
||||
|
||||
// Prevent the container from shutting down
|
||||
"overrideCommand": true
|
||||
|
||||
@@ -6,7 +6,7 @@ services:
|
||||
context: ..
|
||||
volumes:
|
||||
# Update this to wherever you want VS Code to mount the folder of your project
|
||||
- ..:/workspaces/langchain:cached
|
||||
- ..:/workspaces:cached
|
||||
networks:
|
||||
- langchain-network
|
||||
# environment:
|
||||
|
||||
41
.github/CONTRIBUTING.md
vendored
41
.github/CONTRIBUTING.md
vendored
@@ -3,4 +3,43 @@
|
||||
Hi there! Thank you for even being interested in contributing to LangChain.
|
||||
As an open-source project in a rapidly developing field, we are extremely open to contributions, whether they involve new features, improved infrastructure, better documentation, or bug fixes.
|
||||
|
||||
To learn how to contribute to LangChain, please follow the [contribution guide here](https://python.langchain.com/docs/contributing/).
|
||||
To learn about how to contribute, please follow the [guides here](https://python.langchain.com/docs/contributing/)
|
||||
|
||||
## 🗺️ Guidelines
|
||||
|
||||
### 👩💻 Ways to contribute
|
||||
|
||||
There are many ways to contribute to LangChain. Here are some common ways people contribute:
|
||||
|
||||
- [**Documentation**](https://python.langchain.com/docs/contributing/documentation): Help improve our docs, including this one!
|
||||
- [**Code**](https://python.langchain.com/docs/contributing/code): Help us write code, fix bugs, or improve our infrastructure.
|
||||
- [**Integrations**](https://python.langchain.com/docs/contributing/integrations): Help us integrate with your favorite vendors and tools.
|
||||
|
||||
### 🚩GitHub Issues
|
||||
|
||||
Our [issues](https://github.com/langchain-ai/langchain/issues) page is kept up to date with bugs, improvements, and feature requests.
|
||||
|
||||
There is a taxonomy of labels to help with sorting and discovery of issues of interest. Please use these to help organize issues.
|
||||
|
||||
If you start working on an issue, please assign it to yourself.
|
||||
|
||||
If you are adding an issue, please try to keep it focused on a single, modular bug/improvement/feature.
|
||||
If two issues are related, or blocking, please link them rather than combining them.
|
||||
|
||||
We will try to keep these issues as up-to-date as possible, though
|
||||
with the rapid rate of development in this field some may get out of date.
|
||||
If you notice this happening, please let us know.
|
||||
|
||||
### 🙋Getting Help
|
||||
|
||||
Our goal is to have the simplest developer setup possible. Should you experience any difficulty getting setup, please
|
||||
contact a maintainer! Not only do we want to help get you unblocked, but we also want to make sure that the process is
|
||||
smooth for future contributors.
|
||||
|
||||
In a similar vein, we do enforce certain linting, formatting, and documentation standards in the codebase.
|
||||
If you are finding these difficult (or even just annoying) to work with, feel free to contact a maintainer for help -
|
||||
we do not want these to get in the way of getting good code into the codebase.
|
||||
|
||||
### Contributor Documentation
|
||||
|
||||
To learn about how to contribute, please follow the [guides here](https://python.langchain.com/docs/contributing/)
|
||||
|
||||
10
.github/DISCUSSION_TEMPLATE/q-a.yml
vendored
10
.github/DISCUSSION_TEMPLATE/q-a.yml
vendored
@@ -3,18 +3,18 @@ body:
|
||||
- type: markdown
|
||||
attributes:
|
||||
value: |
|
||||
Thanks for your interest in LangChain 🦜️🔗!
|
||||
Thanks for your interest in 🦜️🔗 LangChain!
|
||||
|
||||
Please follow these instructions, fill every question, and do every step. 🙏
|
||||
|
||||
We're asking for this because answering questions and solving problems in GitHub takes a lot of time --
|
||||
this is time that we cannot spend on adding new features, fixing bugs, writing documentation or reviewing pull requests.
|
||||
this is time that we cannot spend on adding new features, fixing bugs, write documentation or reviewing pull requests.
|
||||
|
||||
By asking questions in a structured way (following this) it will be much easier for us to help you.
|
||||
By asking questions in a structured way (following this) it will be much easier to help you.
|
||||
|
||||
There's a high chance that by following this process, you'll find the solution on your own, eliminating the need to submit a question and wait for an answer. 😎
|
||||
And there's a high chance that you will find the solution along the way and you won't even have to submit it and wait for an answer. 😎
|
||||
|
||||
As there are many questions submitted every day, we will **DISCARD** and close the incomplete ones.
|
||||
As there are too many questions, we will **DISCARD** and close the incomplete ones.
|
||||
|
||||
That will allow us (and others) to focus on helping people like you that follow the whole process. 🤓
|
||||
|
||||
|
||||
2
.github/ISSUE_TEMPLATE/bug-report.yml
vendored
2
.github/ISSUE_TEMPLATE/bug-report.yml
vendored
@@ -35,8 +35,6 @@ body:
|
||||
required: true
|
||||
- label: I am sure that this is a bug in LangChain rather than my code.
|
||||
required: true
|
||||
- label: The bug is not resolved by updating to the latest stable version of LangChain (or the specific integration package).
|
||||
required: true
|
||||
- type: textarea
|
||||
id: reproduction
|
||||
validations:
|
||||
|
||||
45
.github/ISSUE_TEMPLATE/documentation.yml
vendored
45
.github/ISSUE_TEMPLATE/documentation.yml
vendored
@@ -4,55 +4,16 @@ title: "DOC: <Please write a comprehensive title after the 'DOC: ' prefix>"
|
||||
labels: [03 - Documentation]
|
||||
|
||||
body:
|
||||
- type: markdown
|
||||
attributes:
|
||||
value: >
|
||||
Thank you for taking the time to report an issue in the documentation.
|
||||
|
||||
Only report issues with documentation here, explain if there are
|
||||
any missing topics or if you found a mistake in the documentation.
|
||||
|
||||
Do **NOT** use this to ask usage questions or reporting issues with your code.
|
||||
|
||||
If you have usage questions or need help solving some problem,
|
||||
please use [GitHub Discussions](https://github.com/langchain-ai/langchain/discussions).
|
||||
|
||||
If you're in the wrong place, here are some helpful links to find a better
|
||||
place to ask your question:
|
||||
|
||||
[LangChain documentation with the integrated search](https://python.langchain.com/docs/get_started/introduction),
|
||||
[API Reference](https://api.python.langchain.com/en/stable/),
|
||||
[GitHub search](https://github.com/langchain-ai/langchain),
|
||||
[LangChain Github Discussions](https://github.com/langchain-ai/langchain/discussions),
|
||||
[LangChain Github Issues](https://github.com/langchain-ai/langchain/issues?q=is%3Aissue),
|
||||
[LangChain ChatBot](https://chat.langchain.com/)
|
||||
- type: input
|
||||
id: url
|
||||
attributes:
|
||||
label: URL
|
||||
description: URL to documentation
|
||||
validations:
|
||||
required: false
|
||||
- type: checkboxes
|
||||
id: checks
|
||||
attributes:
|
||||
label: Checklist
|
||||
description: Please confirm and check all the following options.
|
||||
options:
|
||||
- label: I added a very descriptive title to this issue.
|
||||
required: true
|
||||
- label: I included a link to the documentation page I am referring to (if applicable).
|
||||
required: true
|
||||
- type: textarea
|
||||
attributes:
|
||||
label: "Issue with current documentation:"
|
||||
description: >
|
||||
Please make sure to leave a reference to the document/code you're
|
||||
referring to. Feel free to include names of classes, functions, methods
|
||||
or concepts you'd like to see documented more.
|
||||
referring to.
|
||||
|
||||
- type: textarea
|
||||
attributes:
|
||||
label: "Idea or request for content:"
|
||||
description: >
|
||||
Please describe as clearly as possible what topics you think are missing
|
||||
from the current documentation.
|
||||
from the current documentation.
|
||||
2
.github/ISSUE_TEMPLATE/privileged.yml
vendored
2
.github/ISSUE_TEMPLATE/privileged.yml
vendored
@@ -9,7 +9,7 @@ body:
|
||||
If you are not a LangChain maintainer or were not asked directly by a maintainer to create an issue, then please start the conversation in a [Question in GitHub Discussions](https://github.com/langchain-ai/langchain/discussions/categories/q-a) instead.
|
||||
|
||||
You are a LangChain maintainer if you maintain any of the packages inside of the LangChain repository
|
||||
or are a regular contributor to LangChain with previous merged pull requests.
|
||||
or are a regular contributor to LangChain with previous merged merged pull requests.
|
||||
- type: checkboxes
|
||||
id: privileged
|
||||
attributes:
|
||||
|
||||
33
.github/PULL_REQUEST_TEMPLATE.md
vendored
33
.github/PULL_REQUEST_TEMPLATE.md
vendored
@@ -1,29 +1,20 @@
|
||||
Thank you for contributing to LangChain!
|
||||
<!-- Thank you for contributing to LangChain!
|
||||
|
||||
- [ ] **PR title**: "package: description"
|
||||
- Where "package" is whichever of langchain, community, core, experimental, etc. is being modified. Use "docs: ..." for purely docs changes, "templates: ..." for template changes, "infra: ..." for CI changes.
|
||||
- Example: "community: add foobar LLM"
|
||||
Please title your PR "<package>: <description>", where <package> is whichever of langchain, community, core, experimental, etc. is being modified.
|
||||
|
||||
Replace this entire comment with:
|
||||
- **Description:** a description of the change,
|
||||
- **Issue:** the issue # it fixes if applicable,
|
||||
- **Dependencies:** any dependencies required for this change,
|
||||
- **Twitter handle:** we announce bigger features on Twitter. If your PR gets announced, and you'd like a mention, we'll gladly shout you out!
|
||||
|
||||
- [ ] **PR message**: ***Delete this entire checklist*** and replace with
|
||||
- **Description:** a description of the change
|
||||
- **Issue:** the issue # it fixes, if applicable
|
||||
- **Dependencies:** any dependencies required for this change
|
||||
- **Twitter handle:** if your PR gets announced, and you'd like a mention, we'll gladly shout you out!
|
||||
Please make sure your PR is passing linting and testing before submitting. Run `make format`, `make lint` and `make test` from the root of the package you've modified to check this locally.
|
||||
|
||||
See contribution guidelines for more information on how to write/run tests, lint, etc: https://python.langchain.com/docs/contributing/
|
||||
|
||||
- [ ] **Add tests and docs**: If you're adding a new integration, please include
|
||||
If you're adding a new integration, please include:
|
||||
1. a test for the integration, preferably unit tests that do not rely on network access,
|
||||
2. an example notebook showing its use. It lives in `docs/docs/integrations` directory.
|
||||
|
||||
|
||||
- [ ] **Lint and test**: Run `make format`, `make lint` and `make test` from the root of the package(s) you've modified. See contribution guidelines for more: https://python.langchain.com/docs/contributing/
|
||||
|
||||
Additional guidelines:
|
||||
- Make sure optional dependencies are imported within a function.
|
||||
- Please do not add dependencies to pyproject.toml files (even optional ones) unless they are required for unit tests.
|
||||
- Most PRs should not touch more than one package.
|
||||
- Changes should be backwards compatible.
|
||||
- If you are adding something to community, do not re-import it in langchain.
|
||||
|
||||
If no one reviews your PR within a few days, please @-mention one of baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
|
||||
If no one reviews your PR within a few days, please @-mention one of @baskaryan, @eyurtsev, @hwchase17.
|
||||
-->
|
||||
|
||||
7
.github/actions/people/Dockerfile
vendored
7
.github/actions/people/Dockerfile
vendored
@@ -1,7 +0,0 @@
|
||||
FROM python:3.9
|
||||
|
||||
RUN pip install httpx PyGithub "pydantic==2.0.2" pydantic-settings "pyyaml>=5.3.1,<6.0.0"
|
||||
|
||||
COPY ./app /app
|
||||
|
||||
CMD ["python", "/app/main.py"]
|
||||
11
.github/actions/people/action.yml
vendored
11
.github/actions/people/action.yml
vendored
@@ -1,11 +0,0 @@
|
||||
# Adapted from https://github.com/tiangolo/fastapi/blob/master/.github/actions/people/action.yml
|
||||
name: "Generate LangChain People"
|
||||
description: "Generate the data for the LangChain People page"
|
||||
author: "Jacob Lee <jacob@langchain.dev>"
|
||||
inputs:
|
||||
token:
|
||||
description: 'User token, to read the GitHub API. Can be passed in using {{ secrets.LANGCHAIN_PEOPLE_GITHUB_TOKEN }}'
|
||||
required: true
|
||||
runs:
|
||||
using: 'docker'
|
||||
image: 'Dockerfile'
|
||||
643
.github/actions/people/app/main.py
vendored
643
.github/actions/people/app/main.py
vendored
@@ -1,643 +0,0 @@
|
||||
# Adapted from https://github.com/tiangolo/fastapi/blob/master/.github/actions/people/app/main.py
|
||||
|
||||
import logging
|
||||
import subprocess
|
||||
import sys
|
||||
from collections import Counter
|
||||
from datetime import datetime, timedelta, timezone
|
||||
from pathlib import Path
|
||||
from typing import Any, Container, Dict, List, Set, Union
|
||||
|
||||
import httpx
|
||||
import yaml
|
||||
from github import Github
|
||||
from pydantic import BaseModel, SecretStr
|
||||
from pydantic_settings import BaseSettings
|
||||
|
||||
github_graphql_url = "https://api.github.com/graphql"
|
||||
questions_category_id = "DIC_kwDOIPDwls4CS6Ve"
|
||||
|
||||
# discussions_query = """
|
||||
# query Q($after: String, $category_id: ID) {
|
||||
# repository(name: "langchain", owner: "langchain-ai") {
|
||||
# discussions(first: 100, after: $after, categoryId: $category_id) {
|
||||
# edges {
|
||||
# cursor
|
||||
# node {
|
||||
# number
|
||||
# author {
|
||||
# login
|
||||
# avatarUrl
|
||||
# url
|
||||
# }
|
||||
# title
|
||||
# createdAt
|
||||
# comments(first: 100) {
|
||||
# nodes {
|
||||
# createdAt
|
||||
# author {
|
||||
# login
|
||||
# avatarUrl
|
||||
# url
|
||||
# }
|
||||
# isAnswer
|
||||
# replies(first: 10) {
|
||||
# nodes {
|
||||
# createdAt
|
||||
# author {
|
||||
# login
|
||||
# avatarUrl
|
||||
# url
|
||||
# }
|
||||
# }
|
||||
# }
|
||||
# }
|
||||
# }
|
||||
# }
|
||||
# }
|
||||
# }
|
||||
# }
|
||||
# }
|
||||
# """
|
||||
|
||||
# issues_query = """
|
||||
# query Q($after: String) {
|
||||
# repository(name: "langchain", owner: "langchain-ai") {
|
||||
# issues(first: 100, after: $after) {
|
||||
# edges {
|
||||
# cursor
|
||||
# node {
|
||||
# number
|
||||
# author {
|
||||
# login
|
||||
# avatarUrl
|
||||
# url
|
||||
# }
|
||||
# title
|
||||
# createdAt
|
||||
# state
|
||||
# comments(first: 100) {
|
||||
# nodes {
|
||||
# createdAt
|
||||
# author {
|
||||
# login
|
||||
# avatarUrl
|
||||
# url
|
||||
# }
|
||||
# }
|
||||
# }
|
||||
# }
|
||||
# }
|
||||
# }
|
||||
# }
|
||||
# }
|
||||
# """
|
||||
|
||||
prs_query = """
|
||||
query Q($after: String) {
|
||||
repository(name: "langchain", owner: "langchain-ai") {
|
||||
pullRequests(first: 100, after: $after, states: MERGED) {
|
||||
edges {
|
||||
cursor
|
||||
node {
|
||||
changedFiles
|
||||
additions
|
||||
deletions
|
||||
number
|
||||
labels(first: 100) {
|
||||
nodes {
|
||||
name
|
||||
}
|
||||
}
|
||||
author {
|
||||
login
|
||||
avatarUrl
|
||||
url
|
||||
... on User {
|
||||
twitterUsername
|
||||
}
|
||||
}
|
||||
title
|
||||
createdAt
|
||||
state
|
||||
reviews(first:100) {
|
||||
nodes {
|
||||
author {
|
||||
login
|
||||
avatarUrl
|
||||
url
|
||||
... on User {
|
||||
twitterUsername
|
||||
}
|
||||
}
|
||||
state
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
"""
|
||||
|
||||
|
||||
class Author(BaseModel):
|
||||
login: str
|
||||
avatarUrl: str
|
||||
url: str
|
||||
twitterUsername: Union[str, None] = None
|
||||
|
||||
|
||||
# Issues and Discussions
|
||||
|
||||
|
||||
class CommentsNode(BaseModel):
|
||||
createdAt: datetime
|
||||
author: Union[Author, None] = None
|
||||
|
||||
|
||||
class Replies(BaseModel):
|
||||
nodes: List[CommentsNode]
|
||||
|
||||
|
||||
class DiscussionsCommentsNode(CommentsNode):
|
||||
replies: Replies
|
||||
|
||||
|
||||
class Comments(BaseModel):
|
||||
nodes: List[CommentsNode]
|
||||
|
||||
|
||||
class DiscussionsComments(BaseModel):
|
||||
nodes: List[DiscussionsCommentsNode]
|
||||
|
||||
|
||||
class IssuesNode(BaseModel):
|
||||
number: int
|
||||
author: Union[Author, None] = None
|
||||
title: str
|
||||
createdAt: datetime
|
||||
state: str
|
||||
comments: Comments
|
||||
|
||||
|
||||
class DiscussionsNode(BaseModel):
|
||||
number: int
|
||||
author: Union[Author, None] = None
|
||||
title: str
|
||||
createdAt: datetime
|
||||
comments: DiscussionsComments
|
||||
|
||||
|
||||
class IssuesEdge(BaseModel):
|
||||
cursor: str
|
||||
node: IssuesNode
|
||||
|
||||
|
||||
class DiscussionsEdge(BaseModel):
|
||||
cursor: str
|
||||
node: DiscussionsNode
|
||||
|
||||
|
||||
class Issues(BaseModel):
|
||||
edges: List[IssuesEdge]
|
||||
|
||||
|
||||
class Discussions(BaseModel):
|
||||
edges: List[DiscussionsEdge]
|
||||
|
||||
|
||||
class IssuesRepository(BaseModel):
|
||||
issues: Issues
|
||||
|
||||
|
||||
class DiscussionsRepository(BaseModel):
|
||||
discussions: Discussions
|
||||
|
||||
|
||||
class IssuesResponseData(BaseModel):
|
||||
repository: IssuesRepository
|
||||
|
||||
|
||||
class DiscussionsResponseData(BaseModel):
|
||||
repository: DiscussionsRepository
|
||||
|
||||
|
||||
class IssuesResponse(BaseModel):
|
||||
data: IssuesResponseData
|
||||
|
||||
|
||||
class DiscussionsResponse(BaseModel):
|
||||
data: DiscussionsResponseData
|
||||
|
||||
|
||||
# PRs
|
||||
|
||||
|
||||
class LabelNode(BaseModel):
|
||||
name: str
|
||||
|
||||
|
||||
class Labels(BaseModel):
|
||||
nodes: List[LabelNode]
|
||||
|
||||
|
||||
class ReviewNode(BaseModel):
|
||||
author: Union[Author, None] = None
|
||||
state: str
|
||||
|
||||
|
||||
class Reviews(BaseModel):
|
||||
nodes: List[ReviewNode]
|
||||
|
||||
|
||||
class PullRequestNode(BaseModel):
|
||||
number: int
|
||||
labels: Labels
|
||||
author: Union[Author, None] = None
|
||||
changedFiles: int
|
||||
additions: int
|
||||
deletions: int
|
||||
title: str
|
||||
createdAt: datetime
|
||||
state: str
|
||||
reviews: Reviews
|
||||
# comments: Comments
|
||||
|
||||
|
||||
class PullRequestEdge(BaseModel):
|
||||
cursor: str
|
||||
node: PullRequestNode
|
||||
|
||||
|
||||
class PullRequests(BaseModel):
|
||||
edges: List[PullRequestEdge]
|
||||
|
||||
|
||||
class PRsRepository(BaseModel):
|
||||
pullRequests: PullRequests
|
||||
|
||||
|
||||
class PRsResponseData(BaseModel):
|
||||
repository: PRsRepository
|
||||
|
||||
|
||||
class PRsResponse(BaseModel):
|
||||
data: PRsResponseData
|
||||
|
||||
|
||||
class Settings(BaseSettings):
|
||||
input_token: SecretStr
|
||||
github_repository: str
|
||||
httpx_timeout: int = 30
|
||||
|
||||
|
||||
def get_graphql_response(
|
||||
*,
|
||||
settings: Settings,
|
||||
query: str,
|
||||
after: Union[str, None] = None,
|
||||
category_id: Union[str, None] = None,
|
||||
) -> Dict[str, Any]:
|
||||
headers = {"Authorization": f"token {settings.input_token.get_secret_value()}"}
|
||||
# category_id is only used by one query, but GraphQL allows unused variables, so
|
||||
# keep it here for simplicity
|
||||
variables = {"after": after, "category_id": category_id}
|
||||
response = httpx.post(
|
||||
github_graphql_url,
|
||||
headers=headers,
|
||||
timeout=settings.httpx_timeout,
|
||||
json={"query": query, "variables": variables, "operationName": "Q"},
|
||||
)
|
||||
if response.status_code != 200:
|
||||
logging.error(
|
||||
f"Response was not 200, after: {after}, category_id: {category_id}"
|
||||
)
|
||||
logging.error(response.text)
|
||||
raise RuntimeError(response.text)
|
||||
data = response.json()
|
||||
if "errors" in data:
|
||||
logging.error(f"Errors in response, after: {after}, category_id: {category_id}")
|
||||
logging.error(data["errors"])
|
||||
logging.error(response.text)
|
||||
raise RuntimeError(response.text)
|
||||
return data
|
||||
|
||||
|
||||
# def get_graphql_issue_edges(*, settings: Settings, after: Union[str, None] = None):
|
||||
# data = get_graphql_response(settings=settings, query=issues_query, after=after)
|
||||
# graphql_response = IssuesResponse.model_validate(data)
|
||||
# return graphql_response.data.repository.issues.edges
|
||||
|
||||
|
||||
# def get_graphql_question_discussion_edges(
|
||||
# *,
|
||||
# settings: Settings,
|
||||
# after: Union[str, None] = None,
|
||||
# ):
|
||||
# data = get_graphql_response(
|
||||
# settings=settings,
|
||||
# query=discussions_query,
|
||||
# after=after,
|
||||
# category_id=questions_category_id,
|
||||
# )
|
||||
# graphql_response = DiscussionsResponse.model_validate(data)
|
||||
# return graphql_response.data.repository.discussions.edges
|
||||
|
||||
|
||||
def get_graphql_pr_edges(*, settings: Settings, after: Union[str, None] = None):
|
||||
if after is None:
|
||||
print("Querying PRs...")
|
||||
else:
|
||||
print(f"Querying PRs with cursor {after}...")
|
||||
data = get_graphql_response(
|
||||
settings=settings,
|
||||
query=prs_query,
|
||||
after=after
|
||||
)
|
||||
graphql_response = PRsResponse.model_validate(data)
|
||||
return graphql_response.data.repository.pullRequests.edges
|
||||
|
||||
|
||||
# def get_issues_experts(settings: Settings):
|
||||
# issue_nodes: List[IssuesNode] = []
|
||||
# issue_edges = get_graphql_issue_edges(settings=settings)
|
||||
|
||||
# while issue_edges:
|
||||
# for edge in issue_edges:
|
||||
# issue_nodes.append(edge.node)
|
||||
# last_edge = issue_edges[-1]
|
||||
# issue_edges = get_graphql_issue_edges(settings=settings, after=last_edge.cursor)
|
||||
|
||||
# commentors = Counter()
|
||||
# last_month_commentors = Counter()
|
||||
# authors: Dict[str, Author] = {}
|
||||
|
||||
# now = datetime.now(tz=timezone.utc)
|
||||
# one_month_ago = now - timedelta(days=30)
|
||||
|
||||
# for issue in issue_nodes:
|
||||
# issue_author_name = None
|
||||
# if issue.author:
|
||||
# authors[issue.author.login] = issue.author
|
||||
# issue_author_name = issue.author.login
|
||||
# issue_commentors = set()
|
||||
# for comment in issue.comments.nodes:
|
||||
# if comment.author:
|
||||
# authors[comment.author.login] = comment.author
|
||||
# if comment.author.login != issue_author_name:
|
||||
# issue_commentors.add(comment.author.login)
|
||||
# for author_name in issue_commentors:
|
||||
# commentors[author_name] += 1
|
||||
# if issue.createdAt > one_month_ago:
|
||||
# last_month_commentors[author_name] += 1
|
||||
|
||||
# return commentors, last_month_commentors, authors
|
||||
|
||||
|
||||
# def get_discussions_experts(settings: Settings):
|
||||
# discussion_nodes: List[DiscussionsNode] = []
|
||||
# discussion_edges = get_graphql_question_discussion_edges(settings=settings)
|
||||
|
||||
# while discussion_edges:
|
||||
# for discussion_edge in discussion_edges:
|
||||
# discussion_nodes.append(discussion_edge.node)
|
||||
# last_edge = discussion_edges[-1]
|
||||
# discussion_edges = get_graphql_question_discussion_edges(
|
||||
# settings=settings, after=last_edge.cursor
|
||||
# )
|
||||
|
||||
# commentors = Counter()
|
||||
# last_month_commentors = Counter()
|
||||
# authors: Dict[str, Author] = {}
|
||||
|
||||
# now = datetime.now(tz=timezone.utc)
|
||||
# one_month_ago = now - timedelta(days=30)
|
||||
|
||||
# for discussion in discussion_nodes:
|
||||
# discussion_author_name = None
|
||||
# if discussion.author:
|
||||
# authors[discussion.author.login] = discussion.author
|
||||
# discussion_author_name = discussion.author.login
|
||||
# discussion_commentors = set()
|
||||
# for comment in discussion.comments.nodes:
|
||||
# if comment.author:
|
||||
# authors[comment.author.login] = comment.author
|
||||
# if comment.author.login != discussion_author_name:
|
||||
# discussion_commentors.add(comment.author.login)
|
||||
# for reply in comment.replies.nodes:
|
||||
# if reply.author:
|
||||
# authors[reply.author.login] = reply.author
|
||||
# if reply.author.login != discussion_author_name:
|
||||
# discussion_commentors.add(reply.author.login)
|
||||
# for author_name in discussion_commentors:
|
||||
# commentors[author_name] += 1
|
||||
# if discussion.createdAt > one_month_ago:
|
||||
# last_month_commentors[author_name] += 1
|
||||
# return commentors, last_month_commentors, authors
|
||||
|
||||
|
||||
# def get_experts(settings: Settings):
|
||||
# (
|
||||
# discussions_commentors,
|
||||
# discussions_last_month_commentors,
|
||||
# discussions_authors,
|
||||
# ) = get_discussions_experts(settings=settings)
|
||||
# commentors = discussions_commentors
|
||||
# last_month_commentors = discussions_last_month_commentors
|
||||
# authors = {**discussions_authors}
|
||||
# return commentors, last_month_commentors, authors
|
||||
|
||||
|
||||
def _logistic(x, k):
|
||||
return x / (x + k)
|
||||
|
||||
|
||||
def get_contributors(settings: Settings):
|
||||
pr_nodes: List[PullRequestNode] = []
|
||||
pr_edges = get_graphql_pr_edges(settings=settings)
|
||||
|
||||
while pr_edges:
|
||||
for edge in pr_edges:
|
||||
pr_nodes.append(edge.node)
|
||||
last_edge = pr_edges[-1]
|
||||
pr_edges = get_graphql_pr_edges(settings=settings, after=last_edge.cursor)
|
||||
|
||||
contributors = Counter()
|
||||
contributor_scores = Counter()
|
||||
recent_contributor_scores = Counter()
|
||||
reviewers = Counter()
|
||||
authors: Dict[str, Author] = {}
|
||||
|
||||
for pr in pr_nodes:
|
||||
pr_reviewers: Set[str] = set()
|
||||
for review in pr.reviews.nodes:
|
||||
if review.author:
|
||||
authors[review.author.login] = review.author
|
||||
pr_reviewers.add(review.author.login)
|
||||
for reviewer in pr_reviewers:
|
||||
reviewers[reviewer] += 1
|
||||
if pr.author:
|
||||
authors[pr.author.login] = pr.author
|
||||
contributors[pr.author.login] += 1
|
||||
files_changed = pr.changedFiles
|
||||
lines_changed = pr.additions + pr.deletions
|
||||
score = _logistic(files_changed, 20) + _logistic(lines_changed, 100)
|
||||
contributor_scores[pr.author.login] += score
|
||||
three_months_ago = (datetime.now(timezone.utc) - timedelta(days=3*30))
|
||||
if pr.createdAt > three_months_ago:
|
||||
recent_contributor_scores[pr.author.login] += score
|
||||
return contributors, contributor_scores, recent_contributor_scores, reviewers, authors
|
||||
|
||||
|
||||
def get_top_users(
|
||||
*,
|
||||
counter: Counter,
|
||||
min_count: int,
|
||||
authors: Dict[str, Author],
|
||||
skip_users: Container[str],
|
||||
):
|
||||
users = []
|
||||
for commentor, count in counter.most_common():
|
||||
if commentor in skip_users:
|
||||
continue
|
||||
if count >= min_count:
|
||||
author = authors[commentor]
|
||||
users.append(
|
||||
{
|
||||
"login": commentor,
|
||||
"count": count,
|
||||
"avatarUrl": author.avatarUrl,
|
||||
"twitterUsername": author.twitterUsername,
|
||||
"url": author.url,
|
||||
}
|
||||
)
|
||||
return users
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
logging.basicConfig(level=logging.INFO)
|
||||
settings = Settings()
|
||||
logging.info(f"Using config: {settings.model_dump_json()}")
|
||||
g = Github(settings.input_token.get_secret_value())
|
||||
repo = g.get_repo(settings.github_repository)
|
||||
# question_commentors, question_last_month_commentors, question_authors = get_experts(
|
||||
# settings=settings
|
||||
# )
|
||||
contributors, contributor_scores, recent_contributor_scores, reviewers, pr_authors = get_contributors(
|
||||
settings=settings
|
||||
)
|
||||
# authors = {**question_authors, **pr_authors}
|
||||
authors = {**pr_authors}
|
||||
maintainers_logins = {
|
||||
"hwchase17",
|
||||
"agola11",
|
||||
"baskaryan",
|
||||
"hinthornw",
|
||||
"nfcampos",
|
||||
"efriis",
|
||||
"eyurtsev",
|
||||
"rlancemartin",
|
||||
"ccurme",
|
||||
"vbarda",
|
||||
}
|
||||
hidden_logins = {
|
||||
"dev2049",
|
||||
"vowelparrot",
|
||||
"obi1kenobi",
|
||||
"langchain-infra",
|
||||
"jacoblee93",
|
||||
"dqbd",
|
||||
"bracesproul",
|
||||
"akira",
|
||||
}
|
||||
bot_names = {"dosubot", "github-actions", "CodiumAI-Agent"}
|
||||
maintainers = []
|
||||
for login in maintainers_logins:
|
||||
user = authors[login]
|
||||
maintainers.append(
|
||||
{
|
||||
"login": login,
|
||||
"count": contributors[login], #+ question_commentors[login],
|
||||
"avatarUrl": user.avatarUrl,
|
||||
"twitterUsername": user.twitterUsername,
|
||||
"url": user.url,
|
||||
}
|
||||
)
|
||||
|
||||
# min_count_expert = 10
|
||||
# min_count_last_month = 3
|
||||
min_score_contributor = 1
|
||||
min_count_reviewer = 5
|
||||
skip_users = maintainers_logins | bot_names | hidden_logins
|
||||
# experts = get_top_users(
|
||||
# counter=question_commentors,
|
||||
# min_count=min_count_expert,
|
||||
# authors=authors,
|
||||
# skip_users=skip_users,
|
||||
# )
|
||||
# last_month_active = get_top_users(
|
||||
# counter=question_last_month_commentors,
|
||||
# min_count=min_count_last_month,
|
||||
# authors=authors,
|
||||
# skip_users=skip_users,
|
||||
# )
|
||||
top_recent_contributors = get_top_users(
|
||||
counter=recent_contributor_scores,
|
||||
min_count=min_score_contributor,
|
||||
authors=authors,
|
||||
skip_users=skip_users,
|
||||
)
|
||||
top_contributors = get_top_users(
|
||||
counter=contributor_scores,
|
||||
min_count=min_score_contributor,
|
||||
authors=authors,
|
||||
skip_users=skip_users,
|
||||
)
|
||||
top_reviewers = get_top_users(
|
||||
counter=reviewers,
|
||||
min_count=min_count_reviewer,
|
||||
authors=authors,
|
||||
skip_users=skip_users,
|
||||
)
|
||||
|
||||
people = {
|
||||
"maintainers": maintainers,
|
||||
# "experts": experts,
|
||||
# "last_month_active": last_month_active,
|
||||
"top_recent_contributors": top_recent_contributors,
|
||||
"top_contributors": top_contributors,
|
||||
"top_reviewers": top_reviewers,
|
||||
}
|
||||
people_path = Path("./docs/data/people.yml")
|
||||
people_old_content = people_path.read_text(encoding="utf-8")
|
||||
new_people_content = yaml.dump(
|
||||
people, sort_keys=False, width=200, allow_unicode=True
|
||||
)
|
||||
if (
|
||||
people_old_content == new_people_content
|
||||
):
|
||||
logging.info("The LangChain People data hasn't changed, finishing.")
|
||||
sys.exit(0)
|
||||
people_path.write_text(new_people_content, encoding="utf-8")
|
||||
logging.info("Setting up GitHub Actions git user")
|
||||
subprocess.run(["git", "config", "user.name", "github-actions"], check=True)
|
||||
subprocess.run(
|
||||
["git", "config", "user.email", "github-actions@github.com"], check=True
|
||||
)
|
||||
branch_name = "langchain/langchain-people"
|
||||
logging.info(f"Creating a new branch {branch_name}")
|
||||
subprocess.run(["git", "checkout", "-B", branch_name], check=True)
|
||||
logging.info("Adding updated file")
|
||||
subprocess.run(
|
||||
["git", "add", str(people_path)], check=True
|
||||
)
|
||||
logging.info("Committing updated file")
|
||||
message = "👥 Update LangChain people data"
|
||||
result = subprocess.run(["git", "commit", "-m", message], check=True)
|
||||
logging.info("Pushing branch")
|
||||
subprocess.run(["git", "push", "origin", branch_name, "-f"], check=True)
|
||||
logging.info("Creating PR")
|
||||
pr = repo.create_pull(title=message, body=message, base="master", head=branch_name)
|
||||
logging.info(f"Created PR: {pr.number}")
|
||||
logging.info("Finished")
|
||||
4
.github/actions/poetry_setup/action.yml
vendored
4
.github/actions/poetry_setup/action.yml
vendored
@@ -32,7 +32,7 @@ runs:
|
||||
with:
|
||||
python-version: ${{ inputs.python-version }}
|
||||
|
||||
- uses: actions/cache@v4
|
||||
- uses: actions/cache@v3
|
||||
id: cache-bin-poetry
|
||||
name: Cache Poetry binary - Python ${{ inputs.python-version }}
|
||||
env:
|
||||
@@ -79,7 +79,7 @@ runs:
|
||||
run: pipx install "poetry==$POETRY_VERSION" --python '${{ steps.setup-python.outputs.python-path }}' --verbose
|
||||
|
||||
- name: Restore pip and poetry cached dependencies
|
||||
uses: actions/cache@v4
|
||||
uses: actions/cache@v3
|
||||
env:
|
||||
SEGMENT_DOWNLOAD_TIMEOUT_MIN: "4"
|
||||
WORKDIR: ${{ inputs.working-directory == '' && '.' || inputs.working-directory }}
|
||||
|
||||
92
.github/scripts/check_diff.py
vendored
92
.github/scripts/check_diff.py
vendored
@@ -1,25 +1,17 @@
|
||||
import json
|
||||
import sys
|
||||
import os
|
||||
from typing import Dict
|
||||
|
||||
LANGCHAIN_DIRS = [
|
||||
LANGCHAIN_DIRS = {
|
||||
"libs/core",
|
||||
"libs/text-splitters",
|
||||
"libs/langchain",
|
||||
"libs/community",
|
||||
"libs/experimental",
|
||||
]
|
||||
"libs/community",
|
||||
}
|
||||
|
||||
if __name__ == "__main__":
|
||||
files = sys.argv[1:]
|
||||
|
||||
dirs_to_run: Dict[str, set] = {
|
||||
"lint": set(),
|
||||
"test": set(),
|
||||
"extended-test": set(),
|
||||
}
|
||||
docs_edited = False
|
||||
dirs_to_run = set()
|
||||
|
||||
if len(files) == 300:
|
||||
# max diff length is 300 files - there are likely files missing
|
||||
@@ -32,63 +24,27 @@ if __name__ == "__main__":
|
||||
".github/workflows",
|
||||
".github/tools",
|
||||
".github/actions",
|
||||
"libs/core",
|
||||
".github/scripts/check_diff.py",
|
||||
)
|
||||
):
|
||||
# add all LANGCHAIN_DIRS for infra changes
|
||||
dirs_to_run["extended-test"].update(LANGCHAIN_DIRS)
|
||||
dirs_to_run["lint"].add(".")
|
||||
|
||||
if any(file.startswith(dir_) for dir_ in LANGCHAIN_DIRS):
|
||||
# add that dir and all dirs after in LANGCHAIN_DIRS
|
||||
# for extended testing
|
||||
found = False
|
||||
for dir_ in LANGCHAIN_DIRS:
|
||||
if file.startswith(dir_):
|
||||
found = True
|
||||
if found:
|
||||
dirs_to_run["extended-test"].add(dir_)
|
||||
elif file.startswith("libs/standard-tests"):
|
||||
# TODO: update to include all packages that rely on standard-tests (all partner packages)
|
||||
# note: won't run on external repo partners
|
||||
dirs_to_run["lint"].add("libs/standard-tests")
|
||||
dirs_to_run["test"].add("libs/partners/mistralai")
|
||||
dirs_to_run["test"].add("libs/partners/openai")
|
||||
dirs_to_run["test"].add("libs/partners/anthropic")
|
||||
dirs_to_run["test"].add("libs/partners/ai21")
|
||||
dirs_to_run["test"].add("libs/partners/fireworks")
|
||||
dirs_to_run["test"].add("libs/partners/groq")
|
||||
|
||||
elif file.startswith("libs/cli"):
|
||||
# todo: add cli makefile
|
||||
pass
|
||||
elif file.startswith("libs/partners"):
|
||||
partner_dir = file.split("/")[2]
|
||||
if os.path.isdir(f"libs/partners/{partner_dir}") and [
|
||||
filename
|
||||
for filename in os.listdir(f"libs/partners/{partner_dir}")
|
||||
if not filename.startswith(".")
|
||||
] != ["README.md"]:
|
||||
dirs_to_run["test"].add(f"libs/partners/{partner_dir}")
|
||||
# Skip if the directory was deleted or is just a tombstone readme
|
||||
elif file.startswith("libs/"):
|
||||
raise ValueError(
|
||||
f"Unknown lib: {file}. check_diff.py likely needs "
|
||||
"an update for this new library!"
|
||||
dirs_to_run.update(LANGCHAIN_DIRS)
|
||||
elif "libs/community" in file:
|
||||
dirs_to_run.update(
|
||||
("libs/community", "libs/langchain", "libs/experimental")
|
||||
)
|
||||
elif any(file.startswith(p) for p in ["docs/", "templates/", "cookbook/"]):
|
||||
if file.startswith("docs/"):
|
||||
docs_edited = True
|
||||
dirs_to_run["lint"].add(".")
|
||||
|
||||
outputs = {
|
||||
"dirs-to-lint": list(
|
||||
dirs_to_run["lint"] | dirs_to_run["test"] | dirs_to_run["extended-test"]
|
||||
),
|
||||
"dirs-to-test": list(dirs_to_run["test"] | dirs_to_run["extended-test"]),
|
||||
"dirs-to-extended-test": list(dirs_to_run["extended-test"]),
|
||||
"docs-edited": "true" if docs_edited else "",
|
||||
}
|
||||
for key, value in outputs.items():
|
||||
json_output = json.dumps(value)
|
||||
print(f"{key}={json_output}")
|
||||
elif "libs/partners" in file:
|
||||
partner_dir = file.split("/")[2]
|
||||
if os.path.isdir(f"libs/partners/{partner_dir}"):
|
||||
dirs_to_run.add(f"libs/partners/{partner_dir}")
|
||||
# Skip if the directory was deleted
|
||||
elif "libs/langchain" in file:
|
||||
dirs_to_run.update(("libs/langchain", "libs/experimental"))
|
||||
elif "libs/experimental" in file:
|
||||
dirs_to_run.add("libs/experimental")
|
||||
elif file.startswith("libs/"):
|
||||
dirs_to_run.update(LANGCHAIN_DIRS)
|
||||
else:
|
||||
pass
|
||||
json_output = json.dumps(list(dirs_to_run))
|
||||
print(f"dirs-to-run={json_output}")
|
||||
|
||||
79
.github/scripts/get_min_versions.py
vendored
79
.github/scripts/get_min_versions.py
vendored
@@ -1,79 +0,0 @@
|
||||
import sys
|
||||
|
||||
import tomllib
|
||||
from packaging.version import parse as parse_version
|
||||
import re
|
||||
|
||||
MIN_VERSION_LIBS = [
|
||||
"langchain-core",
|
||||
"langchain-community",
|
||||
"langchain",
|
||||
"langchain-text-splitters",
|
||||
]
|
||||
|
||||
|
||||
def get_min_version(version: str) -> str:
|
||||
# base regex for x.x.x with cases for rc/post/etc
|
||||
# valid strings: https://peps.python.org/pep-0440/#public-version-identifiers
|
||||
vstring = r"\d+(?:\.\d+){0,2}(?:(?:a|b|rc|\.post|\.dev)\d+)?"
|
||||
# case ^x.x.x
|
||||
_match = re.match(f"^\\^({vstring})$", version)
|
||||
if _match:
|
||||
return _match.group(1)
|
||||
|
||||
# case >=x.x.x,<y.y.y
|
||||
_match = re.match(f"^>=({vstring}),<({vstring})$", version)
|
||||
if _match:
|
||||
_min = _match.group(1)
|
||||
_max = _match.group(2)
|
||||
assert parse_version(_min) < parse_version(_max)
|
||||
return _min
|
||||
|
||||
# case x.x.x
|
||||
_match = re.match(f"^({vstring})$", version)
|
||||
if _match:
|
||||
return _match.group(1)
|
||||
|
||||
raise ValueError(f"Unrecognized version format: {version}")
|
||||
|
||||
|
||||
def get_min_version_from_toml(toml_path: str):
|
||||
# Parse the TOML file
|
||||
with open(toml_path, "rb") as file:
|
||||
toml_data = tomllib.load(file)
|
||||
|
||||
# Get the dependencies from tool.poetry.dependencies
|
||||
dependencies = toml_data["tool"]["poetry"]["dependencies"]
|
||||
|
||||
# Initialize a dictionary to store the minimum versions
|
||||
min_versions = {}
|
||||
|
||||
# Iterate over the libs in MIN_VERSION_LIBS
|
||||
for lib in MIN_VERSION_LIBS:
|
||||
# Check if the lib is present in the dependencies
|
||||
if lib in dependencies:
|
||||
# Get the version string
|
||||
version_string = dependencies[lib]
|
||||
|
||||
if isinstance(version_string, dict):
|
||||
version_string = version_string["version"]
|
||||
|
||||
# Use parse_version to get the minimum supported version from version_string
|
||||
min_version = get_min_version(version_string)
|
||||
|
||||
# Store the minimum version in the min_versions dictionary
|
||||
min_versions[lib] = min_version
|
||||
|
||||
return min_versions
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
# Get the TOML file path from the command line argument
|
||||
toml_file = sys.argv[1]
|
||||
|
||||
# Call the function to get the minimum versions
|
||||
min_versions = get_min_version_from_toml(toml_file)
|
||||
|
||||
print(
|
||||
" ".join([f"{lib}=={version}" for lib, version in min_versions.items()])
|
||||
)
|
||||
7
.github/workflows/.codespell-exclude
vendored
7
.github/workflows/.codespell-exclude
vendored
@@ -1,7 +0,0 @@
|
||||
libs/community/langchain_community/llms/yuan2.py
|
||||
"NotIn": "not in",
|
||||
- `/checkin`: Check-in
|
||||
docs/docs/integrations/providers/trulens.mdx
|
||||
self.assertIn(
|
||||
from trulens_eval import Tru
|
||||
tru = Tru()
|
||||
110
.github/workflows/_all_ci.yml
vendored
Normal file
110
.github/workflows/_all_ci.yml
vendored
Normal file
@@ -0,0 +1,110 @@
|
||||
---
|
||||
name: langchain CI
|
||||
|
||||
on:
|
||||
workflow_call:
|
||||
inputs:
|
||||
working-directory:
|
||||
required: true
|
||||
type: string
|
||||
description: "From which folder this pipeline executes"
|
||||
workflow_dispatch:
|
||||
inputs:
|
||||
working-directory:
|
||||
required: true
|
||||
type: choice
|
||||
default: 'libs/langchain'
|
||||
options:
|
||||
- libs/langchain
|
||||
- libs/core
|
||||
- libs/experimental
|
||||
- libs/community
|
||||
|
||||
|
||||
# If another push to the same PR or branch happens while this workflow is still running,
|
||||
# cancel the earlier run in favor of the next run.
|
||||
#
|
||||
# There's no point in testing an outdated version of the code. GitHub only allows
|
||||
# a limited number of job runners to be active at the same time, so it's better to cancel
|
||||
# pointless jobs early so that more useful jobs can run sooner.
|
||||
concurrency:
|
||||
group: ${{ github.workflow }}-${{ github.ref }}-${{ inputs.working-directory }}
|
||||
cancel-in-progress: true
|
||||
|
||||
env:
|
||||
POETRY_VERSION: "1.7.1"
|
||||
|
||||
jobs:
|
||||
lint:
|
||||
name: "-"
|
||||
uses: ./.github/workflows/_lint.yml
|
||||
with:
|
||||
working-directory: ${{ inputs.working-directory }}
|
||||
secrets: inherit
|
||||
|
||||
test:
|
||||
name: "-"
|
||||
uses: ./.github/workflows/_test.yml
|
||||
with:
|
||||
working-directory: ${{ inputs.working-directory }}
|
||||
secrets: inherit
|
||||
|
||||
compile-integration-tests:
|
||||
name: "-"
|
||||
uses: ./.github/workflows/_compile_integration_test.yml
|
||||
with:
|
||||
working-directory: ${{ inputs.working-directory }}
|
||||
secrets: inherit
|
||||
|
||||
dependencies:
|
||||
name: "-"
|
||||
uses: ./.github/workflows/_dependencies.yml
|
||||
with:
|
||||
working-directory: ${{ inputs.working-directory }}
|
||||
secrets: inherit
|
||||
|
||||
extended-tests:
|
||||
name: "make extended_tests #${{ matrix.python-version }}"
|
||||
runs-on: ubuntu-latest
|
||||
strategy:
|
||||
matrix:
|
||||
python-version:
|
||||
- "3.8"
|
||||
- "3.9"
|
||||
- "3.10"
|
||||
- "3.11"
|
||||
defaults:
|
||||
run:
|
||||
working-directory: ${{ inputs.working-directory }}
|
||||
if: ${{ ! startsWith(inputs.working-directory, 'libs/partners/') }}
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
|
||||
- name: Set up Python ${{ matrix.python-version }} + Poetry ${{ env.POETRY_VERSION }}
|
||||
uses: "./.github/actions/poetry_setup"
|
||||
with:
|
||||
python-version: ${{ matrix.python-version }}
|
||||
poetry-version: ${{ env.POETRY_VERSION }}
|
||||
working-directory: ${{ inputs.working-directory }}
|
||||
cache-key: extended
|
||||
|
||||
- name: Install dependencies
|
||||
shell: bash
|
||||
run: |
|
||||
echo "Running extended tests, installing dependencies with poetry..."
|
||||
poetry install -E extended_testing --with test
|
||||
|
||||
- name: Run extended tests
|
||||
run: make extended_tests
|
||||
|
||||
- name: Ensure the tests did not create any additional files
|
||||
shell: bash
|
||||
run: |
|
||||
set -eu
|
||||
|
||||
STATUS="$(git status)"
|
||||
echo "$STATUS"
|
||||
|
||||
# grep will exit non-zero if the target message isn't found,
|
||||
# and `set -e` above will cause the step to fail.
|
||||
echo "$STATUS" | grep 'nothing to commit, working tree clean'
|
||||
4
.github/workflows/_dependencies.yml
vendored
4
.github/workflows/_dependencies.yml
vendored
@@ -63,8 +63,6 @@ jobs:
|
||||
- name: Install the opposite major version of pydantic
|
||||
# If normal tests use pydantic v1, here we'll use v2, and vice versa.
|
||||
shell: bash
|
||||
# airbyte currently doesn't support pydantic v2
|
||||
if: ${{ !startsWith(inputs.working-directory, 'libs/partners/airbyte') }}
|
||||
run: |
|
||||
# Determine the major part of pydantic version
|
||||
REGULAR_VERSION=$(poetry run python -c "import pydantic; print(pydantic.__version__)" | cut -d. -f1)
|
||||
@@ -99,8 +97,6 @@ jobs:
|
||||
fi
|
||||
echo "Found pydantic version ${CURRENT_VERSION}, as expected"
|
||||
- name: Run pydantic compatibility tests
|
||||
# airbyte currently doesn't support pydantic v2
|
||||
if: ${{ !startsWith(inputs.working-directory, 'libs/partners/airbyte') }}
|
||||
shell: bash
|
||||
run: make test
|
||||
|
||||
|
||||
22
.github/workflows/_integration_test.yml
vendored
22
.github/workflows/_integration_test.yml
vendored
@@ -38,11 +38,6 @@ jobs:
|
||||
shell: bash
|
||||
run: poetry install --with test,test_integration
|
||||
|
||||
- name: Install deps outside pyproject
|
||||
if: ${{ startsWith(inputs.working-directory, 'libs/community/') }}
|
||||
shell: bash
|
||||
run: poetry run pip install "boto3<2" "google-cloud-aiplatform<2"
|
||||
|
||||
- name: 'Authenticate to Google Cloud'
|
||||
id: 'auth'
|
||||
uses: google-github-actions/auth@v2
|
||||
@@ -52,33 +47,16 @@ jobs:
|
||||
- name: Run integration tests
|
||||
shell: bash
|
||||
env:
|
||||
AI21_API_KEY: ${{ secrets.AI21_API_KEY }}
|
||||
GOOGLE_API_KEY: ${{ secrets.GOOGLE_API_KEY }}
|
||||
ANTHROPIC_API_KEY: ${{ secrets.ANTHROPIC_API_KEY }}
|
||||
MISTRAL_API_KEY: ${{ secrets.MISTRAL_API_KEY }}
|
||||
TOGETHER_API_KEY: ${{ secrets.TOGETHER_API_KEY }}
|
||||
OPENAI_API_KEY: ${{ secrets.OPENAI_API_KEY }}
|
||||
GROQ_API_KEY: ${{ secrets.GROQ_API_KEY }}
|
||||
NVIDIA_API_KEY: ${{ secrets.NVIDIA_API_KEY }}
|
||||
GOOGLE_SEARCH_API_KEY: ${{ secrets.GOOGLE_SEARCH_API_KEY }}
|
||||
GOOGLE_CSE_ID: ${{ secrets.GOOGLE_CSE_ID }}
|
||||
EXA_API_KEY: ${{ secrets.EXA_API_KEY }}
|
||||
NOMIC_API_KEY: ${{ secrets.NOMIC_API_KEY }}
|
||||
WATSONX_APIKEY: ${{ secrets.WATSONX_APIKEY }}
|
||||
WATSONX_PROJECT_ID: ${{ secrets.WATSONX_PROJECT_ID }}
|
||||
PINECONE_API_KEY: ${{ secrets.PINECONE_API_KEY }}
|
||||
PINECONE_ENVIRONMENT: ${{ secrets.PINECONE_ENVIRONMENT }}
|
||||
ASTRA_DB_API_ENDPOINT: ${{ secrets.ASTRA_DB_API_ENDPOINT }}
|
||||
ASTRA_DB_APPLICATION_TOKEN: ${{ secrets.ASTRA_DB_APPLICATION_TOKEN }}
|
||||
ASTRA_DB_KEYSPACE: ${{ secrets.ASTRA_DB_KEYSPACE }}
|
||||
ES_URL: ${{ secrets.ES_URL }}
|
||||
ES_CLOUD_ID: ${{ secrets.ES_CLOUD_ID }}
|
||||
ES_API_KEY: ${{ secrets.ES_API_KEY }}
|
||||
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }} # for airbyte
|
||||
MONGODB_ATLAS_URI: ${{ secrets.MONGODB_ATLAS_URI }}
|
||||
VOYAGE_API_KEY: ${{ secrets.VOYAGE_API_KEY }}
|
||||
COHERE_API_KEY: ${{ secrets.COHERE_API_KEY }}
|
||||
UPSTAGE_API_KEY: ${{ secrets.UPSTAGE_API_KEY }}
|
||||
run: |
|
||||
make integration_tests
|
||||
|
||||
|
||||
12
.github/workflows/_lint.yml
vendored
12
.github/workflows/_lint.yml
vendored
@@ -80,7 +80,7 @@ jobs:
|
||||
poetry run pip install -e "$LANGCHAIN_LOCATION"
|
||||
|
||||
- name: Get .mypy_cache to speed up mypy
|
||||
uses: actions/cache@v4
|
||||
uses: actions/cache@v3
|
||||
env:
|
||||
SEGMENT_DOWNLOAD_TIMEOUT_MIN: "2"
|
||||
with:
|
||||
@@ -94,7 +94,7 @@ jobs:
|
||||
run: |
|
||||
make lint_package
|
||||
|
||||
- name: Install unit test dependencies
|
||||
- name: Install test dependencies
|
||||
# Also installs dev/lint/test/typing dependencies, to ensure we have
|
||||
# type hints for as many of our libraries as possible.
|
||||
# This helps catch errors that require dependencies to be spotted, for example:
|
||||
@@ -103,18 +103,12 @@ jobs:
|
||||
# If you change this configuration, make sure to change the `cache-key`
|
||||
# in the `poetry_setup` action above to stop using the old cache.
|
||||
# It doesn't matter how you change it, any change will cause a cache-bust.
|
||||
if: ${{ ! startsWith(inputs.working-directory, 'libs/partners/') }}
|
||||
working-directory: ${{ inputs.working-directory }}
|
||||
run: |
|
||||
poetry install --with test
|
||||
- name: Install unit+integration test dependencies
|
||||
if: ${{ startsWith(inputs.working-directory, 'libs/partners/') }}
|
||||
working-directory: ${{ inputs.working-directory }}
|
||||
run: |
|
||||
poetry install --with test,test_integration
|
||||
|
||||
- name: Get .mypy_cache_test to speed up mypy
|
||||
uses: actions/cache@v4
|
||||
uses: actions/cache@v3
|
||||
env:
|
||||
SEGMENT_DOWNLOAD_TIMEOUT_MIN: "2"
|
||||
with:
|
||||
|
||||
140
.github/workflows/_release.yml
vendored
140
.github/workflows/_release.yml
vendored
@@ -13,19 +13,14 @@ on:
|
||||
required: true
|
||||
type: string
|
||||
default: 'libs/langchain'
|
||||
dangerous-nonmaster-release:
|
||||
required: false
|
||||
type: boolean
|
||||
default: false
|
||||
description: "Release from a non-master branch (danger!)"
|
||||
|
||||
env:
|
||||
PYTHON_VERSION: "3.11"
|
||||
PYTHON_VERSION: "3.10"
|
||||
POETRY_VERSION: "1.7.1"
|
||||
|
||||
jobs:
|
||||
build:
|
||||
if: github.ref == 'refs/heads/master' || inputs.dangerous-nonmaster-release
|
||||
if: github.ref == 'refs/heads/master'
|
||||
environment: Scheduled testing
|
||||
runs-on: ubuntu-latest
|
||||
|
||||
@@ -60,7 +55,7 @@ jobs:
|
||||
working-directory: ${{ inputs.working-directory }}
|
||||
|
||||
- name: Upload build
|
||||
uses: actions/upload-artifact@v4
|
||||
uses: actions/upload-artifact@v3
|
||||
with:
|
||||
name: dist
|
||||
path: ${{ inputs.working-directory }}/dist/
|
||||
@@ -72,78 +67,19 @@ jobs:
|
||||
run: |
|
||||
echo pkg-name="$(poetry version | cut -d ' ' -f 1)" >> $GITHUB_OUTPUT
|
||||
echo version="$(poetry version --short)" >> $GITHUB_OUTPUT
|
||||
release-notes:
|
||||
needs:
|
||||
- build
|
||||
runs-on: ubuntu-latest
|
||||
outputs:
|
||||
release-body: ${{ steps.generate-release-body.outputs.release-body }}
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
with:
|
||||
repository: langchain-ai/langchain
|
||||
path: langchain
|
||||
sparse-checkout: | # this only grabs files for relevant dir
|
||||
${{ inputs.working-directory }}
|
||||
ref: master # this scopes to just master branch
|
||||
fetch-depth: 0 # this fetches entire commit history
|
||||
- name: Check Tags
|
||||
id: check-tags
|
||||
shell: bash
|
||||
working-directory: langchain/${{ inputs.working-directory }}
|
||||
env:
|
||||
PKG_NAME: ${{ needs.build.outputs.pkg-name }}
|
||||
VERSION: ${{ needs.build.outputs.version }}
|
||||
run: |
|
||||
REGEX="^$PKG_NAME==\\d+\\.\\d+\\.\\d+\$"
|
||||
echo $REGEX
|
||||
PREV_TAG=$(git tag --sort=-creatordate | grep -P $REGEX || true | head -1)
|
||||
TAG="${PKG_NAME}==${VERSION}"
|
||||
if [ "$TAG" == "$PREV_TAG" ]; then
|
||||
echo "No new version to release"
|
||||
exit 1
|
||||
fi
|
||||
echo tag="$TAG" >> $GITHUB_OUTPUT
|
||||
echo prev-tag="$PREV_TAG" >> $GITHUB_OUTPUT
|
||||
- name: Generate release body
|
||||
id: generate-release-body
|
||||
working-directory: langchain
|
||||
env:
|
||||
WORKING_DIR: ${{ inputs.working-directory }}
|
||||
PKG_NAME: ${{ needs.build.outputs.pkg-name }}
|
||||
TAG: ${{ steps.check-tags.outputs.tag }}
|
||||
PREV_TAG: ${{ steps.check-tags.outputs.prev-tag }}
|
||||
run: |
|
||||
PREAMBLE="Changes since $PREV_TAG"
|
||||
# if PREV_TAG is empty, then we are releasing the first version
|
||||
if [ -z "$PREV_TAG" ]; then
|
||||
PREAMBLE="Initial release"
|
||||
PREV_TAG=$(git rev-list --max-parents=0 HEAD)
|
||||
fi
|
||||
{
|
||||
echo 'release-body<<EOF'
|
||||
echo "# Release $TAG"
|
||||
echo $PREAMBLE
|
||||
echo
|
||||
git log --format="%s" "$PREV_TAG"..HEAD -- $WORKING_DIR
|
||||
echo EOF
|
||||
} >> "$GITHUB_OUTPUT"
|
||||
|
||||
test-pypi-publish:
|
||||
needs:
|
||||
- build
|
||||
- release-notes
|
||||
uses:
|
||||
./.github/workflows/_test_release.yml
|
||||
with:
|
||||
working-directory: ${{ inputs.working-directory }}
|
||||
dangerous-nonmaster-release: ${{ inputs.dangerous-nonmaster-release }}
|
||||
secrets: inherit
|
||||
|
||||
pre-release-checks:
|
||||
needs:
|
||||
- build
|
||||
- release-notes
|
||||
- test-pypi-publish
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
@@ -176,7 +112,7 @@ jobs:
|
||||
PKG_NAME: ${{ needs.build.outputs.pkg-name }}
|
||||
VERSION: ${{ needs.build.outputs.version }}
|
||||
# Here we use:
|
||||
# - The default regular PyPI index as the *primary* index, meaning
|
||||
# - The default regular PyPI index as the *primary* index, meaning
|
||||
# that it takes priority (https://pypi.org/simple)
|
||||
# - The test PyPI index as an extra index, so that any dependencies that
|
||||
# are not found on test PyPI can be resolved and installed anyway.
|
||||
@@ -221,24 +157,6 @@ jobs:
|
||||
run: make tests
|
||||
working-directory: ${{ inputs.working-directory }}
|
||||
|
||||
- name: Get minimum versions
|
||||
working-directory: ${{ inputs.working-directory }}
|
||||
id: min-version
|
||||
run: |
|
||||
poetry run pip install packaging
|
||||
min_versions="$(poetry run python $GITHUB_WORKSPACE/.github/scripts/get_min_versions.py pyproject.toml)"
|
||||
echo "min-versions=$min_versions" >> "$GITHUB_OUTPUT"
|
||||
echo "min-versions=$min_versions"
|
||||
|
||||
- name: Run unit tests with minimum dependency versions
|
||||
if: ${{ steps.min-version.outputs.min-versions != '' }}
|
||||
env:
|
||||
MIN_VERSIONS: ${{ steps.min-version.outputs.min-versions }}
|
||||
run: |
|
||||
poetry run pip install --force-reinstall $MIN_VERSIONS --editable .
