Compare commits

..

1 Commits

Author SHA1 Message Date
Chester Curme
045ac176d8 test o3-mini 2025-01-31 15:50:30 -05:00
475 changed files with 60273 additions and 65510 deletions

View File

@@ -1,21 +0,0 @@
# TODO: https://docs.astral.sh/uv/guides/integration/github/#caching
name: uv-install
description: Set up Python and uv
inputs:
python-version:
description: Python version, supporting MAJOR.MINOR only
required: true
env:
UV_VERSION: "0.5.25"
runs:
using: composite
steps:
- name: Install uv and set the python version
uses: astral-sh/setup-uv@v5
with:
version: ${{ env.UV_VERSION }}
python-version: ${{ inputs.python-version }}

View File

@@ -7,8 +7,6 @@ from typing import Dict, List, Set
from pathlib import Path
import tomllib
from packaging.requirements import Requirement
from get_min_versions import get_min_version_from_toml
@@ -39,7 +37,6 @@ IGNORED_PARTNERS = [
PY_312_MAX_PACKAGES = [
"libs/partners/huggingface", # https://github.com/pytorch/pytorch/issues/130249
"libs/partners/voyageai",
]
@@ -64,17 +61,15 @@ def dependents_graph() -> dict:
# load regular and test deps from pyproject.toml
with open(path, "rb") as f:
pyproject = tomllib.load(f)
pyproject = tomllib.load(f)["tool"]["poetry"]
pkg_dir = "libs" + "/".join(path.split("libs")[1].split("/")[:-1])
for dep in [
*pyproject["project"]["dependencies"],
*pyproject["dependency-groups"]["test"],
*pyproject["dependencies"].keys(),
*pyproject["group"]["test"]["dependencies"].keys(),
]:
requirement = Requirement(dep)
package_name = requirement.name
if "langchain" in dep:
dependents[package_name].add(pkg_dir)
dependents[dep].add(pkg_dir)
continue
# load extended deps from extended_testing_deps.txt
@@ -125,7 +120,8 @@ def _get_configs_for_single_dir(job: str, dir_: str) -> List[Dict[str, str]]:
py_versions = ["3.9", "3.10", "3.11", "3.12", "3.13"]
# custom logic for specific directories
elif dir_ == "libs/partners/milvus":
# milvus doesn't allow 3.12 because they declare deps in funny way
# milvus poetry doesn't allow 3.12 because they
# declare deps in funny way
py_versions = ["3.9", "3.11"]
elif dir_ in PY_312_MAX_PACKAGES:
@@ -152,17 +148,17 @@ def _get_configs_for_single_dir(job: str, dir_: str) -> List[Dict[str, str]]:
def _get_pydantic_test_configs(
dir_: str, *, python_version: str = "3.11"
) -> List[Dict[str, str]]:
with open("./libs/core/uv.lock", "rb") as f:
core_uv_lock_data = tomllib.load(f)
for package in core_uv_lock_data["package"]:
with open("./libs/core/poetry.lock", "rb") as f:
core_poetry_lock_data = tomllib.load(f)
for package in core_poetry_lock_data["package"]:
if package["name"] == "pydantic":
core_max_pydantic_minor = package["version"].split(".")[1]
break
with open(f"./{dir_}/uv.lock", "rb") as f:
dir_uv_lock_data = tomllib.load(f)
with open(f"./{dir_}/poetry.lock", "rb") as f:
dir_poetry_lock_data = tomllib.load(f)
for package in dir_uv_lock_data["package"]:
for package in dir_poetry_lock_data["package"]:
if package["name"] == "pydantic":
dir_max_pydantic_minor = package["version"].split(".")[1]
break
@@ -308,7 +304,7 @@ if __name__ == "__main__":
f"Unknown lib: {file}. check_diff.py likely needs "
"an update for this new library!"
)
elif file.startswith("docs/") or file in ["pyproject.toml", "uv.lock"]: # docs or root uv files
elif file.startswith("docs/") or file in ["pyproject.toml", "poetry.lock"]: # docs or root poetry files
docs_edited = True
dirs_to_run["lint"].add(".")

View File

@@ -10,25 +10,26 @@ if __name__ == "__main__":
toml_data = tomllib.load(file)
# see if we're releasing an rc
version = toml_data["project"]["version"]
version = toml_data["tool"]["poetry"]["version"]
releasing_rc = "rc" in version or "dev" in version
# if not, iterate through dependencies and make sure none allow prereleases
if not releasing_rc:
dependencies = toml_data["project"]["dependencies"]
for dep_version in dependencies:
dependencies = toml_data["tool"]["poetry"]["dependencies"]
for lib in dependencies:
dep_version = dependencies[lib]
dep_version_string = (
dep_version["version"] if isinstance(dep_version, dict) else dep_version
)
if "rc" in dep_version_string:
raise ValueError(
f"Dependency {dep_version} has a prerelease version. Please remove this."
f"Dependency {lib} has a prerelease version. Please remove this."
)
if isinstance(dep_version, dict) and dep_version.get(
"allow-prereleases", False
):
raise ValueError(
f"Dependency {dep_version} has allow-prereleases set to true. Please remove this."
f"Dependency {lib} has allow-prereleases set to true. Please remove this."
)

View File

@@ -1,4 +1,3 @@
from collections import defaultdict
import sys
from typing import Optional
@@ -8,7 +7,6 @@ else:
# for python 3.10 and below, which doesnt have stdlib tomllib
import tomli as tomllib
from packaging.requirements import Requirement
from packaging.specifiers import SpecifierSet
from packaging.version import Version
@@ -96,23 +94,6 @@ def get_minimum_version(package_name: str, spec_string: str) -> Optional[str]:
return str(min(valid_versions)) if valid_versions else None
def _check_python_version_from_requirement(
requirement: Requirement, python_version: str
) -> bool:
if not requirement.marker:
return True
else:
marker_str = str(requirement.marker)
if "python_version" or "python_full_version" in marker_str:
python_version_str = "".join(
char
for char in marker_str
if char.isdigit() or char in (".", "<", ">", "=", ",")
)
return check_python_version(python_version, python_version_str)
return True
def get_min_version_from_toml(
toml_path: str,
versions_for: str,
@@ -124,10 +105,8 @@ def get_min_version_from_toml(
with open(toml_path, "rb") as file:
toml_data = tomllib.load(file)
dependencies = defaultdict(list)
for dep in toml_data["project"]["dependencies"]:
requirement = Requirement(dep)
dependencies[requirement.name].append(requirement)
# Get the dependencies from tool.poetry.dependencies
dependencies = toml_data["tool"]["poetry"]["dependencies"]
# Initialize a dictionary to store the minimum versions
min_versions = {}
@@ -142,11 +121,17 @@ def get_min_version_from_toml(
if lib in dependencies:
if include and lib not in include:
continue
requirements = dependencies[lib]
for requirement in requirements:
if _check_python_version_from_requirement(requirement, python_version):
version_string = str(requirement.specifier)
break
# Get the version string
version_string = dependencies[lib]
if isinstance(version_string, dict):
version_string = version_string["version"]
if isinstance(version_string, list):
version_string = [
vs
for vs in version_string
if check_python_version(python_version, vs["python"])
][0]["version"]
# Use parse_version to get the minimum supported version from version_string
min_version = get_minimum_version(lib, version_string)

View File

@@ -13,7 +13,7 @@ on:
description: "Python version to use"
env:
UV_FROZEN: "true"
POETRY_VERSION: "1.8.4"
jobs:
build:
@@ -22,22 +22,25 @@ jobs:
working-directory: ${{ inputs.working-directory }}
runs-on: ubuntu-latest
timeout-minutes: 20
name: "uv run pytest -m compile tests/integration_tests #${{ inputs.python-version }}"
name: "poetry run pytest -m compile tests/integration_tests #${{ inputs.python-version }}"
steps:
- uses: actions/checkout@v4
- name: Set up Python ${{ inputs.python-version }} + uv
uses: "./.github/actions/uv_setup"
- name: Set up Python ${{ inputs.python-version }} + Poetry ${{ env.POETRY_VERSION }}
uses: "./.github/actions/poetry_setup"
with:
python-version: ${{ inputs.python-version }}
poetry-version: ${{ env.POETRY_VERSION }}
working-directory: ${{ inputs.working-directory }}
cache-key: compile-integration
- name: Install integration dependencies
shell: bash
run: uv sync --group test --group test_integration
run: poetry install --with=test_integration,test
- name: Check integration tests compile
shell: bash
run: uv run pytest -m compile tests/integration_tests
run: poetry run pytest -m compile tests/integration_tests
- name: Ensure the tests did not create any additional files
shell: bash

View File

@@ -12,7 +12,7 @@ on:
description: "Python version to use"
env:
UV_FROZEN: "true"
POETRY_VERSION: "1.8.4"
jobs:
build:
@@ -24,19 +24,22 @@ jobs:
steps:
- uses: actions/checkout@v4
- name: Set up Python ${{ inputs.python-version }} + uv
uses: "./.github/actions/uv_setup"
- name: Set up Python ${{ inputs.python-version }} + Poetry ${{ env.POETRY_VERSION }}
uses: "./.github/actions/poetry_setup"
with:
python-version: ${{ inputs.python-version }}
poetry-version: ${{ env.POETRY_VERSION }}
working-directory: ${{ inputs.working-directory }}
cache-key: core
- name: Install dependencies
shell: bash
run: uv sync --group test --group test_integration
run: poetry install --with test,test_integration
- name: Install deps outside pyproject
if: ${{ startsWith(inputs.working-directory, 'libs/community/') }}
shell: bash
run: VIRTUAL_ENV=.venv uv pip install "boto3<2" "google-cloud-aiplatform<2"
run: poetry run pip install "boto3<2" "google-cloud-aiplatform<2"
- name: Run integration tests
shell: bash

View File

@@ -13,13 +13,12 @@ on:
description: "Python version to use"
env:
POETRY_VERSION: "1.8.4"
WORKDIR: ${{ inputs.working-directory == '' && '.' || inputs.working-directory }}
# This env var allows us to get inline annotations when ruff has complaints.
RUFF_OUTPUT_FORMAT: github
UV_FROZEN: "true"
jobs:
build:
name: "make lint #${{ inputs.python-version }}"
@@ -28,10 +27,25 @@ jobs:
steps:
- uses: actions/checkout@v4
- name: Set up Python ${{ inputs.python-version }} + uv
uses: "./.github/actions/uv_setup"
- name: Set up Python ${{ inputs.python-version }} + Poetry ${{ env.POETRY_VERSION }}
uses: "./.github/actions/poetry_setup"
with:
python-version: ${{ inputs.python-version }}
poetry-version: ${{ env.POETRY_VERSION }}
working-directory: ${{ inputs.working-directory }}
cache-key: lint-with-extras
- name: Check Poetry File
shell: bash
working-directory: ${{ inputs.working-directory }}
run: |
poetry check
- name: Check lock file
shell: bash
working-directory: ${{ inputs.working-directory }}
run: |
poetry lock --check
- name: Install dependencies
# Also installs dev/lint/test/typing dependencies, to ensure we have
@@ -44,7 +58,17 @@ jobs:
# It doesn't matter how you change it, any change will cause a cache-bust.
working-directory: ${{ inputs.working-directory }}
run: |
uv sync --group lint --group typing
poetry install --with lint,typing
- name: Get .mypy_cache to speed up mypy
uses: actions/cache@v4
env:
SEGMENT_DOWNLOAD_TIMEOUT_MIN: "2"
with:
path: |
${{ env.WORKDIR }}/.mypy_cache
key: mypy-lint-${{ runner.os }}-${{ runner.arch }}-py${{ inputs.python-version }}-${{ inputs.working-directory }}-${{ hashFiles(format('{0}/poetry.lock', inputs.working-directory)) }}
- name: Analysing the code with our lint
working-directory: ${{ inputs.working-directory }}
@@ -63,12 +87,21 @@ jobs:
if: ${{ ! startsWith(inputs.working-directory, 'libs/partners/') }}
working-directory: ${{ inputs.working-directory }}
run: |
uv sync --inexact --group test
poetry install --with test
- name: Install unit+integration test dependencies
if: ${{ startsWith(inputs.working-directory, 'libs/partners/') }}
working-directory: ${{ inputs.working-directory }}
run: |
uv sync --inexact --group test --group test_integration
poetry install --with test,test_integration
- name: Get .mypy_cache_test to speed up mypy
uses: actions/cache@v4
env:
SEGMENT_DOWNLOAD_TIMEOUT_MIN: "2"
with:
path: |
${{ env.WORKDIR }}/.mypy_cache_test
key: mypy-test-${{ runner.os }}-${{ runner.arch }}-py${{ inputs.python-version }}-${{ inputs.working-directory }}-${{ hashFiles(format('{0}/poetry.lock', inputs.working-directory)) }}
- name: Analysing the code with our lint
working-directory: ${{ inputs.working-directory }}

View File

@@ -21,8 +21,7 @@ on:
env:
PYTHON_VERSION: "3.11"
UV_FROZEN: "true"
UV_NO_SYNC: "true"
POETRY_VERSION: "1.8.4"
jobs:
build:
@@ -37,10 +36,13 @@ jobs:
steps:
- uses: actions/checkout@v4
- name: Set up Python + uv
uses: "./.github/actions/uv_setup"
- name: Set up Python + Poetry ${{ env.POETRY_VERSION }}
uses: "./.github/actions/poetry_setup"
with:
python-version: ${{ env.PYTHON_VERSION }}
poetry-version: ${{ env.POETRY_VERSION }}
working-directory: ${{ inputs.working-directory }}
cache-key: release
# We want to keep this build stage *separate* from the release stage,
# so that there's no sharing of permissions between them.
@@ -54,7 +56,7 @@ jobs:
# > from the publish job.
# https://github.com/pypa/gh-action-pypi-publish#non-goals
- name: Build project for distribution
run: uv build
run: poetry build
working-directory: ${{ inputs.working-directory }}
- name: Upload build
@@ -65,18 +67,11 @@ jobs:
- name: Check Version
id: check-version
shell: python
shell: bash
working-directory: ${{ inputs.working-directory }}
run: |
import os
import tomllib
with open("pyproject.toml", "rb") as f:
data = tomllib.load(f)
pkg_name = data["project"]["name"]
version = data["project"]["version"]
with open(os.environ["GITHUB_OUTPUT"], "a") as f:
f.write(f"pkg-name={pkg_name}\n")
f.write(f"version={version}\n")
echo pkg-name="$(poetry version | cut -d ' ' -f 1)" >> $GITHUB_OUTPUT
echo version="$(poetry version --short)" >> $GITHUB_OUTPUT
release-notes:
needs:
- build
@@ -189,11 +184,13 @@ jobs:
# - The package is published, and it breaks on the missing dependency when
# used in the real world.
- name: Set up Python + uv
uses: "./.github/actions/uv_setup"
- name: Set up Python + Poetry ${{ env.POETRY_VERSION }}
uses: "./.github/actions/poetry_setup"
id: setup-python
with:
python-version: ${{ env.PYTHON_VERSION }}
poetry-version: ${{ env.POETRY_VERSION }}
working-directory: ${{ inputs.working-directory }}
- uses: actions/download-artifact@v4
with:
@@ -216,18 +213,17 @@ jobs:
# - attempt install again after 5 seconds if it fails because there is
# sometimes a delay in availability on test pypi
run: |
uv venv
VIRTUAL_ENV=.venv uv pip install dist/*.whl
poetry run pip install dist/*.whl
# Replace all dashes in the package name with underscores,
# since that's how Python imports packages with dashes in the name.
# also remove _official suffix
IMPORT_NAME="$(echo "$PKG_NAME" | sed s/-/_/g | sed s/_official//g)"
uv run python -c "import $IMPORT_NAME; print(dir($IMPORT_NAME))"
poetry run python -c "import $IMPORT_NAME; print(dir($IMPORT_NAME))"
- name: Import test dependencies
run: uv sync --group test
run: poetry install --with test --no-root
working-directory: ${{ inputs.working-directory }}
# Overwrite the local version of the package with the built version
@@ -238,7 +234,7 @@ jobs:
PKG_NAME: ${{ needs.build.outputs.pkg-name }}
VERSION: ${{ needs.build.outputs.version }}
run: |
VIRTUAL_ENV=.venv uv pip install dist/*.whl
poetry run pip install dist/*.whl
- name: Run unit tests
run: make tests
@@ -247,15 +243,15 @@ jobs:
- name: Check for prerelease versions
working-directory: ${{ inputs.working-directory }}
run: |
uv run python $GITHUB_WORKSPACE/.github/scripts/check_prerelease_dependencies.py pyproject.toml
poetry run python $GITHUB_WORKSPACE/.github/scripts/check_prerelease_dependencies.py pyproject.toml
- name: Get minimum versions
working-directory: ${{ inputs.working-directory }}
id: min-version
run: |
VIRTUAL_ENV=.venv uv pip install packaging requests
python_version="$(uv run python --version | awk '{print $2}')"
min_versions="$(uv run python $GITHUB_WORKSPACE/.github/scripts/get_min_versions.py pyproject.toml release $python_version)"
poetry run pip install packaging requests
python_version="$(poetry run python --version | awk '{print $2}')"
min_versions="$(poetry run python $GITHUB_WORKSPACE/.github/scripts/get_min_versions.py pyproject.toml release $python_version)"
echo "min-versions=$min_versions" >> "$GITHUB_OUTPUT"
echo "min-versions=$min_versions"
@@ -264,12 +260,12 @@ jobs:
env:
MIN_VERSIONS: ${{ steps.min-version.outputs.min-versions }}
run: |
VIRTUAL_ENV=.venv uv pip install --force-reinstall $MIN_VERSIONS --editable .
poetry run pip install --force-reinstall $MIN_VERSIONS --editable .
make tests
working-directory: ${{ inputs.working-directory }}
- name: Import integration test dependencies
run: uv sync --group test --group test_integration
run: poetry install --with test,test_integration
working-directory: ${{ inputs.working-directory }}
- name: Run integration tests
@@ -310,7 +306,6 @@ jobs:
UPSTAGE_API_KEY: ${{ secrets.UPSTAGE_API_KEY }}
FIREWORKS_API_KEY: ${{ secrets.FIREWORKS_API_KEY }}
XAI_API_KEY: ${{ secrets.XAI_API_KEY }}
DEEPSEEK_API_KEY: ${{ secrets.DEEPSEEK_API_KEY }}
run: make integration_tests
working-directory: ${{ inputs.working-directory }}
@@ -336,10 +331,13 @@ jobs:
steps:
- uses: actions/checkout@v4
- name: Set up Python + uv
uses: "./.github/actions/uv_setup"
- name: Set up Python + Poetry ${{ env.POETRY_VERSION }}
uses: "./.github/actions/poetry_setup"
with:
python-version: ${{ env.PYTHON_VERSION }}
poetry-version: ${{ env.POETRY_VERSION }}
working-directory: ${{ inputs.working-directory }}
cache-key: release
- uses: actions/download-artifact@v4
with:
@@ -375,10 +373,13 @@ jobs:
steps:
- uses: actions/checkout@v4
- name: Set up Python + uv
uses: "./.github/actions/uv_setup"
- name: Set up Python + Poetry ${{ env.POETRY_VERSION }}
uses: "./.github/actions/poetry_setup"
with:
python-version: ${{ env.PYTHON_VERSION }}
poetry-version: ${{ env.POETRY_VERSION }}
working-directory: ${{ inputs.working-directory }}
cache-key: release
- uses: actions/download-artifact@v4
with:

View File

@@ -13,8 +13,7 @@ on:
description: "Python version to use"
env:
UV_FROZEN: "true"
UV_NO_SYNC: "true"
POETRY_VERSION: "1.8.4"
jobs:
build:
@@ -27,14 +26,17 @@ jobs:
steps:
- uses: actions/checkout@v4
- name: Set up Python ${{ inputs.python-version }} + uv
uses: "./.github/actions/uv_setup"
- name: Set up Python ${{ inputs.python-version }} + Poetry ${{ env.POETRY_VERSION }}
uses: "./.github/actions/poetry_setup"
id: setup-python
with:
python-version: ${{ inputs.python-version }}
poetry-version: ${{ env.POETRY_VERSION }}
working-directory: ${{ inputs.working-directory }}
cache-key: core
- name: Install dependencies
shell: bash
run: uv sync --group test --dev
run: poetry install --with test
- name: Run core tests
shell: bash
@@ -46,9 +48,9 @@ jobs:
id: min-version
shell: bash
run: |
VIRTUAL_ENV=.venv uv pip install packaging tomli requests
python_version="$(uv run python --version | awk '{print $2}')"
min_versions="$(uv run python $GITHUB_WORKSPACE/.github/scripts/get_min_versions.py pyproject.toml pull_request $python_version)"
poetry run pip install packaging tomli requests
python_version="$(poetry run python --version | awk '{print $2}')"
min_versions="$(poetry run python $GITHUB_WORKSPACE/.github/scripts/get_min_versions.py pyproject.toml pull_request $python_version)"
echo "min-versions=$min_versions" >> "$GITHUB_OUTPUT"
echo "min-versions=$min_versions"
@@ -57,7 +59,8 @@ jobs:
env:
MIN_VERSIONS: ${{ steps.min-version.outputs.min-versions }}
run: |
VIRTUAL_ENV=.venv uv pip install $MIN_VERSIONS
poetry run pip install uv
poetry run uv pip install $MIN_VERSIONS
make tests
working-directory: ${{ inputs.working-directory }}

View File

@@ -9,7 +9,7 @@ on:
description: "Python version to use"
env:
UV_FROZEN: "true"
POETRY_VERSION: "1.8.4"
jobs:
build:
@@ -19,23 +19,25 @@ jobs:
steps:
- uses: actions/checkout@v4
- name: Set up Python ${{ inputs.python-version }} + uv
uses: "./.github/actions/uv_setup"
- name: Set up Python ${{ inputs.python-version }} + Poetry ${{ env.POETRY_VERSION }}
uses: "./.github/actions/poetry_setup"
with:
python-version: ${{ inputs.python-version }}
poetry-version: ${{ env.POETRY_VERSION }}
cache-key: core
- name: Install dependencies
shell: bash
run: uv sync --group test
run: poetry install --with test
- name: Install langchain editable
run: |
VIRTUAL_ENV=.venv uv pip install langchain-experimental -e libs/core libs/langchain libs/community
poetry run pip install langchain-experimental -e libs/core libs/langchain libs/community
- name: Check doc imports
shell: bash
run: |
uv run python docs/scripts/check_imports.py
poetry run python docs/scripts/check_imports.py
- name: Ensure the test did not create any additional files
shell: bash

View File

@@ -18,8 +18,7 @@ on:
description: "Pydantic version to test."
env:
UV_FROZEN: "true"
UV_NO_SYNC: "true"
POETRY_VERSION: "1.8.4"
jobs:
build:
@@ -32,18 +31,21 @@ jobs:
steps:
- uses: actions/checkout@v4
- name: Set up Python ${{ inputs.python-version }} + uv
uses: "./.github/actions/uv_setup"
- name: Set up Python ${{ inputs.python-version }} + Poetry ${{ env.POETRY_VERSION }}
uses: "./.github/actions/poetry_setup"
with:
python-version: ${{ inputs.python-version }}
poetry-version: ${{ env.POETRY_VERSION }}
working-directory: ${{ inputs.working-directory }}
cache-key: core
- name: Install dependencies
shell: bash
run: uv sync --group test
run: poetry install --with test
- name: Overwrite pydantic version
shell: bash
run: VIRTUAL_ENV=.venv uv pip install pydantic~=${{ inputs.pydantic-version }}
run: poetry run pip install pydantic~=${{ inputs.pydantic-version }}
- name: Run core tests
shell: bash

View File

@@ -14,8 +14,8 @@ on:
description: "Release from a non-master branch (danger!)"
env:
PYTHON_VERSION: "3.11"
UV_FROZEN: "true"
POETRY_VERSION: "1.8.4"
PYTHON_VERSION: "3.10"
jobs:
build:
@@ -29,10 +29,13 @@ jobs:
steps:
- uses: actions/checkout@v4
- name: Set up Python + uv
uses: "./.github/actions/uv_setup"
- name: Set up Python + Poetry ${{ env.POETRY_VERSION }}
uses: "./.github/actions/poetry_setup"
with:
python-version: ${{ env.PYTHON_VERSION }}
poetry-version: ${{ env.POETRY_VERSION }}
working-directory: ${{ inputs.working-directory }}
cache-key: release
# We want to keep this build stage *separate* from the release stage,
# so that there's no sharing of permissions between them.
@@ -46,7 +49,7 @@ jobs:
# > from the publish job.
# https://github.com/pypa/gh-action-pypi-publish#non-goals
- name: Build project for distribution
run: uv build
run: poetry build
working-directory: ${{ inputs.working-directory }}
- name: Upload build
@@ -57,18 +60,11 @@ jobs:
- name: Check Version
id: check-version
shell: python
shell: bash
working-directory: ${{ inputs.working-directory }}
run: |
import os
import tomllib
with open("pyproject.toml", "rb") as f:
data = tomllib.load(f)
pkg_name = data["project"]["name"]
version = data["project"]["version"]
with open(os.environ["GITHUB_OUTPUT"], "a") as f:
f.write(f"pkg-name={pkg_name}\n")
f.write(f"version={version}\n")
echo pkg-name="$(poetry version | cut -d ' ' -f 1)" >> $GITHUB_OUTPUT
echo version="$(poetry version --short)" >> $GITHUB_OUTPUT
publish:
needs:

View File

@@ -5,6 +5,7 @@ on:
schedule:
- cron: '0 13 * * *'
env:
POETRY_VERSION: "1.8.4"
PYTHON_VERSION: "3.11"
jobs:
@@ -45,18 +46,20 @@ jobs:
fi
done
- name: Setup python ${{ env.PYTHON_VERSION }}
uses: actions/setup-python@v5
id: setup-python
- name: Set up Python ${{ env.PYTHON_VERSION }} + Poetry ${{ env.POETRY_VERSION }}
uses: "./langchain/.github/actions/poetry_setup"
with:
python-version: ${{ env.PYTHON_VERSION }}
poetry-version: ${{ env.POETRY_VERSION }}
cache-key: api-docs
working-directory: langchain
- name: Install initial py deps
working-directory: langchain
run: |
python -m pip install -U uv
python -m uv pip install --upgrade --no-cache-dir pip setuptools pyyaml
- name: Move libs with script
run: python langchain/.github/scripts/prep_api_docs_build.py
env:

View File

@@ -18,8 +18,7 @@ concurrency:
cancel-in-progress: true
env:
UV_FROZEN: "true"
UV_NO_SYNC: "true"
POETRY_VERSION: "1.8.4"
jobs:
build:
@@ -128,19 +127,24 @@ jobs:
steps:
- uses: actions/checkout@v4
- name: Set up Python ${{ matrix.job-configs.python-version }} + uv
uses: "./.github/actions/uv_setup"
- name: Set up Python ${{ matrix.job-configs.python-version }} + Poetry ${{ env.POETRY_VERSION }}
uses: "./.github/actions/poetry_setup"
with:
python-version: ${{ matrix.job-configs.python-version }}
poetry-version: ${{ env.POETRY_VERSION }}
working-directory: ${{ matrix.job-configs.working-directory }}
cache-key: extended
- name: Install dependencies and run extended tests
- name: Install dependencies
shell: bash
run: |
echo "Running extended tests, installing dependencies with uv..."
uv venv
uv sync --group test
VIRTUAL_ENV=.venv uv pip install -r extended_testing_deps.txt
VIRTUAL_ENV=.venv make extended_tests
echo "Running extended tests, installing dependencies with poetry..."
poetry install --with test
poetry run pip install uv
poetry run uv pip install -r extended_testing_deps.txt
- name: Run extended tests
run: make extended_tests
- name: Ensure the tests did not create any additional files
shell: bash

View File

@@ -15,7 +15,7 @@ on:
- cron: '0 13 * * *'
env:
UV_FROZEN: "true"
POETRY_VERSION: "1.8.4"
jobs:
build:
@@ -25,10 +25,13 @@ jobs:
steps:
- uses: actions/checkout@v4
- name: Set up Python + uv
uses: "./.github/actions/uv_setup"
- name: Set up Python + Poetry ${{ env.POETRY_VERSION }}
uses: "./.github/actions/poetry_setup"
with:
python-version: ${{ github.event.inputs.python_version || '3.11' }}
poetry-version: ${{ env.POETRY_VERSION }}
working-directory: ${{ inputs.working-directory }}
cache-key: run-notebooks
- name: 'Authenticate to Google Cloud'
id: 'auth'
@@ -45,17 +48,17 @@ jobs:
- name: Install dependencies
run: |
uv sync --group dev --group test
poetry install --with dev,test
- name: Pre-download files
run: |
uv run python docs/scripts/cache_data.py
poetry run python docs/scripts/cache_data.py
curl -s https://raw.githubusercontent.com/lerocha/chinook-database/master/ChinookDatabase/DataSources/Chinook_Sqlite.sql | sqlite3 docs/docs/how_to/Chinook.db
cp docs/docs/how_to/Chinook.db docs/docs/tutorials/Chinook.db
- name: Prepare notebooks
run: |
uv run python docs/scripts/prepare_notebooks_for_ci.py --comment-install-cells --working-directory ${{ github.event.inputs.working-directory || 'all' }}
poetry run python docs/scripts/prepare_notebooks_for_ci.py --comment-install-cells --working-directory ${{ github.event.inputs.working-directory || 'all' }}
- name: Run notebooks
env:

View File

@@ -14,9 +14,7 @@ on:
env:
POETRY_VERSION: "1.8.4"
UV_FROZEN: "true"
DEFAULT_LIBS: '["libs/partners/openai", "libs/partners/anthropic", "libs/partners/fireworks", "libs/partners/groq", "libs/partners/mistralai", "libs/partners/google-vertexai", "libs/partners/google-genai", "libs/partners/aws"]'
POETRY_LIBS: ("libs/partners/google-vertexai" "libs/partners/google-genai" "libs/partners/aws")
jobs:
compute-matrix:
@@ -81,8 +79,7 @@ jobs:
mv langchain-google/libs/vertexai langchain/libs/partners/google-vertexai
mv langchain-aws/libs/aws langchain/libs/partners/aws
- name: Set up Python ${{ matrix.python-version }} with poetry
if: contains(env.POETRY_LIBS, matrix.working-directory)
- name: Set up Python ${{ matrix.python-version }}
uses: "./langchain/.github/actions/poetry_setup"
with:
python-version: ${{ matrix.python-version }}
@@ -90,12 +87,6 @@ jobs:
working-directory: langchain/${{ matrix.working-directory }}
cache-key: scheduled
- name: Set up Python ${{ matrix.python-version }} + uv
if: "!contains(env.POETRY_LIBS, matrix.working-directory)"
uses: "./langchain/.github/actions/uv_setup"
with:
python-version: ${{ matrix.python-version }}
- name: 'Authenticate to Google Cloud'
id: 'auth'
uses: google-github-actions/auth@v2
@@ -109,20 +100,12 @@ jobs:
aws-secret-access-key: ${{ secrets.AWS_SECRET_ACCESS_KEY }}
aws-region: ${{ secrets.AWS_REGION }}
- name: Install dependencies (poetry)
if: contains(env.POETRY_LIBS, matrix.working-directory)
- name: Install dependencies
run: |
echo "Running scheduled tests, installing dependencies with poetry..."
cd langchain/${{ matrix.working-directory }}
poetry install --with=test_integration,test
- name: Install dependencies (uv)
if: "!contains(env.POETRY_LIBS, matrix.working-directory)"
run: |
echo "Running scheduled tests, installing dependencies with uv..."
cd langchain/${{ matrix.working-directory }}
uv sync --group test --group test_integration
- name: Run integration tests
env:
OPENAI_API_KEY: ${{ secrets.OPENAI_API_KEY }}
@@ -134,7 +117,6 @@ jobs:
AZURE_OPENAI_LEGACY_CHAT_DEPLOYMENT_NAME: ${{ secrets.AZURE_OPENAI_LEGACY_CHAT_DEPLOYMENT_NAME }}
AZURE_OPENAI_LLM_DEPLOYMENT_NAME: ${{ secrets.AZURE_OPENAI_LLM_DEPLOYMENT_NAME }}
AZURE_OPENAI_EMBEDDINGS_DEPLOYMENT_NAME: ${{ secrets.AZURE_OPENAI_EMBEDDINGS_DEPLOYMENT_NAME }}
DEEPSEEK_API_KEY: ${{ secrets.DEEPSEEK_API_KEY }}
FIREWORKS_API_KEY: ${{ secrets.FIREWORKS_API_KEY }}
GROQ_API_KEY: ${{ secrets.GROQ_API_KEY }}
HUGGINGFACEHUB_API_TOKEN: ${{ secrets.HUGGINGFACEHUB_API_TOKEN }}

