Compare commits

..

11 Commits

Author SHA1 Message Date
Chester Curme
e3185a2212 update 2025-01-10 14:39:15 -05:00
Chester Curme
2d76ef9d33 Merge branch 'master' into cc/pinecone 2025-01-10 14:25:18 -05:00
Chester Curme
6bb7da8e64 fix merge 2025-01-07 18:32:36 -05:00
Chester Curme
2f92adb55c Merge branch 'master' into cc/pinecone
# Conflicts:
#	libs/partners/pinecone/langchain_pinecone/embeddings.py
#	libs/partners/pinecone/poetry.lock
#	libs/partners/pinecone/tests/integration_tests/test_embeddings.py
2025-01-07 18:29:39 -05:00
Chester Curme
ea0da596f6 increase sleep between adding documents and querying 2024-12-17 15:34:53 -05:00
Chester Curme
a9816f7545 🦍 2024-12-17 15:21:48 -05:00
Chester Curme
897fd22915 Revert "don't use deprecated class name"
This reverts commit c714fc7769.
2024-12-17 15:05:24 -05:00
Chester Curme
c714fc7769 don't use deprecated class name 2024-12-17 15:01:12 -05:00
Chester Curme
2e9b86a230 support asyncio 3.10+ 2024-12-17 15:00:51 -05:00
Chester Curme
2f296549fb update deps in lock file 2024-12-17 15:00:25 -05:00
Chester Curme
3278868054 relax upper bound on aiohttp 2024-12-17 15:00:10 -05:00
1008 changed files with 73437 additions and 86640 deletions

4
.github/CODEOWNERS vendored
View File

@@ -1,2 +1,2 @@
/.github/ @baskaryan @ccurme
/libs/packages.yml @ccurme
/.github/ @efriis @baskaryan @ccurme
/libs/packages.yml @efriis

View File

@@ -26,4 +26,4 @@ Additional guidelines:
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in langchain.
If no one reviews your PR within a few days, please @-mention one of baskaryan, eyurtsev, ccurme, vbarda, hwchase17.
If no one reviews your PR within a few days, please @-mention one of baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.

View File

@@ -1,21 +0,0 @@
# TODO: https://docs.astral.sh/uv/guides/integration/github/#caching
name: uv-install
description: Set up Python and uv
inputs:
python-version:
description: Python version, supporting MAJOR.MINOR only
required: true
env:
UV_VERSION: "0.5.25"
runs:
using: composite
steps:
- name: Install uv and set the python version
uses: astral-sh/setup-uv@v5
with:
version: ${{ env.UV_VERSION }}
python-version: ${{ inputs.python-version }}

View File

@@ -7,8 +7,6 @@ from typing import Dict, List, Set
from pathlib import Path
import tomllib
from packaging.requirements import Requirement
from get_min_versions import get_min_version_from_toml
@@ -39,7 +37,6 @@ IGNORED_PARTNERS = [
PY_312_MAX_PACKAGES = [
"libs/partners/huggingface", # https://github.com/pytorch/pytorch/issues/130249
"libs/partners/voyageai",
]
@@ -64,17 +61,15 @@ def dependents_graph() -> dict:
# load regular and test deps from pyproject.toml
with open(path, "rb") as f:
pyproject = tomllib.load(f)
pyproject = tomllib.load(f)["tool"]["poetry"]
pkg_dir = "libs" + "/".join(path.split("libs")[1].split("/")[:-1])
for dep in [
*pyproject["project"]["dependencies"],
*pyproject["dependency-groups"]["test"],
*pyproject["dependencies"].keys(),
*pyproject["group"]["test"]["dependencies"].keys(),
]:
requirement = Requirement(dep)
package_name = requirement.name
if "langchain" in dep:
dependents[package_name].add(pkg_dir)
dependents[dep].add(pkg_dir)
continue
# load extended deps from extended_testing_deps.txt
@@ -125,7 +120,8 @@ def _get_configs_for_single_dir(job: str, dir_: str) -> List[Dict[str, str]]:
py_versions = ["3.9", "3.10", "3.11", "3.12", "3.13"]
# custom logic for specific directories
elif dir_ == "libs/partners/milvus":
# milvus doesn't allow 3.12 because they declare deps in funny way
# milvus poetry doesn't allow 3.12 because they
# declare deps in funny way
py_versions = ["3.9", "3.11"]
elif dir_ in PY_312_MAX_PACKAGES:
@@ -152,17 +148,17 @@ def _get_configs_for_single_dir(job: str, dir_: str) -> List[Dict[str, str]]:
def _get_pydantic_test_configs(
dir_: str, *, python_version: str = "3.11"
) -> List[Dict[str, str]]:
with open("./libs/core/uv.lock", "rb") as f:
core_uv_lock_data = tomllib.load(f)
for package in core_uv_lock_data["package"]:
with open("./libs/core/poetry.lock", "rb") as f:
core_poetry_lock_data = tomllib.load(f)
for package in core_poetry_lock_data["package"]:
if package["name"] == "pydantic":
core_max_pydantic_minor = package["version"].split(".")[1]
break
with open(f"./{dir_}/uv.lock", "rb") as f:
dir_uv_lock_data = tomllib.load(f)
with open(f"./{dir_}/poetry.lock", "rb") as f:
dir_poetry_lock_data = tomllib.load(f)
for package in dir_uv_lock_data["package"]:
for package in dir_poetry_lock_data["package"]:
if package["name"] == "pydantic":
dir_max_pydantic_minor = package["version"].split(".")[1]
break
@@ -308,8 +304,9 @@ if __name__ == "__main__":
f"Unknown lib: {file}. check_diff.py likely needs "
"an update for this new library!"
)
elif file.startswith("docs/") or file in ["pyproject.toml", "uv.lock"]: # docs or root uv files
docs_edited = True
elif any(file.startswith(p) for p in ["docs/", "cookbook/"]):
if file.startswith("docs/"):
docs_edited = True
dirs_to_run["lint"].add(".")
dependents = dependents_graph()

View File

@@ -10,25 +10,26 @@ if __name__ == "__main__":
toml_data = tomllib.load(file)
# see if we're releasing an rc
version = toml_data["project"]["version"]
version = toml_data["tool"]["poetry"]["version"]
releasing_rc = "rc" in version or "dev" in version
# if not, iterate through dependencies and make sure none allow prereleases
if not releasing_rc:
dependencies = toml_data["project"]["dependencies"]
for dep_version in dependencies:
dependencies = toml_data["tool"]["poetry"]["dependencies"]
for lib in dependencies:
dep_version = dependencies[lib]
dep_version_string = (
dep_version["version"] if isinstance(dep_version, dict) else dep_version
)
if "rc" in dep_version_string:
raise ValueError(
f"Dependency {dep_version} has a prerelease version. Please remove this."
f"Dependency {lib} has a prerelease version. Please remove this."
)
if isinstance(dep_version, dict) and dep_version.get(
"allow-prereleases", False
):
raise ValueError(
f"Dependency {dep_version} has allow-prereleases set to true. Please remove this."
f"Dependency {lib} has allow-prereleases set to true. Please remove this."
)

View File

@@ -1,4 +1,3 @@
from collections import defaultdict
import sys
from typing import Optional
@@ -8,7 +7,6 @@ else:
# for python 3.10 and below, which doesnt have stdlib tomllib
import tomli as tomllib
from packaging.requirements import Requirement
from packaging.specifiers import SpecifierSet
from packaging.version import Version
@@ -96,23 +94,6 @@ def get_minimum_version(package_name: str, spec_string: str) -> Optional[str]:
return str(min(valid_versions)) if valid_versions else None
def _check_python_version_from_requirement(
requirement: Requirement, python_version: str
) -> bool:
if not requirement.marker:
return True
else:
marker_str = str(requirement.marker)
if "python_version" or "python_full_version" in marker_str:
python_version_str = "".join(
char
for char in marker_str
if char.isdigit() or char in (".", "<", ">", "=", ",")
)
return check_python_version(python_version, python_version_str)
return True
def get_min_version_from_toml(
toml_path: str,
versions_for: str,
@@ -124,10 +105,8 @@ def get_min_version_from_toml(
with open(toml_path, "rb") as file:
toml_data = tomllib.load(file)
dependencies = defaultdict(list)
for dep in toml_data["project"]["dependencies"]:
requirement = Requirement(dep)
dependencies[requirement.name].append(requirement)
# Get the dependencies from tool.poetry.dependencies
dependencies = toml_data["tool"]["poetry"]["dependencies"]
# Initialize a dictionary to store the minimum versions
min_versions = {}
@@ -142,11 +121,17 @@ def get_min_version_from_toml(
if lib in dependencies:
if include and lib not in include:
continue
requirements = dependencies[lib]
for requirement in requirements:
if _check_python_version_from_requirement(requirement, python_version):
version_string = str(requirement.specifier)
break
# Get the version string
version_string = dependencies[lib]
if isinstance(version_string, dict):
version_string = version_string["version"]
if isinstance(version_string, list):
version_string = [
vs
for vs in version_string
if check_python_version(python_version, vs["python"])
][0]["version"]
# Use parse_version to get the minimum supported version from version_string
min_version = get_minimum_version(lib, version_string)

View File

@@ -64,29 +64,19 @@ def main():
try:
# Load packages configuration
package_yaml = load_packages_yaml()
# Clean target directories
clean_target_directories([
p
for p in package_yaml["packages"]
if p["repo"].startswith("langchain-ai/")
and p["repo"] != "langchain-ai/langchain"
])
# Move libraries to their new locations
move_libraries([
packages = [
p
for p in package_yaml["packages"]
if not p.get("disabled", False)
and p["repo"].startswith("langchain-ai/")
and p["repo"] != "langchain-ai/langchain"
])
]
# Delete ones without a pyproject.toml
for partner in Path("langchain/libs/partners").iterdir():
if partner.is_dir() and not (partner / "pyproject.toml").exists():
print(f"Removing {partner} as it does not have a pyproject.toml")
shutil.rmtree(partner)
# Clean target directories
clean_target_directories(packages)
# Move libraries to their new locations
move_libraries(packages)
print("Library sync completed successfully!")

View File

@@ -13,7 +13,7 @@ on:
description: "Python version to use"
env:
UV_FROZEN: "true"
POETRY_VERSION: "1.8.4"
jobs:
build:
@@ -22,22 +22,25 @@ jobs:
working-directory: ${{ inputs.working-directory }}
runs-on: ubuntu-latest
timeout-minutes: 20
name: "uv run pytest -m compile tests/integration_tests #${{ inputs.python-version }}"
name: "poetry run pytest -m compile tests/integration_tests #${{ inputs.python-version }}"
steps:
- uses: actions/checkout@v4
- name: Set up Python ${{ inputs.python-version }} + uv
uses: "./.github/actions/uv_setup"
- name: Set up Python ${{ inputs.python-version }} + Poetry ${{ env.POETRY_VERSION }}
uses: "./.github/actions/poetry_setup"
with:
python-version: ${{ inputs.python-version }}
poetry-version: ${{ env.POETRY_VERSION }}
working-directory: ${{ inputs.working-directory }}
cache-key: compile-integration
- name: Install integration dependencies
shell: bash
run: uv sync --group test --group test_integration
run: poetry install --with=test_integration,test
- name: Check integration tests compile
shell: bash
run: uv run pytest -m compile tests/integration_tests
run: poetry run pytest -m compile tests/integration_tests
- name: Ensure the tests did not create any additional files
shell: bash

View File

@@ -12,7 +12,7 @@ on:
description: "Python version to use"
env:
UV_FROZEN: "true"
POETRY_VERSION: "1.8.4"
jobs:
build:
@@ -24,19 +24,22 @@ jobs:
steps:
- uses: actions/checkout@v4
- name: Set up Python ${{ inputs.python-version }} + uv
uses: "./.github/actions/uv_setup"
- name: Set up Python ${{ inputs.python-version }} + Poetry ${{ env.POETRY_VERSION }}
uses: "./.github/actions/poetry_setup"
with:
python-version: ${{ inputs.python-version }}
poetry-version: ${{ env.POETRY_VERSION }}
working-directory: ${{ inputs.working-directory }}
cache-key: core
- name: Install dependencies
shell: bash
run: uv sync --group test --group test_integration
run: poetry install --with test,test_integration
- name: Install deps outside pyproject
if: ${{ startsWith(inputs.working-directory, 'libs/community/') }}
shell: bash
run: VIRTUAL_ENV=.venv uv pip install "boto3<2" "google-cloud-aiplatform<2"
run: poetry run pip install "boto3<2" "google-cloud-aiplatform<2"
- name: Run integration tests
shell: bash
@@ -64,6 +67,8 @@ jobs:
NOMIC_API_KEY: ${{ secrets.NOMIC_API_KEY }}
WATSONX_APIKEY: ${{ secrets.WATSONX_APIKEY }}
WATSONX_PROJECT_ID: ${{ secrets.WATSONX_PROJECT_ID }}
PINECONE_API_KEY: ${{ secrets.PINECONE_API_KEY }}
PINECONE_ENVIRONMENT: ${{ secrets.PINECONE_ENVIRONMENT }}
ASTRA_DB_API_ENDPOINT: ${{ secrets.ASTRA_DB_API_ENDPOINT }}
ASTRA_DB_APPLICATION_TOKEN: ${{ secrets.ASTRA_DB_APPLICATION_TOKEN }}
ASTRA_DB_KEYSPACE: ${{ secrets.ASTRA_DB_KEYSPACE }}

View File

@@ -13,13 +13,12 @@ on:
description: "Python version to use"
env:
POETRY_VERSION: "1.8.4"
WORKDIR: ${{ inputs.working-directory == '' && '.' || inputs.working-directory }}
# This env var allows us to get inline annotations when ruff has complaints.
RUFF_OUTPUT_FORMAT: github
UV_FROZEN: "true"
jobs:
build:
name: "make lint #${{ inputs.python-version }}"
@@ -28,10 +27,25 @@ jobs:
steps:
- uses: actions/checkout@v4
- name: Set up Python ${{ inputs.python-version }} + uv
uses: "./.github/actions/uv_setup"
- name: Set up Python ${{ inputs.python-version }} + Poetry ${{ env.POETRY_VERSION }}
uses: "./.github/actions/poetry_setup"
with:
python-version: ${{ inputs.python-version }}
poetry-version: ${{ env.POETRY_VERSION }}
working-directory: ${{ inputs.working-directory }}
cache-key: lint-with-extras
- name: Check Poetry File
shell: bash
working-directory: ${{ inputs.working-directory }}
run: |
poetry check
- name: Check lock file
shell: bash
working-directory: ${{ inputs.working-directory }}
run: |
poetry lock --check
- name: Install dependencies
# Also installs dev/lint/test/typing dependencies, to ensure we have
@@ -44,7 +58,17 @@ jobs:
# It doesn't matter how you change it, any change will cause a cache-bust.
working-directory: ${{ inputs.working-directory }}
run: |
uv sync --group lint --group typing
poetry install --with lint,typing
- name: Get .mypy_cache to speed up mypy
uses: actions/cache@v4
env:
SEGMENT_DOWNLOAD_TIMEOUT_MIN: "2"
with:
path: |
${{ env.WORKDIR }}/.mypy_cache
key: mypy-lint-${{ runner.os }}-${{ runner.arch }}-py${{ inputs.python-version }}-${{ inputs.working-directory }}-${{ hashFiles(format('{0}/poetry.lock', inputs.working-directory)) }}
- name: Analysing the code with our lint
working-directory: ${{ inputs.working-directory }}
@@ -63,12 +87,21 @@ jobs:
if: ${{ ! startsWith(inputs.working-directory, 'libs/partners/') }}
working-directory: ${{ inputs.working-directory }}
run: |
uv sync --inexact --group test
poetry install --with test
- name: Install unit+integration test dependencies
if: ${{ startsWith(inputs.working-directory, 'libs/partners/') }}
working-directory: ${{ inputs.working-directory }}
run: |
uv sync --inexact --group test --group test_integration
poetry install --with test,test_integration
- name: Get .mypy_cache_test to speed up mypy
uses: actions/cache@v4
env:
SEGMENT_DOWNLOAD_TIMEOUT_MIN: "2"
with:
path: |
${{ env.WORKDIR }}/.mypy_cache_test
key: mypy-test-${{ runner.os }}-${{ runner.arch }}-py${{ inputs.python-version }}-${{ inputs.working-directory }}-${{ hashFiles(format('{0}/poetry.lock', inputs.working-directory)) }}
- name: Analysing the code with our lint
working-directory: ${{ inputs.working-directory }}

View File

@@ -21,8 +21,7 @@ on:
env:
PYTHON_VERSION: "3.11"
UV_FROZEN: "true"
UV_NO_SYNC: "true"
POETRY_VERSION: "1.8.4"
jobs:
build:
@@ -37,10 +36,13 @@ jobs:
steps:
- uses: actions/checkout@v4
- name: Set up Python + uv
uses: "./.github/actions/uv_setup"
- name: Set up Python + Poetry ${{ env.POETRY_VERSION }}
uses: "./.github/actions/poetry_setup"
with:
python-version: ${{ env.PYTHON_VERSION }}
poetry-version: ${{ env.POETRY_VERSION }}
working-directory: ${{ inputs.working-directory }}
cache-key: release
# We want to keep this build stage *separate* from the release stage,
# so that there's no sharing of permissions between them.
@@ -54,7 +56,7 @@ jobs:
# > from the publish job.
# https://github.com/pypa/gh-action-pypi-publish#non-goals
- name: Build project for distribution
run: uv build
run: poetry build
working-directory: ${{ inputs.working-directory }}
- name: Upload build
@@ -65,18 +67,11 @@ jobs:
- name: Check Version
id: check-version
shell: python
shell: bash
working-directory: ${{ inputs.working-directory }}
run: |
import os
import tomllib
with open("pyproject.toml", "rb") as f:
data = tomllib.load(f)
pkg_name = data["project"]["name"]
version = data["project"]["version"]
with open(os.environ["GITHUB_OUTPUT"], "a") as f:
f.write(f"pkg-name={pkg_name}\n")
f.write(f"version={version}\n")
echo pkg-name="$(poetry version | cut -d ' ' -f 1)" >> $GITHUB_OUTPUT
echo version="$(poetry version --short)" >> $GITHUB_OUTPUT
release-notes:
needs:
- build
@@ -189,11 +184,13 @@ jobs:
# - The package is published, and it breaks on the missing dependency when
# used in the real world.
- name: Set up Python + uv
uses: "./.github/actions/uv_setup"
- name: Set up Python + Poetry ${{ env.POETRY_VERSION }}
uses: "./.github/actions/poetry_setup"
id: setup-python
with:
python-version: ${{ env.PYTHON_VERSION }}
poetry-version: ${{ env.POETRY_VERSION }}
working-directory: ${{ inputs.working-directory }}
- uses: actions/download-artifact@v4
with:
@@ -216,18 +213,16 @@ jobs:
# - attempt install again after 5 seconds if it fails because there is
# sometimes a delay in availability on test pypi
run: |
uv venv
VIRTUAL_ENV=.venv uv pip install dist/*.whl
poetry run pip install dist/*.whl
# Replace all dashes in the package name with underscores,
# since that's how Python imports packages with dashes in the name.
# also remove _official suffix
IMPORT_NAME="$(echo "$PKG_NAME" | sed s/-/_/g | sed s/_official//g)"
IMPORT_NAME="$(echo "$PKG_NAME" | sed s/-/_/g)"
uv run python -c "import $IMPORT_NAME; print(dir($IMPORT_NAME))"
poetry run python -c "import $IMPORT_NAME; print(dir($IMPORT_NAME))"
- name: Import test dependencies
run: uv sync --group test
run: poetry install --with test --no-root
working-directory: ${{ inputs.working-directory }}
# Overwrite the local version of the package with the built version
@@ -238,7 +233,7 @@ jobs:
PKG_NAME: ${{ needs.build.outputs.pkg-name }}
VERSION: ${{ needs.build.outputs.version }}
run: |
VIRTUAL_ENV=.venv uv pip install dist/*.whl
poetry run pip install dist/*.whl
- name: Run unit tests
run: make tests
@@ -247,15 +242,15 @@ jobs:
- name: Check for prerelease versions
working-directory: ${{ inputs.working-directory }}
run: |
uv run python $GITHUB_WORKSPACE/.github/scripts/check_prerelease_dependencies.py pyproject.toml
poetry run python $GITHUB_WORKSPACE/.github/scripts/check_prerelease_dependencies.py pyproject.toml
- name: Get minimum versions
working-directory: ${{ inputs.working-directory }}
id: min-version
run: |
VIRTUAL_ENV=.venv uv pip install packaging requests
python_version="$(uv run python --version | awk '{print $2}')"
min_versions="$(uv run python $GITHUB_WORKSPACE/.github/scripts/get_min_versions.py pyproject.toml release $python_version)"
poetry run pip install packaging requests
python_version="$(poetry run python --version | awk '{print $2}')"
min_versions="$(poetry run python $GITHUB_WORKSPACE/.github/scripts/get_min_versions.py pyproject.toml release $python_version)"
echo "min-versions=$min_versions" >> "$GITHUB_OUTPUT"
echo "min-versions=$min_versions"
@@ -264,12 +259,12 @@ jobs:
env:
MIN_VERSIONS: ${{ steps.min-version.outputs.min-versions }}
run: |
VIRTUAL_ENV=.venv uv pip install --force-reinstall $MIN_VERSIONS --editable .
poetry run pip install --force-reinstall $MIN_VERSIONS --editable .
make tests
working-directory: ${{ inputs.working-directory }}
- name: Import integration test dependencies
run: uv sync --group test --group test_integration
run: poetry install --with test,test_integration
working-directory: ${{ inputs.working-directory }}
- name: Run integration tests
@@ -297,6 +292,8 @@ jobs:
NOMIC_API_KEY: ${{ secrets.NOMIC_API_KEY }}
WATSONX_APIKEY: ${{ secrets.WATSONX_APIKEY }}
WATSONX_PROJECT_ID: ${{ secrets.WATSONX_PROJECT_ID }}
PINECONE_API_KEY: ${{ secrets.PINECONE_API_KEY }}
PINECONE_ENVIRONMENT: ${{ secrets.PINECONE_ENVIRONMENT }}
ASTRA_DB_API_ENDPOINT: ${{ secrets.ASTRA_DB_API_ENDPOINT }}
ASTRA_DB_APPLICATION_TOKEN: ${{ secrets.ASTRA_DB_APPLICATION_TOKEN }}
ASTRA_DB_KEYSPACE: ${{ secrets.ASTRA_DB_KEYSPACE }}
@@ -308,7 +305,6 @@ jobs:
UPSTAGE_API_KEY: ${{ secrets.UPSTAGE_API_KEY }}
FIREWORKS_API_KEY: ${{ secrets.FIREWORKS_API_KEY }}
XAI_API_KEY: ${{ secrets.XAI_API_KEY }}
DEEPSEEK_API_KEY: ${{ secrets.DEEPSEEK_API_KEY }}
run: make integration_tests
working-directory: ${{ inputs.working-directory }}
@@ -334,10 +330,13 @@ jobs:
steps:
- uses: actions/checkout@v4
- name: Set up Python + uv
uses: "./.github/actions/uv_setup"
- name: Set up Python + Poetry ${{ env.POETRY_VERSION }}
uses: "./.github/actions/poetry_setup"
with:
python-version: ${{ env.PYTHON_VERSION }}
poetry-version: ${{ env.POETRY_VERSION }}
working-directory: ${{ inputs.working-directory }}
cache-key: release
- uses: actions/download-artifact@v4
with:
@@ -373,10 +372,13 @@ jobs:
steps:
- uses: actions/checkout@v4
- name: Set up Python + uv
uses: "./.github/actions/uv_setup"
- name: Set up Python + Poetry ${{ env.POETRY_VERSION }}
uses: "./.github/actions/poetry_setup"
with:
python-version: ${{ env.PYTHON_VERSION }}
poetry-version: ${{ env.POETRY_VERSION }}
working-directory: ${{ inputs.working-directory }}
cache-key: release
- uses: actions/download-artifact@v4
with:

View File

@@ -13,8 +13,7 @@ on:
description: "Python version to use"
env:
UV_FROZEN: "true"
UV_NO_SYNC: "true"
POETRY_VERSION: "1.8.4"
jobs:
build:
@@ -27,14 +26,17 @@ jobs:
steps:
- uses: actions/checkout@v4
- name: Set up Python ${{ inputs.python-version }} + uv
uses: "./.github/actions/uv_setup"
- name: Set up Python ${{ inputs.python-version }} + Poetry ${{ env.POETRY_VERSION }}
uses: "./.github/actions/poetry_setup"
id: setup-python
with:
python-version: ${{ inputs.python-version }}
poetry-version: ${{ env.POETRY_VERSION }}
working-directory: ${{ inputs.working-directory }}
cache-key: core
- name: Install dependencies
shell: bash
run: uv sync --group test --dev
run: poetry install --with test
- name: Run core tests
shell: bash
@@ -46,9 +48,9 @@ jobs:
id: min-version
shell: bash
run: |
VIRTUAL_ENV=.venv uv pip install packaging tomli requests
python_version="$(uv run python --version | awk '{print $2}')"
min_versions="$(uv run python $GITHUB_WORKSPACE/.github/scripts/get_min_versions.py pyproject.toml pull_request $python_version)"
poetry run pip install packaging tomli requests
python_version="$(poetry run python --version | awk '{print $2}')"
min_versions="$(poetry run python $GITHUB_WORKSPACE/.github/scripts/get_min_versions.py pyproject.toml pull_request $python_version)"
echo "min-versions=$min_versions" >> "$GITHUB_OUTPUT"
echo "min-versions=$min_versions"
@@ -57,7 +59,8 @@ jobs:
env:
MIN_VERSIONS: ${{ steps.min-version.outputs.min-versions }}
run: |
VIRTUAL_ENV=.venv uv pip install $MIN_VERSIONS
poetry run pip install uv
poetry run uv pip install $MIN_VERSIONS
make tests
working-directory: ${{ inputs.working-directory }}

View File

@@ -9,7 +9,7 @@ on:
description: "Python version to use"
env:
UV_FROZEN: "true"
POETRY_VERSION: "1.8.4"
jobs:
build:
@@ -19,23 +19,25 @@ jobs:
steps:
- uses: actions/checkout@v4
- name: Set up Python ${{ inputs.python-version }} + uv
uses: "./.github/actions/uv_setup"
- name: Set up Python ${{ inputs.python-version }} + Poetry ${{ env.POETRY_VERSION }}
uses: "./.github/actions/poetry_setup"
with:
python-version: ${{ inputs.python-version }}
poetry-version: ${{ env.POETRY_VERSION }}
cache-key: core
- name: Install dependencies
shell: bash
run: uv sync --group test
run: poetry install --with test
- name: Install langchain editable
run: |
VIRTUAL_ENV=.venv uv pip install langchain-experimental -e libs/core libs/langchain libs/community
poetry run pip install langchain-experimental -e libs/core libs/langchain libs/community
- name: Check doc imports
shell: bash
run: |
uv run python docs/scripts/check_imports.py
poetry run python docs/scripts/check_imports.py
- name: Ensure the test did not create any additional files
shell: bash

View File

@@ -18,8 +18,7 @@ on:
description: "Pydantic version to test."
env:
UV_FROZEN: "true"
UV_NO_SYNC: "true"
POETRY_VERSION: "1.8.4"
jobs:
build:
@@ -32,18 +31,21 @@ jobs:
steps:
- uses: actions/checkout@v4
- name: Set up Python ${{ inputs.python-version }} + uv
uses: "./.github/actions/uv_setup"
- name: Set up Python ${{ inputs.python-version }} + Poetry ${{ env.POETRY_VERSION }}
uses: "./.github/actions/poetry_setup"
with:
python-version: ${{ inputs.python-version }}
poetry-version: ${{ env.POETRY_VERSION }}
working-directory: ${{ inputs.working-directory }}
cache-key: core
- name: Install dependencies
shell: bash
run: uv sync --group test
run: poetry install --with test
- name: Overwrite pydantic version
shell: bash
run: VIRTUAL_ENV=.venv uv pip install pydantic~=${{ inputs.pydantic-version }}
run: poetry run pip install pydantic~=${{ inputs.pydantic-version }}
- name: Run core tests
shell: bash

View File

@@ -14,8 +14,8 @@ on:
description: "Release from a non-master branch (danger!)"
env:
PYTHON_VERSION: "3.11"
UV_FROZEN: "true"
POETRY_VERSION: "1.8.4"
PYTHON_VERSION: "3.10"
jobs:
build:
@@ -29,10 +29,13 @@ jobs:
steps:
- uses: actions/checkout@v4
- name: Set up Python + uv
uses: "./.github/actions/uv_setup"
- name: Set up Python + Poetry ${{ env.POETRY_VERSION }}
uses: "./.github/actions/poetry_setup"
with:
python-version: ${{ env.PYTHON_VERSION }}
poetry-version: ${{ env.POETRY_VERSION }}
working-directory: ${{ inputs.working-directory }}
cache-key: release
# We want to keep this build stage *separate* from the release stage,
# so that there's no sharing of permissions between them.
@@ -46,7 +49,7 @@ jobs:
# > from the publish job.
# https://github.com/pypa/gh-action-pypi-publish#non-goals
- name: Build project for distribution
run: uv build
run: poetry build
working-directory: ${{ inputs.working-directory }}
- name: Upload build
@@ -57,18 +60,11 @@ jobs:
- name: Check Version
id: check-version
shell: python
shell: bash
working-directory: ${{ inputs.working-directory }}
run: |
import os
import tomllib
with open("pyproject.toml", "rb") as f:
data = tomllib.load(f)
pkg_name = data["project"]["name"]
version = data["project"]["version"]
with open(os.environ["GITHUB_OUTPUT"], "a") as f:
f.write(f"pkg-name={pkg_name}\n")
f.write(f"version={version}\n")
echo pkg-name="$(poetry version | cut -d ' ' -f 1)" >> $GITHUB_OUTPUT
echo version="$(poetry version --short)" >> $GITHUB_OUTPUT
publish:
needs:

View File

@@ -5,6 +5,7 @@ on:
schedule:
- cron: '0 13 * * *'
env:
POETRY_VERSION: "1.8.4"
PYTHON_VERSION: "3.11"
jobs:
@@ -45,18 +46,20 @@ jobs:
fi
done
- name: Setup python ${{ env.PYTHON_VERSION }}
uses: actions/setup-python@v5
id: setup-python
- name: Set up Python ${{ env.PYTHON_VERSION }} + Poetry ${{ env.POETRY_VERSION }}
uses: "./langchain/.github/actions/poetry_setup"
with:
python-version: ${{ env.PYTHON_VERSION }}
poetry-version: ${{ env.POETRY_VERSION }}
cache-key: api-docs
working-directory: langchain
- name: Install initial py deps
working-directory: langchain
run: |
python -m pip install -U uv
python -m uv pip install --upgrade --no-cache-dir pip setuptools pyyaml
- name: Move libs with script
run: python langchain/.github/scripts/prep_api_docs_build.py
env:
@@ -69,7 +72,7 @@ jobs:
- name: Install dependencies
working-directory: langchain
run: |
python -m uv pip install $(ls ./libs/partners | xargs -I {} echo "./libs/partners/{}") --overrides ./docs/vercel_overrides.txt
python -m uv pip install $(ls ./libs/partners | xargs -I {} echo "./libs/partners/{}")
python -m uv pip install libs/core libs/langchain libs/text-splitters libs/community libs/experimental libs/standard-tests
python -m uv pip install -r docs/api_reference/requirements.txt

View File

@@ -18,8 +18,7 @@ concurrency:
cancel-in-progress: true
env:
UV_FROZEN: "true"
UV_NO_SYNC: "true"
POETRY_VERSION: "1.8.4"
jobs:
build:
@@ -128,19 +127,24 @@ jobs:
steps:
- uses: actions/checkout@v4
- name: Set up Python ${{ matrix.job-configs.python-version }} + uv
uses: "./.github/actions/uv_setup"
- name: Set up Python ${{ matrix.job-configs.python-version }} + Poetry ${{ env.POETRY_VERSION }}
uses: "./.github/actions/poetry_setup"
with:
python-version: ${{ matrix.job-configs.python-version }}
poetry-version: ${{ env.POETRY_VERSION }}
working-directory: ${{ matrix.job-configs.working-directory }}
cache-key: extended
- name: Install dependencies and run extended tests
- name: Install dependencies
shell: bash
run: |
echo "Running extended tests, installing dependencies with uv..."
uv venv
uv sync --group test
VIRTUAL_ENV=.venv uv pip install -r extended_testing_deps.txt
VIRTUAL_ENV=.venv make extended_tests
echo "Running extended tests, installing dependencies with poetry..."
poetry install --with test
poetry run pip install uv
poetry run uv pip install -r extended_testing_deps.txt
- name: Run extended tests
run: make extended_tests
- name: Ensure the tests did not create any additional files
shell: bash

View File

@@ -15,7 +15,7 @@ on:
- cron: '0 13 * * *'
env:
UV_FROZEN: "true"
POETRY_VERSION: "1.8.4"
jobs:
build:
@@ -25,10 +25,13 @@ jobs:
steps:
- uses: actions/checkout@v4
- name: Set up Python + uv
uses: "./.github/actions/uv_setup"
- name: Set up Python + Poetry ${{ env.POETRY_VERSION }}
uses: "./.github/actions/poetry_setup"
with:
python-version: ${{ github.event.inputs.python_version || '3.11' }}
poetry-version: ${{ env.POETRY_VERSION }}
working-directory: ${{ inputs.working-directory }}
cache-key: run-notebooks
- name: 'Authenticate to Google Cloud'
id: 'auth'
@@ -45,17 +48,17 @@ jobs:
- name: Install dependencies
run: |
uv sync --group dev --group test
poetry install --with dev,test
- name: Pre-download files
run: |
uv run python docs/scripts/cache_data.py
poetry run python docs/scripts/cache_data.py
curl -s https://raw.githubusercontent.com/lerocha/chinook-database/master/ChinookDatabase/DataSources/Chinook_Sqlite.sql | sqlite3 docs/docs/how_to/Chinook.db
cp docs/docs/how_to/Chinook.db docs/docs/tutorials/Chinook.db
- name: Prepare notebooks
run: |
uv run python docs/scripts/prepare_notebooks_for_ci.py --comment-install-cells --working-directory ${{ github.event.inputs.working-directory || 'all' }}
poetry run python docs/scripts/prepare_notebooks_for_ci.py --comment-install-cells --working-directory ${{ github.event.inputs.working-directory || 'all' }}
- name: Run notebooks
env:

View File

@@ -14,9 +14,7 @@ on:
env:
POETRY_VERSION: "1.8.4"
UV_FROZEN: "true"
DEFAULT_LIBS: '["libs/partners/openai", "libs/partners/anthropic", "libs/partners/fireworks", "libs/partners/groq", "libs/partners/mistralai", "libs/partners/xai", "libs/partners/google-vertexai", "libs/partners/google-genai", "libs/partners/aws"]'
POETRY_LIBS: ("libs/partners/google-vertexai" "libs/partners/google-genai" "libs/partners/aws")
DEFAULT_LIBS: '["libs/partners/openai", "libs/partners/anthropic", "libs/partners/fireworks", "libs/partners/groq", "libs/partners/mistralai", "libs/partners/google-vertexai", "libs/partners/google-genai", "libs/partners/aws"]'
jobs:
compute-matrix:
@@ -81,8 +79,7 @@ jobs:
mv langchain-google/libs/vertexai langchain/libs/partners/google-vertexai
mv langchain-aws/libs/aws langchain/libs/partners/aws
- name: Set up Python ${{ matrix.python-version }} with poetry
if: contains(env.POETRY_LIBS, matrix.working-directory)
- name: Set up Python ${{ matrix.python-version }}
uses: "./langchain/.github/actions/poetry_setup"
with:
python-version: ${{ matrix.python-version }}
@@ -90,12 +87,6 @@ jobs:
working-directory: langchain/${{ matrix.working-directory }}
cache-key: scheduled
- name: Set up Python ${{ matrix.python-version }} + uv
if: "!contains(env.POETRY_LIBS, matrix.working-directory)"
uses: "./langchain/.github/actions/uv_setup"
with:
python-version: ${{ matrix.python-version }}
- name: 'Authenticate to Google Cloud'
id: 'auth'
uses: google-github-actions/auth@v2
@@ -109,20 +100,12 @@ jobs:
aws-secret-access-key: ${{ secrets.AWS_SECRET_ACCESS_KEY }}
aws-region: ${{ secrets.AWS_REGION }}
- name: Install dependencies (poetry)
if: contains(env.POETRY_LIBS, matrix.working-directory)
- name: Install dependencies
run: |
echo "Running scheduled tests, installing dependencies with poetry..."
cd langchain/${{ matrix.working-directory }}
poetry install --with=test_integration,test
- name: Install dependencies (uv)
if: "!contains(env.POETRY_LIBS, matrix.working-directory)"
run: |
echo "Running scheduled tests, installing dependencies with uv..."
cd langchain/${{ matrix.working-directory }}
uv sync --group test --group test_integration
- name: Run integration tests
env:
OPENAI_API_KEY: ${{ secrets.OPENAI_API_KEY }}
@@ -134,12 +117,10 @@ jobs:
AZURE_OPENAI_LEGACY_CHAT_DEPLOYMENT_NAME: ${{ secrets.AZURE_OPENAI_LEGACY_CHAT_DEPLOYMENT_NAME }}
AZURE_OPENAI_LLM_DEPLOYMENT_NAME: ${{ secrets.AZURE_OPENAI_LLM_DEPLOYMENT_NAME }}
AZURE_OPENAI_EMBEDDINGS_DEPLOYMENT_NAME: ${{ secrets.AZURE_OPENAI_EMBEDDINGS_DEPLOYMENT_NAME }}
DEEPSEEK_API_KEY: ${{ secrets.DEEPSEEK_API_KEY }}
FIREWORKS_API_KEY: ${{ secrets.FIREWORKS_API_KEY }}
GROQ_API_KEY: ${{ secrets.GROQ_API_KEY }}
HUGGINGFACEHUB_API_TOKEN: ${{ secrets.HUGGINGFACEHUB_API_TOKEN }}
MISTRAL_API_KEY: ${{ secrets.MISTRAL_API_KEY }}
XAI_API_KEY: ${{ secrets.XAI_API_KEY }}
COHERE_API_KEY: ${{ secrets.COHERE_API_KEY }}
NVIDIA_API_KEY: ${{ secrets.NVIDIA_API_KEY }}
GOOGLE_API_KEY: ${{ secrets.GOOGLE_API_KEY }}

View File

@@ -97,6 +97,12 @@ repos:
entry: make -C libs/partners/openai format
files: ^libs/partners/openai/
pass_filenames: false
- id: pinecone
name: format partners/pinecone
language: system
entry: make -C libs/partners/pinecone format
files: ^libs/partners/pinecone/
pass_filenames: false
- id: prompty
name: format partners/prompty
language: system

View File

@@ -1,9 +1,5 @@
.PHONY: all clean help docs_build docs_clean docs_linkcheck api_docs_build api_docs_clean api_docs_linkcheck spell_check spell_fix lint lint_package lint_tests format format_diff
.EXPORT_ALL_VARIABLES:
UV_FROZEN = true
UV_NO_SYNC = true
## help: Show this help info.
help: Makefile
@printf "\n\033[1mUsage: make <TARGETS> ...\033[0m\n\n\033[1mTargets:\033[0m\n\n"
@@ -29,20 +25,20 @@ docs_clean:
## docs_linkcheck: Run linkchecker on the documentation.
docs_linkcheck:
uv run --no-group test linkchecker _dist/docs/ --ignore-url node_modules
poetry run linkchecker _dist/docs/ --ignore-url node_modules
## api_docs_build: Build the API Reference documentation.
api_docs_build:
uv run --no-group test python docs/api_reference/create_api_rst.py
cd docs/api_reference && uv run --no-group test make html
uv run --no-group test python docs/api_reference/scripts/custom_formatter.py docs/api_reference/_build/html/
poetry run python docs/api_reference/create_api_rst.py
cd docs/api_reference && poetry run make html
poetry run python docs/api_reference/scripts/custom_formatter.py docs/api_reference/_build/html/
API_PKG ?= text-splitters
api_docs_quick_preview:
uv run --no-group test python docs/api_reference/create_api_rst.py $(API_PKG)
cd docs/api_reference && uv run make html
uv run --no-group test python docs/api_reference/scripts/custom_formatter.py docs/api_reference/_build/html/
poetry run python docs/api_reference/create_api_rst.py $(API_PKG)
cd docs/api_reference && poetry run make html
poetry run python docs/api_reference/scripts/custom_formatter.py docs/api_reference/_build/html/
open docs/api_reference/_build/html/reference.html
## api_docs_clean: Clean the API Reference documentation build artifacts.
@@ -54,15 +50,15 @@ api_docs_clean:
## api_docs_linkcheck: Run linkchecker on the API Reference documentation.
api_docs_linkcheck:
uv run --no-group test linkchecker docs/api_reference/_build/html/index.html
poetry run linkchecker docs/api_reference/_build/html/index.html
## spell_check: Run codespell on the project.
spell_check:
uv run --no-group test codespell --toml pyproject.toml
poetry run codespell --toml pyproject.toml
## spell_fix: Run codespell on the project and fix the errors.
spell_fix:
uv run --no-group test codespell --toml pyproject.toml -w
poetry run codespell --toml pyproject.toml -w
######################
# LINTING AND FORMATTING
@@ -70,9 +66,9 @@ spell_fix:
## lint: Run linting on the project.
lint lint_package lint_tests:
uv run --group lint ruff check docs cookbook
uv run --group lint ruff format docs cookbook cookbook --diff
uv run --group lint ruff check --select I docs cookbook
poetry run ruff check docs cookbook
poetry run ruff format docs cookbook cookbook --diff
poetry run ruff check --select I docs cookbook
git --no-pager grep 'from langchain import' docs cookbook | grep -vE 'from langchain import (hub)' && echo "Error: no importing langchain from root in docs, except for hub" && exit 1 || exit 0
git --no-pager grep 'api.python.langchain.com' -- docs/docs ':!docs/docs/additional_resources/arxiv_references.mdx' ':!docs/docs/integrations/document_loaders/sitemap.ipynb' || exit 0 && \
@@ -81,8 +77,5 @@ lint lint_package lint_tests:
## format: Format the project files.
format format_diff:
uv run --group lint ruff format docs cookbook
uv run --group lint ruff check --select I --fix docs cookbook
update-package-downloads:
uv run python docs/scripts/packages_yml_get_downloads.py
poetry run ruff format docs cookbook
poetry run ruff check --select I --fix docs cookbook

View File

@@ -52,7 +52,7 @@ For these applications, LangChain simplifies the entire application lifecycle:
- **Integration packages** (e.g. **`langchain-openai`**, **`langchain-anthropic`**, etc.): Important integrations have been split into lightweight packages that are co-maintained by the LangChain team and the integration developers.
- **`langchain`**: Chains, agents, and retrieval strategies that make up an application's cognitive architecture.
- **`langchain-community`**: Third-party integrations that are community maintained.
- **[LangGraph](https://langchain-ai.github.io/langgraph)**: LangGraph powers production-grade agents, trusted by Linkedin, Uber, Klarna, GitLab, and many more. Build robust and stateful multi-actor applications with LLMs by modeling steps as edges and nodes in a graph. Integrates smoothly with LangChain, but can be used without it. To learn more about LangGraph, check out our first LangChain Academy course, *Introduction to LangGraph*, available [here](https://academy.langchain.com/courses/intro-to-langgraph).
- **[LangGraph](https://langchain-ai.github.io/langgraph)**: Build robust and stateful multi-actor applications with LLMs by modeling steps as edges and nodes in a graph. Integrates smoothly with LangChain, but can be used without it. To learn more about LangGraph, check out our first LangChain Academy course, *Introduction to LangGraph*, available [here](https://academy.langchain.com/courses/intro-to-langgraph).
### Productionization:

View File

@@ -21,6 +21,7 @@ Notebook | Description
[code-analysis-deeplake.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/code-analysis-deeplake.ipynb) | Analyze its own code base with the help of gpt and activeloop's deep lake.
[custom_agent_with_plugin_retri...](https://github.com/langchain-ai/langchain/tree/master/cookbook/custom_agent_with_plugin_retrieval.ipynb) | Build a custom agent that can interact with ai plugins by retrieving tools and creating natural language wrappers around openapi endpoints.
[custom_agent_with_plugin_retri...](https://github.com/langchain-ai/langchain/tree/master/cookbook/custom_agent_with_plugin_retrieval_using_plugnplai.ipynb) | Build a custom agent with plugin retrieval functionality, utilizing ai plugins from the `plugnplai` directory.
[databricks_sql_db.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/databricks_sql_db.ipynb) | Connect to databricks runtimes and databricks sql.
[deeplake_semantic_search_over_...](https://github.com/langchain-ai/langchain/tree/master/cookbook/deeplake_semantic_search_over_chat.ipynb) | Perform semantic search and question-answering over a group chat using activeloop's deep lake with gpt4.
[elasticsearch_db_qa.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/elasticsearch_db_qa.ipynb) | Interact with elasticsearch analytics databases in natural language and build search queries via the elasticsearch dsl API.
[extraction_openai_tools.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/extraction_openai_tools.ipynb) | Structured Data Extraction with OpenAI Tools