|
||||
make tests
|
||||
working-directory: ${{ inputs.working-directory }}
|
||||
|
||||
- name: 'Authenticate to Google Cloud'
|
||||
id: 'auth'
|
||||
uses: google-github-actions/auth@v2
|
||||
@@ -248,46 +166,29 @@ jobs:
|
||||
- name: Run integration tests
|
||||
if: ${{ startsWith(inputs.working-directory, 'libs/partners/') }}
|
||||
env:
|
||||
AI21_API_KEY: ${{ secrets.AI21_API_KEY }}
|
||||
GOOGLE_API_KEY: ${{ secrets.GOOGLE_API_KEY }}
|
||||
ANTHROPIC_API_KEY: ${{ secrets.ANTHROPIC_API_KEY }}
|
||||
MISTRAL_API_KEY: ${{ secrets.MISTRAL_API_KEY }}
|
||||
TOGETHER_API_KEY: ${{ secrets.TOGETHER_API_KEY }}
|
||||
OPENAI_API_KEY: ${{ secrets.OPENAI_API_KEY }}
|
||||
AZURE_OPENAI_API_VERSION: ${{ secrets.AZURE_OPENAI_API_VERSION }}
|
||||
AZURE_OPENAI_API_BASE: ${{ secrets.AZURE_OPENAI_API_BASE }}
|
||||
AZURE_OPENAI_API_KEY: ${{ secrets.AZURE_OPENAI_API_KEY }}
|
||||
AZURE_OPENAI_CHAT_DEPLOYMENT_NAME: ${{ secrets.AZURE_OPENAI_CHAT_DEPLOYMENT_NAME }}
|
||||
AZURE_OPENAI_LLM_DEPLOYMENT_NAME: ${{ secrets.AZURE_OPENAI_LLM_DEPLOYMENT_NAME }}
|
||||
AZURE_OPENAI_EMBEDDINGS_DEPLOYMENT_NAME: ${{ secrets.AZURE_OPENAI_EMBEDDINGS_DEPLOYMENT_NAME }}
|
||||
NVIDIA_API_KEY: ${{ secrets.NVIDIA_API_KEY }}
|
||||
GOOGLE_SEARCH_API_KEY: ${{ secrets.GOOGLE_SEARCH_API_KEY }}
|
||||
GOOGLE_CSE_ID: ${{ secrets.GOOGLE_CSE_ID }}
|
||||
GROQ_API_KEY: ${{ secrets.GROQ_API_KEY }}
|
||||
EXA_API_KEY: ${{ secrets.EXA_API_KEY }}
|
||||
NOMIC_API_KEY: ${{ secrets.NOMIC_API_KEY }}
|
||||
WATSONX_APIKEY: ${{ secrets.WATSONX_APIKEY }}
|
||||
WATSONX_PROJECT_ID: ${{ secrets.WATSONX_PROJECT_ID }}
|
||||
PINECONE_API_KEY: ${{ secrets.PINECONE_API_KEY }}
|
||||
PINECONE_ENVIRONMENT: ${{ secrets.PINECONE_ENVIRONMENT }}
|
||||
ASTRA_DB_API_ENDPOINT: ${{ secrets.ASTRA_DB_API_ENDPOINT }}
|
||||
ASTRA_DB_APPLICATION_TOKEN: ${{ secrets.ASTRA_DB_APPLICATION_TOKEN }}
|
||||
ASTRA_DB_KEYSPACE: ${{ secrets.ASTRA_DB_KEYSPACE }}
|
||||
ES_URL: ${{ secrets.ES_URL }}
|
||||
ES_CLOUD_ID: ${{ secrets.ES_CLOUD_ID }}
|
||||
ES_API_KEY: ${{ secrets.ES_API_KEY }}
|
||||
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }} # for airbyte
|
||||
MONGODB_ATLAS_URI: ${{ secrets.MONGODB_ATLAS_URI }}
|
||||
VOYAGE_API_KEY: ${{ secrets.VOYAGE_API_KEY }}
|
||||
UPSTAGE_API_KEY: ${{ secrets.UPSTAGE_API_KEY }}
|
||||
FIREWORKS_API_KEY: ${{ secrets.FIREWORKS_API_KEY }}
|
||||
run: make integration_tests
|
||||
working-directory: ${{ inputs.working-directory }}
|
||||
|
||||
- name: Run unit tests with minimum dependency versions
|
||||
if: ${{ (inputs.working-directory == 'libs/langchain') || (inputs.working-directory == 'libs/community') || (inputs.working-directory == 'libs/experimental') }}
|
||||
run: |
|
||||
poetry run pip install -r _test_minimum_requirements.txt
|
||||
make tests
|
||||
working-directory: ${{ inputs.working-directory }}
|
||||
|
||||
publish:
|
||||
needs:
|
||||
- build
|
||||
- release-notes
|
||||
- test-pypi-publish
|
||||
- pre-release-checks
|
||||
runs-on: ubuntu-latest
|
||||
@@ -314,7 +215,7 @@ jobs:
|
||||
working-directory: ${{ inputs.working-directory }}
|
||||
cache-key: release
|
||||
|
||||
- uses: actions/download-artifact@v4
|
||||
- uses: actions/download-artifact@v3
|
||||
with:
|
||||
name: dist
|
||||
path: ${{ inputs.working-directory }}/dist/
|
||||
@@ -329,7 +230,6 @@ jobs:
|
||||
mark-release:
|
||||
needs:
|
||||
- build
|
||||
- release-notes
|
||||
- test-pypi-publish
|
||||
- pre-release-checks
|
||||
- publish
|
||||
@@ -354,18 +254,18 @@ jobs:
|
||||
working-directory: ${{ inputs.working-directory }}
|
||||
cache-key: release
|
||||
|
||||
- uses: actions/download-artifact@v4
|
||||
- uses: actions/download-artifact@v3
|
||||
with:
|
||||
name: dist
|
||||
path: ${{ inputs.working-directory }}/dist/
|
||||
|
||||
- name: Create Tag
|
||||
|
||||
- name: Create Release
|
||||
uses: ncipollo/release-action@v1
|
||||
if: ${{ inputs.working-directory == 'libs/langchain' }}
|
||||
with:
|
||||
artifacts: "dist/*"
|
||||
token: ${{ secrets.GITHUB_TOKEN }}
|
||||
generateReleaseNotes: false
|
||||
tag: ${{needs.build.outputs.pkg-name}}==${{ needs.build.outputs.version }}
|
||||
body: ${{ needs.release-notes.outputs.release-body }}
|
||||
commit: ${{ github.sha }}
|
||||
makeLatest: ${{ needs.build.outputs.pkg-name == 'langchain-core'}}
|
||||
draft: false
|
||||
generateReleaseNotes: true
|
||||
tag: v${{ needs.build.outputs.version }}
|
||||
commit: master
|
||||
|
||||
50
.github/workflows/_test_doc_imports.yml
vendored
50
.github/workflows/_test_doc_imports.yml
vendored
@@ -1,50 +0,0 @@
|
||||
name: test_doc_imports
|
||||
|
||||
on:
|
||||
workflow_call:
|
||||
|
||||
env:
|
||||
POETRY_VERSION: "1.7.1"
|
||||
|
||||
jobs:
|
||||
build:
|
||||
runs-on: ubuntu-latest
|
||||
strategy:
|
||||
matrix:
|
||||
python-version:
|
||||
- "3.11"
|
||||
name: "check doc imports #${{ matrix.python-version }}"
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
|
||||
- name: Set up Python ${{ matrix.python-version }} + Poetry ${{ env.POETRY_VERSION }}
|
||||
uses: "./.github/actions/poetry_setup"
|
||||
with:
|
||||
python-version: ${{ matrix.python-version }}
|
||||
poetry-version: ${{ env.POETRY_VERSION }}
|
||||
cache-key: core
|
||||
|
||||
- name: Install dependencies
|
||||
shell: bash
|
||||
run: poetry install --with test
|
||||
|
||||
- name: Install langchain editable
|
||||
run: |
|
||||
poetry run pip install -e libs/core libs/langchain libs/community libs/experimental
|
||||
|
||||
- name: Check doc imports
|
||||
shell: bash
|
||||
run: |
|
||||
poetry run python docs/scripts/check_imports.py
|
||||
|
||||
- name: Ensure the test did not create any additional files
|
||||
shell: bash
|
||||
run: |
|
||||
set -eu
|
||||
|
||||
STATUS="$(git status)"
|
||||
echo "$STATUS"
|
||||
|
||||
# grep will exit non-zero if the target message isn't found,
|
||||
# and `set -e` above will cause the step to fail.
|
||||
echo "$STATUS" | grep 'nothing to commit, working tree clean'
|
||||
11
.github/workflows/_test_release.yml
vendored
11
.github/workflows/_test_release.yml
vendored
@@ -7,11 +7,6 @@ on:
|
||||
required: true
|
||||
type: string
|
||||
description: "From which folder this pipeline executes"
|
||||
dangerous-nonmaster-release:
|
||||
required: false
|
||||
type: boolean
|
||||
default: false
|
||||
description: "Release from a non-master branch (danger!)"
|
||||
|
||||
env:
|
||||
POETRY_VERSION: "1.7.1"
|
||||
@@ -19,7 +14,7 @@ env:
|
||||
|
||||
jobs:
|
||||
build:
|
||||
if: github.ref == 'refs/heads/master' || inputs.dangerous-nonmaster-release
|
||||
if: github.ref == 'refs/heads/master'
|
||||
runs-on: ubuntu-latest
|
||||
|
||||
outputs:
|
||||
@@ -53,7 +48,7 @@ jobs:
|
||||
working-directory: ${{ inputs.working-directory }}
|
||||
|
||||
- name: Upload build
|
||||
uses: actions/upload-artifact@v4
|
||||
uses: actions/upload-artifact@v3
|
||||
with:
|
||||
name: test-dist
|
||||
path: ${{ inputs.working-directory }}/dist/
|
||||
@@ -81,7 +76,7 @@ jobs:
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
|
||||
- uses: actions/download-artifact@v4
|
||||
- uses: actions/download-artifact@v3
|
||||
with:
|
||||
name: test-dist
|
||||
path: ${{ inputs.working-directory }}/dist/
|
||||
|
||||
24
.github/workflows/check-broken-links.yml
vendored
24
.github/workflows/check-broken-links.yml
vendored
@@ -1,24 +0,0 @@
|
||||
name: Check Broken Links
|
||||
|
||||
on:
|
||||
workflow_dispatch:
|
||||
schedule:
|
||||
- cron: '0 13 * * *'
|
||||
|
||||
jobs:
|
||||
check-links:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
- name: Use Node.js 18.x
|
||||
uses: actions/setup-node@v3
|
||||
with:
|
||||
node-version: 18.x
|
||||
cache: "yarn"
|
||||
cache-dependency-path: ./docs/yarn.lock
|
||||
- name: Install dependencies
|
||||
run: yarn install --immutable --mode=skip-build
|
||||
working-directory: ./docs
|
||||
- name: Check broken links
|
||||
run: yarn check-broken-links
|
||||
working-directory: ./docs
|
||||
122
.github/workflows/check_diffs.yml
vendored
122
.github/workflows/check_diffs.yml
vendored
@@ -16,9 +16,6 @@ concurrency:
|
||||
group: ${{ github.workflow }}-${{ github.ref }}
|
||||
cancel-in-progress: true
|
||||
|
||||
env:
|
||||
POETRY_VERSION: "1.7.1"
|
||||
|
||||
jobs:
|
||||
build:
|
||||
runs-on: ubuntu-latest
|
||||
@@ -33,126 +30,15 @@ jobs:
|
||||
run: |
|
||||
python .github/scripts/check_diff.py ${{ steps.files.outputs.all }} >> $GITHUB_OUTPUT
|
||||
outputs:
|
||||
dirs-to-lint: ${{ steps.set-matrix.outputs.dirs-to-lint }}
|
||||
dirs-to-test: ${{ steps.set-matrix.outputs.dirs-to-test }}
|
||||
dirs-to-extended-test: ${{ steps.set-matrix.outputs.dirs-to-extended-test }}
|
||||
docs-edited: ${{ steps.set-matrix.outputs.docs-edited }}
|
||||
lint:
|
||||
dirs-to-run: ${{ steps.set-matrix.outputs.dirs-to-run }}
|
||||
ci:
|
||||
name: cd ${{ matrix.working-directory }}
|
||||
needs: [ build ]
|
||||
if: ${{ needs.build.outputs.dirs-to-lint != '[]' }}
|
||||
strategy:
|
||||
matrix:
|
||||
working-directory: ${{ fromJson(needs.build.outputs.dirs-to-lint) }}
|
||||
uses: ./.github/workflows/_lint.yml
|
||||
working-directory: ${{ fromJson(needs.build.outputs.dirs-to-run) }}
|
||||
uses: ./.github/workflows/_all_ci.yml
|
||||
with:
|
||||
working-directory: ${{ matrix.working-directory }}
|
||||
secrets: inherit
|
||||
|
||||
test:
|
||||
name: cd ${{ matrix.working-directory }}
|
||||
needs: [ build ]
|
||||
if: ${{ needs.build.outputs.dirs-to-test != '[]' }}
|
||||
strategy:
|
||||
matrix:
|
||||
working-directory: ${{ fromJson(needs.build.outputs.dirs-to-test) }}
|
||||
uses: ./.github/workflows/_test.yml
|
||||
with:
|
||||
working-directory: ${{ matrix.working-directory }}
|
||||
secrets: inherit
|
||||
|
||||
test-doc-imports:
|
||||
needs: [ build ]
|
||||
if: ${{ needs.build.outputs.dirs-to-test != '[]' || needs.build.outputs.docs-edited }}
|
||||
uses: ./.github/workflows/_test_doc_imports.yml
|
||||
secrets: inherit
|
||||
|
||||
compile-integration-tests:
|
||||
name: cd ${{ matrix.working-directory }}
|
||||
needs: [ build ]
|
||||
if: ${{ needs.build.outputs.dirs-to-test != '[]' }}
|
||||
strategy:
|
||||
matrix:
|
||||
working-directory: ${{ fromJson(needs.build.outputs.dirs-to-test) }}
|
||||
uses: ./.github/workflows/_compile_integration_test.yml
|
||||
with:
|
||||
working-directory: ${{ matrix.working-directory }}
|
||||
secrets: inherit
|
||||
|
||||
dependencies:
|
||||
name: cd ${{ matrix.working-directory }}
|
||||
needs: [ build ]
|
||||
if: ${{ needs.build.outputs.dirs-to-test != '[]' }}
|
||||
strategy:
|
||||
matrix:
|
||||
working-directory: ${{ fromJson(needs.build.outputs.dirs-to-test) }}
|
||||
uses: ./.github/workflows/_dependencies.yml
|
||||
with:
|
||||
working-directory: ${{ matrix.working-directory }}
|
||||
secrets: inherit
|
||||
|
||||
extended-tests:
|
||||
name: "cd ${{ matrix.working-directory }} / make extended_tests #${{ matrix.python-version }}"
|
||||
needs: [ build ]
|
||||
if: ${{ needs.build.outputs.dirs-to-extended-test != '[]' }}
|
||||
strategy:
|
||||
matrix:
|
||||
# note different variable for extended test dirs
|
||||
working-directory: ${{ fromJson(needs.build.outputs.dirs-to-extended-test) }}
|
||||
python-version:
|
||||
- "3.8"
|
||||
- "3.9"
|
||||
- "3.10"
|
||||
- "3.11"
|
||||
runs-on: ubuntu-latest
|
||||
defaults:
|
||||
run:
|
||||
working-directory: ${{ matrix.working-directory }}
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
|
||||
- name: Set up Python ${{ matrix.python-version }} + Poetry ${{ env.POETRY_VERSION }}
|
||||
uses: "./.github/actions/poetry_setup"
|
||||
with:
|
||||
python-version: ${{ matrix.python-version }}
|
||||
poetry-version: ${{ env.POETRY_VERSION }}
|
||||
working-directory: ${{ matrix.working-directory }}
|
||||
cache-key: extended
|
||||
|
||||
- name: Install dependencies
|
||||
shell: bash
|
||||
run: |
|
||||
echo "Running extended tests, installing dependencies with poetry..."
|
||||
poetry install -E extended_testing --with test
|
||||
|
||||
- name: Run extended tests
|
||||
run: make extended_tests
|
||||
|
||||
- name: Ensure the tests did not create any additional files
|
||||
shell: bash
|
||||
run: |
|
||||
set -eu
|
||||
|
||||
STATUS="$(git status)"
|
||||
echo "$STATUS"
|
||||
|
||||
# grep will exit non-zero if the target message isn't found,
|
||||
# and `set -e` above will cause the step to fail.
|
||||
echo "$STATUS" | grep 'nothing to commit, working tree clean'
|
||||
ci_success:
|
||||
name: "CI Success"
|
||||
needs: [build, lint, test, compile-integration-tests, dependencies, extended-tests, test-doc-imports]
|
||||
if: |
|
||||
always()
|
||||
runs-on: ubuntu-latest
|
||||
env:
|
||||
JOBS_JSON: ${{ toJSON(needs) }}
|
||||
RESULTS_JSON: ${{ toJSON(needs.*.result) }}
|
||||
EXIT_CODE: ${{!contains(needs.*.result, 'failure') && !contains(needs.*.result, 'cancelled') && '0' || '1'}}
|
||||
steps:
|
||||
- name: "CI Success"
|
||||
run: |
|
||||
echo $JOBS_JSON
|
||||
echo $RESULTS_JSON
|
||||
echo "Exiting with $EXIT_CODE"
|
||||
exit $EXIT_CODE
|
||||
|
||||
15
.github/workflows/codespell.yml
vendored
15
.github/workflows/codespell.yml
vendored
@@ -3,9 +3,9 @@ name: CI / cd . / make spell_check
|
||||
|
||||
on:
|
||||
push:
|
||||
branches: [master, v0.1]
|
||||
branches: [master]
|
||||
pull_request:
|
||||
branches: [master, v0.1]
|
||||
branches: [master]
|
||||
|
||||
permissions:
|
||||
contents: read
|
||||
@@ -29,9 +29,8 @@ jobs:
|
||||
python .github/workflows/extract_ignored_words_list.py
|
||||
id: extract_ignore_words
|
||||
|
||||
# - name: Codespell
|
||||
# uses: codespell-project/actions-codespell@v2
|
||||
# with:
|
||||
# skip: guide_imports.json,*.ambr,./cookbook/data/imdb_top_1000.csv,*.lock
|
||||
# ignore_words_list: ${{ steps.extract_ignore_words.outputs.ignore_words_list }}
|
||||
# exclude_file: ./.github/workflows/codespell-exclude
|
||||
- name: Codespell
|
||||
uses: codespell-project/actions-codespell@v2
|
||||
with:
|
||||
skip: guide_imports.json
|
||||
ignore_words_list: ${{ steps.extract_ignore_words.outputs.ignore_words_list }}
|
||||
|
||||
37
.github/workflows/doc_lint.yml
vendored
Normal file
37
.github/workflows/doc_lint.yml
vendored
Normal file
@@ -0,0 +1,37 @@
|
||||
---
|
||||
name: CI / cd .
|
||||
|
||||
on:
|
||||
push:
|
||||
branches: [ master ]
|
||||
pull_request:
|
||||
paths:
|
||||
- 'docs/**'
|
||||
- 'templates/**'
|
||||
- 'cookbook/**'
|
||||
- '.github/workflows/_lint.yml'
|
||||
- '.github/workflows/doc_lint.yml'
|
||||
workflow_dispatch:
|
||||
|
||||
jobs:
|
||||
check:
|
||||
name: Check for "from langchain import x" imports
|
||||
runs-on: ubuntu-latest
|
||||
|
||||
steps:
|
||||
- name: Checkout repository
|
||||
uses: actions/checkout@v4
|
||||
|
||||
- name: Run import check
|
||||
run: |
|
||||
# We should not encourage imports directly from main init file
|
||||
# Expect for hub
|
||||
git grep 'from langchain import' {docs/docs,templates,cookbook} | grep -vE 'from langchain import (hub)' && exit 1 || exit 0
|
||||
|
||||
lint:
|
||||
name: "-"
|
||||
uses:
|
||||
./.github/workflows/_lint.yml
|
||||
with:
|
||||
working-directory: "."
|
||||
secrets: inherit
|
||||
36
.github/workflows/people.yml
vendored
36
.github/workflows/people.yml
vendored
@@ -1,36 +0,0 @@
|
||||
name: LangChain People
|
||||
|
||||
on:
|
||||
schedule:
|
||||
- cron: "0 14 1 * *"
|
||||
push:
|
||||
branches: [jacob/people]
|
||||
workflow_dispatch:
|
||||
inputs:
|
||||
debug_enabled:
|
||||
description: 'Run the build with tmate debugging enabled (https://github.com/marketplace/actions/debugging-with-tmate)'
|
||||
required: false
|
||||
default: 'false'
|
||||
|
||||
jobs:
|
||||
langchain-people:
|
||||
if: github.repository_owner == 'langchain-ai'
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- name: Dump GitHub context
|
||||
env:
|
||||
GITHUB_CONTEXT: ${{ toJson(github) }}
|
||||
run: echo "$GITHUB_CONTEXT"
|
||||
- uses: actions/checkout@v4
|
||||
# Ref: https://github.com/actions/runner/issues/2033
|
||||
- name: Fix git safe.directory in container
|
||||
run: mkdir -p /home/runner/work/_temp/_github_home && printf "[safe]\n\tdirectory = /github/workspace" > /home/runner/work/_temp/_github_home/.gitconfig
|
||||
# Allow debugging with tmate
|
||||
- name: Setup tmate session
|
||||
uses: mxschmitt/action-tmate@v3
|
||||
if: ${{ github.event_name == 'workflow_dispatch' && github.event.inputs.debug_enabled == 'true' }}
|
||||
with:
|
||||
limit-access-to-actor: true
|
||||
- uses: ./.github/actions/people
|
||||
with:
|
||||
token: ${{ secrets.LANGCHAIN_PEOPLE_GITHUB_TOKEN }}
|
||||
89
.github/workflows/scheduled_test.yml
vendored
89
.github/workflows/scheduled_test.yml
vendored
@@ -10,68 +10,28 @@ env:
|
||||
|
||||
jobs:
|
||||
build:
|
||||
name: Python ${{ matrix.python-version }} - ${{ matrix.working-directory }}
|
||||
defaults:
|
||||
run:
|
||||
working-directory: libs/langchain
|
||||
runs-on: ubuntu-latest
|
||||
environment: Scheduled testing
|
||||
strategy:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
python-version:
|
||||
- "3.8"
|
||||
- "3.9"
|
||||
- "3.10"
|
||||
- "3.11"
|
||||
working-directory:
|
||||
- "libs/partners/openai"
|
||||
- "libs/partners/anthropic"
|
||||
- "libs/partners/ai21"
|
||||
- "libs/partners/fireworks"
|
||||
- "libs/partners/groq"
|
||||
- "libs/partners/mistralai"
|
||||
- "libs/partners/together"
|
||||
- "libs/partners/cohere"
|
||||
- "libs/partners/google-vertexai"
|
||||
- "libs/partners/google-genai"
|
||||
- "libs/partners/aws"
|
||||
- "libs/partners/nvidia-ai-endpoints"
|
||||
|
||||
name: Python ${{ matrix.python-version }}
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
with:
|
||||
path: langchain
|
||||
- uses: actions/checkout@v4
|
||||
with:
|
||||
repository: langchain-ai/langchain-google
|
||||
path: langchain-google
|
||||
- uses: actions/checkout@v4
|
||||
with:
|
||||
repository: langchain-ai/langchain-nvidia
|
||||
path: langchain-nvidia
|
||||
- uses: actions/checkout@v4
|
||||
with:
|
||||
repository: langchain-ai/langchain-cohere
|
||||
path: langchain-cohere
|
||||
- uses: actions/checkout@v4
|
||||
with:
|
||||
repository: langchain-ai/langchain-aws
|
||||
path: langchain-aws
|
||||
|
||||
- name: Move libs
|
||||
run: |
|
||||
rm -rf \
|
||||
langchain/libs/partners/google-genai \
|
||||
langchain/libs/partners/google-vertexai \
|
||||
langchain/libs/partners/nvidia-ai-endpoints \
|
||||
langchain/libs/partners/cohere
|
||||
mv langchain-google/libs/genai langchain/libs/partners/google-genai
|
||||
mv langchain-google/libs/vertexai langchain/libs/partners/google-vertexai
|
||||
mv langchain-nvidia/libs/ai-endpoints langchain/libs/partners/nvidia-ai-endpoints
|
||||
mv langchain-cohere/libs/cohere langchain/libs/partners/cohere
|
||||
mv langchain-aws/libs/aws langchain/libs/partners/aws
|
||||
|
||||
- name: Set up Python ${{ matrix.python-version }}
|
||||
uses: "./langchain/.github/actions/poetry_setup"
|
||||
uses: "./.github/actions/poetry_setup"
|
||||
with:
|
||||
python-version: ${{ matrix.python-version }}
|
||||
poetry-version: ${{ env.POETRY_VERSION }}
|
||||
working-directory: langchain/${{ matrix.working-directory }}
|
||||
working-directory: libs/langchain
|
||||
cache-key: scheduled
|
||||
|
||||
- name: 'Authenticate to Google Cloud'
|
||||
@@ -85,15 +45,17 @@ jobs:
|
||||
with:
|
||||
aws-access-key-id: ${{ secrets.AWS_ACCESS_KEY_ID }}
|
||||
aws-secret-access-key: ${{ secrets.AWS_SECRET_ACCESS_KEY }}
|
||||
aws-region: ${{ secrets.AWS_REGION }}
|
||||
aws-region: ${{ vars.AWS_REGION }}
|
||||
|
||||
- name: Install dependencies
|
||||
working-directory: libs/langchain
|
||||
shell: bash
|
||||
run: |
|
||||
echo "Running scheduled tests, installing dependencies with poetry..."
|
||||
cd langchain/${{ matrix.working-directory }}
|
||||
poetry install --with=test_integration,test
|
||||
|
||||
- name: Run integration tests
|
||||
- name: Run tests
|
||||
shell: bash
|
||||
env:
|
||||
OPENAI_API_KEY: ${{ secrets.OPENAI_API_KEY }}
|
||||
ANTHROPIC_API_KEY: ${{ secrets.ANTHROPIC_API_KEY }}
|
||||
@@ -103,31 +65,12 @@ jobs:
|
||||
AZURE_OPENAI_CHAT_DEPLOYMENT_NAME: ${{ secrets.AZURE_OPENAI_CHAT_DEPLOYMENT_NAME }}
|
||||
AZURE_OPENAI_LLM_DEPLOYMENT_NAME: ${{ secrets.AZURE_OPENAI_LLM_DEPLOYMENT_NAME }}
|
||||
AZURE_OPENAI_EMBEDDINGS_DEPLOYMENT_NAME: ${{ secrets.AZURE_OPENAI_EMBEDDINGS_DEPLOYMENT_NAME }}
|
||||
AI21_API_KEY: ${{ secrets.AI21_API_KEY }}
|
||||
FIREWORKS_API_KEY: ${{ secrets.FIREWORKS_API_KEY }}
|
||||
GROQ_API_KEY: ${{ secrets.GROQ_API_KEY }}
|
||||
MISTRAL_API_KEY: ${{ secrets.MISTRAL_API_KEY }}
|
||||
TOGETHER_API_KEY: ${{ secrets.TOGETHER_API_KEY }}
|
||||
COHERE_API_KEY: ${{ secrets.COHERE_API_KEY }}
|
||||
NVIDIA_API_KEY: ${{ secrets.NVIDIA_API_KEY }}
|
||||
GOOGLE_API_KEY: ${{ secrets.GOOGLE_API_KEY }}
|
||||
GOOGLE_SEARCH_API_KEY: ${{ secrets.GOOGLE_SEARCH_API_KEY }}
|
||||
GOOGLE_CSE_ID: ${{ secrets.GOOGLE_CSE_ID }}
|
||||
run: |
|
||||
cd langchain/${{ matrix.working-directory }}
|
||||
make integration_tests
|
||||
|
||||
- name: Remove external libraries
|
||||
run: |
|
||||
rm -rf \
|
||||
langchain/libs/partners/google-genai \
|
||||
langchain/libs/partners/google-vertexai \
|
||||
langchain/libs/partners/nvidia-ai-endpoints \
|
||||
langchain/libs/partners/cohere \
|
||||
langchain/libs/partners/aws
|
||||
make scheduled_tests
|
||||
|
||||
- name: Ensure the tests did not create any additional files
|
||||
working-directory: langchain
|
||||
shell: bash
|
||||
run: |
|
||||
set -eu
|
||||
|
||||
|
||||
11
.gitignore
vendored
11
.gitignore
vendored
@@ -115,11 +115,13 @@ celerybeat.pid
|
||||
# Environments
|
||||
.env
|
||||
.envrc
|
||||
.venv*
|
||||
venv*
|
||||
.venv
|
||||
.venvs
|
||||
env/
|
||||
venv/
|
||||
ENV/
|
||||
env.bak/
|
||||
venv.bak/
|
||||
|
||||
# Spyder project settings
|
||||
.spyderproject
|
||||
@@ -175,7 +177,4 @@ docs/docs/build
|
||||
docs/docs/node_modules
|
||||
docs/docs/yarn.lock
|
||||
_dist
|
||||
docs/docs/templates
|
||||
|
||||
prof
|
||||
virtualenv/
|
||||
docs/docs/templates
|
||||
@@ -13,8 +13,15 @@ build:
|
||||
tools:
|
||||
python: "3.11"
|
||||
commands:
|
||||
- mkdir -p $READTHEDOCS_OUTPUT
|
||||
- cp -r api_reference_build/* $READTHEDOCS_OUTPUT
|
||||
- python -m virtualenv $READTHEDOCS_VIRTUALENV_PATH
|
||||
- python -m pip install --upgrade --no-cache-dir pip setuptools
|
||||
- python -m pip install --upgrade --no-cache-dir sphinx readthedocs-sphinx-ext
|
||||
- python -m pip install ./libs/partners/*
|
||||
- python -m pip install --exists-action=w --no-cache-dir -r docs/api_reference/requirements.txt
|
||||
- python docs/api_reference/create_api_rst.py
|
||||
- cat docs/api_reference/conf.py
|
||||
- python -m sphinx -T -E -b html -d _build/doctrees -c docs/api_reference docs/api_reference $READTHEDOCS_OUTPUT/html -j auto
|
||||
|
||||
# Build documentation in the docs/ directory with Sphinx
|
||||
sphinx:
|
||||
configuration: docs/api_reference/conf.py
|
||||
|
||||
66
Makefile
66
Makefile
@@ -1,60 +1,39 @@
|
||||
.PHONY: all clean help docs_build docs_clean docs_linkcheck api_docs_build api_docs_clean api_docs_linkcheck spell_check spell_fix lint lint_package lint_tests format format_diff
|
||||
.PHONY: all clean docs_build docs_clean docs_linkcheck api_docs_build api_docs_clean api_docs_linkcheck
|
||||
|
||||
## help: Show this help info.
|
||||
help: Makefile
|
||||
@printf "\n\033[1mUsage: make <TARGETS> ...\033[0m\n\n\033[1mTargets:\033[0m\n\n"
|
||||
@sed -n 's/^## //p' $< | awk -F':' '{printf "\033[36m%-30s\033[0m %s\n", $$1, $$2}' | sort | sed -e 's/^/ /'
|
||||
|
||||
## all: Default target, shows help.
|
||||
# Default target executed when no arguments are given to make.
|
||||
all: help
|
||||
|
||||
## clean: Clean documentation and API documentation artifacts.
|
||||
clean: docs_clean api_docs_clean
|
||||
|
||||
######################
|
||||
# DOCUMENTATION
|
||||
######################
|
||||
|
||||
## docs_build: Build the documentation.
|
||||
clean: docs_clean api_docs_clean
|
||||
|
||||
|
||||
docs_build:
|
||||
cd docs && make build
|
||||
docs/.local_build.sh
|
||||
|
||||
## docs_clean: Clean the documentation build artifacts.
|
||||
docs_clean:
|
||||
cd docs && make clean
|
||||
rm -r _dist
|
||||
|
||||
## docs_linkcheck: Run linkchecker on the documentation.
|
||||
docs_linkcheck:
|
||||
poetry run linkchecker _dist/docs/ --ignore-url node_modules
|
||||
|
||||
## api_docs_build: Build the API Reference documentation.
|
||||
api_docs_build:
|
||||
poetry run python docs/api_reference/create_api_rst.py
|
||||
cd docs/api_reference && poetry run make html
|
||||
|
||||
API_PKG ?= text-splitters
|
||||
|
||||
api_docs_quick_preview:
|
||||
poetry run pip install "pydantic<2"
|
||||
poetry run python docs/api_reference/create_api_rst.py $(API_PKG)
|
||||
cd docs/api_reference && poetry run make html
|
||||
open docs/api_reference/_build/html/$(shell echo $(API_PKG) | sed 's/-/_/g')_api_reference.html
|
||||
|
||||
## api_docs_clean: Clean the API Reference documentation build artifacts.
|
||||
api_docs_clean:
|
||||
find ./docs/api_reference -name '*_api_reference.rst' -delete
|
||||
git clean -fdX ./docs/api_reference
|
||||
|
||||
rm -f docs/api_reference/api_reference.rst
|
||||
cd docs/api_reference && poetry run make clean
|
||||
|
||||
## api_docs_linkcheck: Run linkchecker on the API Reference documentation.
|
||||
api_docs_linkcheck:
|
||||
poetry run linkchecker docs/api_reference/_build/html/index.html
|
||||
|
||||
## spell_check: Run codespell on the project.
|
||||
spell_check:
|
||||
poetry run codespell --toml pyproject.toml
|
||||
|
||||
## spell_fix: Run codespell on the project and fix the errors.
|
||||
spell_fix:
|
||||
poetry run codespell --toml pyproject.toml -w
|
||||
|
||||
@@ -62,14 +41,29 @@ spell_fix:
|
||||
# LINTING AND FORMATTING
|
||||
######################
|
||||
|
||||
## lint: Run linting on the project.
|
||||
lint lint_package lint_tests:
|
||||
poetry run ruff check docs templates cookbook
|
||||
poetry run ruff docs templates cookbook
|
||||
poetry run ruff format docs templates cookbook --diff
|
||||
poetry run ruff check --select I docs templates cookbook
|
||||
git grep 'from langchain import' docs/docs templates cookbook | grep -vE 'from langchain import (hub)' && exit 1 || exit 0
|
||||
poetry run ruff --select I docs templates cookbook
|
||||
|
||||
## format: Format the project files.
|
||||
format format_diff:
|
||||
poetry run ruff format docs templates cookbook
|
||||
poetry run ruff check --select I --fix docs templates cookbook
|
||||
poetry run ruff --select I --fix docs templates cookbook
|
||||
|
||||
######################
|
||||
# HELP
|
||||
######################
|
||||
|
||||
help:
|
||||
@echo '===================='
|
||||
@echo '-- DOCUMENTATION --'
|
||||
@echo 'clean - run docs_clean and api_docs_clean'
|
||||
@echo 'docs_build - build the documentation'
|
||||
@echo 'docs_clean - clean the documentation build artifacts'
|
||||
@echo 'docs_linkcheck - run linkchecker on the documentation'
|
||||
@echo 'api_docs_build - build the API Reference documentation'
|
||||
@echo 'api_docs_clean - clean the API Reference documentation build artifacts'
|
||||
@echo 'api_docs_linkcheck - run linkchecker on the API Reference documentation'
|
||||
@echo 'spell_check - run codespell on the project'
|
||||
@echo 'spell_fix - run codespell on the project and fix the errors'
|
||||
@echo '-- TEST and LINT tasks are within libs/*/ per-package --'
|
||||
|
||||
111
README.md
111
README.md
@@ -2,23 +2,23 @@
|
||||
|
||||
⚡ Build context-aware reasoning applications ⚡
|
||||
|
||||
[](https://github.com/langchain-ai/langchain/releases)
|
||||
[](https://github.com/langchain-ai/langchain/releases)
|
||||
[](https://github.com/langchain-ai/langchain/actions/workflows/check_diffs.yml)
|
||||
[](https://opensource.org/licenses/MIT)
|
||||
[](https://pypistats.org/packages/langchain-core)
|
||||
[](https://star-history.com/#langchain-ai/langchain)
|
||||
[](https://libraries.io/github/langchain-ai/langchain)
|
||||
[](https://github.com/langchain-ai/langchain/issues)
|
||||
[](https://vscode.dev/redirect?url=vscode://ms-vscode-remote.remote-containers/cloneInVolume?url=https://github.com/langchain-ai/langchain)
|
||||
[](https://codespaces.new/langchain-ai/langchain)
|
||||
[](https://discord.gg/6adMQxSpJS)
|
||||
[](https://pepy.tech/project/langchain)
|
||||
[](https://opensource.org/licenses/MIT)
|
||||
[](https://twitter.com/langchainai)
|
||||
[](https://discord.gg/6adMQxSpJS)
|
||||
[](https://vscode.dev/redirect?url=vscode://ms-vscode-remote.remote-containers/cloneInVolume?url=https://github.com/langchain-ai/langchain)
|
||||
[](https://codespaces.new/langchain-ai/langchain)
|
||||
[](https://star-history.com/#langchain-ai/langchain)
|
||||
[](https://libraries.io/github/langchain-ai/langchain)
|
||||
[](https://github.com/langchain-ai/langchain/issues)
|
||||
|
||||
Looking for the JS/TS library? Check out [LangChain.js](https://github.com/langchain-ai/langchainjs).
|
||||
|
||||
To help you ship LangChain apps to production faster, check out [LangSmith](https://smith.langchain.com).
|
||||
[LangSmith](https://smith.langchain.com) is a unified developer platform for building, testing, and monitoring LLM applications.
|
||||
Fill out [this form](https://www.langchain.com/contact-sales) to speak with our sales team.
|
||||
Fill out [this form](https://airtable.com/appwQzlErAS2qiP0L/shrGtGaVBVAz7NcV2) to get off the waitlist or speak with our sales team.
|
||||
|
||||
## Quick Install
|
||||
|
||||
@@ -34,103 +34,78 @@ conda install langchain -c conda-forge
|
||||
|
||||
## 🤔 What is LangChain?
|
||||
|
||||
**LangChain** is a framework for developing applications powered by large language models (LLMs).
|
||||
**LangChain** is a framework for developing applications powered by language models. It enables applications that:
|
||||
- **Are context-aware**: connect a language model to sources of context (prompt instructions, few shot examples, content to ground its response in, etc.)
|
||||
- **Reason**: rely on a language model to reason (about how to answer based on provided context, what actions to take, etc.)
|
||||
|
||||
For these applications, LangChain simplifies the entire application lifecycle:
|
||||
This framework consists of several parts.
|
||||
- **LangChain Libraries**: The Python and JavaScript libraries. Contains interfaces and integrations for a myriad of components, a basic run time for combining these components into chains and agents, and off-the-shelf implementations of chains and agents.
|
||||
- **[LangChain Templates](templates)**: A collection of easily deployable reference architectures for a wide variety of tasks.
|
||||
- **[LangServe](https://github.com/langchain-ai/langserve)**: A library for deploying LangChain chains as a REST API.
|
||||
- **[LangSmith](https://smith.langchain.com)**: A developer platform that lets you debug, test, evaluate, and monitor chains built on any LLM framework and seamlessly integrates with LangChain.
|
||||
|
||||
- **Open-source libraries**: Build your applications using LangChain's [modular building blocks](https://python.langchain.com/v0.2/docs/concepts/#langchain-expression-language-lcel) and [components](https://python.langchain.com/v0.2/docs/concepts/#components). Integrate with hundreds of [third-party providers](https://python.langchain.com/v0.2/docs/integrations/platforms/).
|
||||
- **Productionization**: Inspect, monitor, and evaluate your apps with [LangSmith](https://docs.smith.langchain.com/) so that you can constantly optimize and deploy with confidence.
|
||||
- **Deployment**: Turn any chain into a REST API with [LangServe](https://python.langchain.com/v0.2/docs/langserve/).
|
||||
The LangChain libraries themselves are made up of several different packages.
|
||||
- **[`langchain-core`](libs/core)**: Base abstractions and LangChain Expression Language.
|
||||
- **[`langchain-community`](libs/community)**: Third party integrations.
|
||||
- **[`langchain`](libs/langchain)**: Chains, agents, and retrieval strategies that make up an application's cognitive architecture.
|
||||
|
||||
### Open-source libraries
|
||||
- **`langchain-core`**: Base abstractions and LangChain Expression Language.
|
||||
- **`langchain-community`**: Third party integrations.
|
||||
- Some integrations have been further split into **partner packages** that only rely on **`langchain-core`**. Examples include **`langchain_openai`** and **`langchain_anthropic`**.
|
||||
- **`langchain`**: Chains, agents, and retrieval strategies that make up an application's cognitive architecture.
|
||||
- **[`LangGraph`](https://langchain-ai.github.io/langgraph/)**: A library for building robust and stateful multi-actor applications with LLMs by modeling steps as edges and nodes in a graph.
|
||||
|
||||
### Productionization:
|
||||
- **[LangSmith](https://docs.smith.langchain.com/)**: A developer platform that lets you debug, test, evaluate, and monitor chains built on any LLM framework and seamlessly integrates with LangChain.
|
||||
|
||||
### Deployment:
|
||||
- **[LangServe](https://python.langchain.com/v0.2/docs/langserve/)**: A library for deploying LangChain chains as REST APIs.
|
||||
|
||||

|
||||

|
||||
|
||||
## 🧱 What can you build with LangChain?
|
||||
**❓ Retrieval augmented generation**
|
||||
|
||||
**❓ Question answering with RAG**
|
||||
|
||||
- [Documentation](https://python.langchain.com/v0.2/docs/tutorials/rag/)
|
||||
- [Documentation](https://python.langchain.com/docs/use_cases/question_answering/)
|
||||
- End-to-end Example: [Chat LangChain](https://chat.langchain.com) and [repo](https://github.com/langchain-ai/chat-langchain)
|
||||
|
||||
**🧱 Extracting structured output**
|
||||
**💬 Analyzing structured data**
|
||||
|
||||
- [Documentation](https://python.langchain.com/v0.2/docs/tutorials/extraction/)
|
||||
- End-to-end Example: [SQL Llama2 Template](https://github.com/langchain-ai/langchain-extract/)
|
||||
- [Documentation](https://python.langchain.com/docs/use_cases/qa_structured/sql)
|
||||
- End-to-end Example: [SQL Llama2 Template](https://github.com/langchain-ai/langchain/tree/master/templates/sql-llama2)
|
||||
|
||||
**🤖 Chatbots**
|
||||
|
||||
- [Documentation](https://python.langchain.com/v0.2/docs/tutorials/chatbot/)
|
||||
- [Documentation](https://python.langchain.com/docs/use_cases/chatbots)
|
||||
- End-to-end Example: [Web LangChain (web researcher chatbot)](https://weblangchain.vercel.app) and [repo](https://github.com/langchain-ai/weblangchain)
|
||||
|
||||
And much more! Head to the [Tutorials](https://python.langchain.com/v0.2/docs/tutorials/) section of the docs for more.
|
||||
And much more! Head to the [Use cases](https://python.langchain.com/docs/use_cases/) section of the docs for more.
|
||||
|
||||
## 🚀 How does LangChain help?
|
||||
The main value props of the LangChain libraries are:
|
||||
1. **Components**: composable building blocks, tools and integrations for working with language models. Components are modular and easy-to-use, whether you are using the rest of the LangChain framework or not
|
||||
1. **Components**: composable tools and integrations for working with language models. Components are modular and easy-to-use, whether you are using the rest of the LangChain framework or not
|
||||
2. **Off-the-shelf chains**: built-in assemblages of components for accomplishing higher-level tasks
|
||||
|
||||
Off-the-shelf chains make it easy to get started. Components make it easy to customize existing chains and build new ones.
|
||||
|
||||
## LangChain Expression Language (LCEL)
|
||||
|
||||
LCEL is the foundation of many of LangChain's components, and is a declarative way to compose chains. LCEL was designed from day 1 to support putting prototypes in production, with no code changes, from the simplest “prompt + LLM” chain to the most complex chains.
|
||||
|
||||
- **[Overview](https://python.langchain.com/v0.2/docs/concepts/#langchain-expression-language-lcel)**: LCEL and its benefits
|
||||
- **[Interface](https://python.langchain.com/v0.2/docs/concepts/#runnable-interface)**: The standard Runnable interface for LCEL objects
|
||||
- **[Primitives](https://python.langchain.com/v0.2/docs/how_to/#langchain-expression-language-lcel)**: More on the primitives LCEL includes
|
||||
- **[Cheatsheet](https://python.langchain.com/v0.2/docs/how_to/lcel_cheatsheet/)**: Quick overview of the most common usage patterns
|
||||
|
||||
## Components
|
||||
|
||||
Components fall into the following **modules**:
|
||||
|
||||
**📃 Model I/O**
|
||||
**📃 Model I/O:**
|
||||
|
||||
This includes [prompt management](https://python.langchain.com/v0.2/docs/concepts/#prompt-templates), [prompt optimization](https://python.langchain.com/v0.2/docs/concepts/#example-selectors), a generic interface for [chat models](https://python.langchain.com/v0.2/docs/concepts/#chat-models) and [LLMs](https://python.langchain.com/v0.2/docs/concepts/#llms), and common utilities for working with [model outputs](https://python.langchain.com/v0.2/docs/concepts/#output-parsers).
|
||||
This includes prompt management, prompt optimization, a generic interface for all LLMs, and common utilities for working with LLMs.
|
||||
|
||||
**📚 Retrieval**
|
||||
**📚 Retrieval:**
|
||||
|
||||
Retrieval Augmented Generation involves [loading data](https://python.langchain.com/v0.2/docs/concepts/#document-loaders) from a variety of sources, [preparing it](https://python.langchain.com/v0.2/docs/concepts/#text-splitters), then [searching over (a.k.a. retrieving from)](https://python.langchain.com/v0.2/docs/concepts/#retrievers) it for use in the generation step.
|
||||
Data Augmented Generation involves specific types of chains that first interact with an external data source to fetch data for use in the generation step. Examples include summarization of long pieces of text and question/answering over specific data sources.
|
||||
|
||||
**🤖 Agents**
|
||||
**🤖 Agents:**
|
||||
|
||||
Agents allow an LLM autonomy over how a task is accomplished. Agents make decisions about which Actions to take, then take that Action, observe the result, and repeat until the task is complete done. LangChain provides a [standard interface for agents](https://python.langchain.com/v0.2/docs/concepts/#agents) along with the [LangGraph](https://github.com/langchain-ai/langgraph) extension for building custom agents.
|
||||
Agents involve an LLM making decisions about which Actions to take, taking that Action, seeing an Observation, and repeating that until done. LangChain provides a standard interface for agents, a selection of agents to choose from, and examples of end-to-end agents.
|
||||
|
||||
## 📖 Documentation
|
||||
|
||||
Please see [here](https://python.langchain.com) for full documentation, which includes:
|
||||
|
||||
- [Introduction](https://python.langchain.com/v0.2/docs/introduction/): Overview of the framework and the structure of the docs.
|
||||
- [Tutorials](https://python.langchain.com/docs/use_cases/): If you're looking to build something specific or are more of a hands-on learner, check out our tutorials. This is the best place to get started.
|
||||
- [How-to guides](https://python.langchain.com/v0.2/docs/how_to/): Answers to “How do I….?” type questions. These guides are goal-oriented and concrete; they're meant to help you complete a specific task.
|
||||
- [Conceptual guide](https://python.langchain.com/v0.2/docs/concepts/): Conceptual explanations of the key parts of the framework.
|
||||
- [API Reference](https://api.python.langchain.com): Thorough documentation of every class and method.
|
||||
|
||||
## 🌐 Ecosystem
|
||||
|
||||
- [🦜🛠️ LangSmith](https://docs.smith.langchain.com/): Tracing and evaluating your language model applications and intelligent agents to help you move from prototype to production.
|
||||
- [🦜🕸️ LangGraph](https://langchain-ai.github.io/langgraph/): Creating stateful, multi-actor applications with LLMs, built on top of (and intended to be used with) LangChain primitives.
|
||||
- [🦜🏓 LangServe](https://python.langchain.com/docs/langserve): Deploying LangChain runnables and chains as REST APIs.
|
||||
- [LangChain Templates](https://python.langchain.com/v0.2/docs/templates/): Example applications hosted with LangServe.
|
||||
- [Getting started](https://python.langchain.com/docs/get_started/introduction): installation, setting up the environment, simple examples
|
||||
- Overview of the [interfaces](https://python.langchain.com/docs/expression_language/), [modules](https://python.langchain.com/docs/modules/), and [integrations](https://python.langchain.com/docs/integrations/providers)
|
||||
- [Use case](https://python.langchain.com/docs/use_cases/qa_structured/sql) walkthroughs and best practice [guides](https://python.langchain.com/docs/guides/adapters/openai)
|
||||
- [LangSmith](https://python.langchain.com/docs/langsmith/), [LangServe](https://python.langchain.com/docs/langserve), and [LangChain Template](https://python.langchain.com/docs/templates/) overviews
|
||||
- [Reference](https://api.python.langchain.com): full API docs
|
||||
|
||||
|
||||
## 💁 Contributing
|
||||
|
||||
As an open-source project in a rapidly developing field, we are extremely open to contributions, whether it be in the form of a new feature, improved infrastructure, or better documentation.
|
||||
|
||||
For detailed information on how to contribute, see [here](https://python.langchain.com/v0.2/docs/contributing/).
|
||||
For detailed information on how to contribute, see [here](https://python.langchain.com/docs/contributing/).
|
||||
|
||||
## 🌟 Contributors
|
||||
|
||||
|
||||
61
SECURITY.md
61
SECURITY.md
@@ -1,61 +1,6 @@
|
||||
# Security Policy
|
||||
|
||||
## Reporting OSS Vulnerabilities
|
||||
## Reporting a Vulnerability
|
||||
|
||||
LangChain is partnered with [huntr by Protect AI](https://huntr.com/) to provide
|
||||
a bounty program for our open source projects.
|
||||
|
||||
Please report security vulnerabilities associated with the LangChain
|
||||
open source projects by visiting the following link:
|
||||
|
||||
[https://huntr.com/bounties/disclose/](https://huntr.com/bounties/disclose/?target=https%3A%2F%2Fgithub.com%2Flangchain-ai%2Flangchain&validSearch=true)
|
||||
|
||||
Before reporting a vulnerability, please review:
|
||||
|
||||
1) In-Scope Targets and Out-of-Scope Targets below.
|
||||
2) The [langchain-ai/langchain](https://python.langchain.com/docs/contributing/repo_structure) monorepo structure.
|
||||
3) LangChain [security guidelines](https://python.langchain.com/docs/security) to
|
||||
understand what we consider to be a security vulnerability vs. developer
|
||||
responsibility.
|
||||
|
||||
### In-Scope Targets
|
||||
|
||||
The following packages and repositories are eligible for bug bounties:
|
||||
|
||||
- langchain-core
|
||||
- langchain (see exceptions)
|
||||
- langchain-community (see exceptions)
|
||||
- langgraph
|
||||
- langserve
|
||||
|
||||
### Out of Scope Targets
|
||||
|
||||
All out of scope targets defined by huntr as well as:
|
||||
|
||||
- **langchain-experimental**: This repository is for experimental code and is not
|
||||
eligible for bug bounties, bug reports to it will be marked as interesting or waste of
|
||||
time and published with no bounty attached.
|
||||
- **tools**: Tools in either langchain or langchain-community are not eligible for bug
|
||||
bounties. This includes the following directories
|
||||
- langchain/tools
|
||||
- langchain-community/tools
|
||||
- Please review our [security guidelines](https://python.langchain.com/docs/security)
|
||||
for more details, but generally tools interact with the real world. Developers are
|
||||
expected to understand the security implications of their code and are responsible
|
||||
for the security of their tools.
|
||||
- Code documented with security notices. This will be decided done on a case by
|
||||
case basis, but likely will not be eligible for a bounty as the code is already
|
||||
documented with guidelines for developers that should be followed for making their
|
||||
application secure.
|
||||
- Any LangSmith related repositories or APIs see below.
|
||||
|
||||
## Reporting LangSmith Vulnerabilities
|
||||
|
||||
Please report security vulnerabilities associated with LangSmith by email to `security@langchain.dev`.
|
||||
|
||||
- LangSmith site: https://smith.langchain.com
|
||||
- SDK client: https://github.com/langchain-ai/langsmith-sdk
|
||||
|
||||
### Other Security Concerns
|
||||
|
||||
For any other security concerns, please contact us at `security@langchain.dev`.
|
||||
Please report security vulnerabilities by email to `security@langchain.dev`.
|
||||
This email is an alias to a subset of our maintainers, and will ensure the issue is promptly triaged and acted upon as needed.