View File

@@ -1,9 +1,5 @@
.PHONY: all clean help docs_build docs_clean docs_linkcheck api_docs_build api_docs_clean api_docs_linkcheck spell_check spell_fix lint lint_package lint_tests format format_diff
.EXPORT_ALL_VARIABLES:
UV_FROZEN = true
UV_NO_SYNC = true
## help: Show this help info.
help: Makefile
@printf "\n\033[1mUsage: make <TARGETS> ...\033[0m\n\n\033[1mTargets:\033[0m\n\n"
@@ -29,20 +25,20 @@ docs_clean:
## docs_linkcheck: Run linkchecker on the documentation.
docs_linkcheck:
uv run --no-group test linkchecker _dist/docs/ --ignore-url node_modules
poetry run linkchecker _dist/docs/ --ignore-url node_modules
## api_docs_build: Build the API Reference documentation.
api_docs_build:
uv run --no-group test python docs/api_reference/create_api_rst.py
cd docs/api_reference && uv run --no-group test make html
uv run --no-group test python docs/api_reference/scripts/custom_formatter.py docs/api_reference/_build/html/
poetry run python docs/api_reference/create_api_rst.py
cd docs/api_reference && poetry run make html
poetry run python docs/api_reference/scripts/custom_formatter.py docs/api_reference/_build/html/
API_PKG ?= text-splitters
api_docs_quick_preview:
uv run --no-group test python docs/api_reference/create_api_rst.py $(API_PKG)
cd docs/api_reference && uv run make html
uv run --no-group test python docs/api_reference/scripts/custom_formatter.py docs/api_reference/_build/html/
poetry run python docs/api_reference/create_api_rst.py $(API_PKG)
cd docs/api_reference && poetry run make html
poetry run python docs/api_reference/scripts/custom_formatter.py docs/api_reference/_build/html/
open docs/api_reference/_build/html/reference.html
## api_docs_clean: Clean the API Reference documentation build artifacts.
@@ -54,15 +50,15 @@ api_docs_clean:
## api_docs_linkcheck: Run linkchecker on the API Reference documentation.
api_docs_linkcheck:
uv run --no-group test linkchecker docs/api_reference/_build/html/index.html
poetry run linkchecker docs/api_reference/_build/html/index.html
## spell_check: Run codespell on the project.
spell_check:
uv run --no-group test codespell --toml pyproject.toml
poetry run codespell --toml pyproject.toml
## spell_fix: Run codespell on the project and fix the errors.
spell_fix:
uv run --no-group test codespell --toml pyproject.toml -w
poetry run codespell --toml pyproject.toml -w
######################
# LINTING AND FORMATTING
@@ -70,9 +66,9 @@ spell_fix:
## lint: Run linting on the project.
lint lint_package lint_tests:
uv run --group lint ruff check docs cookbook
uv run --group lint ruff format docs cookbook cookbook --diff
uv run --group lint ruff check --select I docs cookbook
poetry run ruff check docs cookbook
poetry run ruff format docs cookbook cookbook --diff
poetry run ruff check --select I docs cookbook
git --no-pager grep 'from langchain import' docs cookbook | grep -vE 'from langchain import (hub)' && echo "Error: no importing langchain from root in docs, except for hub" && exit 1 || exit 0
git --no-pager grep 'api.python.langchain.com' -- docs/docs ':!docs/docs/additional_resources/arxiv_references.mdx' ':!docs/docs/integrations/document_loaders/sitemap.ipynb' || exit 0 && \
@@ -81,8 +77,5 @@ lint lint_package lint_tests:
## format: Format the project files.
format format_diff:
uv run --group lint ruff format docs cookbook
uv run --group lint ruff check --select I --fix docs cookbook
update-package-downloads:
uv run python docs/scripts/packages_yml_get_downloads.py
poetry run ruff format docs cookbook
poetry run ruff check --select I --fix docs cookbook

View File

@@ -21,6 +21,7 @@ Notebook | Description
[code-analysis-deeplake.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/code-analysis-deeplake.ipynb) | Analyze its own code base with the help of gpt and activeloop's deep lake.
[custom_agent_with_plugin_retri...](https://github.com/langchain-ai/langchain/tree/master/cookbook/custom_agent_with_plugin_retrieval.ipynb) | Build a custom agent that can interact with ai plugins by retrieving tools and creating natural language wrappers around openapi endpoints.
[custom_agent_with_plugin_retri...](https://github.com/langchain-ai/langchain/tree/master/cookbook/custom_agent_with_plugin_retrieval_using_plugnplai.ipynb) | Build a custom agent with plugin retrieval functionality, utilizing ai plugins from the `plugnplai` directory.
[databricks_sql_db.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/databricks_sql_db.ipynb) | Connect to databricks runtimes and databricks sql.
[deeplake_semantic_search_over_...](https://github.com/langchain-ai/langchain/tree/master/cookbook/deeplake_semantic_search_over_chat.ipynb) | Perform semantic search and question-answering over a group chat using activeloop's deep lake with gpt4.
[elasticsearch_db_qa.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/elasticsearch_db_qa.ipynb) | Interact with elasticsearch analytics databases in natural language and build search queries via the elasticsearch dsl API.
[extraction_openai_tools.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/extraction_openai_tools.ipynb) | Structured Data Extraction with OpenAI Tools

View File

@@ -0,0 +1,273 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "707d13a7",
"metadata": {},
"source": [
"# Databricks\n",
"\n",
"This notebook covers how to connect to the [Databricks runtimes](https://docs.databricks.com/runtime/index.html) and [Databricks SQL](https://www.databricks.com/product/databricks-sql) using the SQLDatabase wrapper of LangChain.\n",
"It is broken into 3 parts: installation and setup, connecting to Databricks, and examples."
]
},
{
"cell_type": "markdown",
"id": "0076d072",
"metadata": {},
"source": [
"## Installation and Setup"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "739b489b",
"metadata": {},
"outputs": [],
"source": [
"!pip install databricks-sql-connector"
]
},
{
"cell_type": "markdown",
"id": "73113163",
"metadata": {},
"source": [
"## Connecting to Databricks\n",
"\n",
"You can connect to [Databricks runtimes](https://docs.databricks.com/runtime/index.html) and [Databricks SQL](https://www.databricks.com/product/databricks-sql) using the `SQLDatabase.from_databricks()` method.\n",
"\n",
"### Syntax\n",
"```python\n",
"SQLDatabase.from_databricks(\n",
" catalog: str,\n",
" schema: str,\n",
" host: Optional[str] = None,\n",
" api_token: Optional[str] = None,\n",
" warehouse_id: Optional[str] = None,\n",
" cluster_id: Optional[str] = None,\n",
" engine_args: Optional[dict] = None,\n",
" **kwargs: Any)\n",
"```\n",
"### Required Parameters\n",
"* `catalog`: The catalog name in the Databricks database.\n",
"* `schema`: The schema name in the catalog.\n",
"\n",
"### Optional Parameters\n",
"There following parameters are optional. When executing the method in a Databricks notebook, you don't need to provide them in most of the cases.\n",
"* `host`: The Databricks workspace hostname, excluding 'https://' part. Defaults to 'DATABRICKS_HOST' environment variable or current workspace if in a Databricks notebook.\n",
"* `api_token`: The Databricks personal access token for accessing the Databricks SQL warehouse or the cluster. Defaults to 'DATABRICKS_TOKEN' environment variable or a temporary one is generated if in a Databricks notebook.\n",
"* `warehouse_id`: The warehouse ID in the Databricks SQL.\n",
"* `cluster_id`: The cluster ID in the Databricks Runtime. If running in a Databricks notebook and both 'warehouse_id' and 'cluster_id' are None, it uses the ID of the cluster the notebook is attached to.\n",
"* `engine_args`: The arguments to be used when connecting Databricks.\n",
"* `**kwargs`: Additional keyword arguments for the `SQLDatabase.from_uri` method."
]
},
{
"cell_type": "markdown",
"id": "b11c7e48",
"metadata": {},
"source": [
"## Examples"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "8102bca0",
"metadata": {},
"outputs": [],
"source": [
"# Connecting to Databricks with SQLDatabase wrapper\n",
"from langchain_community.utilities import SQLDatabase\n",
"\n",
"db = SQLDatabase.from_databricks(catalog=\"samples\", schema=\"nyctaxi\")"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "9dd36f58",
"metadata": {},
"outputs": [],
"source": [
"# Creating a OpenAI Chat LLM wrapper\n",
"from langchain_openai import ChatOpenAI\n",
"\n",
"llm = ChatOpenAI(temperature=0, model_name=\"gpt-4\")"
]
},
{
"cell_type": "markdown",
"id": "5b5c5f1a",
"metadata": {},
"source": [
"### SQL Chain example\n",
"\n",
"This example demonstrates the use of the [SQL Chain](https://python.langchain.com/en/latest/modules/chains/examples/sqlite.html) for answering a question over a Databricks database."
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "36f2270b",
"metadata": {},
"outputs": [],
"source": [
"from langchain_community.utilities import SQLDatabaseChain\n",
"\n",
"db_chain = SQLDatabaseChain.from_llm(llm, db, verbose=True)"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "4e2b5f25",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"\n",
"\u001b[1m> Entering new SQLDatabaseChain chain...\u001b[0m\n",
"What is the average duration of taxi rides that start between midnight and 6am?\n",
"SQLQuery:\u001b[32;1m\u001b[1;3mSELECT AVG(UNIX_TIMESTAMP(tpep_dropoff_datetime) - UNIX_TIMESTAMP(tpep_pickup_datetime)) as avg_duration\n",
"FROM trips\n",
"WHERE HOUR(tpep_pickup_datetime) >= 0 AND HOUR(tpep_pickup_datetime) < 6\u001b[0m\n",
"SQLResult: \u001b[33;1m\u001b[1;3m[(987.8122786304605,)]\u001b[0m\n",
"Answer:\u001b[32;1m\u001b[1;3mThe average duration of taxi rides that start between midnight and 6am is 987.81 seconds.\u001b[0m\n",
"\u001b[1m> Finished chain.\u001b[0m\n"
]
},
{
"data": {
"text/plain": [
"'The average duration of taxi rides that start between midnight and 6am is 987.81 seconds.'"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"db_chain.run(\n",
" \"What is the average duration of taxi rides that start between midnight and 6am?\"\n",
")"
]
},
{
"cell_type": "markdown",
"id": "e496d5e5",
"metadata": {},
"source": [
"### SQL Database Agent example\n",
"\n",
"This example demonstrates the use of the [SQL Database Agent](/docs/integrations/tools/sql_database) for answering questions over a Databricks database."
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "9918e86a",
"metadata": {},
"outputs": [],
"source": [
"from langchain.agents import create_sql_agent\n",
"from langchain_community.agent_toolkits import SQLDatabaseToolkit\n",
"\n",
"toolkit = SQLDatabaseToolkit(db=db, llm=llm)\n",
"agent = create_sql_agent(llm=llm, toolkit=toolkit, verbose=True)"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "c484a76e",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"\n",
"\u001b[1m> Entering new AgentExecutor chain...\u001b[0m\n",
"\u001b[32;1m\u001b[1;3mAction: list_tables_sql_db\n",
"Action Input: \u001b[0m\n",
"Observation: \u001b[38;5;200m\u001b[1;3mtrips\u001b[0m\n",
"Thought:\u001b[32;1m\u001b[1;3mI should check the schema of the trips table to see if it has the necessary columns for trip distance and duration.\n",
"Action: schema_sql_db\n",
"Action Input: trips\u001b[0m\n",
"Observation: \u001b[33;1m\u001b[1;3m\n",
"CREATE TABLE trips (\n",
"\ttpep_pickup_datetime TIMESTAMP, \n",
"\ttpep_dropoff_datetime TIMESTAMP, \n",
"\ttrip_distance FLOAT, \n",
"\tfare_amount FLOAT, \n",
"\tpickup_zip INT, \n",
"\tdropoff_zip INT\n",
") USING DELTA\n",
"\n",
"/*\n",
"3 rows from trips table:\n",
"tpep_pickup_datetime\ttpep_dropoff_datetime\ttrip_distance\tfare_amount\tpickup_zip\tdropoff_zip\n",
"2016-02-14 16:52:13+00:00\t2016-02-14 17:16:04+00:00\t4.94\t19.0\t10282\t10171\n",
"2016-02-04 18:44:19+00:00\t2016-02-04 18:46:00+00:00\t0.28\t3.5\t10110\t10110\n",
"2016-02-17 17:13:57+00:00\t2016-02-17 17:17:55+00:00\t0.7\t5.0\t10103\t10023\n",
"*/\u001b[0m\n",
"Thought:\u001b[32;1m\u001b[1;3mThe trips table has the necessary columns for trip distance and duration. I will write a query to find the longest trip distance and its duration.\n",
"Action: query_checker_sql_db\n",
"Action Input: SELECT trip_distance, tpep_dropoff_datetime - tpep_pickup_datetime as duration FROM trips ORDER BY trip_distance DESC LIMIT 1\u001b[0m\n",
"Observation: \u001b[31;1m\u001b[1;3mSELECT trip_distance, tpep_dropoff_datetime - tpep_pickup_datetime as duration FROM trips ORDER BY trip_distance DESC LIMIT 1\u001b[0m\n",
"Thought:\u001b[32;1m\u001b[1;3mThe query is correct. I will now execute it to find the longest trip distance and its duration.\n",
"Action: query_sql_db\n",
"Action Input: SELECT trip_distance, tpep_dropoff_datetime - tpep_pickup_datetime as duration FROM trips ORDER BY trip_distance DESC LIMIT 1\u001b[0m\n",
"Observation: \u001b[36;1m\u001b[1;3m[(30.6, '0 00:43:31.000000000')]\u001b[0m\n",
"Thought:\u001b[32;1m\u001b[1;3mI now know the final answer.\n",
"Final Answer: The longest trip distance is 30.6 miles and it took 43 minutes and 31 seconds.\u001b[0m\n",
"\n",
"\u001b[1m> Finished chain.\u001b[0m\n"
]
},
{
"data": {
"text/plain": [
"'The longest trip distance is 30.6 miles and it took 43 minutes and 31 seconds.'"
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"agent.run(\"What is the longest trip distance and how long did it take?\")"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.3"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -528,12 +528,7 @@ def _get_package_version(package_dir: Path) -> str:
"Aborting the build."
)
exit(1)
try:
# uses uv
return pyproject["project"]["version"]
except KeyError:
# uses poetry
return pyproject["tool"]["poetry"]["version"]
return pyproject["tool"]["poetry"]["version"]
def _out_file_path(package_name: str) -> Path:

View File

@@ -1 +1 @@
eNrtVmlUFFcWJsGFmBk00XGJW9OikyDVVO8LommgwQ5ikxZUQAarq17TBV2LVdXQwDgKxhg1iZQyJkhGoyytiCjgoKgY0cRxQRj1iIe4xMkYiXNy1IgROaLOa5YRj/6cP5mxzuk6XfXuu/e7937v1pfvyQQcTzL0K5UkLQAOwwX4wK/P93BgiQvwwgflFBAcDFEaZ5kXX+LiyLYghyCwvCEkBGNJGcMCGiNlOEOFZMpDcAcmhMD/rBP0uCm1MUR2G5srpQDPY2mAlxqSc6U4AyPRgtQgjQdOp4QCEkySzmQAabCUY5wAvnfxgJMuTQmWUgwBnPBFGisgKgahSJqEVrzAAYySGuyYkwfBUgFQLEQuuDi4F5WhSz0OgBEwras+I0odDC+IVc9C3Y3hOIAeAY0zBEmnibvSckg2WEIAuxMTQAUESIOeQogVGQCwCOYkM0F57y5xD8ayThLHvOsh6TxDV/YlhAjZLHh+ucKbDQKzpwVxrwWCMJpD4rJhTWmJXKaRy+R73AgvYCTthEVCnBjEU872rB8cuMBieAZ0gvT1Syzv3Vw10IbhxbJYDLfMe8YlxuEOsQzjKI2qduB7zkULJAVET0Tc8+H6Fp+GU8rkCpmu+hnHfDaNi2U9bdj3zGYgcNkIzkAf4la0HGeYDBKIbXdTU3F7qo0Km2NCoy2kJWGJFTUlzVVl8Hi21pZqtfAul9nORlrM6a73c2h+NkcyiFyr1Gl1ehTVIXIZKoMpI2p9hs5BWGZHuMzuKDQyJtwSu0Rn5GJ182z0wki5PUuXoGc5U6SGRuPpeE1SGodRQlSmiiA0RIIuNsklk0U7+Sgnk8CkJ8oUiXGpcxRoVqgEonNlkkQYatQnLnFHxsforQ4NRrgzIq0uR1YCistiw91ah5GLizImpVnTFWzaAHgauRZB+xBqUJUO9V5V/dxwAjpNcIglcrliOwd4Fp4OsKIclkxw8fmlkIeg6YSn75hss8Q8pfDo0kjISbFhASCCJahaEgVsEgWqUMObQa0xqPSS6Nj4yoi+MPEvpGB1PIfRvB3S0NRPeQ/ucNEZgKiIeCHZG7xkh530woeHEgFuluEB0odKrFyIWHvnA2KOrO09WQjDpWE0mdMTVmzoYX1WjjuLwF0E4cjMolB9jkpJ2oALt+/t28JyjDcMBIRQvFiiU6ir+lb6eVcBc0UROYqg8gNuBJ5y4CQpEtaz5943pHixVA2Lvf95AwHOFZoXPaqebqCHB1pwgIKE9cZ+6kal1+sPvdio35USmui1+gPPWvFgIBq5guL3P2/Q52Ibyle6+60RkhDbAuFDqhpVaFDcrleplEoVhioBIVdDetlwvV0D1JimHs49EodevM1kGU5AeIDDiSxki23BFOb2zpgwpVyt1MBMQyUkjTtdBJjnskUy3hz4UAnLASeDEbtxO4JjuAMgvfwTPZGJc42x5oi6hchAIiEWtmeMix6a4WnSbi+fBzjYGLECdzIuAg5LDpRHRCFWY6K4V48Satyu0MltQKuzY3YkHI6hfm//oV2pd9J6MCfEnomLtQ5lmNQA85WGSigsTKeBber5ZuSVe3Ol07555dTktX4+PZcv/D158rG1mr6Ejrjyy+8WNM8PSDZOzX3Nujciz//mCMExLG+a5dzUUScL4v8sufPVmMJRMVHJX76+qvPWpO8OHrw4aLlIDF287QejML9M23LmWMGy+oZc5xpmX9aW7vPt3+/4adPu9WvzKNsq/cwv/ZiU2ytvVh59N8qylz3hG3WBEj8z1bfUcIGGKe9/U3f8w3unSieS72W13Qo6s0ZIbr6yKyBv88Rr0a/63DEcPuvZ+KDJv4C6WuDf0P7bmmP1fsv1JdKj+zuv+17Mo0Zbx06MW9f61b4QiTnc8caha/4rlb6/Kc3LuOabdfetW780PP4ov3PSVtPY/UPPr9oeZNa++1bS3biRQV30o0+OHeicEXWhwar8k+Hh/PLq5gmPmrb8vEnVVcedaDh7tmT48RoxbKrPrL913RsjFrnKa7cOu/GGa9Rl+vf6Oicw3UpTfH7kQn57x5yQC0Gr8zbc3dmlaDSt5W4u2tiYa7abAnc2LdvUVXy/sFjomHX39YBB3y6vqfGfuvr0kZiiY+7aJ0GhLW5V04wDqYF7hn0gu2W0nclVp7zZETJz8YILpeOF1rPC3L/u+rSmqePK4ccFtdcLu4d4G+br83hqVcci2L2XmuKlpnipKX4FmkKN/i9pCo32/1hTKJR2zEZo9Da72qbUqgGmVGJ2XKEiMB1QauzyX4WmACiw/zc1xfGnmuJja+On59ERDe3Th2wZX1hnJHONgjE8f+SE0atNYoZlfeKESzV/oT5LeDJRf1KzY3FZw4M7V5s6cpUdhT7oeufQOaoZH7VW3Du24/CspY+6Sx7Wtkx/FPbw/g/3p9zQah+u6j6/CYF64nKJX0sKs5LcBfXE8F49AaqvjiqmNlK529RvJjh3UrP5DXWl76SAnTOgnqgfd3B8xKthlxpbBvlc27GsxIL8/HVmAbJZHN3Qrq65UjZQTyDTvHqis5Upji4IDFD5/YFddbRoygSz78Uj6y6f7GQ9t+9NGnx7RvgK9vqkOWO2VQSm+JKOExGm7deLu7T+O5s7xiZkvffJg67vk4u+NfB3pixrnH7uevG5gM6o6HUzx57Ouf+FT/e/2s+nmOytRa0fKj7/bnvJNU5/opqcruRC1zcOqpr2x7Dme0m7Csfq3plVHDJykeptTzM57tAGwh6pON29u+gJObzefHG3uMUv4O9DCstcb5sXDd18asLx4qU7flL88yra8eOk2YvH+aVcXvH1mqz0/YE3Ji89Ulc5++KPlSX/+CIoefT0wsGzDp0eHNN8MtWnV0+8Jgua7NUT/wZqjsb/
eNrtVntUFNcZhxBTqqbBHGOCmrJdo4Iyy+x7FyTIYxGU5bE8BJXg7Mzd3ZGdmXVm9sGilGBMfCDHodFTtbGtwG6KgiAPH/isJdGqyenx5LGixJhGEa31UU0TPNK76xLx6J/9J61zzs6Ze7/v/r7X73771XgdgOVIhg7dRdI8YDGchwuuvsbLguV2wPHveCjAWxiiMTcnv6DBzpK+WRaet3HxcXGYjZQwNkBjpARnqDiHNA63YHwc/LZZQQCm0cgQFT53pZgCHIeZASeOFy2uFOMMNEXzcCEuAFariAIiTLSMKQfiWJGYZazAL7FzgBWvLIU7FEMAq3/LbOMRBYNQJE36NTmeBRgFBSbMygG4wQPKBkPg7awfAZWgK70WgBEwwP6QiEYLw/FC6+NO78ZwHEBUQOMMQdJmocXsJm2xIgKYrBgPmqGnNAikRGguB8CGYFbSATwPTwltmM1mJXHML49bxjH0rmBkCF9hA0+Km/0xITAPNC905kAnkjPjcitgdmmRVKLUSpRtLoTjMZK2wnQhVgz647EF5D2jBTYML4cgSLBygufh4dbROgwnNOkxPCf/MUiMxS1CE8ZSKkXH6H3WTvMkBQRvau6T5oLCR+bkEqlUom5/DJiroHGhKVCIvY8dBjxbgeAMxBD+iHpwhikngeC7XVaGm8qMVKIm362wVBQVuiVqLl3lLJlXnJeWZTKTejWPpiqcBTSjXJBv06F2vR6RquUqhVKJyrSIVIJKpBIpUpabW0igGUX2ihI3quTs2cYC3fzMZEVWXg6LqzPUWp2S0xcvo+zLFyhINDsr3VnAUvoinCjOIdm0PLTcapkvMeSlYOTCDJnDjmU7C3UyZ4IIemd3kERiSbFWlq4sn5e+HMtaaCgsTAc6uUuzSKZg7Sa1OWsBn6dWagupZFlxySj3UCWKoEEPVahCg/qf1hFuWAFt5i1Cg1Qm+5AFnA3eE7DKA1PG27maRshDcPqEN3hhduQseEThSY1pkJPCoQKLPVaEakXzMVokQ2VK+IqXq+Phzjx9wa7UoJmCp1KwvYDFaM4EaagbobwXt9jpckA0pz6V7If8ZIeV9LsP7yYCXDaGA0jQK2FXMWJ42CmQzLSOhzcLYVgzRpPugFnhUID1TrfLSeB2grA4nBSqdSvkpBHYcVNn8IiNZfxmoEMIxQkNSrm0NSgZ4V0zjBVFpDC10gMuBF5zYCUpEuYz8A62K05oVMJk73tSgYf9heYEryJQDfTwaA0WUJCwftuPYBRarfbg05VGoORQRavWHnhciwOjvZHKKG7fkwpBiB0ot8s1oo2QhOB7Ay7K5HIAUKmUwNUahRLTKgCOawmpwiRXy2SoSqnaD1sfiUMUfzFtDMsjHMBhb+YrBF8shbn8PSZRLlXKVTDSBBFJ41Y7AfLtxjTGHwOXILKxwMpgxO7UdCQVwy0AyQ/wT/CmlWQn6zNTu4uR0URCcmyBhi54aYajSZPJkw9YWBihGbcydgI2SxZ4IJYhuUTo1JhMarlWbsQx3KjACYCkwDY0gvYj7Rr9ndaLWaHvDlzosMgTxfEKhVycIKKwRI0Klinw7/G2xx8rbe4N7Y5aHx4SeMLgb3i41nCs7iw68eCV2b98Ux191RTTN27RvaMTfrHmuZ5od1dZ/c/qKF/dX/cMHpnm9c14RbT8Fnb5jOuyLyeyeun0bhHxXt697Ct7Z1RdWPHDzQVnL5Tezb5xZEXVpwm/3pnk/ofDuGmiY/gDYkXRofe7nVvFi7kdTTNr319y6sxnOwd/OFD8VW0a88rVN8pLT8/e9p1VU/bqtVlxqorv3Qbn5ulj2lcPjQ+5SM7Jz24Y8H6Z0u5Od48NXfxy352I6ptFM9OWhk8Vb40ukse0rCU+Gui5MWHi7DWvJ28cyHRXVodNmRvmmru7/+iqCpTJvBQRHl8T9kJbalbrOv046x++CXnxN0Vxm79wLXu3+k/NkZ3bb36j3dvdcscRNeNBrdqq4btmjv+8sfZXi2am3/tt6Iop38mXFEz6pK+/N/5cFFGPlWy//pf7s8bdNokbNnxovr/s3NWmxS3R4mttX+7eGJ1g6GCrxk+d2DdGQOKHIy8z/d5+67nh9t//POakztB1p7H4rUnbP57TlDS0u/1O3cdHxXPezVh5oY08mfCpN+rsvgPRwlbPrHCd43RVmL84YSHGQY04CX4/mySeTRLPJomf1CQhRf+XJgmZ7P94kjAaAQo0RpXRpFUbpRo4RCgJKQ7kOI5qVJhM9lOYJBSoxqg0/RcniT2PJolawym6D404eG1295zFq1viq0rXTdKN7Rxoj97oibCw06lU4fn9NcbnH3xXU4/HrAw5NIB2yLf6vs1/QZSxPiz8s4yiFvX3CaecfTnevvcGT112DLc7p1Sdr/r3/S5NvxaZlPl1XVLerY7BLrZFfeLv1zN2VtdL97d2M6pr27aB9qg1n5OKzKLKT76QMCcNb8Wutx8+f3nnBd0FjeG13tDD5pCQnOPqbzsnR/WGbl5vbux9DWy4ZHv9uYhjW94Jj5ym27y51yje1FHrWPOgRfv2jBfPi9KmhzVfdA+crOkUVUb+q6+ykvmqob40zRLhjjxm/12W0jf5RErqhFkpDWVnhl9uG9yRpafMp8ckleFTFg5drLv157Jb62J7PeOjGzpijMSV3qPb5dVRx90HXt2w+qXWu0v2VM7dNn7hzr9lZ83bIvSMO1nXtOXmrTlHejZNLqlf23F37PTCVW5D9t6NH8xQT9tTciXp+P0zldf13Q+ihtbmjk1skKycqx8EX5OxS917hif33HCFx16KkXUDXfdHF8M2vOS5DQqjS6+rhrom+rRDYx5OEf+cWpXyJpwi/gNh7aPV