View File

@@ -31,8 +31,8 @@
"source": [
"# Optional\n",
"import os\n",
"# os.environ['LANGSMITH_TRACING'] = 'true' # enables tracing\n",
"# os.environ['LANGSMITH_API_KEY'] = <your-api-key>"
"# os.environ['LANGCHAIN_TRACING_V2'] = 'true' # enables tracing\n",
"# os.environ['LANGCHAIN_API_KEY'] = <your-api-key>"
]
},
{

View File

@@ -66,7 +66,7 @@
},
"outputs": [],
"source": [
"#!python3 -m pip install --upgrade langchain langchain-deeplake openai"
"#!python3 -m pip install --upgrade langchain deeplake openai"
]
},
{
@@ -666,26 +666,89 @@
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 15,
"metadata": {
"tags": []
},
"outputs": [],
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Your Deep Lake dataset has been successfully created!\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
" \r"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Dataset(path='hub://adilkhan/langchain-code', tensors=['embedding', 'id', 'metadata', 'text'])\n",
"\n",
" tensor htype shape dtype compression\n",
" ------- ------- ------- ------- ------- \n",
" embedding embedding (8244, 1536) float32 None \n",
" id text (8244, 1) str None \n",
" metadata json (8244, 1) str None \n",
" text text (8244, 1) str None \n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": []
},
{
"data": {
"text/plain": [
"<langchain_community.vectorstores.deeplake.DeepLake at 0x7fe1b67d7a30>"
]
},
"execution_count": 15,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from langchain_deeplake.vectorstores import DeeplakeVectorStore\n",
"from langchain_community.vectorstores import DeepLake\n",
"\n",
"username = \"<USERNAME_OR_ORG>\"\n",
"\n",
"\n",
"db = DeeplakeVectorStore.from_documents(\n",
" documents=texts,\n",
" embedding=embeddings,\n",
" dataset_path=f\"hub://{username}/langchain-code\",\n",
" overwrite=True,\n",
"db = DeepLake.from_documents(\n",
" texts, embeddings, dataset_path=f\"hub://{username}/langchain-code\", overwrite=True\n",
")\n",
"db"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"`Optional`: You can also use Deep Lake's Managed Tensor Database as a hosting service and run queries there. In order to do so, it is necessary to specify the runtime parameter as {'tensor_db': True} during the creation of the vector store. This configuration enables the execution of queries on the Managed Tensor Database, rather than on the client side. It should be noted that this functionality is not applicable to datasets stored locally or in-memory. In the event that a vector store has already been created outside of the Managed Tensor Database, it is possible to transfer it to the Managed Tensor Database by following the prescribed steps."
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {},
"outputs": [],
"source": [
"# from langchain_community.vectorstores import DeepLake\n",
"\n",
"# db = DeepLake.from_documents(\n",
"# texts, embeddings, dataset_path=f\"hub://{<org_id>}/langchain-code\", runtime={\"tensor_db\": True}\n",
"# )\n",
"# db"
]
},
{
"attachments": {},
"cell_type": "markdown",
@@ -697,16 +760,24 @@
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 17,
"metadata": {
"tags": []
},
"outputs": [],
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Deep Lake Dataset in hub://adilkhan/langchain-code already exists, loading from the storage\n"
]
}
],
"source": [
"db = DeeplakeVectorStore(\n",
"db = DeepLake(\n",
" dataset_path=f\"hub://{username}/langchain-code\",\n",
" read_only=True,\n",
" embedding_function=embeddings,\n",
" embedding=embeddings,\n",
")"
]
},
@@ -725,6 +796,36 @@
"retriever.search_kwargs[\"k\"] = 20"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"You can also specify user defined functions using [Deep Lake filters](https://docs.deeplake.ai/en/latest/deeplake.core.dataset.html#deeplake.core.dataset.Dataset.filter)"
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"def filter(x):\n",
" # filter based on source code\n",
" if \"something\" in x[\"text\"].data()[\"value\"]:\n",
" return False\n",
"\n",
" # filter based on path e.g. extension\n",
" metadata = x[\"metadata\"].data()[\"value\"]\n",
" return \"only_this\" in metadata[\"source\"] or \"also_that\" in metadata[\"source\"]\n",
"\n",
"\n",
"### turn on below for custom filtering\n",
"# retriever.search_kwargs['filter'] = filter"
]
},
{
"cell_type": "code",
"execution_count": 20,
@@ -736,8 +837,10 @@
"from langchain.chains import ConversationalRetrievalChain\n",
"from langchain_openai import ChatOpenAI\n",
"\n",
"model = ChatOpenAI(model=\"gpt-3.5-turbo-0613\") # 'ada' 'gpt-3.5-turbo-0613' 'gpt-4',\n",
"qa = RetrievalQA.from_llm(model, retriever=retriever)"
"model = ChatOpenAI(\n",
" model_name=\"gpt-3.5-turbo-0613\"\n",
") # 'ada' 'gpt-3.5-turbo-0613' 'gpt-4',\n",
"qa = ConversationalRetrievalChain.from_llm(model, retriever=retriever)"
]
},
{

View File

@@ -0,0 +1,273 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "707d13a7",
"metadata": {},
"source": [
"# Databricks\n",
"\n",
"This notebook covers how to connect to the [Databricks runtimes](https://docs.databricks.com/runtime/index.html) and [Databricks SQL](https://www.databricks.com/product/databricks-sql) using the SQLDatabase wrapper of LangChain.\n",
"It is broken into 3 parts: installation and setup, connecting to Databricks, and examples."
]
},
{
"cell_type": "markdown",
"id": "0076d072",
"metadata": {},
"source": [
"## Installation and Setup"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "739b489b",
"metadata": {},
"outputs": [],
"source": [
"!pip install databricks-sql-connector"
]
},
{
"cell_type": "markdown",
"id": "73113163",
"metadata": {},
"source": [
"## Connecting to Databricks\n",
"\n",
"You can connect to [Databricks runtimes](https://docs.databricks.com/runtime/index.html) and [Databricks SQL](https://www.databricks.com/product/databricks-sql) using the `SQLDatabase.from_databricks()` method.\n",
"\n",
"### Syntax\n",
"```python\n",
"SQLDatabase.from_databricks(\n",
" catalog: str,\n",
" schema: str,\n",
" host: Optional[str] = None,\n",
" api_token: Optional[str] = None,\n",
" warehouse_id: Optional[str] = None,\n",
" cluster_id: Optional[str] = None,\n",
" engine_args: Optional[dict] = None,\n",
" **kwargs: Any)\n",
"```\n",
"### Required Parameters\n",
"* `catalog`: The catalog name in the Databricks database.\n",
"* `schema`: The schema name in the catalog.\n",
"\n",
"### Optional Parameters\n",
"There following parameters are optional. When executing the method in a Databricks notebook, you don't need to provide them in most of the cases.\n",
"* `host`: The Databricks workspace hostname, excluding 'https://' part. Defaults to 'DATABRICKS_HOST' environment variable or current workspace if in a Databricks notebook.\n",
"* `api_token`: The Databricks personal access token for accessing the Databricks SQL warehouse or the cluster. Defaults to 'DATABRICKS_TOKEN' environment variable or a temporary one is generated if in a Databricks notebook.\n",
"* `warehouse_id`: The warehouse ID in the Databricks SQL.\n",
"* `cluster_id`: The cluster ID in the Databricks Runtime. If running in a Databricks notebook and both 'warehouse_id' and 'cluster_id' are None, it uses the ID of the cluster the notebook is attached to.\n",
"* `engine_args`: The arguments to be used when connecting Databricks.\n",
"* `**kwargs`: Additional keyword arguments for the `SQLDatabase.from_uri` method."
]
},
{
"cell_type": "markdown",
"id": "b11c7e48",
"metadata": {},
"source": [
"## Examples"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "8102bca0",
"metadata": {},
"outputs": [],
"source": [
"# Connecting to Databricks with SQLDatabase wrapper\n",
"from langchain_community.utilities import SQLDatabase\n",
"\n",
"db = SQLDatabase.from_databricks(catalog=\"samples\", schema=\"nyctaxi\")"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "9dd36f58",
"metadata": {},
"outputs": [],
"source": [
"# Creating a OpenAI Chat LLM wrapper\n",
"from langchain_openai import ChatOpenAI\n",
"\n",
"llm = ChatOpenAI(temperature=0, model_name=\"gpt-4\")"
]
},
{
"cell_type": "markdown",
"id": "5b5c5f1a",
"metadata": {},
"source": [
"### SQL Chain example\n",
"\n",
"This example demonstrates the use of the [SQL Chain](https://python.langchain.com/en/latest/modules/chains/examples/sqlite.html) for answering a question over a Databricks database."
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "36f2270b",
"metadata": {},
"outputs": [],
"source": [
"from langchain_community.utilities import SQLDatabaseChain\n",
"\n",
"db_chain = SQLDatabaseChain.from_llm(llm, db, verbose=True)"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "4e2b5f25",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"\n",
"\u001b[1m> Entering new SQLDatabaseChain chain...\u001b[0m\n",
"What is the average duration of taxi rides that start between midnight and 6am?\n",
"SQLQuery:\u001b[32;1m\u001b[1;3mSELECT AVG(UNIX_TIMESTAMP(tpep_dropoff_datetime) - UNIX_TIMESTAMP(tpep_pickup_datetime)) as avg_duration\n",
"FROM trips\n",
"WHERE HOUR(tpep_pickup_datetime) >= 0 AND HOUR(tpep_pickup_datetime) < 6\u001b[0m\n",
"SQLResult: \u001b[33;1m\u001b[1;3m[(987.8122786304605,)]\u001b[0m\n",
"Answer:\u001b[32;1m\u001b[1;3mThe average duration of taxi rides that start between midnight and 6am is 987.81 seconds.\u001b[0m\n",
"\u001b[1m> Finished chain.\u001b[0m\n"
]
},
{
"data": {
"text/plain": [
"'The average duration of taxi rides that start between midnight and 6am is 987.81 seconds.'"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"db_chain.run(\n",
" \"What is the average duration of taxi rides that start between midnight and 6am?\"\n",
")"
]
},
{
"cell_type": "markdown",
"id": "e496d5e5",
"metadata": {},
"source": [
"### SQL Database Agent example\n",
"\n",
"This example demonstrates the use of the [SQL Database Agent](/docs/integrations/tools/sql_database) for answering questions over a Databricks database."
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "9918e86a",
"metadata": {},
"outputs": [],
"source": [
"from langchain.agents import create_sql_agent\n",
"from langchain_community.agent_toolkits import SQLDatabaseToolkit\n",
"\n",
"toolkit = SQLDatabaseToolkit(db=db, llm=llm)\n",
"agent = create_sql_agent(llm=llm, toolkit=toolkit, verbose=True)"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "c484a76e",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"\n",
"\u001b[1m> Entering new AgentExecutor chain...\u001b[0m\n",
"\u001b[32;1m\u001b[1;3mAction: list_tables_sql_db\n",
"Action Input: \u001b[0m\n",
"Observation: \u001b[38;5;200m\u001b[1;3mtrips\u001b[0m\n",
"Thought:\u001b[32;1m\u001b[1;3mI should check the schema of the trips table to see if it has the necessary columns for trip distance and duration.\n",
"Action: schema_sql_db\n",
"Action Input: trips\u001b[0m\n",
"Observation: \u001b[33;1m\u001b[1;3m\n",
"CREATE TABLE trips (\n",
"\ttpep_pickup_datetime TIMESTAMP, \n",
"\ttpep_dropoff_datetime TIMESTAMP, \n",
"\ttrip_distance FLOAT, \n",
"\tfare_amount FLOAT, \n",
"\tpickup_zip INT, \n",
"\tdropoff_zip INT\n",
") USING DELTA\n",
"\n",
"/*\n",
"3 rows from trips table:\n",
"tpep_pickup_datetime\ttpep_dropoff_datetime\ttrip_distance\tfare_amount\tpickup_zip\tdropoff_zip\n",
"2016-02-14 16:52:13+00:00\t2016-02-14 17:16:04+00:00\t4.94\t19.0\t10282\t10171\n",
"2016-02-04 18:44:19+00:00\t2016-02-04 18:46:00+00:00\t0.28\t3.5\t10110\t10110\n",
"2016-02-17 17:13:57+00:00\t2016-02-17 17:17:55+00:00\t0.7\t5.0\t10103\t10023\n",
"*/\u001b[0m\n",
"Thought:\u001b[32;1m\u001b[1;3mThe trips table has the necessary columns for trip distance and duration. I will write a query to find the longest trip distance and its duration.\n",
"Action: query_checker_sql_db\n",
"Action Input: SELECT trip_distance, tpep_dropoff_datetime - tpep_pickup_datetime as duration FROM trips ORDER BY trip_distance DESC LIMIT 1\u001b[0m\n",
"Observation: \u001b[31;1m\u001b[1;3mSELECT trip_distance, tpep_dropoff_datetime - tpep_pickup_datetime as duration FROM trips ORDER BY trip_distance DESC LIMIT 1\u001b[0m\n",
"Thought:\u001b[32;1m\u001b[1;3mThe query is correct. I will now execute it to find the longest trip distance and its duration.\n",
"Action: query_sql_db\n",
"Action Input: SELECT trip_distance, tpep_dropoff_datetime - tpep_pickup_datetime as duration FROM trips ORDER BY trip_distance DESC LIMIT 1\u001b[0m\n",
"Observation: \u001b[36;1m\u001b[1;3m[(30.6, '0 00:43:31.000000000')]\u001b[0m\n",
"Thought:\u001b[32;1m\u001b[1;3mI now know the final answer.\n",
"Final Answer: The longest trip distance is 30.6 miles and it took 43 minutes and 31 seconds.\u001b[0m\n",
"\n",
"\u001b[1m> Finished chain.\u001b[0m\n"
]
},
{
"data": {
"text/plain": [
"'The longest trip distance is 30.6 miles and it took 43 minutes and 31 seconds.'"
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"agent.run(\"What is the longest trip distance and how long did it take?\")"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.3"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -115,7 +115,7 @@
"\n",
"PROMPT_TEMPLATE = \"\"\"Given an input question, create a syntactically correct Elasticsearch query to run. Unless the user specifies in their question a specific number of examples they wish to obtain, always limit your query to at most {top_k} results. You can order the results by a relevant column to return the most interesting examples in the database.\n",
"\n",
"Unless told to do not query for all the columns from a specific index, only ask for a few relevant columns given the question.\n",
"Unless told to do not query for all the columns from a specific index, only ask for a the few relevant columns given the question.\n",
"\n",
"Pay attention to use only the column names that you can see in the mapping description. Be careful to not query for columns that do not exist. Also, pay attention to which column is in which index. Return the query as valid json.\n",
"\n",

View File

@@ -86,15 +86,15 @@
"\n",
"Environment Variables:\n",
"- USER_AGENT: Specifies the user agent string to be used.\n",
"- LANGSMITH_TRACING: Enables or disables tracing for LangChain.\n",
"- LANGSMITH_API_KEY: API key for accessing LangChain services.\n",
"- LANGCHAIN_TRACING_V2: Enables or disables tracing for LangChain.\n",
"- LANGCHAIN_API_KEY: API key for accessing LangChain services.\n",
"- TAVILY_API_KEY: API key for accessing Tavily services.\n",
"\"\"\"\n",
"import os\n",
"\n",
"os.environ[\"USER_AGENT\"] = \"myagent\"\n",
"os.environ[\"LANGSMITH_TRACING\"] = \"true\"\n",
"os.environ[\"LANGSMITH_API_KEY\"] = \"xxxx\"\n",
"os.environ[\"LANGCHAIN_TRACING_V2\"] = \"true\"\n",
"os.environ[\"LANGCHAIN_API_KEY\"] = \"xxxx\"\n",
"os.environ[\"TAVILY_API_KEY\"] = \"tvly-xxxx\""
]
},

View File

@@ -124,8 +124,8 @@
"# Optional-- If you want to enable Langsmith -- good for debugging\n",
"import os\n",
"\n",
"os.environ[\"LANGSMITH_TRACING\"] = \"true\"\n",
"os.environ[\"LANGSMITH_API_KEY\"] = getpass.getpass()"
"os.environ[\"LANGCHAIN_TRACING_V2\"] = \"true\"\n",
"os.environ[\"LANGCHAIN_API_KEY\"] = getpass.getpass()"
]
},
{
@@ -156,7 +156,7 @@
"metadata": {},
"outputs": [],
"source": [
"# Ensure you have an HF_TOKEN in your development environment:\n",
"# Ensure you have an HF_TOKEN in your development enviornment:\n",
"# access tokens can be created or copied from the Hugging Face platform (https://huggingface.co/docs/hub/en/security-tokens)\n",
"\n",
"# Load MongoDB's embedded_movies dataset from Hugging Face\n",