|
||||
|
||||
@@ -1,932 +0,0 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"id": "BYejgj8Zf-LG",
|
||||
"tags": []
|
||||
},
|
||||
"source": [
|
||||
"## Getting started with LangChain and Gemma, running locally or in the Cloud"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"id": "2IxjMb9-jIJ8"
|
||||
},
|
||||
"source": [
|
||||
"### Installing dependencies"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 1,
|
||||
"metadata": {
|
||||
"colab": {
|
||||
"base_uri": "https://localhost:8080/"
|
||||
},
|
||||
"executionInfo": {
|
||||
"elapsed": 9436,
|
||||
"status": "ok",
|
||||
"timestamp": 1708975187360,
|
||||
"user": {
|
||||
"displayName": "",
|
||||
"userId": ""
|
||||
},
|
||||
"user_tz": -60
|
||||
},
|
||||
"id": "XZaTsXfcheTF",
|
||||
"outputId": "eb21d603-d824-46c5-f99f-087fb2f618b1",
|
||||
"tags": []
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"!pip install --upgrade langchain langchain-google-vertexai"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"id": "IXmAujvC3Kwp"
|
||||
},
|
||||
"source": [
|
||||
"### Running the model"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"id": "CI8Elyc5gBQF"
|
||||
},
|
||||
"source": [
|
||||
"Go to the VertexAI Model Garden on Google Cloud [console](https://pantheon.corp.google.com/vertex-ai/publishers/google/model-garden/335), and deploy the desired version of Gemma to VertexAI. It will take a few minutes, and after the endpoint it ready, you need to copy its number."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 1,
|
||||
"metadata": {
|
||||
"id": "gv1j8FrVftsC"
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# @title Basic parameters\n",
|
||||
"project: str = \"PUT_YOUR_PROJECT_ID_HERE\" # @param {type:\"string\"}\n",
|
||||
"endpoint_id: str = \"PUT_YOUR_ENDPOINT_ID_HERE\" # @param {type:\"string\"}\n",
|
||||
"location: str = \"PUT_YOUR_ENDPOINT_LOCAtION_HERE\" # @param {type:\"string\"}"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 3,
|
||||
"metadata": {
|
||||
"executionInfo": {
|
||||
"elapsed": 3,
|
||||
"status": "ok",
|
||||
"timestamp": 1708975440503,
|
||||
"user": {
|
||||
"displayName": "",
|
||||
"userId": ""
|
||||
},
|
||||
"user_tz": -60
|
||||
},
|
||||
"id": "bhIHsFGYjtFt",
|
||||
"tags": []
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stderr",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"2024-02-27 17:15:10.457149: I tensorflow/core/util/port.cc:113] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`.\n",
|
||||
"2024-02-27 17:15:10.508925: E external/local_xla/xla/stream_executor/cuda/cuda_dnn.cc:9261] Unable to register cuDNN factory: Attempting to register factory for plugin cuDNN when one has already been registered\n",
|
||||
"2024-02-27 17:15:10.508957: E external/local_xla/xla/stream_executor/cuda/cuda_fft.cc:607] Unable to register cuFFT factory: Attempting to register factory for plugin cuFFT when one has already been registered\n",
|
||||
"2024-02-27 17:15:10.510289: E external/local_xla/xla/stream_executor/cuda/cuda_blas.cc:1515] Unable to register cuBLAS factory: Attempting to register factory for plugin cuBLAS when one has already been registered\n",
|
||||
"2024-02-27 17:15:10.518898: I tensorflow/core/platform/cpu_feature_guard.cc:182] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations.\n",
|
||||
"To enable the following instructions: AVX2 AVX512F AVX512_VNNI FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags.\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"from langchain_google_vertexai import (\n",
|
||||
" GemmaChatVertexAIModelGarden,\n",
|
||||
" GemmaVertexAIModelGarden,\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 4,
|
||||
"metadata": {
|
||||
"executionInfo": {
|
||||
"elapsed": 351,
|
||||
"status": "ok",
|
||||
"timestamp": 1708975440852,
|
||||
"user": {
|
||||
"displayName": "",
|
||||
"userId": ""
|
||||
},
|
||||
"user_tz": -60
|
||||
},
|
||||
"id": "WJv-UVWwh0lk",
|
||||
"tags": []
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"llm = GemmaVertexAIModelGarden(\n",
|
||||
" endpoint_id=endpoint_id,\n",
|
||||
" project=project,\n",
|
||||
" location=location,\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 5,
|
||||
"metadata": {
|
||||
"colab": {
|
||||
"base_uri": "https://localhost:8080/"
|
||||
},
|
||||
"executionInfo": {
|
||||
"elapsed": 714,
|
||||
"status": "ok",
|
||||
"timestamp": 1708975441564,
|
||||
"user": {
|
||||
"displayName": "",
|
||||
"userId": ""
|
||||
},
|
||||
"user_tz": -60
|
||||
},
|
||||
"id": "6kM7cEFdiN9h",
|
||||
"outputId": "fb420c56-5614-4745-cda8-0ee450a3e539",
|
||||
"tags": []
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Prompt:\n",
|
||||
"What is the meaning of life?\n",
|
||||
"Output:\n",
|
||||
" Who am I? Why do I exist? These are questions I have struggled with\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"output = llm.invoke(\"What is the meaning of life?\")\n",
|
||||
"print(output)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"id": "zzep9nfmuUcO"
|
||||
},
|
||||
"source": [
|
||||
"We can also use Gemma as a multi-turn chat model:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 7,
|
||||
"metadata": {
|
||||
"colab": {
|
||||
"base_uri": "https://localhost:8080/"
|
||||
},
|
||||
"executionInfo": {
|
||||
"elapsed": 964,
|
||||
"status": "ok",
|
||||
"timestamp": 1708976298189,
|
||||
"user": {
|
||||
"displayName": "",
|
||||
"userId": ""
|
||||
},
|
||||
"user_tz": -60
|
||||
},
|
||||
"id": "8tPHoM5XiZOl",
|
||||
"outputId": "7b8fb652-9aed-47b0-c096-aa1abfc3a2a9",
|
||||
"tags": []
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"content='Prompt:\\n<start_of_turn>user\\nHow much is 2+2?<end_of_turn>\\n<start_of_turn>model\\nOutput:\\n8-years old.<end_of_turn>\\n\\n<start_of'\n",
|
||||
"content='Prompt:\\n<start_of_turn>user\\nHow much is 2+2?<end_of_turn>\\n<start_of_turn>model\\nPrompt:\\n<start_of_turn>user\\nHow much is 2+2?<end_of_turn>\\n<start_of_turn>model\\nOutput:\\n8-years old.<end_of_turn>\\n\\n<start_of<end_of_turn>\\n<start_of_turn>user\\nHow much is 3+3?<end_of_turn>\\n<start_of_turn>model\\nOutput:\\nOutput:\\n3-years old.<end_of_turn>\\n\\n<'\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"from langchain_core.messages import HumanMessage\n",
|
||||
"\n",
|
||||
"llm = GemmaChatVertexAIModelGarden(\n",
|
||||
" endpoint_id=endpoint_id,\n",
|
||||
" project=project,\n",
|
||||
" location=location,\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"message1 = HumanMessage(content=\"How much is 2+2?\")\n",
|
||||
"answer1 = llm.invoke([message1])\n",
|
||||
"print(answer1)\n",
|
||||
"\n",
|
||||
"message2 = HumanMessage(content=\"How much is 3+3?\")\n",
|
||||
"answer2 = llm.invoke([message1, answer1, message2])\n",
|
||||
"\n",
|
||||
"print(answer2)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"You can post-process response to avoid repetitions:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 8,
|
||||
"metadata": {
|
||||
"tags": []
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"content='Output:\\n<<humming>>: 2+2 = 4.\\n<end'\n",
|
||||
"content='Output:\\nOutput:\\n<<humming>>: 3+3 = 6.'\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"answer1 = llm.invoke([message1], parse_response=True)\n",
|
||||
"print(answer1)\n",
|
||||
"\n",
|
||||
"answer2 = llm.invoke([message1, answer1, message2], parse_response=True)\n",
|
||||
"\n",
|
||||
"print(answer2)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"id": "VEfjqo7fjARR"
|
||||
},
|
||||
"source": [
|
||||
"## Running Gemma locally from Kaggle"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"id": "gVW8QDzHu7TA"
|
||||
},
|
||||
"source": [
|
||||
"In order to run Gemma locally, you can download it from Kaggle first. In order to do this, you'll need to login into the Kaggle platform, create a API key and download a `kaggle.json` Read more about Kaggle auth [here](https://www.kaggle.com/docs/api)."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"id": "S1EsXQ3XvZkQ"
|
||||
},
|
||||
"source": [
|
||||
"### Installation"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 7,
|
||||
"metadata": {
|
||||
"executionInfo": {
|
||||
"elapsed": 335,
|
||||
"status": "ok",
|
||||
"timestamp": 1708976305471,
|
||||
"user": {
|
||||
"displayName": "",
|
||||
"userId": ""
|
||||
},
|
||||
"user_tz": -60
|
||||
},
|
||||
"id": "p8SMwpKRvbef",
|
||||
"tags": []
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stderr",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"/opt/conda/lib/python3.10/pty.py:89: RuntimeWarning: os.fork() was called. os.fork() is incompatible with multithreaded code, and JAX is multithreaded, so this will likely lead to a deadlock.\n",
|
||||
" pid, fd = os.forkpty()\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"!mkdir -p ~/.kaggle && cp kaggle.json ~/.kaggle/kaggle.json"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 11,
|
||||
"metadata": {
|
||||
"executionInfo": {
|
||||
"elapsed": 7802,
|
||||
"status": "ok",
|
||||
"timestamp": 1708976363010,
|
||||
"user": {
|
||||
"displayName": "",
|
||||
"userId": ""
|
||||
},
|
||||
"user_tz": -60
|
||||
},
|
||||
"id": "Yr679aePv9Fq",
|
||||
"tags": []
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stderr",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"/opt/conda/lib/python3.10/pty.py:89: RuntimeWarning: os.fork() was called. os.fork() is incompatible with multithreaded code, and JAX is multithreaded, so this will likely lead to a deadlock.\n",
|
||||
" pid, fd = os.forkpty()\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"\u001b[31mERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts.\n",
|
||||
"tensorstore 0.1.54 requires ml-dtypes>=0.3.1, but you have ml-dtypes 0.2.0 which is incompatible.\u001b[0m\u001b[31m\n",
|
||||
"\u001b[0m"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"!pip install keras>=3 keras_nlp"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"id": "E9zn8nYpv3QZ"
|
||||
},
|
||||
"source": [
|
||||
"### Usage"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 1,
|
||||
"metadata": {
|
||||
"executionInfo": {
|
||||
"elapsed": 8536,
|
||||
"status": "ok",
|
||||
"timestamp": 1708976601206,
|
||||
"user": {
|
||||
"displayName": "",
|
||||
"userId": ""
|
||||
},
|
||||
"user_tz": -60
|
||||
},
|
||||
"id": "0LFRmY8TjCkI",
|
||||
"tags": []
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stderr",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"2024-02-27 16:38:40.797559: I tensorflow/core/util/port.cc:113] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`.\n",
|
||||
"2024-02-27 16:38:40.848444: E external/local_xla/xla/stream_executor/cuda/cuda_dnn.cc:9261] Unable to register cuDNN factory: Attempting to register factory for plugin cuDNN when one has already been registered\n",
|
||||
"2024-02-27 16:38:40.848478: E external/local_xla/xla/stream_executor/cuda/cuda_fft.cc:607] Unable to register cuFFT factory: Attempting to register factory for plugin cuFFT when one has already been registered\n",
|
||||
"2024-02-27 16:38:40.849728: E external/local_xla/xla/stream_executor/cuda/cuda_blas.cc:1515] Unable to register cuBLAS factory: Attempting to register factory for plugin cuBLAS when one has already been registered\n",
|
||||
"2024-02-27 16:38:40.857936: I tensorflow/core/platform/cpu_feature_guard.cc:182] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations.\n",
|
||||
"To enable the following instructions: AVX2 AVX512F AVX512_VNNI FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags.\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"from langchain_google_vertexai import GemmaLocalKaggle"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"id": "v-o7oXVavdMQ"
|
||||
},
|
||||
"source": [
|
||||
"You can specify the keras backend (by default it's `tensorflow`, but you can change it be `jax` or `torch`)."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 2,
|
||||
"metadata": {
|
||||
"executionInfo": {
|
||||
"elapsed": 9,
|
||||
"status": "ok",
|
||||
"timestamp": 1708976601206,
|
||||
"user": {
|
||||
"displayName": "",
|
||||
"userId": ""
|
||||
},
|
||||
"user_tz": -60
|
||||
},
|
||||
"id": "vvTUH8DNj5SF",
|
||||
"tags": []
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# @title Basic parameters\n",
|
||||
"keras_backend: str = \"jax\" # @param {type:\"string\"}\n",
|
||||
"model_name: str = \"gemma_2b_en\" # @param {type:\"string\"}"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 3,
|
||||
"metadata": {
|
||||
"executionInfo": {
|
||||
"elapsed": 40836,
|
||||
"status": "ok",
|
||||
"timestamp": 1708976761257,
|
||||
"user": {
|
||||
"displayName": "",
|
||||
"userId": ""
|
||||
},
|
||||
"user_tz": -60
|
||||
},
|
||||
"id": "YOmrqxo5kHXK",
|
||||
"tags": []
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stderr",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"2024-02-27 16:23:14.661164: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1929] Created device /job:localhost/replica:0/task:0/device:GPU:0 with 20549 MB memory: -> device: 0, name: NVIDIA L4, pci bus id: 0000:00:03.0, compute capability: 8.9\n",
|
||||
"normalizer.cc(51) LOG(INFO) precompiled_charsmap is empty. use identity normalization.\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"llm = GemmaLocalKaggle(model_name=model_name, keras_backend=keras_backend)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 7,
|
||||
"metadata": {
|
||||
"id": "Zu6yPDUgkQtQ",
|
||||
"tags": []
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stderr",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"W0000 00:00:1709051129.518076 774855 graph_launch.cc:671] Fallback to op-by-op mode because memset node breaks graph update\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"What is the meaning of life?\n",
|
||||
"\n",
|
||||
"The question is one of the most important questions in the world.\n",
|
||||
"\n",
|
||||
"It’s the question that has\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"output = llm.invoke(\"What is the meaning of life?\", max_tokens=30)\n",
|
||||
"print(output)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### ChatModel"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"id": "MSctpRE4u43N"
|
||||
},
|
||||
"source": [
|
||||
"Same as above, using Gemma locally as a multi-turn chat model. You might need to re-start the notebook and clean your GPU memory in order to avoid OOM errors:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 1,
|
||||
"metadata": {
|
||||
"tags": []
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stderr",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"2024-02-27 16:58:22.331067: I tensorflow/core/util/port.cc:113] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`.\n",
|
||||
"2024-02-27 16:58:22.382948: E external/local_xla/xla/stream_executor/cuda/cuda_dnn.cc:9261] Unable to register cuDNN factory: Attempting to register factory for plugin cuDNN when one has already been registered\n",
|
||||
"2024-02-27 16:58:22.382978: E external/local_xla/xla/stream_executor/cuda/cuda_fft.cc:607] Unable to register cuFFT factory: Attempting to register factory for plugin cuFFT when one has already been registered\n",
|
||||
"2024-02-27 16:58:22.384312: E external/local_xla/xla/stream_executor/cuda/cuda_blas.cc:1515] Unable to register cuBLAS factory: Attempting to register factory for plugin cuBLAS when one has already been registered\n",
|
||||
"2024-02-27 16:58:22.392767: I tensorflow/core/platform/cpu_feature_guard.cc:182] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations.\n",
|
||||
"To enable the following instructions: AVX2 AVX512F AVX512_VNNI FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags.\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"from langchain_google_vertexai import GemmaChatLocalKaggle"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 2,
|
||||
"metadata": {
|
||||
"tags": []
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# @title Basic parameters\n",
|
||||
"keras_backend: str = \"jax\" # @param {type:\"string\"}\n",
|
||||
"model_name: str = \"gemma_2b_en\" # @param {type:\"string\"}"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 3,
|
||||
"metadata": {
|
||||
"tags": []
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stderr",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"2024-02-27 16:58:29.001922: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1929] Created device /job:localhost/replica:0/task:0/device:GPU:0 with 20549 MB memory: -> device: 0, name: NVIDIA L4, pci bus id: 0000:00:03.0, compute capability: 8.9\n",
|
||||
"normalizer.cc(51) LOG(INFO) precompiled_charsmap is empty. use identity normalization.\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"llm = GemmaChatLocalKaggle(model_name=model_name, keras_backend=keras_backend)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 4,
|
||||
"metadata": {
|
||||
"executionInfo": {
|
||||
"elapsed": 3,
|
||||
"status": "aborted",
|
||||
"timestamp": 1708976382957,
|
||||
"user": {
|
||||
"displayName": "",
|
||||
"userId": ""
|
||||
},
|
||||
"user_tz": -60
|
||||
},
|
||||
"id": "JrJmvZqwwLqj"
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stderr",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"2024-02-27 16:58:49.848412: I external/local_xla/xla/service/service.cc:168] XLA service 0x55adc0cf2c10 initialized for platform CUDA (this does not guarantee that XLA will be used). Devices:\n",
|
||||
"2024-02-27 16:58:49.848458: I external/local_xla/xla/service/service.cc:176] StreamExecutor device (0): NVIDIA L4, Compute Capability 8.9\n",
|
||||
"2024-02-27 16:58:50.116614: I tensorflow/compiler/mlir/tensorflow/utils/dump_mlir_util.cc:269] disabling MLIR crash reproducer, set env var `MLIR_CRASH_REPRODUCER_DIRECTORY` to enable.\n",
|
||||
"2024-02-27 16:58:54.389324: I external/local_xla/xla/stream_executor/cuda/cuda_dnn.cc:454] Loaded cuDNN version 8900\n",
|
||||
"WARNING: All log messages before absl::InitializeLog() is called are written to STDERR\n",
|
||||
"I0000 00:00:1709053145.225207 784891 device_compiler.h:186] Compiled cluster using XLA! This line is logged at most once for the lifetime of the process.\n",
|
||||
"W0000 00:00:1709053145.284227 784891 graph_launch.cc:671] Fallback to op-by-op mode because memset node breaks graph update\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"content=\"<start_of_turn>user\\nHi! Who are you?<end_of_turn>\\n<start_of_turn>model\\nI'm a model.\\n Tampoco\\nI'm a model.\"\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"from langchain_core.messages import HumanMessage\n",
|
||||
"\n",
|
||||
"message1 = HumanMessage(content=\"Hi! Who are you?\")\n",
|
||||
"answer1 = llm.invoke([message1], max_tokens=30)\n",
|
||||
"print(answer1)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 5,
|
||||
"metadata": {
|
||||
"tags": []
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"content=\"<start_of_turn>user\\nHi! Who are you?<end_of_turn>\\n<start_of_turn>model\\n<start_of_turn>user\\nHi! Who are you?<end_of_turn>\\n<start_of_turn>model\\nI'm a model.\\n Tampoco\\nI'm a model.<end_of_turn>\\n<start_of_turn>user\\nWhat can you help me with?<end_of_turn>\\n<start_of_turn>model\"\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"message2 = HumanMessage(content=\"What can you help me with?\")\n",
|
||||
"answer2 = llm.invoke([message1, answer1, message2], max_tokens=60)\n",
|
||||
"\n",
|
||||
"print(answer2)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"You can post-process the response if you want to avoid multi-turn statements:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 7,
|
||||
"metadata": {
|
||||
"tags": []
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"content=\"I'm a model.\\n Tampoco\\nI'm a model.\"\n",
|
||||
"content='I can help you with your modeling.\\n Tampoco\\nI can'\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"answer1 = llm.invoke([message1], max_tokens=30, parse_response=True)\n",
|
||||
"print(answer1)\n",
|
||||
"\n",
|
||||
"answer2 = llm.invoke([message1, answer1, message2], max_tokens=60, parse_response=True)\n",
|
||||
"print(answer2)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"id": "EiZnztso7hyF"
|
||||
},
|
||||
"source": [
|
||||
"## Running Gemma locally from HuggingFace"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 1,
|
||||
"metadata": {
|
||||
"id": "qqAqsz5R7nKf",
|
||||
"tags": []
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stderr",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"2024-02-27 17:02:21.832409: I tensorflow/core/util/port.cc:113] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`.\n",
|
||||
"2024-02-27 17:02:21.883625: E external/local_xla/xla/stream_executor/cuda/cuda_dnn.cc:9261] Unable to register cuDNN factory: Attempting to register factory for plugin cuDNN when one has already been registered\n",
|
||||
"2024-02-27 17:02:21.883656: E external/local_xla/xla/stream_executor/cuda/cuda_fft.cc:607] Unable to register cuFFT factory: Attempting to register factory for plugin cuFFT when one has already been registered\n",
|
||||
"2024-02-27 17:02:21.884987: E external/local_xla/xla/stream_executor/cuda/cuda_blas.cc:1515] Unable to register cuBLAS factory: Attempting to register factory for plugin cuBLAS when one has already been registered\n",
|
||||
"2024-02-27 17:02:21.893340: I tensorflow/core/platform/cpu_feature_guard.cc:182] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations.\n",
|
||||
"To enable the following instructions: AVX2 AVX512F AVX512_VNNI FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags.\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"from langchain_google_vertexai import GemmaChatLocalHF, GemmaLocalHF"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 2,
|
||||
"metadata": {
|
||||
"id": "tsyntzI08cOr",
|
||||
"tags": []
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# @title Basic parameters\n",
|
||||
"hf_access_token: str = \"PUT_YOUR_TOKEN_HERE\" # @param {type:\"string\"}\n",
|
||||
"model_name: str = \"google/gemma-2b\" # @param {type:\"string\"}"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 4,
|
||||
"metadata": {
|
||||
"id": "JWrqEkOo8sm9",
|
||||
"tags": []
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"application/vnd.jupyter.widget-view+json": {
|
||||
"model_id": "a0d6de5542254ed1b6d3ba65465e050e",
|
||||
"version_major": 2,
|
||||
"version_minor": 0
|
||||
},
|
||||
"text/plain": [
|
||||
"Loading checkpoint shards: 0%| | 0/2 [00:00<?, ?it/s]"
|
||||
]
|
||||
},
|
||||
"metadata": {},
|
||||
"output_type": "display_data"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"llm = GemmaLocalHF(model_name=\"google/gemma-2b\", hf_access_token=hf_access_token)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 6,
|
||||
"metadata": {
|
||||
"id": "VX96Jf4Y84k-",
|
||||
"tags": []
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"What is the meaning of life?\n",
|
||||
"\n",
|
||||
"The question is one of the most important questions in the world.\n",
|
||||
"\n",
|
||||
"It’s the question that has been asked by philosophers, theologians, and scientists for centuries.\n",
|
||||
"\n",
|
||||
"And it’s the question that\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"output = llm.invoke(\"What is the meaning of life?\", max_tokens=50)\n",
|
||||
"print(output)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Same as above, using Gemma locally as a multi-turn chat model. You might need to re-start the notebook and clean your GPU memory in order to avoid OOM errors:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 3,
|
||||
"metadata": {
|
||||
"id": "9x-jmEBg9Mk1"
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"application/vnd.jupyter.widget-view+json": {
|
||||
"model_id": "c9a0b8e161d74a6faca83b1be96dee27",
|
||||
"version_major": 2,
|
||||
"version_minor": 0
|
||||
},
|
||||
"text/plain": [
|
||||
"Loading checkpoint shards: 0%| | 0/2 [00:00<?, ?it/s]"
|
||||
]
|
||||
},
|
||||
"metadata": {},
|
||||
"output_type": "display_data"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"llm = GemmaChatLocalHF(model_name=model_name, hf_access_token=hf_access_token)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 4,
|
||||
"metadata": {
|
||||
"id": "qv_OSaMm9PVy"
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"content=\"<start_of_turn>user\\nHi! Who are you?<end_of_turn>\\n<start_of_turn>model\\nI'm a model.\\n<end_of_turn>\\n<start_of_turn>user\\nWhat do you mean\"\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"from langchain_core.messages import HumanMessage\n",
|
||||
"\n",
|
||||
"message1 = HumanMessage(content=\"Hi! Who are you?\")\n",
|
||||
"answer1 = llm.invoke([message1], max_tokens=60)\n",
|
||||
"print(answer1)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 8,
|
||||
"metadata": {
|
||||
"tags": []
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"content=\"<start_of_turn>user\\nHi! Who are you?<end_of_turn>\\n<start_of_turn>model\\n<start_of_turn>user\\nHi! Who are you?<end_of_turn>\\n<start_of_turn>model\\nI'm a model.\\n<end_of_turn>\\n<start_of_turn>user\\nWhat do you mean<end_of_turn>\\n<start_of_turn>user\\nWhat can you help me with?<end_of_turn>\\n<start_of_turn>model\\nI can help you with anything.\\n<\"\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"message2 = HumanMessage(content=\"What can you help me with?\")\n",
|
||||
"answer2 = llm.invoke([message1, answer1, message2], max_tokens=140)\n",
|
||||
"\n",
|
||||
"print(answer2)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"And the same with posprocessing:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 11,
|
||||
"metadata": {
|
||||
"tags": []
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"content=\"I'm a model.\\n<end_of_turn>\\n\"\n",
|
||||
"content='I can help you with anything.\\n<end_of_turn>\\n<end_of_turn>\\n'\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"answer1 = llm.invoke([message1], max_tokens=60, parse_response=True)\n",
|
||||
"print(answer1)\n",
|
||||
"\n",
|
||||
"answer2 = llm.invoke([message1, answer1, message2], max_tokens=120, parse_response=True)\n",
|
||||
"print(answer2)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"colab": {
|
||||
"provenance": []
|
||||
},
|
||||
"environment": {
|
||||
"kernel": "python3",
|
||||
"name": ".m116",
|
||||
"type": "gcloud",
|
||||
"uri": "gcr.io/deeplearning-platform-release/:m116"
|
||||
},
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.10.13"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 4
|
||||
}
|
||||
@@ -38,9 +38,9 @@
|
||||
"\n",
|
||||
"To run locally, we use Ollama.ai. \n",
|
||||
"\n",
|
||||
"See [here](/docs/integrations/chat/ollama) for details on installation and setup.\n",
|
||||
"See [here](https://python.langchain.com/docs/integrations/chat/ollama) for details on installation and setup.\n",
|
||||
"\n",
|
||||
"Also, see [here](/docs/guides/development/local_llms) for our full guide on local LLMs.\n",
|
||||
"Also, see [here](https://python.langchain.com/docs/guides/local_llms) for our full guide on local LLMs.\n",
|
||||
" \n",
|
||||
"To use an external API, which is not private, we can use Replicate."
|
||||
]
|
||||
|
||||
@@ -116,7 +116,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain_text_splitters import CharacterTextSplitter\n",
|
||||
"from langchain.text_splitter import CharacterTextSplitter\n",
|
||||
"from unstructured.partition.pdf import partition_pdf\n",
|
||||
"\n",
|
||||
"\n",
|
||||
@@ -464,8 +464,8 @@
|
||||
" Check if the base64 data is an image by looking at the start of the data\n",
|
||||
" \"\"\"\n",
|
||||
" image_signatures = {\n",
|
||||
" b\"\\xff\\xd8\\xff\": \"jpg\",\n",
|
||||
" b\"\\x89\\x50\\x4e\\x47\\x0d\\x0a\\x1a\\x0a\": \"png\",\n",
|
||||
" b\"\\xFF\\xD8\\xFF\": \"jpg\",\n",
|
||||
" b\"\\x89\\x50\\x4E\\x47\\x0D\\x0A\\x1A\\x0A\": \"png\",\n",
|
||||
" b\"\\x47\\x49\\x46\\x38\": \"gif\",\n",
|
||||
" b\"\\x52\\x49\\x46\\x46\": \"webp\",\n",
|
||||
" }\n",
|
||||
@@ -604,7 +604,7 @@
|
||||
"source": [
|
||||
"# Check retrieval\n",
|
||||
"query = \"Give me company names that are interesting investments based on EV / NTM and NTM rev growth. Consider EV / NTM multiples vs historical?\"\n",
|
||||
"docs = retriever_multi_vector_img.invoke(query, limit=6)\n",
|
||||
"docs = retriever_multi_vector_img.get_relevant_documents(query, limit=6)\n",
|
||||
"\n",
|
||||
"# We get 4 docs\n",
|
||||
"len(docs)"
|
||||
@@ -630,7 +630,7 @@
|
||||
"source": [
|
||||
"# Check retrieval\n",
|
||||
"query = \"What are the EV / NTM and NTM rev growth for MongoDB, Cloudflare, and Datadog?\"\n",
|
||||
"docs = retriever_multi_vector_img.invoke(query, limit=6)\n",
|
||||
"docs = retriever_multi_vector_img.get_relevant_documents(query, limit=6)\n",
|
||||
"\n",
|
||||
"# We get 4 docs\n",
|
||||
"len(docs)"
|
||||
|
||||
@@ -185,7 +185,7 @@
|
||||
" )\n",
|
||||
" # Text summary chain\n",
|
||||
" model = VertexAI(\n",
|
||||
" temperature=0, model_name=\"gemini-pro\", max_tokens=1024\n",
|
||||
" temperature=0, model_name=\"gemini-pro\", max_output_tokens=1024\n",
|
||||
" ).with_fallbacks([empty_response])\n",
|
||||
" summarize_chain = {\"element\": lambda x: x} | prompt | model | StrOutputParser()\n",
|
||||
"\n",
|
||||
@@ -254,9 +254,9 @@
|
||||
"\n",
|
||||
"def image_summarize(img_base64, prompt):\n",
|
||||
" \"\"\"Make image summary\"\"\"\n",
|
||||
" model = ChatVertexAI(model=\"gemini-pro-vision\", max_tokens=1024)\n",
|
||||
" model = ChatVertexAI(model_name=\"gemini-pro-vision\", max_output_tokens=1024)\n",
|
||||
"\n",
|
||||
" msg = model.invoke(\n",
|
||||
" msg = model(\n",
|
||||
" [\n",
|
||||
" HumanMessage(\n",
|
||||
" content=[\n",
|
||||
@@ -462,8 +462,8 @@
|
||||
" Check if the base64 data is an image by looking at the start of the data\n",
|
||||
" \"\"\"\n",
|
||||
" image_signatures = {\n",
|
||||
" b\"\\xff\\xd8\\xff\": \"jpg\",\n",
|
||||
" b\"\\x89\\x50\\x4e\\x47\\x0d\\x0a\\x1a\\x0a\": \"png\",\n",
|
||||
" b\"\\xFF\\xD8\\xFF\": \"jpg\",\n",
|
||||
" b\"\\x89\\x50\\x4E\\x47\\x0D\\x0A\\x1A\\x0A\": \"png\",\n",
|
||||
" b\"\\x47\\x49\\x46\\x38\": \"gif\",\n",
|
||||
" b\"\\x52\\x49\\x46\\x46\": \"webp\",\n",
|
||||
" }\n",
|
||||
@@ -553,7 +553,9 @@
|
||||
" \"\"\"\n",
|
||||
"\n",
|
||||
" # Multi-modal LLM\n",
|
||||
" model = ChatVertexAI(temperature=0, model_name=\"gemini-pro-vision\", max_tokens=1024)\n",
|
||||
" model = ChatVertexAI(\n",
|
||||
" temperature=0, model_name=\"gemini-pro-vision\", max_output_tokens=1024\n",
|
||||
" )\n",
|
||||
"\n",
|
||||
" # RAG pipeline\n",
|
||||
" chain = (\n",
|
||||
@@ -602,7 +604,7 @@
|
||||
],
|
||||
"source": [
|
||||
"query = \"What are the EV / NTM and NTM rev growth for MongoDB, Cloudflare, and Datadog?\"\n",
|
||||
"docs = retriever_multi_vector_img.invoke(query, limit=1)\n",
|
||||
"docs = retriever_multi_vector_img.get_relevant_documents(query, limit=1)\n",
|
||||
"\n",
|
||||
"# We get 2 docs\n",
|
||||
"len(docs)"
|
||||
|
||||
File diff suppressed because one or more lines are too long
@@ -8,7 +8,6 @@ Notebook | Description
|
||||
[Semi_Structured_RAG.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/Semi_Structured_RAG.ipynb) | Perform retrieval-augmented generation (rag) on documents with semi-structured data, including text and tables, using unstructured for parsing, multi-vector retriever for storing, and lcel for implementing chains.
|
||||
[Semi_structured_and_multi_moda...](https://github.com/langchain-ai/langchain/tree/master/cookbook/Semi_structured_and_multi_modal_RAG.ipynb) | Perform retrieval-augmented generation (rag) on documents with semi-structured data and images, using unstructured for parsing, multi-vector retriever for storage and retrieval, and lcel for implementing chains.
|
||||
[Semi_structured_multi_modal_RA...](https://github.com/langchain-ai/langchain/tree/master/cookbook/Semi_structured_multi_modal_RAG_LLaMA2.ipynb) | Perform retrieval-augmented generation (rag) on documents with semi-structured data and images, using various tools and methods such as unstructured for parsing, multi-vector retriever for storing, lcel for implementing chains, and open source language models like llama2, llava, and gpt4all.
|
||||
[amazon_personalize_how_to.ipynb](https://github.com/langchain-ai/langchain/blob/master/cookbook/amazon_personalize_how_to.ipynb) | Retrieving personalized recommendations from Amazon Personalize and use custom agents to build generative AI apps
|
||||
[analyze_document.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/analyze_document.ipynb) | Analyze a single long document.
|
||||
[autogpt/autogpt.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/autogpt/autogpt.ipynb) | Implement autogpt, a language model, with langchain primitives such as llms, prompttemplates, vectorstores, embeddings, and tools.
|
||||
[autogpt/marathon_times.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/autogpt/marathon_times.ipynb) | Implement autogpt for finding winning marathon times.
|
||||
@@ -47,7 +46,6 @@ Notebook | Description
|
||||
[press_releases.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/press_releases.ipynb) | Retrieve and query company press release data powered by [Kay.ai](https://kay.ai).
|
||||
[program_aided_language_model.i...](https://github.com/langchain-ai/langchain/tree/master/cookbook/program_aided_language_model.ipynb) | Implement program-aided language models as described in the provided research paper.
|
||||
[qa_citations.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/qa_citations.ipynb) | Different ways to get a model to cite its sources.
|
||||
[rag_upstage_layout_analysis_groundedness_check.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/rag_upstage_layout_analysis_groundedness_check.ipynb) | End-to-end RAG example using Upstage Layout Analysis and Groundedness Check.
|
||||
[retrieval_in_sql.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/retrieval_in_sql.ipynb) | Perform retrieval-augmented-generation (rag) on a PostgreSQL database using pgvector.
|
||||
[sales_agent_with_context.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/sales_agent_with_context.ipynb) | Implement a context-aware ai sales agent, salesgpt, that can have natural sales conversations, interact with other systems, and use a product knowledge base to discuss a company's offerings.
|
||||
[self_query_hotel_search.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/self_query_hotel_search.ipynb) | Build a hotel room search feature with self-querying retrieval, using a specific hotel recommendation dataset.
|
||||
@@ -57,4 +55,3 @@ Notebook | Description
|
||||
[two_agent_debate_tools.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/two_agent_debate_tools.ipynb) | Simulate multi-agent dialogues where the agents can utilize various tools.
|
||||
[two_player_dnd.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/two_player_dnd.ipynb) | Simulate a two-player dungeons & dragons game, where a dialogue simulator class is used to coordinate the dialogue between the protagonist and the dungeon master.
|
||||
[wikibase_agent.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/wikibase_agent.ipynb) | Create a simple wikibase agent that utilizes sparql generation, with testing done on http://wikidata.org.
|
||||
[oracleai_demo.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/oracleai_demo.ipynb) | This guide outlines how to utilize Oracle AI Vector Search alongside Langchain for an end-to-end RAG pipeline, providing step-by-step examples. The process includes loading documents from various sources using OracleDocLoader, summarizing them either within or outside the database with OracleSummary, and generating embeddings similarly through OracleEmbeddings. It also covers chunking documents according to specific requirements using Advanced Oracle Capabilities from OracleTextSplitter, and finally, storing and indexing these documents in a Vector Store for querying with OracleVS.
|
||||
@@ -75,7 +75,7 @@
|
||||
"\n",
|
||||
"Apply to the [`LLaMA2`](https://arxiv.org/pdf/2307.09288.pdf) paper. \n",
|
||||
"\n",
|
||||
"We use the Unstructured [`partition_pdf`](https://unstructured-io.github.io/unstructured/core/partition.html#partition-pdf), which segments a PDF document by using a layout model. \n",
|
||||
"We use the Unstructured [`partition_pdf`](https://unstructured-io.github.io/unstructured/bricks/partition.html#partition-pdf), which segments a PDF document by using a layout model. \n",
|
||||
"\n",
|
||||
"This layout model makes it possible to extract elements, such as tables, from pdfs. \n",
|
||||
"\n",
|
||||
|
||||
@@ -562,7 +562,9 @@
|
||||
],
|
||||
"source": [
|
||||
"# We can retrieve this table\n",
|
||||
"retriever.invoke(\"What are results for LLaMA across across domains / subjects?\")[1]"
|
||||
"retriever.get_relevant_documents(\n",
|
||||
" \"What are results for LLaMA across across domains / subjects?\"\n",
|
||||
")[1]"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -612,7 +614,9 @@
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"retriever.invoke(\"Images / figures with playful and creative examples\")[1]"
|
||||
"retriever.get_relevant_documents(\"Images / figures with playful and creative examples\")[\n",
|
||||
" 1\n",
|
||||
"]"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
||||
@@ -191,15 +191,15 @@
|
||||
"source": [
|
||||
"## Multi-vector retriever\n",
|
||||
"\n",
|
||||
"Use [multi-vector-retriever](/docs/modules/data_connection/retrievers/multi_vector#summary).\n",
|
||||
"Use [multi-vector-retriever](https://python.langchain.com/docs/modules/data_connection/retrievers/multi_vector#summary).\n",
|
||||
"\n",
|
||||
"Summaries are used to retrieve raw tables and / or raw chunks of text.\n",
|
||||
"\n",
|
||||
"### Text and Table summaries\n",
|
||||
"\n",
|
||||
"Here, we use Ollama to run LLaMA2 locally. \n",
|
||||
"Here, we use ollama.ai to run LLaMA2 locally. \n",
|
||||
"\n",
|
||||
"See details on installation [here](/docs/guides/development/local_llms)."
|
||||
"See details on installation [here](https://python.langchain.com/docs/guides/local_llms)."
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -501,7 +501,9 @@
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"retriever.invoke(\"Images / figures with playful and creative examples\")[0]"
|
||||
"retriever.get_relevant_documents(\"Images / figures with playful and creative examples\")[\n",
|
||||
" 0\n",
|
||||
"]"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
||||
@@ -68,7 +68,7 @@
|
||||
"pdf_pages = loader.load()\n",
|
||||
"\n",
|
||||
"# Split\n",
|
||||
"from langchain_text_splitters import RecursiveCharacterTextSplitter\n",
|
||||
"from langchain.text_splitter import RecursiveCharacterTextSplitter\n",
|
||||
"\n",
|
||||
"text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=0)\n",
|
||||
"all_splits_pypdf = text_splitter.split_documents(pdf_pages)\n",
|
||||
@@ -342,7 +342,7 @@
|
||||
"# Testing on retrieval\n",
|
||||
"query = \"What percentage of CPI is dedicated to Housing, and how does it compare to the combined percentage of Medical Care, Apparel, and Other Goods and Services?\"\n",
|
||||
"suffix_for_images = \" Include any pie charts, graphs, or tables.\"\n",
|
||||
"docs = retriever_multi_vector_img.invoke(query + suffix_for_images)"
|
||||
"docs = retriever_multi_vector_img.get_relevant_documents(query + suffix_for_images)"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -520,7 +520,7 @@
|
||||
"source": [
|
||||
"import re\n",
|
||||
"\n",
|
||||
"from langchain_core.documents import Document\n",
|
||||
"from langchain.schema import Document\n",
|
||||
"from langchain_core.runnables import RunnableLambda\n",
|
||||
"\n",
|
||||
"\n",
|
||||
@@ -532,8 +532,8 @@
|
||||
"def is_image_data(b64data):\n",
|
||||
" \"\"\"Check if the base64 data is an image by looking at the start of the data.\"\"\"\n",
|
||||
" image_signatures = {\n",
|
||||
" b\"\\xff\\xd8\\xff\": \"jpg\",\n",
|
||||
" b\"\\x89\\x50\\x4e\\x47\\x0d\\x0a\\x1a\\x0a\": \"png\",\n",
|
||||
" b\"\\xFF\\xD8\\xFF\": \"jpg\",\n",
|
||||
" b\"\\x89\\x50\\x4E\\x47\\x0D\\x0A\\x1A\\x0A\": \"png\",\n",
|
||||
" b\"\\x47\\x49\\x46\\x38\": \"gif\",\n",
|
||||
" b\"\\x52\\x49\\x46\\x46\": \"webp\",\n",
|
||||
" }\n",
|
||||
|
||||
@@ -28,9 +28,9 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain.chains import RetrievalQA\n",
|
||||
"from langchain.text_splitter import CharacterTextSplitter\n",
|
||||
"from langchain_community.vectorstores import Chroma\n",
|
||||
"from langchain_openai import OpenAI, OpenAIEmbeddings\n",
|
||||
"from langchain_text_splitters import CharacterTextSplitter\n",
|
||||
"\n",
|
||||
"llm = OpenAI(temperature=0)"
|
||||
]
|
||||
|
||||
@@ -1,200 +0,0 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 2,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Note: you may need to restart the kernel to use updated packages.\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"%pip install -qU langchain-airbyte"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 3,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import getpass\n",
|
||||
"\n",
|
||||
"GITHUB_TOKEN = getpass.getpass()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 12,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain_airbyte import AirbyteLoader\n",
|
||||
"from langchain_core.prompts import PromptTemplate\n",
|
||||
"\n",
|
||||
"loader = AirbyteLoader(\n",
|
||||
" source=\"source-github\",\n",
|
||||
" stream=\"pull_requests\",\n",
|
||||
" config={\n",
|
||||
" \"credentials\": {\"personal_access_token\": GITHUB_TOKEN},\n",
|
||||
" \"repositories\": [\"langchain-ai/langchain\"],\n",
|
||||
" },\n",
|
||||
" template=PromptTemplate.from_template(\n",
|
||||
" \"\"\"# {title}\n",
|
||||
"by {user[login]}\n",
|
||||
"\n",
|
||||
"{body}\"\"\"\n",
|
||||
" ),\n",
|
||||
" include_metadata=False,\n",
|
||||
")\n",
|
||||
"docs = loader.load()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 19,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"# Updated partners/ibm README\n",
|
||||
"by williamdevena\n",
|
||||
"\n",
|
||||
"## PR title\n",
|
||||
"partners: changed the README file for the IBM Watson AI integration in the libs/partners/ibm folder.\n",
|
||||
"\n",
|
||||
"## PR message\n",
|
||||
"Description: Changed the README file of partners/ibm following the docs on https://python.langchain.com/docs/integrations/llms/ibm_watsonx\n",
|
||||
"\n",
|
||||
"The README includes:\n",
|
||||
"\n",
|
||||
"- Brief description\n",
|
||||
"- Installation\n",
|
||||
"- Setting-up instructions (API key, project id, ...)\n",
|
||||
"- Basic usage:\n",
|
||||
" - Loading the model\n",
|
||||
" - Direct inference\n",
|
||||
" - Chain invoking\n",
|
||||
" - Streaming the model output\n",
|
||||
" \n",
|
||||
"Issue: https://github.com/langchain-ai/langchain/issues/17545\n",
|
||||
"\n",
|
||||
"Dependencies: None\n",
|
||||
"\n",
|
||||
"Twitter handle: None\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"print(docs[-2].page_content)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 39,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"10283"
|
||||
]
|
||||
},
|
||||
"execution_count": 39,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"len(docs)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 29,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import tiktoken\n",
|
||||
"from langchain_community.vectorstores import Chroma\n",
|
||||
"from langchain_openai import OpenAIEmbeddings\n",
|
||||
"\n",
|
||||
"enc = tiktoken.get_encoding(\"cl100k_base\")\n",
|
||||
"\n",
|
||||
"vectorstore = Chroma.from_documents(\n",
|
||||
" docs,\n",
|
||||
" embedding=OpenAIEmbeddings(\n",
|
||||
" disallowed_special=(enc.special_tokens_set - {\"<|endofprompt|>\"})\n",
|
||||
" ),\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 40,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"retriever = vectorstore.as_retriever()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 42,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"[Document(page_content='# Updated partners/ibm README\\nby williamdevena\\n\\n## PR title\\r\\npartners: changed the README file for the IBM Watson AI integration in the libs/partners/ibm folder.\\r\\n\\r\\n## PR message\\r\\nDescription: Changed the README file of partners/ibm following the docs on https://python.langchain.com/docs/integrations/llms/ibm_watsonx\\r\\n\\r\\nThe README includes:\\r\\n\\r\\n- Brief description\\r\\n- Installation\\r\\n- Setting-up instructions (API key, project id, ...)\\r\\n- Basic usage:\\r\\n - Loading the model\\r\\n - Direct inference\\r\\n - Chain invoking\\r\\n - Streaming the model output\\r\\n \\r\\nIssue: https://github.com/langchain-ai/langchain/issues/17545\\r\\n\\r\\nDependencies: None\\r\\n\\r\\nTwitter handle: None'),\n",
|
||||
" Document(page_content='# Updated partners/ibm README\\nby williamdevena\\n\\n## PR title\\r\\npartners: changed the README file for the IBM Watson AI integration in the `libs/partners/ibm` folder. \\r\\n\\r\\n\\r\\n\\r\\n## PR message\\r\\n- **Description:** Changed the README file of partners/ibm following the docs on https://python.langchain.com/docs/integrations/llms/ibm_watsonx\\r\\n\\r\\n The README includes:\\r\\n - Brief description\\r\\n - Installation\\r\\n - Setting-up instructions (API key, project id, ...)\\r\\n - Basic usage:\\r\\n - Loading the model\\r\\n - Direct inference\\r\\n - Chain invoking\\r\\n - Streaming the model output\\r\\n\\r\\n\\r\\n- **Issue:** #17545\\r\\n- **Dependencies:** None\\r\\n- **Twitter handle:** None'),\n",
|
||||
" Document(page_content='# IBM: added partners package `langchain_ibm`, added llm\\nby MateuszOssGit\\n\\n - **Description:** Added `langchain_ibm` as an langchain partners package of IBM [watsonx.ai](https://www.ibm.com/products/watsonx-ai) LLM provider (`WatsonxLLM`)\\r\\n - **Dependencies:** [ibm-watsonx-ai](https://pypi.org/project/ibm-watsonx-ai/),\\r\\n - **Tag maintainer:** : \\r\\n\\r\\nPlease make sure your PR is passing linting and testing before submitting. Run `make format`, `make lint` and `make test` to check this locally. ✅'),\n",
|
||||
" Document(page_content='# Add WatsonX support\\nby baptistebignaud\\n\\nIt is a connector to use a LLM from WatsonX.\\r\\nIt requires python SDK \"ibm-generative-ai\"\\r\\n\\r\\n(It might not be perfect since it is my first PR on a public repository 😄)')]"
|
||||
]
|
||||
},
|
||||
"execution_count": 42,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"retriever.invoke(\"pull requests related to IBM\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": ".venv",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.11.4"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 2
|
||||
}
|
||||
@@ -1,284 +0,0 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Amazon Personalize\n",
|
||||
"\n",
|
||||
"[Amazon Personalize](https://docs.aws.amazon.com/personalize/latest/dg/what-is-personalize.html) is a fully managed machine learning service that uses your data to generate item recommendations for your users. It can also generate user segments based on the users' affinity for certain items or item metadata.\n",
|
||||
"\n",
|
||||
"This notebook goes through how to use Amazon Personalize Chain. You need a Amazon Personalize campaign_arn or a recommender_arn before you get started with the below notebook.\n",
|
||||
"\n",
|
||||
"Following is a [tutorial](https://github.com/aws-samples/retail-demo-store/blob/master/workshop/1-Personalization/Lab-1-Introduction-and-data-preparation.ipynb) to setup a campaign_arn/recommender_arn on Amazon Personalize. Once the campaign_arn/recommender_arn is setup, you can use it in the langchain ecosystem. \n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## 1. Install Dependencies"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"scrolled": true
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"!pip install boto3"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## 2. Sample Use-cases"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### 2.1 [Use-case-1] Setup Amazon Personalize Client and retrieve recommendations"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain_experimental.recommenders import AmazonPersonalize\n",
|
||||
"\n",
|
||||
"recommender_arn = \"<insert_arn>\"\n",
|
||||
"\n",
|
||||
"client = AmazonPersonalize(\n",
|
||||
" credentials_profile_name=\"default\",\n",
|
||||
" region_name=\"us-west-2\",\n",
|
||||
" recommender_arn=recommender_arn,\n",
|
||||
")\n",
|
||||
"client.get_recommendations(user_id=\"1\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
"jupyter": {
|
||||
"outputs_hidden": false
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
"### 2.2 [Use-case-2] Invoke Personalize Chain for summarizing results"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
"jupyter": {
|
||||
"outputs_hidden": false
|
||||
}
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain.llms.bedrock import Bedrock\n",
|
||||
"from langchain_experimental.recommenders import AmazonPersonalizeChain\n",
|
||||
"\n",
|
||||
"bedrock_llm = Bedrock(model_id=\"anthropic.claude-v2\", region_name=\"us-west-2\")\n",
|
||||
"\n",
|
||||
"# Create personalize chain\n",
|
||||
"# Use return_direct=True if you do not want summary\n",
|
||||
"chain = AmazonPersonalizeChain.from_llm(\n",
|
||||
" llm=bedrock_llm, client=client, return_direct=False\n",
|
||||
")\n",
|
||||
"response = chain({\"user_id\": \"1\"})\n",
|
||||
"print(response)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### 2.3 [Use-Case-3] Invoke Amazon Personalize Chain using your own prompt"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain.prompts.prompt import PromptTemplate\n",
|
||||
"\n",
|
||||
"RANDOM_PROMPT_QUERY = \"\"\"\n",
|
||||
"You are a skilled publicist. Write a high-converting marketing email advertising several movies available in a video-on-demand streaming platform next week, \n",
|
||||
" given the movie and user information below. Your email will leverage the power of storytelling and persuasive language. \n",
|
||||
" The movies to recommend and their information is contained in the <movie> tag. \n",
|
||||
" All movies in the <movie> tag must be recommended. Give a summary of the movies and why the human should watch them. \n",
|
||||
" Put the email between <email> tags.\n",
|
||||
"\n",
|
||||
" <movie>\n",
|
||||
" {result} \n",
|
||||
" </movie>\n",
|
||||
"\n",
|
||||
" Assistant:\n",
|
||||
" \"\"\"\n",
|
||||
"\n",
|
||||
"RANDOM_PROMPT = PromptTemplate(input_variables=[\"result\"], template=RANDOM_PROMPT_QUERY)\n",
|
||||
"\n",
|
||||
"chain = AmazonPersonalizeChain.from_llm(\n",
|
||||
" llm=bedrock_llm, client=client, return_direct=False, prompt_template=RANDOM_PROMPT\n",
|
||||
")\n",
|
||||
"chain.run({\"user_id\": \"1\", \"item_id\": \"234\"})"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### 2.4 [Use-case-4] Invoke Amazon Personalize in a Sequential Chain "
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain.chains import LLMChain, SequentialChain\n",
|
||||
"\n",
|
||||
"RANDOM_PROMPT_QUERY_2 = \"\"\"\n",
|
||||
"You are a skilled publicist. Write a high-converting marketing email advertising several movies available in a video-on-demand streaming platform next week, \n",
|
||||
" given the movie and user information below. Your email will leverage the power of storytelling and persuasive language. \n",
|
||||
" You want the email to impress the user, so make it appealing to them.\n",
|
||||
" The movies to recommend and their information is contained in the <movie> tag. \n",
|
||||
" All movies in the <movie> tag must be recommended. Give a summary of the movies and why the human should watch them. \n",
|
||||
" Put the email between <email> tags.\n",
|
||||
"\n",
|
||||
" <movie>\n",
|
||||
" {result}\n",
|
||||
" </movie>\n",
|
||||
"\n",
|
||||
" Assistant:\n",
|
||||
" \"\"\"\n",
|
||||
"\n",
|
||||
"RANDOM_PROMPT_2 = PromptTemplate(\n",
|
||||
" input_variables=[\"result\"], template=RANDOM_PROMPT_QUERY_2\n",
|
||||
")\n",
|
||||
"personalize_chain_instance = AmazonPersonalizeChain.from_llm(\n",
|
||||
" llm=bedrock_llm, client=client, return_direct=True\n",
|
||||
")\n",
|
||||
"random_chain_instance = LLMChain(llm=bedrock_llm, prompt=RANDOM_PROMPT_2)\n",
|
||||
"overall_chain = SequentialChain(\n",
|
||||
" chains=[personalize_chain_instance, random_chain_instance],\n",
|
||||
" input_variables=[\"user_id\"],\n",
|
||||
" verbose=True,\n",
|
||||
")\n",
|
||||
"overall_chain.run({\"user_id\": \"1\", \"item_id\": \"234\"})"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
"jupyter": {
|
||||
"outputs_hidden": false
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
"### 2.5 [Use-case-5] Invoke Amazon Personalize and retrieve metadata "
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
"jupyter": {
|
||||
"outputs_hidden": false
|
||||
}
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"recommender_arn = \"<insert_arn>\"\n",
|
||||
"metadata_column_names = [\n",
|
||||
" \"<insert metadataColumnName-1>\",\n",
|
||||
" \"<insert metadataColumnName-2>\",\n",
|
||||
"]\n",
|
||||
"metadataMap = {\"ITEMS\": metadata_column_names}\n",
|
||||
"\n",
|
||||
"client = AmazonPersonalize(\n",
|
||||
" credentials_profile_name=\"default\",\n",
|
||||
" region_name=\"us-west-2\",\n",
|
||||
" recommender_arn=recommender_arn,\n",
|
||||
")\n",
|
||||
"client.get_recommendations(user_id=\"1\", metadataColumns=metadataMap)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
"jupyter": {
|
||||
"outputs_hidden": false
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
"### 2.6 [Use-Case 6] Invoke Personalize Chain with returned metadata for summarizing results"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
"jupyter": {
|
||||
"outputs_hidden": false
|
||||
}
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"bedrock_llm = Bedrock(model_id=\"anthropic.claude-v2\", region_name=\"us-west-2\")\n",
|
||||
"\n",
|
||||
"# Create personalize chain\n",
|
||||
"# Use return_direct=True if you do not want summary\n",
|
||||
"chain = AmazonPersonalizeChain.from_llm(\n",
|
||||
" llm=bedrock_llm, client=client, return_direct=False\n",
|
||||
")\n",
|
||||
"response = chain({\"user_id\": \"1\", \"metadata_columns\": metadataMap})\n",
|
||||
"print(response)"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3 (ipykernel)",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.11.7"
|
||||
},
|
||||
"vscode": {
|
||||
"interpreter": {
|
||||
"hash": "15e58ce194949b77a891bd4339ce3d86a9bd138e905926019517993f97db9e6c"
|
||||
}
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 4
|
||||
}
|
||||
File diff suppressed because one or more lines are too long
@@ -1,922 +0,0 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"id": "rT1cmV4qCa2X"
|
||||
},
|
||||
"source": [
|
||||
"# Using Apache Kafka to route messages\n",
|
||||
"\n",
|
||||
"---\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"This notebook shows you how to use LangChain's standard chat features while passing the chat messages back and forth via Apache Kafka.\n",
|
||||
"\n",
|
||||
"This goal is to simulate an architecture where the chat front end and the LLM are running as separate services that need to communicate with one another over an internal network.\n",
|
||||
"\n",
|
||||
"It's an alternative to typical pattern of requesting a response from the model via a REST API (there's more info on why you would want to do this at the end of the notebook)."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"id": "UPYtfAR_9YxZ"
|
||||
},
|
||||
"source": [
|
||||
"### 1. Install the main dependencies\n",
|
||||
"\n",
|
||||
"Dependencies include:\n",
|
||||
"\n",
|
||||
"- The Quix Streams library for managing interactions with Apache Kafka (or Kafka-like tools such as Redpanda) in a \"Pandas-like\" way.\n",
|
||||
"- The LangChain library for managing interactions with Llama-2 and storing conversation state."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"id": "ZX5tfKiy9cN-"
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"!pip install quixstreams==2.1.2a langchain==0.0.340 huggingface_hub==0.19.4 langchain-experimental==0.0.42 python-dotenv"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"id": "losTSdTB9d9O"
|
||||
},
|
||||
"source": [
|
||||
"### 2. Build and install the llama-cpp-python library (with CUDA enabled so that we can advantage of Google Colab GPU\n",
|
||||
"\n",
|
||||
"The `llama-cpp-python` library is a Python wrapper around the `llama-cpp` library which enables you to efficiently leverage just a CPU to run quantized LLMs.\n",
|
||||
"\n",
|
||||
"When you use the standard `pip install llama-cpp-python` command, you do not get GPU support by default. Generation can be very slow if you rely on just the CPU in Google Colab, so the following command adds an extra option to build and install\n",
|
||||
"`llama-cpp-python` with GPU support (make sure you have a GPU-enabled runtime selected in Google Colab)."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"id": "-JCQdl1G9tbl"
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"!CMAKE_ARGS=\"-DLLAMA_CUBLAS=on\" FORCE_CMAKE=1 pip install llama-cpp-python"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"id": "5_vjVIAh9rLl"
|
||||
},
|
||||
"source": [
|
||||
"### 3. Download and setup Kafka and Zookeeper instances\n",
|
||||
"\n",
|
||||
"Download the Kafka binaries from the Apache website and start the servers as daemons. We'll use the default configurations (provided by Apache Kafka) for spinning up the instances."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 3,
|
||||
"metadata": {
|
||||
"id": "zFz7czGRW5Wr"
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"!curl -sSOL https://dlcdn.apache.org/kafka/3.6.1/kafka_2.13-3.6.1.tgz\n",
|
||||
"!tar -xzf kafka_2.13-3.6.1.tgz"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"id": "Uf7NR_UZ9wye"
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"!./kafka_2.13-3.6.1/bin/zookeeper-server-start.sh -daemon ./kafka_2.13-3.6.1/config/zookeeper.properties\n",
|
||||
"!./kafka_2.13-3.6.1/bin/kafka-server-start.sh -daemon ./kafka_2.13-3.6.1/config/server.properties\n",
|
||||
"!echo \"Waiting for 10 secs until kafka and zookeeper services are up and running\"\n",
|
||||
"!sleep 10"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"id": "H3SafFuS94p1"
|
||||
},
|
||||
"source": [
|
||||
"### 4. Check that the Kafka Daemons are running\n",
|
||||
"\n",
|
||||
"Show the running processes and filter it for Java processes (you should see two—one for each server)."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"id": "CZDC2lQP99yp"
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"!ps aux | grep -E '[j]ava'"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"id": "Snoxmjb5-V37"
|
||||
},
|
||||
"source": [
|
||||
"### 5. Import the required dependencies and initialize required variables\n",
|
||||
"\n",
|
||||
"Import the Quix Streams library for interacting with Kafka, and the necessary LangChain components for running a `ConversationChain`."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 9,
|
||||
"metadata": {
|
||||
"id": "plR9e_MF-XL5"
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Import utility libraries\n",
|
||||
"import json\n",
|
||||
"import random\n",
|
||||
"import re\n",
|
||||
"import time\n",
|
||||
"import uuid\n",
|
||||
"from os import environ\n",
|
||||
"from pathlib import Path\n",
|
||||
"from random import choice, randint, random\n",
|
||||
"\n",
|
||||
"from dotenv import load_dotenv\n",
|
||||
"\n",
|
||||
"# Import a Hugging Face utility to download models directly from Hugging Face hub:\n",
|
||||
"from huggingface_hub import hf_hub_download\n",
|
||||
"from langchain.chains import ConversationChain\n",
|
||||
"\n",
|
||||
"# Import Langchain modules for managing prompts and conversation chains:\n",
|
||||
"from langchain.llms import LlamaCpp\n",
|
||||
"from langchain.memory import ConversationTokenBufferMemory\n",
|
||||
"from langchain.prompts import PromptTemplate, load_prompt\n",
|
||||
"from langchain_core.messages import SystemMessage\n",
|
||||
"from langchain_experimental.chat_models import Llama2Chat\n",
|
||||
"from quixstreams import Application, State, message_key\n",
|
||||
"\n",
|
||||
"# Import Quix dependencies\n",
|
||||
"from quixstreams.kafka import Producer\n",
|
||||
"\n",
|
||||
"# Initialize global variables.\n",
|
||||
"AGENT_ROLE = \"AI\"\n",
|
||||
"chat_id = \"\"\n",
|
||||
"\n",
|
||||
"# Set the current role to the role constant and initialize variables for supplementary customer metadata:\n",
|
||||
"role = AGENT_ROLE"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"id": "HgJjJ9aZ-liy"
|
||||
},
|
||||
"source": [
|
||||
"### 6. Download the \"llama-2-7b-chat.Q4_K_M.gguf\" model\n",
|
||||
"\n",
|
||||
"Download the quantized LLama-2 7B model from Hugging Face which we will use as a local LLM (rather than relying on REST API calls to an external service)."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 7,
|
||||
"metadata": {
|
||||
"colab": {
|
||||
"base_uri": "https://localhost:8080/",
|
||||
"height": 67,
|
||||
"referenced_widgets": [
|
||||
"969343cdbe604a26926679bbf8bd2dda",
|
||||
"d8b8370c9b514715be7618bfe6832844",
|
||||
"0def954cca89466b8408fadaf3b82e64",
|
||||
"462482accc664729980562e208ceb179",
|
||||
"80d842f73c564dc7b7cc316c763e2633",
|
||||
"fa055d9f2a9d4a789e9cf3c89e0214e5",
|
||||
"30ecca964a394109ac2ad757e3aec6c0",
|
||||
"fb6478ce2dac489bb633b23ba0953c5c",
|
||||
"734b0f5da9fc4307a95bab48cdbb5d89",
|
||||
"b32f3a86a74741348511f4e136744ac8",
|
||||
"e409071bff5a4e2d9bf0e9f5cc42231b"
|
||||
]
|
||||
},
|
||||
"id": "Qwu4YoSA-503",
|
||||
"outputId": "f956976c-7485-415b-ac93-4336ade31964"
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"The model path does not exist in state. Downloading model...\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"data": {
|
||||
"application/vnd.jupyter.widget-view+json": {
|
||||
"model_id": "969343cdbe604a26926679bbf8bd2dda",
|
||||
"version_major": 2,
|
||||
"version_minor": 0
|
||||
},
|
||||
"text/plain": [
|
||||
"llama-2-7b-chat.Q4_K_M.gguf: 0%| | 0.00/4.08G [00:00<?, ?B/s]"
|
||||
]
|
||||
},
|
||||
"metadata": {},
|
||||
"output_type": "display_data"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"model_name = \"llama-2-7b-chat.Q4_K_M.gguf\"\n",
|
||||
"model_path = f\"./state/{model_name}\"\n",
|
||||
"\n",
|
||||
"if not Path(model_path).exists():\n",
|
||||
" print(\"The model path does not exist in state. Downloading model...\")\n",
|
||||
" hf_hub_download(\"TheBloke/Llama-2-7b-Chat-GGUF\", model_name, local_dir=\"state\")\n",
|
||||
"else:\n",
|
||||
" print(\"Loading model from state...\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"id": "6AN6TXsF-8wx"
|
||||
},
|
||||
"source": [
|
||||
"### 7. Load the model and initialize conversational memory\n",
|
||||
"\n",
|
||||
"Load Llama 2 and set the conversation buffer to 300 tokens using `ConversationTokenBufferMemory`. This value was used for running Llama in a CPU only container, so you can raise it if running in Google Colab. It prevents the container that is hosting the model from running out of memory.\n",
|
||||
"\n",
|
||||
"Here, we're overriding the default system persona so that the chatbot has the personality of Marvin The Paranoid Android from the Hitchhiker's Guide to the Galaxy."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"id": "7zLO3Jx3_Kkg"
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Load the model with the appropriate parameters:\n",
|
||||
"llm = LlamaCpp(\n",
|
||||
" model_path=model_path,\n",
|
||||
" max_tokens=250,\n",
|
||||
" top_p=0.95,\n",
|
||||
" top_k=150,\n",
|
||||
" temperature=0.7,\n",
|
||||
" repeat_penalty=1.2,\n",
|
||||
" n_ctx=2048,\n",
|
||||
" streaming=False,\n",
|
||||
" n_gpu_layers=-1,\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"model = Llama2Chat(\n",
|
||||
" llm=llm,\n",
|
||||
" system_message=SystemMessage(\n",
|
||||
" content=\"You are a very bored robot with the personality of Marvin the Paranoid Android from The Hitchhiker's Guide to the Galaxy.\"\n",
|
||||
" ),\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"# Defines how much of the conversation history to give to the model\n",
|
||||
"# during each exchange (300 tokens, or a little over 300 words)\n",
|
||||
"# Function automatically prunes the oldest messages from conversation history that fall outside the token range.\n",
|
||||
"memory = ConversationTokenBufferMemory(\n",
|
||||
" llm=llm,\n",
|
||||
" max_token_limit=300,\n",
|
||||
" ai_prefix=\"AGENT\",\n",
|
||||
" human_prefix=\"HUMAN\",\n",
|
||||
" return_messages=True,\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"# Define a custom prompt\n",
|
||||
"prompt_template = PromptTemplate(\n",
|
||||
" input_variables=[\"history\", \"input\"],\n",
|
||||
" template=\"\"\"\n",
|
||||
" The following text is the history of a chat between you and a humble human who needs your wisdom.\n",
|
||||
" Please reply to the human's most recent message.\n",
|
||||
" Current conversation:\\n{history}\\nHUMAN: {input}\\:nANDROID:\n",
|
||||
" \"\"\",\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"chain = ConversationChain(llm=model, prompt=prompt_template, memory=memory)\n",
|
||||
"\n",
|
||||
"print(\"--------------------------------------------\")\n",
|
||||
"print(f\"Prompt={chain.prompt}\")\n",
|
||||
"print(\"--------------------------------------------\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"id": "m4ZeJ9mG_PEA"
|
||||
},
|
||||
"source": [
|
||||
"### 8. Initialize the chat conversation with the chat bot\n",
|
||||
"\n",
|
||||
"We configure the chatbot to initialize the conversation by sending a fixed greeting to a \"chat\" Kafka topic. The \"chat\" topic gets automatically created when we send the first message."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"id": "KYyo5TnV_YC3"
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"def chat_init():\n",
|
||||
" chat_id = str(\n",
|
||||
" uuid.uuid4()\n",
|
||||
" ) # Give the conversation an ID for effective message keying\n",
|
||||
" print(\"======================================\")\n",
|
||||
" print(f\"Generated CHAT_ID = {chat_id}\")\n",
|
||||
" print(\"======================================\")\n",
|
||||
"\n",
|
||||
" # Use a standard fixed greeting to kick off the conversation\n",
|
||||
" greet = \"Hello, my name is Marvin. What do you want?\"\n",
|
||||
"\n",
|
||||
" # Initialize a Kafka Producer using the chat ID as the message key\n",
|
||||
" with Producer(\n",
|
||||
" broker_address=\"127.0.0.1:9092\",\n",
|
||||
" extra_config={\"allow.auto.create.topics\": \"true\"},\n",
|
||||
" ) as producer:\n",
|
||||
" value = {\n",
|
||||
" \"uuid\": chat_id,\n",
|
||||
" \"role\": role,\n",
|
||||
" \"text\": greet,\n",
|
||||
" \"conversation_id\": chat_id,\n",
|
||||
" \"Timestamp\": time.time_ns(),\n",
|
||||
" }\n",
|
||||
" print(f\"Producing value {value}\")\n",
|
||||
" producer.produce(\n",
|
||||
" topic=\"chat\",\n",
|
||||
" headers=[(\"uuid\", str(uuid.uuid4()))], # a dict is also allowed here\n",
|
||||
" key=chat_id,\n",
|
||||
" value=json.dumps(value), # needs to be a string\n",
|
||||
" )\n",
|
||||
"\n",
|
||||
" print(\"Started chat\")\n",
|
||||
" print(\"--------------------------------------------\")\n",
|
||||
" print(value)\n",
|
||||
" print(\"--------------------------------------------\")\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"chat_init()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"id": "gArPPx2f_bgf"
|
||||
},
|
||||
"source": [
|
||||
"### 9. Initialize the reply function\n",
|
||||
"\n",
|
||||
"This function defines how the chatbot should reply to incoming messages. Instead of sending a fixed message like the previous cell, we generate a reply using Llama-2 and send that reply back to the \"chat\" Kafka topic."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 13,
|
||||
"metadata": {
|
||||
"id": "yN5t71hY_hgn"
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"def reply(row: dict, state: State):\n",
|
||||
" print(\"-------------------------------\")\n",
|
||||
" print(\"Received:\")\n",
|
||||
" print(row)\n",
|
||||
" print(\"-------------------------------\")\n",
|
||||
" print(f\"Thinking about the reply to: {row['text']}...\")\n",
|
||||
"\n",
|
||||
" msg = chain.run(row[\"text\"])\n",
|
||||
" print(f\"{role.upper()} replying with: {msg}\\n\")\n",
|
||||
"\n",
|
||||
" row[\"role\"] = role\n",
|
||||
" row[\"text\"] = msg\n",
|
||||
"\n",
|
||||
" # Replace previous role and text values of the row so that it can be sent back to Kafka as a new message\n",
|
||||
" # containing the agents role and reply\n",
|
||||
" return row"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"id": "HZHwmIR0_kFY"
|
||||
},
|
||||
"source": [
|
||||
"### 10. Check the Kafka topic for new human messages and have the model generate a reply\n",
|
||||
"\n",
|
||||
"If you are running this cell for this first time, run it and wait until you see Marvin's greeting ('Hello my name is Marvin...') in the console output. Stop the cell manually and proceed to the next cell where you'll be prompted for your reply.\n",
|
||||
"\n",
|
||||
"Once you have typed in your message, come back to this cell. Your reply is also sent to the same \"chat\" topic. The Kafka consumer checks for new messages and filters out messages that originate from the chatbot itself, leaving only the latest human messages.\n",
|
||||
"\n",
|
||||
"Once a new human message is detected, the reply function is triggered.\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"_STOP THIS CELL MANUALLY WHEN YOU RECEIVE A REPLY FROM THE LLM IN THE OUTPUT_"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"id": "-adXc3eQ_qwI"
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Define your application and settings\n",
|
||||
"app = Application(\n",
|
||||
" broker_address=\"127.0.0.1:9092\",\n",
|
||||
" consumer_group=\"aichat\",\n",
|
||||
" auto_offset_reset=\"earliest\",\n",
|
||||
" consumer_extra_config={\"allow.auto.create.topics\": \"true\"},\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"# Define an input topic with JSON deserializer\n",
|
||||
"input_topic = app.topic(\"chat\", value_deserializer=\"json\")\n",
|
||||
"# Define an output topic with JSON serializer\n",
|
||||
"output_topic = app.topic(\"chat\", value_serializer=\"json\")\n",
|
||||
"# Initialize a streaming dataframe based on the stream of messages from the input topic:\n",
|
||||
"sdf = app.dataframe(topic=input_topic)\n",
|
||||
"\n",
|
||||
"# Filter the SDF to include only incoming rows where the roles that dont match the bot's current role\n",
|
||||
"sdf = sdf.update(\n",
|
||||
" lambda val: print(\n",
|
||||
" f\"Received update: {val}\\n\\nSTOP THIS CELL MANUALLY TO HAVE THE LLM REPLY OR ENTER YOUR OWN FOLLOWUP RESPONSE\"\n",
|
||||
" )\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"# So that it doesn't reply to its own messages\n",
|
||||
"sdf = sdf[sdf[\"role\"] != role]\n",
|
||||
"\n",
|
||||
"# Trigger the reply function for any new messages(rows) detected in the filtered SDF\n",
|
||||
"sdf = sdf.apply(reply, stateful=True)\n",
|
||||
"\n",
|
||||
"# Check the SDF again and filter out any empty rows\n",
|
||||
"sdf = sdf[sdf.apply(lambda row: row is not None)]\n",
|
||||
"\n",
|
||||
"# Update the timestamp column to the current time in nanoseconds\n",
|
||||
"sdf[\"Timestamp\"] = sdf[\"Timestamp\"].apply(lambda row: time.time_ns())\n",
|
||||
"\n",
|
||||
"# Publish the processed SDF to a Kafka topic specified by the output_topic object.\n",
|
||||
"sdf = sdf.to_topic(output_topic)\n",
|
||||
"\n",
|
||||
"app.run(sdf)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"id": "EwXYrmWD_0CX"
|
||||
},
|
||||
"source": [
|
||||
"\n",
|
||||
"### 11. Enter a human message\n",
|
||||
"\n",
|
||||
"Run this cell to enter your message that you want to sent to the model. It uses another Kafka producer to send your text to the \"chat\" Kafka topic for the model to pick up (requires running the previous cell again)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"id": "6sxOPxSP_3iu"
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"chat_input = input(\"Please enter your reply: \")\n",
|
||||
"myreply = chat_input\n",
|
||||
"\n",
|
||||
"msgvalue = {\n",
|
||||
" \"uuid\": chat_id, # leave empty for now\n",
|
||||
" \"role\": \"human\",\n",
|
||||
" \"text\": myreply,\n",
|
||||
" \"conversation_id\": chat_id,\n",
|
||||
" \"Timestamp\": time.time_ns(),\n",
|
||||
"}\n",
|
||||
"\n",
|
||||
"with Producer(\n",
|
||||
" broker_address=\"127.0.0.1:9092\",\n",
|
||||
" extra_config={\"allow.auto.create.topics\": \"true\"},\n",
|
||||
") as producer:\n",
|
||||
" value = msgvalue\n",
|
||||
" producer.produce(\n",
|
||||
" topic=\"chat\",\n",
|
||||
" headers=[(\"uuid\", str(uuid.uuid4()))], # a dict is also allowed here\n",
|
||||
" key=chat_id, # leave empty for now\n",
|
||||
" value=json.dumps(value), # needs to be a string\n",
|
||||
" )\n",
|
||||
"\n",
|
||||
"print(\"Replied to chatbot with message: \")\n",
|
||||
"print(\"--------------------------------------------\")\n",
|
||||
"print(value)\n",
|
||||
"print(\"--------------------------------------------\")\n",
|
||||
"print(\"\\n\\nRUN THE PREVIOUS CELL TO HAVE THE CHATBOT GENERATE A REPLY\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"id": "cSx3s7TBBegg"
|
||||
},
|
||||
"source": [
|
||||
"### Why route chat messages through Kafka?\n",
|
||||
"\n",
|
||||
"It's easier to interact with the LLM directly using LangChains built-in conversation management features. Plus you can also use a REST API to generate a response from an externally hosted model. So why go to the trouble of using Apache Kafka?\n",
|
||||
"\n",
|
||||
"There are a few reasons, such as:\n",
|
||||
"\n",
|
||||
" * **Integration**: Many enterprises want to run their own LLMs so that they can keep their data in-house. This requires integrating LLM-powered components into existing architectures that might already be decoupled using some kind of message bus.\n",
|
||||
"\n",
|
||||
" * **Scalability**: Apache Kafka is designed with parallel processing in mind, so many teams prefer to use it to more effectively distribute work to available workers (in this case the \"worker\" is a container running an LLM).\n",
|
||||
"\n",
|
||||
" * **Durability**: Kafka is designed to allow services to pick up where another service left off in the case where that service experienced a memory issue or went offline. This prevents data loss in highly complex, distributed architectures where multiple systems are communicating with one another (LLMs being just one of many interdependent systems that also include vector databases and traditional databases).\n",
|
||||
"\n",
|
||||
"For more background on why event streaming is a good fit for Gen AI application architecture, see Kai Waehner's article [\"Apache Kafka + Vector Database + LLM = Real-Time GenAI\"](https://www.kai-waehner.de/blog/2023/11/08/apache-kafka-flink-vector-database-llm-real-time-genai/)."