View File

@@ -1 +1 @@
eNrtWE1v28gZ7qK3XHopemaJngqPREqkvgyhcPxRK15bie1d21kshNHwlTgWyWE4Q1ly6kPT3gsW/QPdOFZhuNldJGi3H+m5h/4B76G/ZV9SVGQjabfudaWDpJl55/143o9H4rPJECLJRfDBFQ8URJQpXMjk2SSCJzFI9esLH5QrnPOH7b3953HEr3/qKhXKRrFIQ14QIQSUF5jwi0OzyFyqivg99CBTc94Vzvj6F091H6SkfZB645OnOhNoKVB6Q3fB84S+pEfCA1zGEiL97NMl3RcOeLjRDxWxBPF5wFFKqgiorzdUFMNs1RFhZklvPNV5wLzYgU6cmpqKnZ1NXKAOhvibc1dIlby87fTnlDFAIxAw4fCgn/yxf8rDJc2BnkcVXKKrAWSQJJcDgJBQjw/hYnor+YKGoccZTc+Lx1IEV3loRI1DePf4Mg2QoHOBSl630YmVVvHhGNENNLNQMQvmFyMiFeWBh3ARj6I/F2F2/rebByFlA1RC8swlF9PLL2/KCJm82KasvXdLJY2Ym7ygkV+xXt3cj+JAcR+SyerDd83lh3Nz5YJZKtS+vKVYjgOWvOhRT8Kfb10GFY0JE6gj+b3xcoaPB0Ffuclzs2T9IQIZYgbhVxd4TcXy2TnmAv71z0leNJ+1t2ZJ/Pf3fnS+hnlJ3hyAs6QZtrYBXa1klGx8a9iVhmVrP9/ev1rNzeynabjWFIxUEYbpzrRqljWs1EiCasaqR2pf7kc0kD3MzfqsDibMjYMBOJer762AN2kFYHhpPFi8BEahkEByN5OrQ7I7bR/SWns1LTcioj4N+GlWDsmbrBROTkcnDosdxx2e+Eb91CrzLsSs9zq/EkYiNYMOEV8mz+1q+WV+MkvGJQZvENMghvnXEYkQG4/7HAHO3vMelsm5bRjGV+8KKDEA7PaJZWSvf9yUiMDHLKa252qser3+9/cLzVSVUaReu+0NphhuemOWfPnVuwK5is8MeTWaSRPuJNc/wUXHtAxq04ptOYzZdoXWzVIVKk433aOWWf0L5pYz1JImMxQRJhsYDiw1Tq6XfDpKG69ZNu1yBSNd1vJpsRd310Qag1zWwgg8QZ3PWY8wylwg04JMJmtHOyvbrdXLPXRyVYgBh99+/cH3Ox3W63T95tg7Nh/vr9aGh9tb1VYlsg7g8IBXH7daEW0/CTo9KQ6j+DAsWTViVsu1aq1uGDYxC0YB25asb3jllrUuN3ds2zg83tjqR+2W1SntPNo16pR93Pef+Gb7gdUblT92gw9XhOeuq634uBR2tz8c9Xfu70QPT7YPWuIgvL9a2ToqlQc7gxWMhiq3WVzWsDY54tvMW4Zgy5C0YcxGadYwy5qTYdAs3B6Py9omzvp24I2Xtb0UTMBP6sMeV9DcEQFc/w4xiIfcae625aZ5uq5Uf3DkrT8Odumj4/ajcIMWjh7cH4mT4cA+egAndSoe3QDBqJeIkeNQMaxaVoVz1/9Pr/50SG5OANKeckQyCYQMeK93sQcRNlByyTwROzjpI7hY3SC7K0fJ67rh2KxnMEZL3bJR6ZL77b0J9bCYhix55ZabesOyyvqy5tNmrYJ9k3HcLy/S4gv6X//ghw5VtKEhGzlIYCkhMqRDsjLqH8vtbfYRs4fjTfBjZ9R2ux/Fh+Ph4xi5TXSPccrkNwpzCi1kcwgFGM4tBajzLXjWe3mS4ECwiFElZi2lTAyUM+gojsza0JHWaOyp9GAsFfidHvoMUYiup7Z7YadaAqdKu7bFUpuuwMtT0uaBAyO9YSyhEk/RlG9z1qY4oLBRglTtnNpTVoceUjH6F8Sed7ake6KPA60rpxtLOhrn0u1gYMiNuRSSf07f2fLeve8OnHPsNrOfRQvE/nfEfrxA6w5oaZviZAHYXQBjNFgAdhfAWgu47gLXlEMXmN0Fs7GIF4DdBTAlHDpeQHYHyH62QOvb0Pp2gHSpRKh/RyCaR/lUR1D8UHWmTzX0Ri39ezRz9+2uiVgqoag330HBW1c7DijKvewZZ/Zcwnkri5dp7HAx3zh7j5WbCqZZwWj+iw7cyB5woqEwAoezWx4b6T+7NAn/4fjs7G1yP1lr76x/eu/eN5t/1lQ=
eNrtWE1vG8cZbtCbgV5z3ix6KjjkLrn8FIhCJu1KpiXKohKLMgxiODvLHWt3ZrszS5ESdKgToMdii/6BJLIYCIqTwEaSfrjnHvoHlEOv/Rt9d7mSKEhtgRwD6kBx3nk/n/dLo5ezMQ0lE/y9c8YVDTFRcJDxy1lIfxtRqT459alyhX2y1e3tfB6F7OJXrlKBbBQKOGB5EVCOWZ4IvzA2C8TFqgDfA4+mak6Gwp5e/P5I96mUeESl3tCeHelEgCmu4KC71POEntP0UHg0IUSShvrxc6D4wqZeQhoFClkC+YyzhFOqkGIfLlQY0avzQASpSaAf6YwTL7LpIEqMZpzHxzOXYhui/cOJK6SKX9/0/ytMCAVLlBNhMz6KvxwdsiCn2dTxsKJn4DSnKTrx2T6lAcIeG9PTuVT8NQ4CjxGc3BdeSMHPsyCRmgb09vVZEicC77iK33bBidX1wtYUgOaamS/X8+WvJ0gqzLgHyCEPgz+nQXr/18WLAJN9UIKyJManc+HXizxCxq82MOn2bqjEIXHjVzj0K9abRXoYccV8Gs9aW7fNZZfX5kp508xXv7mhWE45iV852JP0uxvCVIVTRAToiD81Xl/i41E+Um78uVkqfxFSGUAO6cenIKYi+fIEckH/+Y9ZVj+fdTuXSfzXz94/aUNe4nc7bpTTjLr2CHOtaBTL8NEoVRtGVfvNxs55KzOzk6ThQlN0ogp0nFDmdbOiQdGGkqpmpBxU+2YnxFw6kJsHl3UwI27E96l91rqzAt4lFQDhJfFAESM6CYSkKHMzPt9F2/NOQuvtN/NyQyIcYc4O03KI36WlcHA4ObBJZNvu+MA36odWiQ1pRJy3mUgQisQMOIR8CWiVrdfZzWUyziB4A5kGMsy/TFAI2HjMZwBw+pm1s4xPyoZhfH+bQYl9Co0/s4z05++LHCH1IYuJ7Ws1Vr1e/9vdTJeqSsBSr930BlJMF70xi778/jZDpuIzQ55PLrkRs+OLX8Jh4BSLtl21bFyt0KIJ+BeJ4xiOUylVLbNcH/4ZcssIaEmSGYgQkk0JzC41jS9yPp4kjdcsmeVSBSJd0bJx0YuGbZHEIFe0IKSewPZXrYeohYlLUS8tyHjW7m+ubqy3znrgZEuIfUb/+MN7Px8MiDMY+s1NeuhVzfKHT8f2w1310bTjrz1qq/JDN+wfblW6q/k8Czfue9teXiCzWqpY5bJRrCIzb+TNvIn6u9Ng2n8ixnUnKm+0ui2/WnRfPNmrjPoBvV+UIVvb9Iaj8VDtcY7tLn8kt54G651Do/9gyzI7D0YHFtmw9nqiUib8Sb3TGewOVyEarNxmYUWD2mSAbzNrGQQtg5KGMaFbsoZZ0ewUg2b+5nhc0dZg7He5N13RegmYFH5jn/aYos1NwenFnwCDaMzsJmnLzofYlx5pd1tBpz/5aPp4c69eHI/yT4u7lf3t/Q7bo4Pt8OnGAghGtYyMDIeKYdXSKrx2/Ud69e0uWpwAqDvfEvGMC8mZ45z2aAgNFJ8RT0Q2TPqQnkLOt1f78dua41RL9aJdw2a1bpQr6H63N8MeFNOYxG/cUlNvWFZJX9F83KxVoG/Sdfe706T4+OiHX/zbxgqn68jWG3qyGwlsRrTK1Z5Vn2yY/s5at7/bd7lv1LaCcfg4aD/Wc7oYvoApk0nkr7dpPp1DwEBgbikKOq/Aq+Qut+XiskQwECxkQHnVQEpOpaL+wAHXaBiAh4kJJ4BeInaxVqlbOFHtCkaSNf0sWaI2negNI6eDZoX1xlG2pHUMcwgGNGjIXe9yHQ4hdWDlghs88rzjnO6JEcytoZwTcjoYZ9IdgP+wAjOu5zk9W9Pp8d69nxxq1xCtpX/tLIG5BcwHS1Bug6KtiYMlLnfgQjBf4nIHLutLVO5AZb6tltDcAc1UREtc7sBFCRtPl8jcRubXS1AyUP4/DrpUItB/WkhcB3OkQ+x+oAbzl7reqCVvgUuvrqj1nK6Ewt4VwazmbkoObKow82RaaMlT277iBbhxZDNxTTi+w8iigjn2EMz/0AGE9H92YAhe+TYjNxw2kldMAvV/uT4+vkrhs3Z388Hze/f+A8TTXFg=

View File

@@ -1 +1 @@
eNrtWktz28Ydb5qbTz31jKDtpUNA4Puh4WQoyZYlWaJiypHdxMNZLhbESgAWxi74kEaHuv0C6PQLNFbEjkZxknGmjdO45x76BeRDP0v/C5AiFbmNkZmcAh8o7uL//O3/BXOfTgYk4JR571xQT5AAYQELHj2dBORJSLj445lLhM3M0912Z+9ZGNDL39pC+LyxtIR8qjOfeIjqmLlLg/wStpFYgu++Q2Ixpz1mjl///DfHqks4R33C1cZHxypmoMoTakPdI46juERBygE7JGpODZhDYD/kJFBPHudUl5nEgY2+L7QS01zqUUlFuA/iSddigYtA0LEqxr5kPODM63JsExcB3eIKaObfTMJxQH1pJDBtgm5FMEVIa6RqHXj9AHwLBJU2AysRoX+TM4YIvkpuIFFCf+6KoCL2pROz5mYWchFQr6+egIbQw7ZDPXJTLvL4kARSKrjKnAGYZ5PvCt694r8h/ERi9CSkATEB8an1ixofz8VsTqUmEljvgGABa2SaVFqDnN0FJCzkcALSPeQu8Eq1wNQQQUikblgT5Cbr2arLYudiNKmHndAk3VDGxIxtYhNkQjD+52e/OLUZF9Hz6wH2OcKYQBgQDzMTvIw+6x9RP6eYxHKQIOcQVR6Jwzc6PyTE15BDB+Qs4Yq+QL7vUIzk8yUZFxfTKNSk4zcfn8s40MA8T0QvW3zs4TZY0tpY2h1DOnhKXq/k9fwXI40LRD0HwltzEBh15sfP/7H4wEf4ECRp01SLzhLm54s0jEefbiPc7lwTiQJsR5+iwK2UXizuB6EnqEuiyeruTXXTh3N1RT1f0GtfXhMsPYo+i/804k/KXi4S2MSBQ9eS5I++7RGBdJne+kJ668nJ/v2aciKCsYYZ2BD9xXg+A9khXl/Y0bNyqf7XWfb+4QzYRMifnsKBkn//azItEp+0t+ax8MvTNTjc6NU+MXOKUVbukJ5SMApl+GiUK41SVVnf3rtYnarZk2d5CYk8EktkIHcSE5cVsD2ANGiGwtJqX+4FkGEW+Hd7FkwTbIfeITHPV98YRq9kGIF70h+oURoZ+YwTbWpmdPFQu5/US21j7UUSsxoL+sijR3FMRa/ieBoejYYmDk3THgxdo35UKtIeCbH11ZQFio5UAwZpLo+eVY368+mT2WGeg/OGljc0I//NSAsAG4e6FACOP6dFm0enZcMwvr5JICBhobxPSkb875+LFAEUR6ivoHsuplSv1799M9FMVBFI6tX6N9epAOsFMfmCy7++STAV8YnBL0Yzao2a0eWvYdEtVyrVWr1XqALG1ULP6lWtnkVwr0CKFaNoVV8mZUcT8jB9FsBhEwwdSoyjy5yLRjJ7m8V8GagNY1mZFp1O2Ftj0ge+rPgBcRgyP8eWhhE0By0JyGiy9mintb2xeg61W1tl7JCSP71+591uF1vdntu07naQvrJl7m1VyuPdD+/dGRyMxmzYfRTuj93tQs0/qFr7dw9b1Y0PtHy1WAMvDKOq5XVDh7TXcP1JpT00vNtVZ9UYhit0xNuP+vbDjYebv/PWibU58jbcJw/WwnIhWHf0tRX04LBTDYatUT3o3tt3xoPtVn1lrby9Pqp96G95R8MPSm4LvEHCbi4tKxCbUPh5c5oyGqSMJhMm3yjMEmZZMWMMmvr1Grus3IXm3vac8bLSkWAS+AulvkMFae4wj1z+GTAIB9Rsruq2l39QWa1zr1cbuX5xZ2d/H9+l44PyPUP3Udja2lm5XdDXj7YXQMgXy5oxxaFilGpxFM5N/4FW/e2htlgBtHbSaqKJx7hHLeusQwJIoOgcOyw0oV0E5Gz1jna/9Sj6qm6YZWzl62WzYJXMPNZW2p0JciCYBjh6YRebaqNUKqrLiouatQrkTTzU/P4sabWvf9U1kUANBZoatFpVlkgMBVJrjfoH4cpoY8Me992Ng53d+9YQ+/jI3XyACtAyp3024Vgoqnpch4AAQ90Ssn1fgVd54zikQUEoaTK8arITg6MUky506wDooDei0JHtnI+5IG7XAptJ4IPpUrfld6sFYlZRr1zCUqfNgDkZ0qhnkpHaMHIgxBHx1DQdzhAUKEgUT4qdj3LxWGZBRwf7vNBxYAxwWB8KWo8nGzkVlFNud8ExLqecmAoGkekUEC9v3frpwDnH7vhjVc3wenu8knk2Q+ztEftYbWQxlgqxfXuc4ZUCL8UEbzPAUgAGr/QZYGkA4xgGtwyyFJDhgA0zwNLE2JB6GWBpAEMZXunwGqIga5RpIHs/QyvVpJ/LJv1UiGVvkmnQkj8hZYClACz+vS0DLPu/ih8PsRWCUcizKEs1iGVv3ynfjBDPAEsDGAuF/JnEnF73yIB7W+CyV/CUlYxmmZkKMIsSJ3sHTwPZe9lElgqvkwyt70Pr+wFSuWC++hOBaO7lsbx76vqim1yPUhu1mrxoMbP3artQzamCCeRc7eTz5dx15q5JBKJOfOsyvuJkXhHDUaDQpGy+cfIGNYsCknMBf/6PDNiIL1yCIj8gJsXXTDbkJRF5DP/j8cnJ1fF+tNbeuf341q3/ArgMR1M=
eNrtWk1z28YZbtqbTz31jGJ66hAUQIIUSQ2nQ1ORbDkSJVGJJTsezmqxENYEsDB2wQ9pdKjbU2/o9A80VsSORnGScaaN07jnHvoH7EN/S94FQYks0TaTYwY6kNzdd9+PZ9+vFfB8MiAhp8x/75r6goQICxjw+PkkJM8iwsXvLz0iHGZd7Ha6By+ikL79tSNEwBsrKyigRRYQH9EiZt7KwFjBDhIr8DtwScLm4phZ43c/7Z6pHuEcnRCuNpTHZypmIMsXMFAPiOsqHlGQ8pT1iVpQ1JC5RK5EnITq+ROY8ZhFXDl1EgjNZJpHfZpQEh6AFNKzWeghye5MFeMg2f2UM7/HsUM8JEnnh5Js7qdFOA5pIBWWG7dADUUwRUjFpA5FuT8IwdJQ0MQC2E5EFGTtTjCD35IDEClRMGeZoGJqWjfZLmdSbbkIqX+inktJkY8dl/okiz3y+ZCEkjnYztwBaOqQZf67NzwyZJwnyD2LaEgseRypMQuin8xz25qxTxmx46cECzmDLItK1ZC7O4+PjVxOpBgfeQscpApYnpMII5IoAjMEeenMzbjHEounWFMfu5FFepF0oJu9E4cgC1z33z/5+YXDuIhfLrrj5whjAu5CfMwssDv+7OSUBgXFIraLBLkCF/RJ4uzxVZ+QQEMuHZDL6a74CxQELsVIrq9I37lOXVaTICwvX0lH0UA/X8SvW3zs4w5o0rq/sjuG4PEVo1ipFytfjDQuEPVdCAbNRaDUZZCs/31+IUC4D5y0NDDjy+nml/M0jMefbiPc6S6wRCF24k9R6FXNV/PzYeQL6pF40t5dFpcu3oorFw2juPrlAmNpUfxZ8tVIPil7PU/gEBeOX5umivjbYyJQUSaD4lwyKE7P9m8LwokIxxpmoEP8Z/3lDGSX+CfCiV9U6pW/zIL8d5ewTUT8+QUcKPnXPydpSvmk8+DWF35xsQ6HG785cKKCoteVLeQrJb1UgY9GebWh15TN7YPrdirmQJ7lW4j0kVghAzkzVXFNAd1DCItmJGyt9uVBCHFng33vz5xpgp3I7xPrqp3pRm+kG4F50h5IZxoZBYwTLVUzvj7U9qfZVbu//mrqsxoLT5BPTxOfit8k/jQ8HQ0tHFmWMxh6ev3ULNNjEmH7q3QLJCUpBhTSPB6/KJWNl+nK7DCvwHhdM3RNN74ZaSFg41KPAsDJZ5rieXxR0XX962UCAXELxWBi6snfP+YpQsifkIdB9i0bs16vf5tNNGNVBpL6av2bRSrAeo6NUfL418sEKYtPdH49mlFr1Irf/goGvZJhmTrGJWwghEplU1/Vy6vExAgZq2ULV19Pk48m5GEGLITDJhjqmRjHbwseGsnobZaNSrkKlq4padbpRsfrTNrA15QgJC5D1uftDa2NoH5o3cQh48n60U5r+377CtK61masT8kf3733s14P271jr/mMbT3ceWDX9PYWOr1LVksbe6xu7o3Mjeqwfuh27f2SMToqD1vhngaqVs1KRS/VNKOoF42ioT2q7fHRPUT65PTho3VkfETK9vr+Q4vaQ7HR2beKg5aoeofHoh+iUr10tHnYLYUP9gy7dHRsDLro3iNjR3/aPt3uf3BYRJsla5d99GwI1iDhNFfWFPBNqAS8mYaMBiGjyYAxGvosYNYUK8GgWVzMsWvKPWgFOr47XlO6EkwC35Dyu1SQ5g7zyds/AQbRgFpNapFKtCFabm209YG56zJ7v91iRx92quG2LsJwf8fZbFlbm50DNgeCUa1reopDVTdriRfeqv4DtfrroTafAbTOtNjEE59xn9r2ZZeEEEDxFXZZZEG5CMklnPl+6yj+qmbbq+V6uWzbVrmKcEW72+lOkAvONMDxK6fcVBumWVbXFA81a1WIm6QF+u3ltPi+U/5gIYGSqga1V5UpEkOC1Fq+eFQ97Rs1kwUty6ivf2iQ+xVW75+Ot3fVwqzkTnfMJdVikoeAAEPeErKe34JXmPVN822TBgnB1PRVzajBLj7mgng9G1QjYQAaShF20LNL2CrVqnUTSdYOo1jW9ceyFltkpDb0AjQmroD+6Sxt11QEeQgSNHAo3LZ3KgxCYkPlBjX8yHXPC6rLTiBvHfPpREEF4ZQ7PdCfyx4noXpSUNNqnwzv3PnRoXYL0dnHqprDsgTLtCnNgVkC5mO1kXtMFjAPnXEOyzIsigVG5bgs4wI35xyXDFw4hoYnR2YZGRyyYY5LhscMqZ/jkoELymHJhGWIwrwkZSDzmxyUrH63kPe7WcDkt6MMUOQTjByXZVySpzo5Lvlt+vsCc5dgFPHcZ7IamPzimH0NQDzHJQMXFgn5n3Fr+oQ/x+c/8clvj9lZhubhlIWLTYmbXx8zkPll3slkwXKeg5KC8v9xULlggfrjQuLWmDP5Gp8XiN70TRK1UavJh9UztW6mS9WCKphA7s2MYZiFxc09iwhEXZ74mnwbxLohBsRRZFF2O3GeIWaewRR+sOd/8ICJ5N00EBSExKJ4QWVdPmiXaP+X5fPzm1N8vN7Zef/JnTvfAT6lHnY=

View File

@@ -1 +1 @@
eNrtVU9v3EQUV4/c+AiutxKXzNpjr+3dlRBKWrUpTUkKgfCnaPU887Lrrj1jZsZpNiEHAhJctx+hiRIUVdALR245cOALhE/DzGY3CALiwKUSPdjWvHnz5r3fe7+fD093UOlCihsvCmFQATN2oZ8dnir8okFtvjmp0IwkP95Y/2DzqFHFxcbImFr3gyBHriQbE9UIU1TYbjRB0IbQNlSwJwU81W0mq6CSHMsAhBkpWReszUpoOJKdKCjEjhzjcS755OLLff/KZTBPyu97/uKWKIxiEiYkpv6S51eoNQxRW4/P9n0lS3S+jUbldpm0tQjjTJtYll6FHnhP7FX+wefuMOwOjF0Jd5yGUefgdITA7Z3fniwzhrWZnr8JdV0WDBwcwRMtxYvbl0HJ5qTGv9k/+9BeTpaH1mV6/mxFGhkHtB2nbRp7FQ+cgUmFrYWtgSBqh57UQQVM6lYUt1O7tq6g2KgFqko7XgliGNQT2wDRits0anedQz0pqrps3d6YbXhsexgoNGpCHNKtEofAJt7iwkUSZx+T5WqP3AHjsrdoJmEUJpv2SZPepz+B3dN8TFxLLqsiBZ+e30qjvMtitk26OaWkk3YY6fXyjAANgQIkEKfbPy4Oz2dmev4GGINVbd6mPyxgW0MxNKPpEY063yvUtZ0y/PpEGzCNPjxmNvNffzmdt/X5+oNFR767uDlLXJCV+SDc/yPDNVuMYJPpUS+lx7PKft5CvuSFiXcXc88VaV/9JOuHoXfv4ea1WOuNqRvbUjcM5La0gzx9HmXXco7D9MzaBM7YMT0bI9YEymIHL7xr2V0LSOOXuwSc0/uX+Nzn04tbYZpF0LVIctpNSCfKYtIDYATCBLpJTHudlP955l7+deRmxPnKYqgKMfztRrTvF9zv+5UeDnKuxoOQpqvvPVp9KuTK+JO1ZDt/1L3X7O1aAvnGBnSul3hbwyWFfNC6sD2x3FnyZ7y1tjlf7bRa4xW1LO3mQQzuOvfZp++vosK3tOWbLspyMmNd33ssHoutERiPS28iG4+BZSXY1dCrYFiwAsQ73rId99wqEHD34VLddHT1tZH1QFllcXrgo+AD0yjhzze0g1Qwm4doynLJSoCrp2+hcI24ojmNl3w5a/aVKcoODl7L3P9H5rIw/GeZyyFCyhIgeZZHpJOnnEDUoyRmSZhsdzLOu/RVkLn4X2SOvmoyB0jRYhESlqH9f8S8Q/JeRkkCFDEOwxCz6D/L3GoPa3V3vDfZqfDBR+8+3E3k1p3ktcwtZO535liL9g==
eNrtVMtuHEUUVZbs+IRKTyQ2U9PV7+mRUOQYCCEOdmBQIhM0qqm+/ch0V7W7qm13zCwwSLCdfEJs2ciKIBuW7LxgwQ+Yr6F6PGOEJkEIKdmETbfq3ltVt8655xye7kIlM8GvPc+4gooypRfy6eFpBTs1SPXdSQEqFdHx1ubnw6O6yi62UqVKOTDNMUSVYBNc1VxlBfRqiYFKha0eLegTweme7DFRmIWIIDcpV2klyoz1WE7rCPCubWZ8V0zgeCyi5uLrA+OqZLRoyhggY3mLTWwHEw87ltFFRgFS0gSkrvjywKhEDm1tLaFqs0zot3DVhoaQ56gARNFjfZUx/ardTPdHSq94u90itjs9TYFG+s7vT9YYg1LNzt+lZZlnjLZwmI+l4M/XLw/Fw6aEl+TPvtCX47VEl8zOn94SSjim1XO8nmujIjLbABMVdJaxmpp2jyAhzYIyITu20/P1WpfSiqUdWhW+i3LKE7NsNAG84/Qsqxe0BWWTFWXeWd+aJxCLE7MCVTW4RbqTQ0JZg5YXLps4e4jXiif4A6ra7jWaHrFIOLSJE1j97V+ozslogltKLl+Fs2h2fsMH4lq0H2M7cmLsuhHBNLYiHDDL9hjzfeZYPy83L2Zmdv4OVQqKUr1v/bSEbQN4otLZkWW7P1YgSz1l8O2JVFTV8vCY6c5//+10QeuzzbtLRn5YOcAh/sX1+WM4vrUYjs1albWmpiUVrws9kLNndvB3yl6sMKbTHOYDPzubAJSY5tkurBx+5y9INjR6nDWzo75NLtBK3UoPlvNiH9O26LNLaO5Es4sbtuv6fgw+jkPX05jaFIc+AzwmfY9SxwVmu8dzon4dpnUXkRB9QjlqOdOfgRMMrBDdvjecC+cbjWGV8eSPa/aBkUXGwChkMhpH1WRELNfasR5s3+/TDz9q1lL+6c7kfrpdGl1DaUTa0ku8deBSQgaVMtOcaO10jbludWyhVz2tOnglLS27xSEK9tvy+W9gfAwVvCe13mSW581cdQP0iD/iD1KqUCRQI2rEqFYl1asEFTTJWEb5TbSmx32sHYhG7S8S1fVWroZUohxV2llaPzCARyNVV9xYJGSLK2e6D17neVdbQPuegYaiZeNK5pbTNcR8SK5CdjCd/m9zb5PNha+2OS+I7D71CWZ9om1uTD08ZiTAzBuHACFxA4jftM05/87mvNdpcyT87zbngQ9uTFwMgcM0pi7DWtweDpyQeTEJ+v3Y+Webs8lLbM5ctTnbHW49bBI74+HYKne3NyaJ21dv3OZe4XJM7KG9TKWIC6SnVt5EtyuNW4TGAPFr9jhvOv0TTIuLpA==

View File

@@ -1 +1 @@
eNrtVs1u20YQbq9GD730rhI9FVqJlKhfwyhs2a4Vx5b/EP8UgbBaDkVaJJfmLmXJhg9N+wJ8hCaOFBiukyBBm/6k5x76Au6hD9En6FCSYRk24geodCDE3dmZb775ZodP+m0IhM29j89tT0JAmcQXET3pB3AQgpDf91yQFjdO12qbW8/CwL780pLSF+V0mvp2ivvgUTvFuJtua2lmUZnG/74DAzenDW50L7eOFReEoE0QSvmbY4VxjORJpaxY4DhcSSoBdwBfQwGBcvI4qbjcAAcXmr4kOieu7dloJWQA1FXKMgjhpG8BNRD6Px99empxIaOLm3BeUsYAj4PHuGF7zejH5pHtJxMGmA6VcIYgPBgkG521AHxCHbsNveGp6BX1fcdmNN5P7wvunY9AE9n14fb2WQydYIaejN7WEMRsNb3WRd68hJbKayntVYcISW3PQSKIQxFPzx/s/za+4VPWQidkVJOoNzx8MW7DRfR8hbLa5g2XNGBW9JwGbl5/M74ehJ60XYj6lbXb4Uab1+GyKS2TKr6+4Vh0PRY9N6kj4Ocbh0EGXcI4+oh+UHuM85YN0eW/9Toz6w13puvsa3tblWJ7Z2W5UM0H+jbsbNuFvWo1oLUDr24KvhOEO35GLxKtkC0WiiVVzREtpaYwZbKw6GSr+oJYWs3l1J39xeVmUKvq9czq+oZaouxR0z1wtdoD3exkH1new1nuWAtyOdzP+I2Vh53m6txqsHa4sl3l2/5cJb+8m8m2Vluz0wlEF7ZtY2ajJpa0owUpm61dZ2HP26Dr+7V1f5Gmdh/Mdfhhu5XbfQCHJcrXx+CppQxRRwjzql5U49/FlTYc8JrSip4W9RcBCB8bAL7rIWMyFE9OUYbw15/9USc8rS1fK/iz03mUZPR+G4xkQs0lFqGRyKiZHD7KuXxZzyW+Xtk6r4yibMUKvExI6Mg0tOOVYWNMJ7D9AgFyJpQmKb7eCqgnTJTlwlUL9JkVei0wzip3iv99LH6sbJwOdiSBjs8FkBHM6HyHbAzvBFKdfzPsNMKDJvXso0EnRO8HXXB41Dk0WGgYVvvQVUtHetZuQMjMt6MjfsDjMAiIuCJ6lteyF6OdKx2eYfIq0VSiar92SIDcOLZrI7+D5+hiEtFpDsl/d9tA8hbgFdbXB9VR/xi3CMBFAcexr93opVLp97uNrlxl0aRUvIkGSwzjaLSMK97dNhi5eKqK886VNbGN6PILfKmbmp4paEUwMoWCqheYWco3IKfpJWpmsmYRfsHa2gy9xMX0eYDFBoa3sOxGl0mXduI7Zyar5bJ5zHQ6YXvMCQ3YDBvzPM5BTCf8ABxOjZfMJIwyC8hQkFF/fnd1dqVa+WmHjCuL1PzhBOh7XHi2afY2IcDCRGfM4aGBl2cAvcoi2Zjdjd6WVCPHTC2DCtGzar5B5mqbfeogyDaL3ljZGaWs61llOuHSmWIe6zEYCN/24qS85t+fvDCopOXEsWIbeNvH04Ph7CCznea+PJBNL6ev+0eudrTr8xKbLxZae9VNHAS8sY/qHZ1IXc+b1EDfaMCwHySgz+vOvXOoEBSaTtQC0YrxfMFEbQZ1aeMYKis4KWjoyHijKyS4dRMxQ+Aj9Di26dcLGTAKtJHTWRzT4nh4OOFsz4COUlaT6MSRVCkfX404isLHAnix2+s5GI9AMENBEZ8XOs5JUnF4ExulIYYLSQWD28KqY2I4bkZWj0+mpv4/DF7TtTT4bJiQ9EGSPp8Q9GGCEkv8cMLRPRwx6k04uoej6oShexgaTr0JTffQ1OXhhKN7OJLcoN0JSx9m6asJQXcQdD8nipDcV8ZY+Wa+trrweGrqP/aerWg=
eNrtVs1u20YQbq/upZfeWaKnQiuTEvVDGUZhS05tq7Ic24ktp4GwWi5F2uQuy13KkgwfmvYFeOgDNHGkwnCdBAna9Cc999AXcA99iD5Bh5IMy3CA3lvpIGh3Z2a/+eabHT0admgoXM7ePXeZpCEmEhYifjQM6RcRFfLrgU+lw63Tzfr2zpModC8/dqQMRGl+HgdumgeUYTdNuD/f0eeJg+U8/A48Ogpz2uJW7/LzY9WnQuA2FWpJeXCsEg5XMQkL1aGex9WUoobco8lGJGionjyEHZ9b1Eu22oFEBke+y9zEUsiQYh8OZBjRk6FDsQUp/PXO+6cOFzK+uAnrGSaEQgDKCLdc1o6/b/fdIKVY1PawpGeAhdFR0vHZIaUBwp7boYOxV/wcB4HnEpyczx8Izs4n2JHsBfT28VkCH0GmTMav6gBiaW1+swf8MUVP58x07nkXCYld5gEhyMOAZxCMzn+ZPggwOYQgaFKbeDB2vpi24SJ+WsOkvn0jJA6JEz/FoZ83Xk7vhxGTrk/jYXnz9nWTw+vrsmldTxde3AgseozET23sCfrjDWcqwx4iHGLE32oDwvmhS+PLv5tNYjdb/uIG7XsFPXdvt2Pd2ZP3e1V/db0ic3ecsNHfzNeX0mk3rC17W16aI72QzRu5nJYpID2tpfW0jhp7vaDXuMs7ph3lauV62S9knIO7+/l2I6DLGRG6qxteq91pyX3GsFVn62JzN1ir9rXGyqahV1faRwapGfvbPJ8j7K5ZrTb3WksLCqCLOq61SCqieg/7wiOVejmoNrr3e59t7JuZTju9m9nLH24dVt192twKd2tT8LRCDmkThHnNKGrJ5+JKGx5lbenEj83MdyEVATQC/WoAjMlIPDoFGdI/fh9OOuJxvXqt4A9OKyDJ+M2OE6UUzVTWMVMyWiYHX6VsoaQVlE9rO+flyS07iQIvFUm7cp52kp1xZywo0IahoHIxkjYqvtgJMRM2yHLlqgWGxInYIbXOym8V/5tE/FDZJB1oS0S7ARcUTWDG53toa/w2oLXKy3GnIR62MXP7o06I34y64KjfPbJIZFlO58jXzL6RdVs0IvariUsQ8uQaAIR8ET/RC4WLycmVDs8geQ3pGtL0n7soBG4813eB39H35IES8WkOyH9920DyQwpP2dAYVUf7bdoipD4IOLn7Ooxhmuavbze6CpUFE7N4Ew2UmE6j0TO+eH3bYBLisSbOu1fWyLXiy49g0TSLhZZhmPmMlSsYtJhtFfMYG5m83crrOingn6C2LoEoSTEDHkKxKYHXWPbiy5SPu8mbs5jVc9k8ZLqguIx4kUW3o1aFJzmIBSUIqcex9ax8B5UxcSjaHgkyHlYaG0u1tfIPe2haWagejCfBkHHBXNsebNMQChOfEY9HFjyeIR1ArK2lRvyqaNuFrJnVzKJlmlouj5br20PsAcgOiV862UW1ZBhZdUHx8WIxD/UYDYYvB0lSrP3ne99YWOKScqy6llpSkylCYIagJSb3c5ly8YDZtGHUBPP31o+427eMGl5WUypvHYB6Jx7p67mTHukbDAj0g6QQ87pzU1dzZXqsIBCagTR4dYrgJXpCUr9pAzQaBoAwucIOmnaGWJli3jRwEtrhLkkGGswzl1m0q5a0lAqRJVZLx5NxpmLQNzQ+REhdTz0VFiG1I4EBBos87ySlerwN/dAS442UCpe7wmkCfpgqE6uHJ3Nz/zmirllZHf0VmHGROH4442HkqKzyoxkVYyoIZjMqxlSszYgYEzGeLzM2xmz0eDSjYkyF5BbuzcgYOX7yf+bh31NXheSBOpX8g0p9Y+Xh3Nw/AhlHvQ==