View File

@@ -23,41 +23,7 @@
},
{
"cell_type": "markdown",
"id": "2498a0a1",
"metadata": {},
"source": [
"## Packages\n",
"\n",
"For `unstructured`, you will also need `poppler` ([installation instructions](https://pdf2image.readthedocs.io/en/latest/installation.html)) and `tesseract` ([installation instructions](https://tesseract-ocr.github.io/tessdoc/Installation.html)) in your system."
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "febbc459-ebba-4c1a-a52b-fed7731593f8",
"metadata": {},
"outputs": [],
"source": [
"! pip install --quiet -U langchain-vdms langchain-experimental langchain-ollama\n",
"\n",
"# lock to 0.10.19 due to a persistent bug in more recent versions\n",
"! pip install --quiet pdf2image \"unstructured[all-docs]==0.10.19\" \"onnxruntime==1.17.0\" pillow pydantic lxml open_clip_torch"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "78ac6543",
"metadata": {},
"outputs": [],
"source": [
"# from dotenv import load_dotenv, find_dotenv\n",
"# load_dotenv(find_dotenv(), override=True);"
]
},
{
"cell_type": "markdown",
"id": "e5c8916e",
"id": "6a6b6e73",
"metadata": {},
"source": [
"## Start VDMS Server\n",
@@ -68,15 +34,15 @@
},
{
"cell_type": "code",
"execution_count": 3,
"id": "1e6e2c15",
"execution_count": 1,
"id": "5f483872",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"a701e5ac3523006e9540b5355e2d872d5d78383eab61562a675d5b9ac21fde65\n"
"a1b9206b08ef626e15b356bf9e031171f7c7eb8f956a2733f196f0109246fe2b\n"
]
}
],
@@ -84,11 +50,45 @@
"! docker run --rm -d -p 55559:55555 --name vdms_rag_nb intellabs/vdms:latest\n",
"\n",
"# Connect to VDMS Vector Store\n",
"from langchain_vdms.vectorstores import VDMS_Client\n",
"from langchain_community.vectorstores.vdms import VDMS_Client\n",
"\n",
"vdms_client = VDMS_Client(port=55559)"
]
},
{
"cell_type": "markdown",
"id": "2498a0a1",
"metadata": {},
"source": [
"## Packages\n",
"\n",
"For `unstructured`, you will also need `poppler` ([installation instructions](https://pdf2image.readthedocs.io/en/latest/installation.html)) and `tesseract` ([installation instructions](https://tesseract-ocr.github.io/tessdoc/Installation.html)) in your system."
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "febbc459-ebba-4c1a-a52b-fed7731593f8",
"metadata": {},
"outputs": [],
"source": [
"! pip install --quiet -U vdms langchain-experimental\n",
"\n",
"# lock to 0.10.19 due to a persistent bug in more recent versions\n",
"! pip install --quiet pdf2image \"unstructured[all-docs]==0.10.19\" pillow pydantic lxml open_clip_torch"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "78ac6543",
"metadata": {},
"outputs": [],
"source": [
"# from dotenv import load_dotenv, find_dotenv\n",
"# load_dotenv(find_dotenv(), override=True);"
]
},
{
"cell_type": "markdown",
"id": "1e94b3fb-8e3e-4736-be0a-ad881626c7bd",
@@ -115,12 +115,11 @@
"import requests\n",
"\n",
"# Folder to store pdf and extracted images\n",
"base_datapath = Path(\"./data/multimodal_files\").resolve()\n",
"datapath = base_datapath / \"images\"\n",
"datapath = Path(\"./data/multimodal_files\").resolve()\n",
"datapath.mkdir(parents=True, exist_ok=True)\n",
"\n",
"pdf_url = \"https://www.loc.gov/lcm/pdf/LCM_2020_1112.pdf\"\n",
"pdf_path = str(base_datapath / pdf_url.split(\"/\")[-1])\n",
"pdf_path = str(datapath / pdf_url.split(\"/\")[-1])\n",
"with open(pdf_path, \"wb\") as f:\n",
" f.write(requests.get(pdf_url).content)"
]
@@ -186,8 +185,8 @@
"source": [
"import os\n",
"\n",
"from langchain_community.vectorstores import VDMS\n",
"from langchain_experimental.open_clip import OpenCLIPEmbeddings\n",
"from langchain_vdms import VDMS\n",
"\n",
"# Create VDMS\n",
"vectorstore = VDMS(\n",
@@ -313,10 +312,10 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain_core.messages import HumanMessage, SystemMessage\n",
"from langchain_community.llms.ollama import Ollama\n",
"from langchain_core.messages import HumanMessage\n",
"from langchain_core.output_parsers import StrOutputParser\n",
"from langchain_core.runnables import RunnableLambda, RunnablePassthrough\n",
"from langchain_ollama.llms import OllamaLLM\n",
"\n",
"\n",
"def prompt_func(data_dict):\n",
@@ -341,8 +340,8 @@
" \"As an expert art critic and historian, your task is to analyze and interpret images, \"\n",
" \"considering their historical and cultural significance. Alongside the images, you will be \"\n",
" \"provided with related text to offer context. Both will be retrieved from a vectorstore based \"\n",
" \"on user-input keywords. Please use your extensive knowledge and analytical skills to provide a \"\n",
" \"comprehensive summary that includes:\\n\"\n",
" \"on user-input keywords. Please convert answers to english and use your extensive knowledge \"\n",
" \"and analytical skills to provide a comprehensive summary that includes:\\n\"\n",
" \"- A detailed description of the visual elements in the image.\\n\"\n",
" \"- The historical and cultural context of the image.\\n\"\n",
" \"- An interpretation of the image's symbolism and meaning.\\n\"\n",
@@ -360,7 +359,7 @@
" \"\"\"Multi-modal RAG chain\"\"\"\n",
"\n",
" # Multi-modal LLM\n",
" llm_model = OllamaLLM(\n",
" llm_model = Ollama(\n",
" verbose=True, temperature=0.5, model=\"llava\", base_url=\"http://localhost:11434\"\n",
" )\n",
"\n",
@@ -420,121 +419,6 @@
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"© 2017 LARRY D. MOORE\n",
"\n",
"contemporary criticism of the less-than- thoughtful circumstances under which Lange photographed Thomson, the pictures power to engage has not diminished. Artists in other countries have appropriated the image, changing the mothers features into those of other ethnicities, but keeping her expression and the positions of her clinging children. Long after anyone could help the Thompson family, this picture has resonance in another time of national crisis, unemployment and food shortages.\n",
"\n",
"A striking, but very different picture is a 1900 portrait of the legendary Hin-mah-too-yah- lat-kekt (Chief Joseph) of the Nez Percé people. The Bureau of American Ethnology in Washington, D.C., regularly arranged for its photographer, De Lancey Gill, to photograph Native American delegations that came to the capital to confer with officials about tribal needs and concerns. Although Gill described Chief Joseph as having “an air of gentleness and quiet reserve,” the delegate skeptically appraises the photographer, which is not surprising given that the United States broke five treaties with Chief Joseph and his father between 1855 and 1885.\n",
"\n",
"More than a glance, second looks may reveal new knowledge into complex histories.\n",
"\n",
"Anne Wilkes Tucker is the photography curator emeritus of the Museum of Fine Arts, Houston and curator of the “Not an Ostrich” exhibition.\n",
"\n",
"28\n",
"\n",
"28 LIBRARY OF CONGRESS MAGAZINE\n",
"\n",
"LIBRARY OF CONGRESS MAGAZINE\n",
"THEYRE WILLING TO HAVE MEENTERTAIN THEM DURING THE DAY,BUT AS SOON AS IT STARTSGETTING DARK, THEY ALLGO OFF, AND LEAVE ME! \n",
"ROSA PARKS: IN HER OWN WORDS\n",
"\n",
"COMIC ART: 120 YEARS OF PANELS AND PAGES\n",
"\n",
"SHALL NOT BE DENIED: WOMEN FIGHT FOR THE VOTE\n",
"\n",
"More information loc.gov/exhibits\n",
"Nuestra Sefiora de las Iguanas\n",
"\n",
"Graciela Iturbides 1979 portrait of Zobeida Díaz in the town of Juchitán in southeastern Mexico conveys the strength of women and reflects their important contributions to the economy. Díaz, a merchant, was selling iguanas to cook and eat, carrying them on her head, as is customary.\n",
"\n",
"GRACIELA ITURBIDE. “NUESTRA SEÑORA DE LAS IGUANAS.” 1979. GELATIN SILVER PRINT. © GRACIELA ITURBIDE, USED BY PERMISSION. PRINTS AND PHOTOGRAPHS DIVISION.\n",
"\n",
"Iturbide requested permission to take a photograph, but this proved challenging because the iguanas were constantly moving, causing Díaz to laugh. The result, however, was a brilliant portrait that the inhabitants of Juchitán claimed with pride. They have reproduced it on posters and erected a statue honoring Díaz and her iguanas. The photo now appears throughout the world, inspiring supporters of feminism, womens rights and gender equality.\n",
"\n",
"—Adam Silvia is a curator in the Prints and Photographs Division.\n",
"\n",
"6\n",
"\n",
"6 LIBRARY OF CONGRESS MAGAZINE\n",
"\n",
"LIBRARY OF CONGRESS MAGAZINE\n",
"\n",
"Migrant Mother is Florence Owens Thompson\n",
"\n",
"The iconic portrait that became the face of the Great Depression is also the most famous photograph in the collections of the Library of Congress.\n",
"\n",
"The Library holds the original source of the photo — a nitrate negative measuring 4 by 5 inches. Do you see a faint thumb in the bottom right? The photographer, Dorothea Lange, found the thumb distracting and after a few years had the negative altered to make the thumb almost invisible. Langes boss at the Farm Security Administration, Roy Stryker, criticized her action because altering a negative undermines the credibility of a documentary photo.\n",
"Shrimp Picker\n",
"\n",
"The photos and evocative captions of Lewis Hine served as source material for National Child Labor Committee reports and exhibits exposing abusive child labor practices in the United States in the first decades of the 20th century.\n",
"\n",
"LEWIS WICKES HINE. “MANUEL, THE YOUNG SHRIMP-PICKER, FIVE YEARS OLD, AND A MOUNTAIN OF CHILD-LABOR OYSTER SHELLS BEHIND HIM. HE WORKED LAST YEAR. UNDERSTANDS NOT A WORD OF ENGLISH. DUNBAR, LOPEZ, DUKATE COMPANY. LOCATION: BILOXI, MISSISSIPPI.” FEBRUARY 1911. NATIONAL CHILD LABOR COMMITTEE COLLECTION. PRINTS AND PHOTOGRAPHS DIVISION.\n",
"\n",
"For 15 years, Hine\n",
"\n",
"crisscrossed the country, documenting the practices of the worst offenders. His effective use of photography made him one of the committee's greatest publicists in the campaign for legislation to ban child labor.\n",
"\n",
"Hine was a master at taking photos that catch attention and convey a message and, in this photo, he framed Manuel in a setting that drove home the boys small size and unsafe environment.\n",
"\n",
"Captions on photos of other shrimp pickers emphasized their long working hours as well as one hazard of the job: The acid from the shrimp made pickers hands sore and “eats the shoes off your feet.”\n",
"\n",
"Such images alerted viewers to all that workers, their families and the nation sacrificed when children were part of the labor force. The Library holds paper records of the National Child Labor Committee as well as over 5,000 photographs.\n",
"\n",
"—Barbara Natanson is head of the Reference Section in the Prints and Photographs Division.\n",
"\n",
"8\n",
"\n",
"LIBRARY OF CONGRESS MAGAZINE\n",
"\n",
"LIBRARY OF CONGRESS MAGAZINE\n",
"\n",
"Intergenerational Portrait\n",
"\n",
"Raised on the Apsáalooke (Crow) reservation in Montana, photographer Wendy Red Star created her “Apsáalooke Feminist” self-portrait series with her daughter Beatrice. With a dash of wry humor, mother and daughter are their own first-person narrators.\n",
"\n",
"Red Star explains the significance of their appearance: “The dress has power: You feel strong and regal wearing it. In my art, the elk tooth dress specifically symbolizes Crow womanhood and the matrilineal line connecting me to my ancestors. As a mother, I spend hours searching for the perfect elk tooth dress materials to make a prized dress for my daughter.”\n",
"\n",
"In a world that struggles with cultural identities, this photograph shows us the power and beauty of blending traditional and contemporary styles.\n",
"American Gothic Product #216040262 Price: $24\n",
"\n",
"U.S. Capitol at Night Product #216040052 Price: $24\n",
"\n",
"Good Reading Ahead Product #21606142 Price: $24\n",
"\n",
"Gordon Parks created an iconic image with this 1942 photograph of cleaning woman Ella Watson.\n",
"\n",
"Snow blankets the U.S. Capitol in this classic image by Ernest L. Crandall.\n",
"\n",
"Start your new year out right with a poster promising good reading for months to come.\n",
"\n",
"▪ Order online: loc.gov/shop ▪ Order by phone: 888.682.3557\n",
"\n",
"26\n",
"\n",
"LIBRARY OF CONGRESS MAGAZINE\n",
"\n",
"LIBRARY OF CONGRESS MAGAZINE\n",
"\n",
"SUPPORT\n",
"\n",
"A PICTURE OF PHILANTHROPY Annenberg Foundation Gives $1 Million and a Photographic Collection to the Library.\n",
"\n",
"A major gift by Wallis Annenberg and the Annenberg Foundation in Los Angeles will support the effort to reimagine the visitor experience at the Library of Congress. The foundation also is donating 1,000 photographic prints from its Annenberg Space for Photography exhibitions to the Library.\n",
"\n",
"The Library is pursuing a multiyear plan to transform the experience of its nearly 2 million annual visitors, share more of its treasures with the public and show how Library collections connect with visitors own creativity and research. The project is part of a strategic plan established by Librarian of Congress Carla Hayden to make the Library more user-centered for Congress, creators and learners of all ages.\n",
"\n",
"A 2018 exhibition at the Annenberg Space for Photography in Los Angeles featured over 400 photographs from the Library. The Library is planning a future photography exhibition, based on the Annenberg-curated show, along with a documentary film on the Library and its history, produced by the Annenberg Space for Photography.\n",
"\n",
"“The nations library is honored to have the strong support of Wallis Annenberg and the Annenberg Foundation as we enhance the experience for our visitors,” Hayden said. “We know that visitors will find new connections to the Library through the incredible photography collections and countless other treasures held here to document our nations history and creativity.”\n",
"\n",
"To enhance the Librarys holdings, the foundation is giving the Library photographic prints for long-term preservation from 10 other exhibitions hosted at the Annenberg Space for Photography. The Library holds one of the worlds largest photography collections, with about 14 million photos and over 1 million images digitized and available online.\n",
"18 LIBRARY OF CONGRESS MAGAZINE\n"
]
}
],
"source": [
@@ -577,17 +461,10 @@
"name": "stdout",
"output_type": "stream",
"text": [
" The image is a black and white photograph by Dorothea Lange titled \"Destitute Pea Pickers in California. Mother of Seven Children. Age Thirty-Two. Nipomo, California.\" It was taken in March 1936 as part of the Farm Security Administration-Office of War Information Collection.\n",
"\n",
"The photograph features a woman with seven children, who appear to be in a state of poverty and hardship. The woman is seated, looking directly at the camera, while three of her children are standing behind her. They all seem to be dressed in ragged clothing, indicative of their impoverished condition.\n",
"\n",
"The historical context of this image is related to the Great Depression, which was a period of economic hardship in the United States that lasted from 1929 to 1939. During this time, many people struggled to make ends meet, and poverty was widespread. This photograph captures the plight of one such family during this difficult period.\n",
"\n",
"The symbolism of the image is multifaceted. The woman's direct gaze at the camera can be seen as a plea for help or an expression of desperation. The ragged clothing of the children serves as a stark reminder of the poverty and hardship experienced by many during this time.\n",
"\n",
"In terms of connections to the related text, it is mentioned that Florence Owens Thompson, the woman in the photograph, initially regretted having her picture taken. However, she later came to appreciate the importance of the image as a representation of the struggles faced by many during the Great Depression. The mention of Helena Zinkham suggests that she may have played a role in the creation or distribution of this photograph.\n",
"\n",
"Overall, this image is a powerful depiction of poverty and hardship during the Great Depression, capturing the resilience and struggles of one family amidst difficult times. \n"
" The image depicts a woman with several children. The woman appears to be of Cherokee heritage, as suggested by the text provided. The image is described as having been initially regretted by the subject, Florence Owens Thompson, due to her feeling that it did not accurately represent her leadership qualities.\n",
"The historical and cultural context of the image is tied to the Great Depression and the Dust Bowl, both of which affected the Cherokee people in Oklahoma. The photograph was taken during this period, and its subject, Florence Owens Thompson, was a leader within her community who worked tirelessly to help those affected by these crises.\n",
"The image's symbolism and meaning can be interpreted as a representation of resilience and strength in the face of adversity. The woman is depicted with multiple children, which could signify her role as a caregiver and protector during difficult times.\n",
"Connections between the image and the related text include Florence Owens Thompson's leadership qualities and her regretted feelings about the photograph. Additionally, the mention of Dorothea Lange, the photographer who took this photo, ties the image to its historical context and the broader narrative of the Great Depression and Dust Bowl in Oklahoma. \n"
]
}
],
@@ -614,17 +491,11 @@
"source": [
"! docker kill vdms_rag_nb"
]
},
{
"cell_type": "markdown",
"id": "fe4a98ee",
"metadata": {},
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": ".test-venv",
"display_name": ".langchain-venv",
"language": "python",
"name": "python3"
},
@@ -638,7 +509,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.10"
"version": "3.11.9"
}
},
"nbformat": 4,

View File

@@ -71,9 +71,9 @@
"# Optional: LangSmith API keys\n",
"import os\n",
"\n",
"os.environ[\"LANGSMITH_TRACING\"] = \"true\"\n",
"os.environ[\"LANGSMITH_ENDPOINT\"] = \"https://api.smith.langchain.com\"\n",
"os.environ[\"LANGSMITH_API_KEY\"] = \"api_key\""
"os.environ[\"LANGCHAIN_TRACING_V2\"] = \"true\"\n",
"os.environ[\"LANGCHAIN_ENDPOINT\"] = \"https://api.smith.langchain.com\"\n",
"os.environ[\"LANGCHAIN_API_KEY\"] = \"api_key\""
]
},
{

View File

@@ -29,7 +29,7 @@
"source": [
"import os\n",
"\n",
"os.environ[\"LANGSMITH_PROJECT\"] = \"movie-qa\""
"os.environ[\"LANGCHAIN_PROJECT\"] = \"movie-qa\""
]
},
{

View File

@@ -233,7 +233,7 @@ Question: {input}"""
_DEFAULT_TEMPLATE = """Given an input question, first create a syntactically correct {dialect} query to run, then look at the results of the query and return the answer. Unless the user specifies in his question a specific number of examples he wishes to obtain, always limit your query to at most {top_k} results. You can order the results by a relevant column to return the most interesting examples in the database.
Never query for all the columns from a specific table, only ask for a few relevant columns given the question.
Never query for all the columns from a specific table, only ask for a the few relevant columns given the question.
Pay attention to use only the column names that you can see in the schema description. Be careful to not query for columns that do not exist. Also, pay attention to which column is in which table.

View File

@@ -26,7 +26,7 @@
"name": "stdout",
"output_type": "stream",
"text": [
"76e78b89cee4d6d31154823f93592315df79c28410dfbfc87c9f70cbfdfa648b\n"
"2e44b44201c8778b462342ac97f5ccf05a4e02aa8a04505ecde97bf20dcc4cbb\n"
]
}
],
@@ -49,7 +49,7 @@
"metadata": {},
"outputs": [],
"source": [
"! pip install --quiet -U langchain-vdms langchain-experimental sentence-transformers opencv-python open_clip_torch torch accelerate"
"! pip install --quiet -U vdms langchain-experimental sentence-transformers opencv-python open_clip_torch torch accelerate"
]
},
{
@@ -63,16 +63,7 @@
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/data1/cwlacewe/apps/cwlacewe_langchain/.langchain-venv/lib/python3.11/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
" from .autonotebook import tqdm as notebook_tqdm\n"
]
}
],
"outputs": [],
"source": [
"import json\n",
"import os\n",
@@ -89,10 +80,10 @@
"from langchain_community.embeddings.sentence_transformer import (\n",
" SentenceTransformerEmbeddings,\n",
")\n",
"from langchain_community.vectorstores.vdms import VDMS, VDMS_Client\n",
"from langchain_core.callbacks.manager import CallbackManagerForLLMRun\n",
"from langchain_core.runnables import ConfigurableField\n",
"from langchain_experimental.open_clip import OpenCLIPEmbeddings\n",
"from langchain_vdms.vectorstores import VDMS, VDMS_Client\n",
"from transformers import (\n",
" AutoModelForCausalLM,\n",
" AutoTokenizer,\n",
@@ -372,7 +363,7 @@
"\t\tThere are 2 shoppers in this video. Shopper 1 is wearing a plaid shirt and a spectacle. Shopper 2 who is not completely captured in the frame seems to wear a black shirt and is moving away with his back turned towards the camera. There is a shelf towards the right of the camera frame. Shopper 2 is hanging an item back to a hanger and then quickly walks away in a similar fashion as shopper 2. Contents of the nearer side of the shelf with respect to camera seems to be camping lanterns and cleansing agents, arranged at the top. In the middle part of the shelf, various tools including grommets, a pocket saw, candles, and other helpful camping items can be observed. Midway through the shelf contains items which appear to be steel containers and items made up of plastic with red, green, orange, and yellow colors, while those at the bottom are packed in cardboard boxes. Contents at the farther part of the shelf are well stocked and organized but are not glaringly visible.\n",
"\n",
"\tMetadata:\n",
"\t\t{'fps': 24.0, 'total_frames': 120.0, 'video': 'clip16.mp4'}\n",
"\t\t{'fps': 24.0, 'id': 'c6e5f894-b905-46f5-ac9e-4487a9235561', 'total_frames': 120.0, 'video': 'clip16.mp4'}\n",
"Retrieved Top matching video!\n",
"\n",
"\n"
@@ -401,12 +392,18 @@
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Loading checkpoint shards: 100%|██████████| 2/2 [00:18<00:00, 9.01s/it]\n",
"WARNING:accelerate.big_modeling:Some parameters are on the meta device because they were offloaded to the cpu.\n"
]
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "3edf8783e114487ca490d8dec5c46884",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Loading checkpoint shards: 0%| | 0/2 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
@@ -558,7 +555,7 @@
"\t\tA single shopper is seen in this video standing facing the shelf and in the bottom part of the frame. He's wearing a light-colored shirt and a spectacle. The shopper is carrying a red colored basket in his left hand. The entire basket is not clearly visible, but it does seem to contain something in a blue colored package which the shopper has just placed in the basket given his right hand was seen inside the basket. Then the shopper leans towards the shelf and checks out an item in orange package. He picks this single item with his right hand and proceeds to place the item in the basket. The entire shelf looks well stocked except for the top part of the shelf which is empty. The shopper has not picked any item from this part of the shelf. The rest of the shelf looks well stocked and does not need any restocking. The contents on the farther part of the shelf consists of items, majority of which are packed in black, yellow, and green packages. No other details are visible of these items.\n",
"\n",
"\tMetadata:\n",
"\t\t{'fps': 24.0, 'total_frames': 162.0, 'video': 'clip10.mp4'}\n",
"\t\t{'fps': 24.0, 'id': '37ddc212-994e-4db0-877f-5ed09965ab90', 'total_frames': 162.0, 'video': 'clip10.mp4'}\n",
"Retrieved Top matching video!\n",
"\n",
"\n"
@@ -588,7 +585,7 @@
"User : Find a man holding a red shopping basket\n",
"Assistant : Most relevant retrieved video is **clip9.mp4** \n",
"\n",
"I see a person standing in front of a well-stocked shelf, they are wearing a light-colored shirt and glasses, and they have a red shopping basket in their left hand. They are leaning forward and picking up an item from the shelf with their right hand. The item is packaged in a blue-green box. Based on the available information, I cannot confirm whether the basket is empty or contains items. However, the rest of the\n"
"I see a person standing in front of a well-stocked shelf, they are wearing a light-colored shirt and glasses, and they have a red shopping basket in their left hand. They are leaning forward and picking up an item from the shelf with their right hand. The item is packaged in a blue-green box. Based on the scene description, I can confirm that the person is indeed holding a red shopping basket.</s>\n"
]
}
],
@@ -658,7 +655,7 @@
],
"metadata": {
"kernelspec": {
"display_name": ".langchain-venv",
"display_name": ".venv",
"language": "python",
"name": "python3"
},
@@ -672,7 +669,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.10"
"version": "3.11.9"
}
},
"nbformat": 4,

View File

@@ -144,8 +144,8 @@
"outputs": [],
"source": [
"# import os\n",
"# os.environ[\"LANGSMITH_TRACING\"] = \"true\"\n",
"# os.environ[\"LANGSMITH_PROJECT\"] = \"default\" # Make sure this session actually exists."
"# os.environ[\"LANGCHAIN_HANDLER\"] = \"langchain\"\n",
"# os.environ[\"LANGCHAIN_SESSION\"] = \"default\" # Make sure this session actually exists."
]
},
{

View File

@@ -27,7 +27,7 @@ install-py-deps:
$(PYTHON) -m pip install -q --upgrade pip
$(PYTHON) -m pip install -q --upgrade uv
$(PYTHON) -m uv pip install -q --pre -r vercel_requirements.txt
$(PYTHON) -m uv pip install -q --pre $$($(PYTHON) scripts/partner_deps_list.py) --overrides vercel_overrides.txt
$(PYTHON) -m uv pip install -q --pre $$($(PYTHON) scripts/partner_deps_list.py)
generate-files:
mkdir -p $(INTERMEDIATE_DIR)

View File

@@ -328,7 +328,7 @@ html[data-theme=dark] .MathJax_SVG * {
}
.bd-sidebar-primary {
width: max-content; /* Adjust this value to your preference */
width: 22%; /* Adjust this value to your preference */
line-height: 1.4;
}

View File

@@ -528,12 +528,7 @@ def _get_package_version(package_dir: Path) -> str:
"Aborting the build."
)
exit(1)
try:
# uses uv
return pyproject["project"]["version"]
except KeyError:
# uses poetry
return pyproject["tool"]["poetry"]["version"]
return pyproject["tool"]["poetry"]["version"]
def _out_file_path(package_name: str) -> Path:

View File

@@ -1 +1 @@
eNrtVmlUFFcWJsGFmBk00XGJW9OikyDVVO8LommgwQ5ikxZUQAarq17TBV2LVdXQwDgKxhg1iZQyJkhGoyytiCjgoKgY0cRxQRj1iIe4xMkYiXNy1IgROaLOa5YRj/6cP5mxzuk6XfXuu/e7937v1pfvyQQcTzL0K5UkLQAOwwX4wK/P93BgiQvwwgflFBAcDFEaZ5kXX+LiyLYghyCwvCEkBGNJGcMCGiNlOEOFZMpDcAcmhMD/rBP0uCm1MUR2G5srpQDPY2mAlxqSc6U4AyPRgtQgjQdOp4QCEkySzmQAabCUY5wAvnfxgJMuTQmWUgwBnPBFGisgKgahSJqEVrzAAYySGuyYkwfBUgFQLEQuuDi4F5WhSz0OgBEwras+I0odDC+IVc9C3Y3hOIAeAY0zBEmnibvSckg2WEIAuxMTQAUESIOeQogVGQCwCOYkM0F57y5xD8ayThLHvOsh6TxDV/YlhAjZLHh+ucKbDQKzpwVxrwWCMJpD4rJhTWmJXKaRy+R73AgvYCTthEVCnBjEU872rB8cuMBieAZ0gvT1Syzv3Vw10IbhxbJYDLfMe8YlxuEOsQzjKI2qduB7zkULJAVET0Tc8+H6Fp+GU8rkCpmu+hnHfDaNi2U9bdj3zGYgcNkIzkAf4la0HGeYDBKIbXdTU3F7qo0Km2NCoy2kJWGJFTUlzVVl8Hi21pZqtfAul9nORlrM6a73c2h+NkcyiFyr1Gl1ehTVIXIZKoMpI2p9hs5BWGZHuMzuKDQyJtwSu0Rn5GJ182z0wki5PUuXoGc5U6SGRuPpeE1SGodRQlSmiiA0RIIuNsklk0U7+Sgnk8CkJ8oUiXGpcxRoVqgEonNlkkQYatQnLnFHxsforQ4NRrgzIq0uR1YCistiw91ah5GLizImpVnTFWzaAHgauRZB+xBqUJUO9V5V/dxwAjpNcIglcrliOwd4Fp4OsKIclkxw8fmlkIeg6YSn75hss8Q8pfDo0kjISbFhASCCJahaEgVsEgWqUMObQa0xqPSS6Nj4yoi+MPEvpGB1PIfRvB3S0NRPeQ/ucNEZgKiIeCHZG7xkh530woeHEgFuluEB0odKrFyIWHvnA2KOrO09WQjDpWE0mdMTVmzoYX1WjjuLwF0E4cjMolB9jkpJ2oALt+/t28JyjDcMBIRQvFiiU6ir+lb6eVcBc0UROYqg8gNuBJ5y4CQpEtaz5943pHixVA2Lvf95AwHOFZoXPaqebqCHB1pwgIKE9cZ+6kal1+sPvdio35USmui1+gPPWvFgIBq5guL3P2/Q52Ibyle6+60RkhDbAuFDqhpVaFDcrleplEoVhioBIVdDetlwvV0D1JimHs49EodevM1kGU5AeIDDiSxki23BFOb2zpgwpVyt1MBMQyUkjTtdBJjnskUy3hz4UAnLASeDEbtxO4JjuAMgvfwTPZGJc42x5oi6hchAIiEWtmeMix6a4WnSbi+fBzjYGLECdzIuAg5LDpRHRCFWY6K4V48Satyu0MltQKuzY3YkHI6hfm//oV2pd9J6MCfEnomLtQ5lmNQA85WGSigsTKeBber5ZuSVe3Ol07555dTktX4+PZcv/D158rG1mr6Ejrjyy+8WNM8PSDZOzX3Nujciz//mCMExLG+a5dzUUScL4v8sufPVmMJRMVHJX76+qvPWpO8OHrw4aLlIDF287QejML9M23LmWMGy+oZc5xpmX9aW7vPt3+/4adPu9WvzKNsq/cwv/ZiU2ytvVh59N8qylz3hG3WBEj8z1bfUcIGGKe9/U3f8w3unSieS72W13Qo6s0ZIbr6yKyBv88Rr0a/63DEcPuvZ+KDJv4C6WuDf0P7bmmP1fsv1JdKj+zuv+17Mo0Zbx06MW9f61b4QiTnc8caha/4rlb6/Kc3LuOabdfetW780PP4ov3PSVtPY/UPPr9oeZNa++1bS3biRQV30o0+OHeicEXWhwar8k+Hh/PLq5gmPmrb8vEnVVcedaDh7tmT48RoxbKrPrL913RsjFrnKa7cOu/GGa9Rl+vf6Oicw3UpTfH7kQn57x5yQC0Gr8zbc3dmlaDSt5W4u2tiYa7abAnc2LdvUVXy/sFjomHX39YBB3y6vqfGfuvr0kZiiY+7aJ0GhLW5V04wDqYF7hn0gu2W0nclVp7zZETJz8YILpeOF1rPC3L/u+rSmqePK4ccFtdcLu4d4G+br83hqVcci2L2XmuKlpnipKX4FmkKN/i9pCo32/1hTKJR2zEZo9Da72qbUqgGmVGJ2XKEiMB1QauzyX4WmACiw/zc1xfGnmuJja+On59ERDe3Th2wZX1hnJHONgjE8f+SE0atNYoZlfeKESzV/oT5LeDJRf1KzY3FZw4M7V5s6cpUdhT7oeufQOaoZH7VW3Du24/CspY+6Sx7Wtkx/FPbw/g/3p9zQah+u6j6/CYF64nKJX0sKs5LcBfXE8F49AaqvjiqmNlK529RvJjh3UrP5DXWl76SAnTOgnqgfd3B8xKthlxpbBvlc27GsxIL8/HVmAbJZHN3Qrq65UjZQTyDTvHqis5Upji4IDFD5/YFddbRoygSz78Uj6y6f7GQ9t+9NGnx7RvgK9vqkOWO2VQSm+JKOExGm7deLu7T+O5s7xiZkvffJg67vk4u+NfB3pixrnH7uevG5gM6o6HUzx57Ouf+FT/e/2s+nmOytRa0fKj7/bnvJNU5/opqcruRC1zcOqpr2x7Dme0m7Csfq3plVHDJykeptTzM57tAGwh6pON29u+gJObzefHG3uMUv4O9DCstcb5sXDd18asLx4qU7flL88yra8eOk2YvH+aVcXvH1mqz0/YE3Ji89Ulc5++KPlSX/+CIoefT0wsGzDp0eHNN8MtWnV0+8Jgua7NUT/wZqjsb/
eNrtVntUFNcZhxBTqqbBHGOCmrJdo4Iyy+x7FyTIYxGU5bE8BJXg7Mzd3ZGdmXVm9sGilGBMfCDHodFTtbGtwG6KgiAPH/isJdGqyenx5LGixJhGEa31UU0TPNK76xLx6J/9J61zzs6Ze7/v/r7X73771XgdgOVIhg7dRdI8YDGchwuuvsbLguV2wPHveCjAWxiiMTcnv6DBzpK+WRaet3HxcXGYjZQwNkBjpARnqDiHNA63YHwc/LZZQQCm0cgQFT53pZgCHIeZASeOFy2uFOMMNEXzcCEuAFariAIiTLSMKQfiWJGYZazAL7FzgBWvLIU7FEMAq3/LbOMRBYNQJE36NTmeBRgFBSbMygG4wQPKBkPg7awfAZWgK70WgBEwwP6QiEYLw/FC6+NO78ZwHEBUQOMMQdJmocXsJm2xIgKYrBgPmqGnNAikRGguB8CGYFbSATwPTwltmM1mJXHML49bxjH0rmBkCF9hA0+Km/0xITAPNC905kAnkjPjcitgdmmRVKLUSpRtLoTjMZK2wnQhVgz647EF5D2jBTYML4cgSLBygufh4dbROgwnNOkxPCf/MUiMxS1CE8ZSKkXH6H3WTvMkBQRvau6T5oLCR+bkEqlUom5/DJiroHGhKVCIvY8dBjxbgeAMxBD+iHpwhikngeC7XVaGm8qMVKIm362wVBQVuiVqLl3lLJlXnJeWZTKTejWPpiqcBTSjXJBv06F2vR6RquUqhVKJyrSIVIJKpBIpUpabW0igGUX2ihI3quTs2cYC3fzMZEVWXg6LqzPUWp2S0xcvo+zLFyhINDsr3VnAUvoinCjOIdm0PLTcapkvMeSlYOTCDJnDjmU7C3UyZ4IIemd3kERiSbFWlq4sn5e+HMtaaCgsTAc6uUuzSKZg7Sa1OWsBn6dWagupZFlxySj3UCWKoEEPVahCg/qf1hFuWAFt5i1Cg1Qm+5AFnA3eE7DKA1PG27maRshDcPqEN3hhduQseEThSY1pkJPCoQKLPVaEakXzMVokQ2VK+IqXq+Phzjx9wa7UoJmCp1KwvYDFaM4EaagbobwXt9jpckA0pz6V7If8ZIeV9LsP7yYCXDaGA0jQK2FXMWJ42CmQzLSOhzcLYVgzRpPugFnhUID1TrfLSeB2grA4nBSqdSvkpBHYcVNn8IiNZfxmoEMIxQkNSrm0NSgZ4V0zjBVFpDC10gMuBF5zYCUpEuYz8A62K05oVMJk73tSgYf9heYEryJQDfTwaA0WUJCwftuPYBRarfbg05VGoORQRavWHnhciwOjvZHKKG7fkwpBiB0ot8s1oo2QhOB7Ay7K5HIAUKmUwNUahRLTKgCOawmpwiRXy2SoSqnaD1sfiUMUfzFtDMsjHMBhb+YrBF8shbn8PSZRLlXKVTDSBBFJ41Y7AfLtxjTGHwOXILKxwMpgxO7UdCQVwy0AyQ/wT/CmlWQn6zNTu4uR0URCcmyBhi54aYajSZPJkw9YWBihGbcydgI2SxZ4IJYhuUTo1JhMarlWbsQx3KjACYCkwDY0gvYj7Rr9ndaLWaHvDlzosMgTxfEKhVycIKKwRI0Klinw7/G2xx8rbe4N7Y5aHx4SeMLgb3i41nCs7iw68eCV2b98Ux191RTTN27RvaMTfrHmuZ5od1dZ/c/qKF/dX/cMHpnm9c14RbT8Fnb5jOuyLyeyeun0bhHxXt697Ct7Z1RdWPHDzQVnL5Tezb5xZEXVpwm/3pnk/ofDuGmiY/gDYkXRofe7nVvFi7kdTTNr319y6sxnOwd/OFD8VW0a88rVN8pLT8/e9p1VU/bqtVlxqorv3Qbn5ulj2lcPjQ+5SM7Jz24Y8H6Z0u5Od48NXfxy352I6ptFM9OWhk8Vb40ukse0rCU+Gui5MWHi7DWvJ28cyHRXVodNmRvmmru7/+iqCpTJvBQRHl8T9kJbalbrOv046x++CXnxN0Vxm79wLXu3+k/NkZ3bb36j3dvdcscRNeNBrdqq4btmjv+8sfZXi2am3/tt6Iop38mXFEz6pK+/N/5cFFGPlWy//pf7s8bdNokbNnxovr/s3NWmxS3R4mttX+7eGJ1g6GCrxk+d2DdGQOKHIy8z/d5+67nh9t//POakztB1p7H4rUnbP57TlDS0u/1O3cdHxXPezVh5oY08mfCpN+rsvgPRwlbPrHCd43RVmL84YSHGQY04CX4/mySeTRLPJomf1CQhRf+XJgmZ7P94kjAaAQo0RpXRpFUbpRo4RCgJKQ7kOI5qVJhM9lOYJBSoxqg0/RcniT2PJolawym6D404eG1295zFq1viq0rXTdKN7Rxoj97oibCw06lU4fn9NcbnH3xXU4/HrAw5NIB2yLf6vs1/QZSxPiz8s4yiFvX3CaecfTnevvcGT112DLc7p1Sdr/r3/S5NvxaZlPl1XVLerY7BLrZFfeLv1zN2VtdL97d2M6pr27aB9qg1n5OKzKLKT76QMCcNb8Wutx8+f3nnBd0FjeG13tDD5pCQnOPqbzsnR/WGbl5vbux9DWy4ZHv9uYhjW94Jj5ym27y51yje1FHrWPOgRfv2jBfPi9KmhzVfdA+crOkUVUb+q6+ykvmqob40zRLhjjxm/12W0jf5RErqhFkpDWVnhl9uG9yRpafMp8ckleFTFg5drLv157Jb62J7PeOjGzpijMSV3qPb5dVRx90HXt2w+qXWu0v2VM7dNn7hzr9lZ83bIvSMO1nXtOXmrTlHejZNLqlf23F37PTCVW5D9t6NH8xQT9tTciXp+P0zldf13Q+ihtbmjk1skKycqx8EX5OxS917hif33HCFx16KkXUDXfdHF8M2vOS5DQqjS6+rhrom+rRDYx5OEf+cWpXyJpwi/gNh7aPV

View File

@@ -1 +1 @@
eNrtWE1v28gZ7qK3XHopemaJngqPREqkvgyhcPxRK15bie1d21kshNHwlTgWyWE4Q1ly6kPT3gsW/QPdOFZhuNldJGi3H+m5h/4B76G/ZV9SVGQjabfudaWDpJl55/143o9H4rPJECLJRfDBFQ8URJQpXMjk2SSCJzFI9esLH5QrnPOH7b3953HEr3/qKhXKRrFIQ14QIQSUF5jwi0OzyFyqivg99CBTc94Vzvj6F091H6SkfZB645OnOhNoKVB6Q3fB84S+pEfCA1zGEiL97NMl3RcOeLjRDxWxBPF5wFFKqgiorzdUFMNs1RFhZklvPNV5wLzYgU6cmpqKnZ1NXKAOhvibc1dIlby87fTnlDFAIxAw4fCgn/yxf8rDJc2BnkcVXKKrAWSQJJcDgJBQjw/hYnor+YKGoccZTc+Lx1IEV3loRI1DePf4Mg2QoHOBSl630YmVVvHhGNENNLNQMQvmFyMiFeWBh3ARj6I/F2F2/rebByFlA1RC8swlF9PLL2/KCJm82KasvXdLJY2Ym7ygkV+xXt3cj+JAcR+SyerDd83lh3Nz5YJZKtS+vKVYjgOWvOhRT8Kfb10GFY0JE6gj+b3xcoaPB0Ffuclzs2T9IQIZYgbhVxd4TcXy2TnmAv71z0leNJ+1t2ZJ/Pf3fnS+hnlJ3hyAs6QZtrYBXa1klGx8a9iVhmVrP9/ev1rNzeynabjWFIxUEYbpzrRqljWs1EiCasaqR2pf7kc0kD3MzfqsDibMjYMBOJer762AN2kFYHhpPFi8BEahkEByN5OrQ7I7bR/SWns1LTcioj4N+GlWDsmbrBROTkcnDosdxx2e+Eb91CrzLsSs9zq/EkYiNYMOEV8mz+1q+WV+MkvGJQZvENMghvnXEYkQG4/7HAHO3vMelsm5bRjGV+8KKDEA7PaJZWSvf9yUiMDHLKa252qser3+9/cLzVSVUaReu+0NphhuemOWfPnVuwK5is8MeTWaSRPuJNc/wUXHtAxq04ptOYzZdoXWzVIVKk433aOWWf0L5pYz1JImMxQRJhsYDiw1Tq6XfDpKG69ZNu1yBSNd1vJpsRd310Qag1zWwgg8QZ3PWY8wylwg04JMJmtHOyvbrdXLPXRyVYgBh99+/cH3Ox3W63T95tg7Nh/vr9aGh9tb1VYlsg7g8IBXH7daEW0/CTo9KQ6j+DAsWTViVsu1aq1uGDYxC0YB25asb3jllrUuN3ds2zg83tjqR+2W1SntPNo16pR93Pef+Gb7gdUblT92gw9XhOeuq634uBR2tz8c9Xfu70QPT7YPWuIgvL9a2ToqlQc7gxWMhiq3WVzWsDY54tvMW4Zgy5C0YcxGadYwy5qTYdAs3B6Py9omzvp24I2Xtb0UTMBP6sMeV9DcEQFc/w4xiIfcae625aZ5uq5Uf3DkrT8Odumj4/ajcIMWjh7cH4mT4cA+egAndSoe3QDBqJeIkeNQMaxaVoVz1/9Pr/50SG5OANKeckQyCYQMeK93sQcRNlByyTwROzjpI7hY3SC7K0fJ67rh2KxnMEZL3bJR6ZL77b0J9bCYhix55ZabesOyyvqy5tNmrYJ9k3HcLy/S4gv6X//ghw5VtKEhGzlIYCkhMqRDsjLqH8vtbfYRs4fjTfBjZ9R2ux/Fh+Ph4xi5TXSPccrkNwpzCi1kcwgFGM4tBajzLXjWe3mS4ECwiFElZi2lTAyUM+gojsza0JHWaOyp9GAsFfidHvoMUYiup7Z7YadaAqdKu7bFUpuuwMtT0uaBAyO9YSyhEk/RlG9z1qY4oLBRglTtnNpTVoceUjH6F8Sed7ake6KPA60rpxtLOhrn0u1gYMiNuRSSf07f2fLeve8OnHPsNrOfRQvE/nfEfrxA6w5oaZviZAHYXQBjNFgAdhfAWgu47gLXlEMXmN0Fs7GIF4DdBTAlHDpeQHYHyH62QOvb0Pp2gHSpRKh/RyCaR/lUR1D8UHWmTzX0Ri39ezRz9+2uiVgqoag330HBW1c7DijKvewZZ/Zcwnkri5dp7HAx3zh7j5WbCqZZwWj+iw7cyB5woqEwAoezWx4b6T+7NAn/4fjs7G1yP1lr76x/eu/eN5t/1lQ=
eNrtWE1vG8cZbtCbgV5z3ix6KjjkLrn8FIhCJu1KpiXKohKLMgxiODvLHWt3ZrszS5ESdKgToMdii/6BJLIYCIqTwEaSfrjnHvoHlEOv/Rt9d7mSKEhtgRwD6kBx3nk/n/dLo5ezMQ0lE/y9c8YVDTFRcJDxy1lIfxtRqT459alyhX2y1e3tfB6F7OJXrlKBbBQKOGB5EVCOWZ4IvzA2C8TFqgDfA4+mak6Gwp5e/P5I96mUeESl3tCeHelEgCmu4KC71POEntP0UHg0IUSShvrxc6D4wqZeQhoFClkC+YyzhFOqkGIfLlQY0avzQASpSaAf6YwTL7LpIEqMZpzHxzOXYhui/cOJK6SKX9/0/ytMCAVLlBNhMz6KvxwdsiCn2dTxsKJn4DSnKTrx2T6lAcIeG9PTuVT8NQ4CjxGc3BdeSMHPsyCRmgb09vVZEicC77iK33bBidX1wtYUgOaamS/X8+WvJ0gqzLgHyCEPgz+nQXr/18WLAJN9UIKyJManc+HXizxCxq82MOn2bqjEIXHjVzj0K9abRXoYccV8Gs9aW7fNZZfX5kp508xXv7mhWE45iV852JP0uxvCVIVTRAToiD81Xl/i41E+Um78uVkqfxFSGUAO6cenIKYi+fIEckH/+Y9ZVj+fdTuXSfzXz94/aUNe4nc7bpTTjLr2CHOtaBTL8NEoVRtGVfvNxs55KzOzk6ThQlN0ogp0nFDmdbOiQdGGkqpmpBxU+2YnxFw6kJsHl3UwI27E96l91rqzAt4lFQDhJfFAESM6CYSkKHMzPt9F2/NOQuvtN/NyQyIcYc4O03KI36WlcHA4ObBJZNvu+MA36odWiQ1pRJy3mUgQisQMOIR8CWiVrdfZzWUyziB4A5kGMsy/TFAI2HjMZwBw+pm1s4xPyoZhfH+bQYl9Co0/s4z05++LHCH1IYuJ7Ws1Vr1e/9vdTJeqSsBSr930BlJMF70xi778/jZDpuIzQ55PLrkRs+OLX8Jh4BSLtl21bFyt0KIJ+BeJ4xiOUylVLbNcH/4ZcssIaEmSGYgQkk0JzC41jS9yPp4kjdcsmeVSBSJd0bJx0YuGbZHEIFe0IKSewPZXrYeohYlLUS8tyHjW7m+ubqy3znrgZEuIfUb/+MN7Px8MiDMY+s1NeuhVzfKHT8f2w1310bTjrz1qq/JDN+wfblW6q/k8Czfue9teXiCzWqpY5bJRrCIzb+TNvIn6u9Ng2n8ixnUnKm+0ui2/WnRfPNmrjPoBvV+UIVvb9Iaj8VDtcY7tLn8kt54G651Do/9gyzI7D0YHFtmw9nqiUib8Sb3TGewOVyEarNxmYUWD2mSAbzNrGQQtg5KGMaFbsoZZ0ewUg2b+5nhc0dZg7He5N13RegmYFH5jn/aYos1NwenFnwCDaMzsJmnLzofYlx5pd1tBpz/5aPp4c69eHI/yT4u7lf3t/Q7bo4Pt8OnGAghGtYyMDIeKYdXSKrx2/Ud69e0uWpwAqDvfEvGMC8mZ45z2aAgNFJ8RT0Q2TPqQnkLOt1f78dua41RL9aJdw2a1bpQr6H63N8MeFNOYxG/cUlNvWFZJX9F83KxVoG/Sdfe706T4+OiHX/zbxgqn68jWG3qyGwlsRrTK1Z5Vn2yY/s5at7/bd7lv1LaCcfg4aD/Wc7oYvoApk0nkr7dpPp1DwEBgbikKOq/Aq+Qut+XiskQwECxkQHnVQEpOpaL+wAHXaBiAh4kJJ4BeInaxVqlbOFHtCkaSNf0sWaI2negNI6eDZoX1xlG2pHUMcwgGNGjIXe9yHQ4hdWDlghs88rzjnO6JEcytoZwTcjoYZ9IdgP+wAjOu5zk9W9Pp8d69nxxq1xCtpX/tLIG5BcwHS1Bug6KtiYMlLnfgQjBf4nIHLutLVO5AZb6tltDcAc1UREtc7sBFCRtPl8jcRubXS1AyUP4/DrpUItB/WkhcB3OkQ+x+oAbzl7reqCVvgUuvrqj1nK6Ewt4VwazmbkoObKow82RaaMlT277iBbhxZDNxTTi+w8iigjn2EMz/0AGE9H92YAhe+TYjNxw2kldMAvV/uT4+vkrhs3Z388Hze/f+A8TTXFg=