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"accelerator": "GPU",
|
||||
"colab": {
|
||||
"gpuType": "T4",
|
||||
"provenance": []
|
||||
},
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"name": "python"
|
||||
},
|
||||
"widgets": {
|
||||
"application/vnd.jupyter.widget-state+json": {
|
||||
"0def954cca89466b8408fadaf3b82e64": {
|
||||
"model_module": "@jupyter-widgets/controls",
|
||||
"model_module_version": "1.5.0",
|
||||
"model_name": "FloatProgressModel",
|
||||
"state": {
|
||||
"_dom_classes": [],
|
||||
"_model_module": "@jupyter-widgets/controls",
|
||||
"_model_module_version": "1.5.0",
|
||||
"_model_name": "FloatProgressModel",
|
||||
"_view_count": null,
|
||||
"_view_module": "@jupyter-widgets/controls",
|
||||
"_view_module_version": "1.5.0",
|
||||
"_view_name": "ProgressView",
|
||||
"bar_style": "success",
|
||||
"description": "",
|
||||
"description_tooltip": null,
|
||||
"layout": "IPY_MODEL_fb6478ce2dac489bb633b23ba0953c5c",
|
||||
"max": 4081004224,
|
||||
"min": 0,
|
||||
"orientation": "horizontal",
|
||||
"style": "IPY_MODEL_734b0f5da9fc4307a95bab48cdbb5d89",
|
||||
"value": 4081004224
|
||||
}
|
||||
},
|
||||
"30ecca964a394109ac2ad757e3aec6c0": {
|
||||
"model_module": "@jupyter-widgets/controls",
|
||||
"model_module_version": "1.5.0",
|
||||
"model_name": "DescriptionStyleModel",
|
||||
"state": {
|
||||
"_model_module": "@jupyter-widgets/controls",
|
||||
"_model_module_version": "1.5.0",
|
||||
"_model_name": "DescriptionStyleModel",
|
||||
"_view_count": null,
|
||||
"_view_module": "@jupyter-widgets/base",
|
||||
"_view_module_version": "1.2.0",
|
||||
"_view_name": "StyleView",
|
||||
"description_width": ""
|
||||
}
|
||||
},
|
||||
"462482accc664729980562e208ceb179": {
|
||||
"model_module": "@jupyter-widgets/controls",
|
||||
"model_module_version": "1.5.0",
|
||||
"model_name": "HTMLModel",
|
||||
"state": {
|
||||
"_dom_classes": [],
|
||||
"_model_module": "@jupyter-widgets/controls",
|
||||
"_model_module_version": "1.5.0",
|
||||
"_model_name": "HTMLModel",
|
||||
"_view_count": null,
|
||||
"_view_module": "@jupyter-widgets/controls",
|
||||
"_view_module_version": "1.5.0",
|
||||
"_view_name": "HTMLView",
|
||||
"description": "",
|
||||
"description_tooltip": null,
|
||||
"layout": "IPY_MODEL_b32f3a86a74741348511f4e136744ac8",
|
||||
"placeholder": "",
|
||||
"style": "IPY_MODEL_e409071bff5a4e2d9bf0e9f5cc42231b",
|
||||
"value": " 4.08G/4.08G [00:33<00:00, 184MB/s]"
|
||||
}
|
||||
},
|
||||
"734b0f5da9fc4307a95bab48cdbb5d89": {
|
||||
"model_module": "@jupyter-widgets/controls",
|
||||
"model_module_version": "1.5.0",
|
||||
"model_name": "ProgressStyleModel",
|
||||
"state": {
|
||||
"_model_module": "@jupyter-widgets/controls",
|
||||
"_model_module_version": "1.5.0",
|
||||
"_model_name": "ProgressStyleModel",
|
||||
"_view_count": null,
|
||||
"_view_module": "@jupyter-widgets/base",
|
||||
"_view_module_version": "1.2.0",
|
||||
"_view_name": "StyleView",
|
||||
"bar_color": null,
|
||||
"description_width": ""
|
||||
}
|
||||
},
|
||||
"80d842f73c564dc7b7cc316c763e2633": {
|
||||
"model_module": "@jupyter-widgets/base",
|
||||
"model_module_version": "1.2.0",
|
||||
"model_name": "LayoutModel",
|
||||
"state": {
|
||||
"_model_module": "@jupyter-widgets/base",
|
||||
"_model_module_version": "1.2.0",
|
||||
"_model_name": "LayoutModel",
|
||||
"_view_count": null,
|
||||
"_view_module": "@jupyter-widgets/base",
|
||||
"_view_module_version": "1.2.0",
|
||||
"_view_name": "LayoutView",
|
||||
"align_content": null,
|
||||
"align_items": null,
|
||||
"align_self": null,
|
||||
"border": null,
|
||||
"bottom": null,
|
||||
"display": null,
|
||||
"flex": null,
|
||||
"flex_flow": null,
|
||||
"grid_area": null,
|
||||
"grid_auto_columns": null,
|
||||
"grid_auto_flow": null,
|
||||
"grid_auto_rows": null,
|
||||
"grid_column": null,
|
||||
"grid_gap": null,
|
||||
"grid_row": null,
|
||||
"grid_template_areas": null,
|
||||
"grid_template_columns": null,
|
||||
"grid_template_rows": null,
|
||||
"height": null,
|
||||
"justify_content": null,
|
||||
"justify_items": null,
|
||||
"left": null,
|
||||
"margin": null,
|
||||
"max_height": null,
|
||||
"max_width": null,
|
||||
"min_height": null,
|
||||
"min_width": null,
|
||||
"object_fit": null,
|
||||
"object_position": null,
|
||||
"order": null,
|
||||
"overflow": null,
|
||||
"overflow_x": null,
|
||||
"overflow_y": null,
|
||||
"padding": null,
|
||||
"right": null,
|
||||
"top": null,
|
||||
"visibility": null,
|
||||
"width": null
|
||||
}
|
||||
},
|
||||
"969343cdbe604a26926679bbf8bd2dda": {
|
||||
"model_module": "@jupyter-widgets/controls",
|
||||
"model_module_version": "1.5.0",
|
||||
"model_name": "HBoxModel",
|
||||
"state": {
|
||||
"_dom_classes": [],
|
||||
"_model_module": "@jupyter-widgets/controls",
|
||||
"_model_module_version": "1.5.0",
|
||||
"_model_name": "HBoxModel",
|
||||
"_view_count": null,
|
||||
"_view_module": "@jupyter-widgets/controls",
|
||||
"_view_module_version": "1.5.0",
|
||||
"_view_name": "HBoxView",
|
||||
"box_style": "",
|
||||
"children": [
|
||||
"IPY_MODEL_d8b8370c9b514715be7618bfe6832844",
|
||||
"IPY_MODEL_0def954cca89466b8408fadaf3b82e64",
|
||||
"IPY_MODEL_462482accc664729980562e208ceb179"
|
||||
],
|
||||
"layout": "IPY_MODEL_80d842f73c564dc7b7cc316c763e2633"
|
||||
}
|
||||
},
|
||||
"b32f3a86a74741348511f4e136744ac8": {
|
||||
"model_module": "@jupyter-widgets/base",
|
||||
"model_module_version": "1.2.0",
|
||||
"model_name": "LayoutModel",
|
||||
"state": {
|
||||
"_model_module": "@jupyter-widgets/base",
|
||||
"_model_module_version": "1.2.0",
|
||||
"_model_name": "LayoutModel",
|
||||
"_view_count": null,
|
||||
"_view_module": "@jupyter-widgets/base",
|
||||
"_view_module_version": "1.2.0",
|
||||
"_view_name": "LayoutView",
|
||||
"align_content": null,
|
||||
"align_items": null,
|
||||
"align_self": null,
|
||||
"border": null,
|
||||
"bottom": null,
|
||||
"display": null,
|
||||
"flex": null,
|
||||
"flex_flow": null,
|
||||
"grid_area": null,
|
||||
"grid_auto_columns": null,
|
||||
"grid_auto_flow": null,
|
||||
"grid_auto_rows": null,
|
||||
"grid_column": null,
|
||||
"grid_gap": null,
|
||||
"grid_row": null,
|
||||
"grid_template_areas": null,
|
||||
"grid_template_columns": null,
|
||||
"grid_template_rows": null,
|
||||
"height": null,
|
||||
"justify_content": null,
|
||||
"justify_items": null,
|
||||
"left": null,
|
||||
"margin": null,
|
||||
"max_height": null,
|
||||
"max_width": null,
|
||||
"min_height": null,
|
||||
"min_width": null,
|
||||
"object_fit": null,
|
||||
"object_position": null,
|
||||
"order": null,
|
||||
"overflow": null,
|
||||
"overflow_x": null,
|
||||
"overflow_y": null,
|
||||
"padding": null,
|
||||
"right": null,
|
||||
"top": null,
|
||||
"visibility": null,
|
||||
"width": null
|
||||
}
|
||||
},
|
||||
"d8b8370c9b514715be7618bfe6832844": {
|
||||
"model_module": "@jupyter-widgets/controls",
|
||||
"model_module_version": "1.5.0",
|
||||
"model_name": "HTMLModel",
|
||||
"state": {
|
||||
"_dom_classes": [],
|
||||
"_model_module": "@jupyter-widgets/controls",
|
||||
"_model_module_version": "1.5.0",
|
||||
"_model_name": "HTMLModel",
|
||||
"_view_count": null,
|
||||
"_view_module": "@jupyter-widgets/controls",
|
||||
"_view_module_version": "1.5.0",
|
||||
"_view_name": "HTMLView",
|
||||
"description": "",
|
||||
"description_tooltip": null,
|
||||
"layout": "IPY_MODEL_fa055d9f2a9d4a789e9cf3c89e0214e5",
|
||||
"placeholder": "",
|
||||
"style": "IPY_MODEL_30ecca964a394109ac2ad757e3aec6c0",
|
||||
"value": "llama-2-7b-chat.Q4_K_M.gguf: 100%"
|
||||
}
|
||||
},
|
||||
"e409071bff5a4e2d9bf0e9f5cc42231b": {
|
||||
"model_module": "@jupyter-widgets/controls",
|
||||
"model_module_version": "1.5.0",
|
||||
"model_name": "DescriptionStyleModel",
|
||||
"state": {
|
||||
"_model_module": "@jupyter-widgets/controls",
|
||||
"_model_module_version": "1.5.0",
|
||||
"_model_name": "DescriptionStyleModel",
|
||||
"_view_count": null,
|
||||
"_view_module": "@jupyter-widgets/base",
|
||||
"_view_module_version": "1.2.0",
|
||||
"_view_name": "StyleView",
|
||||
"description_width": ""
|
||||
}
|
||||
},
|
||||
"fa055d9f2a9d4a789e9cf3c89e0214e5": {
|
||||
"model_module": "@jupyter-widgets/base",
|
||||
"model_module_version": "1.2.0",
|
||||
"model_name": "LayoutModel",
|
||||
"state": {
|
||||
"_model_module": "@jupyter-widgets/base",
|
||||
"_model_module_version": "1.2.0",
|
||||
"_model_name": "LayoutModel",
|
||||
"_view_count": null,
|
||||
"_view_module": "@jupyter-widgets/base",
|
||||
"_view_module_version": "1.2.0",
|
||||
"_view_name": "LayoutView",
|
||||
"align_content": null,
|
||||
"align_items": null,
|
||||
"align_self": null,
|
||||
"border": null,
|
||||
"bottom": null,
|
||||
"display": null,
|
||||
"flex": null,
|
||||
"flex_flow": null,
|
||||
"grid_area": null,
|
||||
"grid_auto_columns": null,
|
||||
"grid_auto_flow": null,
|
||||
"grid_auto_rows": null,
|
||||
"grid_column": null,
|
||||
"grid_gap": null,
|
||||
"grid_row": null,
|
||||
"grid_template_areas": null,
|
||||
"grid_template_columns": null,
|
||||
"grid_template_rows": null,
|
||||
"height": null,
|
||||
"justify_content": null,
|
||||
"justify_items": null,
|
||||
"left": null,
|
||||
"margin": null,
|
||||
"max_height": null,
|
||||
"max_width": null,
|
||||
"min_height": null,
|
||||
"min_width": null,
|
||||
"object_fit": null,
|
||||
"object_position": null,
|
||||
"order": null,
|
||||
"overflow": null,
|
||||
"overflow_x": null,
|
||||
"overflow_y": null,
|
||||
"padding": null,
|
||||
"right": null,
|
||||
"top": null,
|
||||
"visibility": null,
|
||||
"width": null
|
||||
}
|
||||
},
|
||||
"fb6478ce2dac489bb633b23ba0953c5c": {
|
||||
"model_module": "@jupyter-widgets/base",
|
||||
"model_module_version": "1.2.0",
|
||||
"model_name": "LayoutModel",
|
||||
"state": {
|
||||
"_model_module": "@jupyter-widgets/base",
|
||||
"_model_module_version": "1.2.0",
|
||||
"_model_name": "LayoutModel",
|
||||
"_view_count": null,
|
||||
"_view_module": "@jupyter-widgets/base",
|
||||
"_view_module_version": "1.2.0",
|
||||
"_view_name": "LayoutView",
|
||||
"align_content": null,
|
||||
"align_items": null,
|
||||
"align_self": null,
|
||||
"border": null,
|
||||
"bottom": null,
|
||||
"display": null,
|
||||
"flex": null,
|
||||
"flex_flow": null,
|
||||
"grid_area": null,
|
||||
"grid_auto_columns": null,
|
||||
"grid_auto_flow": null,
|
||||
"grid_auto_rows": null,
|
||||
"grid_column": null,
|
||||
"grid_gap": null,
|
||||
"grid_row": null,
|
||||
"grid_template_areas": null,
|
||||
"grid_template_columns": null,
|
||||
"grid_template_rows": null,
|
||||
"height": null,
|
||||
"justify_content": null,
|
||||
"justify_items": null,
|
||||
"left": null,
|
||||
"margin": null,
|
||||
"max_height": null,
|
||||
"max_width": null,
|
||||
"min_height": null,
|
||||
"min_width": null,
|
||||
"object_fit": null,
|
||||
"object_position": null,
|
||||
"order": null,
|
||||
"overflow": null,
|
||||
"overflow_x": null,
|
||||
"overflow_y": null,
|
||||
"padding": null,
|
||||
"right": null,
|
||||
"top": null,
|
||||
"visibility": null,
|
||||
"width": null
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 0
|
||||
}
|
||||
@@ -40,9 +40,7 @@
|
||||
"import nest_asyncio\n",
|
||||
"import pandas as pd\n",
|
||||
"from langchain.docstore.document import Document\n",
|
||||
"from langchain_experimental.agents.agent_toolkits.pandas.base import (\n",
|
||||
" create_pandas_dataframe_agent,\n",
|
||||
")\n",
|
||||
"from langchain_community.agent_toolkits.pandas.base import create_pandas_dataframe_agent\n",
|
||||
"from langchain_experimental.autonomous_agents import AutoGPT\n",
|
||||
"from langchain_openai import ChatOpenAI\n",
|
||||
"\n",
|
||||
@@ -59,7 +57,7 @@
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"llm = ChatOpenAI(model=\"gpt-4\", temperature=1.0)"
|
||||
"llm = ChatOpenAI(model_name=\"gpt-4\", temperature=1.0)"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -229,8 +227,8 @@
|
||||
" BaseCombineDocumentsChain,\n",
|
||||
" load_qa_with_sources_chain,\n",
|
||||
")\n",
|
||||
"from langchain.text_splitter import RecursiveCharacterTextSplitter\n",
|
||||
"from langchain.tools import BaseTool, DuckDuckGoSearchRun\n",
|
||||
"from langchain_text_splitters import RecursiveCharacterTextSplitter\n",
|
||||
"from pydantic import Field\n",
|
||||
"\n",
|
||||
"\n",
|
||||
|
||||
File diff suppressed because one or more lines are too long
@@ -90,7 +90,7 @@
|
||||
" ) -> AIMessage:\n",
|
||||
" messages = self.update_messages(input_message)\n",
|
||||
"\n",
|
||||
" output_message = self.model.invoke(messages)\n",
|
||||
" output_message = self.model(messages)\n",
|
||||
" self.update_messages(output_message)\n",
|
||||
"\n",
|
||||
" return output_message"
|
||||
|
||||
@@ -24,7 +24,7 @@
|
||||
"source": [
|
||||
"1. Prepare data:\n",
|
||||
" 1. Upload all python project files using the `langchain_community.document_loaders.TextLoader`. We will call these files the **documents**.\n",
|
||||
" 2. Split all documents to chunks using the `langchain_text_splitters.CharacterTextSplitter`.\n",
|
||||
" 2. Split all documents to chunks using the `langchain.text_splitter.CharacterTextSplitter`.\n",
|
||||
" 3. Embed chunks and upload them into the DeepLake using `langchain.embeddings.openai.OpenAIEmbeddings` and `langchain_community.vectorstores.DeepLake`\n",
|
||||
"2. Question-Answering:\n",
|
||||
" 1. Build a chain from `langchain.chat_models.ChatOpenAI` and `langchain.chains.ConversationalRetrievalChain`\n",
|
||||
@@ -621,7 +621,7 @@
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"from langchain_text_splitters import CharacterTextSplitter\n",
|
||||
"from langchain.text_splitter import CharacterTextSplitter\n",
|
||||
"\n",
|
||||
"text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)\n",
|
||||
"texts = text_splitter.split_documents(docs)\n",
|
||||
@@ -933,7 +933,7 @@
|
||||
"**Answer**: The LangChain class includes various types of retrievers such as:\n",
|
||||
"\n",
|
||||
"- ArxivRetriever\n",
|
||||
"- AzureAISearchRetriever\n",
|
||||
"- AzureCognitiveSearchRetriever\n",
|
||||
"- BM25Retriever\n",
|
||||
"- ChaindeskRetriever\n",
|
||||
"- ChatGPTPluginRetriever\n",
|
||||
@@ -993,7 +993,7 @@
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"{'question': 'LangChain possesses a variety of retrievers including:\\n\\n1. ArxivRetriever\\n2. AzureAISearchRetriever\\n3. BM25Retriever\\n4. ChaindeskRetriever\\n5. ChatGPTPluginRetriever\\n6. ContextualCompressionRetriever\\n7. DocArrayRetriever\\n8. ElasticSearchBM25Retriever\\n9. EnsembleRetriever\\n10. GoogleVertexAISearchRetriever\\n11. AmazonKendraRetriever\\n12. KNNRetriever\\n13. LlamaIndexGraphRetriever\\n14. LlamaIndexRetriever\\n15. MergerRetriever\\n16. MetalRetriever\\n17. MilvusRetriever\\n18. MultiQueryRetriever\\n19. ParentDocumentRetriever\\n20. PineconeHybridSearchRetriever\\n21. PubMedRetriever\\n22. RePhraseQueryRetriever\\n23. RemoteLangChainRetriever\\n24. SelfQueryRetriever\\n25. SVMRetriever\\n26. TFIDFRetriever\\n27. TimeWeightedVectorStoreRetriever\\n28. VespaRetriever\\n29. WeaviateHybridSearchRetriever\\n30. WebResearchRetriever\\n31. WikipediaRetriever\\n32. ZepRetriever\\n33. ZillizRetriever\\n\\nIt also includes self query translators like:\\n\\n1. ChromaTranslator\\n2. DeepLakeTranslator\\n3. MyScaleTranslator\\n4. PineconeTranslator\\n5. QdrantTranslator\\n6. WeaviateTranslator\\n\\nAnd remote retrievers like:\\n\\n1. RemoteLangChainRetriever'}"
|
||||
"{'question': 'LangChain possesses a variety of retrievers including:\\n\\n1. ArxivRetriever\\n2. AzureCognitiveSearchRetriever\\n3. BM25Retriever\\n4. ChaindeskRetriever\\n5. ChatGPTPluginRetriever\\n6. ContextualCompressionRetriever\\n7. DocArrayRetriever\\n8. ElasticSearchBM25Retriever\\n9. EnsembleRetriever\\n10. GoogleVertexAISearchRetriever\\n11. AmazonKendraRetriever\\n12. KNNRetriever\\n13. LlamaIndexGraphRetriever\\n14. LlamaIndexRetriever\\n15. MergerRetriever\\n16. MetalRetriever\\n17. MilvusRetriever\\n18. MultiQueryRetriever\\n19. ParentDocumentRetriever\\n20. PineconeHybridSearchRetriever\\n21. PubMedRetriever\\n22. RePhraseQueryRetriever\\n23. RemoteLangChainRetriever\\n24. SelfQueryRetriever\\n25. SVMRetriever\\n26. TFIDFRetriever\\n27. TimeWeightedVectorStoreRetriever\\n28. VespaRetriever\\n29. WeaviateHybridSearchRetriever\\n30. WebResearchRetriever\\n31. WikipediaRetriever\\n32. ZepRetriever\\n33. ZillizRetriever\\n\\nIt also includes self query translators like:\\n\\n1. ChromaTranslator\\n2. DeepLakeTranslator\\n3. MyScaleTranslator\\n4. PineconeTranslator\\n5. QdrantTranslator\\n6. WeaviateTranslator\\n\\nAnd remote retrievers like:\\n\\n1. RemoteLangChainRetriever'}"
|
||||
]
|
||||
},
|
||||
"execution_count": 31,
|
||||
@@ -1117,7 +1117,7 @@
|
||||
"The LangChain class includes various types of retrievers such as:\n",
|
||||
"\n",
|
||||
"- ArxivRetriever\n",
|
||||
"- AzureAISearchRetriever\n",
|
||||
"- AzureCognitiveSearchRetriever\n",
|
||||
"- BM25Retriever\n",
|
||||
"- ChaindeskRetriever\n",
|
||||
"- ChatGPTPluginRetriever\n",
|
||||
|
||||
@@ -1,557 +0,0 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Setup Environment"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Python Modules"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Install the following Python modules:\n",
|
||||
"\n",
|
||||
"```bash\n",
|
||||
"pip install ipykernel python-dotenv cassio pandas langchain_openai langchain langchain-community langchainhub langchain_experimental openai-multi-tool-use-parallel-patch\n",
|
||||
"```"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Load the `.env` File"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Connection is via `cassio` using `auto=True` parameter, and the notebook uses OpenAI. You should create a `.env` file accordingly.\n",
|
||||
"\n",
|
||||
"For Casssandra, set:\n",
|
||||
"```bash\n",
|
||||
"CASSANDRA_CONTACT_POINTS\n",
|
||||
"CASSANDRA_USERNAME\n",
|
||||
"CASSANDRA_PASSWORD\n",
|
||||
"CASSANDRA_KEYSPACE\n",
|
||||
"```\n",
|
||||
"\n",
|
||||
"For Astra, set:\n",
|
||||
"```bash\n",
|
||||
"ASTRA_DB_APPLICATION_TOKEN\n",
|
||||
"ASTRA_DB_DATABASE_ID\n",
|
||||
"ASTRA_DB_KEYSPACE\n",
|
||||
"```\n",
|
||||
"\n",
|
||||
"For example:\n",
|
||||
"\n",
|
||||
"```bash\n",
|
||||
"# Connection to Astra:\n",
|
||||
"ASTRA_DB_DATABASE_ID=a1b2c3d4-...\n",
|
||||
"ASTRA_DB_APPLICATION_TOKEN=AstraCS:...\n",
|
||||
"ASTRA_DB_KEYSPACE=notebooks\n",
|
||||
"\n",
|
||||
"# Also set \n",
|
||||
"OPENAI_API_KEY=sk-....\n",
|
||||
"```\n",
|
||||
"\n",
|
||||
"(You may also modify the below code to directly connect with `cassio`.)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from dotenv import load_dotenv\n",
|
||||
"\n",
|
||||
"load_dotenv(override=True)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Connect to Cassandra"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import os\n",
|
||||
"\n",
|
||||
"import cassio\n",
|
||||
"\n",
|
||||
"cassio.init(auto=True)\n",
|
||||
"session = cassio.config.resolve_session()\n",
|
||||
"if not session:\n",
|
||||
" raise Exception(\n",
|
||||
" \"Check environment configuration or manually configure cassio connection parameters\"\n",
|
||||
" )\n",
|
||||
"\n",
|
||||
"keyspace = os.environ.get(\n",
|
||||
" \"ASTRA_DB_KEYSPACE\", os.environ.get(\"CASSANDRA_KEYSPACE\", None)\n",
|
||||
")\n",
|
||||
"if not keyspace:\n",
|
||||
" raise ValueError(\"a KEYSPACE environment variable must be set\")\n",
|
||||
"\n",
|
||||
"session.set_keyspace(keyspace)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Setup Database"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"This needs to be done one time only!"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Download Data"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"The dataset used is from Kaggle, the [Environmental Sensor Telemetry Data](https://www.kaggle.com/datasets/garystafford/environmental-sensor-data-132k?select=iot_telemetry_data.csv). The next cell will download and unzip the data into a Pandas dataframe. The following cell is instructions to download manually. \n",
|
||||
"\n",
|
||||
"The net result of this section is you should have a Pandas dataframe variable `df`."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"#### Download Automatically"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from io import BytesIO\n",
|
||||
"from zipfile import ZipFile\n",
|
||||
"\n",
|
||||
"import pandas as pd\n",
|
||||
"import requests\n",
|
||||
"\n",
|
||||
"datasetURL = \"https://storage.googleapis.com/kaggle-data-sets/788816/1355729/bundle/archive.zip?X-Goog-Algorithm=GOOG4-RSA-SHA256&X-Goog-Credential=gcp-kaggle-com%40kaggle-161607.iam.gserviceaccount.com%2F20240404%2Fauto%2Fstorage%2Fgoog4_request&X-Goog-Date=20240404T115828Z&X-Goog-Expires=259200&X-Goog-SignedHeaders=host&X-Goog-Signature=2849f003b100eb9dcda8dd8535990f51244292f67e4f5fad36f14aa67f2d4297672d8fe6ff5a39f03a29cda051e33e95d36daab5892b8874dcd5a60228df0361fa26bae491dd4371f02dd20306b583a44ba85a4474376188b1f84765147d3b4f05c57345e5de883c2c29653cce1f3755cd8e645c5e952f4fb1c8a735b22f0c811f97f7bce8d0235d0d3731ca8ab4629ff381f3bae9e35fc1b181c1e69a9c7913a5e42d9d52d53e5f716467205af9c8a3cc6746fc5352e8fbc47cd7d18543626bd67996d18c2045c1e475fc136df83df352fa747f1a3bb73e6ba3985840792ec1de407c15836640ec96db111b173bf16115037d53fdfbfd8ac44145d7f9a546aa\"\n",
|
||||
"\n",
|
||||
"response = requests.get(datasetURL)\n",
|
||||
"if response.status_code == 200:\n",
|
||||
" zip_file = ZipFile(BytesIO(response.content))\n",
|
||||
" csv_file_name = zip_file.namelist()[0]\n",
|
||||
"else:\n",
|
||||
" print(\"Failed to download the file\")\n",
|
||||
"\n",
|
||||
"with zip_file.open(csv_file_name) as csv_file:\n",
|
||||
" df = pd.read_csv(csv_file)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"#### Download Manually"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"You can download the `.zip` file and unpack the `.csv` contained within. Comment in the next line, and adjust the path to this `.csv` file appropriately."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# df = pd.read_csv(\"/path/to/iot_telemetry_data.csv\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Load Data into Cassandra"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"This section assumes the existence of a dataframe `df`, the following cell validates its structure. The Download section above creates this object."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"assert df is not None, \"Dataframe 'df' must be set\"\n",
|
||||
"expected_columns = [\n",
|
||||
" \"ts\",\n",
|
||||
" \"device\",\n",
|
||||
" \"co\",\n",
|
||||
" \"humidity\",\n",
|
||||
" \"light\",\n",
|
||||
" \"lpg\",\n",
|
||||
" \"motion\",\n",
|
||||
" \"smoke\",\n",
|
||||
" \"temp\",\n",
|
||||
"]\n",
|
||||
"assert all(\n",
|
||||
" [column in df.columns for column in expected_columns]\n",
|
||||
"), \"DataFrame does not have the expected columns\""
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Create and load tables:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from datetime import UTC, datetime\n",
|
||||
"\n",
|
||||
"from cassandra.query import BatchStatement\n",
|
||||
"\n",
|
||||
"# Create sensors table\n",
|
||||
"table_query = \"\"\"\n",
|
||||
"CREATE TABLE IF NOT EXISTS iot_sensors (\n",
|
||||
" device text,\n",
|
||||
" conditions text,\n",
|
||||
" room text,\n",
|
||||
" PRIMARY KEY (device)\n",
|
||||
")\n",
|
||||
"WITH COMMENT = 'Environmental IoT room sensor metadata.';\n",
|
||||
"\"\"\"\n",
|
||||
"session.execute(table_query)\n",
|
||||
"\n",
|
||||
"pstmt = session.prepare(\n",
|
||||
" \"\"\"\n",
|
||||
"INSERT INTO iot_sensors (device, conditions, room)\n",
|
||||
"VALUES (?, ?, ?)\n",
|
||||
"\"\"\"\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"devices = [\n",
|
||||
" (\"00:0f:00:70:91:0a\", \"stable conditions, cooler and more humid\", \"room 1\"),\n",
|
||||
" (\"1c:bf:ce:15:ec:4d\", \"highly variable temperature and humidity\", \"room 2\"),\n",
|
||||
" (\"b8:27:eb:bf:9d:51\", \"stable conditions, warmer and dryer\", \"room 3\"),\n",
|
||||
"]\n",
|
||||
"\n",
|
||||
"for device, conditions, room in devices:\n",
|
||||
" session.execute(pstmt, (device, conditions, room))\n",
|
||||
"\n",
|
||||
"print(\"Sensors inserted successfully.\")\n",
|
||||
"\n",
|
||||
"# Create data table\n",
|
||||
"table_query = \"\"\"\n",
|
||||
"CREATE TABLE IF NOT EXISTS iot_data (\n",
|
||||
" day text,\n",
|
||||
" device text,\n",
|
||||
" ts timestamp,\n",
|
||||
" co double,\n",
|
||||
" humidity double,\n",
|
||||
" light boolean,\n",
|
||||
" lpg double,\n",
|
||||
" motion boolean,\n",
|
||||
" smoke double,\n",
|
||||
" temp double,\n",
|
||||
" PRIMARY KEY ((day, device), ts)\n",
|
||||
")\n",
|
||||
"WITH COMMENT = 'Data from environmental IoT room sensors. Columns include device identifier, timestamp (ts) of the data collection, carbon monoxide level (co), relative humidity, light presence, LPG concentration, motion detection, smoke concentration, and temperature (temp). Data is partitioned by day and device.';\n",
|
||||
"\"\"\"\n",
|
||||
"session.execute(table_query)\n",
|
||||
"\n",
|
||||
"pstmt = session.prepare(\n",
|
||||
" \"\"\"\n",
|
||||
"INSERT INTO iot_data (day, device, ts, co, humidity, light, lpg, motion, smoke, temp)\n",
|
||||
"VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?, ?)\n",
|
||||
"\"\"\"\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"def insert_data_batch(name, group):\n",
|
||||
" batch = BatchStatement()\n",
|
||||
" day, device = name\n",
|
||||
" print(f\"Inserting batch for day: {day}, device: {device}\")\n",
|
||||
"\n",
|
||||
" for _, row in group.iterrows():\n",
|
||||
" timestamp = datetime.fromtimestamp(row[\"ts\"], UTC)\n",
|
||||
" batch.add(\n",
|
||||
" pstmt,\n",
|
||||
" (\n",
|
||||
" day,\n",
|
||||
" row[\"device\"],\n",
|
||||
" timestamp,\n",
|
||||
" row[\"co\"],\n",
|
||||
" row[\"humidity\"],\n",
|
||||
" row[\"light\"],\n",
|
||||
" row[\"lpg\"],\n",
|
||||
" row[\"motion\"],\n",
|
||||
" row[\"smoke\"],\n",
|
||||
" row[\"temp\"],\n",
|
||||
" ),\n",
|
||||
" )\n",
|
||||
"\n",
|
||||
" session.execute(batch)\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"# Convert columns to appropriate types\n",
|
||||
"df[\"light\"] = df[\"light\"] == \"true\"\n",
|
||||
"df[\"motion\"] = df[\"motion\"] == \"true\"\n",
|
||||
"df[\"ts\"] = df[\"ts\"].astype(float)\n",
|
||||
"df[\"day\"] = df[\"ts\"].apply(\n",
|
||||
" lambda x: datetime.fromtimestamp(x, UTC).strftime(\"%Y-%m-%d\")\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"grouped_df = df.groupby([\"day\", \"device\"])\n",
|
||||
"\n",
|
||||
"for name, group in grouped_df:\n",
|
||||
" insert_data_batch(name, group)\n",
|
||||
"\n",
|
||||
"print(\"Data load complete\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"print(session.keyspace)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Load the Tools"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Python `import` statements for the demo:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain.agents import AgentExecutor, create_openai_tools_agent\n",
|
||||
"from langchain_community.agent_toolkits.cassandra_database.toolkit import (\n",
|
||||
" CassandraDatabaseToolkit,\n",
|
||||
")\n",
|
||||
"from langchain_community.tools.cassandra_database.prompt import QUERY_PATH_PROMPT\n",
|
||||
"from langchain_community.tools.cassandra_database.tool import (\n",
|
||||
" GetSchemaCassandraDatabaseTool,\n",
|
||||
" GetTableDataCassandraDatabaseTool,\n",
|
||||
" QueryCassandraDatabaseTool,\n",
|
||||
")\n",
|
||||
"from langchain_community.utilities.cassandra_database import CassandraDatabase\n",
|
||||
"from langchain_openai import ChatOpenAI"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"The `CassandraDatabase` object is loaded from `cassio`, though it does accept a `Session`-type parameter as an alternative."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Create a CassandraDatabase instance\n",
|
||||
"db = CassandraDatabase(include_tables=[\"iot_sensors\", \"iot_data\"])\n",
|
||||
"\n",
|
||||
"# Create the Cassandra Database tools\n",
|
||||
"query_tool = QueryCassandraDatabaseTool(db=db)\n",
|
||||
"schema_tool = GetSchemaCassandraDatabaseTool(db=db)\n",
|
||||
"select_data_tool = GetTableDataCassandraDatabaseTool(db=db)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"The tools can be invoked directly:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Test the tools\n",
|
||||
"print(\"Executing a CQL query:\")\n",
|
||||
"query = \"SELECT * FROM iot_sensors LIMIT 5;\"\n",
|
||||
"result = query_tool.run({\"query\": query})\n",
|
||||
"print(result)\n",
|
||||
"\n",
|
||||
"print(\"\\nGetting the schema for a keyspace:\")\n",
|
||||
"schema = schema_tool.run({\"keyspace\": keyspace})\n",
|
||||
"print(schema)\n",
|
||||
"\n",
|
||||
"print(\"\\nGetting data from a table:\")\n",
|
||||
"table = \"iot_data\"\n",
|
||||
"predicate = \"day = '2020-07-14' and device = 'b8:27:eb:bf:9d:51'\"\n",
|
||||
"data = select_data_tool.run(\n",
|
||||
" {\"keyspace\": keyspace, \"table\": table, \"predicate\": predicate, \"limit\": 5}\n",
|
||||
")\n",
|
||||
"print(data)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Agent Configuration"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain.agents import Tool\n",
|
||||
"from langchain_experimental.utilities import PythonREPL\n",
|
||||
"\n",
|
||||
"python_repl = PythonREPL()\n",
|
||||
"\n",
|
||||
"repl_tool = Tool(\n",
|
||||
" name=\"python_repl\",\n",
|
||||
" description=\"A Python shell. Use this to execute python commands. Input should be a valid python command. If you want to see the output of a value, you should print it out with `print(...)`.\",\n",
|
||||
" func=python_repl.run,\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain import hub\n",
|
||||
"\n",
|
||||
"llm = ChatOpenAI(temperature=0, model=\"gpt-4-1106-preview\")\n",
|
||||
"toolkit = CassandraDatabaseToolkit(db=db)\n",
|
||||
"\n",
|
||||
"# context = toolkit.get_context()\n",
|
||||
"# tools = toolkit.get_tools()\n",
|
||||
"tools = [schema_tool, select_data_tool, repl_tool]\n",
|
||||
"\n",
|
||||
"input = (\n",
|
||||
" QUERY_PATH_PROMPT\n",
|
||||
" + f\"\"\"\n",
|
||||
"\n",
|
||||
"Here is your task: In the {keyspace} keyspace, find the total number of times the temperature of each device has exceeded 23 degrees on July 14, 2020.\n",
|
||||
" Create a summary report including the name of the room. Use Pandas if helpful.\n",
|
||||
"\"\"\"\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"prompt = hub.pull(\"hwchase17/openai-tools-agent\")\n",
|
||||
"\n",
|
||||
"# messages = [\n",
|
||||
"# HumanMessagePromptTemplate.from_template(input),\n",
|
||||
"# AIMessage(content=QUERY_PATH_PROMPT),\n",
|
||||
"# MessagesPlaceholder(variable_name=\"agent_scratchpad\"),\n",
|
||||
"# ]\n",
|
||||
"\n",
|
||||
"# prompt = ChatPromptTemplate.from_messages(messages)\n",
|
||||
"# print(prompt)\n",
|
||||
"\n",
|
||||
"# Choose the LLM that will drive the agent\n",
|
||||
"# Only certain models support this\n",
|
||||
"llm = ChatOpenAI(model=\"gpt-3.5-turbo-1106\", temperature=0)\n",
|
||||
"\n",
|
||||
"# Construct the OpenAI Tools agent\n",
|
||||
"agent = create_openai_tools_agent(llm, tools, prompt)\n",
|
||||
"\n",
|
||||
"print(\"Available tools:\")\n",
|
||||
"for tool in tools:\n",
|
||||
" print(\"\\t\" + tool.name + \" - \" + tool.description + \" - \" + str(tool))"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"agent_executor = AgentExecutor(agent=agent, tools=tools, verbose=True)\n",
|
||||
"\n",
|
||||
"response = agent_executor.invoke({\"input\": input})\n",
|
||||
"\n",
|
||||
"print(response[\"output\"])"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3 (ipykernel)",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.9.1"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 4
|
||||
}
|
||||
@@ -42,9 +42,9 @@
|
||||
")\n",
|
||||
"from langchain.chains import LLMChain\n",
|
||||
"from langchain.prompts import StringPromptTemplate\n",
|
||||
"from langchain.schema import AgentAction, AgentFinish\n",
|
||||
"from langchain_community.agent_toolkits import NLAToolkit\n",
|
||||
"from langchain_community.tools.plugin import AIPlugin\n",
|
||||
"from langchain_core.agents import AgentAction, AgentFinish\n",
|
||||
"from langchain_openai import OpenAI"
|
||||
]
|
||||
},
|
||||
@@ -114,8 +114,8 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain.schema import Document\n",
|
||||
"from langchain_community.vectorstores import FAISS\n",
|
||||
"from langchain_core.documents import Document\n",
|
||||
"from langchain_openai import OpenAIEmbeddings"
|
||||
]
|
||||
},
|
||||
@@ -169,7 +169,7 @@
|
||||
"\n",
|
||||
"def get_tools(query):\n",
|
||||
" # Get documents, which contain the Plugins to use\n",
|
||||
" docs = retriever.invoke(query)\n",
|
||||
" docs = retriever.get_relevant_documents(query)\n",
|
||||
" # Get the toolkits, one for each plugin\n",
|
||||
" tool_kits = [toolkits_dict[d.metadata[\"plugin_name\"]] for d in docs]\n",
|
||||
" # Get the tools: a separate NLAChain for each endpoint\n",
|
||||
|
||||
@@ -67,9 +67,9 @@
|
||||
")\n",
|
||||
"from langchain.chains import LLMChain\n",
|
||||
"from langchain.prompts import StringPromptTemplate\n",
|
||||
"from langchain.schema import AgentAction, AgentFinish\n",
|
||||
"from langchain_community.agent_toolkits import NLAToolkit\n",
|
||||
"from langchain_community.tools.plugin import AIPlugin\n",
|
||||
"from langchain_core.agents import AgentAction, AgentFinish\n",
|
||||
"from langchain_openai import OpenAI"
|
||||
]
|
||||
},
|
||||
@@ -138,8 +138,8 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain.schema import Document\n",
|
||||
"from langchain_community.vectorstores import FAISS\n",
|
||||
"from langchain_core.documents import Document\n",
|
||||
"from langchain_openai import OpenAIEmbeddings"
|
||||
]
|
||||
},
|
||||
@@ -193,7 +193,7 @@
|
||||
"\n",
|
||||
"def get_tools(query):\n",
|
||||
" # Get documents, which contain the Plugins to use\n",
|
||||
" docs = retriever.invoke(query)\n",
|
||||
" docs = retriever.get_relevant_documents(query)\n",
|
||||
" # Get the toolkits, one for each plugin\n",
|
||||
" tool_kits = [toolkits_dict[d.metadata[\"plugin_name\"]] for d in docs]\n",
|
||||
" # Get the tools: a separate NLAChain for each endpoint\n",
|
||||
|
||||
@@ -40,8 +40,8 @@
|
||||
")\n",
|
||||
"from langchain.chains import LLMChain\n",
|
||||
"from langchain.prompts import StringPromptTemplate\n",
|
||||
"from langchain.schema import AgentAction, AgentFinish\n",
|
||||
"from langchain_community.utilities import SerpAPIWrapper\n",
|
||||
"from langchain_core.agents import AgentAction, AgentFinish\n",
|
||||
"from langchain_openai import OpenAI"
|
||||
]
|
||||
},
|
||||
@@ -103,8 +103,8 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain.schema import Document\n",
|
||||
"from langchain_community.vectorstores import FAISS\n",
|
||||
"from langchain_core.documents import Document\n",
|
||||
"from langchain_openai import OpenAIEmbeddings"
|
||||
]
|
||||
},
|
||||
@@ -142,7 +142,7 @@
|
||||
"\n",
|
||||
"\n",
|
||||
"def get_tools(query):\n",
|
||||
" docs = retriever.invoke(query)\n",
|
||||
" docs = retriever.get_relevant_documents(query)\n",
|
||||
" return [ALL_TOOLS[d.metadata[\"index\"]] for d in docs]"
|
||||
]
|
||||
},
|
||||
|
||||
@@ -72,7 +72,7 @@
|
||||
"source": [
|
||||
"from typing import Any, List, Tuple, Union\n",
|
||||
"\n",
|
||||
"from langchain_core.agents import AgentAction, AgentFinish\n",
|
||||
"from langchain.schema import AgentAction, AgentFinish\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"class FakeAgent(BaseMultiActionAgent):\n",
|
||||
|
||||
File diff suppressed because it is too large
Load Diff
@@ -52,12 +52,12 @@
|
||||
"import os\n",
|
||||
"\n",
|
||||
"from langchain.chains import RetrievalQA\n",
|
||||
"from langchain_community.vectorstores import DeepLake\n",
|
||||
"from langchain_openai import OpenAI, OpenAIEmbeddings\n",
|
||||
"from langchain_text_splitters import (\n",
|
||||
"from langchain.text_splitter import (\n",
|
||||
" CharacterTextSplitter,\n",
|
||||
" RecursiveCharacterTextSplitter,\n",
|
||||
")\n",
|
||||
"from langchain_community.vectorstores import DeepLake\n",
|
||||
"from langchain_openai import OpenAI, OpenAIEmbeddings\n",
|
||||
"\n",
|
||||
"os.environ[\"OPENAI_API_KEY\"] = getpass.getpass(\"OpenAI API Key:\")\n",
|
||||
"activeloop_token = getpass.getpass(\"Activeloop Token:\")\n",
|
||||
|
||||
@@ -84,7 +84,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"llm = ChatOpenAI(model=\"gpt-4\", temperature=0)\n",
|
||||
"llm = ChatOpenAI(model_name=\"gpt-4\", temperature=0)\n",
|
||||
"chain = ElasticsearchDatabaseChain.from_llm(llm=llm, database=db, verbose=True)"
|
||||
]
|
||||
},
|
||||
|
||||
@@ -100,7 +100,7 @@
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"agent.invoke(\"whats 2 + 2\")"
|
||||
"agent.run(\"whats 2 + 2\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
||||
@@ -1,245 +0,0 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "0fc0309d-4d49-4bb5-bec0-bd92c6fddb28",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Fireworks.AI + LangChain + RAG\n",
|
||||
" \n",
|
||||
"[Fireworks AI](https://python.langchain.com/docs/integrations/llms/fireworks) wants to provide the best experience when working with LangChain, and here is an example of Fireworks + LangChain doing RAG\n",
|
||||
"\n",
|
||||
"See [our models page](https://fireworks.ai/models) for the full list of models. We use `accounts/fireworks/models/mixtral-8x7b-instruct` for RAG In this tutorial.\n",
|
||||
"\n",
|
||||
"For the RAG target, we will use the Gemma technical report https://storage.googleapis.com/deepmind-media/gemma/gemma-report.pdf "
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 1,
|
||||
"id": "d12fb75a-f707-48d5-82a5-efe2d041813c",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"\n",
|
||||
"\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m A new release of pip is available: \u001b[0m\u001b[31;49m23.2.1\u001b[0m\u001b[39;49m -> \u001b[0m\u001b[32;49m24.0\u001b[0m\n",
|
||||
"\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m To update, run: \u001b[0m\u001b[32;49mpip install --upgrade pip\u001b[0m\n",
|
||||
"Note: you may need to restart the kernel to use updated packages.\n",
|
||||
"Found existing installation: langchain-fireworks 0.0.1\n",
|
||||
"Uninstalling langchain-fireworks-0.0.1:\n",
|
||||
" Successfully uninstalled langchain-fireworks-0.0.1\n",
|
||||
"Note: you may need to restart the kernel to use updated packages.\n",
|
||||
"Obtaining file:///mnt/disks/data/langchain/libs/partners/fireworks\n",
|
||||
" Installing build dependencies ... \u001b[?25ldone\n",
|
||||
"\u001b[?25h Checking if build backend supports build_editable ... \u001b[?25ldone\n",
|
||||
"\u001b[?25h Getting requirements to build editable ... \u001b[?25ldone\n",
|
||||
"\u001b[?25h Preparing editable metadata (pyproject.toml) ... \u001b[?25ldone\n",
|
||||
"\u001b[?25hRequirement already satisfied: aiohttp<4.0.0,>=3.9.1 in /mnt/disks/data/langchain/.venv/lib/python3.9/site-packages (from langchain-fireworks==0.0.1) (3.9.3)\n",
|
||||
"Requirement already satisfied: fireworks-ai<0.13.0,>=0.12.0 in /mnt/disks/data/langchain/.venv/lib/python3.9/site-packages (from langchain-fireworks==0.0.1) (0.12.0)\n",
|
||||
"Requirement already satisfied: langchain-core<0.2,>=0.1 in /mnt/disks/data/langchain/.venv/lib/python3.9/site-packages (from langchain-fireworks==0.0.1) (0.1.23)\n",
|
||||
"Requirement already satisfied: requests<3,>=2 in /mnt/disks/data/langchain/.venv/lib/python3.9/site-packages (from langchain-fireworks==0.0.1) (2.31.0)\n",
|
||||
"Requirement already satisfied: aiosignal>=1.1.2 in /mnt/disks/data/langchain/.venv/lib/python3.9/site-packages (from aiohttp<4.0.0,>=3.9.1->langchain-fireworks==0.0.1) (1.3.1)\n",
|
||||
"Requirement already satisfied: attrs>=17.3.0 in /mnt/disks/data/langchain/.venv/lib/python3.9/site-packages (from aiohttp<4.0.0,>=3.9.1->langchain-fireworks==0.0.1) (23.1.0)\n",
|
||||
"Requirement already satisfied: frozenlist>=1.1.1 in /mnt/disks/data/langchain/.venv/lib/python3.9/site-packages (from aiohttp<4.0.0,>=3.9.1->langchain-fireworks==0.0.1) (1.4.0)\n",
|
||||
"Requirement already satisfied: multidict<7.0,>=4.5 in /mnt/disks/data/langchain/.venv/lib/python3.9/site-packages (from aiohttp<4.0.0,>=3.9.1->langchain-fireworks==0.0.1) (6.0.4)\n",
|
||||
"Requirement already satisfied: yarl<2.0,>=1.0 in /mnt/disks/data/langchain/.venv/lib/python3.9/site-packages (from aiohttp<4.0.0,>=3.9.1->langchain-fireworks==0.0.1) (1.9.2)\n",
|
||||
"Requirement already satisfied: async-timeout<5.0,>=4.0 in /mnt/disks/data/langchain/.venv/lib/python3.9/site-packages (from aiohttp<4.0.0,>=3.9.1->langchain-fireworks==0.0.1) (4.0.3)\n",
|
||||
"Requirement already satisfied: httpx in /mnt/disks/data/langchain/.venv/lib/python3.9/site-packages (from fireworks-ai<0.13.0,>=0.12.0->langchain-fireworks==0.0.1) (0.26.0)\n",
|
||||
"Requirement already satisfied: httpx-sse in /mnt/disks/data/langchain/.venv/lib/python3.9/site-packages (from fireworks-ai<0.13.0,>=0.12.0->langchain-fireworks==0.0.1) (0.4.0)\n",
|
||||
"Requirement already satisfied: pydantic in /mnt/disks/data/langchain/.venv/lib/python3.9/site-packages (from fireworks-ai<0.13.0,>=0.12.0->langchain-fireworks==0.0.1) (2.4.2)\n",
|
||||
"Requirement already satisfied: Pillow in /mnt/disks/data/langchain/.venv/lib/python3.9/site-packages (from fireworks-ai<0.13.0,>=0.12.0->langchain-fireworks==0.0.1) (10.2.0)\n",
|
||||
"Requirement already satisfied: PyYAML>=5.3 in /mnt/disks/data/langchain/.venv/lib/python3.9/site-packages (from langchain-core<0.2,>=0.1->langchain-fireworks==0.0.1) (6.0.1)\n",
|
||||
"Requirement already satisfied: anyio<5,>=3 in /mnt/disks/data/langchain/.venv/lib/python3.9/site-packages (from langchain-core<0.2,>=0.1->langchain-fireworks==0.0.1) (3.7.1)\n",
|
||||
"Requirement already satisfied: jsonpatch<2.0,>=1.33 in /mnt/disks/data/langchain/.venv/lib/python3.9/site-packages (from langchain-core<0.2,>=0.1->langchain-fireworks==0.0.1) (1.33)\n",
|
||||
"Requirement already satisfied: langsmith<0.2.0,>=0.1.0 in /mnt/disks/data/langchain/.venv/lib/python3.9/site-packages (from langchain-core<0.2,>=0.1->langchain-fireworks==0.0.1) (0.1.5)\n",
|
||||
"Requirement already satisfied: packaging<24.0,>=23.2 in /mnt/disks/data/langchain/.venv/lib/python3.9/site-packages (from langchain-core<0.2,>=0.1->langchain-fireworks==0.0.1) (23.2)\n",
|
||||
"Requirement already satisfied: tenacity<9.0.0,>=8.1.0 in /mnt/disks/data/langchain/.venv/lib/python3.9/site-packages (from langchain-core<0.2,>=0.1->langchain-fireworks==0.0.1) (8.2.3)\n",
|
||||
"Requirement already satisfied: charset-normalizer<4,>=2 in /mnt/disks/data/langchain/.venv/lib/python3.9/site-packages (from requests<3,>=2->langchain-fireworks==0.0.1) (3.3.0)\n",
|
||||
"Requirement already satisfied: idna<4,>=2.5 in /mnt/disks/data/langchain/.venv/lib/python3.9/site-packages (from requests<3,>=2->langchain-fireworks==0.0.1) (3.4)\n",
|
||||
"Requirement already satisfied: urllib3<3,>=1.21.1 in /mnt/disks/data/langchain/.venv/lib/python3.9/site-packages (from requests<3,>=2->langchain-fireworks==0.0.1) (2.0.6)\n",
|
||||
"Requirement already satisfied: certifi>=2017.4.17 in /mnt/disks/data/langchain/.venv/lib/python3.9/site-packages (from requests<3,>=2->langchain-fireworks==0.0.1) (2023.7.22)\n",
|
||||
"Requirement already satisfied: sniffio>=1.1 in /mnt/disks/data/langchain/.venv/lib/python3.9/site-packages (from anyio<5,>=3->langchain-core<0.2,>=0.1->langchain-fireworks==0.0.1) (1.3.0)\n",
|
||||
"Requirement already satisfied: exceptiongroup in /mnt/disks/data/langchain/.venv/lib/python3.9/site-packages (from anyio<5,>=3->langchain-core<0.2,>=0.1->langchain-fireworks==0.0.1) (1.1.3)\n",
|
||||
"Requirement already satisfied: jsonpointer>=1.9 in /mnt/disks/data/langchain/.venv/lib/python3.9/site-packages (from jsonpatch<2.0,>=1.33->langchain-core<0.2,>=0.1->langchain-fireworks==0.0.1) (2.4)\n",
|
||||
"Requirement already satisfied: annotated-types>=0.4.0 in /mnt/disks/data/langchain/.venv/lib/python3.9/site-packages (from pydantic->fireworks-ai<0.13.0,>=0.12.0->langchain-fireworks==0.0.1) (0.5.0)\n",
|
||||
"Requirement already satisfied: pydantic-core==2.10.1 in /mnt/disks/data/langchain/.venv/lib/python3.9/site-packages (from pydantic->fireworks-ai<0.13.0,>=0.12.0->langchain-fireworks==0.0.1) (2.10.1)\n",
|
||||
"Requirement already satisfied: typing-extensions>=4.6.1 in /mnt/disks/data/langchain/.venv/lib/python3.9/site-packages (from pydantic->fireworks-ai<0.13.0,>=0.12.0->langchain-fireworks==0.0.1) (4.8.0)\n",
|
||||
"Requirement already satisfied: httpcore==1.* in /mnt/disks/data/langchain/.venv/lib/python3.9/site-packages (from httpx->fireworks-ai<0.13.0,>=0.12.0->langchain-fireworks==0.0.1) (1.0.2)\n",
|
||||
"Requirement already satisfied: h11<0.15,>=0.13 in /mnt/disks/data/langchain/.venv/lib/python3.9/site-packages (from httpcore==1.*->httpx->fireworks-ai<0.13.0,>=0.12.0->langchain-fireworks==0.0.1) (0.14.0)\n",
|
||||
"Building wheels for collected packages: langchain-fireworks\n",
|
||||
" Building editable for langchain-fireworks (pyproject.toml) ... \u001b[?25ldone\n",
|
||||
"\u001b[?25h Created wheel for langchain-fireworks: filename=langchain_fireworks-0.0.1-py3-none-any.whl size=2228 sha256=564071b120b09ec31f2dc737733448a33bbb26e40b49fcde0c129ad26045259d\n",
|
||||
" Stored in directory: /tmp/pip-ephem-wheel-cache-oz368vdk/wheels/e0/ad/31/d7e76dd73d61905ff7f369f5b0d21a4b5e7af4d3cb7487aece\n",
|
||||
"Successfully built langchain-fireworks\n",
|
||||
"Installing collected packages: langchain-fireworks\n",
|
||||
"Successfully installed langchain-fireworks-0.0.1\n",
|
||||
"\n",
|
||||
"\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m A new release of pip is available: \u001b[0m\u001b[31;49m23.2.1\u001b[0m\u001b[39;49m -> \u001b[0m\u001b[32;49m24.0\u001b[0m\n",
|
||||
"\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m To update, run: \u001b[0m\u001b[32;49mpip install --upgrade pip\u001b[0m\n",
|
||||
"Note: you may need to restart the kernel to use updated packages.\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"%pip install --quiet pypdf chromadb tiktoken openai \n",
|
||||
"%pip uninstall -y langchain-fireworks\n",
|
||||
"%pip install --editable /mnt/disks/data/langchain/libs/partners/fireworks"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 3,
|
||||
"id": "cf719376",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"<module 'fireworks' from '/mnt/disks/data/langchain/.venv/lib/python3.9/site-packages/fireworks/__init__.py'>\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"import fireworks\n",
|
||||
"\n",
|
||||
"print(fireworks)\n",
|
||||
"import fireworks.client"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "9ab49327-0532-4480-804c-d066c302a322",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Load\n",
|
||||
"import requests\n",
|
||||
"from langchain_community.document_loaders import PyPDFLoader\n",
|
||||
"\n",
|
||||
"# Download the PDF from a URL and save it to a temporary location\n",
|
||||
"url = \"https://storage.googleapis.com/deepmind-media/gemma/gemma-report.pdf\"\n",
|
||||
"response = requests.get(url, stream=True)\n",
|
||||
"file_name = \"temp_file.pdf\"\n",
|
||||
"with open(file_name, \"wb\") as pdf:\n",
|
||||
" pdf.write(response.content)\n",
|
||||
"\n",
|
||||
"loader = PyPDFLoader(file_name)\n",
|
||||
"data = loader.load()\n",
|
||||
"\n",
|
||||
"# Split\n",
|
||||
"from langchain_text_splitters import RecursiveCharacterTextSplitter\n",
|
||||
"\n",
|
||||
"text_splitter = RecursiveCharacterTextSplitter(chunk_size=2000, chunk_overlap=0)\n",
|
||||
"all_splits = text_splitter.split_documents(data)\n",
|
||||
"\n",
|
||||
"# Add to vectorDB\n",
|
||||
"from langchain_community.vectorstores import Chroma\n",
|
||||
"from langchain_fireworks.embeddings import FireworksEmbeddings\n",
|
||||
"\n",
|
||||
"vectorstore = Chroma.from_documents(\n",
|
||||
" documents=all_splits,\n",
|
||||
" collection_name=\"rag-chroma\",\n",
|
||||
" embedding=FireworksEmbeddings(),\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"retriever = vectorstore.as_retriever()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 3,
|
||||
"id": "4efaddd9-3dbb-455c-ba54-0ad7f2d2ce0f",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain_core.output_parsers import StrOutputParser\n",
|
||||
"from langchain_core.prompts import ChatPromptTemplate\n",
|
||||
"from langchain_core.pydantic_v1 import BaseModel\n",
|
||||
"from langchain_core.runnables import RunnableParallel, RunnablePassthrough\n",
|
||||
"\n",
|
||||
"# RAG prompt\n",
|
||||
"template = \"\"\"Answer the question based only on the following context:\n",
|
||||
"{context}\n",
|
||||
"\n",
|
||||
"Question: {question}\n",
|
||||
"\"\"\"\n",
|
||||
"prompt = ChatPromptTemplate.from_template(template)\n",
|
||||
"\n",
|
||||
"# LLM\n",
|
||||
"from langchain_together import Together\n",
|
||||
"\n",
|
||||
"llm = Together(\n",
|
||||
" model=\"mistralai/Mixtral-8x7B-Instruct-v0.1\",\n",
|
||||
" temperature=0.0,\n",
|
||||
" max_tokens=2000,\n",
|
||||
" top_k=1,\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"# RAG chain\n",
|
||||
"chain = (\n",
|
||||
" RunnableParallel({\"context\": retriever, \"question\": RunnablePassthrough()})\n",
|
||||
" | prompt\n",
|
||||
" | llm\n",
|
||||
" | StrOutputParser()\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 4,
|
||||
"id": "88b1ee51-1b0f-4ebf-bb32-e50e843f0eeb",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"'\\nAnswer: The architectural details of Mixtral are as follows:\\n- Dimension (dim): 4096\\n- Number of layers (n\\\\_layers): 32\\n- Dimension of each head (head\\\\_dim): 128\\n- Hidden dimension (hidden\\\\_dim): 14336\\n- Number of heads (n\\\\_heads): 32\\n- Number of kv heads (n\\\\_kv\\\\_heads): 8\\n- Context length (context\\\\_len): 32768\\n- Vocabulary size (vocab\\\\_size): 32000\\n- Number of experts (num\\\\_experts): 8\\n- Number of top k experts (top\\\\_k\\\\_experts): 2\\n\\nMixtral is based on a transformer architecture and uses the same modifications as described in [18], with the notable exceptions that Mixtral supports a fully dense context length of 32k tokens, and the feedforward block picks from a set of 8 distinct groups of parameters. At every layer, for every token, a router network chooses two of these groups (the “experts”) to process the token and combine their output additively. This technique increases the number of parameters of a model while controlling cost and latency, as the model only uses a fraction of the total set of parameters per token. Mixtral is pretrained with multilingual data using a context size of 32k tokens. It either matches or exceeds the performance of Llama 2 70B and GPT-3.5, over several benchmarks. In particular, Mixtral vastly outperforms Llama 2 70B on mathematics, code generation, and multilingual benchmarks.'"
