mirror of
https://github.com/hwchase17/langchain.git
synced 2026-02-03 15:55:44 +00:00
Compare commits
10 Commits
langchain-
...
erick/docs
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
ad87d24edc | ||
|
|
254e59c2ce | ||
|
|
01bf59679c | ||
|
|
bffca0d5c2 | ||
|
|
46ea6722f4 | ||
|
|
d83000b5b8 | ||
|
|
3dd6c05ce7 | ||
|
|
1798d6e92e | ||
|
|
9ac46cc264 | ||
|
|
ec12b492f1 |
@@ -6,4 +6,5 @@
|
||||
## Integrations
|
||||
|
||||
- [**Start Here**](integrations/index.mdx): Help us integrate with your favorite vendors and tools.
|
||||
- [**Package**](integrations/package): Publish an integration package to PyPi
|
||||
- [**Standard Tests**](integrations/standard_tests): Ensure your integration passes an expected set of tests.
|
||||
|
||||
@@ -1,3 +1,7 @@
|
||||
---
|
||||
pagination_next: null
|
||||
pagination_prev: null
|
||||
---
|
||||
## How to add a community integration (not recommended)
|
||||
|
||||
:::danger
|
||||
|
||||
@@ -1,3 +1,8 @@
|
||||
---
|
||||
pagination_next: null
|
||||
pagination_prev: null
|
||||
---
|
||||
|
||||
# How to publish an integration package from a template
|
||||
|
||||
:::danger
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
---
|
||||
sidebar_position: 5
|
||||
pagination_next: contributing/how_to/integrations/package
|
||||
---
|
||||
|
||||
# Contribute Integrations
|
||||
@@ -66,7 +66,7 @@ that will render on this site (https://python.langchain.com/).
|
||||
As a prerequisite to adding your integration to our documentation, you must:
|
||||
|
||||
1. Confirm that your integration is in the [list of components](#components-to-integrate) we are currently accepting.
|
||||
2. Ensure that your integration is in a separate package that can be installed with `pip install <your-package>`.
|
||||
2. [Publish your package to PyPi](./package.mdx) and make the repo public.
|
||||
3. [Implement the standard tests](/docs/contributing/how_to/integrations/standard_tests) for your integration and successfully run them.
|
||||
3. Write documentation for your integration in the `docs/docs/integrations/<component_type>` directory of the LangChain monorepo.
|
||||
4. Add a provider page for your integration in the `docs/docs/integrations/providers` directory of the LangChain monorepo.
|
||||
@@ -75,5 +75,4 @@ Once you have completed these steps, you can submit a PR to the LangChain monore
|
||||
|
||||
## Further Reading
|
||||
|
||||
If you're starting from scratch, you can follow the [Integration Template Guide](./from_template.mdx) to create and publish a new integration package
|
||||
to the above spec.
|
||||
To get started, let's learn [how to bootstrap a new integration package](./package.mdx) for LangChain.
|
||||
|
||||
260
docs/docs/contributing/how_to/integrations/package.mdx
Normal file
260
docs/docs/contributing/how_to/integrations/package.mdx
Normal file
@@ -0,0 +1,260 @@
|
||||
---
|
||||
pagination_next: contributing/how_to/integrations/standard_tests
|
||||
pagination_prev: contributing/how_to/integrations/index
|
||||
---
|
||||
# How to bootstrap a new integration package
|
||||
|
||||
This guide walks through the process of publishing a new LangChain integration
|
||||
package to PyPi.
|
||||
|
||||
Integration packages are just Python packages that can be installed with `pip install <your-package>`,
|
||||
which contain classes that are compatible with LangChain's core interfaces.
|
||||
|
||||
In this guide, we will be using [Poetry](https://python-poetry.org/) for
|
||||
dependency management and packaging, and you're welcome to use any other tools you prefer.
|
||||
|
||||
## **Prerequisites**
|
||||
|
||||
- [GitHub](https://github.com) account
|
||||
- [PyPi](https://pypi.org/) account
|
||||
|
||||
## Boostrapping a new Python package with Poetry
|
||||
|
||||
First, install Poetry:
|
||||
|
||||
```bash
|
||||
pip install poetry
|
||||
```
|
||||
|
||||
Next, come up with a name for your package. For this guide, we'll use `langchain-parrot-link`.
|
||||
You can confirm that the name is available on PyPi by searching for it on the [PyPi website](https://pypi.org/).
|
||||
|
||||
Next, create your new Python package with Poetry, and navigate into the new directory with `cd`:
|
||||
|
||||
```bash
|
||||
poetry new langchain-parrot-link
|
||||
cd langchain-parrot-link
|
||||
```
|
||||
|
||||
Add main dependencies using Poetry, which will add them to your `pyproject.toml` file:
|
||||
|
||||
```bash
|
||||
poetry add langchain-core
|
||||
```
|
||||
|
||||
We will also add some `test` dependencies in a separate poetry dependency group. If
|
||||
you are not using Poetry, we recommend adding these in a way that won't package them
|
||||
with your published package, or just installing them separately when you run tests.
|
||||
|
||||
`langchain-tests` will provide the [standard tests](../standard_tests) we will use later.
|
||||
We recommended pinning these to the latest version: <img src="https://img.shields.io/pypi/v/langchain-tests" style={{position:"relative",top:4,left:3}} />
|
||||
|
||||
Note: Replace `<latest_version>` with the latest version of `langchain-tests` below.
|
||||
|
||||
```bash
|
||||
poetry add --group test pytest pytest-socket langchain-tests==<latest_version>
|
||||
```
|
||||
|
||||
You're now ready to start writing your integration package!
|
||||
|
||||
## Writing your integration
|
||||
|
||||
Let's say you're building a simple integration package that provides a `ChatParrotLink`
|
||||
chat model integration for LangChain. Here's a simple example of what your project
|
||||
structure might look like:
|
||||
|
||||
```plaintext
|
||||
langchain-parrot-link/
|
||||
├── langchain_parrot_link/
|
||||
│ ├── __init__.py
|
||||
│ └── chat_models.py
|
||||
├── tests/
|
||||
│ ├── __init__.py
|
||||
│ └── test_chat_models.py
|
||||
├── pyproject.toml
|
||||
└── README.md
|
||||
```
|
||||
|
||||
All of these files should already exist from step 1, except for
|
||||
`chat_models.py` and `test_chat_models.py`! We will implement `test_chat_models.py`
|
||||
later, following the [standard tests](../standard_tests) guide.
|
||||
|
||||
To implement `chat_models.py`, let's copy the implementation from our
|
||||
[Custom Chat Model Guide](../../../../how_to/custom_chat_model).
|
||||
|
||||
<details>
|
||||
<summary>chat_models.py</summary>
|
||||
```python title="langchain_parrot_link/chat_models.py"
|
||||
from typing import Any, Dict, Iterator, List, Optional
|
||||
|
||||
from langchain_core.callbacks import (
|
||||
CallbackManagerForLLMRun,
|
||||
)
|
||||
from langchain_core.language_models import BaseChatModel
|
||||
from langchain_core.messages import (
|
||||
AIMessage,
|
||||
AIMessageChunk,
|
||||
BaseMessage,
|
||||
)
|
||||
from langchain_core.messages.ai import UsageMetadata
|
||||
from langchain_core.outputs import ChatGeneration, ChatGenerationChunk, ChatResult
|
||||
from pydantic import Field
|
||||
|
||||
|
||||
class ChatParrotLink(BaseChatModel):
|
||||
"""A custom chat model that echoes the first `parrot_buffer_length` characters
|
||||
of the input.
|
||||
|
||||
When contributing an implementation to LangChain, carefully document
|
||||
the model including the initialization parameters, include
|
||||
an example of how to initialize the model and include any relevant
|
||||
links to the underlying models documentation or API.