View File

@@ -1 +1 @@
eNptU39oG1Ucz5g/NqeuTFFEZPGcyrQvubRJf4QJdklrZ9cfayNbJ7O8vHvJ3XJ573r3LjbtZm2nICvIHgiDwQbaNKlZ3VLdrNP4g3VCtWX/+IuhiOCcSnX+IaIrjvqaJrWlO7jj3ff35/v5vMFMApuWRsmaMY0wbELExI/FBzMm7raxxV5KxzFTqZJqa+0IDdumdulhlTHD8rvd0NBckDDVpIaGXIjG3QmPO44tC0axlQpTJXlJ6ZPisKeL0RgmluT3yBXecqkUIvmf7ZNMqmPJL9kWNqVyCVExBGHCoGJdp9LBfSKcKlgXFqRDW8GgEqhQi9mgQtSSK+Vq6WBGxVARKL53lKVUajE+vmqy0xAhbDCACaKKRqL8rWivZpQ7FRzRIcNZ0ZfgAnSejWFsAKhrCZxezOI5aBi6huCC373fomSsOCdgSQOvdmcX0AABkTA+UVeaw92WFIskTtnl9bkqcj3AYlAjulgG0KEYKW0U/B8sdxgQxUQdUCSJpxeTTy2PoRYfaYaotWNFSWgilY9AM17lfWe53bQJ0+KYZwJtq9sVnf+3q3R5Klw14ysKW0mC+EgE6hYeX1ryUkpW8FIJ5CogeyZWlMbMTAJERQf+unyqtEAdkyhT+bBHlkdNbBlCe/hQWqQx2xpMCbLwzFSmKJg3WptKVA+lgoI2/uFurJQ7ZZ+zAYedorFPfPy+Kr/X63yqOTQWKDYJ3ZCl8ZAJiRURTNWXVJFBqk1iWMkGbqiHbPFOAE3heXHukj3V1buNnb5wc4tqqI17O3e172nE6vPDCQ3yrMflcUYpjer4NIoABJGKwSIyngl2ttQ17wiM7QHtNEyZBUIwylOEEpzuwKZYJs8indqKkKeJ04EG0F7Xyc/UyooPRWQIw0ptTQTVgu2C9RLKJRSpBW0X7t+A2KQpTBf+2Ty0zlF41op3fl55ta5p8smyl+c/9/98R+rNL9++l549MfIox989cOzI7zuPHa9vmuo/GtpwOHPrH30H8uvfX3dny7VfZr+abri29erc3+9u/HbyyoFXPMGbN/Tep3buutizJSc/vfe2mXPTh/N6y6atA4eO5ILZr58Z2teVTZOrs/Z1xz2DuU2Pv/fNr5HQXH7uqJHLvHb54m8/Td6k/Kl/dP2K9OloML/t/L+RB0/e/sKWmfM/vFjTCx6a3DjFXBcGPune8dn2c88l7mLb7v7rsSe6b5k4WyafuTzZOHo8Nz89e//m9T/2P1LfX30ycuLjAry1ji/M0P6mNQ7Hf3JxBh0=
eNptU39oG1UczxyDFRHmHE7UaYjzdy+5a9okjbNY06lb1zVNg7jKOl7v3uXOXN47770rzdoKdp3+Edj6/hjFMQRtenEh6xYrVNjmP60gstI5pG4yREE6EHQIQ9bhiC9ZUlu6++O4+37e98fn8/m+kVw/tIiO0YaCjii0gEz5D2EjOQu+b0NCR50UpBpWstHO7viEbenXntUoNUnY5wOm7gWIahY2ddkr45SvX/KlICEgAUm2Dyvpa8agJwUGDlGchIh4wm5JbGisd3tqh3jk3UGPhQ3Ivzw2gZaHozLmkyBaDmnQMLBn+GA5ByvQKMdkA9gKFPyCBvSkLTTwkqJfDHqGcxoECmfzi2tLVsOEsuK6Cc8CWYYmFSCSsaKjBDuTOKyb9W4FqgagMM9bI1iRgOWTEJoCMPR+6NzLYueAaRq6DMq47z2CUaE6qkDTJlwP58uMBE4UUTbTWpvDF01zQZFb9DaKXvHcgEAo0JHBJREMwEdyzAp+fjVgAjnJ6whVs5hzL3lq9RlM2GQHkDu715QElqyxSWClAo3Tq+OWjaiegiwXia5vVwX/b+f3SpI3WFxTmKSRzCZVYBBYXBF5JSXPffELYkAQpZk1pSG10oKMeQf2mThVE9CAKEE1NiGJoS8sSEy+g/CIw9OoTUay3Cx46btcdW0+72yvWZ3JtnHb2MW4Zte7xWb3XoDcvHETf4X9wbAYcL/ZES9Eqk3i93WpGLcAIip3andtK3KyZqMkVPKR++5Dvno3BF1hF/j3IVHq6oklgiFlX0iPEtK+FxC1SwWxiX4dsLzkldwJjBMGPBt5Q4gAWYNCd4UZy7Ud2N/asSdSeEeI4T5MiRAHCZZFGEGnG1pcTJaXDWwrfD0t6PD0WOsB9lVIVYP+5gbQBGCgUVZDwuvc9RrLFRbZ8m5X7uGHXEmLh+ZuP53Z7Ko8G5VjP7TPio/NlU4MLLxIz4jzGd/L+zb93bWlTrq7eELd89MQWLxSOhje8ULLjus3//q6LvXQ0YhBv/mZnv/j1qeL87PO0J2hQu+xhfnUprqnBnti2yb0zVsjZgb0Gc88sTAWGj355LaC/7RTuPSP82fs7d+/tXuXkm9d/fWTXZGL+8d3O8cnBx89KjRvn5oLnBpt6r2euTksfbQz9KN6Yfbf5x5uvnXY/ciRjx9Y7iGP7/rgtazswXXfP39j55XlL09evtNSXLrMjkeDWxevvqq/MvZbYODu+I3tLWOnS9Njt2emX1paftDlKpU2ukjb0nj7BpfrP/yBBQM=

View File

@@ -1 +1 @@
eNqdVXtsU9cZT5qtDRVqR1WVtgxxZ1HRh8/1vX5fZ2ZKYhKiYJzaDiRBNDq+99i+8X3lPhI7lD3CJDatr1sQLYVCWzt2m6RAQqCUNqjvBoa6jU1rXa2ok0bY1oKGEF27bmHHjjMSwV+7f9zX+c73/b7v9/2+M1joQ6rGy1L1KC/pSIWsjj80c7Cgol4DafrP8yLSkzKXawtFollD5YsPJnVd0Xw2G1R4UlaQBHmSlUVbH21jk1C34XdFQGU3uZjMZYrKFouINA0mkGbxbdpiYWUcSdItPksUCQIhIgISPXIKWawWVRYQ/m9oSLVs3Wy1iDKHBPwjoejAKQORl3hspekqgqLFF4eChqwWHYkKRq4bKt5LkdTWQhJBDqf1ZC4pa7p5YCHQg5BlEfaHJFbmeClhvpoY4BUrwaG4AHU0jOFJqFwGcziFkAKgwPeh/Owu8xBUFIFnYWnd1qPJ0mglHaBnFHT98nApF4Bzl3RzIoRB1LfY2jK4ohJBk26apA+lgaZDXhJwiYAAMZ68Ul5/Y/6CAtkUdgIqbJn52c0H5tvImjkUhGwossAlVNmkOQRV0e08PP+/akg6LyKz0Nh2fbjK4rVwDpK2k96xBY61jMSaQ2USXluwGelqBrAy9mG+SB2Yq4+ApISeNLM0bX9ZRZqC+wNty+NtuqEN5jAX6PRUodIoL4Va50g8W7U0F8C8mJMbEWclKBfRhGKEnbK78M3ncvucXqI5GB1trISJ3pCGsagKJS2OqVgzR3uBTRpSCnHDjTckfLJEOM6mBB+3JUBpRdYQqKAyRztAeFYhoCVweLa7gKwmoMQPlMOak2Xm+wfS/RxrcFyyr1+kmAGng48hg41PVLYoqlwKgwEBUTOzDOM9UFmZq/0wzpUCNAUo+nga4D5HAi/yuJ7le0WmmplzURR17HoDHSsLC7rgpMrXifkWKhIxaaXY19w4GYZ588ZGc64c2ITxMMcXWmloPhraLmrHrjeouHiJ0kbTc9aA58ziSvzRDTnG4XAih9PjgN64K+amXSwd57ysnXNDxsm+jpXPs9hLiUxFVnWgIRbPJD1jFq0iTJd05nfQLocbZ1pH8BIrGByKGLGAXMpBqyMUFQky5A6yccBCNonAbP+ZhUDn+vpgS+NwBINslOUUj57+tLqmu5uNd8dE/7o1VHOID7X3hqk1XeudKY3NeGLd4ZBmGC1xJRBq6TEeHpC0tSovA9rj8Hq8DEV5AU1SJFYpcDEpb5ILrW00WtJNVKC1IRTs9darQW8kJnUE6Hi/t51R1DUBt0RFpai7K6FCUW/qc3Kcm2v3BrsMkmwWtCZBbpd7Okl7Z1v3OjvVj7OBetJvqyNwb/K4vv6KQgBWCCjpg/bZ5/RRR3DlGvjJhdOwjliLx3lIEjJ1RKRUTISfUEQRXkf+9bKEijtxDYw+nvNT9UxnbzoQbWXCSTfk0qlA2Ej2t1MsGWxIe5L1altTfVci3GNXEvOK4KY9gKrUwU05veUuvAb9/0R1tAPMFzwIKbPnVkGSNYmPx/MRpGIBmcOsIBscHuwqyjc2gXB9pznBUJyLjdspDrkYbxzGQQMemXPe/jcecqVToQAF3GN9rHk46fBbfE6nw1JHiNDvdWM5lU+3n+VLPSkl3q9+Z8WvaqvKV81j4bef+D31vcnzD928f9nOXeTfvhr8fPA7Ny0ia8dGpo6sOml9Qizu0DeOzNSpZ8TxmHns63+cPX15i+Pys9W1Z2K3Nxx5uv18cGbmxOvLVs8Iz01v+f7Z20Z/8aM9D927evmJrd88uOGVd5dfbLsU+Th1zic/dbL4yw3V97Hhzc/IfecuHr//lPnXvU07Pr33N9/88dzyzlOe9+N7lqITZ59/Y1PzrdlP3j24uOrz3kd3hEYuPfLlix3+Hyz/4P5ld37buuSntR+tDEzd/cD4hHWD45W9aCJ7ZcWFmuSZt0BD1P7CrRdrm8cJMJVd/K/PHp8cW9F2crVlorb5nrev7A24ijdPNbQu6WnIdoOfLOr458P53FHP9GP7yaOPpx5Vtqenbengrtim7+78XZGjxy/HuNA9b13w7pvpjP152xc/3Pjlj7PBwS+urFw1PWSd+mw39+GZ019PD1wZ7Boy79t97O6DbeEjL5//KLN0/OO/3BU4OvXv13Y/M1H4E7fnqrl/0dBvHX8/dcsfcvtu2ffrm/I7/rOxiD7IwiX04tyh2DtPffXC2K7J3be1vLd96pN2jHLb7c7NkQsj6rbjO7ePvHpH8YFva6qqrl6tqbq0btXWTfj9v/DeoiM=
eNqdVX1sG+UZTxaJFnWoSFSDsqLezCRGydl39p3PjmVYcJI2TRwnsfM1VqLX7722r7mv3EccG0JZAG2ihepKNVGto6xxbMjSpPmAprRdB6JSK5Ao6YcwaKu0TlNBKfso65BAdO85zpqo/Wsn+c73Ps/7fPx+z++94cIA0nRBkSvHBdlAGoAGftGt4YKG+k2kG8/nJWSkFD7XGonGRkxNKG5KGYaq17hcQBWciopkIDihIrkGaBdMAcOF/6siKoXJxRU+U8w+5ZCQroMk0h01xBNPOaCCU8kGfnHEkCgSEiIAsV3pQ45qwqEpIrItpo40x9A2vCIpPBLtpaRqkIxCSoIs2J66oSEgYUMCiDrCCwaSVNyCYWp2BMpJDRVSCPC4wd25lKIb1sTKkicBhAjHRDJUeEFOWoeSWUGtJniUEIGBxnCdMioBYo31IaSSQBQGUH5xl3UYqKooQGDbXdt1RR4v90UaGRXdah6zOyIxCrJhzUZwEbWNrtYMxlYmaCfrd7KHB0ndAIIsYrBIEeB68mrJfmy5QQWwDwchy7xZ+cXNE8t9FN0aDQMYia4ICTSYskaBJnmZmeXrmikbgoSsQqj11nRl4810HidNO7mpFYH1jAyt0RINR1ZsRoaWIaGCY1i/oyaW8BGRnDRS1gjtdr+hIV3Fk4Key+NthqkP5zAX6MPThfLIHIw0LZH454p7c3WYF+tELGVWE5Sf2Apkwk25WXyr8XA1eGVzODYeKqeJ3ZaGqZgGZD2Bqahfor0AU6bch/ix0G0JP2ETjruxy8fTSaJBVdERWa7KGu8m2xe1QjbWzSxOF6loSSAL2VJa60SJ+XR2MM1Dk+dTA2mJ8mcZjxBHJkzMlreommKnwQWRkm6NeFhmomxZwn4M90qRNEVS9DuDJB50JAqSgPEs3cuC1a0cS1HU3K0OBlYYlnaBoUrXH5Z7aEjCpNm5b4Zh/H7/8ds7LYXyYBc/539npZeOlldDuyV97laHcoiDlD4+uORNCrxV/DF+6U1wHOulaR5RPOemkZv1+aCbA3EK8hSKe6mjWPwCxFFsMlVFM0gdQXw6GRmrWC2BQVtnQQ/Nery40wAhyFA0eRQ143WK3YMeIFQNiQrgJ0MNZAjAFCKjpfmzCnU9LbXhxtBYFBcZUpQ+Ae35tLKqtxcmeuNS0BfNMqlMZ0fWyekN3nTP5u62uuZEUghzBhVi0jFZYZuiaj1lhsMkzXm8DMtSbj9JOykn7aTJ3tbWDp7a0mlmerIUq5st8Vj91sZaprktokFuC+evZ/Vw93bJ7G9iBKqluSEd06RwJ+S7I4JW10b1iamtzva2x4HQtcU9YIKWdEe9O427AUYq6AoQeDYFjG+wrBASK4S09UHXUEv6CBB8CYOgc+VpGCC24IM9IouZABG1wUT4CSQUFQwUbFFkVNyLMTAHBD7Y0+13N7B9mxv6QXNXe0dHA6r3DPp+5mY0M8Elm5uMNo71d0i17u6eZSBQLJ7cMg5eivGVpvBm6f9nVW93k8sFT0bUxS9YQVZ0WUgk8lGkYQFZY1BUTB4f7BrKY87ba3usWV8iwXn8Hp8X0hwDeUQ+jo/MpWj/Ox5y9lehAEQ8YwPQmkl5go4ahvE4AoQEgj4vllPpO/eLvD2TcvJU5bGNO1dXlK4q/LtxY1f7uy9+Rq07/s0jT5ovN/0lPF38+dY1ZLWYfXh29k/xdZ8XnzlUfefn+xam/3pp5wZl4axzof6X+7iRfQ8FUcXw7CfDrS/xF7KvnDzyLRzCXT129cu/ScfWXDrpPRD6Z/9bn+3I3D2TU7+59MbXPf/uPHrxh7x2ve73z+6hjzonJi9+cGH7k2L2oHl/eM+F166NfvDE9N57r8X3fTR57VSilXt5XcPUCwfWV/wxuiO/v/Pyc5+89/T1XbP3jYy3iR+FKhy+V+7+Ecydnp9+9aWc9uuPr398kt39emMVt7rtzLOb5qo2nB6eJda6r6RV5e9XV8Wmd66+673aBvWBh7rCb98xfbb1+RfPXuHO9X2vc9veN8eu7lr/j8v+I/1vrZU3rvpuVxf/sBf9dP1vw+sfDLiy11+t/PaL/5zbFvvBo3MX9TNfrv2Un+vev/D+15vu+VeCKE4xDz7DLnw1f+j86T3N+xe6fvLm/edHtKe/XxS0exy/Mb7jPrxxPHLizMXJqY13jp71fDG/6nzOuWY3rDx3YEhYOH750cO/2m1NkY9Ms3dsvPIV3NTb+cL8qcTQzF5HILGj0maoqmJ+/L4Nj2G6/gt1fZuE

View File

@@ -1 +1 @@
eNqdVWtsHNUVdhpoU2FSUihUahGrVUod8F3P7Mw+zbZarxO/Ym/s3djYKKzuztzZGe/M3Mk89uGIhrokkZIINFFTIqgMdTa7rWOchAQCAUe8qhoRMGobVSZpaEgLgiY84qCUVm16d71ubCW/OtI+Zu6553zn+853Z7iUQbohYXXJuKSaSIecSW4Me7iko40WMsxHigoyRcwX1kVj8b2WLs3cI5qmZgQbGqAmubCGVCi5OKw0ZOgGToRmA/mvyaiSppDEfH5m/SanggwDppDhDD6wyclhUkk1nUGniGQZO+udOpYRubUMpDsf2lDvVDCPZPIgpZmAxUCRVIlEGaaOoOIMClA20EMlEUGeYH+sIGLDtCcWozkAOQ6R3UjlMC+pKfuZ1JCk1Tt4JMjQRGMEg4oqvdpjaYQ0AGUpg4pzu+yDUNNkiYPl9YZBA6vjVczAzGvo2uWxMnJAGlRN+0iUgAi3NazLE9pUB+3y0i76YA4YJpRUmfAAZEjwFLXK+ksLFzTIpUkSUJXELs5tnlgYgw17XyfkorFFKaHOifY+qCte9vDC57qlmpKC7FJk3bXlqotXyzEu2u3yH1qU2MirnL2vQvnRRZuRqecBh0kO+1fUxDw/MlJTpmiP+j2/1pGhkRlAPyuSXaZlDBeIFOjEVKk6DKPRjnkNz9TcUWgmstiTfYivd1AexxqUdLgpt4d8BT3eIMs4Wjrj45Fqlfh1VTgU16FqCESJ1fOqlzjRUtOIH4tcV+/Jst6kmTJ6MoMA5TRsIFBFZY/fD3rmXADamg/PDRfAegqq0lClrD1ZET47lMvynMXzYiarUIEhlpGSyOKEI9Utmo7LZQggoBj2Xh8bmKiuzFM/RnqlAE0Bij6WAzqhQpYUidBZ+a5a0bALHoqiXrg2wMRpRExbYqnKdXxhhI4Uolm59tU0bCAQePn6QfOpGBIS8C9GQxRFC9HQbsV44dqAaopRyhjPzUcDibdnVpKbBAVplnUzEAr+pJvxeb1ulmME5Pb7hCTjY+gXic0ljmQpi6lh3QQG4si5Y+btmXoF5so2CzG0h/GSThsdksrJFo9iVrIZl3swGh2ajmQM+QOcADjIiQjMzZ9dau7vCne2RcZiBGQE47SEdr23ZGkiwQmJpBIa6G9xZ1NCJBHvGWznk7pgxo127FtvxTw8k1VFRWDD3uxQphUTpXyM3+cPUBQDaBflIiYFjNjd0pfLr3Fb/lhfot9Mu30GN9gd7fatH8hBSxc3BuQ1HUJ3humQI76Bge6wIeDuDrNTNtlmvre/i17XHkvyeSiv1RK9am6wI632ZEk30BRDDY0OMpsS4TdUdQggDgFlf9BB97w/Gh18hYOQa/Fh2OhoJUd2VJXzjY5YmUxEfqGCYpKJQl1YRTM/JxxYGYkPyYkmd75zYC3l8WCTNSjezHSqOEp0s1oja1t9vWxTqqd9MN5ihheQ4KM9gKry4KVYf2UKr0L/P1E9fz9YaHgQ1ebeTSUVG6okCMUY0omB7DFOxhZPznUdFSNrQE+43z4SoHgPJ1B0QAhAvxCgQBM5Meez/e94KJRfCiUokxnLcPZhkQk5gyzLOBsdCgz5vcROlTfYT4vlmVRTv11SvGvHsprKtZR8rlzZ2fPqo3+gbpn86N6tAV/dzRu+PRRetvyt3d9rqtMvtH2y4XecnDqKTm5u6Xrv7u/seOMH2y5/OPmyb+Tx2prnXgNPn95Rtyl1Mbrt07N94EenLieWv38cD2aPbgo+8dHFoycfu3Ni13D2WyvPrf6yV/+sdvXbmdF9P1yx6sWJ/Vlr/ea67frKoV5+17hBv6+dSe+ffbbOl+/+29//OX7m8C9u0276sbvm4ce/eFIfWP2N002HjjlCWxzB1y5Yy2pCTz7y9LLwtjr5jZNr25+3z3/33yM7z/q06WnHli0HqG/+ZWppc+8H/9i46tIfl4cLn2eoD3c+NdFWm31n1vXLr+49M7j/9eNfrPzaqUt/umXm7NSI++GnuHNnizcEpyd3dP615dk3D46c1h6cPfHM9FuvTHXvufEnK/68x7N99N2762/f2jMV+k1/APfVts8OT92++8ry2Scuxx849enm86mmdt2On7tvFcA3TXMjv1/xn/T5Yx/Q1NcvRgd6bvV8dal2+wC952OW+n6kcFx67sJU44HSv8QNsd2Few69dKr1RNfMXRUxltZ8tnXjXkCU+S+tood0
eNqdVX1sE+cZTxapoKJJ1YrUKuqG65VqWvLad77z2RfXa12bAPlyiPPFgGWv7177jtzde7kPx06F2rLuowFKj34ghJoKEmzkZdBA2PjeAKWb0KZprbY2dGVbUbV+bIWKbG23MPbacUYi+Gv3x9n3Ps/7PL/n93ue991ayCDDlLFWPS5rFjKgYJEP09laMNCAjUzrmbyKLAmLY+3xROeobcjT35QsSzcbvF6oyx6sIw3KHgGr3gztFSRoecl/XUHlMGNJLOamNz3hVpFpwjQy3Q2uDU+4BUxSaRb5cEtIUbC73uU2sIJKC7aJDPeWTWRFxSJSSktp3QIsBqqsySVP0zIQVIkhBRUTbSlICIqkhp1jEjYt59BiVIehICCyH2kCFmUt7fwkPSTr9S4RpRRooSKBoqFyzU6xHyEdQEXOoPzcLuc1qOuKLMCS3bvZxNp4BTqwcjq63VwsoQekUM1yJuMERGSttz1H6NNctMfPe/yvZYFpQVlTCB9AgQRPXi/bTy006FDoJ0FARRonP7f50EIfbDoHWqEQTywKCQ1Bcg5AQ+XYowvXDVuzZBU5hWj77ekqxlvpGA9NewITiwKbOU1wDpQp/9mizcgyckDAJIazjzo0z4+CtLQlOft55qCBTJ30AvpenuyybHPrGJEC/fpXhUpT7I83z2t4ueq+sRiRxTnTKdn1Lop3NUHN5aN8fvJqYAINFOda3do5Hq1k6byjChOdBtTMFFFi1bzqBUGytX4kFqN31PtMSW9STAk9aUSAsjo2EaigcsZ7QcfcNIC1saNzzQWwkYaaPFRO65wpCz84lB0UBVsUpcygSvFDLCMnkS2kJitbdAOX0hBAQDWdUcYXPFSxzFNfJLVSgKYARZ/MAoNQociqTOgsvysjaTpjfoqijt/uYOF+RIa3wFLl5+xCDwOpRLNS7lthWJ7nT9/ZaT4UQ1z44GI0RFG0EA3tU83jtztUQuynzPHsvDeQRWf6IfLRB5mACAXex/j4QBAmRZ+PRwzHpAIslxJTgnCCzLkskCglMXVsWMBEAjl/rJwzXa/CbGnMwgztZzhSacgla4JiiyhhJ2O4VIMZcukGUjAUD0cbQRQKEgKJcv85hdj6tkjr2mgxQUBGMe6X0a5L1TV9fUKqL6mGWbuno7utqzmX7KBWb8br+mJJKt1p9+iJYAS2mP4Bri2JIuyaoJEGdIDhWL+f8nGA9lAe2kODQKRLTvfEsusYoynSRfvWs2vszdkhke7tZJt7u+wB2GrHcfeQKlJDEh5oirc1qauDba1NXXp0TbSbi6uretqTvDAY6Mlls6KtsVJvLkKqgZYU9oZcpDdlwm+4MiGATAgozQfdQM3PR8glljkIexYfhiHXGnJ0xzUlF3IlSmQi8gtVlJAtFG7DGpp+kXBgZ2Qx7FezJh9L+KW1nuaBboM2jP5MB90bibCbGwPxjl4qJa0aWN3S1DowuIAE2scDqsIDR7HBchfegv5/ovppL1g48CCuz91RBQ2bmpxK5RPIIAPkFAUF2yI51w2UJ5p3RNY7k8FUKsDwPo5LUSxPUX7wODkx56P973gYK10KBaiQHssIzlGJCbsbWJZxh1wqDAc5Mk7lm+zpfKkntfRU9Ysrti2tKj812zvODb9DLT/977rv2M81v9fKyZ6VPwQbXh65e9PbiB6e+dtB5x/PzLTs9Xzx2arMV0LKsjOfU9dTjzAf+GvuadzmX3rshfFafH3HlcLeq7Pvwzdnrz159sSWv6z4bOrdd41TW6jkruWTN54d/m1x53Atdr58YqS7eqVgvAKw9tdtU5O9Vixaq+76/ch1/v0dAw9781OPvOq5Pv3R2GVn3f1TtSNM1VNvfbLXaNjx86na/AvMG9/dfqRx4uwD1T96jHvw8dcld/Mvk77nhx8Y/Xj/n0aPzVR/8uF93/jwz3UzXwq2L2v59te+tfP71T/mLi6/fOwPI9eurHz2wKUll16/98lzdVda/vhSNXpo939q95z+4G3hrmtv+LXDTUtXHPx0o+/vv1t5oevqwz/Ys0TL1Eapicmvz9af9NX5j7Dcc3fd21T86kcRfrxugyrFxNGLVy/M/ubUYXXjjUf/WbNv+VDjpn89dengx+cvrP/FzNKbdmbP8WX17z3o4xDauOPckjcfffri7q591sTJG+xudyiFCf03b9ZUnb8xu/2emqqq/wK0XX0A