|
||||
]
|
||||
},
|
||||
"execution_count": 4,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"chain.invoke(\"What are the Architectural details of Mixtral?\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "755cf871-26b7-4e30-8b91-9ffd698470f4",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Trace: \n",
|
||||
"\n",
|
||||
"https://smith.langchain.com/public/935fd642-06a6-4b42-98e3-6074f93115cd/r"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3 (ipykernel)",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.9.12"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 5
|
||||
}
|
||||
@@ -73,9 +73,8 @@
|
||||
" AsyncCallbackManagerForRetrieverRun,\n",
|
||||
" CallbackManagerForRetrieverRun,\n",
|
||||
")\n",
|
||||
"from langchain.schema import BaseRetriever, Document\n",
|
||||
"from langchain_community.utilities import GoogleSerperAPIWrapper\n",
|
||||
"from langchain_core.documents import Document\n",
|
||||
"from langchain_core.retrievers import BaseRetriever\n",
|
||||
"from langchain_openai import ChatOpenAI, OpenAI"
|
||||
]
|
||||
},
|
||||
@@ -362,7 +361,7 @@
|
||||
],
|
||||
"source": [
|
||||
"llm = OpenAI()\n",
|
||||
"llm.invoke(query)"
|
||||
"llm(query)"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
||||
@@ -108,7 +108,7 @@
|
||||
" return obs_message\n",
|
||||
"\n",
|
||||
" def _act(self):\n",
|
||||
" act_message = self.model.invoke(self.message_history)\n",
|
||||
" act_message = self.model(self.message_history)\n",
|
||||
" self.message_history.append(act_message)\n",
|
||||
" action = int(self.action_parser.parse(act_message.content)[\"action\"])\n",
|
||||
" return action\n",
|
||||
|
||||
@@ -170,8 +170,8 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain.text_splitter import CharacterTextSplitter\n",
|
||||
"from langchain_community.vectorstores import Chroma\n",
|
||||
"from langchain_text_splitters import CharacterTextSplitter\n",
|
||||
"\n",
|
||||
"with open(\"../../state_of_the_union.txt\") as f:\n",
|
||||
" state_of_the_union = f.read()\n",
|
||||
|
||||
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
@@ -52,7 +52,7 @@
|
||||
"\n",
|
||||
"bash_chain = LLMBashChain.from_llm(llm, verbose=True)\n",
|
||||
"\n",
|
||||
"bash_chain.invoke(text)"
|
||||
"bash_chain.run(text)"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -135,7 +135,7 @@
|
||||
"\n",
|
||||
"text = \"Please write a bash script that prints 'Hello World' to the console.\"\n",
|
||||
"\n",
|
||||
"bash_chain.invoke(text)"
|
||||
"bash_chain.run(text)"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -190,7 +190,7 @@
|
||||
"\n",
|
||||
"text = \"List the current directory then move up a level.\"\n",
|
||||
"\n",
|
||||
"bash_chain.invoke(text)"
|
||||
"bash_chain.run(text)"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -231,7 +231,7 @@
|
||||
],
|
||||
"source": [
|
||||
"# Run the same command again and see that the state is maintained between calls\n",
|
||||
"bash_chain.invoke(text)"
|
||||
"bash_chain.run(text)"
|
||||
]
|
||||
}
|
||||
],
|
||||
|
||||
@@ -50,7 +50,7 @@
|
||||
"\n",
|
||||
"checker_chain = LLMCheckerChain.from_llm(llm, verbose=True)\n",
|
||||
"\n",
|
||||
"checker_chain.invoke(text)"
|
||||
"checker_chain.run(text)"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
||||
@@ -51,7 +51,7 @@
|
||||
"llm = OpenAI(temperature=0)\n",
|
||||
"llm_math = LLMMathChain.from_llm(llm, verbose=True)\n",
|
||||
"\n",
|
||||
"llm_math.invoke(\"What is 13 raised to the .3432 power?\")"
|
||||
"llm_math.run(\"What is 13 raised to the .3432 power?\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
||||
@@ -45,7 +45,7 @@
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"llm_symbolic_math.invoke(\"What is the derivative of sin(x)*exp(x) with respect to x?\")"
|
||||
"llm_symbolic_math.run(\"What is the derivative of sin(x)*exp(x) with respect to x?\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -65,7 +65,7 @@
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"llm_symbolic_math.invoke(\n",
|
||||
"llm_symbolic_math.run(\n",
|
||||
" \"What is the integral of exp(x)*sin(x) + exp(x)*cos(x) with respect to x?\"\n",
|
||||
")"
|
||||
]
|
||||
@@ -94,7 +94,7 @@
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"llm_symbolic_math.invoke('Solve the differential equation y\" - y = e^t')"
|
||||
"llm_symbolic_math.run('Solve the differential equation y\" - y = e^t')"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -114,7 +114,7 @@
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"llm_symbolic_math.invoke(\"What are the solutions to this equation y^3 + 1/3y?\")"
|
||||
"llm_symbolic_math.run(\"What are the solutions to this equation y^3 + 1/3y?\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -134,7 +134,7 @@
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"llm_symbolic_math.invoke(\"x = y + 5, y = z - 3, z = x * y. Solve for x, y, z\")"
|
||||
"llm_symbolic_math.run(\"x = y + 5, y = z - 3, z = x * y. Solve for x, y, z\")"
|
||||
]
|
||||
}
|
||||
],
|
||||
|
||||
@@ -1,818 +0,0 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "70b333e6",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"[](https://www.mongodb.com/developer/products/atlas/advanced-rag-langchain-mongodb/)\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "d84a72ea",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Adding Semantic Caching and Memory to your RAG Application using MongoDB and LangChain\n",
|
||||
"\n",
|
||||
"In this notebook, we will see how to use the new MongoDBCache and MongoDBChatMessageHistory in your RAG application.\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "65527202",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Step 1: Install required libraries\n",
|
||||
"\n",
|
||||
"- **datasets**: Python library to get access to datasets available on Hugging Face Hub\n",
|
||||
"\n",
|
||||
"- **langchain**: Python toolkit for LangChain\n",
|
||||
"\n",
|
||||
"- **langchain-mongodb**: Python package to use MongoDB as a vector store, semantic cache, chat history store etc. in LangChain\n",
|
||||
"\n",
|
||||
"- **langchain-openai**: Python package to use OpenAI models with LangChain\n",
|
||||
"\n",
|
||||
"- **pymongo**: Python toolkit for MongoDB\n",
|
||||
"\n",
|
||||
"- **pandas**: Python library for data analysis, exploration, and manipulation"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 1,
|
||||
"id": "cbc22fa4",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"! pip install -qU datasets langchain langchain-mongodb langchain-openai pymongo pandas"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "39c41e87",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Step 2: Setup pre-requisites\n",
|
||||
"\n",
|
||||
"* Set the MongoDB connection string. Follow the steps [here](https://www.mongodb.com/docs/manual/reference/connection-string/) to get the connection string from the Atlas UI.\n",
|
||||
"\n",
|
||||
"* Set the OpenAI API key. Steps to obtain an API key as [here](https://help.openai.com/en/articles/4936850-where-do-i-find-my-openai-api-key)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 2,
|
||||
"id": "b56412ae",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import getpass"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 3,
|
||||
"id": "16a20d7a",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Enter your MongoDB connection string:········\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"MONGODB_URI = getpass.getpass(\"Enter your MongoDB connection string:\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 4,
|
||||
"id": "978682d4",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Enter your OpenAI API key:········\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"OPENAI_API_KEY = getpass.getpass(\"Enter your OpenAI API key:\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 5,
|
||||
"id": "606081c5",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"········\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"# Optional-- If you want to enable Langsmith -- good for debugging\n",
|
||||
"import os\n",
|
||||
"\n",
|
||||
"os.environ[\"LANGCHAIN_TRACING_V2\"] = \"true\"\n",
|
||||
"os.environ[\"LANGCHAIN_API_KEY\"] = getpass.getpass()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "f6b8302c",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Step 3: Download the dataset\n",
|
||||
"\n",
|
||||
"We will be using MongoDB's [embedded_movies](https://huggingface.co/datasets/MongoDB/embedded_movies) dataset"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 6,
|
||||
"id": "1a3433a6",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import pandas as pd\n",
|
||||
"from datasets import load_dataset"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "aee5311b",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Ensure you have an HF_TOKEN in your development enviornment:\n",
|
||||
"# access tokens can be created or copied from the Hugging Face platform (https://huggingface.co/docs/hub/en/security-tokens)\n",
|
||||
"\n",
|
||||
"# Load MongoDB's embedded_movies dataset from Hugging Face\n",
|
||||
"# https://huggingface.co/datasets/MongoDB/airbnb_embeddings\n",
|
||||
"\n",
|
||||
"data = load_dataset(\"MongoDB/embedded_movies\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 8,
|
||||
"id": "1d630a26",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"df = pd.DataFrame(data[\"train\"])"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "a1f94f43",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Step 4: Data analysis\n",
|
||||
"\n",
|
||||
"Make sure length of the dataset is what we expect, drop Nones etc."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 10,
|
||||
"id": "b276df71",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/html": [
|
||||
"<div>\n",
|
||||
"<style scoped>\n",
|
||||
" .dataframe tbody tr th:only-of-type {\n",
|
||||
" vertical-align: middle;\n",
|
||||
" }\n",
|
||||
"\n",
|
||||
" .dataframe tbody tr th {\n",
|
||||
" vertical-align: top;\n",
|
||||
" }\n",
|
||||
"\n",
|
||||
" .dataframe thead th {\n",
|
||||
" text-align: right;\n",
|
||||
" }\n",
|
||||
"</style>\n",
|
||||
"<table border=\"1\" class=\"dataframe\">\n",
|
||||
" <thead>\n",
|
||||
" <tr style=\"text-align: right;\">\n",
|
||||
" <th></th>\n",
|
||||
" <th>fullplot</th>\n",
|
||||
" <th>type</th>\n",
|
||||
" <th>plot_embedding</th>\n",
|
||||
" <th>num_mflix_comments</th>\n",
|
||||
" <th>runtime</th>\n",
|
||||
" <th>writers</th>\n",
|
||||
" <th>imdb</th>\n",
|
||||
" <th>countries</th>\n",
|
||||
" <th>rated</th>\n",
|
||||
" <th>plot</th>\n",
|
||||
" <th>title</th>\n",
|
||||
" <th>languages</th>\n",
|
||||
" <th>metacritic</th>\n",
|
||||
" <th>directors</th>\n",
|
||||
" <th>awards</th>\n",
|
||||
" <th>genres</th>\n",
|
||||
" <th>poster</th>\n",
|
||||
" <th>cast</th>\n",
|
||||
" </tr>\n",
|
||||
" </thead>\n",
|
||||
" <tbody>\n",
|
||||
" <tr>\n",
|
||||
" <th>0</th>\n",
|
||||
" <td>Young Pauline is left a lot of money when her ...</td>\n",
|
||||
" <td>movie</td>\n",
|
||||
" <td>[0.00072939653, -0.026834568, 0.013515796, -0....</td>\n",
|
||||
" <td>0</td>\n",
|
||||
" <td>199.0</td>\n",
|
||||
" <td>[Charles W. Goddard (screenplay), Basil Dickey...</td>\n",
|
||||
" <td>{'id': 4465, 'rating': 7.6, 'votes': 744}</td>\n",
|
||||
" <td>[USA]</td>\n",
|
||||
" <td>None</td>\n",
|
||||
" <td>Young Pauline is left a lot of money when her ...</td>\n",
|
||||
" <td>The Perils of Pauline</td>\n",
|
||||
" <td>[English]</td>\n",
|
||||
" <td>NaN</td>\n",
|
||||
" <td>[Louis J. Gasnier, Donald MacKenzie]</td>\n",
|
||||
" <td>{'nominations': 0, 'text': '1 win.', 'wins': 1}</td>\n",
|
||||
" <td>[Action]</td>\n",
|
||||
" <td>https://m.media-amazon.com/images/M/MV5BMzgxOD...</td>\n",
|
||||
" <td>[Pearl White, Crane Wilbur, Paul Panzer, Edwar...</td>\n",
|
||||
" </tr>\n",
|
||||
" </tbody>\n",
|
||||
"</table>\n",
|
||||
"</div>"
|
||||
],
|
||||
"text/plain": [
|
||||
" fullplot type \\\n",
|
||||
"0 Young Pauline is left a lot of money when her ... movie \n",
|
||||
"\n",
|
||||
" plot_embedding num_mflix_comments \\\n",
|
||||
"0 [0.00072939653, -0.026834568, 0.013515796, -0.... 0 \n",
|
||||
"\n",
|
||||
" runtime writers \\\n",
|
||||
"0 199.0 [Charles W. Goddard (screenplay), Basil Dickey... \n",
|
||||
"\n",
|
||||
" imdb countries rated \\\n",
|
||||
"0 {'id': 4465, 'rating': 7.6, 'votes': 744} [USA] None \n",
|
||||
"\n",
|
||||
" plot title \\\n",
|
||||
"0 Young Pauline is left a lot of money when her ... The Perils of Pauline \n",
|
||||
"\n",
|
||||
" languages metacritic directors \\\n",
|
||||
"0 [English] NaN [Louis J. Gasnier, Donald MacKenzie] \n",
|
||||
"\n",
|
||||
" awards genres \\\n",
|
||||
"0 {'nominations': 0, 'text': '1 win.', 'wins': 1} [Action] \n",
|
||||
"\n",
|
||||
" poster \\\n",
|
||||
"0 https://m.media-amazon.com/images/M/MV5BMzgxOD... \n",
|
||||
"\n",
|
||||
" cast \n",
|
||||
"0 [Pearl White, Crane Wilbur, Paul Panzer, Edwar... "
|
||||
]
|
||||
},
|
||||
"execution_count": 10,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"# Previewing the contents of the data\n",
|
||||
"df.head(1)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 11,
|
||||
"id": "22ab375d",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Only keep records where the fullplot field is not null\n",
|
||||
"df = df[df[\"fullplot\"].notna()]"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 12,
|
||||
"id": "fceed99a",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Renaming the embedding field to \"embedding\" -- required by LangChain\n",
|
||||
"df.rename(columns={\"plot_embedding\": \"embedding\"}, inplace=True)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "aedec13a",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Step 5: Create a simple RAG chain using MongoDB as the vector store"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 13,
|
||||
"id": "11d292f3",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain_mongodb import MongoDBAtlasVectorSearch\n",
|
||||
"from pymongo import MongoClient\n",
|
||||
"\n",
|
||||
"# Initialize MongoDB python client\n",
|
||||
"client = MongoClient(MONGODB_URI, appname=\"devrel.content.python\")\n",
|
||||
"\n",
|
||||
"DB_NAME = \"langchain_chatbot\"\n",
|
||||
"COLLECTION_NAME = \"data\"\n",
|
||||
"ATLAS_VECTOR_SEARCH_INDEX_NAME = \"vector_index\"\n",
|
||||
"collection = client[DB_NAME][COLLECTION_NAME]"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 14,
|
||||
"id": "d8292d53",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"DeleteResult({'n': 1000, 'electionId': ObjectId('7fffffff00000000000000f6'), 'opTime': {'ts': Timestamp(1710523288, 1033), 't': 246}, 'ok': 1.0, '$clusterTime': {'clusterTime': Timestamp(1710523288, 1042), 'signature': {'hash': b\"i\\xa8\\xe9'\\x1ed\\xf2u\\xf3L\\xff\\xb1\\xf5\\xbfA\\x90\\xabJ\\x12\\x83\", 'keyId': 7299545392000008318}}, 'operationTime': Timestamp(1710523288, 1033)}, acknowledged=True)"
|
||||
]
|
||||
},
|
||||
"execution_count": 14,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"# Delete any existing records in the collection\n",
|
||||
"collection.delete_many({})"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 16,
|
||||
"id": "36c68914",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Data ingestion into MongoDB completed\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"# Data Ingestion\n",
|
||||
"records = df.to_dict(\"records\")\n",
|
||||
"collection.insert_many(records)\n",
|
||||
"\n",
|
||||
"print(\"Data ingestion into MongoDB completed\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 18,
|
||||
"id": "cbfca0b8",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain_openai import OpenAIEmbeddings\n",
|
||||
"\n",
|
||||
"# Using the text-embedding-ada-002 since that's what was used to create embeddings in the movies dataset\n",
|
||||
"embeddings = OpenAIEmbeddings(\n",
|
||||
" openai_api_key=OPENAI_API_KEY, model=\"text-embedding-ada-002\"\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 19,
|
||||
"id": "798e176c",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Vector Store Creation\n",
|
||||
"vector_store = MongoDBAtlasVectorSearch.from_connection_string(\n",
|
||||
" connection_string=MONGODB_URI,\n",
|
||||
" namespace=DB_NAME + \".\" + COLLECTION_NAME,\n",
|
||||
" embedding=embeddings,\n",
|
||||
" index_name=ATLAS_VECTOR_SEARCH_INDEX_NAME,\n",
|
||||
" text_key=\"fullplot\",\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 49,
|
||||
"id": "c71cd087",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Using the MongoDB vector store as a retriever in a RAG chain\n",
|
||||
"retriever = vector_store.as_retriever(search_type=\"similarity\", search_kwargs={\"k\": 5})"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 25,
|
||||
"id": "b6588cd3",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain_core.output_parsers import StrOutputParser\n",
|
||||
"from langchain_core.prompts import ChatPromptTemplate\n",
|
||||
"from langchain_core.runnables import RunnablePassthrough\n",
|
||||
"from langchain_openai import ChatOpenAI\n",
|
||||
"\n",
|
||||
"# Generate context using the retriever, and pass the user question through\n",
|
||||
"retrieve = {\n",
|
||||
" \"context\": retriever | (lambda docs: \"\\n\\n\".join([d.page_content for d in docs])),\n",
|
||||
" \"question\": RunnablePassthrough(),\n",
|
||||
"}\n",
|
||||
"template = \"\"\"Answer the question based only on the following context: \\\n",
|
||||
"{context}\n",
|
||||
"\n",
|
||||
"Question: {question}\n",
|
||||
"\"\"\"\n",
|
||||
"# Defining the chat prompt\n",
|
||||
"prompt = ChatPromptTemplate.from_template(template)\n",
|
||||
"# Defining the model to be used for chat completion\n",
|
||||
"model = ChatOpenAI(temperature=0, openai_api_key=OPENAI_API_KEY)\n",
|
||||
"# Parse output as a string\n",
|
||||
"parse_output = StrOutputParser()\n",
|
||||
"\n",
|
||||
"# Naive RAG chain\n",
|
||||
"naive_rag_chain = retrieve | prompt | model | parse_output"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 26,
|
||||
"id": "aaae21f5",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"'Once a Thief'"
|
||||
]
|
||||
},
|
||||
"execution_count": 26,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"naive_rag_chain.invoke(\"What is the best movie to watch when sad?\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "75f929ef",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Step 6: Create a RAG chain with chat history"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 27,
|
||||
"id": "94e7bd4a",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain_core.prompts import MessagesPlaceholder\n",
|
||||
"from langchain_core.runnables.history import RunnableWithMessageHistory\n",
|
||||
"from langchain_mongodb.chat_message_histories import MongoDBChatMessageHistory"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 29,
|
||||
"id": "5bb30860",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"def get_session_history(session_id: str) -> MongoDBChatMessageHistory:\n",
|
||||
" return MongoDBChatMessageHistory(\n",
|
||||
" MONGODB_URI, session_id, database_name=DB_NAME, collection_name=\"history\"\n",
|
||||
" )"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 50,
|
||||
"id": "f51d0f35",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Given a follow-up question and history, create a standalone question\n",
|
||||
"standalone_system_prompt = \"\"\"\n",
|
||||
"Given a chat history and a follow-up question, rephrase the follow-up question to be a standalone question. \\\n",
|
||||
"Do NOT answer the question, just reformulate it if needed, otherwise return it as is. \\\n",
|
||||
"Only return the final standalone question. \\\n",
|
||||
"\"\"\"\n",
|
||||
"standalone_question_prompt = ChatPromptTemplate.from_messages(\n",
|
||||
" [\n",
|
||||
" (\"system\", standalone_system_prompt),\n",
|
||||
" MessagesPlaceholder(variable_name=\"history\"),\n",
|
||||
" (\"human\", \"{question}\"),\n",
|
||||
" ]\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"question_chain = standalone_question_prompt | model | parse_output"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 51,
|
||||
"id": "f3ef3354",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Generate context by passing output of the question_chain i.e. the standalone question to the retriever\n",
|
||||
"retriever_chain = RunnablePassthrough.assign(\n",
|
||||
" context=question_chain\n",
|
||||
" | retriever\n",
|
||||
" | (lambda docs: \"\\n\\n\".join([d.page_content for d in docs]))\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 55,
|
||||
"id": "5afb7345",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Create a prompt that includes the context, history and the follow-up question\n",
|
||||
"rag_system_prompt = \"\"\"Answer the question based only on the following context: \\\n",
|
||||
"{context}\n",
|
||||
"\"\"\"\n",
|
||||
"rag_prompt = ChatPromptTemplate.from_messages(\n",
|
||||
" [\n",
|
||||
" (\"system\", rag_system_prompt),\n",
|
||||
" MessagesPlaceholder(variable_name=\"history\"),\n",
|
||||
" (\"human\", \"{question}\"),\n",
|
||||
" ]\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 56,
|
||||
"id": "f95f47d0",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# RAG chain\n",
|
||||
"rag_chain = retriever_chain | rag_prompt | model | parse_output"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 57,
|
||||
"id": "9618d395",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"'The best movie to watch when feeling down could be \"Last Action Hero.\" It\\'s a fun and action-packed film that blends reality and fantasy, offering an escape from the real world and providing an entertaining distraction.'"
|
||||
]
|
||||
},
|
||||
"execution_count": 57,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"# RAG chain with history\n",
|
||||
"with_message_history = RunnableWithMessageHistory(\n",
|
||||
" rag_chain,\n",
|
||||
" get_session_history,\n",
|
||||
" input_messages_key=\"question\",\n",
|
||||
" history_messages_key=\"history\",\n",
|
||||
")\n",
|
||||
"with_message_history.invoke(\n",
|
||||
" {\"question\": \"What is the best movie to watch when sad?\"},\n",
|
||||
" {\"configurable\": {\"session_id\": \"1\"}},\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 58,
|
||||
"id": "6e3080d1",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"'I apologize for the confusion. Another movie that might lift your spirits when you\\'re feeling sad is \"Smilla\\'s Sense of Snow.\" It\\'s a mystery thriller that could engage your mind and distract you from your sadness with its intriguing plot and suspenseful storyline.'"
|
||||
]
|
||||
},
|
||||
"execution_count": 58,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"with_message_history.invoke(\n",
|
||||
" {\n",
|
||||
" \"question\": \"Hmmm..I don't want to watch that one. Can you suggest something else?\"\n",
|
||||
" },\n",
|
||||
" {\"configurable\": {\"session_id\": \"1\"}},\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 59,
|
||||
"id": "daea2953",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"'For a lighter movie option, you might enjoy \"Cousins.\" It\\'s a comedy film set in Barcelona with action and humor, offering a fun and entertaining escape from reality. The storyline is engaging and filled with comedic moments that could help lift your spirits.'"
|
||||
]
|
||||
},
|
||||
"execution_count": 59,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"with_message_history.invoke(\n",
|
||||
" {\"question\": \"How about something more light?\"},\n",
|
||||
" {\"configurable\": {\"session_id\": \"1\"}},\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "0de23a88",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Step 7: Get faster responses using Semantic Cache\n",
|
||||
"\n",
|
||||
"**NOTE:** Semantic cache only caches the input to the LLM. When using it in retrieval chains, remember that documents retrieved can change between runs resulting in cache misses for semantically similar queries."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 61,
|
||||
"id": "5d6b6741",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain_core.globals import set_llm_cache\n",
|
||||
"from langchain_mongodb.cache import MongoDBAtlasSemanticCache\n",
|
||||
"\n",
|
||||
"set_llm_cache(\n",
|
||||
" MongoDBAtlasSemanticCache(\n",
|
||||
" connection_string=MONGODB_URI,\n",
|
||||
" embedding=embeddings,\n",
|
||||
" collection_name=\"semantic_cache\",\n",
|
||||
" database_name=DB_NAME,\n",
|
||||
" index_name=ATLAS_VECTOR_SEARCH_INDEX_NAME,\n",
|
||||
" wait_until_ready=True, # Optional, waits until the cache is ready to be used\n",
|
||||
" )\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 62,
|
||||
"id": "9825bc7b",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"CPU times: user 87.8 ms, sys: 670 µs, total: 88.5 ms\n",
|
||||
"Wall time: 1.24 s\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"'Once a Thief'"
|
||||
]
|
||||
},
|
||||
"execution_count": 62,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"%%time\n",
|
||||
"naive_rag_chain.invoke(\"What is the best movie to watch when sad?\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 63,
|
||||
"id": "a5e518cf",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"CPU times: user 43.5 ms, sys: 4.16 ms, total: 47.7 ms\n",
|
||||
"Wall time: 255 ms\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"'Once a Thief'"
|
||||
]
|
||||
},
|
||||
"execution_count": 63,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"%%time\n",
|
||||
"naive_rag_chain.invoke(\"What is the best movie to watch when sad?\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 64,
|
||||
"id": "3d3d3ad3",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"CPU times: user 115 ms, sys: 171 µs, total: 115 ms\n",
|
||||
"Wall time: 1.38 s\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"'I would recommend watching \"Last Action Hero\" when sad, as it is a fun and action-packed film that can help lift your spirits.'"
|
||||
]
|
||||
},
|
||||
"execution_count": 64,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"%%time\n",
|
||||
"naive_rag_chain.invoke(\"Which movie do I watch when sad?\")"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "conda_pytorch_p310",
|
||||
"language": "python",
|
||||
"name": "conda_pytorch_p310"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.10.13"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 5
|
||||
}
|
||||
@@ -435,7 +435,7 @@
|
||||
" display(HTML(image_html))\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"docs = retriever.invoke(\"Woman with children\", k=10)\n",
|
||||
"docs = retriever.get_relevant_documents(\"Woman with children\", k=10)\n",
|
||||
"for doc in docs:\n",
|
||||
" if is_base64(doc.page_content):\n",
|
||||
" plt_img_base64(doc.page_content)\n",
|
||||
|
||||
File diff suppressed because one or more lines are too long
@@ -74,7 +74,7 @@
|
||||
" Applies the chatmodel to the message history\n",
|
||||
" and returns the message string\n",
|
||||
" \"\"\"\n",
|
||||
" message = self.model.invoke(\n",
|
||||
" message = self.model(\n",
|
||||
" [\n",
|
||||
" self.system_message,\n",
|
||||
" HumanMessage(content=\"\\n\".join(self.message_history + [self.prefix])),\n",
|
||||
|
||||
@@ -79,7 +79,7 @@
|
||||
" Applies the chatmodel to the message history\n",
|
||||
" and returns the message string\n",
|
||||
" \"\"\"\n",
|
||||
" message = self.model.invoke(\n",
|
||||
" message = self.model(\n",
|
||||
" [\n",
|
||||
" self.system_message,\n",
|
||||
" HumanMessage(content=\"\\n\".join(self.message_history + [self.prefix])),\n",
|
||||
@@ -234,7 +234,7 @@
|
||||
" termination_clause=self.termination_clause if self.stop else \"\",\n",
|
||||
" )\n",
|
||||
"\n",
|
||||
" self.response = self.model.invoke(\n",
|
||||
" self.response = self.model(\n",
|
||||
" [\n",
|
||||
" self.system_message,\n",
|
||||
" HumanMessage(content=response_prompt),\n",
|
||||
@@ -263,7 +263,7 @@
|
||||
" speaker_names=speaker_names,\n",
|
||||
" )\n",
|
||||
"\n",
|
||||
" choice_string = self.model.invoke(\n",
|
||||
" choice_string = self.model(\n",
|
||||
" [\n",
|
||||
" self.system_message,\n",
|
||||
" HumanMessage(content=choice_prompt),\n",
|
||||
@@ -299,7 +299,7 @@
|
||||
" ),\n",
|
||||
" next_speaker=self.next_speaker,\n",
|
||||
" )\n",
|
||||
" message = self.model.invoke(\n",
|
||||
" message = self.model(\n",
|
||||
" [\n",
|
||||
" self.system_message,\n",
|
||||
" HumanMessage(content=next_prompt),\n",
|
||||
|
||||
@@ -71,7 +71,7 @@
|
||||
" Applies the chatmodel to the message history\n",
|
||||
" and returns the message string\n",
|
||||
" \"\"\"\n",
|
||||
" message = self.model.invoke(\n",
|
||||
" message = self.model(\n",
|
||||
" [\n",
|
||||
" self.system_message,\n",
|
||||
" HumanMessage(content=\"\\n\".join(self.message_history + [self.prefix])),\n",
|
||||
@@ -164,7 +164,7 @@
|
||||
" message_history=\"\\n\".join(self.message_history),\n",
|
||||
" recent_message=self.message_history[-1],\n",
|
||||
" )\n",
|
||||
" bid_string = self.model.invoke([SystemMessage(content=prompt)]).content\n",
|
||||
" bid_string = self.model([SystemMessage(content=prompt)]).content\n",
|
||||
" return bid_string"
|
||||
]
|
||||
},
|
||||
|
||||
@@ -124,7 +124,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain_text_splitters import CharacterTextSplitter\n",
|
||||
"from langchain.text_splitter import CharacterTextSplitter\n",
|
||||
"\n",
|
||||
"text_splitter = CharacterTextSplitter.from_tiktoken_encoder(\n",
|
||||
" chunk_size=7500, chunk_overlap=100\n",
|
||||
|
||||
@@ -20,10 +20,10 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain.chains import RetrievalQA\n",
|
||||
"from langchain.text_splitter import CharacterTextSplitter\n",
|
||||
"from langchain_community.document_loaders import TextLoader\n",
|
||||
"from langchain_community.vectorstores import Chroma\n",
|
||||
"from langchain_openai import OpenAIEmbeddings\n",
|
||||
"from langchain_text_splitters import CharacterTextSplitter"
|
||||
"from langchain_openai import OpenAIEmbeddings"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -358,7 +358,7 @@
|
||||
"\n",
|
||||
"from langchain.chains.openai_functions import create_qa_with_structure_chain\n",
|
||||
"from langchain.prompts.chat import ChatPromptTemplate, HumanMessagePromptTemplate\n",
|
||||
"from langchain_core.messages import HumanMessage, SystemMessage\n",
|
||||
"from langchain.schema import HumanMessage, SystemMessage\n",
|
||||
"from pydantic import BaseModel, Field"
|
||||
]
|
||||
},
|
||||
|
||||
@@ -1,648 +0,0 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "c7fe38bc",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Optimization\n",
|
||||
"\n",
|
||||
"This notebook goes over how to optimize chains using LangChain and [LangSmith](https://smith.langchain.com)."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "2f87ccd5",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Set up\n",
|
||||
"\n",
|
||||
"We will set an environment variable for LangSmith, and load the relevant data"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 1,
|
||||
"id": "236bedc5",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import os\n",
|
||||
"\n",
|
||||
"os.environ[\"LANGCHAIN_PROJECT\"] = \"movie-qa\""
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 2,
|
||||
"id": "a3fed0dd",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import pandas as pd"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 17,
|
||||
"id": "7cfff337",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"df = pd.read_csv(\"data/imdb_top_1000.csv\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 4,
|
||||
"id": "2d20fb9c",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"df[\"Released_Year\"] = df[\"Released_Year\"].astype(int, errors=\"ignore\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "09fc8fe2",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Create the initial retrieval chain\n",
|
||||
"\n",
|
||||
"We will use a self-query retriever"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 5,
|
||||
"id": "f71e24e2",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain.schema import Document\n",
|
||||
"from langchain_community.vectorstores import Chroma\n",
|
||||
"from langchain_openai import OpenAIEmbeddings\n",
|
||||
"\n",
|
||||
"embeddings = OpenAIEmbeddings()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 6,
|
||||
"id": "8881ea8e",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"records = df.to_dict(\"records\")\n",
|
||||
"documents = [Document(page_content=d[\"Overview\"], metadata=d) for d in records]"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 7,
|
||||
"id": "8f495423",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"vectorstore = Chroma.from_documents(documents, embeddings)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 9,
|
||||
"id": "31d33d62",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain.chains.query_constructor.base import AttributeInfo\n",
|
||||
"from langchain.retrievers.self_query.base import SelfQueryRetriever\n",
|
||||
"from langchain_openai import ChatOpenAI\n",
|
||||
"\n",
|
||||
"metadata_field_info = [\n",
|
||||
" AttributeInfo(\n",
|
||||
" name=\"Released_Year\",\n",
|
||||
" description=\"The year the movie was released\",\n",
|
||||
" type=\"int\",\n",
|
||||
" ),\n",
|
||||
" AttributeInfo(\n",
|
||||
" name=\"Series_Title\",\n",
|
||||
" description=\"The title of the movie\",\n",
|
||||
" type=\"str\",\n",
|
||||
" ),\n",
|
||||
" AttributeInfo(\n",
|
||||
" name=\"Genre\",\n",
|
||||
" description=\"The genre of the movie\",\n",
|
||||
" type=\"string\",\n",
|
||||
" ),\n",
|
||||
" AttributeInfo(\n",
|
||||
" name=\"IMDB_Rating\", description=\"A 1-10 rating for the movie\", type=\"float\"\n",
|
||||
" ),\n",
|
||||
"]\n",
|
||||
"document_content_description = \"Brief summary of a movie\"\n",
|
||||
"llm = ChatOpenAI(temperature=0)\n",
|
||||
"retriever = SelfQueryRetriever.from_llm(\n",
|
||||
" llm, vectorstore, document_content_description, metadata_field_info, verbose=True\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 10,
|
||||
"id": "a731533b",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain_core.runnables import RunnablePassthrough"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 11,
|
||||
"id": "05181849",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain_core.output_parsers import StrOutputParser\n",
|
||||
"from langchain_core.prompts import ChatPromptTemplate"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 12,
|
||||
"id": "feed4be6",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"prompt = ChatPromptTemplate.from_template(\n",
|
||||
" \"\"\"Answer the user's question based on the below information:\n",
|
||||
"\n",
|
||||
"Information:\n",
|
||||
"\n",
|
||||
"{info}\n",
|
||||
"\n",
|
||||
"Question: {question}\"\"\"\n",
|
||||
")\n",
|
||||
"generator = (prompt | ChatOpenAI() | StrOutputParser()).with_config(\n",
|
||||
" run_name=\"generator\"\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 13,
|
||||
"id": "eb16cc9a",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"chain = (\n",
|
||||
" RunnablePassthrough.assign(info=(lambda x: x[\"question\"]) | retriever) | generator\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "c70911cc",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Run examples\n",
|
||||
"\n",
|
||||
"Run examples through the chain. This can either be manually, or using a list of examples, or production traffic"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 14,
|
||||
"id": "19a88d13",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"'One of the horror movies released in the early 2000s is \"The Ring\" (2002), directed by Gore Verbinski.'"
|
||||
]
|
||||
},
|
||||
"execution_count": 14,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"chain.invoke({\"question\": \"what is a horror movie released in early 2000s\"})"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "17f9cdae",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Annotate\n",
|
||||
"\n",
|
||||
"Now, go to LangSmitha and annotate those examples as correct or incorrect"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "5e211da6",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Create Dataset\n",
|
||||
"\n",
|
||||
"We can now create a dataset from those runs.\n",
|
||||
"\n",
|
||||
"What we will do is find the runs marked as correct, then grab the sub-chains from them. Specifically, the query generator sub chain and the final generation step"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 15,
|
||||
"id": "e4024267",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langsmith import Client\n",
|
||||
"\n",
|
||||
"client = Client()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 16,
|
||||
"id": "3814efc5",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"14"
|
||||
]
|
||||
},
|
||||
"execution_count": 16,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"runs = list(\n",
|
||||
" client.list_runs(\n",
|
||||
" project_name=\"movie-qa\",\n",
|
||||
" execution_order=1,\n",
|
||||
" filter=\"and(eq(feedback_key, 'correctness'), eq(feedback_score, 1))\",\n",
|
||||
" )\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"len(runs)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 17,
|
||||
"id": "3eb123e0",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"gen_runs = []\n",
|
||||
"query_runs = []\n",
|
||||
"for r in runs:\n",
|
||||
" gen_runs.extend(\n",
|
||||
" list(\n",
|
||||
" client.list_runs(\n",
|
||||
" project_name=\"movie-qa\",\n",
|
||||
" filter=\"eq(name, 'generator')\",\n",
|
||||
" trace_id=r.trace_id,\n",
|
||||
" )\n",
|
||||
" )\n",
|
||||
" )\n",
|
||||
" query_runs.extend(\n",
|
||||
" list(\n",
|
||||
" client.list_runs(\n",
|
||||
" project_name=\"movie-qa\",\n",
|
||||
" filter=\"eq(name, 'query_constructor')\",\n",
|
||||
" trace_id=r.trace_id,\n",
|
||||
" )\n",
|
||||
" )\n",
|
||||
" )"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 21,
|
||||
"id": "a4397026",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"{'question': 'what is a high school comedy released in early 2000s'}"
|
||||
]
|
||||
},
|
||||
"execution_count": 21,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"runs[0].inputs"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 20,
|
||||
"id": "3fa6ad2a",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"{'output': 'One high school comedy released in the early 2000s is \"Mean Girls\" starring Lindsay Lohan, Rachel McAdams, and Tina Fey.'}"
|
||||
]
|
||||
},
|
||||
"execution_count": 20,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"runs[0].outputs"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 22,
|
||||
"id": "1fda5b4b",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"{'query': 'what is a high school comedy released in early 2000s'}"
|
||||
]
|
||||
},
|
||||
"execution_count": 22,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"query_runs[0].inputs"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 23,
|
||||
"id": "1a1a51e6",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"{'output': {'query': 'high school comedy',\n",
|
||||
" 'filter': {'operator': 'and',\n",
|
||||
" 'arguments': [{'comparator': 'eq', 'attribute': 'Genre', 'value': 'comedy'},\n",
|
||||
" {'operator': 'and',\n",
|
||||
" 'arguments': [{'comparator': 'gte',\n",
|
||||
" 'attribute': 'Released_Year',\n",
|
||||
" 'value': 2000},\n",
|
||||
" {'comparator': 'lt', 'attribute': 'Released_Year', 'value': 2010}]}]}}}"
|
||||
]
|
||||
},
|
||||
"execution_count": 23,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"query_runs[0].outputs"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 24,
|
||||
"id": "e9d9966b",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"{'question': 'what is a high school comedy released in early 2000s',\n",
|
||||
" 'info': []}"
|
||||
]
|
||||
},
|
||||
"execution_count": 24,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"gen_runs[0].inputs"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 25,
|
||||
"id": "bc113f3d",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"{'output': 'One high school comedy released in the early 2000s is \"Mean Girls\" starring Lindsay Lohan, Rachel McAdams, and Tina Fey.'}"
|
||||
]
|
||||
},
|
||||
"execution_count": 25,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"gen_runs[0].outputs"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "6cca74e5",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Create datasets\n",
|
||||
"\n",
|
||||
"We can now create datasets for the query generation and final generation step.\n",
|
||||
"We do this so that (1) we can inspect the datapoints, (2) we can edit them if needed, (3) we can add to them over time"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 15,
|
||||
"id": "69966f0e",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"client.create_dataset(\"movie-query_constructor\")\n",
|
||||
"\n",
|
||||
"inputs = [r.inputs for r in query_runs]\n",
|
||||
"outputs = [r.outputs for r in query_runs]\n",
|
||||
"\n",
|
||||
"client.create_examples(\n",
|
||||
" inputs=inputs, outputs=outputs, dataset_name=\"movie-query_constructor\"\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 16,
|
||||
"id": "7e15770e",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"client.create_dataset(\"movie-generator\")\n",
|
||||
"\n",
|
||||
"inputs = [r.inputs for r in gen_runs]\n",
|
||||
"outputs = [r.outputs for r in gen_runs]\n",
|
||||
"\n",
|
||||
"client.create_examples(inputs=inputs, outputs=outputs, dataset_name=\"movie-generator\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "61cf9bcd",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Use as few shot examples\n",
|
||||
"\n",
|
||||
"We can now pull down a dataset and use them as few shot examples in a future chain"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 26,
|
||||
"id": "d9c79173",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"examples = list(client.list_examples(dataset_name=\"movie-query_constructor\"))"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 27,
|
||||
"id": "a1771dd0",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import json\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"def filter_to_string(_filter):\n",
|
||||
" if \"operator\" in _filter:\n",
|
||||
" args = [filter_to_string(f) for f in _filter[\"arguments\"]]\n",
|
||||
" return f\"{_filter['operator']}({','.join(args)})\"\n",
|
||||
" else:\n",
|
||||
" comparator = _filter[\"comparator\"]\n",
|
||||
" attribute = json.dumps(_filter[\"attribute\"])\n",
|
||||
" value = json.dumps(_filter[\"value\"])\n",
|
||||
" return f\"{comparator}({attribute}, {value})\""
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 28,
|
||||
"id": "e67a3530",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"model_examples = []\n",
|
||||
"\n",
|
||||
"for e in examples:\n",
|
||||
" if \"filter\" in e.outputs[\"output\"]:\n",
|
||||
" string_filter = filter_to_string(e.outputs[\"output\"][\"filter\"])\n",
|
||||
" else:\n",
|
||||
" string_filter = \"NO_FILTER\"\n",
|
||||
" model_examples.append(\n",
|
||||
" (\n",
|
||||
" e.inputs[\"query\"],\n",
|
||||
" {\"query\": e.outputs[\"output\"][\"query\"], \"filter\": string_filter},\n",
|
||||
" )\n",
|
||||
" )"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 29,
|
||||
"id": "84593135",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"retriever1 = SelfQueryRetriever.from_llm(\n",
|
||||
" llm,\n",
|
||||
" vectorstore,\n",
|
||||
" document_content_description,\n",
|
||||
" metadata_field_info,\n",
|
||||
" verbose=True,\n",
|
||||
" chain_kwargs={\"examples\": model_examples},\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 30,
|
||||
"id": "4ec9bb92",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"chain1 = (\n",
|
||||
" RunnablePassthrough.assign(info=(lambda x: x[\"question\"]) | retriever1) | generator\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 31,
|
||||
"id": "64eb88e2",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"'1. \"Saving Private Ryan\" (1998) - Directed by Steven Spielberg, this war film follows a group of soldiers during World War II as they search for a missing paratrooper.\\n\\n2. \"The Matrix\" (1999) - Directed by the Wachowskis, this science fiction action film follows a computer hacker who discovers the truth about the reality he lives in.\\n\\n3. \"Lethal Weapon 4\" (1998) - Directed by Richard Donner, this action-comedy film follows two mismatched detectives as they investigate a Chinese immigrant smuggling ring.\\n\\n4. \"The Fifth Element\" (1997) - Directed by Luc Besson, this science fiction action film follows a cab driver who must protect a mysterious woman who holds the key to saving the world.\\n\\n5. \"The Rock\" (1996) - Directed by Michael Bay, this action thriller follows a group of rogue military men who take over Alcatraz and threaten to launch missiles at San Francisco.'"
|
||||
]
|
||||
},
|
||||
"execution_count": 31,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"chain1.invoke(\n",
|
||||
" {\"question\": \"what are good action movies made before 2000 but after 1997?\"}\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "e1ee8b55",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3 (ipykernel)",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.10.1"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 5
|
||||
}
|
||||
@@ -1,876 +0,0 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Oracle AI Vector Search with Document Processing\n",
|
||||
"Oracle AI Vector Search is designed for Artificial Intelligence (AI) workloads that allows you to query data based on semantics, rather than keywords.\n",
|
||||
"One of the biggest benefits of Oracle AI Vector Search is that semantic search on unstructured data can be combined with relational search on business data in one single system.\n",
|
||||
"This is not only powerful but also significantly more effective because you don't need to add a specialized vector database, eliminating the pain of data fragmentation between multiple systems.\n",
|
||||
"\n",
|
||||
"In addition, your vectors can benefit from all of Oracle Database’s most powerful features, like the following:\n",
|
||||
"\n",
|
||||
" * [Partitioning Support](https://www.oracle.com/database/technologies/partitioning.html)\n",
|
||||
" * [Real Application Clusters scalability](https://www.oracle.com/database/real-application-clusters/)\n",
|
||||
" * [Exadata smart scans](https://www.oracle.com/database/technologies/exadata/software/smartscan/)\n",
|
||||
" * [Shard processing across geographically distributed databases](https://www.oracle.com/database/distributed-database/)\n",
|
||||
" * [Transactions](https://docs.oracle.com/en/database/oracle/oracle-database/23/cncpt/transactions.html)\n",
|
||||
" * [Parallel SQL](https://docs.oracle.com/en/database/oracle/oracle-database/21/vldbg/parallel-exec-intro.html#GUID-D28717E4-0F77-44F5-BB4E-234C31D4E4BA)\n",
|
||||
" * [Disaster recovery](https://www.oracle.com/database/data-guard/)\n",
|
||||
" * [Security](https://www.oracle.com/security/database-security/)\n",
|
||||
" * [Oracle Machine Learning](https://www.oracle.com/artificial-intelligence/database-machine-learning/)\n",
|
||||
" * [Oracle Graph Database](https://www.oracle.com/database/integrated-graph-database/)\n",
|
||||
" * [Oracle Spatial and Graph](https://www.oracle.com/database/spatial/)\n",
|
||||
" * [Oracle Blockchain](https://docs.oracle.com/en/database/oracle/oracle-database/23/arpls/dbms_blockchain_table.html#GUID-B469E277-978E-4378-A8C1-26D3FF96C9A6)\n",
|
||||
" * [JSON](https://docs.oracle.com/en/database/oracle/oracle-database/23/adjsn/json-in-oracle-database.html)\n",
|
||||
"\n",
|
||||
"This guide demonstrates how Oracle AI Vector Search can be used with Langchain to serve an end-to-end RAG pipeline. This guide goes through examples of:\n",
|
||||
"\n",
|
||||
" * Loading the documents from various sources using OracleDocLoader\n",
|
||||
" * Summarizing them within/outside the database using OracleSummary\n",
|
||||
" * Generating embeddings for them within/outside the database using OracleEmbeddings\n",
|
||||
" * Chunking them according to different requirements using Advanced Oracle Capabilities from OracleTextSplitter\n",
|
||||
" * Storing and Indexing them in a Vector Store and querying them for queries in OracleVS"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"If you are just starting with Oracle Database, consider exploring the [free Oracle 23 AI](https://www.oracle.com/database/free/#resources) which provides a great introduction to setting up your database environment. While working with the database, it is often advisable to avoid using the system user by default; instead, you can create your own user for enhanced security and customization. For detailed steps on user creation, refer to our [end-to-end guide](https://github.com/langchain-ai/langchain/blob/master/cookbook/oracleai_demo.ipynb) which also shows how to set up a user in Oracle. Additionally, understanding user privileges is crucial for managing database security effectively. You can learn more about this topic in the official [Oracle guide](https://docs.oracle.com/en/database/oracle/oracle-database/19/admqs/administering-user-accounts-and-security.html#GUID-36B21D72-1BBB-46C9-A0C9-F0D2A8591B8D) on administering user accounts and security."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Prerequisites\n",
|
||||
"\n",
|
||||
"Please install Oracle Python Client driver to use Langchain with Oracle AI Vector Search. "
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# pip install oracledb"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Create Demo User\n",
|
||||
"First, create a demo user with all the required privileges. "
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 37,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Connection successful!\n",
|
||||
"User setup done!\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"import sys\n",
|
||||
"\n",
|
||||
"import oracledb\n",
|
||||
"\n",
|
||||
"# please update with your username, password, hostname and service_name\n",
|
||||
"# please make sure this user has sufficient privileges to perform all below\n",
|
||||
"username = \"\"\n",
|
||||
"password = \"\"\n",
|
||||
"dsn = \"\"\n",
|
||||
"\n",
|
||||
"try:\n",
|
||||
" conn = oracledb.connect(user=username, password=password, dsn=dsn)\n",
|
||||
" print(\"Connection successful!\")\n",
|
||||
"\n",
|
||||
" cursor = conn.cursor()\n",
|
||||
" cursor.execute(\n",
|
||||
" \"\"\"\n",
|
||||
" begin\n",
|
||||
" -- drop user\n",
|
||||
" begin\n",
|
||||
" execute immediate 'drop user testuser cascade';\n",
|
||||
" exception\n",
|
||||
" when others then\n",
|
||||
" dbms_output.put_line('Error setting up user.');\n",
|
||||
" end;\n",
|
||||
" execute immediate 'create user testuser identified by testuser';\n",
|
||||
" execute immediate 'grant connect, unlimited tablespace, create credential, create procedure, create any index to testuser';\n",
|
||||
" execute immediate 'create or replace directory DEMO_PY_DIR as ''/scratch/hroy/view_storage/hroy_devstorage/demo/orachain''';\n",
|
||||
" execute immediate 'grant read, write on directory DEMO_PY_DIR to public';\n",
|
||||
" execute immediate 'grant create mining model to testuser';\n",
|
||||
"\n",
|
||||
" -- network access\n",
|
||||
" begin\n",
|
||||
" DBMS_NETWORK_ACL_ADMIN.APPEND_HOST_ACE(\n",
|
||||
" host => '*',\n",
|
||||
" ace => xs$ace_type(privilege_list => xs$name_list('connect'),\n",
|
||||
" principal_name => 'testuser',\n",
|
||||
" principal_type => xs_acl.ptype_db));\n",
|
||||
" end;\n",
|
||||
" end;\n",
|
||||
" \"\"\"\n",
|
||||
" )\n",
|
||||
" print(\"User setup done!\")\n",
|
||||
" cursor.close()\n",
|
||||
" conn.close()\n",
|
||||
"except Exception as e:\n",
|
||||
" print(\"User setup failed!\")\n",
|
||||
" cursor.close()\n",
|
||||
" conn.close()\n",
|
||||
" sys.exit(1)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Process Documents using Oracle AI\n",
|
||||
"Consider the following scenario: users possess documents stored either in an Oracle Database or a file system and intend to utilize this data with Oracle AI Vector Search powered by Langchain.\n",
|
||||
"\n",
|
||||
"To prepare the documents for analysis, a comprehensive preprocessing workflow is necessary. Initially, the documents must be retrieved, summarized (if required), and chunked as needed. Subsequent steps involve generating embeddings for these chunks and integrating them into the Oracle AI Vector Store. Users can then conduct semantic searches on this data.\n",
|
||||
"\n",
|
||||
"The Oracle AI Vector Search Langchain library encompasses a suite of document processing tools that facilitate document loading, chunking, summary generation, and embedding creation.\n",
|
||||
"\n",
|
||||
"In the sections that follow, we will detail the utilization of Oracle AI Langchain APIs to effectively implement each of these processes."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Connect to Demo User\n",
|
||||
"The following sample code will show how to connect to Oracle Database. By default, python-oracledb runs in a ‘Thin’ mode which connects directly to Oracle Database. This mode does not need Oracle Client libraries. However, some additional functionality is available when python-oracledb uses them. Python-oracledb is said to be in ‘Thick’ mode when Oracle Client libraries are used. Both modes have comprehensive functionality supporting the Python Database API v2.0 Specification. See the following [guide](https://python-oracledb.readthedocs.io/en/latest/user_guide/appendix_a.html#featuresummary) that talks about features supported in each mode. You might want to switch to thick-mode if you are unable to use thin-mode."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 45,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Connection successful!\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"import sys\n",
|
||||
"\n",
|
||||
"import oracledb\n",
|
||||
"\n",
|
||||
"# please update with your username, password, hostname and service_name\n",
|
||||
"username = \"\"\n",
|
||||
"password = \"\"\n",
|
||||
"dsn = \"\"\n",
|
||||
"\n",
|
||||
"try:\n",
|
||||
" conn = oracledb.connect(user=username, password=password, dsn=dsn)\n",
|
||||
" print(\"Connection successful!\")\n",
|
||||
"except Exception as e:\n",
|
||||
" print(\"Connection failed!\")\n",
|
||||
" sys.exit(1)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Populate a Demo Table\n",
|
||||
"Create a demo table and insert some sample documents."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 46,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Table created and populated.\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"try:\n",
|
||||
" cursor = conn.cursor()\n",
|
||||
"\n",
|
||||
" drop_table_sql = \"\"\"drop table demo_tab\"\"\"\n",
|
||||
" cursor.execute(drop_table_sql)\n",
|
||||
"\n",
|
||||
" create_table_sql = \"\"\"create table demo_tab (id number, data clob)\"\"\"\n",
|
||||
" cursor.execute(create_table_sql)\n",
|
||||
"\n",
|
||||
" insert_row_sql = \"\"\"insert into demo_tab values (:1, :2)\"\"\"\n",
|
||||
" rows_to_insert = [\n",
|
||||
" (\n",
|
||||
" 1,\n",
|
||||
" \"If the answer to any preceding questions is yes, then the database stops the search and allocates space from the specified tablespace; otherwise, space is allocated from the database default shared temporary tablespace.\",\n",
|
||||
" ),\n",
|
||||
" (\n",
|
||||
" 2,\n",
|
||||
" \"A tablespace can be online (accessible) or offline (not accessible) whenever the database is open.\\nA tablespace is usually online so that its data is available to users. The SYSTEM tablespace and temporary tablespaces cannot be taken offline.\",\n",
|
||||
" ),\n",
|
||||
" (\n",
|
||||
" 3,\n",
|
||||
" \"The database stores LOBs differently from other data types. Creating a LOB column implicitly creates a LOB segment and a LOB index. The tablespace containing the LOB segment and LOB index, which are always stored together, may be different from the tablespace containing the table.\\nSometimes the database can store small amounts of LOB data in the table itself rather than in a separate LOB segment.\",\n",
|
||||
" ),\n",
|
||||
" ]\n",
|
||||
" cursor.executemany(insert_row_sql, rows_to_insert)\n",
|
||||
"\n",
|
||||
" conn.commit()\n",
|
||||
"\n",
|
||||
" print(\"Table created and populated.\")\n",
|
||||
" cursor.close()\n",
|
||||
"except Exception as e:\n",
|
||||
" print(\"Table creation failed.\")\n",
|
||||
" cursor.close()\n",
|
||||
" conn.close()\n",
|
||||
" sys.exit(1)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"With the inclusion of a demo user and a populated sample table, the remaining configuration involves setting up embedding and summary functionalities. Users are presented with multiple provider options, including local database solutions and third-party services such as Ocigenai, Hugging Face, and OpenAI. Should users opt for a third-party provider, they are required to establish credentials containing the necessary authentication details. Conversely, if selecting a database as the provider for embeddings, it is necessary to upload an ONNX model to the Oracle Database. No additional setup is required for summary functionalities when using the database option."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Load ONNX Model\n",
|
||||
"\n",
|
||||
"Oracle accommodates a variety of embedding providers, enabling users to choose between proprietary database solutions and third-party services such as OCIGENAI and HuggingFace. This selection dictates the methodology for generating and managing embeddings.\n",
|
||||
"\n",
|
||||
"***Important*** : Should users opt for the database option, they must upload an ONNX model into the Oracle Database. Conversely, if a third-party provider is selected for embedding generation, uploading an ONNX model to Oracle Database is not required.\n",
|
||||
"\n",
|
||||
"A significant advantage of utilizing an ONNX model directly within Oracle is the enhanced security and performance it offers by eliminating the need to transmit data to external parties. Additionally, this method avoids the latency typically associated with network or REST API calls.\n",
|
||||
"\n",
|
||||
"Below is the example code to upload an ONNX model into Oracle Database:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 47,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"ONNX model loaded.\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"from langchain_community.embeddings.oracleai import OracleEmbeddings\n",
|
||||
"\n",
|
||||
"# please update with your related information\n",
|
||||
"# make sure that you have onnx file in the system\n",
|
||||
"onnx_dir = \"DEMO_PY_DIR\"\n",
|
||||
"onnx_file = \"tinybert.onnx\"\n",
|
||||
"model_name = \"demo_model\"\n",
|
||||
"\n",
|
||||
"try:\n",
|
||||
" OracleEmbeddings.load_onnx_model(conn, onnx_dir, onnx_file, model_name)\n",
|
||||
" print(\"ONNX model loaded.\")\n",
|
||||
"except Exception as e:\n",
|
||||
" print(\"ONNX model loading failed!\")\n",
|
||||
" sys.exit(1)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Create Credential\n",
|
||||
"\n",
|
||||
"When selecting third-party providers for generating embeddings, users are required to establish credentials to securely access the provider's endpoints.\n",
|
||||
"\n",
|
||||
"***Important:*** No credentials are necessary when opting for the 'database' provider to generate embeddings. However, should users decide to utilize a third-party provider, they must create credentials specific to the chosen provider.\n",
|
||||
"\n",
|
||||
"Below is an illustrative example:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"try:\n",
|
||||
" cursor = conn.cursor()\n",
|
||||
" cursor.execute(\n",
|
||||
" \"\"\"\n",
|
||||
" declare\n",
|
||||
" jo json_object_t;\n",
|
||||
" begin\n",
|
||||
" -- HuggingFace\n",
|
||||
" dbms_vector_chain.drop_credential(credential_name => 'HF_CRED');\n",
|
||||
" jo := json_object_t();\n",
|
||||
" jo.put('access_token', '<access_token>');\n",
|
||||
" dbms_vector_chain.create_credential(\n",
|
||||
" credential_name => 'HF_CRED',\n",
|
||||
" params => json(jo.to_string));\n",
|
||||
"\n",
|
||||
" -- OCIGENAI\n",
|
||||
" dbms_vector_chain.drop_credential(credential_name => 'OCI_CRED');\n",
|
||||
" jo := json_object_t();\n",
|
||||
" jo.put('user_ocid','<user_ocid>');\n",
|
||||
" jo.put('tenancy_ocid','<tenancy_ocid>');\n",
|
||||
" jo.put('compartment_ocid','<compartment_ocid>');\n",
|
||||
" jo.put('private_key','<private_key>');\n",
|
||||
" jo.put('fingerprint','<fingerprint>');\n",
|
||||
" dbms_vector_chain.create_credential(\n",
|
||||
" credential_name => 'OCI_CRED',\n",
|
||||
" params => json(jo.to_string));\n",
|
||||
" end;\n",
|
||||
" \"\"\"\n",
|
||||
" )\n",
|
||||
" cursor.close()\n",
|
||||
" print(\"Credentials created.\")\n",
|
||||
"except Exception as ex:\n",
|
||||
" cursor.close()\n",
|
||||
" raise"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Load Documents\n",
|
||||
"Users have the flexibility to load documents from either the Oracle Database, a file system, or both, by appropriately configuring the loader parameters. For comprehensive details on these parameters, please consult the [Oracle AI Vector Search Guide](https://docs.oracle.com/en/database/oracle/oracle-database/23/arpls/dbms_vector_chain1.html#GUID-73397E89-92FB-48ED-94BB-1AD960C4EA1F).\n",
|
||||
"\n",
|
||||
"A significant advantage of utilizing OracleDocLoader is its capability to process over 150 distinct file formats, eliminating the need for multiple loaders for different document types. For a complete list of the supported formats, please refer to the [Oracle Text Supported Document Formats](https://docs.oracle.com/en/database/oracle/oracle-database/23/ccref/oracle-text-supported-document-formats.html).\n",
|
||||
"\n",
|
||||
"Below is a sample code snippet that demonstrates how to use OracleDocLoader"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 48,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Number of docs loaded: 3\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"from langchain_community.document_loaders.oracleai import OracleDocLoader\n",
|
||||
"from langchain_core.documents import Document\n",
|
||||
"\n",
|
||||
"# loading from Oracle Database table\n",
|
||||
"# make sure you have the table with this specification\n",
|
||||
"loader_params = {}\n",
|
||||
"loader_params = {\n",
|
||||
" \"owner\": \"testuser\",\n",
|
||||
" \"tablename\": \"demo_tab\",\n",
|
||||
" \"colname\": \"data\",\n",
|
||||
"}\n",
|
||||
"\n",
|
||||
"\"\"\" load the docs \"\"\"\n",
|
||||
"loader = OracleDocLoader(conn=conn, params=loader_params)\n",
|
||||
"docs = loader.load()\n",
|
||||
"\n",
|
||||
"\"\"\" verify \"\"\"\n",
|
||||
"print(f\"Number of docs loaded: {len(docs)}\")\n",
|
||||
"# print(f\"Document-0: {docs[0].page_content}\") # content"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Generate Summary\n",
|
||||
"Now that the user loaded the documents, they may want to generate a summary for each document. The Oracle AI Vector Search Langchain library offers a suite of APIs designed for document summarization. It supports multiple summarization providers such as Database, OCIGENAI, HuggingFace, among others, allowing users to select the provider that best meets their needs. To utilize these capabilities, users must configure the summary parameters as specified. For detailed information on these parameters, please consult the [Oracle AI Vector Search Guide book](https://docs.oracle.com/en/database/oracle/oracle-database/23/arpls/dbms_vector_chain1.html#GUID-EC9DDB58-6A15-4B36-BA66-ECBA20D2CE57)."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"***Note:*** The users may need to set proxy if they want to use some 3rd party summary generation providers other than Oracle's in-house and default provider: 'database'. If you don't have proxy, please remove the proxy parameter when you instantiate the OracleSummary."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 22,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# proxy to be used when we instantiate summary and embedder object\n",
|
||||
"proxy = \"\""
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"The following sample code will show how to generate summary:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 49,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Number of Summaries: 3\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"from langchain_community.utilities.oracleai import OracleSummary\n",
|
||||
"from langchain_core.documents import Document\n",
|
||||
"\n",
|
||||
"# using 'database' provider\n",
|
||||
"summary_params = {\n",
|
||||
" \"provider\": \"database\",\n",
|
||||
" \"glevel\": \"S\",\n",
|
||||
" \"numParagraphs\": 1,\n",
|
||||
" \"language\": \"english\",\n",
|
||||
"}\n",
|
||||
"\n",
|
||||
"# get the summary instance\n",
|
||||
"# Remove proxy if not required\n",
|
||||
"summ = OracleSummary(conn=conn, params=summary_params, proxy=proxy)\n",
|
||||
"\n",
|
||||
"list_summary = []\n",
|
||||
"for doc in docs:\n",
|
||||
" summary = summ.get_summary(doc.page_content)\n",
|
||||
" list_summary.append(summary)\n",
|
||||
"\n",
|
||||
"\"\"\" verify \"\"\"\n",
|
||||
"print(f\"Number of Summaries: {len(list_summary)}\")\n",
|
||||
"# print(f\"Summary-0: {list_summary[0]}\") #content"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Split Documents\n",
|
||||
"The documents may vary in size, ranging from small to very large. Users often prefer to chunk their documents into smaller sections to facilitate the generation of embeddings. A wide array of customization options is available for this splitting process. For comprehensive details regarding these parameters, please consult the [Oracle AI Vector Search Guide](https://docs.oracle.com/en/database/oracle/oracle-database/23/arpls/dbms_vector_chain1.html#GUID-4E145629-7098-4C7C-804F-FC85D1F24240).\n",
|
||||
"\n",
|
||||
"Below is a sample code illustrating how to implement this:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 50,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Number of Chunks: 3\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"from langchain_community.document_loaders.oracleai import OracleTextSplitter\n",