|
||||
|
||||
Example:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
model = ChatParrotLink(parrot_buffer_length=2, model="bird-brain-001")
|
||||
result = model.invoke([HumanMessage(content="hello")])
|
||||
result = model.batch([[HumanMessage(content="hello")],
|
||||
[HumanMessage(content="world")]])
|
||||
"""
|
||||
|
||||
model_name: str = Field(alias="model")
|
||||
"""The name of the model"""
|
||||
parrot_buffer_length: int
|
||||
"""The number of characters from the last message of the prompt to be echoed."""
|
||||
temperature: Optional[float] = None
|
||||
max_tokens: Optional[int] = None
|
||||
timeout: Optional[int] = None
|
||||
stop: Optional[List[str]] = None
|
||||
max_retries: int = 2
|
||||
|
||||
def _generate(
|
||||
self,
|
||||
messages: List[BaseMessage],
|
||||
stop: Optional[List[str]] = None,
|
||||
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
||||
**kwargs: Any,
|
||||
) -> ChatResult:
|
||||
"""Override the _generate method to implement the chat model logic.
|
||||
|
||||
This can be a call to an API, a call to a local model, or any other
|
||||
implementation that generates a response to the input prompt.
|
||||
|
||||
Args:
|
||||
messages: the prompt composed of a list of messages.
|
||||
stop: a list of strings on which the model should stop generating.
|
||||
If generation stops due to a stop token, the stop token itself
|
||||
SHOULD BE INCLUDED as part of the output. This is not enforced
|
||||
across models right now, but it's a good practice to follow since
|
||||
it makes it much easier to parse the output of the model
|
||||
downstream and understand why generation stopped.
|
||||
run_manager: A run manager with callbacks for the LLM.
|
||||
"""
|
||||
# Replace this with actual logic to generate a response from a list
|
||||
# of messages.
|
||||
last_message = messages[-1]
|
||||
tokens = last_message.content[: self.parrot_buffer_length]
|
||||
ct_input_tokens = sum(len(message.content) for message in messages)
|
||||
ct_output_tokens = len(tokens)
|
||||
message = AIMessage(
|
||||
content=tokens,
|
||||
additional_kwargs={}, # Used to add additional payload to the message
|
||||
response_metadata={ # Use for response metadata
|
||||
"time_in_seconds": 3,
|
||||
},
|
||||
usage_metadata={
|
||||
"input_tokens": ct_input_tokens,
|
||||
"output_tokens": ct_output_tokens,
|
||||
"total_tokens": ct_input_tokens + ct_output_tokens,
|
||||
},
|
||||
)
|
||||
##
|
||||
|
||||
generation = ChatGeneration(message=message)
|
||||
return ChatResult(generations=[generation])
|
||||
|
||||
def _stream(
|
||||
self,
|
||||
messages: List[BaseMessage],
|
||||
stop: Optional[List[str]] = None,
|
||||
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
||||
**kwargs: Any,
|
||||
) -> Iterator[ChatGenerationChunk]:
|
||||
"""Stream the output of the model.
|
||||
|
||||
This method should be implemented if the model can generate output
|
||||
in a streaming fashion. If the model does not support streaming,
|
||||
do not implement it. In that case streaming requests will be automatically
|
||||
handled by the _generate method.
|
||||
|
||||
Args:
|
||||
messages: the prompt composed of a list of messages.
|
||||
stop: a list of strings on which the model should stop generating.
|
||||
If generation stops due to a stop token, the stop token itself
|
||||
SHOULD BE INCLUDED as part of the output. This is not enforced
|
||||
across models right now, but it's a good practice to follow since
|
||||
it makes it much easier to parse the output of the model
|
||||
downstream and understand why generation stopped.
|
||||
run_manager: A run manager with callbacks for the LLM.
|
||||
"""
|
||||
last_message = messages[-1]
|
||||
tokens = str(last_message.content[: self.parrot_buffer_length])
|
||||
ct_input_tokens = sum(len(message.content) for message in messages)
|
||||
|
||||
for token in tokens:
|
||||
usage_metadata = UsageMetadata(
|
||||
{
|
||||
"input_tokens": ct_input_tokens,
|
||||
"output_tokens": 1,
|
||||
"total_tokens": ct_input_tokens + 1,
|
||||
}
|
||||
)
|
||||
ct_input_tokens = 0
|
||||
chunk = ChatGenerationChunk(
|
||||
message=AIMessageChunk(content=token, usage_metadata=usage_metadata)
|
||||
)
|
||||
|
||||
if run_manager:
|
||||
# This is optional in newer versions of LangChain
|
||||
# The on_llm_new_token will be called automatically
|
||||
run_manager.on_llm_new_token(token, chunk=chunk)
|
||||
|
||||
yield chunk
|
||||
|
||||
# Let's add some other information (e.g., response metadata)
|
||||
chunk = ChatGenerationChunk(
|
||||
message=AIMessageChunk(content="", response_metadata={"time_in_sec": 3})
|
||||
)
|
||||
if run_manager:
|
||||
# This is optional in newer versions of LangChain
|
||||
# The on_llm_new_token will be called automatically
|
||||
run_manager.on_llm_new_token(token, chunk=chunk)
|
||||
yield chunk
|
||||
|
||||
@property
|
||||
def _llm_type(self) -> str:
|
||||
"""Get the type of language model used by this chat model."""
|
||||
return "echoing-chat-model-advanced"
|
||||
|
||||
@property
|
||||
def _identifying_params(self) -> Dict[str, Any]:
|
||||
"""Return a dictionary of identifying parameters.
|
||||
|
||||
This information is used by the LangChain callback system, which
|
||||
is used for tracing purposes make it possible to monitor LLMs.
|
||||
"""
|
||||
return {
|
||||
# The model name allows users to specify custom token counting
|
||||
# rules in LLM monitoring applications (e.g., in LangSmith users
|
||||
# can provide per token pricing for their model and monitor
|
||||
# costs for the given LLM.)
|
||||
"model_name": self.model_name,
|
||||
}
|
||||
```
|
||||
</details>
|
||||
|
||||
## Next Steps
|
||||
|
||||
Now that you've implemented your package, you can move on to [testing your integration](../standard_tests) for your integration and successfully run them.
|
||||
146
docs/docs/contributing/how_to/integrations/publish.mdx
Normal file
146
docs/docs/contributing/how_to/integrations/publish.mdx
Normal file
@@ -0,0 +1,146 @@
|
||||
---
|
||||
pagination_prev: contributing/how_to/integrations/standard_tests
|
||||
pagination_next: null
|
||||
---
|
||||
|
||||
# Publishing your package
|
||||
|
||||
Now that your package is implemented and tested, you can:
|
||||
|
||||
1. Publish your package to PyPi
|
||||
2. Add documentation for your package to the LangChain Monorepo
|
||||
|
||||
## Publishing your package to PyPi
|
||||
|
||||
This guide assumes you have already implemented your package and written tests for it. If you haven't done that yet, please refer to the [implementation guide](../package) and the [testing guide](../standard_tests).
|
||||
|
||||
Note that Poetry is not required to publish a package to PyPi, and we're using it in this guide end-to-end for convenience.
|
||||
You are welcome to publish your package using any other method you prefer.
|
||||
|
||||
First, make sure you have a PyPi account and have logged in with Poetry:
|
||||
|
||||
<details>
|
||||
<summary>How to create a PyPi Token</summary>
|
||||
|
||||
1. Go to the [PyPi website](https://pypi.org/) and create an account.
|
||||
2. Verify your email address by clicking the link that PyPi emails to you.
|
||||
3. Go to your account settings and click "Generate Recovery Codes" to enable 2FA. To generate an API token, you **must** have 2FA enabled currently.