View File

@@ -1 +1 @@
eNrtWctu20YUbbdZdVOgS5boqtDIpEQ9DaOwLTsxEkeOH0icthBGM0NxbJJDzwwtyYEXTfsDXHXd1JEKw01bJOg7XXfRH3AX/Yh+QS8lObKR9KF1qYUgzty5j3MfhyIfDg+ZVFyEr5/xUDOJiYYLlTwcSnYQM6U/GQRMe4KebDS3tj+PJT9/19M6UvW5ORzxvIhYiHmeiGDu0J4jHtZz8Dvy2UjNSVvQ/vmnD8yAKYU7TJn19x+YRIClUJt1c5v5vhEwAxt7Yp+ZOVMKn8F6rJg0jz/MmYGgzIeFTqSRI1DAQw5SSkuGA7OuZcwurloiGpk06w9MHhI/pqwVpzbHYsc5U7MgggB1LGHNylvHQ49hCtH/8dobJ55QOnlyNaKvMCEMDLOQCMrDTvJl54hHOYMy18eanUIcIRvhlZzuMxYh7PNDNhifSr7GUeRzgtP9uT0lwrNJ3Ej3I/by9mkaNAKHQ508a4ITi2tzG32APjTsfNnO21/3kNKYhz5giXwM/gyi0f5PlzciTPZBCZqkNRmMDz+5LCNU8ngdk+bWFZVYEi95jGVQdp5eXpdxqHnAkuHyxsvmJptTc8W8XchXv7miWPVDkjx2sa/Yd1cOMy37iAjQkXxmDYgQ+5wl53+2WsRttYOFWyvW9SZv7hxsWiv3bzv7ivQr7dZmU8Xxmhs1mmt78Z2jUN2QXCC7UqxWqjXLqiI7b+UhZFSq7Vc92ryxHK/1Vq3GzaXm+kF1Ua5Xt9rhvYbtdqs7tUiuNMqhtR1ul+93JA706qFDaZnuVNfvx/n8dV+t+mJH7O3mC7sbrVsFqztvgHfxIacL1mJt96DX2L5Z2/TKmPb2G5ux192xSH59qVfxFuXG6uL9zuZeIepccq9sV5A18bBsOVUr/Ty5qA2fhR3tJZ/bJfsLyVQEFc0+HgBkOlYPT6AO2W+/Difd9Kh5c1rCb540oCaT53cZzRlWyVhlbaNgFUrwVS+V6yXbuL6+fbY8MbOdluC5oVlPz7HDdGXcRfMGtLBUTC/E2kXVb7YlDpULdbly0QND4sXhPqOny6+s/udp9UNq03igmRHrRUIxNHEzObuHNsdzBa01no5bDQnZwSE/GrVC8nzUBt2jXpeSmFLvsBtYtSOnyNssJu6zyZFIitQMOIQClZzYVs1+Mtm6qMRTiN5CtoUs+8cegr5nPg84IDz6nkw3OFsC+L9/WUDDQII5OHRG+bF+uSwhWQAlnBqfqnFqtdrPrxa6UFUEkVql9uNVKQD7khq7EKjvXxaYqHhkqbPehTTiNDl/By5aNsYVWnZsWrHLAAUp1+y2XXAYcZyS7VScHyC5nICWNJuRkJBtRmCU635yngtwL506C0W7VCxDpPPGZHxuxe2GSGNQ80YkmS8w/Yq4iGDiMTSuyGTY2L29uL62/O09dLm0UHM8jJNhKFTIXXewxSQkJjklvogpjE/JBsuraHNxN3lWs2iJuEWnVGtXqy520VJza4h9cPKQJE+94oJZd5yiOW8EeKFahnyMWOWjQRpU2Pn9rVOKNa4bMPYpMEVKQQQICC32Onv9u/3Npe7OjTtyxbWPogOvqA5uNSv9AEhEtPegfCcn8lPSyo8KHAQINIRmoPOid23rlYSEoNAcZFWQXU25CQLlhLU0Bwqrm8AVOPZ1utFXwEAtF3xmMgLXU9tu1KoUGK3gdskhqU1PwOExTfKQsh4wVQ6U+BqnxDahRwyVDwkIU7VTMk3pk7nAeeBfGPs+UJ4vOtApbTVeyJlgnCuvBYEB4UykgGUnPDm6vHbt/wPnFLu7Xt/M8PrveBkUos0AmwEw7bEMsFkAUwRIIoNsBsiIFN0MsFlqrMvDDLBZAMMZXrPh1cUyI8pZIHvvg/CDrMhmQWyJEQx/mjPMZmnM7G5sRqbEKgNsFsBErNO/6Okzswy4WYDLbslmnGQ868yZAHM587N7slkgeztD69/Q+neATKVFZP5PIJpG+cAEUIJIt8avMMAfO31ofeHvdLmaM7XQ2H+xUqjlrp5tUaYx90eveEdvIegLWYgNx5SL6cLxK6xcVjBOC4TzDzpgYfQuFwxFklFOrnhspc/b0yz8zfbx8Yvsvt9o3l758Nq1vwCNNtHn
eNrtWVtv28gV7r7mqS+LvrJEnwpRJiVSEm0YheNLLr7IFzmxkw2E0XAoTkxymJmhLjb80LR/gD+hG0daGN7sLhK0223T5wLtH3Af+iP6C3oo0ZEMc9v3Bf0geM6cOZdvvnMORb0e9wgXlIWfXdFQEo6whIVIXo85eRUTIX8/Coj0mHOx2zxovYk5vf61J2UkFhcWUETLLCIhomXMgoWesYA9JBfg/8gnEzMXHeYMry/O1IAIgbpEqIvK8zMVM3AVSlioLeL7SkAUpLxkJ0QtKSpnPkl3YkG4ev4CJAFziJ+KupHUTKYFNKSpppCcoAA2JI/Jp3WbRRPfID9TaYj92CHtOPWeaZ6DqiRBBMnKmKdSvayfjz2CHIDi3z/7+YXHhEze3U7vG4QxAf8kxMyhYTf5untKo5LiENdHklxCTiGZgJdcnhASacinPTKankq+RVHkU4zS/YWXgoVXGQaaHEbk7vZlmr0GMYcy+dCEIFYeLewO4R5CxShbdtn6dqAJiWjoA7CajyCeUTTZ/8v8RoTwCRjRsjtORtPD7+Z1mEjebiPcPLhlEnHsJW8RD2rm+3k5j0NJA5KMV3fvuss2Z+6qZcMo17+7ZVgMQ5y8dZEvyJ9uHSaSDzXMwEbyB32EGTuhJLn+T7uN3XYnWG4cnJre8MnhabkuNmr94wdHe2tbbpdu16W+avZbIbM2D6J1Pd7e1ox6tWZall6xNaOsl42yobV3dw8d/eGTeHh8qlsi3um01h8/WjG39poc1x/W7XVLbB+9DOJXmybVd7Y2+i0ebD/BzlGT8rU9/cT3Hpf39+4j+vRhpRejnf7heqW/pEB0cY86y8dHdmXDOnmw8QptPd0/PNwg69VB41nF5LFb725tyr26ZR8GK5Wj47nwdEvX9CzCmm429PTv3Q03fBJ2pZe8MWrmV5yICFhNfjcCyGQsXl8AD8k//z7OSuvL5uaMwp9frAEnk48tLy4puq08RqFS0SsWfCxW64uGrjzYbl2tZm5aKQWvFUkGcoH0Usm0kpYUqGcuiFyOpas1vmtxFAoXeLl+UwNj7MXhCXEuV3PZ/zFlP1xtmg+UtUYGERNEy8JMro60/WmT0R6tvZ+WmsZ4F4X0dFIKycdJGfRPB30Hx47j9fqBbp+aVdohMXY/ZEcizlI3EJAWiORNpdJ4l+3cEPESktc1A7A2fhhoUPfEpwEFgCefWacTyYUF6H9/V0FCa4KeODYn16P/bV6DkwAYnPqemTFt2/5rvtKNqSqo2HX7h9tagPWcGaMSiO/vKmQmvtTF1eBGW6NOcv0rWLSrSLfqtY7V6diogg3TMWqGU23oVaNh6VbD/jPcLcVgJb3MiHG4bIKhrcthcl0K0CBtOstVw6rWINMlJWugB3FnjaU5iCUl4sRnyPlmdUNbRdgj2sGEkMl47XhnZfvR6h+PtHlmac1pP07GIRMhdd3RAeFwMckl9lnsQPfkZAS29leOkw8N161XbdPsdKodEztEu988GCMfguzh5L1XXVYXTbOqLikBWm7U4D4mE+a3ozSpsPuvX/zDQRJNGr+jLqrpOMIwjLSVUD5r7HNhDPq7veiZd/+YbQah6a1EtLaullTWeQnszU6UZwOsPOE3KGCoB0nA5k3pVvXSzVyaH0saEM3U9LpmNOCUGAoYNG0XQiM8gghTF27UdivYqTRqtolS0x6jOJ2Mz9Nx5ZCBugi2wbJE6uJZNg5VBPyGwgcLpdn4VGHBiQvDDcIIY98/L6k+60I9dMRUUFLBORVeG+KHsZJpvSip2UCcLO/d+8mhNoPoqTdUC1juwKI4kFSBy11cpEcKXHJwERj6dIHMXWQwZ/0ClxzG9GlY4JKDCypgyYWlj3gxknKQ+U0BSg5dvgi/KOooB5j7BCP41lxAk8OZ4tEuf1AjUeCSgwuLZfqVO33TVeCTg0/xfJffZWhRTnm4uJT4xQNeDjK/LEDJQPn/OKhCskj9aSExS+ZMhdyDSLan7/jBrZG+7r0JayZulFTJJPI/SSp26fbZtkMkor6YUC19Te980oUUUOxQNhOc53iZNzBFH9L5HzZAMPmtExxFnDgU34pYT99Up2D/yPb5+adLfL7W3Fl/ce/efwHj3HJ7

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

View File

@@ -1 +1 @@
eNp9Vg1sE9cdh9CIbZoKdB2FrixXtxtblbPPn7GdpltiJ8FhTpw4IQkpzZ7vnn0X31fu3cV2sqwt0HXqWNtjVTe129pBsKsQAgg6KEmAjFQqtBtrx5CCtApNaM1EVxWKVlE02LuzDc4S7WSf7t3/6/f/vq25AaggThKXjnGiChVAq/iA9K05BfZrEKnbswJUWYkZibRE23drCjf7CKuqMvLbbEDmrJIMRcBZaUmwDdhtNAtUG36WeWiqGYlJTObCsm1DFgEiBBIQWfw9QxZawqZE1eK3dGIBok7hgLgeESzkEqz6vcdFAl/5e1TSFBr6CXv+GBLjkiIAQ7efiGqDGYJDhGe943HLYkKORYSaoAIFDrCGYIyXRAYuJulcRNJEaYg5CU6kWYgIxEoKDhmhsphgoLFUWhSJh9gvDUHFMryl0iJIDOTxi4Sski6JFDiRM7ggknF4YG9ev8U/ZFEzsiHYhySxF2H1AsB8pSfMc+eJgYhWONlAhoVqRZQycUDCMEyYicMkIgYQZAhJ5DP4ZtIT3AAUCWT6iSoJIDIEzanQpBXeGjoYK7YuKzi7isoZWRuyANPIQuPtWBIUAEgLMVQSKZaj8/H+/2gMkyqnmvHLe2S8yIcFqQonJizDlRaM1kwIWhyJUcQJbD4URIQUN41EI/WBUEMocNu/PKA+DeOLZ0yWPH4DAI6FgEryUdBnWC5iC9xGcBseUBSQsQwPG5nt1zgFMrjOixErxbxlnhrI/K+fUqwP0io+A4bhDBHAR0qyEAc8gtiKCISFKowYYVm/qmjQgILPEAhFoRwLAYNb/cMlq0ZYCan6+Pz23Q9oGuIihSItMTjW+r7EICdXEgyM80CFo7hnRWgOB300CaFMAh4nL5uX0g8AWeY52vTSZlTtWKHHScOxheRRo0ZIPBBEVT/cgkHUhmyRDJ4zImG3euxW+4E0iVTAiTyeGyQPMJ6sbNInSgkyoJNYCVmYYXo2LzxeyiMhfU8Y0C3ReSqBQrP6HqAIHteh0veKJqqcAPVcILLQXIF4x5zTandYvQfnKUYZkdb3mEF/q5TAQh7nkcxPU30iBlVgNealtWReWmWgIHhknk2oKhmSlrBp/XdUlpakJAf12au9vXS8NybUdDs76+0+r+COdgxGumJMCrbI0YBHSfY7+EiHS+sOJUErnY4FUgnSXuX0VvmoKqebtFspK44UaVXbEl3ugbpw7SYqCJrrI43xwRiAbdoAG2psSFDhDbW8VAU43ueNuewQdDUGqbiXjjWk3GHkVtLWzeIPaiWqzdvPB5iOViWsdGRSrdUERqcNcEyNK+iKapvSkXZ3fZKFDg6m6xpDstCJegN9nU2ovmHD4EYPH0kpqXAJPIfLTlIFhB7K5aWMa7xYUjwUEyqr7/b6fG8UJ+m2LA6ZqqGtI7h84Xvv5AoLZ1fLxjuVv3okiEtZn+qETCVBuYkGGCMclMNNOOx+h9vv9BCN4faxQMFM+6KVe7BdwX0dx5msL3ZKjmY1MQmZ0cCiPTJl9AjOpAEfrwcSpmUJQbKASh/rItvyq5YMBQ/lG5KUlAQQuUHTrD5lNktqMJ1iaI1h2IGUQPkGXU4uBjU6frgggqe1YQYDIgWk767yeccLlGK5jmJfKdJOkZT9WJpUcCh4TuBwPM17Yd8jfcSNg310IYMqJSH+Msi5zGxQx0s58FLFBWvYvqPG5fP5JhdnKqpyYhaf03VsPheCpWjsDgEdXchQULGLQmPpIjfJMfrsw/jQC6qq3LgrPJCCTqeT9lH45/ABr8cbhx6Xx/NWfliSqpFMGa9xEkEaf9yoGX22UgBpYzTVOO1upwd7Wm0sfF5jYFSLBSXDB1RNyArkJcDsp+MkDfBeJvP1p+eC3c214VDg911kaSGRLXL+wyonSkjk4vFsFCo4MfoozUsag2esArOBBrKttls/7KMYd9znise8HtpJebxkHZ5eRW23y27EGNA5wGPsA7R+iHXWWPwul9NSTQigxuvBaTI/v57O5pfn20tPVPzsS0vMaxn+37q1o21a/DV17+RnXz8/cans/bKJjX/Y16o8d66n5cG6J24stSX5dz3C6F9vDpXzq3dl22yPTWacr6w9EZ1Z8+L2nU/PpVdOdZw+8vkntZ99fOXK0JGzTz56+vylB177/JN/sS+sm3no1AMfRravOL+PmupY887c2tV3Z062usmrE3//cfTSxJfnfh50f7D5Gzv3hQY/eIl5lX+Vf+7hqYkD1YGympc+/lZsx8G/XHv+sTdnUt+Z/fbNX12bq5FWnbl8D31xx/3rT06trzh690rb65T/9d+OvfbIxQu36jpru6e3PTQuPXr5xQtW6iqf+kW2o2NaKO8v31pW8bUvvnLml64/9Z5Ndj/7x4vX14RXNG35x0d7W+Dmy+9N9356efLB8PG96xTp2tzp5TSoO7uK3h+tOJX76Q9/80/hjW2+Xf+Ovn2je8XLUtefK6eemr5rfNPYDcvNuv0vr/F+90TfvXfdt+7MM8fOnV0eipcH9557cuJ601Bz87H/VFwvX1kmfL+759mdMx/NvPvKqStNt94cEDKOr37zby33dC2vq7q5feYnK/qOr/v0xPDJ4+KGI3Nju68/dX/PfWvPbK0Y6Fn6vu+LZUaWli0hn/jRZDN+/i9JH4XO
eNp9VmtsFNcV5lVBUlTVFaRJq8J4i00CnvU8dtdeI5eYtY0XsL1g1w8K3dydubMz9ryYO+PdtbEiIJUquT86aUSjVCQh2LvIGAewRQ0uRFUT59WSkLSJjExTwQ+qFIggoQ1Ugt6ZXZt17XalHc3c8/rO+c499+7PdEEDSZq6cEhSTWgAzsQfyN6fMeAeCyLzubQCTVHj+yONTc1HLEOaXCeapo4qSkuBLnk1HapA8nKaUtpFl3IiMEvxuy5D101/TONTlxaf7PEoECEQh8hTQfykx8NpOJZq4g9PKzYhNhkSUNciQoRSXDQ37lIJ/Ms+mzTL4GAFQWc/w6qgGQpwvFcQTVZ3ipAQEVjL7PLMZ8TMY7QFGlCRgOgYxmRN5eF8luw8li5Kx4wlJJUTISKQqBm4aIQpYoGDxlNCeAxNhk5mFoKGp3c3XlE0HsrOUlw3SZ9GKpIquZoQ6bhKMJoNgjV6PGZKd607kKZGEY6iAEc1/9NRy3vlIeIMSXcwOoZVKkq4kCDhICBcFrGMiAEEeUJT5RR+uPK41AVVArkpoxICqDzBSSZ0ZblVxwfvdRDoBubaMCWXwx4PcMPMB6AZW4McCG0ujhIiIUpctvz/H5Eb1pTMbDmzeblLuRIh05DUuKcXL2HYLknofwFymjuOUYSrEaEJbqymSE0oXBsOzaSaxdVhYZhCylXJpuHiwHVR0CyGci7d+DMoQzNA8oACwwApT2+vS/keSzIg7+yD6RrOwr/7v7xBfm7iWqwDcqazAnhecuyAHMmnRwAygk44FSjzOXIqxzn9ZhoWdHHhFQiUGdOMCAGPB8NfFxT0ixoy7eHZm/11wHEQNzNUOY3HJNjH492SXkLwUJCBCQfxBlehO0rswU4IdRLImNl01so+AXRdljg341Kns4dyA4F0MpwrHnQaiMTjQzXt0UYMoipcGknhqaQStNcf9PpPJElkAkmV8ZQhZYDxpHVXPp4v0AHXiZ2QuYlnp7PGw/k6GrIH6gHX2DTLJTA40R4AhhLwjeSvG5ZqSgq0M6HI3HA54cNwrJemvWUnZzlGKZWzB9yin8kXiFDGdJLZ2WuPx6AJvM509eZNV68ODAR/OysmNI0UyWk4tH2YSnOa1ilBe/J2NMoJ0ZhSabG8Gd0mhONt4Y4Ohm5goqEWth5GNm+uE7tam6JaVO+uboHeKp0i6TI24PP7GRa/eikv7aVJDSBBqKna1hII8F6l29fQyYFYCtS30+3xiKTxfG1bNayFlhBSpGqG3hRvSWBgotKhCfFkZHu54vXHuxEjJzq3b02KrfFWocanb99AYHRWl8RX/phNQBElqsq2dDFiOxXepjE7+IDFbe8oDwXrYQ1VTdV5YUphO9vz4NG+IEnlEAYoXznl/IanW0qGatwU7SNBn//o9MA9kMYlMy20vx+3L/zjO5nc8fRa49aHnf9YfzVuZftcs2iVEFSQ2IJnPEMxfvyo8FEVLE1srm8eCuXCNM/buSebDbzJBcxkzfROyXCipXZCfjA07x455+wRzKQDH58kJEzqGoJkDpU91EbuyB7MZLh6JLshSc2IA1XqdsPa59zNkuhOJnjO4nmxK6FQwW4fK8WgxQmjORM8zZ0wGBCpIPtIoLxsOCeZbtdBnCtmniIp+mySNHApZEmRcD3dZ+52gOx+Py722FwFU+uE+B6R8blsUOfzNfABjBvWif3QjS8YDP5ufqVpVyxWCbK+s7O1EMxHQzMKGpurkHPxGoWGktPapMTbk2vwR1SgWY71lZcFIFPO4I7meMEP+CAb5HmGCVLCmey8JE2HTB0f+SSCHL4KmSl7skQBSWc0VbK0nw3gTDc4lwPZ4mGTFavWnBzQBkI3oKwB/vVQLRkC+Ogmm9z+szPV7Q1V9eHQ6TYyv5HIRj17DcuoGlIlQUg3QQMTYw9ysmbxeMYaMI197ahqt0fLBaGMhYyfjnEB/E6Tm/D0mvY203b9zoDOABlj7+LsEZGt9FT4fKxnA6GAyvIApsm9rO1LZ0/VtxYeX923bIH7W4z/Dx78Yse4epX69vU7K98MfNq2r2jjlaPjZmt/MNO3aF9h6+3iFe/+cv2u5X94sKquq+SJM4uHwckR9sUnbhYWLKoLFT59Y82xT37zVQbeOXHvTsPlA/eTU+eVZ99QP6v0/1v/7Ab4hJ16f/26+7HLT37afWDbhZefWRlh/jk4eSN2btfx22/tXbAzc/Gr0Ql01pS2Hvxo78ulH99VXlIuXD/0w58VPHrrhWWFb4JkzystV5euiH34vWJy4snvP3fl1JolS+L3Hnnn8adOjS4fKWi+wFz6/b3DS6Srq5cXrSiaWvp8S2TFsdXtLQeLlh2cmHqBWl9V8P6PdpccTr4n9F272sw8c7lm8u1Th+hrd29duTg2sfRf3/nga/jTXw2MHVv03t/lL9ae+pJ69e3qn1873Hdz3aqv/7bzg5XjZaN7jiZ6Pzpw65u1vo3f/cb1tpce+cfNPmugVeLDxQ2XlhT95Vt36n5w7NeHissWPh/+/Av1frp3S8Ppu6vvFkQerTwyvPfp+s8rbo09duKND589vnvnquWhqc0TpwffDTy+99WPe/98fhANfPmne+pThcHiV1xOFi8Ye7H0IokJ+g+b7YS9

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

View File

@@ -1 +1 @@
eNrtVn1wVNUVTxREQSrDRxUZ4RGa1cK+3beb7G6y6wPSkA80X23YEkdjfPv27u5z3777ePfuV5BWIjINhQ5PPlIm1AoJCQQCIpSxok1Q0xJrDDJlmC0j0trWtiPDlPpRinR63m4WJINTp+O0OpLZP/LuPffc3/md3zn3tHTHkEYkrOTukRSKNEGk8EE2tnRraFkUEbqqK4JoCPs7KsqWdEQ1KbUuRKnqtlqRYolLYUlFfkmwYC1ojVsFVbKoIXWBqmGVl5QAzneVqkIQGd/EJCnp9agmm1Q1/a9fIkLEJwWjgnGpSQNXGhIp4U1UojIifJWgBEtDgqSYAliLCJR/lIBdBiMP8LRkpw/7k/3dIST4IY5VPV6CNLYkiBSqpwou42PuMUATQB2UaCjqs4g4Yg1i2U8i8G1dmrWzfnNfiSgilbJlioj9khLUe4PNkmpm/CggCxR1Zbb1jrnWuT2lWFFQGoveE0ZIZQVZiqGdGiIqUIie6CJUoFHS0gmu0FAu2x1BhAAd+6txDPmZOgQhKYBUTmbxr+4Rr/jcIcqYoJ0yFtP06KkfZYP4YlC/F7BSgM/KSAnSkL6N606woiCGkN4jqjabjWNAUl2QEJCY3l1ZUqfhRHLviA2bIUfvBhuWyiSdyJVAmQasP/Pp8vuCkfCl0d/rR7Py2157fxbv6ZypPzcYFyEFmqDAOY2yBIlANE3qKTYiJFg4wds4Z0FRocvGeSClohz1o/qobxGOADPEw6gakrHg36Wh9HmK9dSvlzN5QQ1H1Tw3kxePNClIzjMzeeCvCfzBopMrLOI4WEKKX8WgAQKLD8IpSI9xJssX7AhhxMo4GAQ20hmPXM54zGZFMaCaLIAgkBDh4wWiJYMCjA01KIjGsRZuQpqGNRMB3UWEJoiOt4Kp9ZOm1qtMrTYLZ+HymBWNzIqsglOmSJwFSxYlqAUtkwS/xSCAdTpcxT6/zxVwsHGtOaYcAoWPVAZNqojFarql6t0KJooUCIyugE5VIKQzJmjA+OJR6TcvgbgoKxDWq1AtSijymxvYcqzFBc2P/CyUFMXmUozDEjKXRKFSNKk5reYDWQwgchUTKdNCIH2ypCAPE5CgaoUI4o2AQDFRmVoMce8GcLJknJNUfU9xkcVmKwIqbDZnbwa04VbDsp6ao2pSDCRpZiKAC3zEQH7+zMKIbLjeDHUslSKGllP5aR8ePyIin2eEDaIIYUJHVoyuwRXldcBZ6CbPZiNA2VroNGqh07hDf2kpMMFwDqYc+Rg7Z3cwtmJ3QYHbbmMqqpdcbkTPZ1wyEYkQMzPyYVy855Mp0vsEVZWlTJ+1GjR4GDEkaARRPkoDbFGvkEkL1EgQEX2HL0kRGd3/OuxOZwcIXU89DDrOaKuJ4v9YAQFBkqMaagqMPL6wB9pzwA6JwrWEjNpZsS/BwkrkirI6F5XVPNADaCE7hhI2phqWVpezVQLkpSTtguccLDDFGkx56gQa4q2eSiixWkVOetIFjzxlCRXaH+HrowowW8xUC9oIs3Y3x8HPYDYVHeWZrZCxT5CvdUGmQfBXt+n/8tqqCoQX1/Heend1ibsKJUAOFCvuQrul0OlmXTaL3e6OFXqYkauZEefMNTGkFtRkih3Kx4eqQJyUB2I5WxZ5feZ0PZBcL1EE70DCUw2ihsbOFzg57qrHaiB3/Kwf3pyT/rtx0/ra2leZSQN9E8bVvrX5X6e++9S6cftm8slS99efowvdJxwz+g4/MXinWLX2ocffbk/e+yfzTMf08MuT+Uk35y+a/bSrEn/rJ2W/KdhzgTt4iXuv/dLYFxbvnDBvjLbOPKb4fOp3Ne88Fv5Z6SF77i3rN3Mrg385cdddR1obBp1Pz3OdfiD34yNm9rR6Cv/2D5PF2tbiJ4cazty7Xa/u2zBUE/so2vtCyeIL/WMf3rfxTH7F3nZFRqfirNi/xXxg/+GZE/52MNm3Y+ubkwe83mmPbHmn/HvVbbOHvL/wvr3gV+Mvnagv3npmSfkMPP9d8g/788dXP9RfGhvccPyOY9MvDU899+L8nCk5E9cO5ObkfPrDjT/j3Ajd1ZA7MaGEKgvGUJqgvMnIOPSd65PhNSdD9bMORZ8Xuf+f2e9/HuaXfrrbnx7rAoD68iPaLYaiShj5rw9+n+PgF/FFipqvD35fjcHv+pD3VRzyZlwZ8rzrj9S8wt26umngtbHrX161UD6uTDl5/qbDiV3t5Z01rY33bUnEj9fsbvia/sG7w+eG57dP6Qk3/vWflfcF8FrHT2/84+B7w10VtfbbD7edfEu5+OJLa7Y5L+4OTLx9eIPjzsI3bpn23PfDNrV1Ox768/t940tySr7TMSfQYhIrxNdmPcPOPTh1+cqbGn9Q8u1dO8es3PRY+cTW2Y5JtuVzXRe3Pbuw7dE1N3zk/cBy2wFX7ocrblUuMDOKXp+Iz7r0eS1Pbjpf88ikZnrPN9pWL2t5v6zYd5t47NDj+dsmvMFWTn9zSv0vQ/ef/X3duA/r7nbRV8cfvePuLW39jqPHoj9+ZfgG35FN07Y+taZxZuPgg2fb58xKfbz57+NOLj/nPQhT378BkGvf4Q==
eNrtVt1uG0UUpu/AA4wWYdrKY69/4ri2VlWU/oqkjZRULVCIxrvH9jSzO9uZWcdu1QtKxR1IK/UBgKRNCf0BgRBcILhBQgIewFzwLJzZtUMStWqBgoqUKIqyZ87MfOc735xzbm4NQGkuo0P3eWRAMd/gh759c0vB1QS0uXU3BNOXwcbpkysbieLjD/rGxK1yGaLSOl/jMQSclaTqldfLLOaluB8fj5WMPR515auz8zHrgf3WBR5l9kSJQhxn/wZcs7DDewmzlxYUHqXAN9orGG4EaG+BRb35PuNRoStVyIx3RaNfjtFDeGq02ZHB6IetPrAA47i1fUGDonM9iEw6ru3gI4ctaI2oe9z0k07Jl2G5J0WgQ/wuX5z6lY88mvN9iA09Gfky4FEvfdC7xuMiCaArmIG7+XK6cbR8dHteRhFkWNLtNYCYMsEHcE+BjpFCeO+uNswk+uYmHgW/HqJbIWiNdHyxKAcQkCXAkCJEKkZT/O/fRfiYkHTrzNySksPRwyH1md8Hmh+VbmGSqBF62//z7ju+kBruCelnNKbjD6fBvhgp2prEkG77caVScQnG8BDxGwydCoh6pp9+7GaJfBcpU8j6R0+W3wsW3P9Gf7/8NJXfJ+dfn+L9/aWXNwM8Nv3uIgRFUq2R874hVbdaJ5VGy51t1avk9OLKA5aDUkgH6PROZ2RA35+m0IxiSL9ncSx4rsCyZalN/D5TGoyXmC5tfmsT66MznoHwlKEafMynGaVjGrIhRWBexW3UmvXZittGjfgiCWA56ZyQISZAt0msQEgWfDm9F7MXS81zzeMGwSNoky5HSbEQPBQDRSoSYUoWzwZegDLbRkTUl3KNw+3xpYuLp+gC04ZaWrX2qjWKBFBLQHuJmb5Xbp/BxJ2PxKid4YX2yWGMItHechIhYXVyTg4mhFVbrou/lrBxsu9kelrIDhOPuyCPz9sr5r957cJpkGeXvAvLrcW51gIMUUBGRpjFUr3RorOVUrXaGtTbZHI1mRxOHothfPwcmHWp1rASdWCBo1Q9t+S6lSny5Xz3MrK9zA3gaxm2FzGVKH+v1nDdnYf/jX34bpOEXOsimXzETOsHebmjBg9HrY9fzfzbAWjfc6yDUyR9qc3Eku90pkVyXAjXqU0zDE0JrnIWlGwYdKZbP9aodzrdDu1fOTYTbA6YQpmd3fe0iisKmKFM0wuRUYk2+AQu0VNSrTMVQEAxbCOL85lWinMJViHFr2UC31+VNy3UjQhEOn7nOnEUWIGvGum0iLMeruICxuGgyldRhGhsuPWm66Kpy7hACle7k76La8jwDK7oJNPNvpUbD/J77RNQEq97JVZ8gA+4SEIMAPU+wBoQ5IbJo3IfDSmeEgKVcdbb080TJ8+98RnGILh9RzxO7x9rliqVZsnFv41Pc/zUyHT8M4bTUzKJnxoKREEssbJrNL6Fu7DM2j3TuocrbA2okL0eUp8JLdyp3INKGQYIRR/HKgEs9NZrfilHgc62qke5EldBKakKGjkI2SqWD6+MruXdruU9ruUKxuQ65Mbb5MbXQ7q7ZO3QsRVJHfFu9/PpKkxr76atvftb1Ua10djTrH479ON1p8OM38eqHgswyIvjFJ2sPzit645tQdr+M1ubmZ1tVBtTIw+c1tRWdCL0cYtO1nrwhJ3eg0dNIIRYx5FVx7JnUPS4Yo8R6Jlk6cAs7LP1TShs+X/cGnY7NAuj0G5kgqQiHsdWFVpxaaW5gtWiXmm5tTfRQTCbm4GFXKnWmzW3NlOvoTkjBW3N+rFm0ekmQmSZd57cpvGrvDs4XDFP24P6CWCYNfeMn12dedKN7SmWKRbJCPvQX0RxA3+ePHPIZxx5MSX2ueoCDGPB7Dw9NF7BlmF8rQdD7T8aauNnnfueVxKe79j6n8M/GEwPBtODwfSFHUwDMxtVDwbTg8H0eQ6mzdq+wfSrf3swnXSr3VbCNWFEy65BuQLJMmzjJqbPDOmDiDXpMp8LjhoFtILtrNBTmYKJ7BLBVA/IdEol2dSryeGFhUV9xPpKsqum6xKZsxfudd9z5A6EItlB+ZomiUa9Mg06v1CMCE4wSrCYrGPvQ2A4gORw9gLBELGNgmKiOOkGyDUJpJ+EmA3CIiZG2pIQBUQnYcimr7NoO4/pSIO1xi7a7rfjXrocXc7n0D8AkSIW2A==