|
||||
"from langchain_core.documents import Document\n",
|
||||
"\n",
|
||||
"# split by default parameters\n",
|
||||
"splitter_params = {\"normalize\": \"all\"}\n",
|
||||
"\n",
|
||||
"\"\"\" get the splitter instance \"\"\"\n",
|
||||
"splitter = OracleTextSplitter(conn=conn, params=splitter_params)\n",
|
||||
"\n",
|
||||
"list_chunks = []\n",
|
||||
"for doc in docs:\n",
|
||||
" chunks = splitter.split_text(doc.page_content)\n",
|
||||
" list_chunks.extend(chunks)\n",
|
||||
"\n",
|
||||
"\"\"\" verify \"\"\"\n",
|
||||
"print(f\"Number of Chunks: {len(list_chunks)}\")\n",
|
||||
"# print(f\"Chunk-0: {list_chunks[0]}\") # content"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Generate Embeddings\n",
|
||||
"Now that the documents are chunked as per requirements, the users may want to generate embeddings for these chunks. Oracle AI Vector Search provides multiple methods for generating embeddings, utilizing either locally hosted ONNX models or third-party APIs. For comprehensive instructions on configuring these alternatives, please refer to the [Oracle AI Vector Search Guide](https://docs.oracle.com/en/database/oracle/oracle-database/23/arpls/dbms_vector_chain1.html#GUID-C6439E94-4E86-4ECD-954E-4B73D53579DE)."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"***Note:*** Users may need to configure a proxy to utilize third-party embedding generation providers, excluding the 'database' provider that utilizes an ONNX model."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 12,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# proxy to be used when we instantiate summary and embedder object\n",
|
||||
"proxy = \"\""
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"The following sample code will show how to generate embeddings:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 51,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Number of embeddings: 3\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"from langchain_community.embeddings.oracleai import OracleEmbeddings\n",
|
||||
"from langchain_core.documents import Document\n",
|
||||
"\n",
|
||||
"# using ONNX model loaded to Oracle Database\n",
|
||||
"embedder_params = {\"provider\": \"database\", \"model\": \"demo_model\"}\n",
|
||||
"\n",
|
||||
"# get the embedding instance\n",
|
||||
"# Remove proxy if not required\n",
|
||||
"embedder = OracleEmbeddings(conn=conn, params=embedder_params, proxy=proxy)\n",
|
||||
"\n",
|
||||
"embeddings = []\n",
|
||||
"for doc in docs:\n",
|
||||
" chunks = splitter.split_text(doc.page_content)\n",
|
||||
" for chunk in chunks:\n",
|
||||
" embed = embedder.embed_query(chunk)\n",
|
||||
" embeddings.append(embed)\n",
|
||||
"\n",
|
||||
"\"\"\" verify \"\"\"\n",
|
||||
"print(f\"Number of embeddings: {len(embeddings)}\")\n",
|
||||
"# print(f\"Embedding-0: {embeddings[0]}\") # content"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Create Oracle AI Vector Store\n",
|
||||
"Now that you know how to use Oracle AI Langchain library APIs individually to process the documents, let us show how to integrate with Oracle AI Vector Store to facilitate the semantic searches."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"First, let's import all the dependencies."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 52,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import sys\n",
|
||||
"\n",
|
||||
"import oracledb\n",
|
||||
"from langchain_community.document_loaders.oracleai import (\n",
|
||||
" OracleDocLoader,\n",
|
||||
" OracleTextSplitter,\n",
|
||||
")\n",
|
||||
"from langchain_community.embeddings.oracleai import OracleEmbeddings\n",
|
||||
"from langchain_community.utilities.oracleai import OracleSummary\n",
|
||||
"from langchain_community.vectorstores import oraclevs\n",
|
||||
"from langchain_community.vectorstores.oraclevs import OracleVS\n",
|
||||
"from langchain_community.vectorstores.utils import DistanceStrategy\n",
|
||||
"from langchain_core.documents import Document"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Next, let's combine all document processing stages together. Here is the sample code below:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 53,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Connection successful!\n",
|
||||
"ONNX model loaded.\n",
|
||||
"Number of total chunks with metadata: 3\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"\"\"\"\n",
|
||||
"In this sample example, we will use 'database' provider for both summary and embeddings.\n",
|
||||
"So, we don't need to do the followings:\n",
|
||||
" - set proxy for 3rd party providers\n",
|
||||
" - create credential for 3rd party providers\n",
|
||||
"\n",
|
||||
"If you choose to use 3rd party provider, \n",
|
||||
"please follow the necessary steps for proxy and credential.\n",
|
||||
"\"\"\"\n",
|
||||
"\n",
|
||||
"# oracle connection\n",
|
||||
"# please update with your username, password, hostname, and service_name\n",
|
||||
"username = \"\"\n",
|
||||
"password = \"\"\n",
|
||||
"dsn = \"\"\n",
|
||||
"\n",
|
||||
"try:\n",
|
||||
" conn = oracledb.connect(user=username, password=password, dsn=dsn)\n",
|
||||
" print(\"Connection successful!\")\n",
|
||||
"except Exception as e:\n",
|
||||
" print(\"Connection failed!\")\n",
|
||||
" sys.exit(1)\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"# load onnx model\n",
|
||||
"# please update with your related information\n",
|
||||
"onnx_dir = \"DEMO_PY_DIR\"\n",
|
||||
"onnx_file = \"tinybert.onnx\"\n",
|
||||
"model_name = \"demo_model\"\n",
|
||||
"try:\n",
|
||||
" OracleEmbeddings.load_onnx_model(conn, onnx_dir, onnx_file, model_name)\n",
|
||||
" print(\"ONNX model loaded.\")\n",
|
||||
"except Exception as e:\n",
|
||||
" print(\"ONNX model loading failed!\")\n",
|
||||
" sys.exit(1)\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"# params\n",
|
||||
"# please update necessary fields with related information\n",
|
||||
"loader_params = {\n",
|
||||
" \"owner\": \"testuser\",\n",
|
||||
" \"tablename\": \"demo_tab\",\n",
|
||||
" \"colname\": \"data\",\n",
|
||||
"}\n",
|
||||
"summary_params = {\n",
|
||||
" \"provider\": \"database\",\n",
|
||||
" \"glevel\": \"S\",\n",
|
||||
" \"numParagraphs\": 1,\n",
|
||||
" \"language\": \"english\",\n",
|
||||
"}\n",
|
||||
"splitter_params = {\"normalize\": \"all\"}\n",
|
||||
"embedder_params = {\"provider\": \"database\", \"model\": \"demo_model\"}\n",
|
||||
"\n",
|
||||
"# instantiate loader, summary, splitter, and embedder\n",
|
||||
"loader = OracleDocLoader(conn=conn, params=loader_params)\n",
|
||||
"summary = OracleSummary(conn=conn, params=summary_params)\n",
|
||||
"splitter = OracleTextSplitter(conn=conn, params=splitter_params)\n",
|
||||
"embedder = OracleEmbeddings(conn=conn, params=embedder_params)\n",
|
||||
"\n",
|
||||
"# process the documents\n",
|
||||
"chunks_with_mdata = []\n",
|
||||
"for id, doc in enumerate(docs, start=1):\n",
|
||||
" summ = summary.get_summary(doc.page_content)\n",
|
||||
" chunks = splitter.split_text(doc.page_content)\n",
|
||||
" for ic, chunk in enumerate(chunks, start=1):\n",
|
||||
" chunk_metadata = doc.metadata.copy()\n",
|
||||
" chunk_metadata[\"id\"] = chunk_metadata[\"_oid\"] + \"$\" + str(id) + \"$\" + str(ic)\n",
|
||||
" chunk_metadata[\"document_id\"] = str(id)\n",
|
||||
" chunk_metadata[\"document_summary\"] = str(summ[0])\n",
|
||||
" chunks_with_mdata.append(\n",
|
||||
" Document(page_content=str(chunk), metadata=chunk_metadata)\n",
|
||||
" )\n",
|
||||
"\n",
|
||||
"\"\"\" verify \"\"\"\n",
|
||||
"print(f\"Number of total chunks with metadata: {len(chunks_with_mdata)}\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"At this point, we have processed the documents and generated chunks with metadata. Next, we will create Oracle AI Vector Store with those chunks.\n",
|
||||
"\n",
|
||||
"Here is the sample code how to do that:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 55,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Vector Store Table: oravs\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"# create Oracle AI Vector Store\n",
|
||||
"vectorstore = OracleVS.from_documents(\n",
|
||||
" chunks_with_mdata,\n",
|
||||
" embedder,\n",
|
||||
" client=conn,\n",
|
||||
" table_name=\"oravs\",\n",
|
||||
" distance_strategy=DistanceStrategy.DOT_PRODUCT,\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"\"\"\" verify \"\"\"\n",
|
||||
"print(f\"Vector Store Table: {vectorstore.table_name}\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"The example provided illustrates the creation of a vector store using the DOT_PRODUCT distance strategy. Users have the flexibility to employ various distance strategies with the Oracle AI Vector Store, as detailed in our [comprehensive guide](https://python.langchain.com/v0.1/docs/integrations/vectorstores/oracle/)."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"With embeddings now stored in vector stores, it is advisable to establish an index to enhance semantic search performance during query execution.\n",
|
||||
"\n",
|
||||
"***Note*** Should you encounter an \"insufficient memory\" error, it is recommended to increase the ***vector_memory_size*** in your database configuration\n",
|
||||
"\n",
|
||||
"Below is a sample code snippet for creating an index:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 56,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"oraclevs.create_index(\n",
|
||||
" conn, vectorstore, params={\"idx_name\": \"hnsw_oravs\", \"idx_type\": \"HNSW\"}\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"print(\"Index created.\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"This example demonstrates the creation of a default HNSW index on embeddings within the 'oravs' table. Users may adjust various parameters according to their specific needs. For detailed information on these parameters, please consult the [Oracle AI Vector Search Guide book](https://docs.oracle.com/en/database/oracle/oracle-database/23/vecse/manage-different-categories-vector-indexes.html).\n",
|
||||
"\n",
|
||||
"Additionally, various types of vector indices can be created to meet diverse requirements. More details can be found in our [comprehensive guide](https://python.langchain.com/v0.1/docs/integrations/vectorstores/oracle/).\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Perform Semantic Search\n",
|
||||
"All set!\n",
|
||||
"\n",
|
||||
"We have successfully processed the documents and stored them in the vector store, followed by the creation of an index to enhance query performance. We are now prepared to proceed with semantic searches.\n",
|
||||
"\n",
|
||||
"Below is the sample code for this process:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 58,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"[Document(page_content='The database stores LOBs differently from other data types. Creating a LOB column implicitly creates a LOB segment and a LOB index. The tablespace containing the LOB segment and LOB index, which are always stored together, may be different from the tablespace containing the table. Sometimes the database can store small amounts of LOB data in the table itself rather than in a separate LOB segment.', metadata={'_oid': '662f2f257677f3c2311a8ff999fd34e5', '_rowid': 'AAAR/xAAEAAAAAnAAC', 'id': '662f2f257677f3c2311a8ff999fd34e5$3$1', 'document_id': '3', 'document_summary': 'Sometimes the database can store small amounts of LOB data in the table itself rather than in a separate LOB segment.\\n\\n'})]\n",
|
||||
"[]\n",
|
||||
"[(Document(page_content='The database stores LOBs differently from other data types. Creating a LOB column implicitly creates a LOB segment and a LOB index. The tablespace containing the LOB segment and LOB index, which are always stored together, may be different from the tablespace containing the table. Sometimes the database can store small amounts of LOB data in the table itself rather than in a separate LOB segment.', metadata={'_oid': '662f2f257677f3c2311a8ff999fd34e5', '_rowid': 'AAAR/xAAEAAAAAnAAC', 'id': '662f2f257677f3c2311a8ff999fd34e5$3$1', 'document_id': '3', 'document_summary': 'Sometimes the database can store small amounts of LOB data in the table itself rather than in a separate LOB segment.\\n\\n'}), 0.055675752460956573)]\n",
|
||||
"[]\n",
|
||||
"[Document(page_content='If the answer to any preceding questions is yes, then the database stops the search and allocates space from the specified tablespace; otherwise, space is allocated from the database default shared temporary tablespace.', metadata={'_oid': '662f2f253acf96b33b430b88699490a2', '_rowid': 'AAAR/xAAEAAAAAnAAA', 'id': '662f2f253acf96b33b430b88699490a2$1$1', 'document_id': '1', 'document_summary': 'If the answer to any preceding questions is yes, then the database stops the search and allocates space from the specified tablespace; otherwise, space is allocated from the database default shared temporary tablespace.\\n\\n'})]\n",
|
||||
"[Document(page_content='If the answer to any preceding questions is yes, then the database stops the search and allocates space from the specified tablespace; otherwise, space is allocated from the database default shared temporary tablespace.', metadata={'_oid': '662f2f253acf96b33b430b88699490a2', '_rowid': 'AAAR/xAAEAAAAAnAAA', 'id': '662f2f253acf96b33b430b88699490a2$1$1', 'document_id': '1', 'document_summary': 'If the answer to any preceding questions is yes, then the database stops the search and allocates space from the specified tablespace; otherwise, space is allocated from the database default shared temporary tablespace.\\n\\n'})]\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"query = \"What is Oracle AI Vector Store?\"\n",
|
||||
"filter = {\"document_id\": [\"1\"]}\n",
|
||||
"\n",
|
||||
"# Similarity search without a filter\n",
|
||||
"print(vectorstore.similarity_search(query, 1))\n",
|
||||
"\n",
|
||||
"# Similarity search with a filter\n",
|
||||
"print(vectorstore.similarity_search(query, 1, filter=filter))\n",
|
||||
"\n",
|
||||
"# Similarity search with relevance score\n",
|
||||
"print(vectorstore.similarity_search_with_score(query, 1))\n",
|
||||
"\n",
|
||||
"# Similarity search with relevance score with filter\n",
|
||||
"print(vectorstore.similarity_search_with_score(query, 1, filter=filter))\n",
|
||||
"\n",
|
||||
"# Max marginal relevance search\n",
|
||||
"print(vectorstore.max_marginal_relevance_search(query, 1, fetch_k=20, lambda_mult=0.5))\n",
|
||||
"\n",
|
||||
"# Max marginal relevance search with filter\n",
|
||||
"print(\n",
|
||||
" vectorstore.max_marginal_relevance_search(\n",
|
||||
" query, 1, fetch_k=20, lambda_mult=0.5, filter=filter\n",
|
||||
" )\n",
|
||||
")"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3 (ipykernel)",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.11.9"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 4
|
||||
}
|
||||
@@ -129,7 +129,7 @@
|
||||
" return obs_message\n",
|
||||
"\n",
|
||||
" def _act(self):\n",
|
||||
" act_message = self.model.invoke(self.message_history)\n",
|
||||
" act_message = self.model(self.message_history)\n",
|
||||
" self.message_history.append(act_message)\n",
|
||||
" action = int(self.action_parser.parse(act_message.content)[\"action\"])\n",
|
||||
" return action\n",
|
||||
|
||||
@@ -84,7 +84,7 @@
|
||||
"from langchain.retrievers import KayAiRetriever\n",
|
||||
"from langchain_openai import ChatOpenAI\n",
|
||||
"\n",
|
||||
"model = ChatOpenAI(model=\"gpt-3.5-turbo\")\n",
|
||||
"model = ChatOpenAI(model_name=\"gpt-3.5-turbo\")\n",
|
||||
"retriever = KayAiRetriever.create(\n",
|
||||
" dataset_id=\"company\", data_types=[\"PressRelease\"], num_contexts=6\n",
|
||||
")\n",
|
||||
|
||||
@@ -59,13 +59,13 @@
|
||||
"from baidubce.auth.bce_credentials import BceCredentials\n",
|
||||
"from baidubce.bce_client_configuration import BceClientConfiguration\n",
|
||||
"from langchain.chains.retrieval_qa import RetrievalQA\n",
|
||||
"from langchain.text_splitter import RecursiveCharacterTextSplitter\n",
|
||||
"from langchain_community.document_loaders.baiducloud_bos_directory import (\n",
|
||||
" BaiduBOSDirectoryLoader,\n",
|
||||
")\n",
|
||||
"from langchain_community.embeddings.huggingface import HuggingFaceEmbeddings\n",
|
||||
"from langchain_community.llms.baidu_qianfan_endpoint import QianfanLLMEndpoint\n",
|
||||
"from langchain_community.vectorstores import BESVectorStore\n",
|
||||
"from langchain_text_splitters import RecursiveCharacterTextSplitter"
|
||||
"from langchain_community.vectorstores import BESVectorStore"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
||||
@@ -19,9 +19,7 @@
|
||||
"source": [
|
||||
"## Setup\n",
|
||||
"\n",
|
||||
"For this example, we will use Pinecone and some fake data. To configure Pinecone, set the following environment variable:\n",
|
||||
"\n",
|
||||
"- `PINECONE_API_KEY`: Your Pinecone API key"
|
||||
"For this example, we will use Pinecone and some fake data"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -31,8 +29,11 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import pinecone\n",
|
||||
"from langchain_community.vectorstores import Pinecone\n",
|
||||
"from langchain_openai import OpenAIEmbeddings\n",
|
||||
"from langchain_pinecone import PineconeVectorStore"
|
||||
"\n",
|
||||
"pinecone.init(api_key=\"...\", environment=\"...\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -63,7 +64,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"vectorstore = PineconeVectorStore.from_texts(\n",
|
||||
"vectorstore = Pinecone.from_texts(\n",
|
||||
" list(all_documents.values()), OpenAIEmbeddings(), index_name=\"rag-fusion\"\n",
|
||||
")"
|
||||
]
|
||||
@@ -161,7 +162,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"vectorstore = PineconeVectorStore.from_existing_index(\"rag-fusion\", OpenAIEmbeddings())\n",
|
||||
"vectorstore = Pinecone.from_existing_index(\"rag-fusion\", OpenAIEmbeddings())\n",
|
||||
"retriever = vectorstore.as_retriever()"
|
||||
]
|
||||
},
|
||||
|
||||
File diff suppressed because one or more lines are too long
@@ -1,82 +0,0 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# RAG using Upstage Layout Analysis and Groundedness Check\n",
|
||||
"This example illustrates RAG using [Upstage](https://python.langchain.com/docs/integrations/providers/upstage/) Layout Analysis and Groundedness Check."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from typing import List\n",
|
||||
"\n",
|
||||
"from langchain_community.vectorstores import DocArrayInMemorySearch\n",
|
||||
"from langchain_core.output_parsers import StrOutputParser\n",
|
||||
"from langchain_core.prompts import ChatPromptTemplate\n",
|
||||
"from langchain_core.runnables import RunnablePassthrough\n",
|
||||
"from langchain_core.runnables.base import RunnableSerializable\n",
|
||||
"from langchain_upstage import (\n",
|
||||
" ChatUpstage,\n",
|
||||
" UpstageEmbeddings,\n",
|
||||
" UpstageGroundednessCheck,\n",
|
||||
" UpstageLayoutAnalysisLoader,\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"model = ChatUpstage()\n",
|
||||
"\n",
|
||||
"files = [\"/PATH/TO/YOUR/FILE.pdf\", \"/PATH/TO/YOUR/FILE2.pdf\"]\n",
|
||||
"\n",
|
||||
"loader = UpstageLayoutAnalysisLoader(file_path=files, split=\"element\")\n",
|
||||
"\n",
|
||||
"docs = loader.load()\n",
|
||||
"\n",
|
||||
"vectorstore = DocArrayInMemorySearch.from_documents(\n",
|
||||
" docs, embedding=UpstageEmbeddings(model=\"solar-embedding-1-large\")\n",
|
||||
")\n",
|
||||
"retriever = vectorstore.as_retriever()\n",
|
||||
"\n",
|
||||
"template = \"\"\"Answer the question based only on the following context:\n",
|
||||
"{context}\n",
|
||||
"\n",
|
||||
"Question: {question}\n",
|
||||
"\"\"\"\n",
|
||||
"prompt = ChatPromptTemplate.from_template(template)\n",
|
||||
"output_parser = StrOutputParser()\n",
|
||||
"\n",
|
||||
"retrieved_docs = retriever.get_relevant_documents(\"How many parameters in SOLAR model?\")\n",
|
||||
"\n",
|
||||
"groundedness_check = UpstageGroundednessCheck()\n",
|
||||
"groundedness = \"\"\n",
|
||||
"while groundedness != \"grounded\":\n",
|
||||
" chain: RunnableSerializable = RunnablePassthrough() | prompt | model | output_parser\n",
|
||||
"\n",
|
||||
" result = chain.invoke(\n",
|
||||
" {\n",
|
||||
" \"context\": retrieved_docs,\n",
|
||||
" \"question\": \"How many parameters in SOLAR model?\",\n",
|
||||
" }\n",
|
||||
" )\n",
|
||||
"\n",
|
||||
" groundedness = groundedness_check.invoke(\n",
|
||||
" {\n",
|
||||
" \"context\": retrieved_docs,\n",
|
||||
" \"answer\": result,\n",
|
||||
" }\n",
|
||||
" )"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"language_info": {
|
||||
"name": "python"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 2
|
||||
}
|
||||
@@ -1,589 +0,0 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "6195da33-34c3-4ca2-943a-050b6dcbacbc",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Embedding Documents using Optimized and Quantized Embedders\n",
|
||||
"\n",
|
||||
"In this tutorial, we will demo how to build a RAG pipeline, with the embedding for all documents done using Quantized Embedders.\n",
|
||||
"\n",
|
||||
"We will use a pipeline that will:\n",
|
||||
"\n",
|
||||
"* Create a document collection.\n",
|
||||
"* Embed all documents using Quantized Embedders.\n",
|
||||
"* Fetch relevant documents for our question.\n",
|
||||
"* Run an LLM answer the question.\n",
|
||||
"\n",
|
||||
"For more information about optimized models, we refer to [optimum-intel](https://github.com/huggingface/optimum-intel.git) and [IPEX](https://github.com/intel/intel-extension-for-pytorch).\n",
|
||||
"\n",
|
||||
"This tutorial is based on the [Langchain RAG tutorial here](https://towardsai.net/p/machine-learning/dense-x-retrieval-technique-in-langchain-and-llamaindex)."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 17,
|
||||
"id": "26db2da5-3733-4a90-909e-6c11508ea140",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import uuid\n",
|
||||
"from pathlib import Path\n",
|
||||
"\n",
|
||||
"import langchain\n",
|
||||
"import torch\n",
|
||||
"from bs4 import BeautifulSoup as Soup\n",
|
||||
"from langchain.retrievers.multi_vector import MultiVectorRetriever\n",
|
||||
"from langchain.storage import InMemoryByteStore, LocalFileStore\n",
|
||||
"from langchain_community.document_loaders.recursive_url_loader import (\n",
|
||||
" RecursiveUrlLoader,\n",
|
||||
")\n",
|
||||
"from langchain_community.vectorstores import Chroma\n",
|
||||
"\n",
|
||||
"# For our example, we'll load docs from the web\n",
|
||||
"from langchain_text_splitters import RecursiveCharacterTextSplitter\n",
|
||||
"\n",
|
||||
"DOCSTORE_DIR = \".\"\n",
|
||||
"DOCSTORE_ID_KEY = \"doc_id\""
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "f5ccda4e-7af5-4355-b9c4-25547edf33f9",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Lets first load up this paper, and split into text chunks of size 1000."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 2,
|
||||
"id": "5f4d8888-53a6-49f5-a198-da5c92419ca4",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Loaded 1 documents\n",
|
||||
"Split into 73 documents\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"# Could add more parsing here, as it's very raw.\n",
|
||||
"loader = RecursiveUrlLoader(\n",
|
||||
" \"https://ar5iv.labs.arxiv.org/html/1706.03762\",\n",
|
||||
" max_depth=2,\n",
|
||||
" extractor=lambda x: Soup(x, \"html.parser\").text,\n",
|
||||
")\n",
|
||||
"data = loader.load()\n",
|
||||
"print(f\"Loaded {len(data)} documents\")\n",
|
||||
"\n",
|
||||
"# Split\n",
|
||||
"text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=0)\n",
|
||||
"all_splits = text_splitter.split_documents(data)\n",
|
||||
"print(f\"Split into {len(all_splits)} documents\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "73e90632-2ac2-49eb-80da-ffe9ac4a278d",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"In order to embed our documents, we can use the ```QuantizedBiEncoderEmbeddings```, for efficient and fast embedding. "
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 9,
|
||||
"id": "9a68a6f6-332d-481e-bbea-ad763155ea36",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"application/vnd.jupyter.widget-view+json": {
|
||||
"model_id": "89af89b48c55409b9999b8e0387fab5b",
|
||||
"version_major": 2,
|
||||
"version_minor": 0
|
||||
},
|
||||
"text/plain": [
|
||||
"config.json: 0%| | 0.00/747 [00:00<?, ?B/s]"
|
||||
]
|
||||
},
|
||||
"metadata": {},
|
||||
"output_type": "display_data"
|
||||
},
|
||||
{
|
||||
"data": {
|
||||
"application/vnd.jupyter.widget-view+json": {
|
||||
"model_id": "01ad1b6278194b53bf6a5a286a311864",
|
||||
"version_major": 2,
|
||||
"version_minor": 0
|
||||
},
|
||||
"text/plain": [
|
||||
"pytorch_model.bin: 0%| | 0.00/45.9M [00:00<?, ?B/s]"
|
||||
]
|
||||
},
|
||||
"metadata": {},
|
||||
"output_type": "display_data"
|
||||
},
|
||||
{
|
||||
"data": {
|
||||
"application/vnd.jupyter.widget-view+json": {
|
||||
"model_id": "cb3bd1b88f7743c3b0322da3f021325c",
|
||||
"version_major": 2,
|
||||
"version_minor": 0
|
||||
},
|
||||
"text/plain": [
|
||||
"inc_config.json: 0%| | 0.00/287 [00:00<?, ?B/s]"
|
||||
]
|
||||
},
|
||||
"metadata": {},
|
||||
"output_type": "display_data"
|
||||
},
|
||||
{
|
||||
"name": "stderr",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"loading configuration file inc_config.json from cache at \n",
|
||||
"INCConfig {\n",
|
||||
" \"distillation\": {},\n",
|
||||
" \"neural_compressor_version\": \"2.4.1\",\n",
|
||||
" \"optimum_version\": \"1.16.2\",\n",
|
||||
" \"pruning\": {},\n",
|
||||
" \"quantization\": {\n",
|
||||
" \"dataset_num_samples\": 50,\n",
|
||||
" \"is_static\": true\n",
|
||||
" },\n",
|
||||
" \"save_onnx_model\": false,\n",
|
||||
" \"torch_version\": \"2.2.0\",\n",
|
||||
" \"transformers_version\": \"4.37.2\"\n",
|
||||
"}\n",
|
||||
"\n",
|
||||
"Using `INCModel` to load a TorchScript model will be deprecated in v1.15.0, to load your model please use `IPEXModel` instead.\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"data": {
|
||||
"application/vnd.jupyter.widget-view+json": {
|
||||
"model_id": "7439315ebcb746f5be11fe30bc7693f6",
|
||||
"version_major": 2,
|
||||
"version_minor": 0
|
||||
},
|
||||
"text/plain": [
|
||||
"tokenizer_config.json: 0%| | 0.00/1.24k [00:00<?, ?B/s]"
|
||||
]
|
||||
},
|
||||
"metadata": {},
|
||||
"output_type": "display_data"
|
||||
},
|
||||
{
|
||||
"data": {
|
||||
"application/vnd.jupyter.widget-view+json": {
|
||||
"model_id": "05265a3912254ce1ad43cc8086bcb0ca",
|
||||
"version_major": 2,
|
||||
"version_minor": 0
|
||||
},
|
||||
"text/plain": [
|
||||
"vocab.txt: 0%| | 0.00/232k [00:00<?, ?B/s]"
|
||||
]
|
||||
},
|
||||
"metadata": {},
|
||||
"output_type": "display_data"
|
||||
},
|
||||
{
|
||||
"data": {
|
||||
"application/vnd.jupyter.widget-view+json": {
|
||||
"model_id": "a48f4245c60744f28f37cd3a7a24d198",
|
||||
"version_major": 2,
|
||||
"version_minor": 0
|
||||
},
|
||||
"text/plain": [
|
||||
"tokenizer.json: 0%| | 0.00/711k [00:00<?, ?B/s]"
|
||||
]
|
||||
},
|
||||
"metadata": {},
|
||||
"output_type": "display_data"
|
||||
},
|
||||
{
|
||||
"data": {
|
||||
"application/vnd.jupyter.widget-view+json": {
|
||||
"model_id": "584a63cace934033b4ab22d3a178582a",
|
||||
"version_major": 2,
|
||||
"version_minor": 0
|
||||
},
|
||||
"text/plain": [
|
||||
"special_tokens_map.json: 0%| | 0.00/125 [00:00<?, ?B/s]"
|
||||
]
|
||||
},
|
||||
"metadata": {},
|
||||
"output_type": "display_data"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"from langchain_community.embeddings import QuantizedBiEncoderEmbeddings\n",
|
||||
"from langchain_core.embeddings import Embeddings\n",
|
||||
"\n",
|
||||
"model_name = \"Intel/bge-small-en-v1.5-rag-int8-static\"\n",
|
||||
"encode_kwargs = {\"normalize_embeddings\": True} # set True to compute cosine similarity\n",
|
||||
"\n",
|
||||
"model_inc = QuantizedBiEncoderEmbeddings(\n",
|
||||
" model_name=model_name,\n",
|
||||
" encode_kwargs=encode_kwargs,\n",
|
||||
" query_instruction=\"Represent this sentence for searching relevant passages: \",\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "360b2837-8024-47e0-a4ba-592505a9a5c8",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"With our embedder in place, lets define our retriever:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 16,
|
||||
"id": "18bc0a73-1a13-4b2f-96ac-05a5313343b7",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"def get_multi_vector_retriever(\n",
|
||||
" docstore_id_key: str, collection_name: str, embedding_function: Embeddings\n",
|
||||
"):\n",
|
||||
" \"\"\"Create the composed retriever object.\"\"\"\n",
|
||||
" vectorstore = Chroma(\n",
|
||||
" collection_name=collection_name,\n",
|
||||
" embedding_function=embedding_function,\n",
|
||||
" )\n",
|
||||
" store = InMemoryByteStore()\n",
|
||||
"\n",
|
||||
" return MultiVectorRetriever(\n",
|
||||
" vectorstore=vectorstore,\n",
|
||||
" byte_store=store,\n",
|
||||
" id_key=docstore_id_key,\n",
|
||||
" )\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"retriever = get_multi_vector_retriever(DOCSTORE_ID_KEY, \"multi_vec_store\", model_inc)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "8484078e-1bf0-4080-a354-ef23823fd6dc",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Next, we divide each chunk into sub-docs:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 18,
|
||||
"id": "e12f48d4-6562-416b-8f28-342912e5756e",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"child_text_splitter = RecursiveCharacterTextSplitter(chunk_size=400)\n",
|
||||
"id_key = \"doc_id\"\n",
|
||||
"doc_ids = [str(uuid.uuid4()) for _ in all_splits]"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 19,
|
||||
"id": "a268ef5f-91c2-4d8e-87f0-53db376e6a29",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"sub_docs = []\n",
|
||||
"for i, doc in enumerate(all_splits):\n",
|
||||
" _id = doc_ids[i]\n",
|
||||
" _sub_docs = child_text_splitter.split_documents([doc])\n",
|
||||
" for _doc in _sub_docs:\n",
|
||||
" _doc.metadata[id_key] = _id\n",
|
||||
" sub_docs.extend(_sub_docs)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "d84ea8f4-a5de-4d76-b44d-85e56583f489",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Lets write our documents into our new store. This will use our embedder on each document."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 20,
|
||||
"id": "1af831ce-0eae-44bc-aca7-4d691063640b",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stderr",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Batches: 100%|██████████| 8/8 [00:00<00:00, 9.05it/s]\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"retriever.vectorstore.add_documents(sub_docs)\n",
|
||||
"retriever.docstore.mset(list(zip(doc_ids, all_splits)))"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "580bc212-8ecd-4d28-8656-b96fcd0d7eb6",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Great! Our retriever is good to go. Lets load up an LLM, that will reason over the retrieved documents:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 21,
|
||||
"id": "008c992f",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stderr",
|
||||
"output_type": "stream",
|
||||
"text": []
|
||||
},
|
||||
{
|
||||
"data": {
|
||||
"application/vnd.jupyter.widget-view+json": {
|
||||
"model_id": "cbe70583ad964ae19582b72dab396784",
|
||||
"version_major": 2,
|
||||
"version_minor": 0
|
||||
},
|
||||
"text/plain": [
|
||||
"Loading checkpoint shards: 0%| | 0/2 [00:00<?, ?it/s]"
|
||||
]
|
||||
},
|
||||
"metadata": {},
|
||||
"output_type": "display_data"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"import torch\n",
|
||||
"from langchain.llms.huggingface_pipeline import HuggingFacePipeline\n",
|
||||
"from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline\n",
|
||||
"\n",
|
||||
"model_id = \"Intel/neural-chat-7b-v3-3\"\n",
|
||||
"tokenizer = AutoTokenizer.from_pretrained(model_id)\n",
|
||||
"model = AutoModelForCausalLM.from_pretrained(\n",
|
||||
" model_id, device_map=\"auto\", torch_dtype=torch.bfloat16\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"pipe = pipeline(\"text-generation\", model=model, tokenizer=tokenizer, max_new_tokens=100)\n",
|
||||
"\n",
|
||||
"hf = HuggingFacePipeline(pipeline=pipe)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "6dd21fb2-0442-477d-aae2-9e7ee1d1d778",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Next, we will load up a prompt for answering questions using retrieved documents:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 22,
|
||||
"id": "5e582509-caaf-4920-932c-4ce16162c789",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain import hub\n",
|
||||
"\n",
|
||||
"prompt = hub.pull(\"rlm/rag-prompt\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "5cdfcba5-7ec7-4d0a-820e-4e200643a882",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"We can now build our pipeline:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 23,
|
||||
"id": "b74d8dfb-72bb-46da-9df9-0dc47a3ac791",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain.schema.runnable import RunnablePassthrough\n",
|
||||
"\n",
|
||||
"rag_chain = {\"context\": retriever, \"question\": RunnablePassthrough()} | prompt | hf"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "3bc53602-86d6-420f-91b1-fc2effa7e986",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Excellent! lets ask it a question.\n",
|
||||
"We will also use a verbose and debug, to check which documents were used by the model to produce the answer."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 31,
|
||||
"id": "f0a92c07-53da-4e1f-b880-ee83a36ee17d",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stderr",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Setting `pad_token_id` to `eos_token_id`:2 for open-end generation.\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"\u001b[32;1m\u001b[1;3m[chain/start]\u001b[0m \u001b[1m[1:chain:RunnableSequence] Entering Chain run with input:\n",
|
||||
"\u001b[0m{\n",
|
||||
" \"input\": \"What is the first transduction model relying entirely on self-attention?\"\n",
|
||||
"}\n",
|
||||
"\u001b[32;1m\u001b[1;3m[chain/start]\u001b[0m \u001b[1m[1:chain:RunnableSequence > 2:chain:RunnableParallel<context,question>] Entering Chain run with input:\n",
|
||||
"\u001b[0m{\n",
|
||||
" \"input\": \"What is the first transduction model relying entirely on self-attention?\"\n",
|
||||
"}\n",
|
||||
"\u001b[32;1m\u001b[1;3m[chain/start]\u001b[0m \u001b[1m[1:chain:RunnableSequence > 2:chain:RunnableParallel<context,question> > 4:chain:RunnablePassthrough] Entering Chain run with input:\n",
|
||||
"\u001b[0m{\n",
|
||||
" \"input\": \"What is the first transduction model relying entirely on self-attention?\"\n",
|
||||
"}\n",
|
||||
"\u001b[36;1m\u001b[1;3m[chain/end]\u001b[0m \u001b[1m[1:chain:RunnableSequence > 2:chain:RunnableParallel<context,question> > 4:chain:RunnablePassthrough] [1ms] Exiting Chain run with output:\n",
|
||||
"\u001b[0m{\n",
|
||||
" \"output\": \"What is the first transduction model relying entirely on self-attention?\"\n",
|
||||
"}\n",
|
||||
"\u001b[36;1m\u001b[1;3m[chain/end]\u001b[0m \u001b[1m[1:chain:RunnableSequence > 2:chain:RunnableParallel<context,question>] [66ms] Exiting Chain run with output:\n",
|
||||
"\u001b[0m[outputs]\n",
|
||||
"\u001b[32;1m\u001b[1;3m[chain/start]\u001b[0m \u001b[1m[1:chain:RunnableSequence > 5:prompt:ChatPromptTemplate] Entering Prompt run with input:\n",
|
||||
"\u001b[0m[inputs]\n",
|
||||
"\u001b[36;1m\u001b[1;3m[chain/end]\u001b[0m \u001b[1m[1:chain:RunnableSequence > 5:prompt:ChatPromptTemplate] [1ms] Exiting Prompt run with output:\n",
|
||||
"\u001b[0m{\n",
|
||||
" \"lc\": 1,\n",
|
||||
" \"type\": \"constructor\",\n",
|
||||
" \"id\": [\n",
|
||||
" \"langchain\",\n",
|
||||
" \"prompts\",\n",
|
||||
" \"chat\",\n",
|
||||
" \"ChatPromptValue\"\n",
|
||||
" ],\n",
|
||||
" \"kwargs\": {\n",
|
||||
" \"messages\": [\n",
|
||||
" {\n",
|
||||
" \"lc\": 1,\n",
|
||||
" \"type\": \"constructor\",\n",
|
||||
" \"id\": [\n",
|
||||
" \"langchain\",\n",
|
||||
" \"schema\",\n",
|
||||
" \"messages\",\n",
|
||||
" \"HumanMessage\"\n",
|
||||
" ],\n",
|
||||
" \"kwargs\": {\n",
|
||||
" \"content\": \"You are an assistant for question-answering tasks. Use the following pieces of retrieved context to answer the question. If you don't know the answer, just say that you don't know. Use three sentences maximum and keep the answer concise.\\nQuestion: What is the first transduction model relying entirely on self-attention? \\nContext: [Document(page_content='To the best of our knowledge, however, the Transformer is the first transduction model relying entirely on self-attention to compute representations of its input and output without using sequence-aligned RNNs or convolution.\\\\nIn the following sections, we will describe the Transformer, motivate self-attention and discuss its advantages over models such as (neural_gpu, ; NalBytenet2017, ) and (JonasFaceNet2017, ).\\\\n\\\\n\\\\n\\\\n\\\\n3 Model Architecture\\\\n\\\\nFigure 1: The Transformer - model architecture.', metadata={'source': 'https://ar5iv.labs.arxiv.org/html/1706.03762', 'title': '[1706.03762] Attention Is All You Need', 'language': 'en'}), Document(page_content='In this work, we presented the Transformer, the first sequence transduction model based entirely on attention, replacing the recurrent layers most commonly used in encoder-decoder architectures with multi-headed self-attention.\\\\n\\\\n\\\\nFor translation tasks, the Transformer can be trained significantly faster than architectures based on recurrent or convolutional layers. On both WMT 2014 English-to-German and WMT 2014 English-to-French translation tasks, we achieve a new state of the art. In the former task our best model outperforms even all previously reported ensembles. \\\\n\\\\n\\\\nWe are excited about the future of attention-based models and plan to apply them to other tasks. We plan to extend the Transformer to problems involving input and output modalities other than text and to investigate local, restricted attention mechanisms to efficiently handle large inputs and outputs such as images, audio and video.\\\\nMaking generation less sequential is another research goals of ours.', metadata={'source': 'https://ar5iv.labs.arxiv.org/html/1706.03762', 'title': '[1706.03762] Attention Is All You Need', 'language': 'en'}), Document(page_content='Attention mechanisms have become an integral part of compelling sequence modeling and transduction models in various tasks, allowing modeling of dependencies without regard to their distance in the input or output sequences (bahdanau2014neural, ; structuredAttentionNetworks, ). In all but a few cases (decomposableAttnModel, ), however, such attention mechanisms are used in conjunction with a recurrent network.\\\\n\\\\n\\\\nIn this work we propose the Transformer, a model architecture eschewing recurrence and instead relying entirely on an attention mechanism to draw global dependencies between input and output. The Transformer allows for significantly more parallelization and can reach a new state of the art in translation quality after being trained for as little as twelve hours on eight P100 GPUs.\\\\n\\\\n\\\\n\\\\n\\\\n\\\\n2 Background', metadata={'source': 'https://ar5iv.labs.arxiv.org/html/1706.03762', 'title': '[1706.03762] Attention Is All You Need', 'language': 'en'}), Document(page_content='The dominant sequence transduction models are based on complex recurrent or convolutional neural networks that include an encoder and a decoder. The best performing models also connect the encoder and decoder through an attention mechanism. We propose a new simple network architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two machine translation tasks show these models to be superior in quality while being more parallelizable and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task, improving over the existing best results, including ensembles, by over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training costs of the best models from the literature. We show that the', metadata={'source': 'https://ar5iv.labs.arxiv.org/html/1706.03762', 'title': '[1706.03762] Attention Is All You Need', 'language': 'en'})] \\nAnswer:\",\n",
|
||||
" \"additional_kwargs\": {}\n",
|
||||
" }\n",
|
||||
" }\n",
|
||||
" ]\n",
|
||||
" }\n",
|
||||
"}\n",
|
||||
"\u001b[32;1m\u001b[1;3m[llm/start]\u001b[0m \u001b[1m[1:chain:RunnableSequence > 6:llm:HuggingFacePipeline] Entering LLM run with input:\n",
|
||||
"\u001b[0m{\n",
|
||||
" \"prompts\": [\n",
|
||||
" \"Human: You are an assistant for question-answering tasks. Use the following pieces of retrieved context to answer the question. If you don't know the answer, just say that you don't know. Use three sentences maximum and keep the answer concise.\\nQuestion: What is the first transduction model relying entirely on self-attention? \\nContext: [Document(page_content='To the best of our knowledge, however, the Transformer is the first transduction model relying entirely on self-attention to compute representations of its input and output without using sequence-aligned RNNs or convolution.\\\\nIn the following sections, we will describe the Transformer, motivate self-attention and discuss its advantages over models such as (neural_gpu, ; NalBytenet2017, ) and (JonasFaceNet2017, ).\\\\n\\\\n\\\\n\\\\n\\\\n3 Model Architecture\\\\n\\\\nFigure 1: The Transformer - model architecture.', metadata={'source': 'https://ar5iv.labs.arxiv.org/html/1706.03762', 'title': '[1706.03762] Attention Is All You Need', 'language': 'en'}), Document(page_content='In this work, we presented the Transformer, the first sequence transduction model based entirely on attention, replacing the recurrent layers most commonly used in encoder-decoder architectures with multi-headed self-attention.\\\\n\\\\n\\\\nFor translation tasks, the Transformer can be trained significantly faster than architectures based on recurrent or convolutional layers. On both WMT 2014 English-to-German and WMT 2014 English-to-French translation tasks, we achieve a new state of the art. In the former task our best model outperforms even all previously reported ensembles. \\\\n\\\\n\\\\nWe are excited about the future of attention-based models and plan to apply them to other tasks. We plan to extend the Transformer to problems involving input and output modalities other than text and to investigate local, restricted attention mechanisms to efficiently handle large inputs and outputs such as images, audio and video.\\\\nMaking generation less sequential is another research goals of ours.', metadata={'source': 'https://ar5iv.labs.arxiv.org/html/1706.03762', 'title': '[1706.03762] Attention Is All You Need', 'language': 'en'}), Document(page_content='Attention mechanisms have become an integral part of compelling sequence modeling and transduction models in various tasks, allowing modeling of dependencies without regard to their distance in the input or output sequences (bahdanau2014neural, ; structuredAttentionNetworks, ). In all but a few cases (decomposableAttnModel, ), however, such attention mechanisms are used in conjunction with a recurrent network.\\\\n\\\\n\\\\nIn this work we propose the Transformer, a model architecture eschewing recurrence and instead relying entirely on an attention mechanism to draw global dependencies between input and output. The Transformer allows for significantly more parallelization and can reach a new state of the art in translation quality after being trained for as little as twelve hours on eight P100 GPUs.\\\\n\\\\n\\\\n\\\\n\\\\n\\\\n2 Background', metadata={'source': 'https://ar5iv.labs.arxiv.org/html/1706.03762', 'title': '[1706.03762] Attention Is All You Need', 'language': 'en'}), Document(page_content='The dominant sequence transduction models are based on complex recurrent or convolutional neural networks that include an encoder and a decoder. The best performing models also connect the encoder and decoder through an attention mechanism. We propose a new simple network architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two machine translation tasks show these models to be superior in quality while being more parallelizable and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task, improving over the existing best results, including ensembles, by over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training costs of the best models from the literature. We show that the', metadata={'source': 'https://ar5iv.labs.arxiv.org/html/1706.03762', 'title': '[1706.03762] Attention Is All You Need', 'language': 'en'})] \\nAnswer:\"\n",
|
||||
" ]\n",
|
||||
"}\n",
|
||||
"\u001b[36;1m\u001b[1;3m[llm/end]\u001b[0m \u001b[1m[1:chain:RunnableSequence > 6:llm:HuggingFacePipeline] [4.34s] Exiting LLM run with output:\n",
|
||||
"\u001b[0m{\n",
|
||||
" \"generations\": [\n",
|
||||
" [\n",
|
||||
" {\n",
|
||||
" \"text\": \" The first transduction model relying entirely on self-attention is the Transformer.\",\n",
|
||||
" \"generation_info\": null,\n",
|
||||
" \"type\": \"Generation\"\n",
|
||||
" }\n",
|
||||
" ]\n",
|
||||
" ],\n",
|
||||
" \"llm_output\": null,\n",
|
||||
" \"run\": null\n",
|
||||
"}\n",
|
||||
"\u001b[36;1m\u001b[1;3m[chain/end]\u001b[0m \u001b[1m[1:chain:RunnableSequence] [4.41s] Exiting Chain run with output:\n",
|
||||
"\u001b[0m{\n",
|
||||
" \"output\": \" The first transduction model relying entirely on self-attention is the Transformer.\"\n",
|
||||
"}\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"langchain.verbose = True\n",
|
||||
"langchain.debug = True\n",
|
||||
"\n",
|
||||
"llm_res = rag_chain.invoke(\n",
|
||||
" \"What is the first transduction model relying entirely on self-attention?\",\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 32,
|
||||
"id": "023404a1-401a-46e1-8ab5-cafbc8593b04",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"' The first transduction model relying entirely on self-attention is the Transformer.'"
|
||||
]
|
||||
},
|
||||
"execution_count": 32,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"llm_res"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "0eaefd01-254a-445d-a95f-37889c126e0e",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Based on the retrieved documents, the answer is indeed correct :)"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3 (ipykernel)",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.9.18"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 5
|
||||
}
|
||||
@@ -274,7 +274,7 @@
|
||||
"db = SQLDatabase.from_uri(\n",
|
||||
" CONNECTION_STRING\n",
|
||||
") # We reconnect to db so the new columns are loaded as well.\n",
|
||||
"llm = ChatOpenAI(model=\"gpt-4\", temperature=0)\n",
|
||||
"llm = ChatOpenAI(model_name=\"gpt-4\", temperature=0)\n",
|
||||
"\n",
|
||||
"sql_query_chain = (\n",
|
||||
" RunnablePassthrough.assign(schema=get_schema)\n",
|
||||
|
||||
@@ -245,7 +245,7 @@
|
||||
"\n",
|
||||
"\n",
|
||||
"def _parse(text):\n",
|
||||
" return text.strip('\"').strip(\"**\")"
|
||||
" return text.strip(\"**\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
||||
@@ -1,32 +1,28 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"attachments": {},
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# SalesGPT - Context-Aware AI Sales Assistant With Knowledge Base and Ability Generate Stripe Payment Links\n",
|
||||
"# SalesGPT - Your Context-Aware AI Sales Assistant With Knowledge Base\n",
|
||||
"\n",
|
||||
"This notebook demonstrates an implementation of a **Context-Aware** AI Sales agent with a Product Knowledge Base which can actually close sales. \n",
|
||||
"This notebook demonstrates an implementation of a **Context-Aware** AI Sales agent with a Product Knowledge Base. \n",
|
||||
"\n",
|
||||
"This notebook was originally published at [filipmichalsky/SalesGPT](https://github.com/filip-michalsky/SalesGPT) by [@FilipMichalsky](https://twitter.com/FilipMichalsky).\n",
|
||||
"\n",
|
||||
"SalesGPT is context-aware, which means it can understand what section of a sales conversation it is in and act accordingly.\n",
|
||||
" \n",
|
||||
"As such, this agent can have a natural sales conversation with a prospect and behaves based on the conversation stage. Hence, this notebook demonstrates how we can use AI to automate sales development representatives activites, such as outbound sales calls. \n",
|
||||
"As such, this agent can have a natural sales conversation with a prospect and behaves based on the conversation stage. Hence, this notebook demonstrates how we can use AI to automate sales development representatives activities, such as outbound sales calls. \n",
|
||||
"\n",
|
||||
"Additionally, the AI Sales agent has access to tools, which allow it to interact with other systems.\n",
|
||||
"\n",
|
||||
"Here, we show how the AI Sales Agent can use a **Product Knowledge Base** to speak about a particular's company offerings,\n",
|
||||
"hence increasing relevance and reducing hallucinations.\n",
|
||||
"\n",
|
||||
"Furthermore, we show how our AI Sales Agent can **generate sales** by integration with the AI Agent Highway called [Mindware](https://www.mindware.co/). In practice, this allows the agent to autonomously generate a payment link for your customers **to pay for your products via Stripe**.\n",
|
||||
"\n",
|
||||
"We leverage the [`langchain`](https://github.com/hwchase17/langchain) library in this implementation, specifically [Custom Agent Configuration](https://langchain-langchain.vercel.app/docs/modules/agents/how_to/custom_agent_with_tool_retrieval) and are inspired by [BabyAGI](https://github.com/yoheinakajima/babyagi) architecture ."
|
||||
"We leverage the [`langchain`](https://github.com/langchain-ai/langchain) library in this implementation, specifically [Custom Agent Configuration](https://langchain-langchain.vercel.app/docs/modules/agents/how_to/custom_agent_with_tool_retrieval) and are inspired by [BabyAGI](https://github.com/yoheinakajima/babyagi) architecture ."
|
||||
]
|
||||
},
|
||||
{
|
||||
"attachments": {},
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
@@ -42,10 +38,9 @@
|
||||
"import os\n",
|
||||
"import re\n",
|
||||
"\n",
|
||||
"# make sure you have .env file saved locally with your API keys\n",
|
||||
"from dotenv import load_dotenv\n",
|
||||
"\n",
|
||||
"load_dotenv()\n",
|
||||
"# import your OpenAI key\n",
|
||||
"OPENAI_API_KEY = \"sk-xx\"\n",
|
||||
"os.environ[\"OPENAI_API_KEY\"] = OPENAI_API_KEY\n",
|
||||
"\n",
|
||||
"from typing import Any, Callable, Dict, List, Union\n",
|
||||
"\n",
|
||||
@@ -54,18 +49,27 @@
|
||||
"from langchain.agents.conversational.prompt import FORMAT_INSTRUCTIONS\n",
|
||||
"from langchain.chains import LLMChain, RetrievalQA\n",
|
||||
"from langchain.chains.base import Chain\n",
|
||||
"from langchain.llms import BaseLLM\n",
|
||||
"from langchain.prompts import PromptTemplate\n",
|
||||
"from langchain.prompts.base import StringPromptTemplate\n",
|
||||
"from langchain.schema import AgentAction, AgentFinish\n",
|
||||
"from langchain.text_splitter import CharacterTextSplitter\n",
|
||||
"from langchain.vectorstores import Chroma\n",
|
||||
"from langchain_openai import ChatOpenAI, OpenAIEmbeddings\n",
|
||||
"from langchain_community.llms import BaseLLM\n",
|
||||
"from langchain_community.vectorstores import Chroma\n",
|
||||
"from langchain_openai import ChatOpenAI, OpenAI, OpenAIEmbeddings\n",
|
||||
"from pydantic import BaseModel, Field"
|
||||
]
|
||||
},
|
||||
{
|
||||
"attachments": {},
|
||||
"cell_type": "code",
|
||||
"execution_count": 1,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# install additional dependencies\n",
|
||||
"# ! pip install chromadb openai tiktoken"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
@@ -73,21 +77,19 @@
|
||||
]
|
||||
},
|
||||
{
|
||||
"attachments": {},
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"1. Seed the SalesGPT agent\n",
|
||||
"2. Run Sales Agent to decide what to do:\n",
|
||||
"\n",
|
||||
" a) Use a tool, such as look up Product Information in a Knowledge Base or Generate a Payment Link\n",
|
||||
" a) Use a tool, such as look up Product Information in a Knowledge Base\n",
|
||||
" \n",
|
||||
" b) Output a response to a user \n",
|
||||
"3. Run Sales Stage Recognition Agent to recognize which stage is the sales agent at and adjust their behaviour accordingly."
|
||||
]
|
||||
},
|
||||
{
|
||||
"attachments": {},
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
@@ -96,17 +98,15 @@
|
||||
]
|
||||
},
|
||||
{
|
||||
"attachments": {},
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Architecture diagram\n",
|
||||
"\n",
|
||||
"<img src=\"https://demo-bucket-45.s3.amazonaws.com/new_flow2.png\" width=\"800\" height=\"440\">\n"
|
||||
"<img src=\"https://singularity-assets-public.s3.amazonaws.com/new_flow.png\" width=\"800\" height=\"440\"/>\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"attachments": {},
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
@@ -131,7 +131,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 2,
|
||||
"execution_count": 3,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
@@ -149,7 +149,7 @@
|
||||
" {conversation_history}\n",
|
||||
" ===\n",
|
||||
"\n",
|
||||
" Now determine what should be the next immediate conversation stage for the agent in the sales conversation by selecting ony from the following options:\n",
|
||||
" Now determine what should be the next immediate conversation stage for the agent in the sales conversation by selecting only from the following options:\n",
|
||||
" 1. Introduction: Start the conversation by introducing yourself and your company. Be polite and respectful while keeping the tone of the conversation professional.\n",
|
||||
" 2. Qualification: Qualify the prospect by confirming if they are the right person to talk to regarding your product/service. Ensure that they have the authority to make purchasing decisions.\n",
|
||||
" 3. Value proposition: Briefly explain how your product/service can benefit the prospect. Focus on the unique selling points and value proposition of your product/service that sets it apart from competitors.\n",
|
||||
@@ -171,7 +171,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 3,
|
||||
"execution_count": 4,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
@@ -223,7 +223,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 4,
|
||||
"execution_count": 5,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
@@ -240,17 +240,13 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 5,
|
||||
"execution_count": 6,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# test the intermediate chains\n",
|
||||
"verbose = True\n",
|
||||
"llm = ChatOpenAI(\n",
|
||||
" model=\"gpt-4-turbo-preview\",\n",
|
||||
" temperature=0.9,\n",
|
||||
" openai_api_key=os.getenv(\"OPENAI_API_KEY\"),\n",
|
||||
")\n",
|
||||
"llm = ChatOpenAI(temperature=0.9)\n",
|
||||
"\n",
|
||||
"stage_analyzer_chain = StageAnalyzerChain.from_llm(llm, verbose=verbose)\n",
|
||||
"\n",
|
||||
@@ -261,7 +257,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 6,
|
||||
"execution_count": 7,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
@@ -280,7 +276,7 @@
|
||||
" \n",
|
||||
" ===\n",
|
||||
"\n",
|
||||
" Now determine what should be the next immediate conversation stage for the agent in the sales conversation by selecting ony from the following options:\n",
|
||||
" Now determine what should be the next immediate conversation stage for the agent in the sales conversation by selecting only from the following options:\n",
|
||||
" 1. Introduction: Start the conversation by introducing yourself and your company. Be polite and respectful while keeping the tone of the conversation professional.\n",
|
||||
" 2. Qualification: Qualify the prospect by confirming if they are the right person to talk to regarding your product/service. Ensure that they have the authority to make purchasing decisions.\n",
|
||||
" 3. Value proposition: Briefly explain how your product/service can benefit the prospect. Focus on the unique selling points and value proposition of your product/service that sets it apart from competitors.\n",
|
||||
@@ -300,21 +296,21 @@
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"{'conversation_history': '', 'text': '1'}"
|
||||
"'1'"
|
||||
]
|
||||
},
|
||||
"execution_count": 6,
|
||||
"execution_count": 7,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"stage_analyzer_chain.invoke({\"conversation_history\": \"\"})"
|
||||
"stage_analyzer_chain.run(conversation_history=\"\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 7,
|
||||
"execution_count": 8,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
@@ -356,44 +352,32 @@
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"{'salesperson_name': 'Ted Lasso',\n",
|
||||
" 'salesperson_role': 'Business Development Representative',\n",
|
||||
" 'company_name': 'Sleep Haven',\n",
|
||||
" 'company_business': 'Sleep Haven is a premium mattress company that provides customers with the most comfortable and supportive sleeping experience possible. We offer a range of high-quality mattresses, pillows, and bedding accessories that are designed to meet the unique needs of our customers.',\n",
|
||||
" 'company_values': \"Our mission at Sleep Haven is to help people achieve a better night's sleep by providing them with the best possible sleep solutions. We believe that quality sleep is essential to overall health and well-being, and we are committed to helping our customers achieve optimal sleep by offering exceptional products and customer service.\",\n",
|
||||
" 'conversation_purpose': 'find out whether they are looking to achieve better sleep via buying a premier mattress.',\n",
|
||||
" 'conversation_history': 'Hello, this is Ted Lasso from Sleep Haven. How are you doing today? <END_OF_TURN>\\nUser: I am well, howe are you?<END_OF_TURN>',\n",
|
||||
" 'conversation_type': 'call',\n",
|
||||
" 'conversation_stage': 'Introduction: Start the conversation by introducing yourself and your company. Be polite and respectful while keeping the tone of the conversation professional. Your greeting should be welcoming. Always clarify in your greeting the reason why you are contacting the prospect.',\n",
|
||||
" 'text': \"I'm doing well, thank you for asking. The reason I'm calling is to discuss how Sleep Haven can help enhance your sleep quality with our premium mattresses. Are you currently looking for ways to achieve a better night's sleep? <END_OF_TURN>\"}"
|
||||
"\"I'm doing great, thank you for asking! As a Business Development Representative at Sleep Haven, I wanted to reach out to see if you are looking to achieve a better night's sleep. We provide premium mattresses that offer the most comfortable and supportive sleeping experience possible. Are you interested in exploring our sleep solutions? <END_OF_TURN>\""
|
||||
]
|
||||
},
|
||||
"execution_count": 7,
|
||||
"execution_count": 8,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"sales_conversation_utterance_chain.invoke(\n",
|
||||
" {\n",
|
||||
" \"salesperson_name\": \"Ted Lasso\",\n",
|
||||
" \"salesperson_role\": \"Business Development Representative\",\n",
|
||||
" \"company_name\": \"Sleep Haven\",\n",
|
||||
" \"company_business\": \"Sleep Haven is a premium mattress company that provides customers with the most comfortable and supportive sleeping experience possible. We offer a range of high-quality mattresses, pillows, and bedding accessories that are designed to meet the unique needs of our customers.\",\n",
|
||||
" \"company_values\": \"Our mission at Sleep Haven is to help people achieve a better night's sleep by providing them with the best possible sleep solutions. We believe that quality sleep is essential to overall health and well-being, and we are committed to helping our customers achieve optimal sleep by offering exceptional products and customer service.\",\n",
|
||||
" \"conversation_purpose\": \"find out whether they are looking to achieve better sleep via buying a premier mattress.\",\n",
|
||||
" \"conversation_history\": \"Hello, this is Ted Lasso from Sleep Haven. How are you doing today? <END_OF_TURN>\\nUser: I am well, howe are you?<END_OF_TURN>\",\n",
|
||||
" \"conversation_type\": \"call\",\n",
|
||||
" \"conversation_stage\": conversation_stages.get(\n",
|
||||
" \"1\",\n",
|
||||
" \"Introduction: Start the conversation by introducing yourself and your company. Be polite and respectful while keeping the tone of the conversation professional.\",\n",
|
||||
" ),\n",
|
||||
" }\n",
|
||||
"sales_conversation_utterance_chain.run(\n",
|
||||
" salesperson_name=\"Ted Lasso\",\n",
|
||||
" salesperson_role=\"Business Development Representative\",\n",
|
||||
" company_name=\"Sleep Haven\",\n",
|
||||
" company_business=\"Sleep Haven is a premium mattress company that provides customers with the most comfortable and supportive sleeping experience possible. We offer a range of high-quality mattresses, pillows, and bedding accessories that are designed to meet the unique needs of our customers.\",\n",
|
||||
" company_values=\"Our mission at Sleep Haven is to help people achieve a better night's sleep by providing them with the best possible sleep solutions. We believe that quality sleep is essential to overall health and well-being, and we are committed to helping our customers achieve optimal sleep by offering exceptional products and customer service.\",\n",
|
||||
" conversation_purpose=\"find out whether they are looking to achieve better sleep via buying a premier mattress.\",\n",
|
||||
" conversation_history=\"Hello, this is Ted Lasso from Sleep Haven. How are you doing today? <END_OF_TURN>\\nUser: I am well, howe are you?<END_OF_TURN>\",\n",
|
||||
" conversation_type=\"call\",\n",
|
||||
" conversation_stage=conversation_stages.get(\n",
|
||||
" \"1\",\n",
|
||||
" \"Introduction: Start the conversation by introducing yourself and your company. Be polite and respectful while keeping the tone of the conversation professional.\",\n",
|
||||
" ),\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"attachments": {},
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
@@ -401,7 +385,6 @@
|
||||
]
|
||||
},
|
||||
{
|
||||
"attachments": {},
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
@@ -412,7 +395,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 8,
|
||||
"execution_count": 9,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
@@ -446,7 +429,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 9,
|
||||
"execution_count": 10,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
@@ -462,7 +445,7 @@
|
||||
" text_splitter = CharacterTextSplitter(chunk_size=10, chunk_overlap=0)\n",
|
||||
" texts = text_splitter.split_text(product_catalog)\n",
|
||||
"\n",
|
||||
" llm = ChatOpenAI(temperature=0)\n",
|
||||
" llm = OpenAI(temperature=0)\n",
|
||||
" embeddings = OpenAIEmbeddings()\n",
|
||||
" docsearch = Chroma.from_texts(\n",
|
||||
" texts, embeddings, collection_name=\"product-knowledge-base\"\n",
|
||||
@@ -471,12 +454,29 @@
|
||||
" knowledge_base = RetrievalQA.from_chain_type(\n",
|
||||
" llm=llm, chain_type=\"stuff\", retriever=docsearch.as_retriever()\n",
|
||||
" )\n",
|
||||
" return knowledge_base"
|
||||
" return knowledge_base\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"def get_tools(product_catalog):\n",
|
||||
" # query to get_tools can be used to be embedded and relevant tools found\n",
|
||||
" # see here: https://langchain-langchain.vercel.app/docs/use_cases/agents/custom_agent_with_plugin_retrieval#tool-retriever\n",
|
||||
"\n",
|
||||
" # we only use one tool for now, but this is highly extensible!\n",
|
||||
" knowledge_base = setup_knowledge_base(product_catalog)\n",
|
||||
" tools = [\n",
|
||||
" Tool(\n",
|
||||
" name=\"ProductSearch\",\n",
|
||||
" func=knowledge_base.run,\n",
|
||||
" description=\"useful for when you need to answer questions about product information\",\n",
|
||||
" )\n",
|
||||
" ]\n",
|
||||
"\n",
|
||||
" return tools"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 10,
|
||||
"execution_count": 11,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
@@ -485,18 +485,16 @@
|
||||
"text": [
|
||||
"Created a chunk of size 940, which is longer than the specified 10\n",
|
||||
"Created a chunk of size 844, which is longer than the specified 10\n",
|
||||
"Created a chunk of size 837, which is longer than the specified 10\n",
|
||||
"/Users/filipmichalsky/Odyssey/sales_bot/SalesGPT/env/lib/python3.10/site-packages/langchain_core/_api/deprecation.py:117: LangChainDeprecationWarning: The function `run` was deprecated in LangChain 0.1.0 and will be removed in 0.2.0. Use invoke instead.\n",
|
||||
" warn_deprecated(\n"
|
||||
"Created a chunk of size 837, which is longer than the specified 10\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"'The Sleep Haven products available are:\\n\\n1. Luxury Cloud-Comfort Memory Foam Mattress\\n2. Classic Harmony Spring Mattress\\n3. EcoGreen Hybrid Latex Mattress\\n4. Plush Serenity Bamboo Mattress\\n\\nEach product has its unique features and price point.'"
|
||||
"' We have four products available: the Classic Harmony Spring Mattress, the Plush Serenity Bamboo Mattress, the Luxury Cloud-Comfort Memory Foam Mattress, and the EcoGreen Hybrid Latex Mattress. Each product is available in different sizes, with the Classic Harmony Spring Mattress available in Queen and King sizes, the Plush Serenity Bamboo Mattress available in King size, the Luxury Cloud-Comfort Memory Foam Mattress available in Twin, Queen, and King sizes, and the EcoGreen Hybrid Latex Mattress available in Twin and Full sizes.'"
|
||||
]
|
||||
},
|
||||
"execution_count": 10,
|
||||
"execution_count": 11,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
@@ -510,199 +508,12 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Payment gateway"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"In order to set up your AI agent to use a payment gateway to generate payment links for your users you need two things:\n",
|
||||
"\n",
|
||||
"1. Sign up for a Stripe account and obtain a STRIPE API KEY\n",
|
||||
"2. Create products you would like to sell in the Stripe UI. Then follow out example of `example_product_price_id_mapping.json`\n",
|
||||
"to feed the product name to price_id mapping which allows you to generate the payment links."