|
||||
4. Go to your account settings and [generate a new API token](https://pypi.org/manage/account/token/).
|
||||
|
||||
</details>
|
||||
|
||||
```bash
|
||||
poetry config pypi-token.pypi <your-pypi-token>
|
||||
```
|
||||
|
||||
Next, build your package:
|
||||
|
||||
```bash
|
||||
poetry build
|
||||
```
|
||||
|
||||
Finally, publish your package to PyPi:
|
||||
|
||||
```bash
|
||||
poetry publish
|
||||
```
|
||||
|
||||
You're all set! Your package is now available on PyPi and can be installed with `pip install langchain-parrot-link`.
|
||||
|
||||
## Adding documentation to the LangChain Monorepo
|
||||
|
||||
To add documentation for your package to the LangChain Monorepo, you will need to:
|
||||
|
||||
1. Fork and clone the LangChain Monorepo
|
||||
2. Make a "Provider Page" at `docs/docs/integrations/providers/<your-package-name>.ipynb`
|
||||
3. Make "Component Pages" at `docs/docs/integrations/<component-type>/<your-package-name>.ipynb`
|
||||
4. Register your package in `libs/packages.yml`
|
||||
5. Submit a PR with **only these changes** to the LangChain Monorepo
|
||||
|
||||
### Fork and clone the LangChain Monorepo
|
||||
|
||||
First, fork the [LangChain Monorepo](https://github.com/langchain-ai/langchain) to your GitHub account.
|
||||
|
||||
Next, clone the repository to your local machine:
|
||||
|
||||
```bash
|
||||
git clone https://github.com/<your-username>/langchain.git
|
||||
```
|
||||
|
||||
You're now ready to make your PR!
|
||||
|
||||
### Bootstrap your documentation pages with the langchain-cli (recommended)
|
||||
|
||||
To make it easier to create the necessary documentation pages, you can use the `langchain-cli` to bootstrap them for you.
|
||||
|
||||
First, install the latest version of the `langchain-cli` package:
|
||||
|
||||
```bash
|
||||
pip install --upgrade langchain-cli
|
||||
```
|
||||
|
||||
To see the available commands to bootstrap your documentation pages, run:
|
||||
|
||||
```bash
|
||||
langchain-cli integration create-doc --help
|
||||
```
|
||||
|
||||
Let's bootstrap a provider page from the root of the monorepo:
|
||||
|
||||
```bash
|
||||
langchain-cli integration create-doc \
|
||||
--component-type Provider \
|
||||
--destination-dir docs/docs/integrations/providers \
|
||||
--name parrot-link \
|
||||
--name-class ParrotLink \
|
||||
```
|
||||
|
||||
And a chat model component page:
|
||||
|
||||
```bash
|
||||
langchain-cli integration create-doc \
|
||||
--component-type ChatModel \
|
||||
--destination-dir docs/docs/integrations/chat \
|
||||
--name parrot-link \
|
||||
--name-class ParrotLink \
|
||||
```
|
||||
|
||||
And a vector store component page:
|
||||
|
||||
```bash
|
||||
langchain-cli integration create-doc \
|
||||
--component-type VectorStore \
|
||||
--destination-dir docs/docs/integrations/vectorstores \
|
||||
--name parrot-link \
|
||||
--name-class ParrotLink \
|
||||
```
|
||||
|
||||
These commands will create the following 3 files, which you should fill out with information about your package:
|
||||
|
||||
- `docs/docs/integrations/providers/parrot-link.ipynb`
|
||||
- `docs/docs/integrations/chat/parrot-link.ipynb`
|
||||
- `docs/docs/integrations/vectorstores/parrot-link.ipynb`
|
||||
|
||||
### Manually create your documentation pages (if you prefer)
|
||||
|
||||
If you prefer to create the documentation pages manually, you can create the same files listed
|
||||
above and fill them out with information about your package.
|
||||
|
||||
You can view the templates that the CLI uses to create these files [here](https://github.com/langchain-ai/langchain/tree/master/libs/cli/langchain_cli/integration_template/docs) if helpful!
|
||||
|
||||
### Register your package in `libs/packages.yml`
|
||||
|
||||
Finally, add your package to the `libs/packages.yml` file in the LangChain Monorepo.
|
||||
|
||||
```yaml
|
||||
packages:
|
||||
- name: langchain-parrot-link
|
||||
repo: <your github handle>/<your repo>
|
||||
path: .
|
||||
```
|
||||
|
||||
For `path`, you can use `.` if your package is in the root of your repository, or specify a subdirectory (e.g. `libs/parrot-link`) if it is in a subdirectory.
|
||||
|
||||
### Submit a PR with your changes
|
||||
|
||||
Once you have completed these steps, you can submit a PR to the LangChain Monorepo with **only these changes**.
|
||||
@@ -4,12 +4,18 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"---\n",
|
||||
"pagination_next: contributing/how_to/integrations/publish\n",
|
||||
"pagination_prev: contributing/how_to/integrations/package\n",
|
||||
"---\n",
|
||||
"# How to add standard tests to an integration\n",
|
||||
"\n",
|
||||
"When creating either a custom class for yourself or a new tool to publish in a LangChain integration, it is important to add standard tests to ensure it works as expected. This guide will show you how to add standard tests to a tool, and you can **[Skip to the test templates](#standard-test-templates-per-component)** for implementing tests for each integration.\n",
|
||||
"When creating either a custom class for yourself or to publish in a LangChain integration, it is important to add standard tests to ensure it works as expected. This guide will show you how to add standard tests to a custom chat model, and you can **[Skip to the test templates](#standard-test-templates-per-component)** for implementing tests for each integration type.\n",
|
||||
"\n",
|
||||
"## Setup\n",
|
||||
"\n",
|
||||
"If you're coming from the [previous guide](../package), you have already installed these dependencies, and you can skip this section.\n",
|
||||
"\n",
|
||||
"First, let's install 2 dependencies:\n",
|
||||
"\n",
|
||||
"- `langchain-core` will define the interfaces we want to import to define our custom tool.\n",
|
||||
@@ -20,45 +26,36 @@
|
||||
"Because added tests in new versions of `langchain-tests` can break your CI/CD pipelines, we recommend pinning the \n",
|
||||
"version of `langchain-tests` to avoid unexpected changes.\n",
|
||||
"\n",
|
||||
":::"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"%pip install -U langchain-core langchain-tests pytest pytest-socket"
|
||||
":::\n",
|
||||
"\n",
|
||||
"import Tabs from '@theme/Tabs';\n",
|
||||
"import TabItem from '@theme/TabItem';\n",
|
||||
"\n",
|
||||
"<Tabs>\n",
|
||||
" <TabItem value=\"poetry\" label=\"Poetry\" default>\n",
|
||||
"If you followed the [previous guide](../package), you should already have these dependencies installed!\n",
|
||||
"\n",
|
||||
"```bash\n",
|
||||
"poetry add langchain-core\n",
|
||||
"poetry add --group test pytest pytest-socket langchain-tests==<latest_version>\n",
|
||||
"```\n",
|
||||
" </TabItem>\n",
|
||||
" <TabItem value=\"pip\" label=\"Pip\">\n",
|
||||
"```bash\n",
|
||||
"pip install -U langchain-core pytest pytest-socket langchain-tests\n",
|
||||
"\n",
|
||||
"# install current package in editable mode\n",
|
||||
"pip install --editable .\n",
|
||||
"```\n",
|
||||
" </TabItem>\n",
|
||||
"</Tabs>"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Let's say we're publishing a package, `langchain_parrot_link`, that exposes a\n",
|
||||
"tool called `ParrotMultiplyTool`:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# title=\"langchain_parrot_link/tools.py\"\n",
|
||||
"from langchain_core.tools import BaseTool\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"class ParrotMultiplyTool(BaseTool):\n",
|
||||
" name: str = \"ParrotMultiplyTool\"\n",
|
||||
" description: str = (\n",
|
||||
" \"Multiply two numbers like a parrot. Parrots always add \"\n",
|
||||
" \"eighty for their matey.\"\n",
|
||||
" )\n",
|
||||
"\n",
|
||||
" def _run(self, a: int, b: int) -> int:\n",
|
||||
" return a * b + 80"
|
||||
"Let's say we're publishing a package, `langchain_parrot_link`, that exposes the chat model from the [guide on implementing the package](../package). We can add the standard tests to the package by following the steps below."