View File

@@ -1 +1 @@
eNrtWAt0E2UWbuX9EhaoAl1gKEtUyCSTtGnahAGypS2PvpZSqQulTmb+JEMnM8PMpE2oXaUCR14uAcrjFF1LSwuF8l6OCG5bKCtFscjKcrKsyMKCLiuyiyIignsnaUAQV84eD6yH5uScZP7H/e/97nfv/50prSlEkswKfOQmlleQRNEKPMgrSmskNNODZGVOtRspLoGpTE2eXOmR2IDsUhTRotcjXlfEFrAiYlhKJ0hOfZGeElmd6BJHc6yskDKiJNqlkSVREkQSfjnWzSqkQRP+laXQEpKjeCftolhe4xAkN6WQM2SB14Q8IcEJyVdlFxhfQ40LUQx4O6c2R0YSbnMiXvEHYm96gT2puiaDb05WcXnsOlpw650Cx8hwoEs/JbxO/9QWG00jUcGTeVpgWN7pr3POYkUtxiAHRymoOjTtrxyuH16bJPA8Cvriry1ASMQpji1E6yUkiwAUerFaVijFI5dWgSl0OBKvcSNZppxoW7pQiBgsC0FIPHjK+cL+z6ulb9lcR3OCjNZzAk0FnwNKOIj7CfBm8EgBJ3EO8U7F5a8garw4TdEu5K+lRYPBQGBAj2qAHejirxlny5IEr29z6xo8BIG/BtbgCicH0zUbgJEA29e+n0oPJNSfDJfeORim0trMiWF/T0ZE7VZxpQFoieJhn6TgMqIBTsXnD+BuyovDDtJAxMcmxJkNhBUSR3MeBmV77GMFNyAjWzFRQpxAMRskFNyvCP7A28VYjFMSPGKMBYspcufziIvRYjFgLx/swWA8EZdAEDCEeEYUINMyDE6FXR6JU/eE8YIZqgDhnOB0AhrBvLpv5rXQoEeFALU8GoJAlJssiqV1IS9gsZpzHilFglSQjyRJkDQysMtN5UN0pB6W6r+9VH/bUr1BR+iIGKwkDysJ8zSgcRfhsBJHXkWHZrIUo1MBwONN5kQ7Yzc7THiByxhn3AU8buW/4hMRLojBJuiv4QWZZx2OO3leJVKyXFVISYD4+DvSr50McSk4JeM5vCJ5ZAUx2lw8RZCKKIlBDA6FowjaJEEoYJHW5oF6kNhZwdLfEfaBYSGtMhtqB5A+juWRFXOwUJuUG5FqQMAYD6foVHJvBOc4Vt3Hiv5NiQk6gyEBoDAY4utCTqtmJYHzB4aKElsIlNRibvALbBQC/ZjQQCttiLoQdLgChQVcDgwL2rAySKbJGDVsIIVLkJXWEbU3EAkxlbAXesbWcAQoXAtVai1UqWf435wCSGCECUtBdsxIGE2YIdESG2sxGrDU9Mk3283rIZOYm5VlLdb6oB686dsp8tdTosixoZ6pV2GwYlD20AUU0qM48IQ6KpQWqBEnkv3r7D4FyQBVqE3gLOPfbRY4Nm6Wj3d7EoymOIFws2wi5Za86M5mWGkkEiqhHvyB6UD3EAXzFeEHC8VBsZxHQvmO1lsV5oCiJpiRPeCdLN8xU7LFi8OI+xYBq8YmZzxTC0FBElXCLA/kTklPwdMoSJ8taIIkTDgAiquAWrMoxUXqreOgEjN5zmcN9gVkTfaKLBCGzPbwkIBELJ2SWhNgtBAEfNUEBDx3WMZTOcFOcXc7INRHyNt79v94bFoqEsZnkTnZlnSbJQ15gTWKwFvijLq4eAtuNuiMRkthnBVrPRprNY7d1YfA6IxQT4Aqs6O04OUAwBKGsOfZod3ZAHI2qyAyjfJa04H70P/J2HiCuO3majoyeGHniOCnXfrL6Zn7ie7zvplwdujwzvHu5N2fHir7U1Pj2399f9L5OU1RpbpvSrqIHzdvP7nFOVeftu+0cVWUg2GvRHbfOzEmes2/eubteamLc9KE6s9G7hhle4qclnWB2f/zkrIZ7WdttS1HFX9emt3vrbSu59CIhjMXOpqu78766sbln2ms2xZVlAzoe73p17OnFx9cKC8vSzr7yG9PW6ymg3VL59Jc7NSkgV/+s4M83TbjhNzz0PnoxqmXX7lRHGM5PWIV9Xy/eWc+zR01YXe7pxc+eu6xyIiI77+KF/+wqgvevSzvEIaZk0Sguvosa1g+OA6XgEYUg3+hfVFuO+v0BItTI4EpCS49mdQorMIBIdKgJpPa9F6r3nv5HkTQfYT+wSjB/zMQfuoasW+bRvwRNSI9Q3QybRrx4dCI3xV/8fFt4u/hE38HIrveUn9lSzIzm7BeB+q7dcr8YMWNE08vXdxpyyDSl2R5bLsyxnLMFF2/58XmAXTaomkvfFjuG3lOO8jUv2Bfb7JX52Fjh7xqHif88pXk92M3XSV2Xic+Kb/e4Y3x67uNaC8t1rZPvBT4W8aZ5wp+n7TLGNllyQpitvMfxwYObJyf2xz/6gjzyWciv27U4ifFE8Jf/t6bzpyfOPdw7qmRa/3p9csOZxRe8dS9YRt/taHD9C3LTw1L3VzOc+hEEU43rNbu2LZnULd/7/TVr1vzXu8DOTlRz64+k/Kb9JVDDuf8IefD0W91vX4sO3HNqckp0cKoj+Qvja8fnTetIamwednRfkf6X2/pe3HvqIg+ET0WHfivulG4R90I3VWlu6xBXpGj1FeNXoXUqBmHvtOmDO+qDMV7FUU/FrgPRvvd9zDb1F2burul7hLNRndcm7p7WNVdQmybunsY1V30LXWXs6QxQ323l3/gUIcl++aM4Y7yfY5f6rjHu6E8pSpjft6E1d6ioxkbcx/1X/6o5WLLqPI+tQV5578aN8EhLDL9rt3Z5k9aqlMzjY/vWXn8A/7a3jcXVMRf2+jo8XjLMtOAuHe7RG1/vsAgzl8rHP748/qutgjbpMqhjlINnUofGvwaPnxn3+LZHfNesv1qw/r2s8ueS+kxf4ipl6F4uPlaxdYxK2cseORKzmVdzx3myC9KuvNXseiEd3oIF8z+EaVzyy5lPNtrlvLkL1bOm1n6eXKivSd9ZNcLwyq6vYuP6/9en+w/uiZeOJ3V6YusJ8xKU9eD/Z5YvbLBdPCIZ9X+lkfsjWVRa5YuyBuU1zz1QvnQwYGvV3zW6XjxxZydIPf+A38YqDU=
eNrtWF1vG8cVrf9D2+fBFmETg0PukhRJk1gYguM4QSXbgGw4nxWGu7PLqWZn1jOz/LDChzhB3lKAQNHntlKsRLGTFi2K5qFoXwoUaPsD2If8ltzZJVlKsGOnVZ04ICCI3Jm7d86998y9B7x7NKBKMynO3WfCUEUCAw/6l3ePFL2dUW3eu5dQ05fhwZXLNw4yxWa6b0zaqVapqAzZHktpyEhFqrg6rJKUVdJ+epEzbXxNiQr6Ja1SJVMfPjlLmPG90uJTq8LE50TEQZ8wUYqkSojxf6alKBVIfAChxoc9GY7/etSnJAS07x3f1FThzZgKM53VlyjQ8xaaBmwxM/2sVwlkUo0lDzUc2K/eWthVX/hsMwhoavBlEciQiXj6IL7D0jIKacSJofeK7enB+er540tSCJpjmR7vUZpiwtmAfqSoTiFR9N172hCT6buH4Ir+6xw+SqjWJKa/25YDGqLrFEISgJSPF/jfvwfwIe3To5c3rys5Gn86wgEJ+hQXrqZHUApsuD4O/nP2hwGXmn7EZUDy55lZBPs0C3E0Rzo9DlLP81wESD8FlAYCxJyK2PSnv3bzcr0DiVGQ2189mkrfSAjPDJf++fcFlX5z7ScLvF987weHIbid/vkWDcuoVkfXAoNqbq2BvGbHbXUaHrqyfeMBKUApSAfV0w97Y0P1/UWhzDil07+QNOWsYFPVZqmLIHGQR+NnJsLtz235AjAGHwBPGaxpAFUz4+kMJ2SEAZjvuc16u9Hy3C4wIeBZSHey3osygQLoLkoV5ZKEv1+cGzJwpFnBX3iBM0G7KGJAHJJQH0qOIRUZNxWL5wAOADIdAyIcSLnH6C9mr97afglvEW2wTavWfq2OIQHYJqB7nZi+X+2+DIW7Jvi4m+Ol3cujlIFbfycTkLAGuioH84TVOq4LfzZhs+yUZ3yFyx7hDzugiM8/Sdn/8titK1S+ct2/udPZ3uxs0REQyEjRadQqjWYHt7xKrdYZNLpofjSaO0cPxTC7eJWaoVR70FV6dCu/G27Fdb0F8p3i7R3I9g4z1N8io+42lBLo79ebrru83n+y19tto4RpXUbzh5Ro/aBoXdiAc+D67LncvhtSHfiONXDKqC+1ma8UbzqLhjcrJUNsy0xHpkJvMxJWbBh4I2pcaDZ6vaiH9y7UAnU4IApo9sqpq1W+oSgxmGh8UxiVaQNX4FX8klRDokIaYgjbyPKlnCvlzQx6jWJ3coKf7rCHFuqBoHw6++k+chS1BN810ukgZ5jswgbE4QDLd4GEsNh0G23XhaWIMA4p3I3mkxL2IMMbsKOznDendiYPinPtFVASjvtRqtgALnAZJRAA8H0APSAsFuaXyv1shMFLQrFM82k8PXzx8tXXPoEYOLP3iKXT+xfaFc9rV1z43/y4wI+NnM7+AeHESmbpY0OhIkwl9G8Ni2/AW5ni9p1F34Mdskcxl3EMqc+Jliz788Cr0gFA0RehS1CS+MN6UClQgLHt3aJg4i5VSqqShhwkZBfah18F0+qqafWEadWDmFwHTd5Ckz+O8GrLWqbjSEgtWBT9drFLF7330Pbe0wPpoOa2IXnFhMAsnH7eqpFICjYexnovaInBbeHWSUsxcmJy/fvcD/cdoJaA75Ckfcdy1X6edzrOTaFoIGPB7sCQT4ktF8inDsonUsWZTMpOj5igD3Mj5bAFrzhlxyJjIqPWi1YyiqC5OR1vdcPBb7/twNv5sMrtctxMRNI+GWkI7zNbtY0ykC6G/l7QzbGzD+XDz1ndgVSlqT1m1QAOKPw6nTf2HQHe3LJjmOEWwRbYXZr7SYE1LHQ6rfpGq9WsNSdvTSaPnugfPF4c5iPcRvNc65J1bp91iYl8HThYStP8KwwLkvRYnOUXuKTAFWTcaL+Uw9T+EuVaNn4N2fjzJ9BcT7FEZysov2XBPetS8/trqbmWmt9dqZnuNYcba6m5lppnKTWbzVMa8m/7DxOCS3VnR1AuLhcCa7G4KrrKX6XQ5hAS6OOQVcdmzwDp59rNar4sLwdU4dRa3yTctv+H7cG0s4rRKFg3MoOkAh7HdhXsudhr34Bu0fA6bv11MODE1mZgIXu1Rrvu1jcadVjOkwJr7caFdtmJMs7zyjuPHtPwVF0NDnbM494B/oR0lA/3PD8rk3k+ja0XmykiQPUH5GuimEy+SvLKJ5S8UBJ7XXWJjlJO7I+tI+OXbBuG27oWtf+TqE2fVPedVRHOVrY+dfjfdWFaWwvTtTB9doXp4E5jY7AWpmthepbCtF0/JUz/8P8WpvNptbqKmEYEaRkZoCtFeYVt3Mj0iUF9ylONIhIwzoCjFFapnaw0VjmDkYwQJyqmaKFSUa56NXp+a2tbv2BtJVrp6bqCNu2BJ81PuFxCKKMlyh9rlGngK9FUFwfyMQIFozhJ0RBmHwADAVLAOQkEQoQxShXh5fk0gFyjUAZZAtVARBA+1jYJIkQ6SxKyuJ1lO3lMTxroNXbTTr+leeVN8WahQ78EN9bjsA==

View File

@@ -3,11 +3,16 @@
This guide walks through how to run the repository locally and check in your first code.
For a [development container](https://containers.dev/), see the [.devcontainer folder](https://github.com/langchain-ai/langchain/tree/master/.devcontainer).
## Dependency Management: `uv` and other env/dependency managers
## Dependency Management: Poetry and other env/dependency managers
This project utilizes [uv](https://docs.astral.sh/uv/) v0.5+ as a dependency manager.
This project utilizes [Poetry](https://python-poetry.org/) v1.7.1+ as a dependency manager.
Install `uv`: **[documentation on how to install it](https://docs.astral.sh/uv/getting-started/installation/)**.
❗Note: *Before installing Poetry*, if you use `Conda`, create and activate a new Conda env (e.g. `conda create -n langchain python=3.9`)
Install Poetry: **[documentation on how to install it](https://python-poetry.org/docs/#installation)**.
❗Note: If you use `Conda` or `Pyenv` as your environment/package manager, after installing Poetry,
tell Poetry to use the virtualenv python environment (`poetry config virtualenvs.prefer-active-python true`)
## Different packages
@@ -32,7 +37,7 @@ cd libs/community
Install langchain-community development requirements (for running langchain, running examples, linting, formatting, tests, and coverage):
```bash
uv sync
poetry install --with lint,typing,test,test_integration
```
Then verify dependency installation:
@@ -41,6 +46,12 @@ Then verify dependency installation:
make test
```
If during installation you receive a `WheelFileValidationError` for `debugpy`, please make sure you are running
Poetry v1.6.1+. This bug was present in older versions of Poetry (e.g. 1.4.1) and has been resolved in newer releases.
If you are still seeing this bug on v1.6.1+, you may also try disabling "modern installation"
(`poetry config installer.modern-installation false`) and re-installing requirements.
See [this `debugpy` issue](https://github.com/microsoft/debugpy/issues/1246) for more details.
## Testing
**Note:** In `langchain`, `langchain-community`, and `langchain-experimental`, some test dependencies are optional. See the following section about optional dependencies.
@@ -68,6 +79,7 @@ If you are only developing `langchain_core` or `langchain_community`, you can si
```bash
cd libs/core
poetry install --with test
make test
```
@@ -75,6 +87,7 @@ Or:
```bash
cd libs/community
poetry install --with test
make test
```
@@ -166,7 +179,7 @@ ignore-words-list = 'momento,collison,ned,foor,reworkd,parth,whats,aapply,mysogy
`langchain-core` and partner packages **do not use** optional dependencies in this way.
You'll notice that `pyproject.toml` and `uv.lock` are **not** touched when you add optional dependencies below.
You'll notice that `pyproject.toml` and `poetry.lock` are **not** touched when you add optional dependencies below.
If you're adding a new dependency to Langchain, assume that it will be an optional dependency, and
that most users won't have it installed.
@@ -183,10 +196,18 @@ test makes use of lightweight fixtures to test the logic of the code.
## Adding a Jupyter Notebook
If you are adding a Jupyter Notebook example, you'll want to run with `test` dependencies:
If you are adding a Jupyter Notebook example, you'll want to install the optional `dev` dependencies.
To install dev dependencies:
```bash
uv run --group test jupyter notebook
poetry install --with dev
```
When you run `uv sync`, the `langchain` package is installed as editable in the virtualenv, so your new logic can be imported into the notebook.
Launch a notebook:
```bash
poetry run jupyter notebook
```
When you run `poetry install`, the `langchain` package is installed as editable in the virtualenv, so your new logic can be imported into the notebook.

View File

@@ -270,7 +270,7 @@
"\n",
"import ChatModelTabs from \"@theme/ChatModelTabs\";\n",
"\n",
"<ChatModelTabs overrideParams={{openai: {model: \"gpt-4\"}}} />\n"
"<ChatModelTabs openaiParams={`model=\"gpt-4\"`} />\n"
]
},
{

View File

@@ -354,7 +354,7 @@
"\n",
"<ChatModelTabs\n",
" customVarName=\"llm\"\n",
" overrideParams={{openai: {model: \"gpt-4-0125-preview\", kwargs: \"temperature=0\"}}}\n",
" openaiParams={`model=\"gpt-4-0125-preview\", temperature=0`}\n",
"/>\n"
]
},

View File

@@ -179,7 +179,7 @@
"\n",
"<ChatModelTabs\n",
" customVarName=\"llm\"\n",
" overrideParams={{openai: {model: \"gpt-4o\", kwargs: \"temperature=0\"}}}\n",
" openaiParams={`model=\"gpt-4o\", temperature=0`}\n",
"/>\n"
]
},

View File

@@ -167,7 +167,7 @@
"\n",
"<ChatModelTabs\n",
" customVarName=\"llm\"\n",
" overrideParams={{fireworks: {model: \"accounts/fireworks/models/firefunction-v1\", kwargs: \"temperature=0\"}}}\n",
" fireworksParams={`model=\"accounts/fireworks/models/firefunction-v1\", temperature=0`}\n",
"/>\n",
"\n",
"We can use the `bind_tools()` method to handle converting\n",

View File

@@ -99,6 +99,8 @@
"\n",
"prompt = ChatPromptTemplate.from_template(\"what is {a} + {b}\")\n",
"\n",
"chain1 = prompt | model\n",
"\n",
"chain = (\n",
" {\n",
" \"a\": itemgetter(\"foo\") | RunnableLambda(length_function),\n",

View File

@@ -200,12 +200,7 @@
"\n",
"<ChatModelTabs\n",
" customVarName=\"llm\"\n",
" overrideParams={{\n",
" fireworks: {\n",
" model: \"accounts/fireworks/models/firefunction-v1\",\n",
" kwargs: \"temperature=0\",\n",
" }\n",
" }}\n",
" fireworksParams={`model=\"accounts/fireworks/models/firefunction-v1\", temperature=0`}\n",
"/>\n"
]
},

View File

@@ -33,7 +33,7 @@
"\n",
"<ChatModelTabs\n",
" customVarName=\"llm\"\n",
" overrideParams={{fireworks: {model: \"accounts/fireworks/models/firefunction-v1\", kwargs: \"temperature=0\"}}}\n",
" fireworksParams={`model=\"accounts/fireworks/models/firefunction-v1\", temperature=0`}\n",
"/>\n"
]
},

View File

@@ -46,7 +46,7 @@
"\n",
"<ChatModelTabs\n",
" customVarName=\"llm\"\n",
" overrideParams={{fireworks: {model: \"accounts/fireworks/models/firefunction-v1\", kwargs: \"temperature=0\"}}}\n",
" fireworksParams={`model=\"accounts/fireworks/models/firefunction-v1\", temperature=0`}\n",
"/>\n"
]
},

View File

@@ -91,7 +91,7 @@
"\n",
"import ChatModelTabs from \"@theme/ChatModelTabs\";\n",
"\n",
"<ChatModelTabs overrideParams={{openai: {model: \"gpt-4\"}}} />\n",
"<ChatModelTabs openaiParams={`model=\"gpt-4\"`} />\n",
"\n",
"To illustrate the idea, we'll use `phi3` via Ollama, which does **NOT** have native support for tool calling. If you'd like to use `Ollama` as well follow [these instructions](/docs/integrations/chat/ollama/)."
]

View File

@@ -1,206 +0,0 @@
{
"cells": [
{
"cell_type": "raw",
"id": "afaf8039",
"metadata": {},
"source": [
"---\n",
"sidebar_label: Abso\n",
"---"
]
},
{
"cell_type": "markdown",
"id": "e49f1e0d",
"metadata": {},
"source": [
"# ChatAbso\n",
"\n",
"This will help you getting started with ChatAbso [chat models](https://python.langchain.com/docs/concepts/chat_models/). For detailed documentation of all ChatAbso features and configurations head to the [API reference](https://python.langchain.com/api_reference/en/latest/chat_models/langchain_abso.chat_models.ChatAbso.html).\n",
"\n",
"- You can find the full documentation for the Abso router [here] (https://abso.ai)\n",
"\n",
"## Overview\n",
"### Integration details\n",
"\n",
"| Class | Package | Local | Serializable | [JS support](https://js.langchain.com/docs/integrations/chat/abso) | Package downloads | Package latest |\n",
"| :--- | :--- | :---: | :---: | :---: | :---: | :---: |\n",
"| [ChatAbso](https://python.langchain.com/api_reference/en/latest/chat_models/langchain_abso.chat_models.ChatAbso.html) | [langchain-abso](https://python.langchain.com/api_reference/en/latest/abso_api_reference.html) | ❌ | ❌ | ❌ | ![PyPI - Downloads](https://img.shields.io/pypi/dm/langchain-abso?style=flat-square&label=%20) | ![PyPI - Version](https://img.shields.io/pypi/v/langchain-abso?style=flat-square&label=%20) |\n",
"\n",
"## Setup\n",
"To access ChatAbso models you'll need to create an OpenAI account, get an API key, and install the `langchain-abso` integration package.\n",
"\n",
"### Credentials\n",
"\n",
"- TODO: Update with relevant info.\n",
"\n",
"Head to (TODO: link) to sign up to ChatAbso and generate an API key. Once you've done this set the ABSO_API_KEY environment variable:"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "433e8d2b-9519-4b49-b2c4-7ab65b046c94",
"metadata": {},
"outputs": [],
"source": [
"import getpass\n",
"import os\n",
"\n",
"if not os.getenv(\"OPENAI_API_KEY\"):\n",
" os.environ[\"OPENAI_API_KEY\"] = getpass.getpass(\"Enter your OpenAI API key: \")"
]
},
{
"cell_type": "markdown",
"id": "0730d6a1-c893-4840-9817-5e5251676d5d",
"metadata": {},
"source": [
"### Installation\n",
"\n",
"The LangChain ChatAbso integration lives in the `langchain-abso` package:"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "652d6238-1f87-422a-b135-f5abbb8652fc",
"metadata": {},
"outputs": [],
"source": [
"%pip install -qU langchain-abso"
]
},
{
"cell_type": "markdown",
"id": "a38cde65-254d-4219-a441-068766c0d4b5",
"metadata": {},
"source": [
"## Instantiation\n",
"\n",
"Now we can instantiate our model object and generate chat completions:"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "cb09c344-1836-4e0c-acf8-11d13ac1dbae",
"metadata": {},
"outputs": [],
"source": [
"from langchain_abso import ChatAbso\n",
"\n",
"llm = ChatAbso(fast_model=\"gpt-4o\", slow_model=\"o3-mini\")"
]
},
{
"cell_type": "markdown",
"id": "2b4f3e15",
"metadata": {},
"source": [
"## Invocation\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "62e0dbc3",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"messages = [\n",
" (\n",
" \"system\",\n",
" \"You are a helpful assistant that translates English to French. Translate the user sentence.\",\n",
" ),\n",
" (\"human\", \"I love programming.\"),\n",
"]\n",
"ai_msg = llm.invoke(messages)\n",
"ai_msg"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "d86145b3-bfef-46e8-b227-4dda5c9c2705",
"metadata": {},
"outputs": [],
"source": [
"print(ai_msg.content)"
]
},
{
"cell_type": "markdown",
"id": "18e2bfc0-7e78-4528-a73f-499ac150dca8",
"metadata": {},
"source": [
"## Chaining\n",
"\n",
"We can [chain](/docs/how_to/sequence/) our model with a prompt template like so:\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "e197d1d7-a070-4c96-9f8a-a0e86d046e0b",
"metadata": {},
"outputs": [],
"source": [
"from langchain_core.prompts import ChatPromptTemplate\n",
"\n",
"prompt = ChatPromptTemplate(\n",
" [\n",
" (\n",
" \"system\",\n",
" \"You are a helpful assistant that translates {input_language} to {output_language}.\",\n",
" ),\n",
" (\"human\", \"{input}\"),\n",
" ]\n",
")\n",
"\n",
"chain = prompt | llm\n",
"chain.invoke(\n",
" {\n",
" \"input_language\": \"English\",\n",
" \"output_language\": \"German\",\n",
" \"input\": \"I love programming.\",\n",
" }\n",
")"
]
},
{
"cell_type": "markdown",
"id": "3a5bb5ca-c3ae-4a58-be67-2cd18574b9a3",
"metadata": {},
"source": [
"## API reference\n",
"\n",
"For detailed documentation of all ChatAbso features and configurations head to the API reference: https://python.langchain.com/api_reference/en/latest/chat_models/langchain_abso.chat_models.ChatAbso.html"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.9"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -509,7 +509,7 @@
"source": [
"## API reference\n",
"\n",
"For detailed documentation of all ChatDatabricks features and configurations head to the API reference: https://api-docs.databricks.com/python/databricks-ai-bridge/latest/databricks_langchain.html#databricks_langchain.ChatDatabricks"
"For detailed documentation of all ChatDatabricks features and configurations head to the API reference: https://python.langchain.com/api_reference/databricks/chat_models/langchain_databricks.chat_models.ChatDatabricks.html"
]
}
],

View File

@@ -31,7 +31,7 @@
"\n",
"| Class | Package | Local | Serializable | [JS support](https://js.langchain.com/docs/integrations/chat/deepseek) | Package downloads | Package latest |\n",
"| :--- | :--- | :---: | :---: | :---: | :---: | :---: |\n",
"| [ChatDeepSeek](https://python.langchain.com/api_reference/deepseek/chat_models/langchain_deepseek.chat_models.ChatDeepSeek.html) | [langchain-deepseek](https://python.langchain.com/api_reference/deepseek/) | ❌ | beta | ✅ | ![PyPI - Downloads](https://img.shields.io/pypi/dm/langchain-deepseek?style=flat-square&label=%20) | ![PyPI - Version](https://img.shields.io/pypi/v/langchain-deepseek?style=flat-square&label=%20) |\n",
"| [ChatDeepSeek](https://python.langchain.com/api_reference/deepseek/chat_models/langchain_deepseek.chat_models.ChatDeepSeek.html) | [langchain-deepseek-official](https://python.langchain.com/api_reference/deepseek/) | ❌ | beta | ✅ | ![PyPI - Downloads](https://img.shields.io/pypi/dm/langchain-deepseek-official?style=flat-square&label=%20) | ![PyPI - Version](https://img.shields.io/pypi/v/langchain-deepseek-official?style=flat-square&label=%20) |\n",
"\n",
"### Model features\n",
"| [Tool calling](/docs/how_to/tool_calling) | [Structured output](/docs/how_to/structured_output/) | JSON mode | [Image input](/docs/how_to/multimodal_inputs/) | Audio input | Video input | [Token-level streaming](/docs/how_to/chat_streaming/) | Native async | [Token usage](/docs/how_to/chat_token_usage_tracking/) | [Logprobs](/docs/how_to/logprobs/) |\n",
@@ -40,7 +40,7 @@
"\n",
"## Setup\n",
"\n",
"To access DeepSeek models you'll need to create a/an DeepSeek account, get an API key, and install the `langchain-deepseek` integration package.\n",
"To access DeepSeek models you'll need to create a/an DeepSeek account, get an API key, and install the `langchain-deepseek-official` integration package.\n",
"\n",
"### Credentials\n",
"\n",
@@ -87,7 +87,7 @@
"source": [
"### Installation\n",
"\n",
"The LangChain DeepSeek integration lives in the `langchain-deepseek` package:"
"The LangChain DeepSeek integration lives in the `langchain-deepseek-official` package:"
]
},
{
@@ -97,7 +97,7 @@
"metadata": {},
"outputs": [],
"source": [
"%pip install -qU langchain-deepseek"
"%pip install -qU langchain-deepseek-official"
]
},
{

View File

@@ -1,354 +0,0 @@
{
"cells": [
{
"cell_type": "raw",
"id": "afaf8039",
"metadata": {},
"source": [
"---\n",
"sidebar_label: Goodfire\n",
"---"
]
},
{
"cell_type": "markdown",
"id": "e49f1e0d",
"metadata": {},
"source": [
"# ChatGoodfire\n",
"\n",
"This will help you getting started with Goodfire [chat models](/docs/concepts/chat_models). For detailed documentation of all ChatGoodfire features and configurations head to the [PyPI project page](https://pypi.org/project/langchain-goodfire/), or go directly to the [Goodfire SDK docs](https://docs.goodfire.ai/sdk-reference/example). All of the Goodfire-specific functionality (e.g. SAE features, variants, etc.) is available via the main `goodfire` package. This integration is a wrapper around the Goodfire SDK.\n",
"\n",
"## Overview\n",
"### Integration details\n",
"\n",
"| Class | Package | Local | Serializable | JS support | Package downloads | Package latest |\n",
"| :--- | :--- | :---: | :---: | :---: | :---: | :---: |\n",
"| [ChatGoodfire](https://python.langchain.com/api_reference/goodfire/chat_models/langchain_goodfire.chat_models.ChatGoodfire.html) | [langchain-goodfire](https://python.langchain.com/api_reference/goodfire/) | ❌ | ❌ | ❌ | ![PyPI - Downloads](https://img.shields.io/pypi/dm/langchain-goodfire?style=flat-square&label=%20) | ![PyPI - Version](https://img.shields.io/pypi/v/langchain-goodfire?style=flat-square&label=%20) |\n",
"\n",
"### Model features\n",
"| [Tool calling](/docs/how_to/tool_calling) | [Structured output](/docs/how_to/structured_output/) | JSON mode | [Image input](/docs/how_to/multimodal_inputs/) | Audio input | Video input | [Token-level streaming](/docs/how_to/chat_streaming/) | Native async | [Token usage](/docs/how_to/chat_token_usage_tracking/) | [Logprobs](/docs/how_to/logprobs/) |\n",
"| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |\n",
"| ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ✅ | ✅ | ✅ | ❌ | \n",
"\n",
"## Setup\n",
"\n",
"To access Goodfire models you'll need to create a/an Goodfire account, get an API key, and install the `langchain-goodfire` integration package.\n",
"\n",
"### Credentials\n",
"\n",
"Head to [Goodfire Settings](https://platform.goodfire.ai/organization/settings/api-keys) to sign up to Goodfire and generate an API key. Once you've done this set the GOODFIRE_API_KEY environment variable."
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "433e8d2b-9519-4b49-b2c4-7ab65b046c94",
"metadata": {},
"outputs": [],
"source": [
"import getpass\n",
"import os\n",
"\n",
"if not os.getenv(\"GOODFIRE_API_KEY\"):\n",
" os.environ[\"GOODFIRE_API_KEY\"] = getpass.getpass(\"Enter your Goodfire API key: \")"
]
},
{
"cell_type": "markdown",
"id": "72ee0c4b-9764-423a-9dbf-95129e185210",
"metadata": {},
"source": [
"If you want to get automated tracing of your model calls you can also set your [LangSmith](https://docs.smith.langchain.com/) API key by uncommenting below:"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "a15d341e-3e26-4ca3-830b-5aab30ed66de",
"metadata": {},
"outputs": [],
"source": [
"# os.environ[\"LANGSMITH_TRACING\"] = \"true\"\n",
"# os.environ[\"LANGSMITH_API_KEY\"] = getpass.getpass(\"Enter your LangSmith API key: \")"
]
},
{
"cell_type": "markdown",
"id": "0730d6a1-c893-4840-9817-5e5251676d5d",
"metadata": {},
"source": [
"### Installation\n",
"\n",
"The LangChain Goodfire integration lives in the `langchain-goodfire` package:"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "652d6238-1f87-422a-b135-f5abbb8652fc",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Note: you may need to restart the kernel to use updated packages.\n"
]
}
],
"source": [
"%pip install -qU langchain-goodfire"
]
},
{
"cell_type": "markdown",
"id": "a38cde65-254d-4219-a441-068766c0d4b5",
"metadata": {},
"source": [
"## Instantiation\n",
"\n",
"Now we can instantiate our model object and generate chat completions:"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "cb09c344-1836-4e0c-acf8-11d13ac1dbae",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"None of PyTorch, TensorFlow >= 2.0, or Flax have been found. Models won't be available and only tokenizers, configuration and file/data utilities can be used.\n"
]
}
],
"source": [
"import goodfire\n",
"from langchain_goodfire import ChatGoodfire\n",
"\n",
"base_variant = goodfire.Variant(\"meta-llama/Llama-3.3-70B-Instruct\")\n",
"\n",
"llm = ChatGoodfire(\n",
" model=base_variant,\n",
" temperature=0,\n",
" max_completion_tokens=1000,\n",
" seed=42,\n",
")"
]
},
{
"cell_type": "markdown",
"id": "2b4f3e15",
"metadata": {},
"source": [
"## Invocation"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "62e0dbc3",
"metadata": {
"tags": []
},
"outputs": [
{
"data": {
"text/plain": [
"AIMessage(content=\"J'adore la programmation.\", additional_kwargs={}, response_metadata={}, id='run-8d43cf35-bce8-4827-8935-c64f8fb78cd0-0', usage_metadata={'input_tokens': 51, 'output_tokens': 39, 'total_tokens': 90})"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"messages = [\n",
" (\n",
" \"system\",\n",
" \"You are a helpful assistant that translates English to French. Translate the user sentence.\",\n",
" ),\n",
" (\"human\", \"I love programming.\"),\n",
"]\n",
"ai_msg = await llm.ainvoke(messages)\n",
"ai_msg"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "d86145b3-bfef-46e8-b227-4dda5c9c2705",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"J'adore la programmation.\n"
]
}
],
"source": [
"print(ai_msg.content)"
]
},
{
"cell_type": "markdown",
"id": "18e2bfc0-7e78-4528-a73f-499ac150dca8",
"metadata": {},
"source": [
"## Chaining\n",
"\n",
"We can [chain](/docs/how_to/sequence/) our model with a prompt template like so:"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "e197d1d7-a070-4c96-9f8a-a0e86d046e0b",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"AIMessage(content='Ich liebe das Programmieren. How can I help you with programming today?', additional_kwargs={}, response_metadata={}, id='run-03d1a585-8234-46f1-a8df-bf9143fe3309-0', usage_metadata={'input_tokens': 46, 'output_tokens': 46, 'total_tokens': 92})"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from langchain_core.prompts import ChatPromptTemplate\n",
"\n",
"prompt = ChatPromptTemplate(\n",
" [\n",
" (\n",
" \"system\",\n",
" \"You are a helpful assistant that translates {input_language} to {output_language}.\",\n",
" ),\n",
" (\"human\", \"{input}\"),\n",
" ]\n",
")\n",
"\n",
"chain = prompt | llm\n",
"await chain.ainvoke(\n",
" {\n",
" \"input_language\": \"English\",\n",
" \"output_language\": \"German\",\n",
" \"input\": \"I love programming.\",\n",
" }\n",
")"
]
},
{
"cell_type": "markdown",
"id": "d1ee55bc-ffc8-4cfa-801c-993953a08cfd",
"metadata": {},
"source": [
"## Goodfire-specific functionality\n",
"\n",
"To use Goodfire-specific functionality such as SAE features and variants, you can use the `goodfire` package directly."
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "3aef9e0a",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"FeatureGroup([\n",
" 0: \"The assistant should adopt the persona of a pirate\",\n",
" 1: \"The assistant should roleplay as a pirate\",\n",
" 2: \"The assistant should engage with pirate-themed content or roleplay as a pirate\",\n",
" 3: \"The assistant should roleplay as a character\",\n",
" 4: \"The assistant should roleplay as a specific character\",\n",
" 5: \"The assistant should roleplay as a game character or NPC\",\n",
" 6: \"The assistant should roleplay as a human character\",\n",
" 7: \"Requests for the assistant to roleplay or pretend to be something else\",\n",
" 8: \"Requests for the assistant to roleplay or pretend to be something\",\n",
" 9: \"The assistant is being assigned a role or persona to roleplay\"\n",
"])"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"client = goodfire.Client(api_key=os.environ[\"GOODFIRE_API_KEY\"])\n",
"\n",
"pirate_features = client.features.search(\n",
" \"assistant should roleplay as a pirate\", base_variant\n",
")\n",
"pirate_features"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "52f03a00",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"AIMessage(content='Why did the scarecrow win an award? Because he was outstanding in his field! Arrr! Hope that made ye laugh, matey!', additional_kwargs={}, response_metadata={}, id='run-7d8bd30f-7f80-41cb-bdb6-25c29c22a7ce-0', usage_metadata={'input_tokens': 35, 'output_tokens': 60, 'total_tokens': 95})"
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"pirate_variant = goodfire.Variant(\"meta-llama/Llama-3.3-70B-Instruct\")\n",
"\n",
"pirate_variant.set(pirate_features[0], 0.4)\n",
"pirate_variant.set(pirate_features[1], 0.3)\n",
"\n",
"await llm.ainvoke(\"Tell me a joke\", model=pirate_variant)"
]
},
{
"cell_type": "markdown",
"id": "3a5bb5ca-c3ae-4a58-be67-2cd18574b9a3",
"metadata": {},
"source": [
"## API reference\n",
"\n",
"For detailed documentation of all ChatGoodfire features and configurations head to the [API reference](https://python.langchain.com/api_reference/goodfire/chat_models/langchain_goodfire.chat_models.ChatGoodfire.html)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": ".venv",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.8"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -210,7 +210,7 @@
"id": "96ed13d4",
"metadata": {},
"source": [
"Instead of `model_id`, you can also pass the `deployment_id` of the previously [deployed model with reference to a Prompt Template](https://cloud.ibm.com/apidocs/watsonx-ai#deployments-text-chat)."
"Instead of `model_id`, you can also pass the `deployment_id` of the previously tuned model. The entire model tuning workflow is described in [Working with TuneExperiment and PromptTuner](https://ibm.github.io/watsonx-ai-python-sdk/pt_working_with_class_and_prompt_tuner.html)."
]
},
{
@@ -228,31 +228,6 @@
")"
]
},
{
"cell_type": "markdown",
"id": "3d29767c",
"metadata": {},
"source": [
"For certain requirements, there is an option to pass the IBM's [`APIClient`](https://ibm.github.io/watsonx-ai-python-sdk/base.html#apiclient) object into the `ChatWatsonx` class."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "0ae9531e",
"metadata": {},
"outputs": [],
"source": [
"from ibm_watsonx_ai import APIClient\n",
"\n",
"api_client = APIClient(...)\n",
"\n",
"chat = ChatWatsonx(\n",
" model_id=\"ibm/granite-34b-code-instruct\",\n",
" watsonx_client=api_client,\n",
")"
]
},
{
"cell_type": "markdown",
"id": "f571001d",
@@ -473,7 +448,9 @@
"source": [
"## Tool calling\n",
"\n",
"### ChatWatsonx.bind_tools()"
"### ChatWatsonx.bind_tools()\n",
"\n",
"Please note that `ChatWatsonx.bind_tools` is on beta state, so we recommend using `mistralai/mistral-large` model."
]
},
{
@@ -586,7 +563,7 @@
],
"metadata": {
"kernelspec": {
"display_name": "langchain_ibm",
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},

View File

@@ -17,7 +17,7 @@ If you'd like to contribute an integration, see [Contributing integrations](/doc
import ChatModelTabs from "@theme/ChatModelTabs";
<ChatModelTabs overrideParams={{openai: {model: "gpt-4o-mini"}}} />
<ChatModelTabs openaiParams={`model="gpt-4o-mini"`} />
```python
model.invoke("Hello, world!")