View File

@@ -1 +1 @@
eNrtWktz28Ydb5qbTz31jKDtpUNA4Puh4WQoyZYlWaJiypHdxMNZLhbESgAWxi74kEaHuv0C6PQLNFbEjkZxknGmjdO45x76BeRDP0v/C5AiFbmNkZmcAh8o7uL//O3/BXOfTgYk4JR571xQT5AAYQELHj2dBORJSLj445lLhM3M0912Z+9ZGNDL39pC+LyxtIR8qjOfeIjqmLlLg/wStpFYgu++Q2Ixpz1mjl///DfHqks4R33C1cZHxypmoMoTakPdI46juERBygE7JGpODZhDYD/kJFBPHudUl5nEgY2+L7QS01zqUUlFuA/iSddigYtA0LEqxr5kPODM63JsExcB3eIKaObfTMJxQH1pJDBtgm5FMEVIa6RqHXj9AHwLBJU2AysRoX+TM4YIvkpuIFFCf+6KoCL2pROz5mYWchFQr6+egIbQw7ZDPXJTLvL4kARSKrjKnAGYZ5PvCt694r8h/ERi9CSkATEB8an1ixofz8VsTqUmEljvgGABa2SaVFqDnN0FJCzkcALSPeQu8Eq1wNQQQUikblgT5Cbr2arLYudiNKmHndAk3VDGxIxtYhNkQjD+52e/OLUZF9Hz6wH2OcKYQBgQDzMTvIw+6x9RP6eYxHKQIOcQVR6Jwzc6PyTE15BDB+Qs4Yq+QL7vUIzk8yUZFxfTKNSk4zcfn8s40MA8T0QvW3zs4TZY0tpY2h1DOnhKXq/k9fwXI40LRD0HwltzEBh15sfP/7H4wEf4ECRp01SLzhLm54s0jEefbiPc7lwTiQJsR5+iwK2UXizuB6EnqEuiyeruTXXTh3N1RT1f0GtfXhMsPYo+i/804k/KXi4S2MSBQ9eS5I++7RGBdJne+kJ668nJ/v2aciKCsYYZ2BD9xXg+A9khXl/Y0bNyqf7XWfb+4QzYRMifnsKBkn//azItEp+0t+ax8MvTNTjc6NU+MXOKUVbukJ5SMApl+GiUK41SVVnf3rtYnarZk2d5CYk8EktkIHcSE5cVsD2ANGiGwtJqX+4FkGEW+Hd7FkwTbIfeITHPV98YRq9kGIF70h+oURoZ+YwTbWpmdPFQu5/US21j7UUSsxoL+sijR3FMRa/ieBoejYYmDk3THgxdo35UKtIeCbH11ZQFio5UAwZpLo+eVY368+mT2WGeg/OGljc0I//NSAsAG4e6FACOP6dFm0enZcMwvr5JICBhobxPSkb875+LFAEUR6ivoHsuplSv1799M9FMVBFI6tX6N9epAOsFMfmCy7++STAV8YnBL0Yzao2a0eWvYdEtVyrVWr1XqALG1ULP6lWtnkVwr0CKFaNoVV8mZUcT8jB9FsBhEwwdSoyjy5yLRjJ7m8V8GagNY1mZFp1O2Ftj0ge+rPgBcRgyP8eWhhE0By0JyGiy9mintb2xeg61W1tl7JCSP71+591uF1vdntu07naQvrJl7m1VyuPdD+/dGRyMxmzYfRTuj93tQs0/qFr7dw9b1Y0PtHy1WAMvDKOq5XVDh7TXcP1JpT00vNtVZ9UYhit0xNuP+vbDjYebv/PWibU58jbcJw/WwnIhWHf0tRX04LBTDYatUT3o3tt3xoPtVn1lrby9Pqp96G95R8MPSm4LvEHCbi4tKxCbUPh5c5oyGqSMJhMm3yjMEmZZMWMMmvr1Grus3IXm3vac8bLSkWAS+AulvkMFae4wj1z+GTAIB9Rsruq2l39QWa1zr1cbuX5xZ2d/H9+l44PyPUP3Udja2lm5XdDXj7YXQMgXy5oxxaFilGpxFM5N/4FW/e2htlgBtHbSaqKJx7hHLeusQwJIoOgcOyw0oV0E5Gz1jna/9Sj6qm6YZWzl62WzYJXMPNZW2p0JciCYBjh6YRebaqNUKqrLiouatQrkTTzU/P4sabWvf9U1kUANBZoatFpVlkgMBVJrjfoH4cpoY8Me992Ng53d+9YQ+/jI3XyACtAyp3024Vgoqnpch4AAQ90Ssn1fgVd54zikQUEoaTK8arITg6MUky506wDooDei0JHtnI+5IG7XAptJ4IPpUrfld6sFYlZRr1zCUqfNgDkZ0qhnkpHaMHIgxBHx1DQdzhAUKEgUT4qdj3LxWGZBRwf7vNBxYAxwWB8KWo8nGzkVlFNud8ExLqecmAoGkekUEC9v3frpwDnH7vhjVc3wenu8knk2Q+ztEftYbWQxlgqxfXuc4ZUCL8UEbzPAUgAGr/QZYGkA4xgGtwyyFJDhgA0zwNLE2JB6GWBpAEMZXunwGqIga5RpIHs/QyvVpJ/LJv1UiGVvkmnQkj8hZYClACz+vS0DLPu/ih8PsRWCUcizKEs1iGVv3ynfjBDPAEsDGAuF/JnEnF73yIB7W+CyV/CUlYxmmZkKMIsSJ3sHTwPZe9lElgqvkwyt70Pr+wFSuWC++hOBaO7lsbx76vqim1yPUhu1mrxoMbP3artQzamCCeRc7eTz5dx15q5JBKJOfOsyvuJkXhHDUaDQpGy+cfIGNYsCknMBf/6PDNiIL1yCIj8gJsXXTDbkJRF5DP/j8cnJ1fF+tNbeuf341q3/ArgMR1M=
eNrtWk1z28YZbtqbTz31jGJ66hAUQIIUSQ2nQ1ORbDkSJVGJJTsezmqxENYEsDB2wQ9pdKjbU2/o9A80VsSORnGScaaN07jnHvoH7EN/S94FQYks0TaTYwY6kNzdd9+PZ9+vFfB8MiAhp8x/75r6goQICxjw+PkkJM8iwsXvLz0iHGZd7Ha6By+ikL79tSNEwBsrKyigRRYQH9EiZt7KwFjBDhIr8DtwScLm4phZ43c/7Z6pHuEcnRCuNpTHZypmIMsXMFAPiOsqHlGQ8pT1iVpQ1JC5RK5EnITq+ROY8ZhFXDl1EgjNZJpHfZpQEh6AFNKzWeghye5MFeMg2f2UM7/HsUM8JEnnh5Js7qdFOA5pIBWWG7dADUUwRUjFpA5FuT8IwdJQ0MQC2E5EFGTtTjCD35IDEClRMGeZoGJqWjfZLmdSbbkIqX+inktJkY8dl/okiz3y+ZCEkjnYztwBaOqQZf67NzwyZJwnyD2LaEgseRypMQuin8xz25qxTxmx46cECzmDLItK1ZC7O4+PjVxOpBgfeQscpApYnpMII5IoAjMEeenMzbjHEounWFMfu5FFepF0oJu9E4cgC1z33z/5+YXDuIhfLrrj5whjAu5CfMwssDv+7OSUBgXFIraLBLkCF/RJ4uzxVZ+QQEMuHZDL6a74CxQELsVIrq9I37lOXVaTICwvX0lH0UA/X8SvW3zs4w5o0rq/sjuG4PEVo1ipFytfjDQuEPVdCAbNRaDUZZCs/31+IUC4D5y0NDDjy+nml/M0jMefbiPc6S6wRCF24k9R6FXNV/PzYeQL6pF40t5dFpcu3oorFw2juPrlAmNpUfxZ8tVIPil7PU/gEBeOX5umivjbYyJQUSaD4lwyKE7P9m8LwokIxxpmoEP8Z/3lDGSX+CfCiV9U6pW/zIL8d5ewTUT8+QUcKPnXPydpSvmk8+DWF35xsQ6HG785cKKCoteVLeQrJb1UgY9GebWh15TN7YPrdirmQJ7lW4j0kVghAzkzVXFNAd1DCItmJGyt9uVBCHFng33vz5xpgp3I7xPrqp3pRm+kG4F50h5IZxoZBYwTLVUzvj7U9qfZVbu//mrqsxoLT5BPTxOfit8k/jQ8HQ0tHFmWMxh6ev3ULNNjEmH7q3QLJCUpBhTSPB6/KJWNl+nK7DCvwHhdM3RNN74ZaSFg41KPAsDJZ5rieXxR0XX962UCAXELxWBi6snfP+YpQsifkIdB9i0bs16vf5tNNGNVBpL6av2bRSrAeo6NUfL418sEKYtPdH49mlFr1Irf/goGvZJhmTrGJWwghEplU1/Vy6vExAgZq2ULV19Pk48m5GEGLITDJhjqmRjHbwseGsnobZaNSrkKlq4padbpRsfrTNrA15QgJC5D1uftDa2NoH5o3cQh48n60U5r+377CtK61masT8kf3733s14P271jr/mMbT3ceWDX9PYWOr1LVksbe6xu7o3Mjeqwfuh27f2SMToqD1vhngaqVs1KRS/VNKOoF42ioT2q7fHRPUT65PTho3VkfETK9vr+Q4vaQ7HR2beKg5aoeofHoh+iUr10tHnYLYUP9gy7dHRsDLro3iNjR3/aPt3uf3BYRJsla5d99GwI1iDhNFfWFPBNqAS8mYaMBiGjyYAxGvosYNYUK8GgWVzMsWvKPWgFOr47XlO6EkwC35Dyu1SQ5g7zyds/AQbRgFpNapFKtCFabm209YG56zJ7v91iRx92quG2LsJwf8fZbFlbm50DNgeCUa1reopDVTdriRfeqv4DtfrroTafAbTOtNjEE59xn9r2ZZeEEEDxFXZZZEG5CMklnPl+6yj+qmbbq+V6uWzbVrmKcEW72+lOkAvONMDxK6fcVBumWVbXFA81a1WIm6QF+u3ltPi+U/5gIYGSqga1V5UpEkOC1Fq+eFQ97Rs1kwUty6ivf2iQ+xVW75+Ot3fVwqzkTnfMJdVikoeAAEPeErKe34JXmPVN822TBgnB1PRVzajBLj7mgng9G1QjYQAaShF20LNL2CrVqnUTSdYOo1jW9ceyFltkpDb0AjQmroD+6Sxt11QEeQgSNHAo3LZ3KgxCYkPlBjX8yHXPC6rLTiBvHfPpREEF4ZQ7PdCfyx4noXpSUNNqnwzv3PnRoXYL0dnHqprDsgTLtCnNgVkC5mO1kXtMFjAPnXEOyzIsigVG5bgs4wI35xyXDFw4hoYnR2YZGRyyYY5LhscMqZ/jkoELymHJhGWIwrwkZSDzmxyUrH63kPe7WcDkt6MMUOQTjByXZVySpzo5Lvlt+vsCc5dgFPHcZ7IamPzimH0NQDzHJQMXFgn5n3Fr+oQ/x+c/8clvj9lZhubhlIWLTYmbXx8zkPll3slkwXKeg5KC8v9xULlggfrjQuLWmDP5Gp8XiN70TRK1UavJh9UztW6mS9WCKphA7s2MYZiFxc09iwhEXZ74mnwbxLohBsRRZFF2O3GeIWaewRR+sOd/8ICJ5N00EBSExKJ4QWVdPmiXaP+X5fPzm1N8vN7Zef/JnTvfAT6lHnY=

View File

@@ -1 +1 @@
eNrtVU9v3EQUV4/c+AiutxKXzNpjr+3dlRBKWrUpTUkKgfCnaPU887Lrrj1jZsZpNiEHAhJctx+hiRIUVdALR245cOALhE/DzGY3CALiwKUSPdjWvHnz5r3fe7+fD093UOlCihsvCmFQATN2oZ8dnir8okFtvjmp0IwkP95Y/2DzqFHFxcbImFr3gyBHriQbE9UIU1TYbjRB0IbQNlSwJwU81W0mq6CSHMsAhBkpWReszUpoOJKdKCjEjhzjcS755OLLff/KZTBPyu97/uKWKIxiEiYkpv6S51eoNQxRW4/P9n0lS3S+jUbldpm0tQjjTJtYll6FHnhP7FX+wefuMOwOjF0Jd5yGUefgdITA7Z3fniwzhrWZnr8JdV0WDBwcwRMtxYvbl0HJ5qTGv9k/+9BeTpaH1mV6/mxFGhkHtB2nbRp7FQ+cgUmFrYWtgSBqh57UQQVM6lYUt1O7tq6g2KgFqko7XgliGNQT2wDRits0anedQz0pqrps3d6YbXhsexgoNGpCHNKtEofAJt7iwkUSZx+T5WqP3AHjsrdoJmEUJpv2SZPepz+B3dN8TFxLLqsiBZ+e30qjvMtitk26OaWkk3YY6fXyjAANgQIkEKfbPy4Oz2dmev4GGINVbd6mPyxgW0MxNKPpEY063yvUtZ0y/PpEGzCNPjxmNvNffzmdt/X5+oNFR767uDlLXJCV+SDc/yPDNVuMYJPpUS+lx7PKft5CvuSFiXcXc88VaV/9JOuHoXfv4ea1WOuNqRvbUjcM5La0gzx9HmXXco7D9MzaBM7YMT0bI9YEymIHL7xr2V0LSOOXuwSc0/uX+Nzn04tbYZpF0LVIctpNSCfKYtIDYATCBLpJTHudlP955l7+deRmxPnKYqgKMfztRrTvF9zv+5UeDnKuxoOQpqvvPVp9KuTK+JO1ZDt/1L3X7O1aAvnGBnSul3hbwyWFfNC6sD2x3FnyZ7y1tjlf7bRa4xW1LO3mQQzuOvfZp++vosK3tOWbLspyMmNd33ssHoutERiPS28iG4+BZSXY1dCrYFiwAsQ73rId99wqEHD34VLddHT1tZH1QFllcXrgo+AD0yjhzze0g1Qwm4doynLJSoCrp2+hcI24ojmNl3w5a/aVKcoODl7L3P9H5rIw/GeZyyFCyhIgeZZHpJOnnEDUoyRmSZhsdzLOu/RVkLn4X2SOvmoyB0jRYhESlqH9f8S8Q/JeRkkCFDEOwxCz6D/L3GoPa3V3vDfZqfDBR+8+3E3k1p3ktcwtZO535liL9g==
eNrtVMtuHEUUVZbs+IRKTyQ2U9PV7+mRUOQYCCEOdmBQIhM0qqm+/ch0V7W7qm13zCwwSLCdfEJs2ciKIBuW7LxgwQ+Yr6F6PGOEJkEIKdmETbfq3ltVt8655xye7kIlM8GvPc+4gooypRfy6eFpBTs1SPXdSQEqFdHx1ubnw6O6yi62UqVKOTDNMUSVYBNc1VxlBfRqiYFKha0eLegTweme7DFRmIWIIDcpV2klyoz1WE7rCPCubWZ8V0zgeCyi5uLrA+OqZLRoyhggY3mLTWwHEw87ltFFRgFS0gSkrvjywKhEDm1tLaFqs0zot3DVhoaQ56gARNFjfZUx/ardTPdHSq94u90itjs9TYFG+s7vT9YYg1LNzt+lZZlnjLZwmI+l4M/XLw/Fw6aEl+TPvtCX47VEl8zOn94SSjim1XO8nmujIjLbABMVdJaxmpp2jyAhzYIyITu20/P1WpfSiqUdWhW+i3LKE7NsNAG84/Qsqxe0BWWTFWXeWd+aJxCLE7MCVTW4RbqTQ0JZg5YXLps4e4jXiif4A6ra7jWaHrFIOLSJE1j97V+ozslogltKLl+Fs2h2fsMH4lq0H2M7cmLsuhHBNLYiHDDL9hjzfeZYPy83L2Zmdv4OVQqKUr1v/bSEbQN4otLZkWW7P1YgSz1l8O2JVFTV8vCY6c5//+10QeuzzbtLRn5YOcAh/sX1+WM4vrUYjs1albWmpiUVrws9kLNndvB3yl6sMKbTHOYDPzubAJSY5tkurBx+5y9INjR6nDWzo75NLtBK3UoPlvNiH9O26LNLaO5Es4sbtuv6fgw+jkPX05jaFIc+AzwmfY9SxwVmu8dzon4dpnUXkRB9QjlqOdOfgRMMrBDdvjecC+cbjWGV8eSPa/aBkUXGwChkMhpH1WRELNfasR5s3+/TDz9q1lL+6c7kfrpdGl1DaUTa0ku8deBSQgaVMtOcaO10jbludWyhVz2tOnglLS27xSEK9tvy+W9gfAwVvCe13mSW581cdQP0iD/iD1KqUCRQI2rEqFYl1asEFTTJWEb5TbSmx32sHYhG7S8S1fVWroZUohxV2llaPzCARyNVV9xYJGSLK2e6D17neVdbQPuegYaiZeNK5pbTNcR8SK5CdjCd/m9zb5PNha+2OS+I7D71CWZ9om1uTD08ZiTAzBuHACFxA4jftM05/87mvNdpcyT87zbngQ9uTFwMgcM0pi7DWtweDpyQeTEJ+v3Y+Webs8lLbM5ctTnbHW49bBI74+HYKne3NyaJ21dv3OZe4XJM7KG9TKWIC6SnVt5EtyuNW4TGAPFr9jhvOv0TTIuLpA==

View File

@@ -1 +1 @@
eNrtVs1u20YQbq9GD730rhI9FVqJlKhfwyhs2a4Vx5b/EP8UgbBaDkVaJJfmLmXJhg9N+wJ8hCaOFBiukyBBm/6k5x76Au6hD9En6FCSYRk24geodCDE3dmZb775ZodP+m0IhM29j89tT0JAmcQXET3pB3AQgpDf91yQFjdO12qbW8/CwL780pLSF+V0mvp2ivvgUTvFuJtua2lmUZnG/74DAzenDW50L7eOFReEoE0QSvmbY4VxjORJpaxY4DhcSSoBdwBfQwGBcvI4qbjcAAcXmr4kOieu7dloJWQA1FXKMgjhpG8BNRD6Px99empxIaOLm3BeUsYAj4PHuGF7zejH5pHtJxMGmA6VcIYgPBgkG521AHxCHbsNveGp6BX1fcdmNN5P7wvunY9AE9n14fb2WQydYIaejN7WEMRsNb3WRd68hJbKayntVYcISW3PQSKIQxFPzx/s/za+4VPWQidkVJOoNzx8MW7DRfR8hbLa5g2XNGBW9JwGbl5/M74ehJ60XYj6lbXb4Uab1+GyKS2TKr6+4Vh0PRY9N6kj4Ocbh0EGXcI4+oh+UHuM85YN0eW/9Toz6w13puvsa3tblWJ7Z2W5UM0H+jbsbNuFvWo1oLUDr24KvhOEO35GLxKtkC0WiiVVzREtpaYwZbKw6GSr+oJYWs3l1J39xeVmUKvq9czq+oZaouxR0z1wtdoD3exkH1new1nuWAtyOdzP+I2Vh53m6txqsHa4sl3l2/5cJb+8m8m2Vluz0wlEF7ZtY2ajJpa0owUpm61dZ2HP26Dr+7V1f5Gmdh/Mdfhhu5XbfQCHJcrXx+CppQxRRwjzql5U49/FlTYc8JrSip4W9RcBCB8bAL7rIWMyFE9OUYbw15/9USc8rS1fK/iz03mUZPR+G4xkQs0lFqGRyKiZHD7KuXxZzyW+Xtk6r4yibMUKvExI6Mg0tOOVYWNMJ7D9AgFyJpQmKb7eCqgnTJTlwlUL9JkVei0wzip3iv99LH6sbJwOdiSBjs8FkBHM6HyHbAzvBFKdfzPsNMKDJvXso0EnRO8HXXB41Dk0WGgYVvvQVUtHetZuQMjMt6MjfsDjMAiIuCJ6lteyF6OdKx2eYfIq0VSiar92SIDcOLZrI7+D5+hiEtFpDsl/d9tA8hbgFdbXB9VR/xi3CMBFAcexr93opVLp97uNrlxl0aRUvIkGSwzjaLSMK97dNhi5eKqK886VNbGN6PILfKmbmp4paEUwMoWCqheYWco3IKfpJWpmsmYRfsHa2gy9xMX0eYDFBoa3sOxGl0mXduI7Zyar5bJ5zHQ6YXvMCQ3YDBvzPM5BTCf8ABxOjZfMJIwyC8hQkFF/fnd1dqVa+WmHjCuL1PzhBOh7XHi2afY2IcDCRGfM4aGBl2cAvcoi2Zjdjd6WVCPHTC2DCtGzar5B5mqbfeogyDaL3ljZGaWs61llOuHSmWIe6zEYCN/24qS85t+fvDCopOXEsWIbeNvH04Ph7CCznea+PJBNL6ev+0eudrTr8xKbLxZae9VNHAS8sY/qHZ1IXc+b1EDfaMCwHySgz+vOvXOoEBSaTtQC0YrxfMFEbQZ1aeMYKis4KWjoyHijKyS4dRMxQ+Aj9Di26dcLGTAKtJHTWRzT4nh4OOFsz4COUlaT6MSRVCkfX404isLHAnix2+s5GI9AMENBEZ8XOs5JUnF4ExulIYYLSQWD28KqY2I4bkZWj0+mpv4/DF7TtTT4bJiQ9EGSPp8Q9GGCEkv8cMLRPRwx6k04uoej6oShexgaTr0JTffQ1OXhhKN7OJLcoN0JSx9m6asJQXcQdD8nipDcV8ZY+Wa+trrweGrqP/aerWg=
eNrtVs1u20YQbq/upZfeWaKnQiuTEvVDGUZhS05tq7Ic24ktp4GwWi5F2uQuy13KkgwfmvYFeOgDNHGkwnCdBAna9Cc999AXcA99iD5Bh5IMy3CA3lvpIGh3Z2a/+eabHT0admgoXM7ePXeZpCEmEhYifjQM6RcRFfLrgU+lw63Tzfr2zpModC8/dqQMRGl+HgdumgeUYTdNuD/f0eeJg+U8/A48Ogpz2uJW7/LzY9WnQuA2FWpJeXCsEg5XMQkL1aGex9WUoobco8lGJGionjyEHZ9b1Eu22oFEBke+y9zEUsiQYh8OZBjRk6FDsQUp/PXO+6cOFzK+uAnrGSaEQgDKCLdc1o6/b/fdIKVY1PawpGeAhdFR0vHZIaUBwp7boYOxV/wcB4HnEpyczx8Izs4n2JHsBfT28VkCH0GmTMav6gBiaW1+swf8MUVP58x07nkXCYld5gEhyMOAZxCMzn+ZPggwOYQgaFKbeDB2vpi24SJ+WsOkvn0jJA6JEz/FoZ83Xk7vhxGTrk/jYXnz9nWTw+vrsmldTxde3AgseozET23sCfrjDWcqwx4iHGLE32oDwvmhS+PLv5tNYjdb/uIG7XsFPXdvt2Pd2ZP3e1V/db0ic3ecsNHfzNeX0mk3rC17W16aI72QzRu5nJYpID2tpfW0jhp7vaDXuMs7ph3lauV62S9knIO7+/l2I6DLGRG6qxteq91pyX3GsFVn62JzN1ir9rXGyqahV1faRwapGfvbPJ8j7K5ZrTb3WksLCqCLOq61SCqieg/7wiOVejmoNrr3e59t7JuZTju9m9nLH24dVt192twKd2tT8LRCDmkThHnNKGrJ5+JKGx5lbenEj83MdyEVATQC/WoAjMlIPDoFGdI/fh9OOuJxvXqt4A9OKyDJ+M2OE6UUzVTWMVMyWiYHX6VsoaQVlE9rO+flyS07iQIvFUm7cp52kp1xZywo0IahoHIxkjYqvtgJMRM2yHLlqgWGxInYIbXOym8V/5tE/FDZJB1oS0S7ARcUTWDG53toa/w2oLXKy3GnIR62MXP7o06I34y64KjfPbJIZFlO58jXzL6RdVs0IvariUsQ8uQaAIR8ET/RC4WLycmVDs8geQ3pGtL0n7soBG4813eB39H35IES8WkOyH9920DyQwpP2dAYVUf7bdoipD4IOLn7Ooxhmuavbze6CpUFE7N4Ew2UmE6j0TO+eH3bYBLisSbOu1fWyLXiy49g0TSLhZZhmPmMlSsYtJhtFfMYG5m83crrOingn6C2LoEoSTEDHkKxKYHXWPbiy5SPu8mbs5jVc9k8ZLqguIx4kUW3o1aFJzmIBSUIqcex9ax8B5UxcSjaHgkyHlYaG0u1tfIPe2haWagejCfBkHHBXNsebNMQChOfEY9HFjyeIR1ArK2lRvyqaNuFrJnVzKJlmlouj5br20PsAcgOiV862UW1ZBhZdUHx8WIxD/UYDYYvB0lSrP3ne99YWOKScqy6llpSkylCYIagJSb3c5ly8YDZtGHUBPP31o+427eMGl5WUypvHYB6Jx7p67mTHukbDAj0g6QQ87pzU1dzZXqsIBCagTR4dYrgJXpCUr9pAzQaBoAwucIOmnaGWJli3jRwEtrhLkkGGswzl1m0q5a0lAqRJVZLx5NxpmLQNzQ+REhdTz0VFiG1I4EBBos87ySlerwN/dAS442UCpe7wmkCfpgqE6uHJ3Nz/zmirllZHf0VmHGROH4442HkqKzyoxkVYyoIZjMqxlSszYgYEzGeLzM2xmz0eDSjYkyF5BbuzcgYOX7yf+bh31NXheSBOpX8g0p9Y+Xh3Nw/AhlHvQ==