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -68,133 +65,33 @@
|
||||
"And we'll assume you've structured your package the same way as the main LangChain\n",
|
||||
"packages:\n",
|
||||
"\n",
|
||||
"```\n",
|
||||
"/\n",
|
||||
"```plaintext\n",
|
||||
"langchain-parrot-link/\n",
|
||||
"├── langchain_parrot_link/\n",
|
||||
"│ └── tools.py\n",
|
||||
"└── tests/\n",
|
||||
" ├── unit_tests/\n",
|
||||
" │ └── test_tools.py\n",
|
||||
" └── integration_tests/\n",
|
||||
" └── test_tools.py\n",
|
||||
"│ ├── __init__.py\n",
|
||||
"│ └── chat_models.py\n",
|
||||
"├── tests/\n",
|
||||
"│ ├── __init__.py\n",
|
||||
"│ └── test_chat_models.py\n",
|
||||
"├── pyproject.toml\n",
|
||||
"└── README.md\n",
|
||||
"```\n",
|
||||
"\n",
|
||||
"## Add and configure standard tests\n",
|
||||
"\n",
|
||||
"There are 2 namespaces in the `langchain-tests` package: \n",
|
||||
"\n",
|
||||
"- [unit tests](../../../concepts/testing.mdx#unit-tests) (`langchain_tests.unit_tests`): designed to be used to test the tool in isolation and without access to external services\n",
|
||||
"- [integration tests](../../../concepts/testing.mdx#unit-tests) (`langchain_tests.integration_tests`): designed to be used to test the tool with access to external services (in particular, the external service that the tool is designed to interact with).\n",
|
||||
"- [unit tests](../../../concepts/testing.mdx#unit-tests) (`langchain_tests.unit_tests`): designed to be used to test the component in isolation and without access to external services\n",
|
||||
"- [integration tests](../../../concepts/testing.mdx#unit-tests) (`langchain_tests.integration_tests`): designed to be used to test the component with access to external services (in particular, the external service that the component is designed to interact with).\n",
|
||||
"\n",
|
||||
"Both types of tests are implemented as [`pytest` class-based test suites](https://docs.pytest.org/en/7.1.x/getting-started.html#group-multiple-tests-in-a-class).\n",
|
||||
"\n",
|
||||
"By subclassing the base classes for each type of standard test (see below), you get all of the standard tests for that type, and you\n",
|
||||
"can override the properties that the test suite uses to configure the tests.\n",
|
||||
"\n",
|
||||
"### Standard tools tests\n",
|
||||
"### Standard chat model tests\n",
|
||||
"\n",
|
||||
"Here's how you would configure the standard unit tests for the custom tool, e.g. in `tests/test_tools.py`:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"title": "tests/test_custom_tool.py"
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# title=\"tests/unit_tests/test_tools.py\"\n",
|
||||
"from typing import Type\n",
|
||||
"\n",
|
||||
"from langchain_parrot_link.tools import ParrotMultiplyTool\n",
|
||||
"from langchain_tests.unit_tests import ToolsUnitTests\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"class TestParrotMultiplyToolUnit(ToolsUnitTests):\n",
|
||||
" @property\n",
|
||||
" def tool_constructor(self) -> Type[ParrotMultiplyTool]:\n",
|
||||
" return ParrotMultiplyTool\n",
|
||||
"\n",
|
||||
" @property\n",
|
||||
" def tool_constructor_params(self) -> dict:\n",
|
||||
" # if your tool constructor instead required initialization arguments like\n",
|
||||
" # `def __init__(self, some_arg: int):`, you would return those here\n",
|
||||
" # as a dictionary, e.g.: `return {'some_arg': 42}`\n",
|
||||
" return {}\n",
|
||||
"\n",
|
||||
" @property\n",
|
||||
" def tool_invoke_params_example(self) -> dict:\n",
|
||||
" \"\"\"\n",
|
||||
" Returns a dictionary representing the \"args\" of an example tool call.\n",
|
||||
"\n",
|
||||
" This should NOT be a ToolCall dict - i.e. it should not\n",
|
||||
" have {\"name\", \"id\", \"args\"} keys.\n",
|
||||
" \"\"\"\n",
|
||||
" return {\"a\": 2, \"b\": 3}"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# title=\"tests/integration_tests/test_tools.py\"\n",
|
||||
"from typing import Type\n",
|
||||
"\n",
|
||||
"from langchain_parrot_link.tools import ParrotMultiplyTool\n",
|
||||
"from langchain_tests.integration_tests import ToolsIntegrationTests\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"class TestParrotMultiplyToolIntegration(ToolsIntegrationTests):\n",
|
||||
" @property\n",
|
||||
" def tool_constructor(self) -> Type[ParrotMultiplyTool]:\n",
|
||||
" return ParrotMultiplyTool\n",
|
||||
"\n",
|
||||
" @property\n",
|
||||
" def tool_constructor_params(self) -> dict:\n",
|
||||
" # if your tool constructor instead required initialization arguments like\n",
|
||||
" # `def __init__(self, some_arg: int):`, you would return those here\n",
|
||||
" # as a dictionary, e.g.: `return {'some_arg': 42}`\n",
|
||||
" return {}\n",
|
||||
"\n",
|
||||
" @property\n",
|
||||
" def tool_invoke_params_example(self) -> dict:\n",
|
||||
" \"\"\"\n",
|
||||
" Returns a dictionary representing the \"args\" of an example tool call.\n",
|
||||
"\n",
|
||||
" This should NOT be a ToolCall dict - i.e. it should not\n",
|
||||
" have {\"name\", \"id\", \"args\"} keys.\n",
|
||||
" \"\"\"\n",
|
||||
" return {\"a\": 2, \"b\": 3}"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"and you would run these with the following commands from your project root\n",
|
||||
"\n",
|
||||
"```bash\n",
|
||||
"# run unit tests without network access\n",
|
||||
"pytest --disable-socket --allow-unix-socket tests/unit_tests\n",
|
||||
"\n",
|
||||
"# run integration tests\n",
|
||||
"pytest tests/integration_tests\n",
|
||||
"```"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Standard test templates per component:\n",
|
||||
"\n",
|
||||
"Above, we implement the **unit** and **integration** standard tests for a tool. Below are the templates for implementing the standard tests for each component:\n",
|
||||
"\n",
|
||||
"<details>\n",
|
||||
" <summary>Chat Models</summary>"
|
||||
"Here's how you would configure the standard unit tests for the custom chat model:"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -217,7 +114,11 @@
|
||||
"\n",
|
||||
" @property\n",
|
||||
" def chat_model_params(self) -> dict:\n",
|
||||
" return {\"model\": \"bird-brain-001\", \"temperature\": 0}"
|
||||
" return {\n",
|
||||
" \"model\": \"bird-brain-001\",\n",
|
||||
" \"temperature\": 0,\n",
|
||||