View File

@@ -19,7 +19,7 @@
"source": [
"# ChatSambaNovaCloud\n",
"\n",
"This will help you getting started with SambaNovaCloud [chat models](/docs/concepts/chat_models/). For detailed documentation of all ChatSambaNovaCloud features and configurations head to the [API reference](https://docs.sambanova.ai/cloud/docs/get-started/overview).\n",
"This will help you getting started with SambaNovaCloud [chat models](/docs/concepts/chat_models/). For detailed documentation of all ChatSambaNovaCloud features and configurations head to the [API reference](https://python.langchain.com/api_reference/sambanova/chat_models/langchain_sambanova.ChatSambaNovaCloud.html).\n",
"\n",
"**[SambaNova](https://sambanova.ai/)'s** [SambaNova Cloud](https://cloud.sambanova.ai/) is a platform for performing inference with open-source models\n",
"\n",
@@ -28,7 +28,7 @@
"\n",
"| Class | Package | Local | Serializable | JS support | Package downloads | Package latest |\n",
"| :--- | :--- | :---: | :---: | :---: | :---: | :---: |\n",
"| [ChatSambaNovaCloud](https://docs.sambanova.ai/cloud/docs/get-started/overview) | [langchain-sambanova](https://python.langchain.com/docs/integrations/providers/sambanova/) | ❌ | ❌ | ❌ | ![PyPI - Downloads](https://img.shields.io/pypi/dm/langchain_sambanova?style=flat-square&label=%20) | ![PyPI - Version](https://img.shields.io/pypi/v/langchain_sambanova?style=flat-square&label=%20) |\n",
"| [ChatSambaNovaCloud](https://python.langchain.com/api_reference/sambanova/chat_models/langchain_sambanova.ChatSambaNovaCloud.html) | [langchain-community](https://python.langchain.com/api_reference/community/index.html) | ❌ | ❌ | ❌ | ![PyPI - Downloads](https://img.shields.io/pypi/dm/langchain_sambanova?style=flat-square&label=%20) | ![PyPI - Version](https://img.shields.io/pypi/v/langchain_sambanova?style=flat-square&label=%20) |\n",
"\n",
"### Model features\n",
"\n",
@@ -545,7 +545,7 @@
"source": [
"## API reference\n",
"\n",
"For detailed documentation of all SambaNovaCloud features and configurations head to the API reference: https://docs.sambanova.ai/cloud/docs/get-started/overview"
"For detailed documentation of all ChatSambaNovaCloud features and configurations head to the API reference: https://python.langchain.com/api_reference/sambanova/chat_models/langchain_sambanova.ChatSambaNovaCloud.html"
]
}
],

View File

@@ -19,7 +19,7 @@
"source": [
"# ChatSambaStudio\n",
"\n",
"This will help you getting started with SambaStudio [chat models](/docs/concepts/chat_models). For detailed documentation of all ChatStudio features and configurations head to the [API reference](https://docs.sambanova.ai/sambastudio/latest/index.html).\n",
"This will help you getting started with SambaStudio [chat models](/docs/concepts/chat_models). For detailed documentation of all ChatStudio features and configurations head to the [API reference](https://python.langchain.com/api_reference/sambanova/chat_models/langchain_sambanova.chat_models.sambanova.ChatSambaStudio.html).\n",
"\n",
"**[SambaNova](https://sambanova.ai/)'s** [SambaStudio](https://docs.sambanova.ai/sambastudio/latest/sambastudio-intro.html) SambaStudio is a rich, GUI-based platform that provides the functionality to train, deploy, and manage models in SambaNova [DataScale](https://sambanova.ai/products/datascale) systems.\n",
"\n",
@@ -28,7 +28,7 @@
"\n",
"| Class | Package | Local | Serializable | JS support | Package downloads | Package latest |\n",
"| :--- | :--- | :---: | :---: | :---: | :---: | :---: |\n",
"| [ChatSambaStudio](https://docs.sambanova.ai/sambastudio/latest/index.html) | [langchain-sambanova](https://python.langchain.com/docs/integrations/providers/sambanova/) | ❌ | ❌ | ❌ | ![PyPI - Downloads](https://img.shields.io/pypi/dm/langchain_sambanova?style=flat-square&label=%20) | ![PyPI - Version](https://img.shields.io/pypi/v/langchain_sambanova?style=flat-square&label=%20) |\n",
"| [ChatSambaStudio](https://python.langchain.com/api_reference/sambanova/chat_models/langchain_sambanova.chat_models.sambanova.ChatSambaStudio.html) | [langchain-community](https://python.langchain.com/api_reference/community/index.html) | ❌ | ❌ | ❌ | ![PyPI - Downloads](https://img.shields.io/pypi/dm/langchain_sambanova?style=flat-square&label=%20) | ![PyPI - Version](https://img.shields.io/pypi/v/langchain_sambanova?style=flat-square&label=%20) |\n",
"\n",
"### Model features\n",
"\n",
@@ -483,7 +483,7 @@
"source": [
"## API reference\n",
"\n",
"For detailed documentation of all SambaStudio features and configurations head to the API reference: https://docs.sambanova.ai/sambastudio/latest/api-ref-landing.html"
"For detailed documentation of all ChatSambaStudio features and configurations head to the API reference: https://python.langchain.com/api_reference/sambanova/chat_models/langchain_sambanova.sambanova.chat_models.ChatSambaStudio.html"
]
}
],

View File

@@ -2,9 +2,7 @@
"cells": [
{
"cell_type": "markdown",
"metadata": {
"id": "xwiDq5fOuoRn"
},
"metadata": {},
"source": [
"# Apify Dataset\n",
"\n",
@@ -22,63 +20,33 @@
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "qRW2-mokuoRp",
"tags": []
},
"outputs": [],
"source": [
"%pip install --upgrade --quiet langchain langchain-apify langchain-openai"
"%pip install --upgrade --quiet apify-client"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "8jRVq16LuoRq"
},
"metadata": {},
"source": [
"First, import `ApifyDatasetLoader` into your source code:"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"id": "umXQHqIJuoRq"
},
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"from langchain_apify import ApifyDatasetLoader\n",
"from langchain_community.document_loaders import ApifyDatasetLoader\n",
"from langchain_core.documents import Document"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "NjGwKy59vz1X"
},
"source": [
"Find your [Apify API token](https://console.apify.com/account/integrations) and [OpenAI API key](https://platform.openai.com/account/api-keys) and initialize these into environment variable:"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {
"id": "AvzNtyCxwDdr"
},
"outputs": [],
"source": [
"import os\n",
"\n",
"os.environ[\"APIFY_API_TOKEN\"] = \"your-apify-api-token\"\n",
"os.environ[\"OPENAI_API_KEY\"] = \"your-openai-api-key\""
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "d1O-KL48uoRr"
},
"metadata": {},
"source": [
"Then provide a function that maps Apify dataset record fields to LangChain `Document` format.\n",
"\n",
@@ -96,10 +64,8 @@
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {
"id": "m1SpA7XZuoRr"
},
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"loader = ApifyDatasetLoader(\n",
@@ -112,10 +78,8 @@
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {
"id": "0hWX7ABsuoRs"
},
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"data = loader.load()"
@@ -123,9 +87,7 @@
},
{
"cell_type": "markdown",
"metadata": {
"id": "EJCVFVKNuoRs"
},
"metadata": {},
"source": [
"## An example with question answering\n",
"\n",
@@ -134,26 +96,21 @@
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {
"id": "sNisJKzZuoRt"
},
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"from langchain.indexes import VectorstoreIndexCreator\n",
"from langchain_apify import ApifyWrapper\n",
"from langchain_community.utilities import ApifyWrapper\n",
"from langchain_core.documents import Document\n",
"from langchain_core.vectorstores import InMemoryVectorStore\n",
"from langchain_openai import ChatOpenAI\n",
"from langchain_openai import OpenAI\n",
"from langchain_openai.embeddings import OpenAIEmbeddings"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {
"id": "qcfmnbdDuoRu"
},
"execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
"loader = ApifyDatasetLoader(\n",
@@ -166,47 +123,27 @@
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {
"id": "8b0xzKJxuoRv"
},
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"index = VectorstoreIndexCreator(\n",
" vectorstore_cls=InMemoryVectorStore, embedding=OpenAIEmbeddings()\n",
").from_loaders([loader])"
"index = VectorstoreIndexCreator(embedding=OpenAIEmbeddings()).from_loaders([loader])"
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {
"id": "7zPXGsVFwUGA"
},
"outputs": [],
"source": [
"llm = ChatOpenAI(model=\"gpt-4o-mini\")"
]
},
{
"cell_type": "code",
"execution_count": 23,
"metadata": {
"id": "ecWrdM4guoRv"
},
"execution_count": 7,
"metadata": {},
"outputs": [],
"source": [
"query = \"What is Apify?\"\n",
"result = index.query_with_sources(query, llm=llm)"
"result = index.query_with_sources(query, llm=OpenAI())"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "QH8r44e9uoRv",
"outputId": "361fe050-f75d-4d5a-c327-5e7bd190fba5"
},
"execution_count": 8,
"metadata": {},
"outputs": [
{
"name": "stdout",
@@ -225,9 +162,6 @@
}
],
"metadata": {
"colab": {
"provenance": []
},
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
@@ -247,5 +181,5 @@
}
},
"nbformat": 4,
"nbformat_minor": 0
}
"nbformat_minor": 4
}

View File

@@ -443,7 +443,6 @@
"llm = HuggingFaceEndpoint(\n",
" repo_id=GEN_MODEL_ID,\n",
" huggingfacehub_api_token=HF_TOKEN,\n",
" task=\"text-generation\",\n",
")"
]
},

File diff suppressed because one or more lines are too long

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@@ -55,7 +55,7 @@
"metadata": {},
"outputs": [],
"source": [
"loader = ReadTheDocsLoader(\"rtdocs\")"
"loader = ReadTheDocsLoader(\"rtdocs\", features=\"html.parser\")"
]
},
{

View File

@@ -195,7 +195,7 @@
"id": "96ed13d4",
"metadata": {},
"source": [
"Instead of `model_id`, you can also pass the `deployment_id` of the previously tuned model. The entire model tuning workflow is described in [Working with TuneExperiment and PromptTuner](https://ibm.github.io/watsonx-ai-python-sdk/pt_tune_experiment_run.html)."
"Instead of `model_id`, you can also pass the `deployment_id` of the previously tuned model. The entire model tuning workflow is described [here](https://ibm.github.io/watsonx-ai-python-sdk/pt_working_with_class_and_prompt_tuner.html)."
]
},
{
@@ -420,7 +420,7 @@
],
"metadata": {
"kernelspec": {
"display_name": "langchain_ibm",
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},

View File

@@ -65,7 +65,7 @@
"metadata": {},
"outputs": [],
"source": [
"!CMAKE_ARGS=\"-DGGML_CUDA=on\" FORCE_CMAKE=1 pip install llama-cpp-python"
"!CMAKE_ARGS=\"-DLLAMA_CUBLAS=on\" FORCE_CMAKE=1 pip install llama-cpp-python"
]
},
{
@@ -81,7 +81,7 @@
"metadata": {},
"outputs": [],
"source": [
"!CMAKE_ARGS=\"-DGGML_CUDA=on\" FORCE_CMAKE=1 pip install --upgrade --force-reinstall llama-cpp-python --no-cache-dir"
"!CMAKE_ARGS=\"-DLLAMA_CUBLAS=on\" FORCE_CMAKE=1 pip install --upgrade --force-reinstall llama-cpp-python --no-cache-dir"
]
},
{
@@ -149,9 +149,9 @@
"\n",
"```\n",
"set FORCE_CMAKE=1\n",
"set CMAKE_ARGS=-DGGML_CUDA=OFF\n",
"set CMAKE_ARGS=-DLLAMA_CUBLAS=OFF\n",
"```\n",
"If you have an NVIDIA GPU make sure `DGGML_CUDA` is set to `ON`\n",
"If you have an NVIDIA GPU make sure `DLLAMA_CUBLAS` is set to `ON`\n",
"\n",
"#### Compiling and installing\n",
"\n",

View File

@@ -135,7 +135,6 @@
" compartment_id=\"MY_OCID\",\n",
" auth_type=\"SECURITY_TOKEN\",\n",
" auth_profile=\"MY_PROFILE\", # replace with your profile name\n",
" auth_file_location=\"MY_CONFIG_FILE_LOCATION\", # replace with file location where profile name configs present\n",
")"
]
},
@@ -160,7 +159,6 @@
" service_endpoint=\"https://inference.generativeai.us-chicago-1.oci.oraclecloud.com\",\n",
" compartment_id=\"DEDICATED_COMPARTMENT_OCID\",\n",
" auth_profile=\"MY_PROFILE\", # replace with your profile name,\n",
" auth_file_location=\"MY_CONFIG_FILE_LOCATION\", # replace with file location where profile name configs present\n",
" provider=\"MODEL_PROVIDER\", # e.g., \"cohere\" or \"meta\"\n",
" context_size=\"MODEL_CONTEXT_SIZE\", # e.g., 128000\n",
")"

View File

@@ -1,14 +0,0 @@
# Abso
[Abso](https://abso.ai/#router) is an open-source LLM proxy that automatically routes requests between fast and slow models based on prompt complexity. It uses various heuristics to chose the proper model. It's very fast and has low latency.
## Installation and setup
```bash
pip install langchain-abso
```
## Chat Model
See usage details [here](/docs/integrations/chat/abso)

View File

@@ -14,34 +14,20 @@ blogs, or knowledge bases.
## Installation and Setup
- Install the LangChain Apify package for Python with:
```bash
pip install langchain-apify
```
- Install the Apify API client for Python with `pip install apify-client`
- Get your [Apify API token](https://console.apify.com/account/integrations) and either set it as
an environment variable (`APIFY_API_TOKEN`) or pass it as `apify_api_token` in the constructor.
an environment variable (`APIFY_API_TOKEN`) or pass it to the `ApifyWrapper` as `apify_api_token` in the constructor.
## Tool
You can use the `ApifyActorsTool` to use Apify Actors with agents.
```python
from langchain_apify import ApifyActorsTool
```
See [this notebook](/docs/integrations/tools/apify_actors) for example usage.
For more information on how to use this tool, visit [the Apify integration documentation](https://docs.apify.com/platform/integrations/langgraph).
## Wrapper
## Utility
You can use the `ApifyWrapper` to run Actors on the Apify platform.
```python
from langchain_apify import ApifyWrapper
from langchain_community.utilities import ApifyWrapper
```
For more information on how to use this wrapper, see [the Apify integration documentation](https://docs.apify.com/platform/integrations/langchain).
For more information on this wrapper, see [the API reference](https://python.langchain.com/api_reference/community/utilities/langchain_community.utilities.apify.ApifyWrapper.html).
## Document loader
@@ -49,10 +35,7 @@ For more information on how to use this wrapper, see [the Apify integration docu
You can also use our `ApifyDatasetLoader` to get data from Apify dataset.
```python
from langchain_apify import ApifyDatasetLoader
from langchain_community.document_loaders import ApifyDatasetLoader
```
For a more detailed walkthrough of this loader, see [this notebook](/docs/integrations/document_loaders/apify_dataset).
Source code for this integration can be found in the [LangChain Apify repository](https://github.com/apify/langchain-apify).

View File

@@ -103,7 +103,14 @@ See [MLflow LangChain Integration](/docs/integrations/providers/mlflow_tracking)
SQLDatabase
-----------
To connect to Databricks SQL or query structured data, see the [Databricks structured retriever tool documentation](https://docs.databricks.com/en/generative-ai/agent-framework/structured-retrieval-tools.html#table-query-tool) and to create an agent using the above created SQL UDF see [Databricks UC Integration](https://docs.unitycatalog.io/ai/integrations/langchain/).
You can connect to Databricks SQL using the SQLDatabase wrapper of LangChain.
```
from langchain.sql_database import SQLDatabase
db = SQLDatabase.from_databricks(catalog="samples", schema="nyctaxi")
```
See [Databricks SQL Agent](https://docs.databricks.com/en/large-language-models/langchain.html#databricks-sql-agent) for how to connect Databricks SQL with your LangChain Agent as a powerful querying tool.
Open Models
-----------

View File

@@ -0,0 +1,34 @@
# FalkorDB
>[FalkorDB](https://www.falkordb.com/) is a creator of the [FalkorDB](https://docs.falkordb.com/),
> a low-latency Graph Database that delivers knowledge to GenAI.
## Installation and Setup
See [installation instructions here](/docs/integrations/graphs/falkordb/).
## Graphs
See a [usage example](/docs/integrations/graphs/falkordb).
```python
from langchain_community.graphs import FalkorDBGraph
```
## Chains
See a [usage example](/docs/integrations/graphs/falkordb).
```python
from langchain_community.chains.graph_qa.falkordb import FalkorDBQAChain
```
## Memory
See a [usage example](/docs/integrations/memory/falkordb_chat_message_history).
```python
from langchain_falkordb import FalkorDBChatMessageHistory
```

View File

@@ -1,14 +0,0 @@
# Goodfire
[Goodfire](https://www.goodfire.ai/) is a research lab focused on AI safety and
interpretability.
## Installation and Setup
```bash
pip install langchain-goodfire
```
## Chat models
See detail on available chat models [here](/docs/integrations/chat/goodfire).

View File

@@ -1,22 +0,0 @@
# Graph RAG
## Overview
[Graph RAG](https://datastax.github.io/graph-rag/) provides a retriever interface
that combines **unstructured** similarity search on vectors with **structured**
traversal of metadata properties. This enables graph-based retrieval over **existing**
vector stores.
## Installation and setup
```bash
pip install langchain-graph-retriever
```
## Retrievers
```python
from langchain_graph_retriever import GraphRetriever
```
For more information, see the [Graph RAG Integration Guide](/docs/integrations/retrievers/graph_rag).

View File

@@ -1,129 +0,0 @@
# LangFair: Use-Case Level LLM Bias and Fairness Assessments
LangFair is a comprehensive Python library designed for conducting bias and fairness assessments of large language model (LLM) use cases. The LangFair [repository](https://github.com/cvs-health/langfair) includes a comprehensive framework for [choosing bias and fairness metrics](https://github.com/cvs-health/langfair/tree/main#-choosing-bias-and-fairness-metrics-for-an-llm-use-case), along with [demo notebooks](https://github.com/cvs-health/langfair/tree/main/examples) and a [technical playbook](https://arxiv.org/abs/2407.10853) that discusses LLM bias and fairness risks, evaluation metrics, and best practices.
Explore our [documentation site](https://cvs-health.github.io/langfair/) for detailed instructions on using LangFair.
## ⚡ Quickstart Guide
### (Optional) Create a virtual environment for using LangFair
We recommend creating a new virtual environment using venv before installing LangFair. To do so, please follow instructions [here](https://docs.python.org/3/library/venv.html).
### Installing LangFair
The latest version can be installed from PyPI:
```bash
pip install langfair
```
### Usage Examples
Below are code samples illustrating how to use LangFair to assess bias and fairness risks in text generation and summarization use cases. The below examples assume the user has already defined a list of prompts from their use case, `prompts`.
##### Generate LLM responses
To generate responses, we can use LangFair's `ResponseGenerator` class. First, we must create a `langchain` LLM object. Below we use `ChatVertexAI`, but **any of [LangChains LLM classes](https://js.langchain.com/docs/integrations/chat/) may be used instead**. Note that `InMemoryRateLimiter` is to used to avoid rate limit errors.
```python
from langchain_google_vertexai import ChatVertexAI
from langchain_core.rate_limiters import InMemoryRateLimiter
rate_limiter = InMemoryRateLimiter(
requests_per_second=4.5, check_every_n_seconds=0.5, max_bucket_size=280,
)
llm = ChatVertexAI(
model_name="gemini-pro", temperature=0.3, rate_limiter=rate_limiter
)
```
We can use `ResponseGenerator.generate_responses` to generate 25 responses for each prompt, as is convention for toxicity evaluation.
```python
from langfair.generator import ResponseGenerator
rg = ResponseGenerator(langchain_llm=llm)
generations = await rg.generate_responses(prompts=prompts, count=25)
responses = generations["data"]["response"]
duplicated_prompts = generations["data"]["prompt"] # so prompts correspond to responses
```
##### Compute toxicity metrics
Toxicity metrics can be computed with `ToxicityMetrics`. Note that use of `torch.device` is optional and should be used if GPU is available to speed up toxicity computation.
```python
# import torch # uncomment if GPU is available
# device = torch.device("cuda") # uncomment if GPU is available
from langfair.metrics.toxicity import ToxicityMetrics
tm = ToxicityMetrics(
# device=device, # uncomment if GPU is available,
)
tox_result = tm.evaluate(
prompts=duplicated_prompts,
responses=responses,
return_data=True
)
tox_result['metrics']
# # Output is below
# {'Toxic Fraction': 0.0004,
# 'Expected Maximum Toxicity': 0.013845130120171235,
# 'Toxicity Probability': 0.01}
```
##### Compute stereotype metrics
Stereotype metrics can be computed with `StereotypeMetrics`.
```python
from langfair.metrics.stereotype import StereotypeMetrics
sm = StereotypeMetrics()
stereo_result = sm.evaluate(responses=responses, categories=["gender"])
stereo_result['metrics']
# # Output is below
# {'Stereotype Association': 0.3172750176745329,
# 'Cooccurrence Bias': 0.44766333654278373,
# 'Stereotype Fraction - gender': 0.08}
```
##### Generate counterfactual responses and compute metrics
We can generate counterfactual responses with `CounterfactualGenerator`.
```python
from langfair.generator.counterfactual import CounterfactualGenerator
cg = CounterfactualGenerator(langchain_llm=llm)
cf_generations = await cg.generate_responses(
prompts=prompts, attribute='gender', count=25
)
male_responses = cf_generations['data']['male_response']
female_responses = cf_generations['data']['female_response']
```
Counterfactual metrics can be easily computed with `CounterfactualMetrics`.
```python
from langfair.metrics.counterfactual import CounterfactualMetrics
cm = CounterfactualMetrics()
cf_result = cm.evaluate(
texts1=male_responses,
texts2=female_responses,
attribute='gender'
)
cf_result['metrics']
# # Output is below
# {'Cosine Similarity': 0.8318708,
# 'RougeL Similarity': 0.5195852482361165,
# 'Bleu Similarity': 0.3278433712872481,
# 'Sentiment Bias': 0.0009947145187601957}
```
##### Alternative approach: Semi-automated evaluation with `AutoEval`
To streamline assessments for text generation and summarization use cases, the `AutoEval` class conducts a multi-step process that completes all of the aforementioned steps with two lines of code.
```python
from langfair.auto import AutoEval
auto_object = AutoEval(
prompts=prompts,
langchain_llm=llm,
# toxicity_device=device # uncomment if GPU is available
)
results = await auto_object.evaluate()
results['metrics']
# # Output is below
# {'Toxicity': {'Toxic Fraction': 0.0004,
# 'Expected Maximum Toxicity': 0.013845130120171235,
# 'Toxicity Probability': 0.01},
# 'Stereotype': {'Stereotype Association': 0.3172750176745329,
# 'Cooccurrence Bias': 0.44766333654278373,
# 'Stereotype Fraction - gender': 0.08,
# 'Expected Maximum Stereotype - gender': 0.60355167388916,
# 'Stereotype Probability - gender': 0.27036},
# 'Counterfactual': {'male-female': {'Cosine Similarity': 0.8318708,
# 'RougeL Similarity': 0.5195852482361165,
# 'Bleu Similarity': 0.3278433712872481,
# 'Sentiment Bias': 0.0009947145187601957}}}
```