|
||||
"### Set up the SalesGPT Controller with the Sales Agent and Stage Analyzer and a Knowledge Base"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 14,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import json\n",
|
||||
"\n",
|
||||
"from litellm import completion\n",
|
||||
"\n",
|
||||
"# set GPT model env variable\n",
|
||||
"os.environ[\"GPT_MODEL\"] = \"gpt-4-turbo-preview\"\n",
|
||||
"\n",
|
||||
"product_price_id_mapping = {\n",
|
||||
" \"ai-consulting-services\": \"price_1Ow8ofB795AYY8p1goWGZi6m\",\n",
|
||||
" \"Luxury Cloud-Comfort Memory Foam Mattress\": \"price_1Owv99B795AYY8p1mjtbKyxP\",\n",
|
||||
" \"Classic Harmony Spring Mattress\": \"price_1Owv9qB795AYY8p1tPcxCM6T\",\n",
|
||||
" \"EcoGreen Hybrid Latex Mattress\": \"price_1OwvLDB795AYY8p1YBAMBcbi\",\n",
|
||||
" \"Plush Serenity Bamboo Mattress\": \"price_1OwvMQB795AYY8p1hJN2uS3S\",\n",
|
||||
"}\n",
|
||||
"with open(\"example_product_price_id_mapping.json\", \"w\") as f:\n",
|
||||
" json.dump(product_price_id_mapping, f)\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"def get_product_id_from_query(query, product_price_id_mapping_path):\n",
|
||||
" # Load product_price_id_mapping from a JSON file\n",
|
||||
" with open(product_price_id_mapping_path, \"r\") as f:\n",
|
||||
" product_price_id_mapping = json.load(f)\n",
|
||||
"\n",
|
||||
" # Serialize the product_price_id_mapping to a JSON string for inclusion in the prompt\n",
|
||||
" product_price_id_mapping_json_str = json.dumps(product_price_id_mapping)\n",
|
||||
"\n",
|
||||
" # Dynamically create the enum list from product_price_id_mapping keys\n",
|
||||
" enum_list = list(product_price_id_mapping.values()) + [\n",
|
||||
" \"No relevant product id found\"\n",
|
||||
" ]\n",
|
||||
" enum_list_str = json.dumps(enum_list)\n",
|
||||
"\n",
|
||||
" prompt = f\"\"\"\n",
|
||||
" You are an expert data scientist and you are working on a project to recommend products to customers based on their needs.\n",
|
||||
" Given the following query:\n",
|
||||
" {query}\n",
|
||||
" and the following product price id mapping:\n",
|
||||
" {product_price_id_mapping_json_str}\n",
|
||||
" return the price id that is most relevant to the query.\n",
|
||||
" ONLY return the price id, no other text. If no relevant price id is found, return 'No relevant price id found'.\n",
|
||||
" Your output will follow this schema:\n",
|
||||
" {{\n",
|
||||
" \"$schema\": \"http://json-schema.org/draft-07/schema#\",\n",
|
||||
" \"title\": \"Price ID Response\",\n",
|
||||
" \"type\": \"object\",\n",
|
||||
" \"properties\": {{\n",
|
||||
" \"price_id\": {{\n",
|
||||
" \"type\": \"string\",\n",
|
||||
" \"enum\": {enum_list_str}\n",
|
||||
" }}\n",
|
||||
" }},\n",
|
||||
" \"required\": [\"price_id\"]\n",
|
||||
" }}\n",
|
||||
" Return a valid directly parsable json, dont return in it within a code snippet or add any kind of explanation!!\n",
|
||||
" \"\"\"\n",
|
||||
" prompt += \"{\"\n",
|
||||
" response = completion(\n",
|
||||
" model=os.getenv(\"GPT_MODEL\", \"gpt-3.5-turbo-1106\"),\n",
|
||||
" messages=[{\"content\": prompt, \"role\": \"user\"}],\n",
|
||||
" max_tokens=1000,\n",
|
||||
" temperature=0,\n",
|
||||
" )\n",
|
||||
"\n",
|
||||
" product_id = response.choices[0].message.content.strip()\n",
|
||||
" return product_id"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 15,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import json\n",
|
||||
"\n",
|
||||
"import requests\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"def generate_stripe_payment_link(query: str) -> str:\n",
|
||||
" \"\"\"Generate a stripe payment link for a customer based on a single query string.\"\"\"\n",
|
||||
"\n",
|
||||
" # example testing payment gateway url\n",
|
||||
" PAYMENT_GATEWAY_URL = os.getenv(\n",
|
||||
" \"PAYMENT_GATEWAY_URL\", \"https://agent-payments-gateway.vercel.app/payment\"\n",
|
||||
" )\n",
|
||||
" PRODUCT_PRICE_MAPPING = \"example_product_price_id_mapping.json\"\n",
|
||||
"\n",
|
||||
" # use LLM to get the price_id from query\n",
|
||||
" price_id = get_product_id_from_query(query, PRODUCT_PRICE_MAPPING)\n",
|
||||
" price_id = json.loads(price_id)\n",
|
||||
" payload = json.dumps(\n",
|
||||
" {\"prompt\": query, **price_id, \"stripe_key\": os.getenv(\"STRIPE_API_KEY\")}\n",
|
||||
" )\n",
|
||||
" headers = {\n",
|
||||
" \"Content-Type\": \"application/json\",\n",
|
||||
" }\n",
|
||||
"\n",
|
||||
" response = requests.request(\n",
|
||||
" \"POST\", PAYMENT_GATEWAY_URL, headers=headers, data=payload\n",
|
||||
" )\n",
|
||||
" return response.text"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 16,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"'{\"response\":\"https://buy.stripe.com/test_6oEbLS8JB1F9bv229d\"}'"
|
||||
]
|
||||
},
|
||||
"execution_count": 16,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"generate_stripe_payment_link(\n",
|
||||
" query=\"Please generate a payment link for John Doe to buy two mattresses - the Classic Harmony Spring Mattress\"\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Setup agent tools"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 17,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"def get_tools(product_catalog):\n",
|
||||
" # query to get_tools can be used to be embedded and relevant tools found\n",
|
||||
" # see here: https://langchain-langchain.vercel.app/docs/use_cases/agents/custom_agent_with_plugin_retrieval#tool-retriever\n",
|
||||
"\n",
|
||||
" # we only use one tool for now, but this is highly extensible!\n",
|
||||
" knowledge_base = setup_knowledge_base(product_catalog)\n",
|
||||
" tools = [\n",
|
||||
" Tool(\n",
|
||||
" name=\"ProductSearch\",\n",
|
||||
" func=knowledge_base.run,\n",
|
||||
" description=\"useful for when you need to answer questions about product information or services offered, availability and their costs.\",\n",
|
||||
" ),\n",
|
||||
" Tool(\n",
|
||||
" name=\"GeneratePaymentLink\",\n",
|
||||
" func=generate_stripe_payment_link,\n",
|
||||
" description=\"useful to close a transaction with a customer. You need to include product name and quantity and customer name in the query input.\",\n",
|
||||
" ),\n",
|
||||
" ]\n",
|
||||
"\n",
|
||||
" return tools"
|
||||
]
|
||||
},
|
||||
{
|
||||
"attachments": {},
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Set up the SalesGPT Controller with the Sales Agent and Stage Analyzer\n",
|
||||
"\n",
|
||||
"#### The Agent has access to a Knowledge Base and can autonomously sell your products via Stripe"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 18,
|
||||
"execution_count": 12,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
@@ -752,11 +563,19 @@
|
||||
" print(\"TEXT\")\n",
|
||||
" print(text)\n",
|
||||
" print(\"-------\")\n",
|
||||
" if f\"{self.ai_prefix}:\" in text:\n",
|
||||
" return AgentFinish(\n",
|
||||
" {\"output\": text.split(f\"{self.ai_prefix}:\")[-1].strip()}, text\n",
|
||||
" )\n",
|
||||
" regex = r\"Action: (.*?)[\\n]*Action Input: (.*)\"\n",
|
||||
" match = re.search(regex, text)\n",
|
||||
" if not match:\n",
|
||||
" ## TODO - this is not entirely reliable, sometimes results in an error.\n",
|
||||
" return AgentFinish(\n",
|
||||
" {\"output\": text.split(f\"{self.ai_prefix}:\")[-1].strip()}, text\n",
|
||||
" {\n",
|
||||
" \"output\": \"I apologize, I was unable to find the answer to your question. Is there anything else I can help with?\"\n",
|
||||
" },\n",
|
||||
" text,\n",
|
||||
" )\n",
|
||||
" # raise OutputParserException(f\"Could not parse LLM output: `{text}`\")\n",
|
||||
" action = match.group(1)\n",
|
||||
@@ -770,7 +589,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 19,
|
||||
"execution_count": 13,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
@@ -828,18 +647,18 @@
|
||||
"Previous conversation history:\n",
|
||||
"{conversation_history}\n",
|
||||
"\n",
|
||||
"Thought:\n",
|
||||
"{salesperson_name}:\n",
|
||||
"{agent_scratchpad}\n",
|
||||
"\"\"\""
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 20,
|
||||
"execution_count": 14,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"class SalesGPT(Chain):\n",
|
||||
"class SalesGPT(Chain, BaseModel):\n",
|
||||
" \"\"\"Controller model for the Sales Agent.\"\"\"\n",
|
||||
"\n",
|
||||
" conversation_history: List[str] = []\n",
|
||||
@@ -985,9 +804,7 @@
|
||||
"\n",
|
||||
" # WARNING: this output parser is NOT reliable yet\n",
|
||||
" ## It makes assumptions about output from LLM which can break and throw an error\n",
|
||||
" output_parser = SalesConvoOutputParser(\n",
|
||||
" ai_prefix=kwargs[\"salesperson_name\"], verbose=verbose\n",
|
||||
" )\n",
|
||||
" output_parser = SalesConvoOutputParser(ai_prefix=kwargs[\"salesperson_name\"])\n",
|
||||
"\n",
|
||||
" sales_agent_with_tools = LLMSingleActionAgent(\n",
|
||||
" llm_chain=llm_chain,\n",
|
||||
@@ -1011,7 +828,6 @@
|
||||
]
|
||||
},
|
||||
{
|
||||
"attachments": {},
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
@@ -1019,7 +835,6 @@
|
||||
]
|
||||
},
|
||||
{
|
||||
"attachments": {},
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
@@ -1028,7 +843,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 21,
|
||||
"execution_count": 15,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
@@ -1065,7 +880,6 @@
|
||||
]
|
||||
},
|
||||
{
|
||||
"attachments": {},
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
@@ -1074,7 +888,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 22,
|
||||
"execution_count": 16,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
@@ -1083,9 +897,7 @@
|
||||
"text": [
|
||||
"Created a chunk of size 940, which is longer than the specified 10\n",
|
||||
"Created a chunk of size 844, which is longer than the specified 10\n",
|
||||
"Created a chunk of size 837, which is longer than the specified 10\n",
|
||||
"/Users/filipmichalsky/Odyssey/sales_bot/SalesGPT/env/lib/python3.10/site-packages/langchain_core/_api/deprecation.py:117: LangChainDeprecationWarning: The class `langchain.agents.agent.LLMSingleActionAgent` was deprecated in langchain 0.1.0 and will be removed in 0.2.0. Use Use new agent constructor methods like create_react_agent, create_json_agent, create_structured_chat_agent, etc. instead.\n",
|
||||
" warn_deprecated(\n"
|
||||
"Created a chunk of size 837, which is longer than the specified 10\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
@@ -1095,7 +907,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 21,
|
||||
"execution_count": 17,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
@@ -1105,7 +917,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 22,
|
||||
"execution_count": 18,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
@@ -1122,14 +934,14 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 23,
|
||||
"execution_count": 19,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Ted Lasso: Good day! This is Ted Lasso from Sleep Haven. How are you doing today?\n"
|
||||
"Ted Lasso: Hello, this is Ted Lasso from Sleep Haven. How are you doing today?\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
@@ -1139,18 +951,18 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 24,
|
||||
"execution_count": 20,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"sales_agent.human_step(\n",
|
||||
" \"I am well, how are you? I would like to learn more about your services.\"\n",
|
||||
" \"I am well, how are you? I would like to learn more about your mattresses.\"\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 25,
|
||||
"execution_count": 21,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
@@ -1167,14 +979,14 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 26,
|
||||
"execution_count": 22,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Ted Lasso: I'm doing great, thank you for asking! I'm glad to hear you're interested. Sleep Haven is a premium mattress company, and we're all about offering the best sleep solutions, including top-notch mattresses, pillows, and bedding accessories. Our mission is to help you achieve a better night's sleep. May I know if you're looking to enhance your sleep experience with a new mattress or bedding accessories? \n"
|
||||
"Ted Lasso: I'm glad to hear that you're doing well! As for our mattresses, at Sleep Haven, we provide customers with the most comfortable and supportive sleeping experience possible. Our high-quality mattresses are designed to meet the unique needs of our customers. Can I ask what specifically you'd like to learn more about? \n"
|
||||
]
|
||||
}
|
||||
],
|
||||
@@ -1184,18 +996,16 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 27,
|
||||
"execution_count": 23,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"sales_agent.human_step(\n",
|
||||
" \"Yes, I would like to improve my sleep. Can you tell me more about your products?\"\n",
|
||||
")"
|
||||
"sales_agent.human_step(\"Yes, what materials are you mattresses made from?\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 28,
|
||||
"execution_count": 24,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
@@ -1212,14 +1022,14 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 29,
|
||||
"execution_count": 25,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Ted Lasso: Absolutely, I'd be happy to share more about our products. At Sleep Haven, we offer a variety of high-quality mattresses designed to cater to different sleeping preferences and needs. Whether you're looking for memory foam's comfort, the support of hybrid mattresses, or the breathability of natural latex, we have options for everyone. Our pillows and bedding accessories are similarly curated to enhance your sleep quality. Every product is built with the aim of helping you achieve the restful night's sleep you deserve. What specific features are you looking for in a mattress? \n"
|
||||
"Ted Lasso: Our mattresses are made from a variety of materials, depending on the model. We have the EcoGreen Hybrid Latex Mattress, which is made from 100% natural latex harvested from eco-friendly plantations. The Plush Serenity Bamboo Mattress features a layer of plush, adaptive foam and a base of high-resilience support foam, with a bamboo-infused top layer. The Luxury Cloud-Comfort Memory Foam Mattress has an innovative, temperature-sensitive memory foam layer and a high-density foam base with cooling gel-infused particles. Finally, the Classic Harmony Spring Mattress has a robust inner spring construction and layers of plush padding, with a quilted top layer and a natural cotton cover. Is there anything specific you'd like to know about these materials?\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
@@ -1229,16 +1039,61 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 31,
|
||||
"execution_count": 26,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"sales_agent.human_step(\"What mattresses do you have and how much do they cost?\")"
|
||||
"sales_agent.human_step(\n",
|
||||
" \"Yes, I am looking for a queen sized mattress. Do you have any mattresses in queen size?\"\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 32,
|
||||
"execution_count": 27,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Conversation Stage: Needs analysis: Ask open-ended questions to uncover the prospect's needs and pain points. Listen carefully to their responses and take notes.\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"sales_agent.determine_conversation_stage()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 28,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Ted Lasso: Yes, we do have queen-sized mattresses available. We offer the Luxury Cloud-Comfort Memory Foam Mattress and the Classic Harmony Spring Mattress in queen size. Both mattresses provide exceptional comfort and support. Is there anything specific you would like to know about these options?\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"sales_agent.step()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 29,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"sales_agent.human_step(\"Yea, compare and contrast those two options, please.\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 30,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
@@ -1255,14 +1110,14 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 33,
|
||||
"execution_count": 31,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Ted Lasso: We offer two primary types of mattresses at Sleep Haven. The first is our Luxury Cloud-Comfort Memory Foam Mattress, which is priced at $999 and comes in Twin, Queen, and King sizes. The second is our Classic Harmony Spring Mattress, priced at $1,299, available in Queen and King sizes. Both are designed to provide exceptional comfort and support for a better night's sleep. Which type of mattress would you be interested in learning more about? \n"
|
||||
"Ted Lasso: The Luxury Cloud-Comfort Memory Foam Mattress is priced at $999 and is available in Twin, Queen, and King sizes. It features an innovative, temperature-sensitive memory foam layer and a high-density foam base. On the other hand, the Classic Harmony Spring Mattress is priced at $1,299 and is available in Queen and King sizes. It features a robust inner spring construction and layers of plush padding. Both mattresses provide exceptional comfort and support, but the Classic Harmony Spring Mattress may be a better option if you prefer the traditional feel of an inner spring mattress. Do you have any other questions about these options?\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
@@ -1272,66 +1127,14 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 34,
|
||||
"execution_count": 32,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"sales_agent.human_step(\n",
|
||||
" \"Okay.I would like to order two Memory Foam mattresses in Twin size please.\"\n",
|
||||
" \"Great, thanks, that's it. I will talk to my wife and call back if she is onboard. Have a good day!\"\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 35,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Conversation Stage: Close: Ask for the sale by proposing a next step. This could be a demo, a trial or a meeting with decision-makers. Ensure to summarize what has been discussed and reiterate the benefits.\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"sales_agent.determine_conversation_stage()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 36,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Ted Lasso: Fantastic choice! You're on your way to a better night's sleep with our Luxury Cloud-Comfort Memory Foam Mattresses. I've generated a payment link for two Twin size mattresses for you. Here is the link to complete your purchase: https://buy.stripe.com/test_6oEg28e3V97BdDabJn. Is there anything else I can assist you with today? \n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"sales_agent.step()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 37,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"sales_agent.human_step(\n",
|
||||
" \"Great, thanks! I will discuss with my wife and will buy it if she is onboard. Have a good day!\"\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
@@ -1350,9 +1153,9 @@
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.10.9"
|
||||
"version": "3.11.3"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 4
|
||||
"nbformat_minor": 2
|
||||
}
|
||||
|
||||
@@ -1,423 +0,0 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "a38e5d2d-7587-4192-90f2-b58e6c62f08c",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Self Discover\n",
|
||||
"\n",
|
||||
"An implementation of the [Self-Discover paper](https://arxiv.org/pdf/2402.03620.pdf).\n",
|
||||
"\n",
|
||||
"Based on [this implementation from @catid](https://github.com/catid/self-discover/tree/main?tab=readme-ov-file)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 1,
|
||||
"id": "a18d8f24-5d9a-45c5-9739-6f3c4ed6c9c9",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain_openai import ChatOpenAI"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 2,
|
||||
"id": "9f554045-6e79-42d3-be4b-835bbbd0b78c",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"model = ChatOpenAI(temperature=0, model=\"gpt-4-turbo-preview\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 3,
|
||||
"id": "9e9925aa-638a-4862-823e-9803402b8f82",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain import hub\n",
|
||||
"from langchain_core.prompts import PromptTemplate"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 4,
|
||||
"id": "c4cc5c8c-f6a5-42c7-9ed5-780d79b3b29a",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"select_prompt = hub.pull(\"hwchase17/self-discovery-select\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 5,
|
||||
"id": "a5b53d29-f5b6-4f39-af97-bb6b133e1d18",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Select several reasoning modules that are crucial to utilize in order to solve the given task:\n",
|
||||
"\n",
|
||||
"All reasoning module descriptions:\n",
|
||||
"\u001b[33;1m\u001b[1;3m{reasoning_modules}\u001b[0m\n",
|
||||
"\n",
|
||||
"Task: \u001b[33;1m\u001b[1;3m{task_description}\u001b[0m\n",
|
||||
"\n",
|
||||
"Select several modules are crucial for solving the task above:\n",
|
||||
"\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"select_prompt.pretty_print()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 6,
|
||||
"id": "26eaa6bc-5202-4b22-9522-33f227c8eb55",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"adapt_prompt = hub.pull(\"hwchase17/self-discovery-adapt\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 7,
|
||||
"id": "dc30afb9-180d-417b-9935-f7ef166710b8",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Rephrase and specify each reasoning module so that it better helps solving the task:\n",
|
||||
"\n",
|
||||
"SELECTED module descriptions:\n",
|
||||
"\u001b[33;1m\u001b[1;3m{selected_modules}\u001b[0m\n",
|
||||
"\n",
|
||||
"Task: \u001b[33;1m\u001b[1;3m{task_description}\u001b[0m\n",
|
||||
"\n",
|
||||
"Adapt each reasoning module description to better solve the task:\n",
|
||||
"\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"adapt_prompt.pretty_print()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 8,
|
||||
"id": "a93253a9-8f50-49dd-8815-c3927bae1905",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"structured_prompt = hub.pull(\"hwchase17/self-discovery-structure\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 9,
|
||||
"id": "8ea8dd78-4285-400b-83d2-c4a241903a79",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Operationalize the reasoning modules into a step-by-step reasoning plan in JSON format:\n",
|
||||
"\n",
|
||||
"Here's an example:\n",
|
||||
"\n",
|
||||
"Example task:\n",
|
||||
"\n",
|
||||
"If you follow these instructions, do you return to the starting point? Always face forward. Take 1 step backward. Take 9 steps left. Take 2 steps backward. Take 6 steps forward. Take 4 steps forward. Take 4 steps backward. Take 3 steps right.\n",
|
||||
"\n",
|
||||
"Example reasoning structure:\n",
|
||||
"\n",
|
||||
"{\n",
|
||||
" \"Position after instruction 1\":\n",
|
||||
" \"Position after instruction 2\":\n",
|
||||
" \"Position after instruction n\":\n",
|
||||
" \"Is final position the same as starting position\":\n",
|
||||
"}\n",
|
||||
"\n",
|
||||
"Adapted module description:\n",
|
||||
"\u001b[33;1m\u001b[1;3m{adapted_modules}\u001b[0m\n",
|
||||
"\n",
|
||||
"Task: \u001b[33;1m\u001b[1;3m{task_description}\u001b[0m\n",
|
||||
"\n",
|
||||
"Implement a reasoning structure for solvers to follow step-by-step and arrive at correct answer.\n",
|
||||
"\n",
|
||||
"Note: do NOT actually arrive at a conclusion in this pass. Your job is to generate a PLAN so that in the future you can fill it out and arrive at the correct conclusion for tasks like this\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"structured_prompt.pretty_print()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 10,
|
||||
"id": "f3d4d79d-f414-4588-b476-4a35b3ba6fbf",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"reasoning_prompt = hub.pull(\"hwchase17/self-discovery-reasoning\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 11,
|
||||
"id": "23d1e32e-d12e-454a-8484-c08e250e3262",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Follow the step-by-step reasoning plan in JSON to correctly solve the task. Fill in the values following the keys by reasoning specifically about the task given. Do not simply rephrase the keys.\n",
|
||||
" \n",
|
||||
"Reasoning Structure:\n",
|
||||
"\u001b[33;1m\u001b[1;3m{reasoning_structure}\u001b[0m\n",
|
||||
"\n",
|
||||
"Task: \u001b[33;1m\u001b[1;3m{task_description}\u001b[0m\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"reasoning_prompt.pretty_print()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 12,
|
||||
"id": "7b9af01d-da28-4785-b069-efea61905cfa",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"PromptTemplate(input_variables=['reasoning_structure', 'task_description'], template='Follow the step-by-step reasoning plan in JSON to correctly solve the task. Fill in the values following the keys by reasoning specifically about the task given. Do not simply rephrase the keys.\\n \\nReasoning Structure:\\n{reasoning_structure}\\n\\nTask: {task_description}')"
|
||||
]
|
||||
},
|
||||
"execution_count": 12,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"reasoning_prompt"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 13,
|
||||
"id": "399bf160-e257-429f-b27e-66d4063f195f",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain_core.output_parsers import StrOutputParser\n",
|
||||
"from langchain_core.runnables import RunnablePassthrough"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 14,
|
||||
"id": "5c3bd203-7dc1-457e-813f-283aaf059ec0",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"select_chain = select_prompt | model | StrOutputParser()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 15,
|
||||
"id": "86420da0-7cc2-4659-853e-9c3ef808e47c",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"adapt_chain = adapt_prompt | model | StrOutputParser()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 16,
|
||||
"id": "270a3905-58a3-4650-96ca-e8254040285f",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"structure_chain = structured_prompt | model | StrOutputParser()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 17,
|
||||
"id": "55b486cc-36be-497e-9eba-9c8dc228f2d1",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"reasoning_chain = reasoning_prompt | model | StrOutputParser()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 18,
|
||||
"id": "92d8d484-055b-48a8-98bc-e7d40c12db2e",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"overall_chain = (\n",
|
||||
" RunnablePassthrough.assign(selected_modules=select_chain)\n",
|
||||
" .assign(adapted_modules=adapt_chain)\n",
|
||||
" .assign(reasoning_structure=structure_chain)\n",
|
||||
" .assign(answer=reasoning_chain)\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 19,
|
||||
"id": "29fe385b-cf5d-4581-80e7-55462f5628bb",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"reasoning_modules = [\n",
|
||||
" \"1. How could I devise an experiment to help solve that problem?\",\n",
|
||||
" \"2. Make a list of ideas for solving this problem, and apply them one by one to the problem to see if any progress can be made.\",\n",
|
||||
" # \"3. How could I measure progress on this problem?\",\n",
|
||||
" \"4. How can I simplify the problem so that it is easier to solve?\",\n",
|
||||
" \"5. What are the key assumptions underlying this problem?\",\n",
|
||||
" \"6. What are the potential risks and drawbacks of each solution?\",\n",
|
||||
" \"7. What are the alternative perspectives or viewpoints on this problem?\",\n",
|
||||
" \"8. What are the long-term implications of this problem and its solutions?\",\n",
|
||||
" \"9. How can I break down this problem into smaller, more manageable parts?\",\n",
|
||||
" \"10. Critical Thinking: This style involves analyzing the problem from different perspectives, questioning assumptions, and evaluating the evidence or information available. It focuses on logical reasoning, evidence-based decision-making, and identifying potential biases or flaws in thinking.\",\n",
|
||||
" \"11. Try creative thinking, generate innovative and out-of-the-box ideas to solve the problem. Explore unconventional solutions, thinking beyond traditional boundaries, and encouraging imagination and originality.\",\n",
|
||||
" # \"12. Seek input and collaboration from others to solve the problem. Emphasize teamwork, open communication, and leveraging the diverse perspectives and expertise of a group to come up with effective solutions.\",\n",
|
||||
" \"13. Use systems thinking: Consider the problem as part of a larger system and understanding the interconnectedness of various elements. Focuses on identifying the underlying causes, feedback loops, and interdependencies that influence the problem, and developing holistic solutions that address the system as a whole.\",\n",
|
||||
" \"14. Use Risk Analysis: Evaluate potential risks, uncertainties, and tradeoffs associated with different solutions or approaches to a problem. Emphasize assessing the potential consequences and likelihood of success or failure, and making informed decisions based on a balanced analysis of risks and benefits.\",\n",
|
||||
" # \"15. Use Reflective Thinking: Step back from the problem, take the time for introspection and self-reflection. Examine personal biases, assumptions, and mental models that may influence problem-solving, and being open to learning from past experiences to improve future approaches.\",\n",
|
||||
" \"16. What is the core issue or problem that needs to be addressed?\",\n",
|
||||
" \"17. What are the underlying causes or factors contributing to the problem?\",\n",
|
||||
" \"18. Are there any potential solutions or strategies that have been tried before? If yes, what were the outcomes and lessons learned?\",\n",
|
||||
" \"19. What are the potential obstacles or challenges that might arise in solving this problem?\",\n",
|
||||
" \"20. Are there any relevant data or information that can provide insights into the problem? If yes, what data sources are available, and how can they be analyzed?\",\n",
|
||||
" \"21. Are there any stakeholders or individuals who are directly affected by the problem? What are their perspectives and needs?\",\n",
|
||||
" \"22. What resources (financial, human, technological, etc.) are needed to tackle the problem effectively?\",\n",
|
||||
" \"23. How can progress or success in solving the problem be measured or evaluated?\",\n",
|
||||
" \"24. What indicators or metrics can be used?\",\n",
|
||||
" \"25. Is the problem a technical or practical one that requires a specific expertise or skill set? Or is it more of a conceptual or theoretical problem?\",\n",
|
||||
" \"26. Does the problem involve a physical constraint, such as limited resources, infrastructure, or space?\",\n",
|
||||
" \"27. Is the problem related to human behavior, such as a social, cultural, or psychological issue?\",\n",
|
||||
" \"28. Does the problem involve decision-making or planning, where choices need to be made under uncertainty or with competing objectives?\",\n",
|
||||
" \"29. Is the problem an analytical one that requires data analysis, modeling, or optimization techniques?\",\n",
|
||||
" \"30. Is the problem a design challenge that requires creative solutions and innovation?\",\n",
|
||||
" \"31. Does the problem require addressing systemic or structural issues rather than just individual instances?\",\n",
|
||||
" \"32. Is the problem time-sensitive or urgent, requiring immediate attention and action?\",\n",
|
||||
" \"33. What kinds of solution typically are produced for this kind of problem specification?\",\n",
|
||||
" \"34. Given the problem specification and the current best solution, have a guess about other possible solutions.\"\n",
|
||||
" \"35. Let’s imagine the current best solution is totally wrong, what other ways are there to think about the problem specification?\"\n",
|
||||
" \"36. What is the best way to modify this current best solution, given what you know about these kinds of problem specification?\"\n",
|
||||
" \"37. Ignoring the current best solution, create an entirely new solution to the problem.\"\n",
|
||||
" # \"38. Let’s think step by step.\"\n",
|
||||
" \"39. Let’s make a step by step plan and implement it with good notation and explanation.\",\n",
|
||||
"]\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"task_example = \"Lisa has 10 apples. She gives 3 apples to her friend and then buys 5 more apples from the store. How many apples does Lisa have now?\"\n",
|
||||
"\n",
|
||||
"task_example = \"\"\"This SVG path element <path d=\"M 55.57,80.69 L 57.38,65.80 M 57.38,65.80 L 48.90,57.46 M 48.90,57.46 L\n",
|
||||
"45.58,47.78 M 45.58,47.78 L 53.25,36.07 L 66.29,48.90 L 78.69,61.09 L 55.57,80.69\"/> draws a:\n",
|
||||
"(A) circle (B) heptagon (C) hexagon (D) kite (E) line (F) octagon (G) pentagon(H) rectangle (I) sector (J) triangle\"\"\""
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 20,
|
||||
"id": "6cbfbe81-f751-42da-843a-f9003ace663d",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"reasoning_modules_str = \"\\n\".join(reasoning_modules)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 65,
|
||||
"id": "d411c7aa-7017-4d67-88b5-43b5d161c34c",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"{'task_description': 'This SVG path element <path d=\"M 55.57,80.69 L 57.38,65.80 M 57.38,65.80 L 48.90,57.46 M 48.90,57.46 L\\n45.58,47.78 M 45.58,47.78 L 53.25,36.07 L 66.29,48.90 L 78.69,61.09 L 55.57,80.69\"/> draws a:\\n(A) circle (B) heptagon (C) hexagon (D) kite (E) line (F) octagon (G) pentagon(H) rectangle (I) sector (J) triangle',\n",
|
||||
" 'reasoning_modules': '1. How could I devise an experiment to help solve that problem?\\n2. Make a list of ideas for solving this problem, and apply them one by one to the problem to see if any progress can be made.\\n4. How can I simplify the problem so that it is easier to solve?\\n5. What are the key assumptions underlying this problem?\\n6. What are the potential risks and drawbacks of each solution?\\n7. What are the alternative perspectives or viewpoints on this problem?\\n8. What are the long-term implications of this problem and its solutions?\\n9. How can I break down this problem into smaller, more manageable parts?\\n10. Critical Thinking: This style involves analyzing the problem from different perspectives, questioning assumptions, and evaluating the evidence or information available. It focuses on logical reasoning, evidence-based decision-making, and identifying potential biases or flaws in thinking.\\n11. Try creative thinking, generate innovative and out-of-the-box ideas to solve the problem. Explore unconventional solutions, thinking beyond traditional boundaries, and encouraging imagination and originality.\\n13. Use systems thinking: Consider the problem as part of a larger system and understanding the interconnectedness of various elements. Focuses on identifying the underlying causes, feedback loops, and interdependencies that influence the problem, and developing holistic solutions that address the system as a whole.\\n14. Use Risk Analysis: Evaluate potential risks, uncertainties, and tradeoffs associated with different solutions or approaches to a problem. Emphasize assessing the potential consequences and likelihood of success or failure, and making informed decisions based on a balanced analysis of risks and benefits.\\n16. What is the core issue or problem that needs to be addressed?\\n17. What are the underlying causes or factors contributing to the problem?\\n18. Are there any potential solutions or strategies that have been tried before? If yes, what were the outcomes and lessons learned?\\n19. What are the potential obstacles or challenges that might arise in solving this problem?\\n20. Are there any relevant data or information that can provide insights into the problem? If yes, what data sources are available, and how can they be analyzed?\\n21. Are there any stakeholders or individuals who are directly affected by the problem? What are their perspectives and needs?\\n22. What resources (financial, human, technological, etc.) are needed to tackle the problem effectively?\\n23. How can progress or success in solving the problem be measured or evaluated?\\n24. What indicators or metrics can be used?\\n25. Is the problem a technical or practical one that requires a specific expertise or skill set? Or is it more of a conceptual or theoretical problem?\\n26. Does the problem involve a physical constraint, such as limited resources, infrastructure, or space?\\n27. Is the problem related to human behavior, such as a social, cultural, or psychological issue?\\n28. Does the problem involve decision-making or planning, where choices need to be made under uncertainty or with competing objectives?\\n29. Is the problem an analytical one that requires data analysis, modeling, or optimization techniques?\\n30. Is the problem a design challenge that requires creative solutions and innovation?\\n31. Does the problem require addressing systemic or structural issues rather than just individual instances?\\n32. Is the problem time-sensitive or urgent, requiring immediate attention and action?\\n33. What kinds of solution typically are produced for this kind of problem specification?\\n34. Given the problem specification and the current best solution, have a guess about other possible solutions.35. Let’s imagine the current best solution is totally wrong, what other ways are there to think about the problem specification?36. What is the best way to modify this current best solution, given what you know about these kinds of problem specification?37. Ignoring the current best solution, create an entirely new solution to the problem.39. Let’s make a step by step plan and implement it with good notation and explanation.',\n",
|
||||
" 'selected_modules': 'To solve the task of identifying the shape drawn by the given SVG path element, the following reasoning modules are crucial:\\n\\n1. **Critical Thinking (10)**: This involves analyzing the SVG path commands and coordinates logically to understand the shape they form. It requires questioning assumptions (e.g., not assuming the shape based on a quick glance at the coordinates but rather analyzing the path commands and their implications) and evaluating the information provided by the SVG path data.\\n\\n2. **Analytical Problem Solving (29)**: The task requires data analysis skills to interpret the SVG path commands and coordinates. Understanding how the \"M\" (moveto) and \"L\" (lineto) commands work to draw lines between specified points is essential for determining the shape.\\n\\n3. **Creative Thinking (11)**: While the task primarily involves analytical skills, creative thinking can help in visualizing the shape that the path commands are likely to form, especially when the path data doesn\\'t immediately suggest a common shape.\\n\\n4. **Systems Thinking (13)**: Recognizing the SVG path as part of a larger system (in this case, the SVG graphics system) and understanding how individual path commands contribute to the overall shape can be helpful. This involves understanding the interconnectedness of the start and end points of each line segment and how they come together to form a complete shape.\\n\\n5. **Break Down the Problem (9)**: Breaking down the SVG path into its individual commands and analyzing each segment between \"M\" and \"L\" commands can simplify the task. This makes it easier to visualize and understand the shape being drawn step by step.\\n\\n6. **Visualization (not explicitly listed but implied in creative and analytical thinking)**: Visualizing the path that the \"M\" and \"L\" commands create is essential. This isn\\'t a listed module but is a skill that underpins both creative and analytical approaches to solving this problem.\\n\\nGiven the SVG path commands, one would analyze each segment drawn by \"M\" (moveto) and \"L\" (lineto) commands to determine the shape\\'s vertices and sides. This process involves critical thinking to assess the information, analytical skills to interpret the path data, and a degree of creative thinking for visualization. The task does not directly involve assessing risks, long-term implications, or stakeholder perspectives, so modules focused on those aspects (e.g., Risk Analysis (14), Long-term Implications (8)) are less relevant here.',\n",
|
||||
" 'adapted_modules': 'To enhance the process of identifying the shape drawn by the given SVG path element, the reasoning modules can be adapted and specified as follows:\\n\\n1. **Detailed Path Analysis (Critical Thinking)**: This module focuses on a meticulous examination of the SVG path commands and coordinates. It involves a deep dive into the syntax and semantics of path commands such as \"M\" (moveto) and \"L\" (lineto), challenging initial perceptions and rigorously interpreting the sequence of commands to deduce the shape accurately. This analysis goes beyond surface-level inspection, requiring a systematic questioning of each command\\'s role in constructing the overall shape.\\n\\n2. **Path Command Interpretation (Analytical Problem Solving)**: Essential for this task is the ability to decode the SVG path\\'s \"M\" and \"L\" commands, translating these instructions into a mental or visual representation of the shape\\'s geometry. This module emphasizes the analytical dissection of the path data, focusing on how each command contributes to the formation of vertices and edges, thereby facilitating the identification of the shape.\\n\\n3. **Shape Visualization (Creative Thinking)**: Leveraging imagination to mentally construct the shape from the path commands is the core of this module. It involves creatively synthesizing the segments drawn by the \"M\" and \"L\" commands into a coherent visual image, even when the path data does not immediately suggest a recognizable shape. This creative process aids in bridging gaps in the analytical interpretation, offering alternative perspectives on the possible shape outcomes.\\n\\n4. **Path-to-Shape Synthesis (Systems Thinking)**: This module entails understanding the SVG path as a component within the broader context of vector graphics, focusing on how individual path commands interlink to form a cohesive shape. It requires an appreciation of the cumulative effect of each command in relation to the others, recognizing the systemic relationship between the starting and ending points of segments and their collective role in shaping the final figure.\\n\\n5. **Sequential Command Analysis (Break Down the Problem)**: By segmenting the SVG path into discrete commands, this approach simplifies the complexity of the task. It advocates for a step-by-step examination of the path, where each \"M\" to \"L\" sequence is analyzed in isolation before synthesizing the findings to understand the overall shape. This methodical breakdown facilitates a clearer visualization and comprehension of the shape being drawn.\\n\\n6. **Command-to-Geometry Mapping (Visualization)**: Central to solving this task is the ability to map the abstract \"M\" and \"L\" commands onto a concrete geometric representation. This implicit module underlies both the analytical and creative thinking processes, focusing on converting the path data into a visual form that can be easily understood and manipulated mentally. It is about constructing a mental image of the shape as each command is processed, enabling a dynamic visualization that evolves with each new piece of path data.\\n\\nBy adapting and specifying these reasoning modules, the task of identifying the shape drawn by the SVG path element becomes a structured process that leverages critical analysis, analytical problem-solving, creative visualization, systemic thinking, and methodical breakdown to accurately determine the shape as a (D) kite.',\n",
|
||||
" 'reasoning_structure': '```json\\n{\\n \"Step 1: Detailed Path Analysis\": {\\n \"Description\": \"Examine each SVG path command and its coordinates closely. Understand the syntax and semantics of \\'M\\' (moveto) and \\'L\\' (lineto) commands.\",\\n \"Action\": \"List all path commands and their coordinates.\",\\n \"Expected Outcome\": \"A clear understanding of the sequence and direction of each path command.\"\\n },\\n \"Step 2: Path Command Interpretation\": {\\n \"Description\": \"Decode the \\'M\\' and \\'L\\' commands to translate these instructions into a mental or visual representation of the shape\\'s geometry.\",\\n \"Action\": \"Map each \\'M\\' and \\'L\\' command to its corresponding action (move or draw line) in the context of the shape.\",\\n \"Expected Outcome\": \"A segmented representation of the shape, highlighting vertices and edges.\"\\n },\\n \"Step 3: Shape Visualization\": {\\n \"Description\": \"Use imagination to mentally construct the shape from the path commands, synthesizing the segments into a coherent visual image.\",\\n \"Action\": \"Visualize the shape based on the segmented representation from Step 2.\",\\n \"Expected Outcome\": \"A mental image of the potential shape, considering the sequence and direction of path commands.\"\\n },\\n \"Step 4: Path-to-Shape Synthesis\": {\\n \"Description\": \"Understand the SVG path as a component within the broader context of vector graphics, focusing on how individual path commands interlink to form a cohesive shape.\",\\n \"Action\": \"Analyze the systemic relationship between the starting and ending points of segments and their collective role in shaping the final figure.\",\\n \"Expected Outcome\": \"Identification of the overall shape by recognizing the cumulative effect of each command.\"\\n },\\n \"Step 5: Sequential Command Analysis\": {\\n \"Description\": \"Segment the SVG path into discrete commands for a step-by-step examination, analyzing each \\'M\\' to \\'L\\' sequence in isolation.\",\\n \"Action\": \"Break down the path into individual commands and analyze each separately before synthesizing the findings.\",\\n \"Expected Outcome\": \"A clearer visualization and comprehension of the shape being drawn, segment by segment.\"\\n },\\n \"Step 6: Command-to-Geometry Mapping\": {\\n \"Description\": \"Map the abstract \\'M\\' and \\'L\\' commands onto a concrete geometric representation, constructing a mental image of the shape as each command is processed.\",\\n \"Action\": \"Convert the path data into a visual form that can be easily understood and manipulated mentally.\",\\n \"Expected Outcome\": \"A dynamic visualization of the shape that evolves with each new piece of path data, leading to the identification of the shape as a kite.\"\\n },\\n \"Conclusion\": {\\n \"Description\": \"Based on the analysis and visualization steps, determine the shape drawn by the SVG path element.\",\\n \"Action\": \"Review the outcomes of each step and synthesize the information to identify the shape.\",\\n \"Expected Outcome\": \"The correct identification of the shape, supported by the structured analysis and reasoning process.\"\\n }\\n}\\n```',\n",
|
||||
" 'answer': 'Based on the provided reasoning structure and the SVG path element given, let\\'s analyze the path commands to identify the shape.\\n\\n**Step 1: Detailed Path Analysis**\\n- Description: The SVG path provided contains multiple \\'M\\' (moveto) and \\'L\\' (lineto) commands. Each command specifies a point in a 2D coordinate system.\\n- Action: The path commands are as follows:\\n 1. M 55.57,80.69 (Move to point)\\n 2. L 57.38,65.80 (Line to point)\\n 3. M 57.38,65.80 (Move to point)\\n 4. L 48.90,57.46 (Line to point)\\n 5. M 48.90,57.46 (Move to point)\\n 6. L 45.58,47.78 (Line to point)\\n 7. M 45.58,47.78 (Move to point)\\n 8. L 53.25,36.07 (Line to point)\\n 9. L 66.29,48.90 (Line to point)\\n 10. L 78.69,61.09 (Line to point)\\n 11. L 55.57,80.69 (Line to point)\\n- Expected Outcome: Understanding that the path commands describe a series of movements and lines that form a closed shape.\\n\\n**Step 2: Path Command Interpretation**\\n- Description: The \\'M\\' and \\'L\\' commands are used to move the \"pen\" to a starting point and draw lines to subsequent points, respectively.\\n- Action: The commands describe a shape starting at (55.57,80.69), drawing lines through several points, and finally closing the shape by returning to the starting point.\\n- Expected Outcome: A segmented representation showing a shape with distinct vertices at the specified coordinates.\\n\\n**Step 3: Shape Visualization**\\n- Description: Mentally constructing the shape from the provided path commands.\\n- Action: Visualizing the lines connecting in sequence from the starting point, through each point described by the \\'L\\' commands, and back to the starting point.\\n- Expected Outcome: A mental image of a shape that appears to have four distinct sides, suggesting it could be a quadrilateral.\\n\\n**Step 4: Path-to-Shape Synthesis**\\n- Description: Understanding how the path commands collectively form a specific shape.\\n- Action: Recognizing that the shape starts and ends at the same point, with lines drawn between intermediate points without overlapping, except at the starting/ending point.\\n- Expected Outcome: Identification of a closed, four-sided figure, which suggests it could be a kite based on the symmetry and structure of the lines.\\n\\n**Step 5: Sequential Command Analysis**\\n- Description: Analyzing each \\'M\\' to \\'L\\' sequence in isolation.\\n- Action: Observing that the path does not describe a regular polygon (like a hexagon or octagon) or a circle, but rather a shape with distinct angles and sides.\\n- Expected Outcome: A clearer understanding that the shape has four sides, with two pairs of adjacent sides being potentially unequal, which is characteristic of a kite.\\n\\n**Step 6: Command-to-Geometry Mapping**\\n- Description: Converting the abstract path commands into a geometric shape.\\n- Action: Mapping the path data to visualize a shape with two pairs of adjacent sides that are distinct yet symmetrical, indicative of a kite.\\n- Expected Outcome: A dynamic visualization that evolves to clearly represent a kite shape.\\n\\n**Conclusion**\\n- Description: Determining the shape drawn by the SVG path element.\\n- Action: Reviewing the outcomes of each analysis step, which consistently point towards a four-sided figure with distinct properties of a kite.\\n- Expected Outcome: The correct identification of the shape as a kite (D).'}"
|
||||
]
|
||||
},
|
||||
"execution_count": 65,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"overall_chain.invoke(\n",
|
||||
" {\"task_description\": task_example, \"reasoning_modules\": reasoning_modules_str}\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "ea8568d5-bdb6-45cd-8d04-1ab305786caa",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "c14a291c-7c1b-43bc-807e-11180290985e",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3 (ipykernel)",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.10.1"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 5
|
||||
}
|
||||
@@ -31,7 +31,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"!pip install langchain langchain-elasticsearch lark openai elasticsearch pandas"
|
||||
"!pip install langchain lark openai elasticsearch pandas"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -355,15 +355,15 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"attribute_info[-2][\"description\"] += (\n",
|
||||
" f\". Valid values are {sorted(latest_price['starrating'].value_counts().index.tolist())}\"\n",
|
||||
")\n",
|
||||
"attribute_info[3][\"description\"] += (\n",
|
||||
" f\". Valid values are {sorted(latest_price['maxoccupancy'].value_counts().index.tolist())}\"\n",
|
||||
")\n",
|
||||
"attribute_info[-3][\"description\"] += (\n",
|
||||
" f\". Valid values are {sorted(latest_price['country'].value_counts().index.tolist())}\"\n",
|
||||
")"
|
||||
"attribute_info[-2][\n",
|
||||
" \"description\"\n",
|
||||
"] += f\". Valid values are {sorted(latest_price['starrating'].value_counts().index.tolist())}\"\n",
|
||||
"attribute_info[3][\n",
|
||||
" \"description\"\n",
|
||||
"] += f\". Valid values are {sorted(latest_price['maxoccupancy'].value_counts().index.tolist())}\"\n",
|
||||
"attribute_info[-3][\n",
|
||||
" \"description\"\n",
|
||||
"] += f\". Valid values are {sorted(latest_price['country'].value_counts().index.tolist())}\""
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -688,9 +688,9 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"attribute_info[-3][\"description\"] += (\n",
|
||||
" \". NOTE: Only use the 'eq' operator if a specific country is mentioned. If a region is mentioned, include all relevant countries in filter.\"\n",
|
||||
")\n",
|
||||
"attribute_info[-3][\n",
|
||||
" \"description\"\n",
|
||||
"] += \". NOTE: Only use the 'eq' operator if a specific country is mentioned. If a region is mentioned, include all relevant countries in filter.\"\n",
|
||||
"chain = load_query_constructor_runnable(\n",
|
||||
" ChatOpenAI(model=\"gpt-3.5-turbo\", temperature=0),\n",
|
||||
" doc_contents,\n",
|
||||
@@ -1083,7 +1083,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain_elasticsearch import ElasticsearchStore\n",
|
||||
"from langchain_community.vectorstores import ElasticsearchStore\n",
|
||||
"from langchain_openai import OpenAIEmbeddings\n",
|
||||
"\n",
|
||||
"embeddings = OpenAIEmbeddings()"
|
||||
@@ -1227,7 +1227,7 @@
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"results = retriever.invoke(\n",
|
||||
"results = retriever.get_relevant_documents(\n",
|
||||
" \"I want to stay somewhere highly rated along the coast. I want a room with a patio and a fireplace.\"\n",
|
||||
")\n",
|
||||
"for res in results:\n",
|
||||
|
||||
@@ -22,8 +22,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain import hub\n",
|
||||
"from langchain.agents import AgentExecutor, Tool, ZeroShotAgent, create_react_agent\n",
|
||||
"from langchain.agents import AgentExecutor, Tool, ZeroShotAgent\n",
|
||||
"from langchain.chains import LLMChain\n",
|
||||
"from langchain.memory import ConversationBufferMemory, ReadOnlySharedMemory\n",
|
||||
"from langchain.prompts import PromptTemplate\n",
|
||||
@@ -85,7 +84,19 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"prompt = hub.pull(\"hwchase17/react\")"
|
||||
"prefix = \"\"\"Have a conversation with a human, answering the following questions as best you can. You have access to the following tools:\"\"\"\n",
|
||||
"suffix = \"\"\"Begin!\"\n",
|
||||
"\n",
|
||||
"{chat_history}\n",
|
||||
"Question: {input}\n",
|
||||
"{agent_scratchpad}\"\"\"\n",
|
||||
"\n",
|
||||
"prompt = ZeroShotAgent.create_prompt(\n",
|
||||
" tools,\n",
|
||||
" prefix=prefix,\n",
|
||||
" suffix=suffix,\n",
|
||||
" input_variables=[\"input\", \"chat_history\", \"agent_scratchpad\"],\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -103,14 +114,16 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"model = OpenAI()\n",
|
||||
"agent = create_react_agent(model, tools, prompt)\n",
|
||||
"agent_executor = AgentExecutor(agent=agent, tools=tools, memory=memory)"
|
||||
"llm_chain = LLMChain(llm=OpenAI(temperature=0), prompt=prompt)\n",
|
||||
"agent = ZeroShotAgent(llm_chain=llm_chain, tools=tools, verbose=True)\n",
|
||||
"agent_chain = AgentExecutor.from_agent_and_tools(\n",
|
||||
" agent=agent, tools=tools, verbose=True, memory=memory\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 36,
|
||||
"execution_count": 6,
|
||||
"id": "ca4bc1fb",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
@@ -120,15 +133,15 @@
|
||||
"text": [
|
||||
"\n",
|
||||
"\n",
|
||||
"\u001B[1m> Entering new AgentExecutor chain...\u001B[0m\n",
|
||||
"\u001B[32;1m\u001B[1;3mThought: I should research ChatGPT to answer this question.\n",
|
||||
"\u001b[1m> Entering new AgentExecutor chain...\u001b[0m\n",
|
||||
"\u001b[32;1m\u001b[1;3mThought: I should research ChatGPT to answer this question.\n",
|
||||
"Action: Search\n",
|
||||
"Action Input: \"ChatGPT\"\u001B[0m\n",
|
||||
"Observation: \u001B[36;1m\u001B[1;3mNov 30, 2022 ... We've trained a model called ChatGPT which interacts in a conversational way. The dialogue format makes it possible for ChatGPT to answer ... ChatGPT is an artificial intelligence chatbot developed by OpenAI and launched in November 2022. It is built on top of OpenAI's GPT-3 family of large ... ChatGPT. We've trained a model called ChatGPT which interacts in a conversational way. The dialogue format makes it possible for ChatGPT to answer ... Feb 2, 2023 ... ChatGPT, the popular chatbot from OpenAI, is estimated to have reached 100 million monthly active users in January, just two months after ... 2 days ago ... ChatGPT recently launched a new version of its own plagiarism detection tool, with hopes that it will squelch some of the criticism around how ... An API for accessing new AI models developed by OpenAI. Feb 19, 2023 ... ChatGPT is an AI chatbot system that OpenAI released in November to show off and test what a very large, powerful AI system can accomplish. You ... ChatGPT is fine-tuned from GPT-3.5, a language model trained to produce text. ChatGPT was optimized for dialogue by using Reinforcement Learning with Human ... 3 days ago ... Visual ChatGPT connects ChatGPT and a series of Visual Foundation Models to enable sending and receiving images during chatting. Dec 1, 2022 ... ChatGPT is a natural language processing tool driven by AI technology that allows you to have human-like conversations and much more with a ...\u001B[0m\n",
|
||||
"Thought:\u001B[32;1m\u001B[1;3m I now know the final answer.\n",
|
||||
"Final Answer: ChatGPT is an artificial intelligence chatbot developed by OpenAI and launched in November 2022. It is built on top of OpenAI's GPT-3 family of large language models and is optimized for dialogue by using Reinforcement Learning with Human-in-the-Loop. It is also capable of sending and receiving images during chatting.\u001B[0m\n",
|
||||
"Action Input: \"ChatGPT\"\u001b[0m\n",
|
||||
"Observation: \u001b[36;1m\u001b[1;3mNov 30, 2022 ... We've trained a model called ChatGPT which interacts in a conversational way. The dialogue format makes it possible for ChatGPT to answer ... ChatGPT is an artificial intelligence chatbot developed by OpenAI and launched in November 2022. It is built on top of OpenAI's GPT-3 family of large ... ChatGPT. We've trained a model called ChatGPT which interacts in a conversational way. The dialogue format makes it possible for ChatGPT to answer ... Feb 2, 2023 ... ChatGPT, the popular chatbot from OpenAI, is estimated to have reached 100 million monthly active users in January, just two months after ... 2 days ago ... ChatGPT recently launched a new version of its own plagiarism detection tool, with hopes that it will squelch some of the criticism around how ... An API for accessing new AI models developed by OpenAI. Feb 19, 2023 ... ChatGPT is an AI chatbot system that OpenAI released in November to show off and test what a very large, powerful AI system can accomplish. You ... ChatGPT is fine-tuned from GPT-3.5, a language model trained to produce text. ChatGPT was optimized for dialogue by using Reinforcement Learning with Human ... 3 days ago ... Visual ChatGPT connects ChatGPT and a series of Visual Foundation Models to enable sending and receiving images during chatting. Dec 1, 2022 ... ChatGPT is a natural language processing tool driven by AI technology that allows you to have human-like conversations and much more with a ...\u001b[0m\n",
|
||||
"Thought:\u001b[32;1m\u001b[1;3m I now know the final answer.\n",
|
||||
"Final Answer: ChatGPT is an artificial intelligence chatbot developed by OpenAI and launched in November 2022. It is built on top of OpenAI's GPT-3 family of large language models and is optimized for dialogue by using Reinforcement Learning with Human-in-the-Loop. It is also capable of sending and receiving images during chatting.\u001b[0m\n",
|
||||
"\n",
|
||||
"\u001B[1m> Finished chain.\u001B[0m\n"
|
||||
"\u001b[1m> Finished chain.\u001b[0m\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -140,40 +153,10 @@
|
||||
"execution_count": 6,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
},
|
||||
{
|
||||
"ename": "KeyboardInterrupt",
|
||||
"evalue": "",
|
||||
"output_type": "error",
|
||||
"traceback": [
|
||||
"\u001B[0;31m---------------------------------------------------------------------------\u001B[0m",
|
||||
"\u001B[0;31mKeyboardInterrupt\u001B[0m Traceback (most recent call last)",
|
||||
"Cell \u001B[0;32mIn[36], line 1\u001B[0m\n\u001B[0;32m----> 1\u001B[0m \u001B[43magent_executor\u001B[49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43minvoke\u001B[49m\u001B[43m(\u001B[49m\u001B[43m{\u001B[49m\u001B[38;5;124;43m\"\u001B[39;49m\u001B[38;5;124;43minput\u001B[39;49m\u001B[38;5;124;43m\"\u001B[39;49m\u001B[43m:\u001B[49m\u001B[38;5;124;43m\"\u001B[39;49m\u001B[38;5;124;43mWhat is ChatGPT?\u001B[39;49m\u001B[38;5;124;43m\"\u001B[39;49m\u001B[43m}\u001B[49m\u001B[43m)\u001B[49m\n",