" \"parrot_buffer_length\": 50,\n",
|
||||
" }"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -240,7 +141,110 @@
|
||||
"\n",
|
||||
" @property\n",
|
||||
" def chat_model_params(self) -> dict:\n",
|
||||
" return {\"model\": \"bird-brain-001\", \"temperature\": 0}"
|
||||
" return {\n",
|
||||
" \"model\": \"bird-brain-001\",\n",
|
||||
" \"temperature\": 0,\n",
|
||||
" \"parrot_buffer_length\": 50,\n",
|
||||
" }"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"and you would run these with the following commands from your project root\n",
|
||||
"\n",
|
||||
"<Tabs>\n",
|
||||
" <TabItem value=\"poetry\" label=\"Poetry\" default>\n",
|
||||
"\n",
|
||||
"```bash\n",
|
||||
"# run unit tests without network access\n",
|
||||
"poetry run pytest --disable-socket --allow-unix-socket tests/unit_tests\n",
|
||||
"\n",
|
||||
"# run integration tests\n",
|
||||
"poetry run pytest tests/integration_tests\n",
|
||||
"```\n",
|
||||
"\n",
|
||||
" </TabItem>\n",
|
||||
" <TabItem value=\"pip\" label=\"Pip\">\n",
|
||||
"\n",
|
||||
"```bash\n",
|
||||
"# run unit tests without network access\n",
|
||||
"pytest --disable-socket --allow-unix-socket tests/unit_tests\n",
|
||||
"\n",
|
||||
"# run integration tests\n",
|
||||
"pytest tests/integration_tests\n",
|
||||
"```\n",
|
||||
"\n",
|
||||
" </TabItem>\n",
|
||||
"</Tabs>"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Standard test templates per component:\n",
|
||||
"\n",
|
||||
"Above, we implement the **unit** and **integration** standard tests for a tool. Below are the templates for implementing the standard tests for each component:\n",
|
||||
"\n",
|
||||
"<details>\n",
|
||||
" <summary>Chat Models</summary>\n",
|
||||
" <p>Note: The standard tests for chat models are implemented in the example in the main body of this guide too.</p>"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# title=\"tests/unit_tests/test_chat_models.py\"\n",
|
||||
"from typing import Type\n",
|
||||
"\n",
|
||||
"from langchain_parrot_link.chat_models import ChatParrotLink\n",
|
||||
"from langchain_tests.unit_tests import ChatModelUnitTests\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"class TestChatParrotLinkUnit(ChatModelUnitTests):\n",
|
||||
" @property\n",
|
||||
" def chat_model_class(self) -> Type[ChatParrotLink]:\n",
|
||||
" return ChatParrotLink\n",
|
||||
"\n",
|
||||
" @property\n",
|
||||
" def chat_model_params(self) -> dict:\n",
|
||||
" return {\n",
|
||||
" \"model\": \"bird-brain-001\",\n",
|
||||
" \"temperature\": 0,\n",
|
||||
" \"parrot_buffer_length\": 50,\n",
|
||||
" }"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# title=\"tests/integration_tests/test_chat_models.py\"\n",
|
||||
"from typing import Type\n",
|
||||
"\n",
|
||||
"from langchain_parrot_link.chat_models import ChatParrotLink\n",
|
||||
"from langchain_tests.integration_tests import ChatModelIntegrationTests\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"class TestChatParrotLinkIntegration(ChatModelIntegrationTests):\n",
|
||||
" @property\n",
|
||||
" def chat_model_class(self) -> Type[ChatParrotLink]:\n",
|
||||
" return ChatParrotLink\n",
|
||||
"\n",
|
||||
" @property\n",
|
||||
" def chat_model_params(self) -> dict:\n",
|
||||
" return {\n",
|
||||
" \"model\": \"bird-brain-001\",\n",
|
||||
" \"temperature\": 0,\n",
|
||||
" \"parrot_buffer_length\": 50,\n",
|
||||
" }"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -304,8 +308,7 @@
|
||||
"source": [
|
||||
"</details>\n",
|
||||
"<details>\n",
|
||||
" <summary>Tools/Toolkits</summary>\n",
|
||||
" <p>Note: The standard tests for tools/toolkits are implemented in the example in the main body of this guide too.</p>"
|
||||
" <summary>Tools/Toolkits</summary>"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
||||
@@ -48,7 +48,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 1,
|
||||
"execution_count": 4,
|
||||
"id": "c5046e6a-8b09-4a99-b6e6-7a605aac5738",
|
||||
"metadata": {
|
||||
"tags": []
|
||||
@@ -162,27 +162,32 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 4,
|
||||
"execution_count": null,
|
||||
"id": "25ba32e5-5a6d-49f4-bb68-911827b84d61",
|
||||
"metadata": {
|
||||
"tags": []
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from typing import Any, AsyncIterator, Dict, Iterator, List, Optional\n",
|
||||
"from typing import Any, Dict, Iterator, List, Optional\n",
|
||||
"\n",
|
||||
"from langchain_core.callbacks import (\n",
|
||||
" AsyncCallbackManagerForLLMRun,\n",
|
||||
" CallbackManagerForLLMRun,\n",
|
||||
")\n",
|
||||
"from langchain_core.language_models import BaseChatModel, SimpleChatModel\n",
|
||||
"from langchain_core.messages import AIMessageChunk, BaseMessage, HumanMessage\n",
|
||||
"from langchain_core.language_models import BaseChatModel\n",
|
||||
"from langchain_core.messages import (\n",
|
||||
" AIMessage,\n",
|
||||
" AIMessageChunk,\n",
|
||||
" BaseMessage,\n",
|
||||
")\n",
|
||||
"from langchain_core.messages.ai import UsageMetadata\n",
|
||||
"from langchain_core.outputs import ChatGeneration, ChatGenerationChunk, ChatResult\n",
|
||||
"from langchain_core.runnables import run_in_executor\n",
|
||||
"from pydantic import Field\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"class CustomChatModelAdvanced(BaseChatModel):\n",
|
||||
" \"\"\"A custom chat model that echoes the first `n` characters of the input.\n",
|
||||
"class ChatParrotLink(BaseChatModel):\n",
|
||||
" \"\"\"A custom chat model that echoes the first `parrot_buffer_length` characters\n",
|
||||
" of the input.\n",
|
||||
"\n",
|
||||
" When contributing an implementation to LangChain, carefully document\n",
|
||||
" the model including the initialization parameters, include\n",
|
||||
@@ -193,16 +198,21 @@
|
||||
"\n",
|
||||
" .. code-block:: python\n",
|
||||
"\n",
|
||||
" model = CustomChatModel(n=2)\n",
|
||||
" model = ChatParrotLink(parrot_buffer_length=2, model=\"bird-brain-001\")\n",
|
||||
" result = model.invoke([HumanMessage(content=\"hello\")])\n",
|
||||
" result = model.batch([[HumanMessage(content=\"hello\")],\n",
|
||||
" [HumanMessage(content=\"world\")]])\n",
|
||||
" \"\"\"\n",
|
||||
"\n",
|
||||
" model_name: str\n",
|
||||
" model_name: str = Field(alias=\"model\")\n",
|
||||
" \"\"\"The name of the model\"\"\"\n",
|
||||