View File

@@ -1 +1 @@
eNptU39oG1Ucz5g/NqeuTFFEZPGcyrQvubRJf4QJdklrZ9cfayNbJ7O8vHvJ3XJ573r3LjbtZm2nICvIHgiDwQbaNKlZ3VLdrNP4g3VCtWX/+IuhiOCcSnX+IaIrjvqaJrWlO7jj3ff35/v5vMFMApuWRsmaMY0wbELExI/FBzMm7raxxV5KxzFTqZJqa+0IDdumdulhlTHD8rvd0NBckDDVpIaGXIjG3QmPO44tC0axlQpTJXlJ6ZPisKeL0RgmluT3yBXecqkUIvmf7ZNMqmPJL9kWNqVyCVExBGHCoGJdp9LBfSKcKlgXFqRDW8GgEqhQi9mgQtSSK+Vq6WBGxVARKL53lKVUajE+vmqy0xAhbDCACaKKRqL8rWivZpQ7FRzRIcNZ0ZfgAnSejWFsAKhrCZxezOI5aBi6huCC373fomSsOCdgSQOvdmcX0AABkTA+UVeaw92WFIskTtnl9bkqcj3AYlAjulgG0KEYKW0U/B8sdxgQxUQdUCSJpxeTTy2PoRYfaYaotWNFSWgilY9AM17lfWe53bQJ0+KYZwJtq9sVnf+3q3R5Klw14ysKW0mC+EgE6hYeX1ryUkpW8FIJ5CogeyZWlMbMTAJERQf+unyqtEAdkyhT+bBHlkdNbBlCe/hQWqQx2xpMCbLwzFSmKJg3WptKVA+lgoI2/uFurJQ7ZZ+zAYedorFPfPy+Kr/X63yqOTQWKDYJ3ZCl8ZAJiRURTNWXVJFBqk1iWMkGbqiHbPFOAE3heXHukj3V1buNnb5wc4tqqI17O3e172nE6vPDCQ3yrMflcUYpjer4NIoABJGKwSIyngl2ttQ17wiM7QHtNEyZBUIwylOEEpzuwKZYJs8indqKkKeJ04EG0F7Xyc/UyooPRWQIw0ptTQTVgu2C9RLKJRSpBW0X7t+A2KQpTBf+2Ty0zlF41op3fl55ta5p8smyl+c/9/98R+rNL9++l549MfIox989cOzI7zuPHa9vmuo/GtpwOHPrH30H8uvfX3dny7VfZr+abri29erc3+9u/HbyyoFXPMGbN/Tep3buutizJSc/vfe2mXPTh/N6y6atA4eO5ILZr58Z2teVTZOrs/Z1xz2DuU2Pv/fNr5HQXH7uqJHLvHb54m8/Td6k/Kl/dP2K9OloML/t/L+RB0/e/sKWmfM/vFjTCx6a3DjFXBcGPune8dn2c88l7mLb7v7rsSe6b5k4WyafuTzZOHo8Nz89e//m9T/2P1LfX30ycuLjAry1ji/M0P6mNQ7Hf3JxBh0=
eNptU39oG1UczxyDFRHmHE7UaYjzdy+5a9okjbNY06lb1zVNg7jKOl7v3uXOXN47770rzdoKdp3+Edj6/hjFMQRtenEh6xYrVNjmP60gstI5pG4yREE6EHQIQ9bhiC9ZUlu6++O4+37e98fn8/m+kVw/tIiO0YaCjii0gEz5D2EjOQu+b0NCR50UpBpWstHO7viEbenXntUoNUnY5wOm7gWIahY2ddkr45SvX/KlICEgAUm2Dyvpa8agJwUGDlGchIh4wm5JbGisd3tqh3jk3UGPhQ3Ivzw2gZaHozLmkyBaDmnQMLBn+GA5ByvQKMdkA9gKFPyCBvSkLTTwkqJfDHqGcxoECmfzi2tLVsOEsuK6Cc8CWYYmFSCSsaKjBDuTOKyb9W4FqgagMM9bI1iRgOWTEJoCMPR+6NzLYueAaRq6DMq47z2CUaE6qkDTJlwP58uMBE4UUTbTWpvDF01zQZFb9DaKXvHcgEAo0JHBJREMwEdyzAp+fjVgAjnJ6whVs5hzL3lq9RlM2GQHkDu715QElqyxSWClAo3Tq+OWjaiegiwXia5vVwX/b+f3SpI3WFxTmKSRzCZVYBBYXBF5JSXPffELYkAQpZk1pSG10oKMeQf2mThVE9CAKEE1NiGJoS8sSEy+g/CIw9OoTUay3Cx46btcdW0+72yvWZ3JtnHb2MW4Zte7xWb3XoDcvHETf4X9wbAYcL/ZES9Eqk3i93WpGLcAIip3andtK3KyZqMkVPKR++5Dvno3BF1hF/j3IVHq6oklgiFlX0iPEtK+FxC1SwWxiX4dsLzkldwJjBMGPBt5Q4gAWYNCd4UZy7Ud2N/asSdSeEeI4T5MiRAHCZZFGEGnG1pcTJaXDWwrfD0t6PD0WOsB9lVIVYP+5gbQBGCgUVZDwuvc9RrLFRbZ8m5X7uGHXEmLh+ZuP53Z7Ko8G5VjP7TPio/NlU4MLLxIz4jzGd/L+zb93bWlTrq7eELd89MQWLxSOhje8ULLjus3//q6LvXQ0YhBv/mZnv/j1qeL87PO0J2hQu+xhfnUprqnBnti2yb0zVsjZgb0Gc88sTAWGj355LaC/7RTuPSP82fs7d+/tXuXkm9d/fWTXZGL+8d3O8cnBx89KjRvn5oLnBpt6r2euTksfbQz9KN6Yfbf5x5uvnXY/ciRjx9Y7iGP7/rgtazswXXfP39j55XlL09evtNSXLrMjkeDWxevvqq/MvZbYODu+I3tLWOnS9Njt2emX1paftDlKpU2ukjb0nj7BpfrP/yBBQM=

View File

@@ -1 +1 @@
eNqdVXtsU9cZT5qtDRVqR1WVtgxxZ1HRh8/1vX5fZ2ZKYhKiYJzaDiRBNDq+99i+8X3lPhI7lD3CJDatr1sQLYVCWzt2m6RAQqCUNqjvBoa6jU1rXa2ok0bY1oKGEF27bmHHjjMSwV+7f9zX+c73/b7v9/2+M1joQ6rGy1L1KC/pSIWsjj80c7Cgol4DafrP8yLSkzKXawtFollD5YsPJnVd0Xw2G1R4UlaQBHmSlUVbH21jk1C34XdFQGU3uZjMZYrKFouINA0mkGbxbdpiYWUcSdItPksUCQIhIgISPXIKWawWVRYQ/m9oSLVs3Wy1iDKHBPwjoejAKQORl3hspekqgqLFF4eChqwWHYkKRq4bKt5LkdTWQhJBDqf1ZC4pa7p5YCHQg5BlEfaHJFbmeClhvpoY4BUrwaG4AHU0jOFJqFwGcziFkAKgwPeh/Owu8xBUFIFnYWnd1qPJ0mglHaBnFHT98nApF4Bzl3RzIoRB1LfY2jK4ohJBk26apA+lgaZDXhJwiYAAMZ68Ul5/Y/6CAtkUdgIqbJn52c0H5tvImjkUhGwossAlVNmkOQRV0e08PP+/akg6LyKz0Nh2fbjK4rVwDpK2k96xBY61jMSaQ2USXluwGelqBrAy9mG+SB2Yq4+ApISeNLM0bX9ZRZqC+wNty+NtuqEN5jAX6PRUodIoL4Va50g8W7U0F8C8mJMbEWclKBfRhGKEnbK78M3ncvucXqI5GB1trISJ3pCGsagKJS2OqVgzR3uBTRpSCnHDjTckfLJEOM6mBB+3JUBpRdYQqKAyRztAeFYhoCVweLa7gKwmoMQPlMOak2Xm+wfS/RxrcFyyr1+kmAGng48hg41PVLYoqlwKgwEBUTOzDOM9UFmZq/0wzpUCNAUo+nga4D5HAi/yuJ7le0WmmplzURR17HoDHSsLC7rgpMrXifkWKhIxaaXY19w4GYZ588ZGc64c2ITxMMcXWmloPhraLmrHrjeouHiJ0kbTc9aA58ziSvzRDTnG4XAih9PjgN64K+amXSwd57ysnXNDxsm+jpXPs9hLiUxFVnWgIRbPJD1jFq0iTJd05nfQLocbZ1pH8BIrGByKGLGAXMpBqyMUFQky5A6yccBCNonAbP+ZhUDn+vpgS+NwBINslOUUj57+tLqmu5uNd8dE/7o1VHOID7X3hqk1XeudKY3NeGLd4ZBmGC1xJRBq6TEeHpC0tSovA9rj8Hq8DEV5AU1SJFYpcDEpb5ILrW00WtJNVKC1IRTs9darQW8kJnUE6Hi/t51R1DUBt0RFpai7K6FCUW/qc3Kcm2v3BrsMkmwWtCZBbpd7Okl7Z1v3OjvVj7OBetJvqyNwb/K4vv6KQgBWCCjpg/bZ5/RRR3DlGvjJhdOwjliLx3lIEjJ1RKRUTISfUEQRXkf+9bKEijtxDYw+nvNT9UxnbzoQbWXCSTfk0qlA2Ej2t1MsGWxIe5L1altTfVci3GNXEvOK4KY9gKrUwU05veUuvAb9/0R1tAPMFzwIKbPnVkGSNYmPx/MRpGIBmcOsIBscHuwqyjc2gXB9pznBUJyLjdspDrkYbxzGQQMemXPe/jcecqVToQAF3GN9rHk46fBbfE6nw1JHiNDvdWM5lU+3n+VLPSkl3q9+Z8WvaqvKV81j4bef+D31vcnzD928f9nOXeTfvhr8fPA7Ny0ia8dGpo6sOml9Qizu0DeOzNSpZ8TxmHns63+cPX15i+Pys9W1Z2K3Nxx5uv18cGbmxOvLVs8Iz01v+f7Z20Z/8aM9D927evmJrd88uOGVd5dfbLsU+Th1zic/dbL4yw3V97Hhzc/IfecuHr//lPnXvU07Pr33N9/88dzyzlOe9+N7lqITZ59/Y1PzrdlP3j24uOrz3kd3hEYuPfLlix3+Hyz/4P5ld37buuSntR+tDEzd/cD4hHWD45W9aCJ7ZcWFmuSZt0BD1P7CrRdrm8cJMJVd/K/PHp8cW9F2crVlorb5nrev7A24ijdPNbQu6WnIdoOfLOr458P53FHP9GP7yaOPpx5Vtqenbengrtim7+78XZGjxy/HuNA9b13w7pvpjP152xc/3Pjlj7PBwS+urFw1PWSd+mw39+GZ019PD1wZ7Boy79t97O6DbeEjL5//KLN0/OO/3BU4OvXv13Y/M1H4E7fnqrl/0dBvHX8/dcsfcvtu2ffrm/I7/rOxiD7IwiX04tyh2DtPffXC2K7J3be1vLd96pN2jHLb7c7NkQsj6rbjO7ePvHpH8YFva6qqrl6tqbq0btXWTfj9v/DeoiM=
eNqdVX1sG+UZTxaJFnWoSFSDsqLezCRGydl39p3PjmVYcJI2TRwnsfM1VqLX7722r7mv3EccG0JZAG2ihepKNVGto6xxbMjSpPmAprRdB6JSK5Ao6YcwaKu0TlNBKfso65BAdO85zpqo/Wsn+c73Ps/7fPx+z++94cIA0nRBkSvHBdlAGoAGftGt4YKG+k2kG8/nJWSkFD7XGonGRkxNKG5KGYaq17hcQBWciopkIDihIrkGaBdMAcOF/6siKoXJxRU+U8w+5ZCQroMk0h01xBNPOaCCU8kGfnHEkCgSEiIAsV3pQ45qwqEpIrItpo40x9A2vCIpPBLtpaRqkIxCSoIs2J66oSEgYUMCiDrCCwaSVNyCYWp2BMpJDRVSCPC4wd25lKIb1sTKkicBhAjHRDJUeEFOWoeSWUGtJniUEIGBxnCdMioBYo31IaSSQBQGUH5xl3UYqKooQGDbXdt1RR4v90UaGRXdah6zOyIxCrJhzUZwEbWNrtYMxlYmaCfrd7KHB0ndAIIsYrBIEeB68mrJfmy5QQWwDwchy7xZ+cXNE8t9FN0aDQMYia4ICTSYskaBJnmZmeXrmikbgoSsQqj11nRl4810HidNO7mpFYH1jAyt0RINR1ZsRoaWIaGCY1i/oyaW8BGRnDRS1gjtdr+hIV3Fk4Key+NthqkP5zAX6MPThfLIHIw0LZH454p7c3WYF+tELGVWE5Sf2Apkwk25WXyr8XA1eGVzODYeKqeJ3ZaGqZgGZD2Bqahfor0AU6bch/ix0G0JP2ETjruxy8fTSaJBVdERWa7KGu8m2xe1QjbWzSxOF6loSSAL2VJa60SJ+XR2MM1Dk+dTA2mJ8mcZjxBHJkzMlreommKnwQWRkm6NeFhmomxZwn4M90qRNEVS9DuDJB50JAqSgPEs3cuC1a0cS1HU3K0OBlYYlnaBoUrXH5Z7aEjCpNm5b4Zh/H7/8ds7LYXyYBc/539npZeOlldDuyV97laHcoiDlD4+uORNCrxV/DF+6U1wHOulaR5RPOemkZv1+aCbA3EK8hSKe6mjWPwCxFFsMlVFM0gdQXw6GRmrWC2BQVtnQQ/Nery40wAhyFA0eRQ143WK3YMeIFQNiQrgJ0MNZAjAFCKjpfmzCnU9LbXhxtBYFBcZUpQ+Ae35tLKqtxcmeuNS0BfNMqlMZ0fWyekN3nTP5u62uuZEUghzBhVi0jFZYZuiaj1lhsMkzXm8DMtSbj9JOykn7aTJ3tbWDp7a0mlmerIUq5st8Vj91sZaprktokFuC+evZ/Vw93bJ7G9iBKqluSEd06RwJ+S7I4JW10b1iamtzva2x4HQtcU9YIKWdEe9O427AUYq6AoQeDYFjG+wrBASK4S09UHXUEv6CBB8CYOgc+VpGCC24IM9IouZABG1wUT4CSQUFQwUbFFkVNyLMTAHBD7Y0+13N7B9mxv6QXNXe0dHA6r3DPp+5mY0M8Elm5uMNo71d0i17u6eZSBQLJ7cMg5eivGVpvBm6f9nVW93k8sFT0bUxS9YQVZ0WUgk8lGkYQFZY1BUTB4f7BrKY87ba3usWV8iwXn8Hp8X0hwDeUQ+jo/MpWj/Ox5y9lehAEQ8YwPQmkl5go4ahvE4AoQEgj4vllPpO/eLvD2TcvJU5bGNO1dXlK4q/LtxY1f7uy9+Rq07/s0jT5ovN/0lPF38+dY1ZLWYfXh29k/xdZ8XnzlUfefn+xam/3pp5wZl4axzof6X+7iRfQ8FUcXw7CfDrS/xF7KvnDzyLRzCXT129cu/ScfWXDrpPRD6Z/9bn+3I3D2TU7+59MbXPf/uPHrxh7x2ve73z+6hjzonJi9+cGH7k2L2oHl/eM+F166NfvDE9N57r8X3fTR57VSilXt5XcPUCwfWV/wxuiO/v/Pyc5+89/T1XbP3jYy3iR+FKhy+V+7+Ecydnp9+9aWc9uuPr398kt39emMVt7rtzLOb5qo2nB6eJda6r6RV5e9XV8Wmd66+673aBvWBh7rCb98xfbb1+RfPXuHO9X2vc9veN8eu7lr/j8v+I/1vrZU3rvpuVxf/sBf9dP1vw+sfDLiy11+t/PaL/5zbFvvBo3MX9TNfrv2Un+vev/D+15vu+VeCKE4xDz7DLnw1f+j86T3N+xe6fvLm/edHtKe/XxS0exy/Mb7jPrxxPHLizMXJqY13jp71fDG/6nzOuWY3rDx3YEhYOH750cO/2m1NkY9Ms3dsvPIV3NTb+cL8qcTQzF5HILGj0maoqmJ+/L4Nj2G6/gt1fZuE

View File

@@ -1 +1 @@
eNqdVWtsHNUVdhpoU2FSUihUahGrVUod8F3P7Mw+zbZarxO/Ym/s3djYKKzuztzZGe/M3Mk89uGIhrokkZIINFFTIqgMdTa7rWOchAQCAUe8qhoRMGobVSZpaEgLgiY84qCUVm16d71ubCW/OtI+Zu6553zn+853Z7iUQbohYXXJuKSaSIecSW4Me7iko40WMsxHigoyRcwX1kVj8b2WLs3cI5qmZgQbGqAmubCGVCi5OKw0ZOgGToRmA/mvyaiSppDEfH5m/SanggwDppDhDD6wyclhUkk1nUGniGQZO+udOpYRubUMpDsf2lDvVDCPZPIgpZmAxUCRVIlEGaaOoOIMClA20EMlEUGeYH+sIGLDtCcWozkAOQ6R3UjlMC+pKfuZ1JCk1Tt4JMjQRGMEg4oqvdpjaYQ0AGUpg4pzu+yDUNNkiYPl9YZBA6vjVczAzGvo2uWxMnJAGlRN+0iUgAi3NazLE9pUB+3y0i76YA4YJpRUmfAAZEjwFLXK+ksLFzTIpUkSUJXELs5tnlgYgw17XyfkorFFKaHOifY+qCte9vDC57qlmpKC7FJk3bXlqotXyzEu2u3yH1qU2MirnL2vQvnRRZuRqecBh0kO+1fUxDw/MlJTpmiP+j2/1pGhkRlAPyuSXaZlDBeIFOjEVKk6DKPRjnkNz9TcUWgmstiTfYivd1AexxqUdLgpt4d8BT3eIMs4Wjrj45Fqlfh1VTgU16FqCESJ1fOqlzjRUtOIH4tcV+/Jst6kmTJ6MoMA5TRsIFBFZY/fD3rmXADamg/PDRfAegqq0lClrD1ZET47lMvynMXzYiarUIEhlpGSyOKEI9Utmo7LZQggoBj2Xh8bmKiuzFM/RnqlAE0Bij6WAzqhQpYUidBZ+a5a0bALHoqiXrg2wMRpRExbYqnKdXxhhI4Uolm59tU0bCAQePn6QfOpGBIS8C9GQxRFC9HQbsV44dqAaopRyhjPzUcDibdnVpKbBAVplnUzEAr+pJvxeb1ulmME5Pb7hCTjY+gXic0ljmQpi6lh3QQG4si5Y+btmXoF5so2CzG0h/GSThsdksrJFo9iVrIZl3swGh2ajmQM+QOcADjIiQjMzZ9dau7vCne2RcZiBGQE47SEdr23ZGkiwQmJpBIa6G9xZ1NCJBHvGWznk7pgxo127FtvxTw8k1VFRWDD3uxQphUTpXyM3+cPUBQDaBflIiYFjNjd0pfLr3Fb/lhfot9Mu30GN9gd7fatH8hBSxc3BuQ1HUJ3humQI76Bge6wIeDuDrNTNtlmvre/i17XHkvyeSiv1RK9am6wI632ZEk30BRDDY0OMpsS4TdUdQggDgFlf9BB97w/Gh18hYOQa/Fh2OhoJUd2VJXzjY5YmUxEfqGCYpKJQl1YRTM/JxxYGYkPyYkmd75zYC3l8WCTNSjezHSqOEp0s1oja1t9vWxTqqd9MN5ihheQ4KM9gKry4KVYf2UKr0L/P1E9fz9YaHgQ1ebeTSUVG6okCMUY0omB7DFOxhZPznUdFSNrQE+43z4SoHgPJ1B0QAhAvxCgQBM5Meez/e94KJRfCiUokxnLcPZhkQk5gyzLOBsdCgz5vcROlTfYT4vlmVRTv11SvGvHsprKtZR8rlzZ2fPqo3+gbpn86N6tAV/dzRu+PRRetvyt3d9rqtMvtH2y4XecnDqKTm5u6Xrv7u/seOMH2y5/OPmyb+Tx2prnXgNPn95Rtyl1Mbrt07N94EenLieWv38cD2aPbgo+8dHFoycfu3Ni13D2WyvPrf6yV/+sdvXbmdF9P1yx6sWJ/Vlr/ea67frKoV5+17hBv6+dSe+ffbbOl+/+29//OX7m8C9u0276sbvm4ce/eFIfWP2N002HjjlCWxzB1y5Yy2pCTz7y9LLwtjr5jZNr25+3z3/33yM7z/q06WnHli0HqG/+ZWppc+8H/9i46tIfl4cLn2eoD3c+NdFWm31n1vXLr+49M7j/9eNfrPzaqUt/umXm7NSI++GnuHNnizcEpyd3dP615dk3D46c1h6cPfHM9FuvTHXvufEnK/68x7N99N2762/f2jMV+k1/APfVts8OT92++8ry2Scuxx849enm86mmdt2On7tvFcA3TXMjv1/xn/T5Yx/Q1NcvRgd6bvV8dal2+wC952OW+n6kcFx67sJU44HSv8QNsd2Few69dKr1RNfMXRUxltZ8tnXjXkCU+S+tood0
eNqdVX1sE+cZTxapoKJJ1YrUKuqG65VqWvLad77z2RfXa12bAPlyiPPFgGWv7177jtzde7kPx06F2rLuowFKj34ghJoKEmzkZdBA2PjeAKWb0KZprbY2dGVbUbV+bIWKbG23MPbacUYi+Gv3x9n3Ps/7PL/n93ue991ayCDDlLFWPS5rFjKgYJEP09laMNCAjUzrmbyKLAmLY+3xROeobcjT35QsSzcbvF6oyx6sIw3KHgGr3gztFSRoecl/XUHlMGNJLOamNz3hVpFpwjQy3Q2uDU+4BUxSaRb5cEtIUbC73uU2sIJKC7aJDPeWTWRFxSJSSktp3QIsBqqsySVP0zIQVIkhBRUTbSlICIqkhp1jEjYt59BiVIehICCyH2kCFmUt7fwkPSTr9S4RpRRooSKBoqFyzU6xHyEdQEXOoPzcLuc1qOuKLMCS3bvZxNp4BTqwcjq63VwsoQekUM1yJuMERGSttz1H6NNctMfPe/yvZYFpQVlTCB9AgQRPXi/bTy006FDoJ0FARRonP7f50EIfbDoHWqEQTywKCQ1Bcg5AQ+XYowvXDVuzZBU5hWj77ekqxlvpGA9NewITiwKbOU1wDpQp/9mizcgyckDAJIazjzo0z4+CtLQlOft55qCBTJ30AvpenuyybHPrGJEC/fpXhUpT7I83z2t4ueq+sRiRxTnTKdn1Lop3NUHN5aN8fvJqYAINFOda3do5Hq1k6byjChOdBtTMFFFi1bzqBUGytX4kFqN31PtMSW9STAk9aUSAsjo2EaigcsZ7QcfcNIC1saNzzQWwkYaaPFRO65wpCz84lB0UBVsUpcygSvFDLCMnkS2kJitbdAOX0hBAQDWdUcYXPFSxzFNfJLVSgKYARZ/MAoNQociqTOgsvysjaTpjfoqijt/uYOF+RIa3wFLl5+xCDwOpRLNS7lthWJ7nT9/ZaT4UQ1z44GI0RFG0EA3tU83jtztUQuynzPHsvDeQRWf6IfLRB5mACAXex/j4QBAmRZ+PRwzHpAIslxJTgnCCzLkskCglMXVsWMBEAjl/rJwzXa/CbGnMwgztZzhSacgla4JiiyhhJ2O4VIMZcukGUjAUD0cbQRQKEgKJcv85hdj6tkjr2mgxQUBGMe6X0a5L1TV9fUKqL6mGWbuno7utqzmX7KBWb8br+mJJKt1p9+iJYAS2mP4Bri2JIuyaoJEGdIDhWL+f8nGA9lAe2kODQKRLTvfEsusYoynSRfvWs2vszdkhke7tZJt7u+wB2GrHcfeQKlJDEh5oirc1qauDba1NXXp0TbSbi6uretqTvDAY6Mlls6KtsVJvLkKqgZYU9oZcpDdlwm+4MiGATAgozQfdQM3PR8glljkIexYfhiHXGnJ0xzUlF3IlSmQi8gtVlJAtFG7DGpp+kXBgZ2Qx7FezJh9L+KW1nuaBboM2jP5MB90bibCbGwPxjl4qJa0aWN3S1DowuIAE2scDqsIDR7HBchfegv5/ovppL1g48CCuz91RBQ2bmpxK5RPIIAPkFAUF2yI51w2UJ5p3RNY7k8FUKsDwPo5LUSxPUX7wODkx56P973gYK10KBaiQHssIzlGJCbsbWJZxh1wqDAc5Mk7lm+zpfKkntfRU9Ysrti2tKj812zvODb9DLT/977rv2M81v9fKyZ6VPwQbXh65e9PbiB6e+dtB5x/PzLTs9Xzx2arMV0LKsjOfU9dTjzAf+GvuadzmX3rshfFafH3HlcLeq7Pvwzdnrz159sSWv6z4bOrdd41TW6jkruWTN54d/m1x53Atdr58YqS7eqVgvAKw9tdtU5O9Vixaq+76/ch1/v0dAw9781OPvOq5Pv3R2GVn3f1TtSNM1VNvfbLXaNjx86na/AvMG9/dfqRx4uwD1T96jHvw8dcld/Mvk77nhx8Y/Xj/n0aPzVR/8uF93/jwz3UzXwq2L2v59te+tfP71T/mLi6/fOwPI9eurHz2wKUll16/98lzdVda/vhSNXpo939q95z+4G3hrmtv+LXDTUtXHPx0o+/vv1t5oevqwz/Ys0TL1Eapicmvz9af9NX5j7Dcc3fd21T86kcRfrxugyrFxNGLVy/M/ubUYXXjjUf/WbNv+VDjpn89dengx+cvrP/FzNKbdmbP8WX17z3o4xDauOPckjcfffri7q591sTJG+xudyiFCf03b9ZUnb8xu/2emqqq/wK0XX0A