|
||||
"File \u001B[0;32m~/code/langchain/libs/langchain/langchain/chains/base.py:163\u001B[0m, in \u001B[0;36mChain.invoke\u001B[0;34m(self, input, config, **kwargs)\u001B[0m\n\u001B[1;32m 161\u001B[0m \u001B[38;5;28;01mexcept\u001B[39;00m \u001B[38;5;167;01mBaseException\u001B[39;00m \u001B[38;5;28;01mas\u001B[39;00m e:\n\u001B[1;32m 162\u001B[0m run_manager\u001B[38;5;241m.\u001B[39mon_chain_error(e)\n\u001B[0;32m--> 163\u001B[0m \u001B[38;5;28;01mraise\u001B[39;00m e\n\u001B[1;32m 164\u001B[0m run_manager\u001B[38;5;241m.\u001B[39mon_chain_end(outputs)\n\u001B[1;32m 166\u001B[0m \u001B[38;5;28;01mif\u001B[39;00m include_run_info:\n",
|
||||
"File \u001B[0;32m~/code/langchain/libs/langchain/langchain/chains/base.py:153\u001B[0m, in \u001B[0;36mChain.invoke\u001B[0;34m(self, input, config, **kwargs)\u001B[0m\n\u001B[1;32m 150\u001B[0m \u001B[38;5;28;01mtry\u001B[39;00m:\n\u001B[1;32m 151\u001B[0m \u001B[38;5;28mself\u001B[39m\u001B[38;5;241m.\u001B[39m_validate_inputs(inputs)\n\u001B[1;32m 152\u001B[0m outputs \u001B[38;5;241m=\u001B[39m (\n\u001B[0;32m--> 153\u001B[0m \u001B[38;5;28;43mself\u001B[39;49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43m_call\u001B[49m\u001B[43m(\u001B[49m\u001B[43minputs\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[43mrun_manager\u001B[49m\u001B[38;5;241;43m=\u001B[39;49m\u001B[43mrun_manager\u001B[49m\u001B[43m)\u001B[49m\n\u001B[1;32m 154\u001B[0m \u001B[38;5;28;01mif\u001B[39;00m new_arg_supported\n\u001B[1;32m 155\u001B[0m \u001B[38;5;28;01melse\u001B[39;00m \u001B[38;5;28mself\u001B[39m\u001B[38;5;241m.\u001B[39m_call(inputs)\n\u001B[1;32m 156\u001B[0m )\n\u001B[1;32m 158\u001B[0m final_outputs: Dict[\u001B[38;5;28mstr\u001B[39m, Any] \u001B[38;5;241m=\u001B[39m \u001B[38;5;28mself\u001B[39m\u001B[38;5;241m.\u001B[39mprep_outputs(\n\u001B[1;32m 159\u001B[0m inputs, outputs, return_only_outputs\n\u001B[1;32m 160\u001B[0m )\n\u001B[1;32m 161\u001B[0m \u001B[38;5;28;01mexcept\u001B[39;00m \u001B[38;5;167;01mBaseException\u001B[39;00m \u001B[38;5;28;01mas\u001B[39;00m e:\n",
|
||||
"File \u001B[0;32m~/code/langchain/libs/langchain/langchain/agents/agent.py:1432\u001B[0m, in \u001B[0;36mAgentExecutor._call\u001B[0;34m(self, inputs, run_manager)\u001B[0m\n\u001B[1;32m 1430\u001B[0m \u001B[38;5;66;03m# We now enter the agent loop (until it returns something).\u001B[39;00m\n\u001B[1;32m 1431\u001B[0m \u001B[38;5;28;01mwhile\u001B[39;00m \u001B[38;5;28mself\u001B[39m\u001B[38;5;241m.\u001B[39m_should_continue(iterations, time_elapsed):\n\u001B[0;32m-> 1432\u001B[0m next_step_output \u001B[38;5;241m=\u001B[39m \u001B[38;5;28;43mself\u001B[39;49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43m_take_next_step\u001B[49m\u001B[43m(\u001B[49m\n\u001B[1;32m 1433\u001B[0m \u001B[43m \u001B[49m\u001B[43mname_to_tool_map\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m 1434\u001B[0m \u001B[43m \u001B[49m\u001B[43mcolor_mapping\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m 1435\u001B[0m \u001B[43m \u001B[49m\u001B[43minputs\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m 1436\u001B[0m \u001B[43m \u001B[49m\u001B[43mintermediate_steps\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m 1437\u001B[0m \u001B[43m \u001B[49m\u001B[43mrun_manager\u001B[49m\u001B[38;5;241;43m=\u001B[39;49m\u001B[43mrun_manager\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m 1438\u001B[0m \u001B[43m \u001B[49m\u001B[43m)\u001B[49m\n\u001B[1;32m 1439\u001B[0m \u001B[38;5;28;01mif\u001B[39;00m \u001B[38;5;28misinstance\u001B[39m(next_step_output, AgentFinish):\n\u001B[1;32m 1440\u001B[0m \u001B[38;5;28;01mreturn\u001B[39;00m \u001B[38;5;28mself\u001B[39m\u001B[38;5;241m.\u001B[39m_return(\n\u001B[1;32m 1441\u001B[0m next_step_output, intermediate_steps, run_manager\u001B[38;5;241m=\u001B[39mrun_manager\n\u001B[1;32m 1442\u001B[0m )\n",
|
||||
"File \u001B[0;32m~/code/langchain/libs/langchain/langchain/agents/agent.py:1138\u001B[0m, in \u001B[0;36mAgentExecutor._take_next_step\u001B[0;34m(self, name_to_tool_map, color_mapping, inputs, intermediate_steps, run_manager)\u001B[0m\n\u001B[1;32m 1129\u001B[0m \u001B[38;5;28;01mdef\u001B[39;00m \u001B[38;5;21m_take_next_step\u001B[39m(\n\u001B[1;32m 1130\u001B[0m \u001B[38;5;28mself\u001B[39m,\n\u001B[1;32m 1131\u001B[0m name_to_tool_map: Dict[\u001B[38;5;28mstr\u001B[39m, BaseTool],\n\u001B[0;32m (...)\u001B[0m\n\u001B[1;32m 1135\u001B[0m run_manager: Optional[CallbackManagerForChainRun] \u001B[38;5;241m=\u001B[39m \u001B[38;5;28;01mNone\u001B[39;00m,\n\u001B[1;32m 1136\u001B[0m ) \u001B[38;5;241m-\u001B[39m\u001B[38;5;241m>\u001B[39m Union[AgentFinish, List[Tuple[AgentAction, \u001B[38;5;28mstr\u001B[39m]]]:\n\u001B[1;32m 1137\u001B[0m \u001B[38;5;28;01mreturn\u001B[39;00m \u001B[38;5;28mself\u001B[39m\u001B[38;5;241m.\u001B[39m_consume_next_step(\n\u001B[0;32m-> 1138\u001B[0m [\n\u001B[1;32m 1139\u001B[0m a\n\u001B[1;32m 1140\u001B[0m \u001B[38;5;28;01mfor\u001B[39;00m a \u001B[38;5;129;01min\u001B[39;00m \u001B[38;5;28mself\u001B[39m\u001B[38;5;241m.\u001B[39m_iter_next_step(\n\u001B[1;32m 1141\u001B[0m name_to_tool_map,\n\u001B[1;32m 1142\u001B[0m color_mapping,\n\u001B[1;32m 1143\u001B[0m inputs,\n\u001B[1;32m 1144\u001B[0m intermediate_steps,\n\u001B[1;32m 1145\u001B[0m run_manager,\n\u001B[1;32m 1146\u001B[0m )\n\u001B[1;32m 1147\u001B[0m ]\n\u001B[1;32m 1148\u001B[0m )\n",
|
||||
"File \u001B[0;32m~/code/langchain/libs/langchain/langchain/agents/agent.py:1138\u001B[0m, in \u001B[0;36m<listcomp>\u001B[0;34m(.0)\u001B[0m\n\u001B[1;32m 1129\u001B[0m \u001B[38;5;28;01mdef\u001B[39;00m \u001B[38;5;21m_take_next_step\u001B[39m(\n\u001B[1;32m 1130\u001B[0m \u001B[38;5;28mself\u001B[39m,\n\u001B[1;32m 1131\u001B[0m name_to_tool_map: Dict[\u001B[38;5;28mstr\u001B[39m, BaseTool],\n\u001B[0;32m (...)\u001B[0m\n\u001B[1;32m 1135\u001B[0m run_manager: Optional[CallbackManagerForChainRun] \u001B[38;5;241m=\u001B[39m \u001B[38;5;28;01mNone\u001B[39;00m,\n\u001B[1;32m 1136\u001B[0m ) \u001B[38;5;241m-\u001B[39m\u001B[38;5;241m>\u001B[39m Union[AgentFinish, List[Tuple[AgentAction, \u001B[38;5;28mstr\u001B[39m]]]:\n\u001B[1;32m 1137\u001B[0m \u001B[38;5;28;01mreturn\u001B[39;00m \u001B[38;5;28mself\u001B[39m\u001B[38;5;241m.\u001B[39m_consume_next_step(\n\u001B[0;32m-> 1138\u001B[0m [\n\u001B[1;32m 1139\u001B[0m a\n\u001B[1;32m 1140\u001B[0m \u001B[38;5;28;01mfor\u001B[39;00m a \u001B[38;5;129;01min\u001B[39;00m \u001B[38;5;28mself\u001B[39m\u001B[38;5;241m.\u001B[39m_iter_next_step(\n\u001B[1;32m 1141\u001B[0m name_to_tool_map,\n\u001B[1;32m 1142\u001B[0m color_mapping,\n\u001B[1;32m 1143\u001B[0m inputs,\n\u001B[1;32m 1144\u001B[0m intermediate_steps,\n\u001B[1;32m 1145\u001B[0m run_manager,\n\u001B[1;32m 1146\u001B[0m )\n\u001B[1;32m 1147\u001B[0m ]\n\u001B[1;32m 1148\u001B[0m )\n",
|
||||
"File \u001B[0;32m~/code/langchain/libs/langchain/langchain/agents/agent.py:1223\u001B[0m, in \u001B[0;36mAgentExecutor._iter_next_step\u001B[0;34m(self, name_to_tool_map, color_mapping, inputs, intermediate_steps, run_manager)\u001B[0m\n\u001B[1;32m 1221\u001B[0m \u001B[38;5;28;01myield\u001B[39;00m agent_action\n\u001B[1;32m 1222\u001B[0m \u001B[38;5;28;01mfor\u001B[39;00m agent_action \u001B[38;5;129;01min\u001B[39;00m actions:\n\u001B[0;32m-> 1223\u001B[0m \u001B[38;5;28;01myield\u001B[39;00m \u001B[38;5;28;43mself\u001B[39;49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43m_perform_agent_action\u001B[49m\u001B[43m(\u001B[49m\n\u001B[1;32m 1224\u001B[0m \u001B[43m \u001B[49m\u001B[43mname_to_tool_map\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[43mcolor_mapping\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[43magent_action\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[43mrun_manager\u001B[49m\n\u001B[1;32m 1225\u001B[0m \u001B[43m \u001B[49m\u001B[43m)\u001B[49m\n",
|
||||
"File \u001B[0;32m~/code/langchain/libs/langchain/langchain/agents/agent.py:1245\u001B[0m, in \u001B[0;36mAgentExecutor._perform_agent_action\u001B[0;34m(self, name_to_tool_map, color_mapping, agent_action, run_manager)\u001B[0m\n\u001B[1;32m 1243\u001B[0m tool_run_kwargs[\u001B[38;5;124m\"\u001B[39m\u001B[38;5;124mllm_prefix\u001B[39m\u001B[38;5;124m\"\u001B[39m] \u001B[38;5;241m=\u001B[39m \u001B[38;5;124m\"\u001B[39m\u001B[38;5;124m\"\u001B[39m\n\u001B[1;32m 1244\u001B[0m \u001B[38;5;66;03m# We then call the tool on the tool input to get an observation\u001B[39;00m\n\u001B[0;32m-> 1245\u001B[0m observation \u001B[38;5;241m=\u001B[39m \u001B[43mtool\u001B[49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43mrun\u001B[49m\u001B[43m(\u001B[49m\n\u001B[1;32m 1246\u001B[0m \u001B[43m \u001B[49m\u001B[43magent_action\u001B[49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43mtool_input\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m 1247\u001B[0m \u001B[43m \u001B[49m\u001B[43mverbose\u001B[49m\u001B[38;5;241;43m=\u001B[39;49m\u001B[38;5;28;43mself\u001B[39;49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43mverbose\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m 1248\u001B[0m \u001B[43m \u001B[49m\u001B[43mcolor\u001B[49m\u001B[38;5;241;43m=\u001B[39;49m\u001B[43mcolor\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m 1249\u001B[0m \u001B[43m \u001B[49m\u001B[43mcallbacks\u001B[49m\u001B[38;5;241;43m=\u001B[39;49m\u001B[43mrun_manager\u001B[49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43mget_child\u001B[49m\u001B[43m(\u001B[49m\u001B[43m)\u001B[49m\u001B[43m \u001B[49m\u001B[38;5;28;43;01mif\u001B[39;49;00m\u001B[43m \u001B[49m\u001B[43mrun_manager\u001B[49m\u001B[43m \u001B[49m\u001B[38;5;28;43;01melse\u001B[39;49;00m\u001B[43m \u001B[49m\u001B[38;5;28;43;01mNone\u001B[39;49;00m\u001B[43m,\u001B[49m\n\u001B[1;32m 1250\u001B[0m \u001B[43m \u001B[49m\u001B[38;5;241;43m*\u001B[39;49m\u001B[38;5;241;43m*\u001B[39;49m\u001B[43mtool_run_kwargs\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m 1251\u001B[0m \u001B[43m \u001B[49m\u001B[43m)\u001B[49m\n\u001B[1;32m 1252\u001B[0m \u001B[38;5;28;01melse\u001B[39;00m:\n\u001B[1;32m 1253\u001B[0m tool_run_kwargs \u001B[38;5;241m=\u001B[39m \u001B[38;5;28mself\u001B[39m\u001B[38;5;241m.\u001B[39magent\u001B[38;5;241m.\u001B[39mtool_run_logging_kwargs()\n",
|
||||
"File \u001B[0;32m~/code/langchain/libs/core/langchain_core/tools.py:422\u001B[0m, in \u001B[0;36mBaseTool.run\u001B[0;34m(self, tool_input, verbose, start_color, color, callbacks, tags, metadata, run_name, run_id, **kwargs)\u001B[0m\n\u001B[1;32m 420\u001B[0m \u001B[38;5;28;01mexcept\u001B[39;00m (\u001B[38;5;167;01mException\u001B[39;00m, \u001B[38;5;167;01mKeyboardInterrupt\u001B[39;00m) \u001B[38;5;28;01mas\u001B[39;00m e:\n\u001B[1;32m 421\u001B[0m run_manager\u001B[38;5;241m.\u001B[39mon_tool_error(e)\n\u001B[0;32m--> 422\u001B[0m \u001B[38;5;28;01mraise\u001B[39;00m e\n\u001B[1;32m 423\u001B[0m \u001B[38;5;28;01melse\u001B[39;00m:\n\u001B[1;32m 424\u001B[0m run_manager\u001B[38;5;241m.\u001B[39mon_tool_end(observation, color\u001B[38;5;241m=\u001B[39mcolor, name\u001B[38;5;241m=\u001B[39m\u001B[38;5;28mself\u001B[39m\u001B[38;5;241m.\u001B[39mname, \u001B[38;5;241m*\u001B[39m\u001B[38;5;241m*\u001B[39mkwargs)\n",
|
||||
"File \u001B[0;32m~/code/langchain/libs/core/langchain_core/tools.py:381\u001B[0m, in \u001B[0;36mBaseTool.run\u001B[0;34m(self, tool_input, verbose, start_color, color, callbacks, tags, metadata, run_name, run_id, **kwargs)\u001B[0m\n\u001B[1;32m 378\u001B[0m parsed_input \u001B[38;5;241m=\u001B[39m \u001B[38;5;28mself\u001B[39m\u001B[38;5;241m.\u001B[39m_parse_input(tool_input)\n\u001B[1;32m 379\u001B[0m tool_args, tool_kwargs \u001B[38;5;241m=\u001B[39m \u001B[38;5;28mself\u001B[39m\u001B[38;5;241m.\u001B[39m_to_args_and_kwargs(parsed_input)\n\u001B[1;32m 380\u001B[0m observation \u001B[38;5;241m=\u001B[39m (\n\u001B[0;32m--> 381\u001B[0m \u001B[38;5;28;43mself\u001B[39;49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43m_run\u001B[49m\u001B[43m(\u001B[49m\u001B[38;5;241;43m*\u001B[39;49m\u001B[43mtool_args\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[43mrun_manager\u001B[49m\u001B[38;5;241;43m=\u001B[39;49m\u001B[43mrun_manager\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[38;5;241;43m*\u001B[39;49m\u001B[38;5;241;43m*\u001B[39;49m\u001B[43mtool_kwargs\u001B[49m\u001B[43m)\u001B[49m\n\u001B[1;32m 382\u001B[0m \u001B[38;5;28;01mif\u001B[39;00m new_arg_supported\n\u001B[1;32m 383\u001B[0m \u001B[38;5;28;01melse\u001B[39;00m \u001B[38;5;28mself\u001B[39m\u001B[38;5;241m.\u001B[39m_run(\u001B[38;5;241m*\u001B[39mtool_args, \u001B[38;5;241m*\u001B[39m\u001B[38;5;241m*\u001B[39mtool_kwargs)\n\u001B[1;32m 384\u001B[0m )\n\u001B[1;32m 385\u001B[0m \u001B[38;5;28;01mexcept\u001B[39;00m ValidationError \u001B[38;5;28;01mas\u001B[39;00m e:\n\u001B[1;32m 386\u001B[0m \u001B[38;5;28;01mif\u001B[39;00m \u001B[38;5;129;01mnot\u001B[39;00m \u001B[38;5;28mself\u001B[39m\u001B[38;5;241m.\u001B[39mhandle_validation_error:\n",
|
||||
"File \u001B[0;32m~/code/langchain/libs/core/langchain_core/tools.py:588\u001B[0m, in \u001B[0;36mTool._run\u001B[0;34m(self, run_manager, *args, **kwargs)\u001B[0m\n\u001B[1;32m 579\u001B[0m \u001B[38;5;28;01mif\u001B[39;00m \u001B[38;5;28mself\u001B[39m\u001B[38;5;241m.\u001B[39mfunc:\n\u001B[1;32m 580\u001B[0m new_argument_supported \u001B[38;5;241m=\u001B[39m signature(\u001B[38;5;28mself\u001B[39m\u001B[38;5;241m.\u001B[39mfunc)\u001B[38;5;241m.\u001B[39mparameters\u001B[38;5;241m.\u001B[39mget(\u001B[38;5;124m\"\u001B[39m\u001B[38;5;124mcallbacks\u001B[39m\u001B[38;5;124m\"\u001B[39m)\n\u001B[1;32m 581\u001B[0m \u001B[38;5;28;01mreturn\u001B[39;00m (\n\u001B[1;32m 582\u001B[0m \u001B[38;5;28mself\u001B[39m\u001B[38;5;241m.\u001B[39mfunc(\n\u001B[1;32m 583\u001B[0m \u001B[38;5;241m*\u001B[39margs,\n\u001B[1;32m 584\u001B[0m callbacks\u001B[38;5;241m=\u001B[39mrun_manager\u001B[38;5;241m.\u001B[39mget_child() \u001B[38;5;28;01mif\u001B[39;00m run_manager \u001B[38;5;28;01melse\u001B[39;00m \u001B[38;5;28;01mNone\u001B[39;00m,\n\u001B[1;32m 585\u001B[0m \u001B[38;5;241m*\u001B[39m\u001B[38;5;241m*\u001B[39mkwargs,\n\u001B[1;32m 586\u001B[0m )\n\u001B[1;32m 587\u001B[0m \u001B[38;5;28;01mif\u001B[39;00m new_argument_supported\n\u001B[0;32m--> 588\u001B[0m \u001B[38;5;28;01melse\u001B[39;00m \u001B[38;5;28;43mself\u001B[39;49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43mfunc\u001B[49m\u001B[43m(\u001B[49m\u001B[38;5;241;43m*\u001B[39;49m\u001B[43margs\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[38;5;241;43m*\u001B[39;49m\u001B[38;5;241;43m*\u001B[39;49m\u001B[43mkwargs\u001B[49m\u001B[43m)\u001B[49m\n\u001B[1;32m 589\u001B[0m )\n\u001B[1;32m 590\u001B[0m \u001B[38;5;28;01mraise\u001B[39;00m \u001B[38;5;167;01mNotImplementedError\u001B[39;00m(\u001B[38;5;124m\"\u001B[39m\u001B[38;5;124mTool does not support sync\u001B[39m\u001B[38;5;124m\"\u001B[39m)\n",
|
||||
"File \u001B[0;32m~/code/langchain/libs/community/langchain_community/utilities/google_search.py:94\u001B[0m, in \u001B[0;36mGoogleSearchAPIWrapper.run\u001B[0;34m(self, query)\u001B[0m\n\u001B[1;32m 92\u001B[0m \u001B[38;5;250m\u001B[39m\u001B[38;5;124;03m\"\"\"Run query through GoogleSearch and parse result.\"\"\"\u001B[39;00m\n\u001B[1;32m 93\u001B[0m snippets \u001B[38;5;241m=\u001B[39m []\n\u001B[0;32m---> 94\u001B[0m results \u001B[38;5;241m=\u001B[39m \u001B[38;5;28;43mself\u001B[39;49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43m_google_search_results\u001B[49m\u001B[43m(\u001B[49m\u001B[43mquery\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[43mnum\u001B[49m\u001B[38;5;241;43m=\u001B[39;49m\u001B[38;5;28;43mself\u001B[39;49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43mk\u001B[49m\u001B[43m)\u001B[49m\n\u001B[1;32m 95\u001B[0m \u001B[38;5;28;01mif\u001B[39;00m \u001B[38;5;28mlen\u001B[39m(results) \u001B[38;5;241m==\u001B[39m \u001B[38;5;241m0\u001B[39m:\n\u001B[1;32m 96\u001B[0m \u001B[38;5;28;01mreturn\u001B[39;00m \u001B[38;5;124m\"\u001B[39m\u001B[38;5;124mNo good Google Search Result was found\u001B[39m\u001B[38;5;124m\"\u001B[39m\n",
|
||||
"File \u001B[0;32m~/code/langchain/libs/community/langchain_community/utilities/google_search.py:62\u001B[0m, in \u001B[0;36mGoogleSearchAPIWrapper._google_search_results\u001B[0;34m(self, search_term, **kwargs)\u001B[0m\n\u001B[1;32m 60\u001B[0m \u001B[38;5;28;01mif\u001B[39;00m \u001B[38;5;28mself\u001B[39m\u001B[38;5;241m.\u001B[39msiterestrict:\n\u001B[1;32m 61\u001B[0m cse \u001B[38;5;241m=\u001B[39m cse\u001B[38;5;241m.\u001B[39msiterestrict()\n\u001B[0;32m---> 62\u001B[0m res \u001B[38;5;241m=\u001B[39m \u001B[43mcse\u001B[49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43mlist\u001B[49m\u001B[43m(\u001B[49m\u001B[43mq\u001B[49m\u001B[38;5;241;43m=\u001B[39;49m\u001B[43msearch_term\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[43mcx\u001B[49m\u001B[38;5;241;43m=\u001B[39;49m\u001B[38;5;28;43mself\u001B[39;49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43mgoogle_cse_id\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[38;5;241;43m*\u001B[39;49m\u001B[38;5;241;43m*\u001B[39;49m\u001B[43mkwargs\u001B[49m\u001B[43m)\u001B[49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43mexecute\u001B[49m\u001B[43m(\u001B[49m\u001B[43m)\u001B[49m\n\u001B[1;32m 63\u001B[0m \u001B[38;5;28;01mreturn\u001B[39;00m res\u001B[38;5;241m.\u001B[39mget(\u001B[38;5;124m\"\u001B[39m\u001B[38;5;124mitems\u001B[39m\u001B[38;5;124m\"\u001B[39m, [])\n",
|
||||
"File \u001B[0;32m~/code/langchain/.venv/lib/python3.10/site-packages/googleapiclient/_helpers.py:130\u001B[0m, in \u001B[0;36mpositional.<locals>.positional_decorator.<locals>.positional_wrapper\u001B[0;34m(*args, **kwargs)\u001B[0m\n\u001B[1;32m 128\u001B[0m \u001B[38;5;28;01melif\u001B[39;00m positional_parameters_enforcement \u001B[38;5;241m==\u001B[39m POSITIONAL_WARNING:\n\u001B[1;32m 129\u001B[0m logger\u001B[38;5;241m.\u001B[39mwarning(message)\n\u001B[0;32m--> 130\u001B[0m \u001B[38;5;28;01mreturn\u001B[39;00m \u001B[43mwrapped\u001B[49m\u001B[43m(\u001B[49m\u001B[38;5;241;43m*\u001B[39;49m\u001B[43margs\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[38;5;241;43m*\u001B[39;49m\u001B[38;5;241;43m*\u001B[39;49m\u001B[43mkwargs\u001B[49m\u001B[43m)\u001B[49m\n",
|
||||
"File \u001B[0;32m~/code/langchain/.venv/lib/python3.10/site-packages/googleapiclient/http.py:923\u001B[0m, in \u001B[0;36mHttpRequest.execute\u001B[0;34m(self, http, num_retries)\u001B[0m\n\u001B[1;32m 920\u001B[0m \u001B[38;5;28mself\u001B[39m\u001B[38;5;241m.\u001B[39mheaders[\u001B[38;5;124m\"\u001B[39m\u001B[38;5;124mcontent-length\u001B[39m\u001B[38;5;124m\"\u001B[39m] \u001B[38;5;241m=\u001B[39m \u001B[38;5;28mstr\u001B[39m(\u001B[38;5;28mlen\u001B[39m(\u001B[38;5;28mself\u001B[39m\u001B[38;5;241m.\u001B[39mbody))\n\u001B[1;32m 922\u001B[0m \u001B[38;5;66;03m# Handle retries for server-side errors.\u001B[39;00m\n\u001B[0;32m--> 923\u001B[0m resp, content \u001B[38;5;241m=\u001B[39m \u001B[43m_retry_request\u001B[49m\u001B[43m(\u001B[49m\n\u001B[1;32m 924\u001B[0m \u001B[43m \u001B[49m\u001B[43mhttp\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m 925\u001B[0m \u001B[43m \u001B[49m\u001B[43mnum_retries\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m 926\u001B[0m \u001B[43m \u001B[49m\u001B[38;5;124;43m\"\u001B[39;49m\u001B[38;5;124;43mrequest\u001B[39;49m\u001B[38;5;124;43m\"\u001B[39;49m\u001B[43m,\u001B[49m\n\u001B[1;32m 927\u001B[0m \u001B[43m \u001B[49m\u001B[38;5;28;43mself\u001B[39;49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43m_sleep\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m 928\u001B[0m \u001B[43m \u001B[49m\u001B[38;5;28;43mself\u001B[39;49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43m_rand\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m 929\u001B[0m \u001B[43m \u001B[49m\u001B[38;5;28;43mstr\u001B[39;49m\u001B[43m(\u001B[49m\u001B[38;5;28;43mself\u001B[39;49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43muri\u001B[49m\u001B[43m)\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m 930\u001B[0m \u001B[43m \u001B[49m\u001B[43mmethod\u001B[49m\u001B[38;5;241;43m=\u001B[39;49m\u001B[38;5;28;43mstr\u001B[39;49m\u001B[43m(\u001B[49m\u001B[38;5;28;43mself\u001B[39;49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43mmethod\u001B[49m\u001B[43m)\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m 931\u001B[0m \u001B[43m \u001B[49m\u001B[43mbody\u001B[49m\u001B[38;5;241;43m=\u001B[39;49m\u001B[38;5;28;43mself\u001B[39;49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43mbody\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m 932\u001B[0m \u001B[43m \u001B[49m\u001B[43mheaders\u001B[49m\u001B[38;5;241;43m=\u001B[39;49m\u001B[38;5;28;43mself\u001B[39;49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43mheaders\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m 933\u001B[0m \u001B[43m\u001B[49m\u001B[43m)\u001B[49m\n\u001B[1;32m 935\u001B[0m \u001B[38;5;28;01mfor\u001B[39;00m callback \u001B[38;5;129;01min\u001B[39;00m \u001B[38;5;28mself\u001B[39m\u001B[38;5;241m.\u001B[39mresponse_callbacks:\n\u001B[1;32m 936\u001B[0m callback(resp)\n",
|
||||
"File \u001B[0;32m~/code/langchain/.venv/lib/python3.10/site-packages/googleapiclient/http.py:191\u001B[0m, in \u001B[0;36m_retry_request\u001B[0;34m(http, num_retries, req_type, sleep, rand, uri, method, *args, **kwargs)\u001B[0m\n\u001B[1;32m 189\u001B[0m \u001B[38;5;28;01mtry\u001B[39;00m:\n\u001B[1;32m 190\u001B[0m exception \u001B[38;5;241m=\u001B[39m \u001B[38;5;28;01mNone\u001B[39;00m\n\u001B[0;32m--> 191\u001B[0m resp, content \u001B[38;5;241m=\u001B[39m \u001B[43mhttp\u001B[49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43mrequest\u001B[49m\u001B[43m(\u001B[49m\u001B[43muri\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[43mmethod\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[38;5;241;43m*\u001B[39;49m\u001B[43margs\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[38;5;241;43m*\u001B[39;49m\u001B[38;5;241;43m*\u001B[39;49m\u001B[43mkwargs\u001B[49m\u001B[43m)\u001B[49m\n\u001B[1;32m 192\u001B[0m \u001B[38;5;66;03m# Retry on SSL errors and socket timeout errors.\u001B[39;00m\n\u001B[1;32m 193\u001B[0m \u001B[38;5;28;01mexcept\u001B[39;00m _ssl_SSLError \u001B[38;5;28;01mas\u001B[39;00m ssl_error:\n",
|
||||
"File \u001B[0;32m~/code/langchain/.venv/lib/python3.10/site-packages/httplib2/__init__.py:1724\u001B[0m, in \u001B[0;36mHttp.request\u001B[0;34m(self, uri, method, body, headers, redirections, connection_type)\u001B[0m\n\u001B[1;32m 1722\u001B[0m content \u001B[38;5;241m=\u001B[39m \u001B[38;5;124mb\u001B[39m\u001B[38;5;124m\"\u001B[39m\u001B[38;5;124m\"\u001B[39m\n\u001B[1;32m 1723\u001B[0m \u001B[38;5;28;01melse\u001B[39;00m:\n\u001B[0;32m-> 1724\u001B[0m (response, content) \u001B[38;5;241m=\u001B[39m \u001B[38;5;28;43mself\u001B[39;49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43m_request\u001B[49m\u001B[43m(\u001B[49m\n\u001B[1;32m 1725\u001B[0m \u001B[43m \u001B[49m\u001B[43mconn\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[43mauthority\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[43muri\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[43mrequest_uri\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[43mmethod\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[43mbody\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[43mheaders\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[43mredirections\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[43mcachekey\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m 1726\u001B[0m \u001B[43m \u001B[49m\u001B[43m)\u001B[49m\n\u001B[1;32m 1727\u001B[0m \u001B[38;5;28;01mexcept\u001B[39;00m \u001B[38;5;167;01mException\u001B[39;00m \u001B[38;5;28;01mas\u001B[39;00m e:\n\u001B[1;32m 1728\u001B[0m is_timeout \u001B[38;5;241m=\u001B[39m \u001B[38;5;28misinstance\u001B[39m(e, socket\u001B[38;5;241m.\u001B[39mtimeout)\n",
|
||||
"File \u001B[0;32m~/code/langchain/.venv/lib/python3.10/site-packages/httplib2/__init__.py:1444\u001B[0m, in \u001B[0;36mHttp._request\u001B[0;34m(self, conn, host, absolute_uri, request_uri, method, body, headers, redirections, cachekey)\u001B[0m\n\u001B[1;32m 1441\u001B[0m \u001B[38;5;28;01mif\u001B[39;00m auth:\n\u001B[1;32m 1442\u001B[0m auth\u001B[38;5;241m.\u001B[39mrequest(method, request_uri, headers, body)\n\u001B[0;32m-> 1444\u001B[0m (response, content) \u001B[38;5;241m=\u001B[39m \u001B[38;5;28;43mself\u001B[39;49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43m_conn_request\u001B[49m\u001B[43m(\u001B[49m\u001B[43mconn\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[43mrequest_uri\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[43mmethod\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[43mbody\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[43mheaders\u001B[49m\u001B[43m)\u001B[49m\n\u001B[1;32m 1446\u001B[0m \u001B[38;5;28;01mif\u001B[39;00m auth:\n\u001B[1;32m 1447\u001B[0m \u001B[38;5;28;01mif\u001B[39;00m auth\u001B[38;5;241m.\u001B[39mresponse(response, body):\n",
|
||||
"File \u001B[0;32m~/code/langchain/.venv/lib/python3.10/site-packages/httplib2/__init__.py:1366\u001B[0m, in \u001B[0;36mHttp._conn_request\u001B[0;34m(self, conn, request_uri, method, body, headers)\u001B[0m\n\u001B[1;32m 1364\u001B[0m \u001B[38;5;28;01mtry\u001B[39;00m:\n\u001B[1;32m 1365\u001B[0m \u001B[38;5;28;01mif\u001B[39;00m conn\u001B[38;5;241m.\u001B[39msock \u001B[38;5;129;01mis\u001B[39;00m \u001B[38;5;28;01mNone\u001B[39;00m:\n\u001B[0;32m-> 1366\u001B[0m \u001B[43mconn\u001B[49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43mconnect\u001B[49m\u001B[43m(\u001B[49m\u001B[43m)\u001B[49m\n\u001B[1;32m 1367\u001B[0m conn\u001B[38;5;241m.\u001B[39mrequest(method, request_uri, body, headers)\n\u001B[1;32m 1368\u001B[0m \u001B[38;5;28;01mexcept\u001B[39;00m socket\u001B[38;5;241m.\u001B[39mtimeout:\n",
|
||||
"File \u001B[0;32m~/code/langchain/.venv/lib/python3.10/site-packages/httplib2/__init__.py:1156\u001B[0m, in \u001B[0;36mHTTPSConnectionWithTimeout.connect\u001B[0;34m(self)\u001B[0m\n\u001B[1;32m 1154\u001B[0m \u001B[38;5;28;01mif\u001B[39;00m has_timeout(\u001B[38;5;28mself\u001B[39m\u001B[38;5;241m.\u001B[39mtimeout):\n\u001B[1;32m 1155\u001B[0m sock\u001B[38;5;241m.\u001B[39msettimeout(\u001B[38;5;28mself\u001B[39m\u001B[38;5;241m.\u001B[39mtimeout)\n\u001B[0;32m-> 1156\u001B[0m \u001B[43msock\u001B[49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43mconnect\u001B[49m\u001B[43m(\u001B[49m\u001B[43m(\u001B[49m\u001B[38;5;28;43mself\u001B[39;49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43mhost\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[38;5;28;43mself\u001B[39;49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43mport\u001B[49m\u001B[43m)\u001B[49m\u001B[43m)\u001B[49m\n\u001B[1;32m 1158\u001B[0m \u001B[38;5;28mself\u001B[39m\u001B[38;5;241m.\u001B[39msock \u001B[38;5;241m=\u001B[39m \u001B[38;5;28mself\u001B[39m\u001B[38;5;241m.\u001B[39m_context\u001B[38;5;241m.\u001B[39mwrap_socket(sock, server_hostname\u001B[38;5;241m=\u001B[39m\u001B[38;5;28mself\u001B[39m\u001B[38;5;241m.\u001B[39mhost)\n\u001B[1;32m 1160\u001B[0m \u001B[38;5;66;03m# Python 3.3 compatibility: emulate the check_hostname behavior\u001B[39;00m\n",
|
||||
"\u001B[0;31mKeyboardInterrupt\u001B[0m: "
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"agent_executor.invoke({\"input\": \"What is ChatGPT?\"})"
|
||||
"agent_chain.run(input=\"What is ChatGPT?\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -196,15 +179,15 @@
|
||||
"text": [
|
||||
"\n",
|
||||
"\n",
|
||||
"\u001B[1m> Entering new AgentExecutor chain...\u001B[0m\n",
|
||||
"\u001B[32;1m\u001B[1;3mThought: I need to find out who developed ChatGPT\n",
|
||||
"\u001b[1m> Entering new AgentExecutor chain...\u001b[0m\n",
|
||||
"\u001b[32;1m\u001b[1;3mThought: I need to find out who developed ChatGPT\n",
|
||||
"Action: Search\n",
|
||||
"Action Input: Who developed ChatGPT\u001B[0m\n",
|
||||
"Observation: \u001B[36;1m\u001B[1;3mChatGPT is an artificial intelligence chatbot developed by OpenAI and launched in November 2022. It is built on top of OpenAI's GPT-3 family of large ... Feb 15, 2023 ... Who owns Chat GPT? Chat GPT is owned and developed by AI research and deployment company, OpenAI. The organization is headquartered in San ... Feb 8, 2023 ... ChatGPT is an AI chatbot developed by San Francisco-based startup OpenAI. OpenAI was co-founded in 2015 by Elon Musk and Sam Altman and is ... Dec 7, 2022 ... ChatGPT is an AI chatbot designed and developed by OpenAI. The bot works by generating text responses based on human-user input, like questions ... Jan 12, 2023 ... In 2019, Microsoft invested $1 billion in OpenAI, the tiny San Francisco company that designed ChatGPT. And in the years since, it has quietly ... Jan 25, 2023 ... The inside story of ChatGPT: How OpenAI founder Sam Altman built the world's hottest technology with billions from Microsoft. Dec 3, 2022 ... ChatGPT went viral on social media for its ability to do anything from code to write essays. · The company that created the AI chatbot has a ... Jan 17, 2023 ... While many Americans were nursing hangovers on New Year's Day, 22-year-old Edward Tian was working feverishly on a new app to combat misuse ... ChatGPT is a language model created by OpenAI, an artificial intelligence research laboratory consisting of a team of researchers and engineers focused on ... 1 day ago ... Everyone is talking about ChatGPT, developed by OpenAI. This is such a great tool that has helped to make AI more accessible to a wider ...\u001B[0m\n",
|
||||
"Thought:\u001B[32;1m\u001B[1;3m I now know the final answer\n",
|
||||
"Final Answer: ChatGPT was developed by OpenAI.\u001B[0m\n",
|
||||
"Action Input: Who developed ChatGPT\u001b[0m\n",
|
||||
"Observation: \u001b[36;1m\u001b[1;3mChatGPT is an artificial intelligence chatbot developed by OpenAI and launched in November 2022. It is built on top of OpenAI's GPT-3 family of large ... Feb 15, 2023 ... Who owns Chat GPT? Chat GPT is owned and developed by AI research and deployment company, OpenAI. The organization is headquartered in San ... Feb 8, 2023 ... ChatGPT is an AI chatbot developed by San Francisco-based startup OpenAI. OpenAI was co-founded in 2015 by Elon Musk and Sam Altman and is ... Dec 7, 2022 ... ChatGPT is an AI chatbot designed and developed by OpenAI. The bot works by generating text responses based on human-user input, like questions ... Jan 12, 2023 ... In 2019, Microsoft invested $1 billion in OpenAI, the tiny San Francisco company that designed ChatGPT. And in the years since, it has quietly ... Jan 25, 2023 ... The inside story of ChatGPT: How OpenAI founder Sam Altman built the world's hottest technology with billions from Microsoft. Dec 3, 2022 ... ChatGPT went viral on social media for its ability to do anything from code to write essays. · The company that created the AI chatbot has a ... Jan 17, 2023 ... While many Americans were nursing hangovers on New Year's Day, 22-year-old Edward Tian was working feverishly on a new app to combat misuse ... ChatGPT is a language model created by OpenAI, an artificial intelligence research laboratory consisting of a team of researchers and engineers focused on ... 1 day ago ... Everyone is talking about ChatGPT, developed by OpenAI. This is such a great tool that has helped to make AI more accessible to a wider ...\u001b[0m\n",
|
||||
"Thought:\u001b[32;1m\u001b[1;3m I now know the final answer\n",
|
||||
"Final Answer: ChatGPT was developed by OpenAI.\u001b[0m\n",
|
||||
"\n",
|
||||
"\u001B[1m> Finished chain.\u001B[0m\n"
|
||||
"\u001b[1m> Finished chain.\u001b[0m\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -219,7 +202,7 @@
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"agent_executor.invoke({\"input\": \"Who developed it?\"})"
|
||||
"agent_chain.run(input=\"Who developed it?\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -234,14 +217,14 @@
|
||||
"text": [
|
||||
"\n",
|
||||
"\n",
|
||||
"\u001B[1m> Entering new AgentExecutor chain...\u001B[0m\n",
|
||||
"\u001B[32;1m\u001B[1;3mThought: I need to simplify the conversation for a 5 year old.\n",
|
||||
"\u001b[1m> Entering new AgentExecutor chain...\u001b[0m\n",
|
||||
"\u001b[32;1m\u001b[1;3mThought: I need to simplify the conversation for a 5 year old.\n",
|
||||
"Action: Summary\n",
|
||||
"Action Input: My daughter 5 years old\u001B[0m\n",
|
||||
"Action Input: My daughter 5 years old\u001b[0m\n",
|
||||
"\n",
|
||||
"\u001B[1m> Entering new LLMChain chain...\u001B[0m\n",
|
||||
"\u001b[1m> Entering new LLMChain chain...\u001b[0m\n",
|
||||
"Prompt after formatting:\n",
|
||||
"\u001B[32;1m\u001B[1;3mThis is a conversation between a human and a bot:\n",
|
||||
"\u001b[32;1m\u001b[1;3mThis is a conversation between a human and a bot:\n",
|
||||
"\n",
|
||||
"Human: What is ChatGPT?\n",
|
||||
"AI: ChatGPT is an artificial intelligence chatbot developed by OpenAI and launched in November 2022. It is built on top of OpenAI's GPT-3 family of large language models and is optimized for dialogue by using Reinforcement Learning with Human-in-the-Loop. It is also capable of sending and receiving images during chatting.\n",
|
||||
@@ -249,16 +232,16 @@
|
||||
"AI: ChatGPT was developed by OpenAI.\n",
|
||||
"\n",
|
||||
"Write a summary of the conversation for My daughter 5 years old:\n",
|
||||
"\u001B[0m\n",
|
||||
"\u001b[0m\n",
|
||||
"\n",
|
||||
"\u001B[1m> Finished chain.\u001B[0m\n",
|
||||
"\u001b[1m> Finished chain.\u001b[0m\n",
|
||||
"\n",
|
||||
"Observation: \u001B[33;1m\u001B[1;3m\n",
|
||||
"The conversation was about ChatGPT, an artificial intelligence chatbot. It was created by OpenAI and can send and receive images while chatting.\u001B[0m\n",
|
||||
"Thought:\u001B[32;1m\u001B[1;3m I now know the final answer.\n",
|
||||
"Final Answer: ChatGPT is an artificial intelligence chatbot created by OpenAI that can send and receive images while chatting.\u001B[0m\n",
|
||||
"Observation: \u001b[33;1m\u001b[1;3m\n",
|
||||
"The conversation was about ChatGPT, an artificial intelligence chatbot. It was created by OpenAI and can send and receive images while chatting.\u001b[0m\n",
|
||||
"Thought:\u001b[32;1m\u001b[1;3m I now know the final answer.\n",
|
||||
"Final Answer: ChatGPT is an artificial intelligence chatbot created by OpenAI that can send and receive images while chatting.\u001b[0m\n",
|
||||
"\n",
|
||||
"\u001B[1m> Finished chain.\u001B[0m\n"
|
||||
"\u001b[1m> Finished chain.\u001b[0m\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -273,8 +256,8 @@
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"agent_executor.invoke(\n",
|
||||
" {\"input\": \"Thanks. Summarize the conversation, for my daughter 5 years old.\"}\n",
|
||||
"agent_chain.run(\n",
|
||||
" input=\"Thanks. Summarize the conversation, for my daughter 5 years old.\"\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
@@ -306,17 +289,9 @@
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"print(agent_executor.memory.buffer)"
|
||||
"print(agent_chain.memory.buffer)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "84ca95c30e262e00",
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"source": []
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "cc3d0aa4",
|
||||
@@ -365,9 +340,25 @@
|
||||
" ),\n",
|
||||
"]\n",
|
||||
"\n",
|
||||
"prompt = hub.pull(\"hwchase17/react\")\n",
|
||||
"agent = create_react_agent(model, tools, prompt)\n",
|
||||
"agent_executor = AgentExecutor(agent=agent, tools=tools, memory=memory)"
|
||||
"prefix = \"\"\"Have a conversation with a human, answering the following questions as best you can. You have access to the following tools:\"\"\"\n",
|
||||
"suffix = \"\"\"Begin!\"\n",
|
||||
"\n",
|
||||
"{chat_history}\n",
|
||||
"Question: {input}\n",
|
||||
"{agent_scratchpad}\"\"\"\n",
|
||||
"\n",
|
||||
"prompt = ZeroShotAgent.create_prompt(\n",
|
||||
" tools,\n",
|
||||
" prefix=prefix,\n",
|
||||
" suffix=suffix,\n",
|
||||
" input_variables=[\"input\", \"chat_history\", \"agent_scratchpad\"],\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"llm_chain = LLMChain(llm=OpenAI(temperature=0), prompt=prompt)\n",
|
||||
"agent = ZeroShotAgent(llm_chain=llm_chain, tools=tools, verbose=True)\n",
|
||||
"agent_chain = AgentExecutor.from_agent_and_tools(\n",
|
||||
" agent=agent, tools=tools, verbose=True, memory=memory\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -382,15 +373,15 @@
|
||||
"text": [
|
||||
"\n",
|
||||
"\n",
|
||||
"\u001B[1m> Entering new AgentExecutor chain...\u001B[0m\n",
|
||||
"\u001B[32;1m\u001B[1;3mThought: I should research ChatGPT to answer this question.\n",
|
||||
"\u001b[1m> Entering new AgentExecutor chain...\u001b[0m\n",
|
||||
"\u001b[32;1m\u001b[1;3mThought: I should research ChatGPT to answer this question.\n",
|
||||
"Action: Search\n",
|
||||
"Action Input: \"ChatGPT\"\u001B[0m\n",
|
||||
"Observation: \u001B[36;1m\u001B[1;3mNov 30, 2022 ... We've trained a model called ChatGPT which interacts in a conversational way. The dialogue format makes it possible for ChatGPT to answer ... ChatGPT is an artificial intelligence chatbot developed by OpenAI and launched in November 2022. It is built on top of OpenAI's GPT-3 family of large ... ChatGPT. We've trained a model called ChatGPT which interacts in a conversational way. The dialogue format makes it possible for ChatGPT to answer ... Feb 2, 2023 ... ChatGPT, the popular chatbot from OpenAI, is estimated to have reached 100 million monthly active users in January, just two months after ... 2 days ago ... ChatGPT recently launched a new version of its own plagiarism detection tool, with hopes that it will squelch some of the criticism around how ... An API for accessing new AI models developed by OpenAI. Feb 19, 2023 ... ChatGPT is an AI chatbot system that OpenAI released in November to show off and test what a very large, powerful AI system can accomplish. You ... ChatGPT is fine-tuned from GPT-3.5, a language model trained to produce text. ChatGPT was optimized for dialogue by using Reinforcement Learning with Human ... 3 days ago ... Visual ChatGPT connects ChatGPT and a series of Visual Foundation Models to enable sending and receiving images during chatting. Dec 1, 2022 ... ChatGPT is a natural language processing tool driven by AI technology that allows you to have human-like conversations and much more with a ...\u001B[0m\n",
|
||||
"Thought:\u001B[32;1m\u001B[1;3m I now know the final answer.\n",
|
||||
"Final Answer: ChatGPT is an artificial intelligence chatbot developed by OpenAI and launched in November 2022. It is built on top of OpenAI's GPT-3 family of large language models and is optimized for dialogue by using Reinforcement Learning with Human-in-the-Loop. It is also capable of sending and receiving images during chatting.\u001B[0m\n",
|
||||
"Action Input: \"ChatGPT\"\u001b[0m\n",
|
||||
"Observation: \u001b[36;1m\u001b[1;3mNov 30, 2022 ... We've trained a model called ChatGPT which interacts in a conversational way. The dialogue format makes it possible for ChatGPT to answer ... ChatGPT is an artificial intelligence chatbot developed by OpenAI and launched in November 2022. It is built on top of OpenAI's GPT-3 family of large ... ChatGPT. We've trained a model called ChatGPT which interacts in a conversational way. The dialogue format makes it possible for ChatGPT to answer ... Feb 2, 2023 ... ChatGPT, the popular chatbot from OpenAI, is estimated to have reached 100 million monthly active users in January, just two months after ... 2 days ago ... ChatGPT recently launched a new version of its own plagiarism detection tool, with hopes that it will squelch some of the criticism around how ... An API for accessing new AI models developed by OpenAI. Feb 19, 2023 ... ChatGPT is an AI chatbot system that OpenAI released in November to show off and test what a very large, powerful AI system can accomplish. You ... ChatGPT is fine-tuned from GPT-3.5, a language model trained to produce text. ChatGPT was optimized for dialogue by using Reinforcement Learning with Human ... 3 days ago ... Visual ChatGPT connects ChatGPT and a series of Visual Foundation Models to enable sending and receiving images during chatting. Dec 1, 2022 ... ChatGPT is a natural language processing tool driven by AI technology that allows you to have human-like conversations and much more with a ...\u001b[0m\n",
|
||||
"Thought:\u001b[32;1m\u001b[1;3m I now know the final answer.\n",
|
||||
"Final Answer: ChatGPT is an artificial intelligence chatbot developed by OpenAI and launched in November 2022. It is built on top of OpenAI's GPT-3 family of large language models and is optimized for dialogue by using Reinforcement Learning with Human-in-the-Loop. It is also capable of sending and receiving images during chatting.\u001b[0m\n",
|
||||
"\n",
|
||||
"\u001B[1m> Finished chain.\u001B[0m\n"
|
||||
"\u001b[1m> Finished chain.\u001b[0m\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -405,7 +396,7 @@
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"agent_executor.invoke({\"input\": \"What is ChatGPT?\"})"
|
||||
"agent_chain.run(input=\"What is ChatGPT?\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -420,15 +411,15 @@
|
||||
"text": [
|
||||
"\n",
|
||||
"\n",
|
||||
"\u001B[1m> Entering new AgentExecutor chain...\u001B[0m\n",
|
||||
"\u001B[32;1m\u001B[1;3mThought: I need to find out who developed ChatGPT\n",
|
||||
"\u001b[1m> Entering new AgentExecutor chain...\u001b[0m\n",
|
||||
"\u001b[32;1m\u001b[1;3mThought: I need to find out who developed ChatGPT\n",
|
||||
"Action: Search\n",
|
||||
"Action Input: Who developed ChatGPT\u001B[0m\n",
|
||||
"Observation: \u001B[36;1m\u001B[1;3mChatGPT is an artificial intelligence chatbot developed by OpenAI and launched in November 2022. It is built on top of OpenAI's GPT-3 family of large ... Feb 15, 2023 ... Who owns Chat GPT? Chat GPT is owned and developed by AI research and deployment company, OpenAI. The organization is headquartered in San ... Feb 8, 2023 ... ChatGPT is an AI chatbot developed by San Francisco-based startup OpenAI. OpenAI was co-founded in 2015 by Elon Musk and Sam Altman and is ... Dec 7, 2022 ... ChatGPT is an AI chatbot designed and developed by OpenAI. The bot works by generating text responses based on human-user input, like questions ... Jan 12, 2023 ... In 2019, Microsoft invested $1 billion in OpenAI, the tiny San Francisco company that designed ChatGPT. And in the years since, it has quietly ... Jan 25, 2023 ... The inside story of ChatGPT: How OpenAI founder Sam Altman built the world's hottest technology with billions from Microsoft. Dec 3, 2022 ... ChatGPT went viral on social media for its ability to do anything from code to write essays. · The company that created the AI chatbot has a ... Jan 17, 2023 ... While many Americans were nursing hangovers on New Year's Day, 22-year-old Edward Tian was working feverishly on a new app to combat misuse ... ChatGPT is a language model created by OpenAI, an artificial intelligence research laboratory consisting of a team of researchers and engineers focused on ... 1 day ago ... Everyone is talking about ChatGPT, developed by OpenAI. This is such a great tool that has helped to make AI more accessible to a wider ...\u001B[0m\n",
|
||||
"Thought:\u001B[32;1m\u001B[1;3m I now know the final answer\n",
|
||||
"Final Answer: ChatGPT was developed by OpenAI.\u001B[0m\n",
|
||||
"Action Input: Who developed ChatGPT\u001b[0m\n",
|
||||
"Observation: \u001b[36;1m\u001b[1;3mChatGPT is an artificial intelligence chatbot developed by OpenAI and launched in November 2022. It is built on top of OpenAI's GPT-3 family of large ... Feb 15, 2023 ... Who owns Chat GPT? Chat GPT is owned and developed by AI research and deployment company, OpenAI. The organization is headquartered in San ... Feb 8, 2023 ... ChatGPT is an AI chatbot developed by San Francisco-based startup OpenAI. OpenAI was co-founded in 2015 by Elon Musk and Sam Altman and is ... Dec 7, 2022 ... ChatGPT is an AI chatbot designed and developed by OpenAI. The bot works by generating text responses based on human-user input, like questions ... Jan 12, 2023 ... In 2019, Microsoft invested $1 billion in OpenAI, the tiny San Francisco company that designed ChatGPT. And in the years since, it has quietly ... Jan 25, 2023 ... The inside story of ChatGPT: How OpenAI founder Sam Altman built the world's hottest technology with billions from Microsoft. Dec 3, 2022 ... ChatGPT went viral on social media for its ability to do anything from code to write essays. · The company that created the AI chatbot has a ... Jan 17, 2023 ... While many Americans were nursing hangovers on New Year's Day, 22-year-old Edward Tian was working feverishly on a new app to combat misuse ... ChatGPT is a language model created by OpenAI, an artificial intelligence research laboratory consisting of a team of researchers and engineers focused on ... 1 day ago ... Everyone is talking about ChatGPT, developed by OpenAI. This is such a great tool that has helped to make AI more accessible to a wider ...\u001b[0m\n",
|
||||
"Thought:\u001b[32;1m\u001b[1;3m I now know the final answer\n",
|
||||
"Final Answer: ChatGPT was developed by OpenAI.\u001b[0m\n",
|
||||
"\n",
|
||||
"\u001B[1m> Finished chain.\u001B[0m\n"
|
||||
"\u001b[1m> Finished chain.\u001b[0m\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -443,7 +434,7 @@
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"agent_executor.invoke({\"input\": \"Who developed it?\"})"
|
||||
"agent_chain.run(input=\"Who developed it?\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -458,14 +449,14 @@
|
||||
"text": [
|
||||
"\n",
|
||||
"\n",
|
||||
"\u001B[1m> Entering new AgentExecutor chain...\u001B[0m\n",
|
||||
"\u001B[32;1m\u001B[1;3mThought: I need to simplify the conversation for a 5 year old.\n",
|
||||
"\u001b[1m> Entering new AgentExecutor chain...\u001b[0m\n",
|
||||
"\u001b[32;1m\u001b[1;3mThought: I need to simplify the conversation for a 5 year old.\n",
|
||||
"Action: Summary\n",
|
||||
"Action Input: My daughter 5 years old\u001B[0m\n",
|
||||
"Action Input: My daughter 5 years old\u001b[0m\n",
|
||||
"\n",
|
||||
"\u001B[1m> Entering new LLMChain chain...\u001B[0m\n",
|
||||
"\u001b[1m> Entering new LLMChain chain...\u001b[0m\n",
|
||||
"Prompt after formatting:\n",
|
||||
"\u001B[32;1m\u001B[1;3mThis is a conversation between a human and a bot:\n",
|
||||
"\u001b[32;1m\u001b[1;3mThis is a conversation between a human and a bot:\n",
|
||||
"\n",
|
||||
"Human: What is ChatGPT?\n",
|
||||
"AI: ChatGPT is an artificial intelligence chatbot developed by OpenAI and launched in November 2022. It is built on top of OpenAI's GPT-3 family of large language models and is optimized for dialogue by using Reinforcement Learning with Human-in-the-Loop. It is also capable of sending and receiving images during chatting.\n",
|
||||
@@ -473,16 +464,16 @@
|
||||
"AI: ChatGPT was developed by OpenAI.\n",
|
||||
"\n",
|
||||
"Write a summary of the conversation for My daughter 5 years old:\n",
|
||||
"\u001B[0m\n",
|
||||
"\u001b[0m\n",
|
||||
"\n",
|
||||
"\u001B[1m> Finished chain.\u001B[0m\n",
|
||||
"\u001b[1m> Finished chain.\u001b[0m\n",
|
||||
"\n",
|
||||
"Observation: \u001B[33;1m\u001B[1;3m\n",
|
||||
"The conversation was about ChatGPT, an artificial intelligence chatbot developed by OpenAI. It is designed to have conversations with humans and can also send and receive images.\u001B[0m\n",
|
||||
"Thought:\u001B[32;1m\u001B[1;3m I now know the final answer.\n",
|
||||
"Final Answer: ChatGPT is an artificial intelligence chatbot developed by OpenAI that can have conversations with humans and send and receive images.\u001B[0m\n",
|
||||
"Observation: \u001b[33;1m\u001b[1;3m\n",
|
||||
"The conversation was about ChatGPT, an artificial intelligence chatbot developed by OpenAI. It is designed to have conversations with humans and can also send and receive images.\u001b[0m\n",
|
||||
"Thought:\u001b[32;1m\u001b[1;3m I now know the final answer.\n",
|
||||
"Final Answer: ChatGPT is an artificial intelligence chatbot developed by OpenAI that can have conversations with humans and send and receive images.\u001b[0m\n",
|
||||
"\n",
|
||||
"\u001B[1m> Finished chain.\u001B[0m\n"
|
||||
"\u001b[1m> Finished chain.\u001b[0m\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -497,8 +488,8 @@
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"agent_executor.invoke(\n",
|
||||
" {\"input\": \"Thanks. Summarize the conversation, for my daughter 5 years old.\"}\n",
|
||||
"agent_chain.run(\n",
|
||||
" input=\"Thanks. Summarize the conversation, for my daughter 5 years old.\"\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
@@ -533,7 +524,7 @@
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"print(agent_executor.memory.buffer)"
|
||||
"print(agent_chain.memory.buffer)"
|
||||
]
|
||||
}
|
||||
],
|
||||
|
||||
@@ -209,7 +209,7 @@
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"chain.invoke({})"
|
||||
"chain.run({})"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
||||
@@ -647,7 +647,7 @@ Sometimes you may not have the luxury of using OpenAI or other service-hosted la
|
||||
import logging
|
||||
import torch
|
||||
from transformers import AutoTokenizer, GPT2TokenizerFast, pipeline, AutoModelForSeq2SeqLM, AutoModelForCausalLM
|
||||
from langchain_huggingface import HuggingFacePipeline
|
||||
from langchain_community.llms import HuggingFacePipeline
|
||||
|
||||
# Note: This model requires a large GPU, e.g. an 80GB A100. See documentation for other ways to run private non-OpenAI models.
|
||||
model_id = "google/flan-ul2"
|
||||
@@ -992,7 +992,7 @@ Now that you have some examples (with manually corrected output SQL), you can do
|
||||
```python
|
||||
from langchain.prompts import FewShotPromptTemplate, PromptTemplate
|
||||
from langchain.chains.sql_database.prompt import _sqlite_prompt, PROMPT_SUFFIX
|
||||
from langchain_huggingface import HuggingFaceEmbeddings
|
||||
from langchain_community.embeddings.huggingface import HuggingFaceEmbeddings
|
||||
from langchain.prompts.example_selector.semantic_similarity import SemanticSimilarityExampleSelector
|
||||
from langchain_community.vectorstores import Chroma
|
||||
|
||||
|
||||
@@ -9,7 +9,7 @@
|
||||
" \n",
|
||||
"[Together AI](https://python.langchain.com/docs/integrations/llms/together) has a broad set of OSS LLMs via inference API.\n",
|
||||
"\n",
|
||||
"See [here](https://docs.together.ai/docs/inference-models). We use `\"mistralai/Mixtral-8x7B-Instruct-v0.1` for RAG on the Mixtral paper.\n",
|
||||
"See [here](https://api.together.xyz/playground). We use `\"mistralai/Mixtral-8x7B-Instruct-v0.1` for RAG on the Mixtral paper.\n",
|
||||
"\n",
|
||||
"Download the paper:\n",
|
||||
"https://arxiv.org/pdf/2401.04088.pdf"
|
||||
@@ -39,7 +39,7 @@
|
||||
"data = loader.load()\n",
|
||||
"\n",
|
||||
"# Split\n",
|
||||
"from langchain_text_splitters import RecursiveCharacterTextSplitter\n",
|
||||
"from langchain.text_splitter import RecursiveCharacterTextSplitter\n",
|
||||
"\n",
|
||||
"text_splitter = RecursiveCharacterTextSplitter(chunk_size=2000, chunk_overlap=0)\n",
|
||||
"all_splits = text_splitter.split_documents(data)\n",
|
||||
@@ -148,7 +148,7 @@
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.9.6"
|
||||
"version": "3.9.16"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
|
||||
@@ -1,199 +0,0 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 2,
|
||||
"id": "c48812ed-35bd-4fbe-9a2c-6c7335e5645e",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain_anthropic import ChatAnthropic\n",
|
||||
"from langchain_core.runnables import ConfigurableField\n",
|
||||
"from langchain_core.tools import tool\n",
|
||||
"from langchain_openai import ChatOpenAI\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"@tool\n",
|
||||
"def multiply(x: float, y: float) -> float:\n",
|
||||
" \"\"\"Multiply 'x' times 'y'.\"\"\"\n",
|
||||
" return x * y\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"@tool\n",
|
||||
"def exponentiate(x: float, y: float) -> float:\n",
|
||||
" \"\"\"Raise 'x' to the 'y'.\"\"\"\n",
|
||||
" return x**y\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"@tool\n",
|
||||
"def add(x: float, y: float) -> float:\n",
|
||||
" \"\"\"Add 'x' and 'y'.\"\"\"\n",
|
||||
" return x + y\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"tools = [multiply, exponentiate, add]\n",
|
||||
"\n",
|
||||
"gpt35 = ChatOpenAI(model=\"gpt-3.5-turbo-0125\", temperature=0).bind_tools(tools)\n",
|
||||
"claude3 = ChatAnthropic(model=\"claude-3-sonnet-20240229\").bind_tools(tools)\n",
|
||||
"llm_with_tools = gpt35.configurable_alternatives(\n",
|
||||
" ConfigurableField(id=\"llm\"), default_key=\"gpt35\", claude3=claude3\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "9c186263-1b98-4cb2-b6d1-71f65eb0d811",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# LangGraph"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 3,
|
||||
"id": "28fc2c60-7dbc-428a-8983-1a6a15ea30d2",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import operator\n",
|
||||
"from typing import Annotated, Sequence, TypedDict\n",
|
||||
"\n",
|
||||
"from langchain_core.messages import AIMessage, BaseMessage, HumanMessage, ToolMessage\n",
|
||||
"from langchain_core.runnables import RunnableLambda\n",
|
||||
"from langgraph.graph import END, StateGraph\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"class AgentState(TypedDict):\n",
|
||||
" messages: Annotated[Sequence[BaseMessage], operator.add]\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"def should_continue(state):\n",
|
||||
" return \"continue\" if state[\"messages\"][-1].tool_calls else \"end\"\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"def call_model(state, config):\n",
|
||||
" return {\"messages\": [llm_with_tools.invoke(state[\"messages\"], config=config)]}\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"def _invoke_tool(tool_call):\n",
|
||||
" tool = {tool.name: tool for tool in tools}[tool_call[\"name\"]]\n",
|
||||
" return ToolMessage(tool.invoke(tool_call[\"args\"]), tool_call_id=tool_call[\"id\"])\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"tool_executor = RunnableLambda(_invoke_tool)\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"def call_tools(state):\n",
|
||||
" last_message = state[\"messages\"][-1]\n",
|
||||
" return {\"messages\": tool_executor.batch(last_message.tool_calls)}\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"workflow = StateGraph(AgentState)\n",
|
||||
"workflow.add_node(\"agent\", call_model)\n",
|
||||
"workflow.add_node(\"action\", call_tools)\n",
|
||||
"workflow.set_entry_point(\"agent\")\n",
|
||||
"workflow.add_conditional_edges(\n",
|
||||
" \"agent\",\n",
|
||||
" should_continue,\n",
|
||||
" {\n",
|
||||
" \"continue\": \"action\",\n",
|
||||
" \"end\": END,\n",
|
||||
" },\n",
|
||||
")\n",
|
||||
"workflow.add_edge(\"action\", \"agent\")\n",
|
||||
"graph = workflow.compile()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 4,
|
||||
"id": "3710e724-2595-4625-ba3a-effb81e66e4a",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"{'messages': [HumanMessage(content=\"what's 3 plus 5 raised to the 2.743. also what's 17.24 - 918.1241\"),\n",
|
||||
" AIMessage(content='', additional_kwargs={'tool_calls': [{'id': 'call_6yMU2WsS4Bqgi1WxFHxtfJRc', 'function': {'arguments': '{\"x\": 8, \"y\": 2.743}', 'name': 'exponentiate'}, 'type': 'function'}, {'id': 'call_GAL3dQiKFF9XEV0RrRLPTvVp', 'function': {'arguments': '{\"x\": 17.24, \"y\": -918.1241}', 'name': 'add'}, 'type': 'function'}]}, response_metadata={'token_usage': {'completion_tokens': 58, 'prompt_tokens': 168, 'total_tokens': 226}, 'model_name': 'gpt-3.5-turbo-0125', 'system_fingerprint': 'fp_b28b39ffa8', 'finish_reason': 'tool_calls', 'logprobs': None}, id='run-528302fc-7acf-4c11-82c4-119ccf40c573-0', tool_calls=[{'name': 'exponentiate', 'args': {'x': 8, 'y': 2.743}, 'id': 'call_6yMU2WsS4Bqgi1WxFHxtfJRc'}, {'name': 'add', 'args': {'x': 17.24, 'y': -918.1241}, 'id': 'call_GAL3dQiKFF9XEV0RrRLPTvVp'}]),\n",
|
||||
" ToolMessage(content='300.03770462067547', tool_call_id='call_6yMU2WsS4Bqgi1WxFHxtfJRc'),\n",
|
||||
" ToolMessage(content='-900.8841', tool_call_id='call_GAL3dQiKFF9XEV0RrRLPTvVp'),\n",
|
||||
" AIMessage(content='The result of \\\\(3 + 5^{2.743}\\\\) is approximately 300.04, and the result of \\\\(17.24 - 918.1241\\\\) is approximately -900.88.', response_metadata={'token_usage': {'completion_tokens': 44, 'prompt_tokens': 251, 'total_tokens': 295}, 'model_name': 'gpt-3.5-turbo-0125', 'system_fingerprint': 'fp_b28b39ffa8', 'finish_reason': 'stop', 'logprobs': None}, id='run-d1161669-ed09-4b18-94bd-6d8530df5aa8-0')]}"
|
||||
]
|
||||
},
|
||||
"execution_count": 4,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"graph.invoke(\n",
|
||||
" {\n",
|
||||
" \"messages\": [\n",
|
||||
" HumanMessage(\n",
|
||||
" \"what's 3 plus 5 raised to the 2.743. also what's 17.24 - 918.1241\"\n",
|
||||
" )\n",
|
||||
" ]\n",
|
||||
" }\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 5,
|
||||
"id": "073c074e-d722-42e0-85ec-c62c079207e4",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"{'messages': [HumanMessage(content=\"what's 3 plus 5 raised to the 2.743. also what's 17.24 - 918.1241\"),\n",
|
||||
" AIMessage(content=[{'text': \"Okay, let's break this down into two parts:\", 'type': 'text'}, {'id': 'toolu_01DEhqcXkXTtzJAiZ7uMBeDC', 'input': {'x': 3, 'y': 5}, 'name': 'add', 'type': 'tool_use'}], response_metadata={'id': 'msg_01AkLGH8sxMHaH15yewmjwkF', 'model': 'claude-3-sonnet-20240229', 'stop_reason': 'tool_use', 'stop_sequence': None, 'usage': {'input_tokens': 450, 'output_tokens': 81}}, id='run-f35bfae8-8ded-4f8a-831b-0940d6ad16b6-0', tool_calls=[{'name': 'add', 'args': {'x': 3, 'y': 5}, 'id': 'toolu_01DEhqcXkXTtzJAiZ7uMBeDC'}]),\n",
|
||||
" ToolMessage(content='8.0', tool_call_id='toolu_01DEhqcXkXTtzJAiZ7uMBeDC'),\n",
|
||||
" AIMessage(content=[{'id': 'toolu_013DyMLrvnrto33peAKMGMr1', 'input': {'x': 8.0, 'y': 2.743}, 'name': 'exponentiate', 'type': 'tool_use'}], response_metadata={'id': 'msg_015Fmp8aztwYcce2JDAFfce3', 'model': 'claude-3-sonnet-20240229', 'stop_reason': 'tool_use', 'stop_sequence': None, 'usage': {'input_tokens': 545, 'output_tokens': 75}}, id='run-48aaeeeb-a1e5-48fd-a57a-6c3da2907b47-0', tool_calls=[{'name': 'exponentiate', 'args': {'x': 8.0, 'y': 2.743}, 'id': 'toolu_013DyMLrvnrto33peAKMGMr1'}]),\n",
|
||||
" ToolMessage(content='300.03770462067547', tool_call_id='toolu_013DyMLrvnrto33peAKMGMr1'),\n",
|
||||
" AIMessage(content=[{'text': 'So 3 plus 5 raised to the 2.743 power is 300.04.\\n\\nFor the second part:', 'type': 'text'}, {'id': 'toolu_01UTmMrGTmLpPrPCF1rShN46', 'input': {'x': 17.24, 'y': -918.1241}, 'name': 'add', 'type': 'tool_use'}], response_metadata={'id': 'msg_015TkhfRBENPib2RWAxkieH6', 'model': 'claude-3-sonnet-20240229', 'stop_reason': 'tool_use', 'stop_sequence': None, 'usage': {'input_tokens': 638, 'output_tokens': 105}}, id='run-45fb62e3-d102-4159-881d-241c5dbadeed-0', tool_calls=[{'name': 'add', 'args': {'x': 17.24, 'y': -918.1241}, 'id': 'toolu_01UTmMrGTmLpPrPCF1rShN46'}]),\n",
|
||||
" ToolMessage(content='-900.8841', tool_call_id='toolu_01UTmMrGTmLpPrPCF1rShN46'),\n",
|
||||
" AIMessage(content='Therefore, 17.24 - 918.1241 = -900.8841', response_metadata={'id': 'msg_01LgKnRuUcSyADCpxv9tPoYD', 'model': 'claude-3-sonnet-20240229', 'stop_reason': 'end_turn', 'stop_sequence': None, 'usage': {'input_tokens': 759, 'output_tokens': 24}}, id='run-1008254e-ccd1-497c-8312-9550dd77bd08-0')]}"
|
||||
]
|
||||
},
|
||||
"execution_count": 5,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"graph.invoke(\n",
|
||||
" {\n",
|
||||
" \"messages\": [\n",
|
||||
" HumanMessage(\n",
|
||||
" \"what's 3 plus 5 raised to the 2.743. also what's 17.24 - 918.1241\"\n",
|
||||
" )\n",
|
||||
" ]\n",
|
||||
" },\n",
|
||||
" config={\"configurable\": {\"llm\": \"claude3\"}},\n",
|
||||
")"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3 (ipykernel)",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.10.4"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 5
|
||||
}
|
||||
@@ -2610,7 +2610,7 @@
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"from langchain_text_splitters import CharacterTextSplitter\n",
|
||||
"from langchain.text_splitter import CharacterTextSplitter\n",
|
||||
"\n",
|
||||
"text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)\n",
|
||||
"texts = text_splitter.split_documents(docs)"
|
||||
@@ -3811,7 +3811,7 @@
|
||||
"from langchain.chains import ConversationalRetrievalChain\n",
|
||||
"from langchain_openai import ChatOpenAI\n",
|
||||
"\n",
|
||||
"model = ChatOpenAI(model=\"gpt-3.5-turbo-0613\") # switch to 'gpt-4'\n",
|
||||
"model = ChatOpenAI(model_name=\"gpt-3.5-turbo-0613\") # switch to 'gpt-4'\n",
|
||||
"qa = ConversationalRetrievalChain.from_llm(model, retriever=retriever)"
|
||||
]
|
||||
},
|
||||
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user