" n: int\n",
|
||||
" parrot_buffer_length: int\n",
|
||||
" \"\"\"The number of characters from the last message of the prompt to be echoed.\"\"\"\n",
|
||||
" temperature: Optional[float] = None\n",
|
||||
" max_tokens: Optional[int] = None\n",
|
||||
" timeout: Optional[int] = None\n",
|
||||
" stop: Optional[List[str]] = None\n",
|
||||
" max_retries: int = 2\n",
|
||||
"\n",
|
||||
" def _generate(\n",
|
||||
" self,\n",
|
||||
@@ -229,13 +239,20 @@
|
||||
" # Replace this with actual logic to generate a response from a list\n",
|
||||
" # of messages.\n",
|
||||
" last_message = messages[-1]\n",
|
||||
" tokens = last_message.content[: self.n]\n",
|
||||
" tokens = last_message.content[: self.parrot_buffer_length]\n",
|
||||
" ct_input_tokens = sum(len(message.content) for message in messages)\n",
|
||||
" ct_output_tokens = len(tokens)\n",
|
||||
" message = AIMessage(\n",
|
||||
" content=tokens,\n",
|
||||
" additional_kwargs={}, # Used to add additional payload (e.g., function calling request)\n",
|
||||
" additional_kwargs={}, # Used to add additional payload to the message\n",
|
||||
" response_metadata={ # Use for response metadata\n",
|
||||
" \"time_in_seconds\": 3,\n",
|
||||
" },\n",
|
||||
" usage_metadata={\n",
|
||||
" \"input_tokens\": ct_input_tokens,\n",
|
||||
" \"output_tokens\": ct_output_tokens,\n",
|
||||
" \"total_tokens\": ct_input_tokens + ct_output_tokens,\n",
|
||||
" },\n",
|
||||
" )\n",
|
||||
" ##\n",
|
||||
"\n",
|
||||
@@ -267,10 +284,21 @@
|
||||
" run_manager: A run manager with callbacks for the LLM.\n",
|
||||
" \"\"\"\n",
|
||||
" last_message = messages[-1]\n",
|
||||
" tokens = last_message.content[: self.n]\n",
|
||||
" tokens = str(last_message.content[: self.parrot_buffer_length])\n",
|
||||
" ct_input_tokens = sum(len(message.content) for message in messages)\n",
|
||||
"\n",
|
||||
" for token in tokens:\n",
|
||||
" chunk = ChatGenerationChunk(message=AIMessageChunk(content=token))\n",
|
||||
" usage_metadata = UsageMetadata(\n",
|
||||
" {\n",
|
||||
" \"input_tokens\": ct_input_tokens,\n",
|
||||
" \"output_tokens\": 1,\n",
|
||||
" \"total_tokens\": ct_input_tokens + 1,\n",
|
||||
" }\n",
|
||||
" )\n",
|
||||
" ct_input_tokens = 0\n",
|
||||
" chunk = ChatGenerationChunk(\n",
|
||||
" message=AIMessageChunk(content=token, usage_metadata=usage_metadata)\n",
|
||||
" )\n",
|
||||
"\n",
|
||||
" if run_manager:\n",
|
||||
" # This is optional in newer versions of LangChain\n",
|
||||
@@ -322,7 +350,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 6,
|
||||
"execution_count": 5,
|
||||
"id": "27689f30-dcd2-466b-ba9d-f60b7d434110",
|
||||
"metadata": {
|
||||
"tags": []
|
||||
@@ -331,16 +359,16 @@
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"AIMessage(content='Meo', response_metadata={'time_in_seconds': 3}, id='run-ddb42bd6-4fdd-4bd2-8be5-e11b67d3ac29-0')"
|
||||
"AIMessage(content='Meo', additional_kwargs={}, response_metadata={'time_in_seconds': 3}, id='run-cf11aeb6-8ab6-43d7-8c68-c1ef89b6d78e-0', usage_metadata={'input_tokens': 26, 'output_tokens': 3, 'total_tokens': 29})"
|
||||
]
|
||||
},
|
||||
"execution_count": 6,
|
||||
"execution_count": 5,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"model = CustomChatModelAdvanced(n=3, model_name=\"my_custom_model\")\n",
|
||||
"model = ChatParrotLink(parrot_buffer_length=3, model=\"my_custom_model\")\n",
|
||||
"\n",
|
||||
"model.invoke(\n",
|
||||
" [\n",
|
||||
@@ -353,7 +381,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 7,
|
||||
"execution_count": 6,
|
||||
"id": "406436df-31bf-466b-9c3d-39db9d6b6407",
|
||||
"metadata": {
|
||||
"tags": []
|
||||
@@ -362,10 +390,10 @@
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"AIMessage(content='hel', response_metadata={'time_in_seconds': 3}, id='run-4d3cc912-44aa-454b-977b-ca02be06c12e-0')"
|
||||
"AIMessage(content='hel', additional_kwargs={}, response_metadata={'time_in_seconds': 3}, id='run-618e5ed4-d611-4083-8cf1-c270726be8d9-0', usage_metadata={'input_tokens': 5, 'output_tokens': 3, 'total_tokens': 8})"
|
||||
]
|
||||
},
|
||||
"execution_count": 7,
|
||||
"execution_count": 6,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
@@ -376,7 +404,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 8,
|
||||
"execution_count": 7,
|
||||
"id": "a72ffa46-6004-41ef-bbe4-56fa17a029e2",
|
||||
"metadata": {
|
||||
"tags": []
|
||||
@@ -385,11 +413,11 @@
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"[AIMessage(content='hel', response_metadata={'time_in_seconds': 3}, id='run-9620e228-1912-4582-8aa1-176813afec49-0'),\n",
|
||||
" AIMessage(content='goo', response_metadata={'time_in_seconds': 3}, id='run-1ce8cdf8-6f75-448e-82f7-1bb4a121df93-0')]"
|
||||
"[AIMessage(content='hel', additional_kwargs={}, response_metadata={'time_in_seconds': 3}, id='run-eea4ed7d-d750-48dc-90c0-7acca1ff388f-0', usage_metadata={'input_tokens': 5, 'output_tokens': 3, 'total_tokens': 8}),\n",
|
||||
" AIMessage(content='goo', additional_kwargs={}, response_metadata={'time_in_seconds': 3}, id='run-07cfc5c1-3c62-485f-b1e0-3d46e1547287-0', usage_metadata={'input_tokens': 7, 'output_tokens': 3, 'total_tokens': 10})]"
|
||||
]
|
||||
},
|
||||
"execution_count": 8,
|
||||
"execution_count": 7,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
@@ -400,7 +428,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 9,
|
||||
"execution_count": 8,
|
||||
"id": "3633be2c-2ea0-42f9-a72f-3b5240690b55",
|
||||
"metadata": {
|
||||
"tags": []
|
||||
@@ -429,7 +457,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 10,
|
||||
"execution_count": 9,
|
||||
"id": "b7d73995-eeab-48c6-a7d8-32c98ba29fc2",
|
||||
"metadata": {
|
||||
"tags": []
|
||||
@@ -458,7 +486,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 11,
|
||||
"execution_count": 10,
|
||||
"id": "17840eba-8ff4-4e73-8e4f-85f16eb1c9d0",
|
||||
"metadata": {
|
||||
"tags": []
|
||||
@@ -468,20 +496,12 @@
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"{'event': 'on_chat_model_start', 'run_id': '125a2a16-b9cd-40de-aa08-8aa9180b07d0', 'name': 'CustomChatModelAdvanced', 'tags': [], 'metadata': {}, 'data': {'input': 'cat'}}\n",
|
||||
"{'event': 'on_chat_model_stream', 'run_id': '125a2a16-b9cd-40de-aa08-8aa9180b07d0', 'tags': [], 'metadata': {}, 'name': 'CustomChatModelAdvanced', 'data': {'chunk': AIMessageChunk(content='c', id='run-125a2a16-b9cd-40de-aa08-8aa9180b07d0')}}\n",