View File

@@ -1,110 +0,0 @@
{
"cells": [
{
"cell_type": "raw",
"id": "afaf8039",
"metadata": {
"id": "afaf8039"
},
"source": [
"---\n",
"sidebar_label: Nimble\n",
"---"
]
},
{
"cell_type": "markdown",
"id": "72ee0c4b-9764-423a-9dbf-95129e185210",
"metadata": {
"id": "72ee0c4b-9764-423a-9dbf-95129e185210"
},
"source": [
"# Nimble\n",
"\n",
" [Nimble](https://www.linkedin.com/company/nimbledata) is the first business external data platform, making data decision-making easier than ever, with our award-winning AI-powered data structuring technology Nimble connects business users with the public web knowledge.\n",
"We empower businesses with mission-critical real-time external data to unlock advanced business intelligence, price comparison, and other public data for sales and marketing. We translate data into immediate business value.\n",
"\n",
"If you'd like to learn more about Nimble, visit us at [nimbleway.com](https://www.nimbleway.com/).\n",
"\n",
"\n",
"## Retrievers:"
]
},
{
"cell_type": "markdown",
"source": "### NimbleSearchRetriever",
"metadata": {
"id": "AuMFgVFrKbNH"
},
"id": "AuMFgVFrKbNH"
},
{
"cell_type": "markdown",
"source": [
"Enables developers to build RAG applications and AI Agents that can search, access, and retrieve online information from anywhere on the web.\n",
"\n",
"We need to install the `langchain-nimble` python package."
],
"metadata": {
"id": "sFlPjZX9KdK6"
},
"id": "sFlPjZX9KdK6"
},
{
"metadata": {},
"cell_type": "code",
"outputs": [],
"execution_count": null,
"source": "%pip install -U langchain-nimble",
"id": "65f237c852aa3885"
},
{
"metadata": {},
"cell_type": "markdown",
"source": "See a [usage example](/docs/integrations/retrievers/nimble/).",
"id": "77bd7b9a6a8e381b"
},
{
"metadata": {},
"cell_type": "markdown",
"source": [
"```python\n",
"from langchain_nimble import NimbeSearchRetriever\n",
"```"
],
"id": "511f9d569c21a5d2"
},
{
"cell_type": "markdown",
"source": "Note that authentication is required, please refer to the [Setup section in the documentation](/docs/integrations/retrievers/nimble/#setup).",
"metadata": {
"id": "WfwnI_RS8PO5"
},
"id": "WfwnI_RS8PO5"
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.4"
},
"colab": {
"provenance": []
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -1,3 +1,4 @@
# PaymanAI
PaymanAI provides functionality to send and receive payments (fiat and crypto) on behalf of an AI Agent. To get started:
@@ -23,16 +24,16 @@ These can be wrapped as **LangChain Tools** for an LLM-based agent to call them
| Class | Package | Serializable | JS support | Package latest |
| :--- | :--- | :---: | :---: | :--- |
| PaymanAI | `langchain-payman-tool` | ❌ | ❌ | [PyPI Version] |
| PaymanAI | `langchain_community` | ❌ | ❌ | [PyPI Version] |
If you're simply calling the PaymanAI SDK, you can do it directly or via the **Tool** interface in LangChain.
## Setup
1. **Install** the PaymanAI tool package:
1. **Install** the `langchain-community` (or equivalent) package:
```bash
pip install langchain-payman-tool
pip install --quiet -U langchain-community
```
2. **Install** the PaymanAI SDK:
@@ -53,7 +54,7 @@ Your `PAYMAN_API_SECRET` should be the secret key from app.paymanai.com. The `PA
Here is an example of instantiating a PaymanAI tool. If you have multiple Payman methods, you can create multiple tools.
```python
from langchain_payman_tool.tool import PaymanAI
from langchain_community.tools.langchain_payman_tool.tool import PaymanAI
# Instantiate the PaymanAI tool (example)
tool = PaymanAI(
@@ -103,7 +104,7 @@ You can bind a PaymanAI tool to a LangChain agent or chain that supports tool-ca
1. **Sign up** at app.paymanai.com to get your **API Key**.
2. **Install** dependencies:
```bash
pip install paymanai langchain-payman-tool
pip install paymanai langchain-community
```
3. **Export** environment variables:
```bash
@@ -111,4 +112,4 @@ You can bind a PaymanAI tool to a LangChain agent or chain that supports tool-ca
export PAYMAN_ENVIRONMENT="sandbox"
```
4. **Instantiate** a PaymanAI tool, passing your desired name/description.
5. **Call** the tool with `.invoke(...)` or integrate it into a chain or agent.
5. **Call** the tool with `.invoke(...)` or integrate it into a chain or agent.

View File

@@ -81,13 +81,6 @@
"llm.invoke(\"Tell me a joke about artificial intelligence.\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"For a more detailed walkthrough of the ChatSambaNovaCloud component, see [this notebook](https://python.langchain.com/docs/integrations/chat/sambanova/)"
]
},
{
"cell_type": "code",
"execution_count": null,
@@ -100,13 +93,6 @@
"llm.invoke(\"Tell me a joke about artificial intelligence.\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"For a more detailed walkthrough of the ChatSambaStudio component, see [this notebook](https://python.langchain.com/docs/integrations/chat/sambastudio/)"
]
},
{
"cell_type": "markdown",
"metadata": {},
@@ -130,14 +116,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"For a more detailed walkthrough of the SambaStudioEmbeddings component, see [this notebook](https://python.langchain.com/docs/integrations/text_embedding/sambanova/)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"API Reference [langchain-sambanova](https://docs.sambanova.ai/cloud/api-reference)"
"API Reference [langchain-sambanova](https://python.langchain.com/api_reference/sambanova/index.html)"
]
}
],

View File

@@ -1,379 +0,0 @@
---
sidebar_label: Graph RAG
description: Graph traversal over any Vector Store using document metadata.
---
import ChatModelTabs from "@theme/ChatModelTabs";
import EmbeddingTabs from "@theme/EmbeddingTabs";
import Tabs from '@theme/Tabs';
import TabItem from '@theme/TabItem';
# Graph RAG
This guide provides an introduction to Graph RAG. For detailed documentation of all
supported features and configurations, refer to the
[Graph RAG Project Page](https://datastax.github.io/graph-rag/).
## Overview
The `GraphRetriever` from the `langchain-graph-retriever` package provides a LangChain
[retriever](/docs/concepts/retrievers/) that combines **unstructured** similarity search
on vectors with **structured** traversal of metadata properties. This enables graph-based
retrieval over an **existing** vector store.
### Integration details
| Retriever | Source | PyPI Package | Latest | Project Page |
| :--- | :--- | :---: | :---: | :---: |
| GraphRetriever | [github.com/datastax/graph-rag](https://github.com/datastax/graph-rag/tree/main/packages/langchain-graph-retriever) | [langchain-graph-retriever](https://pypi.org/project/langchain-graph-retriever/) | ![PyPI - Version](https://img.shields.io/pypi/v/langchain-graph-retriever?style=flat-square&label=%20&color=orange) | [Graph RAG](https://datastax.github.io/graph-rag/) |
## Benefits
* [**Link based on existing metadata:**](https://datastax.github.io/graph-rag/get-started/)
Use existing metadata fields without additional processing. Retrieve more from an
existing vector store!
* [**Change links on demand:**](https://datastax.github.io/graph-rag/get-started/edges/)
Edges can be specified on-the-fly, allowing different relationships to be traversed
based on the question.
* [**Pluggable Traversal Strategies:**](https://datastax.github.io/graph-rag/get-started/strategies/)
Use built-in traversal strategies like Eager or MMR, or define custom logic to select
which nodes to explore.
* [**Broad compatibility:**](https://datastax.github.io/graph-rag/get-started/adapters/)
Adapters are available for a variety of vector stores with support for additional
stores easily added.
## Setup
### Installation
This retriever lives in the `langchain-graph-retriever` package.
```bash
pip install -qU langchain-graph-retriever
```
## Instantiation
The following examples will show how to perform graph traversal over some sample
Documents about animals.
### Prerequisites
<details>
<summary>Toggle for Details</summary>
<div>
1. Ensure you have Python 3.10+ installed
1. Install the following package that provides sample data.
```bash
pip install -qU graph_rag_example_helpers
```
1. Download the test documents:
```python
from graph_rag_example_helpers.datasets.animals import fetch_documents
animals = fetch_documents()
```
1. <EmbeddingTabs/>
</div>
</details>
### Populating the Vector store
This section shows how to populate a variety of vector stores with the sample data.
For help on choosing one of the vector stores below, or to add support for your
vector store, consult the documentation about
[Adapters and Supported Stores](https://datastax.github.io/graph-rag/guide/adapters/).
<Tabs groupId="vector-store" queryString>
<TabItem value="astra-db" label="AstraDB" default>
<div style={{ paddingLeft: '30px' }}>
Install the `langchain-graph-retriever` package with the `astra` extra:
```bash
pip install "langchain-graph-retriever[astra]"
```
Then create a vector store and load the test documents:
```python
from langchain_astradb import AstraDBVectorStore
vector_store = AstraDBVectorStore.from_documents(
documents=animals,
embedding=embeddings,
collection_name="animals",
api_endpoint=ASTRA_DB_API_ENDPOINT,
token=ASTRA_DB_APPLICATION_TOKEN,
)
```
For the `ASTRA_DB_API_ENDPOINT` and `ASTRA_DB_APPLICATION_TOKEN` credentials,
consult the [AstraDB Vector Store Guide](/docs/integrations/vectorstores/astradb).
:::note
For faster initial testing, consider using the **InMemory** Vector Store.
:::
</div>
</TabItem>
<TabItem value="cassandra" label="Apache Cassandra">
<div style={{ paddingLeft: '30px' }}>
Install the `langchain-graph-retriever` package with the `cassandra` extra:
```bash
pip install "langchain-graph-retriever[cassandra]"
```
Then create a vector store and load the test documents:
```python
from langchain_community.vectorstores.cassandra import Cassandra
from langchain_graph_retriever.transformers import ShreddingTransformer
vector_store = Cassandra.from_documents(
documents=list(ShreddingTransformer().transform_documents(animals)),
embedding=embeddings,
table_name="animals",
)
```
For help creating a Cassandra connection, consult the
[Apache Cassandra Vector Store Guide](/docs/integrations/vectorstores/cassandra#connection-parameters)
:::note
Apache Cassandra doesn't support searching in nested metadata. Because of this
it is necessary to use the [`ShreddingTransformer`](https://datastax.github.io/graph-rag/reference/langchain_graph_retriever/transformers/#langchain_graph_retriever.transformers.shredding.ShreddingTransformer)
when inserting documents.
:::
</div>
</TabItem>
<TabItem value="opensearch" label="OpenSearch">
<div style={{ paddingLeft: '30px' }}>
Install the `langchain-graph-retriever` package with the `opensearch` extra:
```bash
pip install "langchain-graph-retriever[opensearch]"
```
Then create a vector store and load the test documents:
```python
from langchain_community.vectorstores import OpenSearchVectorSearch
vector_store = OpenSearchVectorSearch.from_documents(
documents=animals,
embedding=embeddings,
engine="faiss",
index_name="animals",
opensearch_url=OPEN_SEARCH_URL,
bulk_size=500,
)
```
For help creating an OpenSearch connection, consult the
[OpenSearch Vector Store Guide](/docs/integrations/vectorstores/opensearch).
</div>
</TabItem>
<TabItem value="chroma" label="Chroma">
<div style={{ paddingLeft: '30px' }}>
Install the `langchain-graph-retriever` package with the `chroma` extra:
```bash
pip install "langchain-graph-retriever[chroma]"
```
Then create a vector store and load the test documents:
```python
from langchain_chroma.vectorstores import Chroma
from langchain_graph_retriever.transformers import ShreddingTransformer
vector_store = Chroma.from_documents(
documents=list(ShreddingTransformer().transform_documents(animals)),
embedding=embeddings,
collection_name="animals",
)
```
For help creating an Chroma connection, consult the
[Chroma Vector Store Guide](/docs/integrations/vectorstores/chroma).
:::note
Chroma doesn't support searching in nested metadata. Because of this
it is necessary to use the [`ShreddingTransformer`](https://datastax.github.io/graph-rag/reference/langchain_graph_retriever/transformers/#langchain_graph_retriever.transformers.shredding.ShreddingTransformer)
when inserting documents.
:::
</div>
</TabItem>
<TabItem value="in-memory" label="InMemory" default>
<div style={{ paddingLeft: '30px' }}>
Install the `langchain-graph-retriever` package:
```bash
pip install "langchain-graph-retriever"
```
Then create a vector store and load the test documents:
```python
from langchain_core.vectorstores import InMemoryVectorStore
vector_store = InMemoryVectorStore.from_documents(
documents=animals,
embedding=embeddings,
)
```
:::tip
Using the `InMemoryVectorStore` is the fastest way to get started with Graph RAG
but it isn't recommended for production use. Instead it is recommended to use
**AstraDB** or **OpenSearch**.
:::
</div>
</TabItem>
</Tabs>
### Graph Traversal
This graph retriever starts with a single animal that best matches the query, then
traverses to other animals sharing the same `habitat` and/or `origin`.
```python
from graph_retriever.strategies import Eager
from langchain_graph_retriever import GraphRetriever
traversal_retriever = GraphRetriever(
store = vector_store,
edges = [("habitat", "habitat"), ("origin", "origin")],
strategy = Eager(k=5, start_k=1, max_depth=2),
)
```
The above creates a graph traversing retriever that starts with the nearest
animal (`start_k=1`), retrieves 5 documents (`k=5`) and limits the search to documents
that are at most 2 steps away from the first animal (`max_depth=2`).
The `edges` define how metadata values can be used for traversal. In this case, every
animal is connected to other animals with the same `habitat` and/or `origin`.
```python
results = traversal_retriever.invoke("what animals could be found near a capybara?")
for doc in results:
print(f"{doc.id}: {doc.page_content}")
```
```output
capybara: capybaras are the largest rodents in the world and are highly social animals.
heron: herons are wading birds known for their long legs and necks, often seen near water.
crocodile: crocodiles are large reptiles with powerful jaws and a long lifespan, often living over 70 years.
frog: frogs are amphibians known for their jumping ability and croaking sounds.
duck: ducks are waterfowl birds known for their webbed feet and quacking sounds.
```
Graph traversal improves retrieval quality by leveraging structured relationships in
the data. Unlike standard similarity search (see below), it provides a clear,
explainable rationale for why documents are selected.
In this case, the documents `capybara`, `heron`, `frog`, `crocodile`, and `newt` all
share the same `habitat=wetlands`, as defined by their metadata. This should increase
Document Relevance and the quality of the answer from the LLM.
### Comparison to Standard Retrieval
When `max_depth=0`, the graph traversing retriever behaves like a standard retriever:
```python
standard_retriever = GraphRetriever(
store = vector_store,
edges = [("habitat", "habitat"), ("origin", "origin")],
strategy = Eager(k=5, start_k=5, max_depth=0),
)
```
This creates a retriever that starts with the nearest 5 animals (`start_k=5`),
and returns them without any traversal (`max_depth=0`). The edge definitions
are ignored in this case.
This is essentially the same as:
```python
standard_retriever = vector_store.as_retriever(search_kwargs={"k":5})
```
For either case, invoking the retriever returns:
```python
results = standard_retriever.invoke("what animals could be found near a capybara?")
for doc in results:
print(f"{doc.id}: {doc.page_content}")
```
```output
capybara: capybaras are the largest rodents in the world and are highly social animals.
iguana: iguanas are large herbivorous lizards often found basking in trees and near water.
guinea pig: guinea pigs are small rodents often kept as pets due to their gentle and social nature.
hippopotamus: hippopotamuses are large semi-aquatic mammals known for their massive size and territorial behavior.
boar: boars are wild relatives of pigs, known for their tough hides and tusks.
```
These documents are joined based on similarity alone. Any structural data that existed
in the store is ignored. As compared to graph retrieval, this can decrease Document
Relevance because the returned results have a lower chance of being helpful to answer
the query.
## Usage
Following the examples above, `.invoke` is used to initiate retrieval on a query.
## Use within a chain
Like other retrievers, `GraphRetriever` can be incorporated into LLM applications
via [chains](/docs/how_to/sequence/).
<ChatModelTabs customVarName="llm" />
```python
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.runnables import RunnablePassthrough
prompt = ChatPromptTemplate.from_template(
"""Answer the question based only on the context provided.
Context: {context}
Question: {question}"""
)
def format_docs(docs):
return "\n\n".join(f"text: {doc.page_content} metadata: {doc.metadata}" for doc in docs)
chain = (
{"context": traversal_retriever | format_docs, "question": RunnablePassthrough()}
| prompt
| llm
| StrOutputParser()
)
```
```python
chain.invoke("what animals could be found near a capybara?")
```
```output
Animals that could be found near a capybara include herons, crocodiles, frogs,
and ducks, as they all inhabit wetlands.
```
## API reference
To explore all available parameters and advanced configurations, refer to the
[Graph RAG API reference](https://datastax.github.io/graph-rag/reference/).

File diff suppressed because one or more lines are too long

View File

@@ -103,7 +103,6 @@
" compartment_id=\"MY_OCID\",\n",
" auth_type=\"SECURITY_TOKEN\",\n",
" auth_profile=\"MY_PROFILE\", # replace with your profile name\n",
" auth_file_location=\"MY_CONFIG_FILE_LOCATION\", # replace with file location where profile name configs present\n",
")\n",
"\n",
"\n",

View File

@@ -21,16 +21,16 @@
"source": [
"# SambaStudioEmbeddings\n",
"\n",
"This will help you get started with SambaNova's SambaStudio embedding models using LangChain. For detailed documentation on `SambaStudioEmbeddings` features and configuration options, please refer to the [API reference](https://docs.sambanova.ai/sambastudio/latest/index.html).\n",
"This will help you get started with SambaNova's SambaStudio embedding models using LangChain. For detailed documentation on `SambaStudioEmbeddings` features and configuration options, please refer to the [API reference](https://python.langchain.com/api_reference/sambanova/embeddings/langchain_sambanova.embeddingsSambaStudioEmbeddings.html).\n",
"\n",
"**[SambaNova](https://sambanova.ai/)'s** [SambaStudio](https://sambanova.ai/technology/full-stack-ai-platform) is a platform for running your own open-source models\n",
"**[SambaNova](https://sambanova.ai/)'s** [Sambastudio](https://sambanova.ai/technology/full-stack-ai-platform) is a platform for running your own open-source models\n",
"\n",
"## Overview\n",
"### Integration details\n",
"\n",
"| Provider | Package |\n",
"|:--------:|:-------:|\n",
"| [SambaNova](/docs/integrations/providers/sambanova/) | [langchain-sambanova](https://python.langchain.com/docs/integrations/providers/sambanova/) |\n",
"| [SambaNova](/docs/integrations/providers/sambanova/) | [langchain-sambanova](https://python.langchain.com/api_reference/langchain_sambanova/embeddings/langchain_sambanova.embeddings.SambaStudioEmbeddings.html) |\n",
"\n",
"## Setup\n",
"\n",
@@ -227,7 +227,7 @@
"source": [
"## API Reference\n",
"\n",
"For detailed documentation on `SambaStudio` features and configuration options, please refer to the [API reference](https://docs.sambanova.ai/sambastudio/latest/api-ref-landing.html).\n"
"For detailed documentation on `SambaNovaEmbeddings` features and configuration options, please refer to the [API reference](https://python.langchain.com/api_reference/langchain_sambanova/embeddings/langchain_sambanova.embeddings.SambaStudioEmbeddings.html).\n"
]
}
],

View File

@@ -1,256 +0,0 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {
"id": "_9MNj58sIkGN"
},
"source": [
"# Apify Actor\n",
"\n",
"## Overview\n",
"\n",
">[Apify Actors](https://docs.apify.com/platform/actors) are cloud programs designed for a wide range of web scraping, crawling, and data extraction tasks. These actors facilitate automated data gathering from the web, enabling users to extract, process, and store information efficiently. Actors can be used to perform tasks like scraping e-commerce sites for product details, monitoring price changes, or gathering search engine results. They integrate seamlessly with [Apify Datasets](https://docs.apify.com/platform/storage/dataset), allowing the structured data collected by actors to be stored, managed, and exported in formats like JSON, CSV, or Excel for further analysis or use.\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "OHLF9t9v9HCb"
},
"source": [
"## Setup\n",
"\n",
"This integration lives in the [langchain-apify](https://pypi.org/project/langchain-apify/) package. The package can be installed using pip.\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "4DdGmBn5IbXz"
},
"outputs": [],
"source": [
"%pip install langchain-apify"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "rEAwonXqwggR"
},
"source": [
"### Prerequisites\n",
"\n",
"- **Apify account**: Register your free Apify account [here](https://console.apify.com/sign-up).\n",
"- **Apify API token**: Learn how to get your API token in the [Apify documentation](https://docs.apify.com/platform/integrations/api)."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "9nJOl4MBMkcR"
},
"outputs": [],
"source": [
"import os\n",
"\n",
"os.environ[\"APIFY_API_TOKEN\"] = \"your-apify-api-token\"\n",
"os.environ[\"OPENAI_API_KEY\"] = \"your-openai-api-key\""
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "UfoQxAlCxR9q"
},
"source": [
"## Instantiation"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "qG9KtXtLM8i7"
},
"source": [
"Here we instantiate the `ApifyActorsTool` to be able to call [RAG Web Browser](https://apify.com/apify/rag-web-browser) Apify Actor. This Actor provides web browsing functionality for AI and LLM applications, similar to the web browsing feature in ChatGPT. Any Actor from the [Apify Store](https://apify.com/store) can be used in this way."
]
},
{
"cell_type": "code",
"execution_count": 43,
"metadata": {
"id": "cyxeTlPnM4Ya"
},
"outputs": [],
"source": [
"from langchain_apify import ApifyActorsTool\n",
"\n",
"tool = ApifyActorsTool(\"apify/rag-web-browser\")"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "fGDLvDCqyKWO"
},
"source": [
"## Invocation\n",
"\n",
"The `ApifyActorsTool` takes a single argument, which is `run_input` - a dictionary that is passed as a run input to the Actor. Run input schema documentation can be found in the input section of the Actor details page. See [RAG Web Browser input schema](https://apify.com/apify/rag-web-browser/input-schema).\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "nTWy6Hx1yk04"
},
"outputs": [],
"source": [
"tool.invoke({\"run_input\": {\"query\": \"what is apify?\", \"maxResults\": 2}})"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "kQsa27hoO58S"
},
"source": [
"## Chaining\n",
"\n",
"We can provide the created tool to an [agent](https://python.langchain.com/docs/tutorials/agents/). When asked to search for information, the agent will call the Apify Actor, which will search the web, and then retrieve the search results.\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "YySvLskW72Y8"
},
"outputs": [],
"source": [
"%pip install langgraph langchain-openai"
]
},
{
"cell_type": "code",
"execution_count": 44,
"metadata": {
"id": "QEDz07btO5Gi"
},
"outputs": [],
"source": [
"from langchain_core.messages import ToolMessage\n",
"from langchain_openai import ChatOpenAI\n",
"from langgraph.prebuilt import create_react_agent\n",
"\n",
"model = ChatOpenAI(model=\"gpt-4o\")\n",
"tools = [tool]\n",
"graph = create_react_agent(model, tools=tools)"
]
},
{
"cell_type": "code",
"execution_count": 45,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "XS1GEyNkQxGu",
"outputId": "195273d7-034c-425b-f3f9-95c0a9fb0c9e"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"================================\u001b[1m Human Message \u001b[0m=================================\n",
"\n",
"search for what is Apify\n",
"==================================\u001b[1m Ai Message \u001b[0m==================================\n",
"Tool Calls:\n",
" apify_actor_apify_rag-web-browser (call_27mjHLzDzwa5ZaHWCMH510lm)\n",
" Call ID: call_27mjHLzDzwa5ZaHWCMH510lm\n",
" Args:\n",
" run_input: {\"run_input\":{\"query\":\"Apify\",\"maxResults\":3,\"outputFormats\":[\"markdown\"]}}\n",
"==================================\u001b[1m Ai Message \u001b[0m==================================\n",
"\n",
"Apify is a comprehensive platform for web scraping, browser automation, and data extraction. It offers a wide array of tools and services that cater to developers and businesses looking to extract data from websites efficiently and effectively. Here's an overview of Apify:\n",
"\n",
"1. **Ecosystem and Tools**:\n",
" - Apify provides an ecosystem where developers can build, deploy, and publish data extraction and web automation tools called Actors.\n",
" - The platform supports various use cases such as extracting data from social media platforms, conducting automated browser-based tasks, and more.\n",
"\n",
"2. **Offerings**:\n",
" - Apify offers over 3,000 ready-made scraping tools and code templates.\n",
" - Users can also build custom solutions or hire Apify's professional services for more tailored data extraction needs.\n",
"\n",
"3. **Technology and Integration**:\n",
" - The platform supports integration with popular tools and services like Zapier, GitHub, Google Sheets, Pinecone, and more.\n",
" - Apify supports open-source tools and technologies such as JavaScript, Python, Puppeteer, Playwright, Selenium, and its own Crawlee library for web crawling and browser automation.\n",
"\n",
"4. **Community and Learning**:\n",
" - Apify hosts a community on Discord where developers can get help and share expertise.\n",
" - It offers educational resources through the Web Scraping Academy to help users become proficient in data scraping and automation.\n",
"\n",
"5. **Enterprise Solutions**:\n",
" - Apify provides enterprise-grade web data extraction solutions with high reliability, 99.95% uptime, and compliance with SOC2, GDPR, and CCPA standards.\n",
"\n",
"For more information, you can visit [Apify's official website](https://apify.com/) or their [GitHub page](https://github.com/apify) which contains their code repositories and further details about their projects.\n"
]
}
],
"source": [
"inputs = {\"messages\": [(\"user\", \"search for what is Apify\")]}\n",
"for s in graph.stream(inputs, stream_mode=\"values\"):\n",
" message = s[\"messages\"][-1]\n",
" # skip tool messages\n",
" if isinstance(message, ToolMessage):\n",
" continue\n",
" message.pretty_print()"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "WYXuQIQx8AvG"
},
"source": [
"## API reference\n",
"\n",
"For more information on how to use this integration, see the [git repository](https://github.com/apify/langchain-apify) or the [Apify integration documentation](https://docs.apify.com/platform/integrations/langgraph)."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "f1NnMik78oib"
},
"outputs": [],
"source": []
}
],
"metadata": {
"colab": {
"provenance": [],
"toc_visible": true
},
"kernelspec": {
"display_name": "Python 3",
"name": "python3"
},
"language_info": {
"name": "python"
}
},
"nbformat": 4,
"nbformat_minor": 0
}

View File

@@ -66,20 +66,21 @@
"metadata": {},
"outputs": [],
"source": [
"from databricks_langchain.uc_ai import (\n",
" DatabricksFunctionClient,\n",
" UCFunctionToolkit,\n",
" set_uc_function_client,\n",
")\n",
"from databricks.sdk import WorkspaceClient\n",
"from langchain_community.tools.databricks import UCFunctionToolkit\n",
"\n",
"client = DatabricksFunctionClient()\n",
"set_uc_function_client(client)\n",
"\n",
"tools = UCFunctionToolkit(\n",
" # Include functions as tools using their qualified names.\n",
" # You can use \"{catalog_name}.{schema_name}.*\" to get all functions in a schema.\n",
" function_names=[\"main.tools.python_exec\"]\n",
").tools"
"tools = (\n",
" UCFunctionToolkit(\n",
" # You can find the SQL warehouse ID in its UI after creation.\n",
" warehouse_id=\"xxxx123456789\"\n",
" )\n",
" .include(\n",
" # Include functions as tools using their qualified names.\n",
" # You can use \"{catalog_name}.{schema_name}.*\" to get all functions in a schema.\n",
" \"main.tools.python_exec\",\n",
" )\n",
" .get_tools()\n",
")"
]
},
{

View File

@@ -5,7 +5,7 @@
"id": "a991a6f8-1897-4f49-a191-ae3bdaeda856",
"metadata": {},
"source": [
"# ElevenLabs Text2Speech\n",
"# Eleven Labs Text2Speech\n",
"\n",
"This notebook shows how to interact with the `ElevenLabs API` to achieve text-to-speech capabilities."
]
@@ -37,7 +37,7 @@
"source": [
"import os\n",
"\n",
"os.environ[\"ELEVENLABS_API_KEY\"] = \"\""
"os.environ[\"ELEVEN_API_KEY\"] = \"\""
]
},
{

View File

@@ -64,10 +64,7 @@
"outputs": [],
"source": [
"import getpass\n",
"import os\n",
"\n",
"if not os.environ.get(\"JINA_API_KEY\"):\n",
" os.environ[\"JINA_API_KEY\"] = getpass.getpass(\"Jina API key:\\n\")"
"import os"
]
},
{

View File

@@ -506,7 +506,7 @@
"source": [
"## API reference\n",
"\n",
"For detailed documentation of all DatabricksVectorSearch features and configurations head to the API reference: https://api-docs.databricks.com/python/databricks-ai-bridge/latest/databricks_langchain.html#databricks_langchain.DatabricksVectorSearch"
"For detailed documentation of all DatabricksVectorSearch features and configurations head to the API reference: https://python.langchain.com/api_reference/databricks/vectorstores/langchain_databricks.vectorstores.DatabricksVectorSearch.html"
]
}
],

View File

@@ -331,7 +331,7 @@
"- Dictionary-based Filters\n",
" - You can pass a dictionary (dict) where the keys represent metadata fields and the values specify the filter condition. This method applies an equality filter between the key and the corresponding value. When multiple key-value pairs are provided, they are combined using a logical AND operation.\n",
"- SQL-based Filters\n",
" - Alternatively, you can provide a string representing an SQL WHERE clause to define more complex filtering conditions. This allows for greater flexibility, supporting SQL expressions such as comparison operators and logical operators. Learn more about [BigQuery operators](https://cloud.google.com/bigquery/docs/reference/standard-sql/operators)."
" - Alternatively, you can provide a string representing an SQL WHERE clause to define more complex filtering conditions. This allows for greater flexibility, supporting SQL expressions such as comparison operators and logical operators."
]
},
{
@@ -356,7 +356,7 @@
"source": [
"# SQL-based Filters\n",
"# This should return \"Banana\", \"Apples and oranges\" and \"Cars and airplanes\" documents.\n",
"docs = store.similarity_search_by_vector(query_vector, filter=\"len = 6 AND len > 17\")\n",
"docs = store.similarity_search_by_vector(query_vector, filter={\"len = 6 AND len > 17\"})\n",
"print(docs)"
]
},

View File

@@ -156,15 +156,6 @@
" db_name=\"vearch_cluster_langchian\",\n",
" table_name=\"tobenumone\",\n",
" flag=1,\n",
")\n",
"\n",
"# The vector data is usually already initialized, so we dont need the document parameter and can directly create the object.\n",
"vearch_cluster_b = Vearch(\n",
" embeddings,\n",
" path_or_url=\"http://test-vearch-langchain-router.vectorbase.svc.ht1.n.jd.local\",\n",
" db_name=\"vearch_cluster_langchian\",\n",
" table_name=\"tobenumone\",\n",
" flag=1,\n",
")"
]
},
@@ -253,7 +244,6 @@
],
"source": [
"query = \"你知道凌波微步吗,你知道都有谁会凌波微步?\"\n",
"# The second parameter is the top-n to retrieve, and its default value is 4.\n",
"vearch_standalone_res = vearch_standalone.similarity_search(query, 3)\n",
"for idx, tmp in enumerate(vearch_standalone_res):\n",
" print(f\"{'#'*20}第{idx+1}段相关文档{'#'*20}\\n\\n{tmp.page_content}\\n\")\n",
@@ -271,11 +261,6 @@
"for idx, tmp in enumerate(cluster_res):\n",
" print(f\"{'#'*20}第{idx+1}段相关文档{'#'*20}\\n\\n{tmp.page_content}\\n\")\n",
"\n",
"# In practical applications, we usually limit the boundary value of similarity. The following method can set this value.\n",
"cluster_res_with_bound = vearch_cluster.similarity_search_with_score(\n",
" query=query_c, k=3, min_score=0.5\n",
")\n",
"\n",
"# combine your local knowleadge and query\n",
"context_c = \"\".join([tmp.page_content for tmp in cluster_res])\n",
"new_query_c = f\"基于以下信息,尽可能准确的来回答用户的问题。背景信息:\\n {context_c} \\n 回答用户这个问题:{query_c}\\n\\n\"\n",

View File

@@ -215,7 +215,7 @@
"\n",
"import ChatModelTabs from \"@theme/ChatModelTabs\";\n",
"\n",
"<ChatModelTabs overrideParams={{openai: {model: \"gpt-4\"}}} />\n"
"<ChatModelTabs openaiParams={`model=\"gpt-4\"`} />\n"
]
},
{

View File

@@ -108,7 +108,7 @@
"\n",
"import ChatModelTabs from \"@theme/ChatModelTabs\";\n",
"\n",
"<ChatModelTabs overrideParams={{openai: {model: \"gpt-4o-mini\"}}} />\n"
"<ChatModelTabs openaiParams={`model=\"gpt-4o-mini\"`} />\n"
]
},
{
@@ -935,7 +935,7 @@
],
"metadata": {
"kernelspec": {
"display_name": ".venv",
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
@@ -949,7 +949,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.4"
"version": "3.10.4"
}
},
"nbformat": 4,

Some files were not shown because too many files have changed in this diff Show More