|
||||
"{'event': 'on_chat_model_stream', 'run_id': '125a2a16-b9cd-40de-aa08-8aa9180b07d0', 'tags': [], 'metadata': {}, 'name': 'CustomChatModelAdvanced', 'data': {'chunk': AIMessageChunk(content='a', id='run-125a2a16-b9cd-40de-aa08-8aa9180b07d0')}}\n",
|
||||
"{'event': 'on_chat_model_stream', 'run_id': '125a2a16-b9cd-40de-aa08-8aa9180b07d0', 'tags': [], 'metadata': {}, 'name': 'CustomChatModelAdvanced', 'data': {'chunk': AIMessageChunk(content='t', id='run-125a2a16-b9cd-40de-aa08-8aa9180b07d0')}}\n",
|
||||
"{'event': 'on_chat_model_stream', 'run_id': '125a2a16-b9cd-40de-aa08-8aa9180b07d0', 'tags': [], 'metadata': {}, 'name': 'CustomChatModelAdvanced', 'data': {'chunk': AIMessageChunk(content='', response_metadata={'time_in_sec': 3}, id='run-125a2a16-b9cd-40de-aa08-8aa9180b07d0')}}\n",
|
||||
"{'event': 'on_chat_model_end', 'name': 'CustomChatModelAdvanced', 'run_id': '125a2a16-b9cd-40de-aa08-8aa9180b07d0', 'tags': [], 'metadata': {}, 'data': {'output': AIMessageChunk(content='cat', response_metadata={'time_in_sec': 3}, id='run-125a2a16-b9cd-40de-aa08-8aa9180b07d0')}}\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"name": "stderr",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"/home/eugene/src/langchain/libs/core/langchain_core/_api/beta_decorator.py:87: LangChainBetaWarning: This API is in beta and may change in the future.\n",
|
||||
" warn_beta(\n"
|
||||
"{'event': 'on_chat_model_start', 'run_id': '3f0b5501-5c78-45b3-92fc-8322a6a5024a', 'name': 'ChatParrotLink', 'tags': [], 'metadata': {}, 'data': {'input': 'cat'}, 'parent_ids': []}\n",
|
||||
"{'event': 'on_chat_model_stream', 'run_id': '3f0b5501-5c78-45b3-92fc-8322a6a5024a', 'tags': [], 'metadata': {}, 'name': 'ChatParrotLink', 'data': {'chunk': AIMessageChunk(content='c', additional_kwargs={}, response_metadata={}, id='run-3f0b5501-5c78-45b3-92fc-8322a6a5024a', usage_metadata={'input_tokens': 3, 'output_tokens': 1, 'total_tokens': 4})}, 'parent_ids': []}\n",
|
||||
"{'event': 'on_chat_model_stream', 'run_id': '3f0b5501-5c78-45b3-92fc-8322a6a5024a', 'tags': [], 'metadata': {}, 'name': 'ChatParrotLink', 'data': {'chunk': AIMessageChunk(content='a', additional_kwargs={}, response_metadata={}, id='run-3f0b5501-5c78-45b3-92fc-8322a6a5024a', usage_metadata={'input_tokens': 0, 'output_tokens': 1, 'total_tokens': 1})}, 'parent_ids': []}\n",
|
||||
"{'event': 'on_chat_model_stream', 'run_id': '3f0b5501-5c78-45b3-92fc-8322a6a5024a', 'tags': [], 'metadata': {}, 'name': 'ChatParrotLink', 'data': {'chunk': AIMessageChunk(content='t', additional_kwargs={}, response_metadata={}, id='run-3f0b5501-5c78-45b3-92fc-8322a6a5024a', usage_metadata={'input_tokens': 0, 'output_tokens': 1, 'total_tokens': 1})}, 'parent_ids': []}\n",
|
||||
"{'event': 'on_chat_model_stream', 'run_id': '3f0b5501-5c78-45b3-92fc-8322a6a5024a', 'tags': [], 'metadata': {}, 'name': 'ChatParrotLink', 'data': {'chunk': AIMessageChunk(content='', additional_kwargs={}, response_metadata={'time_in_sec': 3}, id='run-3f0b5501-5c78-45b3-92fc-8322a6a5024a')}, 'parent_ids': []}\n",
|
||||
"{'event': 'on_chat_model_end', 'name': 'ChatParrotLink', 'run_id': '3f0b5501-5c78-45b3-92fc-8322a6a5024a', 'tags': [], 'metadata': {}, 'data': {'output': AIMessageChunk(content='cat', additional_kwargs={}, response_metadata={'time_in_sec': 3}, id='run-3f0b5501-5c78-45b3-92fc-8322a6a5024a', usage_metadata={'input_tokens': 3, 'output_tokens': 3, 'total_tokens': 6})}, 'parent_ids': []}\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
@@ -547,7 +567,7 @@
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3 (ipykernel)",
|
||||
"display_name": ".venv",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
@@ -561,7 +581,7 @@
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.9.1"
|
||||
"version": "3.11.4"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
|
||||
@@ -140,6 +140,8 @@ TEMPLATE_MAP: dict[str, str] = {
|
||||
"Retriever": "retrievers.ipynb",
|
||||
}
|
||||
|
||||
_component_types_str = ", ".join(f"`{k}`" for k in TEMPLATE_MAP.keys())
|
||||
|
||||
|
||||
@integration_cli.command()
|
||||
def create_doc(
|
||||
@@ -170,8 +172,7 @@ def create_doc(
|
||||
str,
|
||||
typer.Option(
|
||||
help=(
|
||||
"The type of component. Currently only 'ChatModel', "
|
||||
"'DocumentLoader', 'VectorStore' supported."
|
||||
f"The type of component. Currently supported: {_component_types_str}."
|
||||
),
|
||||
),
|
||||
] = "ChatModel",
|
||||
@@ -220,8 +221,7 @@ def create_doc(
|
||||
docs_template = template_dir / TEMPLATE_MAP[component_type]
|
||||
else:
|
||||
raise ValueError(
|
||||
f"Unrecognized {component_type=}. Expected one of 'ChatModel', "
|
||||
f"'DocumentLoader', 'Tool'."
|
||||
f"Unrecognized {component_type=}. Expected one of {_component_types_str}."
|
||||
)
|
||||
shutil.copy(docs_template, destination_path)
|
||||
|
||||
|
||||
@@ -493,9 +493,13 @@ class ChatModelIntegrationTests(ChatModelTests):
|
||||
message=AIMessage(
|
||||
content="Output text",
|
||||
usage_metadata={
|
||||
"input_tokens": 0,
|
||||
"output_tokens": 240,
|
||||
"total_tokens": 590,
|
||||
"input_tokens": (
|
||||
num_input_tokens if is_first_chunk else 0
|
||||
),
|
||||
"output_tokens": 11,
|
||||
"total_tokens": (
|
||||
11+num_input_tokens if is_first_chunk else 11
|
||||
),
|
||||
"input_token_details": {
|
||||
"audio": 10,
|
||||
"cache_creation": 200,
|
||||
|
||||
167
libs/standard-tests/tests/unit_tests/custom_chat_model.py
Normal file
167
libs/standard-tests/tests/unit_tests/custom_chat_model.py
Normal file
@@ -0,0 +1,167 @@
|
||||
from typing import Any, Dict, Iterator, List, Optional
|
||||
|
||||
from langchain_core.callbacks import (
|
||||
CallbackManagerForLLMRun,
|
||||
)
|
||||
from langchain_core.language_models import BaseChatModel
|
||||
from langchain_core.messages import (
|
||||
AIMessage,
|
||||
AIMessageChunk,
|
||||
BaseMessage,
|
||||
)
|
||||
from langchain_core.messages.ai import UsageMetadata
|
||||
from langchain_core.outputs import ChatGeneration, ChatGenerationChunk, ChatResult
|
||||
from pydantic import Field
|
||||
|
||||
|
||||
class ChatParrotLink(BaseChatModel):
|
||||
"""A custom chat model that echoes the first `parrot_buffer_length` characters
|
||||
of the input.
|
||||
|
||||
When contributing an implementation to LangChain, carefully document
|
||||
the model including the initialization parameters, include
|
||||
an example of how to initialize the model and include any relevant
|
||||
links to the underlying models documentation or API.
|
||||
|
||||
Example:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
model = ChatParrotLink(parrot_buffer_length=2, model="bird-brain-001")
|
||||
result = model.invoke([HumanMessage(content="hello")])
|
||||
result = model.batch([[HumanMessage(content="hello")],
|
||||
[HumanMessage(content="world")]])
|
||||
"""
|
||||
|
||||
model_name: str = Field(alias="model")
|
||||
"""The name of the model"""
|
||||
parrot_buffer_length: int
|
||||
"""The number of characters from the last message of the prompt to be echoed."""
|
||||
temperature: Optional[float] = None
|
||||
max_tokens: Optional[int] = None
|
||||
timeout: Optional[int] = None
|
||||
stop: Optional[List[str]] = None
|
||||
max_retries: int = 2
|
||||
|
||||
def _generate(
|
||||
self,
|
||||
messages: List[BaseMessage],
|
||||
stop: Optional[List[str]] = None,
|
||||
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
||||
**kwargs: Any,
|
||||
) -> ChatResult:
|
||||
"""Override the _generate method to implement the chat model logic.
|
||||
|
||||
This can be a call to an API, a call to a local model, or any other
|
||||
implementation that generates a response to the input prompt.
|
||||
|
||||
Args:
|
||||
messages: the prompt composed of a list of messages.
|
||||
stop: a list of strings on which the model should stop generating.
|
||||
If generation stops due to a stop token, the stop token itself
|
||||
SHOULD BE INCLUDED as part of the output. This is not enforced
|
||||
across models right now, but it's a good practice to follow since
|
||||
it makes it much easier to parse the output of the model
|
||||
downstream and understand why generation stopped.
|
||||
run_manager: A run manager with callbacks for the LLM.
|
||||
"""
|
||||
# Replace this with actual logic to generate a response from a list
|
||||
# of messages.
|
||||
last_message = messages[-1]
|
||||
tokens = last_message.content[: self.parrot_buffer_length]
|
||||
ct_input_tokens = sum(len(message.content) for message in messages)
|
||||
ct_output_tokens = len(tokens)
|
||||
message = AIMessage(
|
||||
content=tokens,
|
||||
additional_kwargs={}, # Used to add additional payload to the message
|
||||
response_metadata={ # Use for response metadata
|
||||
"time_in_seconds": 3,
|
||||
},
|
||||
usage_metadata={
|
||||
"input_tokens": ct_input_tokens,
|
||||
"output_tokens": ct_output_tokens,
|
||||
"total_tokens": ct_input_tokens + ct_output_tokens,
|
||||
},
|
||||
)
|
||||
##
|
||||
|
||||
generation = ChatGeneration(message=message)
|
||||
return ChatResult(generations=[generation])
|
||||
|
||||
def _stream(
|
||||
self,
|
||||
messages: List[BaseMessage],
|
||||
stop: Optional[List[str]] = None,
|
||||
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
||||
**kwargs: Any,
|
||||
) -> Iterator[ChatGenerationChunk]:
|
||||
"""Stream the output of the model.
|
||||
|
||||
This method should be implemented if the model can generate output
|
||||
in a streaming fashion. If the model does not support streaming,
|
||||
do not implement it. In that case streaming requests will be automatically
|
||||
handled by the _generate method.
|
||||
|
||||
Args:
|
||||
messages: the prompt composed of a list of messages.
|
||||
stop: a list of strings on which the model should stop generating.
|
||||
If generation stops due to a stop token, the stop token itself
|
||||
SHOULD BE INCLUDED as part of the output. This is not enforced
|
||||
across models right now, but it's a good practice to follow since
|
||||
it makes it much easier to parse the output of the model
|
||||
downstream and understand why generation stopped.
|
||||
run_manager: A run manager with callbacks for the LLM.
|
||||
"""
|
||||
last_message = messages[-1]
|
||||
tokens = str(last_message.content[: self.parrot_buffer_length])
|
||||
ct_input_tokens = sum(len(message.content) for message in messages)
|
||||
|
||||
for token in tokens:
|
||||
usage_metadata = UsageMetadata(
|
||||
{
|
||||
"input_tokens": ct_input_tokens,
|
||||
"output_tokens": 1,
|
||||
"total_tokens": ct_input_tokens + 1,
|
||||
}
|
||||
)
|
||||
ct_input_tokens = 0
|
||||
chunk = ChatGenerationChunk(
|
||||
message=AIMessageChunk(content=token, usage_metadata=usage_metadata)
|
||||
)
|
||||
|
||||
if run_manager:
|
||||
# This is optional in newer versions of LangChain
|
||||
# The on_llm_new_token will be called automatically
|
||||
run_manager.on_llm_new_token(token, chunk=chunk)
|
||||
|
||||
yield chunk
|
||||
|
||||
# Let's add some other information (e.g., response metadata)
|
||||
chunk = ChatGenerationChunk(
|
||||
message=AIMessageChunk(content="", response_metadata={"time_in_sec": 3})
|
||||
)
|
||||
if run_manager:
|
||||
# This is optional in newer versions of LangChain
|
||||
# The on_llm_new_token will be called automatically
|
||||
run_manager.on_llm_new_token(token, chunk=chunk)
|
||||
yield chunk
|
||||
|
||||
@property
|
||||
def _llm_type(self) -> str:
|
||||
"""Get the type of language model used by this chat model."""
|
||||
return "echoing-chat-model-advanced"
|
||||
|
||||
@property
|
||||
def _identifying_params(self) -> Dict[str, Any]:
|
||||
"""Return a dictionary of identifying parameters.
|
||||
|
||||
This information is used by the LangChain callback system, which
|
||||
is used for tracing purposes make it possible to monitor LLMs.
|
||||
"""
|
||||
return {
|
||||
# The model name allows users to specify custom token counting
|
||||
# rules in LLM monitoring applications (e.g., in LangSmith users
|
||||
# can provide per token pricing for their model and monitor
|
||||
# costs for the given LLM.)
|
||||
"model_name": self.model_name,
|
||||
}
|
||||
@@ -0,0 +1,30 @@
|
||||
"""
|
||||
Test the standard tests on the custom chat model in the docs
|
||||
"""
|
||||
|
||||
from typing import Type
|
||||
|
||||
from langchain_tests.integration_tests import ChatModelIntegrationTests
|
||||
from langchain_tests.unit_tests import ChatModelUnitTests
|
||||
|
||||
from .custom_chat_model import ChatParrotLink
|
||||
|
||||
|
||||
class TestChatParrotLinkUnit(ChatModelUnitTests):
|
||||
@property
|
||||
def chat_model_class(self) -> Type[ChatParrotLink]:
|
||||
return ChatParrotLink
|
||||
|
||||
@property
|
||||
def chat_model_params(self) -> dict:
|
||||
return {"model": "bird-brain-001", "temperature": 0, "parrot_buffer_length": 50}
|
||||
|
||||
|
||||
class TestChatParrotLinkIntegration(ChatModelIntegrationTests):
|
||||
@property
|
||||
def chat_model_class(self) -> Type[ChatParrotLink]:
|
||||
return ChatParrotLink
|
||||
|
||||
@property
|
||||
def chat_model_params(self) -> dict:
|
||||
return {"model": "bird-brain-001", "temperature": 0, "parrot_buffer_length": 50}
|
||||
Reference in New Issue
Block a user