View File

@@ -1 +1 @@
eNrtWctu20YUbbdZdVOgS5boqtDIpEQ9DaOwLTsxEkeOH0icthBGM0NxbJJDzwwtyYEXTfsDXHXd1JEKw01bJOg7XXfRH3AX/Yh+QS8lObKR9KF1qYUgzty5j3MfhyIfDg+ZVFyEr5/xUDOJiYYLlTwcSnYQM6U/GQRMe4KebDS3tj+PJT9/19M6UvW5ORzxvIhYiHmeiGDu0J4jHtZz8Dvy2UjNSVvQ/vmnD8yAKYU7TJn19x+YRIClUJt1c5v5vhEwAxt7Yp+ZOVMKn8F6rJg0jz/MmYGgzIeFTqSRI1DAQw5SSkuGA7OuZcwurloiGpk06w9MHhI/pqwVpzbHYsc5U7MgggB1LGHNylvHQ49hCtH/8dobJ55QOnlyNaKvMCEMDLOQCMrDTvJl54hHOYMy18eanUIcIRvhlZzuMxYh7PNDNhifSr7GUeRzgtP9uT0lwrNJ3Ej3I/by9mkaNAKHQ508a4ITi2tzG32APjTsfNnO21/3kNKYhz5giXwM/gyi0f5PlzciTPZBCZqkNRmMDz+5LCNU8ngdk+bWFZVYEi95jGVQdp5eXpdxqHnAkuHyxsvmJptTc8W8XchXv7miWPVDkjx2sa/Yd1cOMy37iAjQkXxmDYgQ+5wl53+2WsRttYOFWyvW9SZv7hxsWiv3bzv7ivQr7dZmU8Xxmhs1mmt78Z2jUN2QXCC7UqxWqjXLqiI7b+UhZFSq7Vc92ryxHK/1Vq3GzaXm+kF1Ua5Xt9rhvYbtdqs7tUiuNMqhtR1ul+93JA706qFDaZnuVNfvx/n8dV+t+mJH7O3mC7sbrVsFqztvgHfxIacL1mJt96DX2L5Z2/TKmPb2G5ux192xSH59qVfxFuXG6uL9zuZeIepccq9sV5A18bBsOVUr/Ty5qA2fhR3tJZ/bJfsLyVQEFc0+HgBkOlYPT6AO2W+/Difd9Kh5c1rCb540oCaT53cZzRlWyVhlbaNgFUrwVS+V6yXbuL6+fbY8MbOdluC5oVlPz7HDdGXcRfMGtLBUTC/E2kXVb7YlDpULdbly0QND4sXhPqOny6+s/udp9UNq03igmRHrRUIxNHEzObuHNsdzBa01no5bDQnZwSE/GrVC8nzUBt2jXpeSmFLvsBtYtSOnyNssJu6zyZFIitQMOIQClZzYVs1+Mtm6qMRTiN5CtoUs+8cegr5nPg84IDz6nkw3OFsC+L9/WUDDQII5OHRG+bF+uSwhWQAlnBqfqnFqtdrPrxa6UFUEkVql9uNVKQD7khq7EKjvXxaYqHhkqbPehTTiNDl/By5aNsYVWnZsWrHLAAUp1+y2XXAYcZyS7VScHyC5nICWNJuRkJBtRmCU635yngtwL506C0W7VCxDpPPGZHxuxe2GSGNQ80YkmS8w/Yq4iGDiMTSuyGTY2L29uL62/O09dLm0UHM8jJNhKFTIXXewxSQkJjklvogpjE/JBsuraHNxN3lWs2iJuEWnVGtXqy520VJza4h9cPKQJE+94oJZd5yiOW8EeKFahnyMWOWjQRpU2Pn9rVOKNa4bMPYpMEVKQQQICC32Onv9u/3Npe7OjTtyxbWPogOvqA5uNSv9AEhEtPegfCcn8lPSyo8KHAQINIRmoPOid23rlYSEoNAcZFWQXU25CQLlhLU0Bwqrm8AVOPZ1utFXwEAtF3xmMgLXU9tu1KoUGK3gdskhqU1PwOExTfKQsh4wVQ6U+BqnxDahRwyVDwkIU7VTMk3pk7nAeeBfGPs+UJ4vOtApbTVeyJlgnCuvBYEB4UykgGUnPDm6vHbt/wPnFLu7Xt/M8PrveBkUos0AmwEw7bEMsFkAUwRIIoNsBsiIFN0MsFlqrMvDDLBZAMMZXrPh1cUyI8pZIHvvg/CDrMhmQWyJEQx/mjPMZmnM7G5sRqbEKgNsFsBErNO/6Okzswy4WYDLbslmnGQ868yZAHM587N7slkgeztD69/Q+neATKVFZP5PIJpG+cAEUIJIt8avMMAfO31ofeHvdLmaM7XQ2H+xUqjlrp5tUaYx90eveEdvIegLWYgNx5SL6cLxK6xcVjBOC4TzDzpgYfQuFwxFklFOrnhspc/b0yz8zfbx8Yvsvt9o3l758Nq1vwCNNtHn
eNrtWVtv28gV7r7mqS+LvrJEnwpRJiVSEm0YheNLLr7IFzmxkw2E0XAoTkxymJmhLjb80LR/gD+hG0daGN7sLhK0223T5wLtH3Af+iP6C3oo0ZEMc9v3Bf0geM6cOZdvvnMORb0e9wgXlIWfXdFQEo6whIVIXo85eRUTIX8/Coj0mHOx2zxovYk5vf61J2UkFhcWUETLLCIhomXMgoWesYA9JBfg/8gnEzMXHeYMry/O1IAIgbpEqIvK8zMVM3AVSlioLeL7SkAUpLxkJ0QtKSpnPkl3YkG4ev4CJAFziJ+KupHUTKYFNKSpppCcoAA2JI/Jp3WbRRPfID9TaYj92CHtOPWeaZ6DqiRBBMnKmKdSvayfjz2CHIDi3z/7+YXHhEze3U7vG4QxAf8kxMyhYTf5untKo5LiENdHklxCTiGZgJdcnhASacinPTKankq+RVHkU4zS/YWXgoVXGQaaHEbk7vZlmr0GMYcy+dCEIFYeLewO4R5CxShbdtn6dqAJiWjoA7CajyCeUTTZ/8v8RoTwCRjRsjtORtPD7+Z1mEjebiPcPLhlEnHsJW8RD2rm+3k5j0NJA5KMV3fvuss2Z+6qZcMo17+7ZVgMQ5y8dZEvyJ9uHSaSDzXMwEbyB32EGTuhJLn+T7uN3XYnWG4cnJre8MnhabkuNmr94wdHe2tbbpdu16W+avZbIbM2D6J1Pd7e1ox6tWZall6xNaOsl42yobV3dw8d/eGTeHh8qlsi3um01h8/WjG39poc1x/W7XVLbB+9DOJXmybVd7Y2+i0ebD/BzlGT8rU9/cT3Hpf39+4j+vRhpRejnf7heqW/pEB0cY86y8dHdmXDOnmw8QptPd0/PNwg69VB41nF5LFb725tyr26ZR8GK5Wj47nwdEvX9CzCmm429PTv3Q03fBJ2pZe8MWrmV5yICFhNfjcCyGQsXl8AD8k//z7OSuvL5uaMwp9frAEnk48tLy4puq08RqFS0SsWfCxW64uGrjzYbl2tZm5aKQWvFUkGcoH0Usm0kpYUqGcuiFyOpas1vmtxFAoXeLl+UwNj7MXhCXEuV3PZ/zFlP1xtmg+UtUYGERNEy8JMro60/WmT0R6tvZ+WmsZ4F4X0dFIKycdJGfRPB30Hx47j9fqBbp+aVdohMXY/ZEcizlI3EJAWiORNpdJ4l+3cEPESktc1A7A2fhhoUPfEpwEFgCefWacTyYUF6H9/V0FCa4KeODYn16P/bV6DkwAYnPqemTFt2/5rvtKNqSqo2HX7h9tagPWcGaMSiO/vKmQmvtTF1eBGW6NOcv0rWLSrSLfqtY7V6diogg3TMWqGU23oVaNh6VbD/jPcLcVgJb3MiHG4bIKhrcthcl0K0CBtOstVw6rWINMlJWugB3FnjaU5iCUl4sRnyPlmdUNbRdgj2sGEkMl47XhnZfvR6h+PtHlmac1pP07GIRMhdd3RAeFwMckl9lnsQPfkZAS29leOkw8N161XbdPsdKodEztEu988GCMfguzh5L1XXVYXTbOqLikBWm7U4D4mE+a3ozSpsPuvX/zDQRJNGr+jLqrpOMIwjLSVUD5r7HNhDPq7veiZd/+YbQah6a1EtLaullTWeQnszU6UZwOsPOE3KGCoB0nA5k3pVvXSzVyaH0saEM3U9LpmNOCUGAoYNG0XQiM8gghTF27UdivYqTRqtolS0x6jOJ2Mz9Nx5ZCBugi2wbJE6uJZNg5VBPyGwgcLpdn4VGHBiQvDDcIIY98/L6k+60I9dMRUUFLBORVeG+KHsZJpvSip2UCcLO/d+8mhNoPoqTdUC1juwKI4kFSBy11cpEcKXHJwERj6dIHMXWQwZ/0ClxzG9GlY4JKDCypgyYWlj3gxknKQ+U0BSg5dvgi/KOooB5j7BCP41lxAk8OZ4tEuf1AjUeCSgwuLZfqVO33TVeCTg0/xfJffZWhRTnm4uJT4xQNeDjK/LEDJQPn/OKhCskj9aSExS+ZMhdyDSLan7/jBrZG+7r0JayZulFTJJPI/SSp26fbZtkMkor6YUC19Te980oUUUOxQNhOc53iZNzBFH9L5HzZAMPmtExxFnDgU34pYT99Up2D/yPb5+adLfL7W3Fl/ce/efwHj3HJ7

View File

@@ -1 +0,0 @@
eNrtVnl0E3Ueb4GtgAesT1dQjpgVdbWTziSTs+RBD5IW0jNJL4p1MvNLM81cnaNtWrpWLD4flC0p4AG7rpTSYFsK2AJySlFXFFRA0aUooOyKBy5KQURQ9pc0peWh7/n28d66+8wfyWR+3+PzPX+feaEKIEo0z8V20JwMRIKU4R+paV5IBOUKkOT6VhbIPp5qyc5yulYpIn34AZ8sC5IlIYEQaA0vAI6gNSTPJlRgCaSPkBPgs8CAiJkWD08FemNTatQskCSiFEhqy+waNclDV5ystqjzocJ9kkr2AVUlIOCPqKI5VTIvyTw3TR2vFnkGQDFFAqK6dk68muUpwMAXpYKM4DzC0hwNpSRZBASrtngJRgLxahmwAoxEVkSoi2pQ+IbnmX7XckAIG/QqXCRQqHzl0VKj5gg2fFoK5JIoHChAAYkUaaFfRm0H8lC4GiggECLUg8mTwjYEEeZElGkQ+cfwJDFgPeoboqW5UnVtLQwP5pgWAQWhDUrCMKOSvKcMkDKUrJ1TG/IBgoIuGlt8MDvBzquTv44gSQBzAjiSp6D14NrSalqIV1HAyxAyaIMZ50AkzGCbHwABIRi6ArT2awXXE4LA0P3uE8oknuuIVggJA7n2uC1cDwSWk5OD3VkQRFJ6QnYAdgmnwjQGTIOtr0IkmaA5BlYdYQiIp1WInG8beiAQpB8aQaIdGGztV+4cKsNLwdUZBJnlvMokIZK+4GpCZA1419D3osLJNAuCoZTsa91FDwfd6TSYVmPacJVhKcCRwdWRRtp8lTKQxQBC8tBGcCXaOZAfBnClsi+4SqfVrRGBJMCeB4+1QjVZkea1wFqAfXtC0d5vzpo1UMSjMXe0pMK6BHe4fEq8CjWoMghRpUW1ehVmsOh0FhxX2TNcHSlRN64fLcMGl0hwkheWYsZA2UOkT+H8gGpL+dGC7wgXHEYThg9HCwFVAi8BJIoq2FGA5PZPPZKe2tXfXQgvlhIcXR1xG9wRqXxldVUlRSoU5auoZFFzNa6jPUAhvd1RFTgCYTcQEMJKwVW4Tt8ZPRnIfRuMFUUwFEGxrVUInFXA0CwN8xn5jq4eKdiiR1H0xWsFZN4POCkYwtHIZ+dQCRGwsGhh34NmcLPZvP3HhQZM6aCI2ajferWUBIaiwbSs9OK1AlETzajUUTUgjdBU8PA98E8JoaXMHr0eJylCZzR4dVrMRGBmwmPEUEyvA8SW8D4goZVwMQVelBEJkHDPyoHg4XiWqArPmVUHRQ0w0kS4HklGoYBT8aTy4RikRJUgAoYnqHWkFyEJ0geQ/v4LhlILM5My0lPanBBkCs/7adDUGzuupIT0lnhYK5UXKChnUhiHO60cNYvJQoEsukRjEup345WEwNJYSpqU5EzPsfMIZsQxrdFk0uIIpkE1cEoRh8dv0uWSdjTfp+NLAnaz35lRaMygdTPNmWhBmZMRGCXTpfHmutOqzclV2pmObHNWkjbXVpXkypNmZmp0eHlmJenT0kwuhuL+VNLuNThmCTnp2Q5TmQE3G4n8HFdWieyHUQtw2VoTElWwYeG+lKzRsUHg2CDhoTFa0IGhSVRRkcRYNVevyERVGry3sjgmkKhyhjMM4C/c205aBtZMngOHl8LEKBU0Zc0kst0FAb3bnWVMwryluRTvtpFKURrhChQVlZXn8YYkD12ur/R4MoZkxmjEETSaHAOKmyKtOQj9P0S1qQAZugWQrMhFBIvL8RJHe72tTiDCqQq2kQyvUHDbi6A1xYbkJhUGu80YqcMxwmMwGSicBFokGe7RAWtXdkZL+KoIEQxsvAoy2OXTWdUwlTp1ooolrCYDnLHINf5oa//F9Wrs95MXjoyJfIY3OHP4FejYP57MLzg/4d7krulVs7ue722zyssMa/fWF0t1iWTNpvTZMy6cXnJ3bBM4WDX9vdrztZXnD2++cWTsQ9NtdYfe3WBb+JUl4zS//Ejo3N6LzT98c+GdD/s+fODW+FtnT3kP7bvp3Lf1+yYW8k+XdU9/bdkpwrvYcratj8Ial+CL7pi4f82w+SF37/wbbzcUn0H/9PGMcVM+mmpd7391fNGePY11Y5MrPjx2/g83zn20IbWLbEny0/MX35xeX5ez215XtHftqoM9zIhnmm5Zzc/ZlOyICS3dM/52T/wHj2x7PYAvHB1cN21u+iPH+iqPbT7w/pEzJ777W+ekT1NWOD4/d3DdVv8aZspdjuXHU6YmPmgbmdYrfzB6zg8N7x7yvfVpfYzefeQ5eafyd3b6/bYdx+NeuLn4wS8ulY+5r7tW+OyS9PETPS9sdE3osLxy/rHzye7eNfYa75SlxeLsk3HPf2lbbrlrQruiPGfdMnW/Td/7z8zvkz8Dd6QnjD5x8c6eC0eGf7p0lach4cTh32zcPt0eqNz8suRZeqigYd/XhQc2HS8bNmLJ65e5T5oqplmfOnR5T2MMuWbi77YYCoQKy1dPe/fzx146GNe47fGe5sPi41tO+C6xtxUczDubGPvNIQtzpmnv6EWG7bNvul+ZhCxpr+/sbJ4y4uLxMbDOly8Pj1m499ZX7h0RE3M9meGwnOvDDOOHaHIKw1w5JuAtBLchfN9PAktIgvlJJkhDHqYOC5SkzMg1lTvppMIKNG+WNz3FLpmLiCLF+HPoIiGWKixEAr2oa4qv0LpitUVVrO7HX6yuVYc53VDY6vRwuJLCcQHNYHhhzEOhl/wMjL/y5F958i+VJ+vN15kn6/+feDJu/l/hyej158l6j8ELtJQR1eEoYaSMmM6DkqhJqzNjqAkjTP81nqxPqp4VcNjQnGxthZ9zC7NYxlxt53J9AYdU5GYdgUwnmYWasllHziAb1F/hyRk+Zx5fVe0nBV7Qp4KkDGehKblcq/X4gSYnA6W5yjRCyVNm+sopv4Mql/SFvNGuoXL4alsZW00bZPsMtsgrAQOa7MqbZeRmujWKN4DZZ2T7s3MdnLmoxGPSZqQmp5vSfy5P1l8nnmxOE205zvI02sPYyqkiW7U5tyDgd3kU3FjIYeXmUszmrKCNKD4THZIZHDX+MnmyVw8oyuQ1UNeJJ68Z5MkRDtWQ28OtQm/b3nf7k2+vHPZGXBO52p1ndvdavyybX3wxllv0V/+0TYvaLl18Y/HjLnb1Q6Z928d7nz02a/e49xfw45/aoTKblhx999zbk2uwf710+vTkWxKPLdv8xZucvfHcae3J9jW7ttUsPtu2tclkGt5y4K3us6qRzf6HlgVyDilfs+o418PNHdLSJ5++pffz7j0LtG+24euyPp+0sX7X5lNZu8eRCe8YP+ke/eyFJ0F7PlU3NvWGuTWTPA01+G8/Uo+YmFbwcfv8pb5Rp277Pn/MqVEjzh1/ZtOpuOErgWU9WlTz4lZXwPeayiMm3intbjw5Li7x5NeaP3+rO1rWnnKsamwsewmo5LmexlHkI6GtJ1bEfRCYMEFfP+bhVYR7X8XcwjPJXOaEu0d17VJ2frerI2d68gphA6KZfyoJeQNs9LjuTHjiH81nLsZPDry9ceOXOz0vjc2d9/vsRX3Pdc89Ujm+b2zCV10b+haEdk2tuxyagrf0vFaavX/BgX2VPS/fPfamjHb2hqMB62T7F8uZOXPyPdJf1gZExw/D+yntPW9mrnwAPv8bzps/8g==

View File

@@ -1 +0,0 @@
eNqdVXtwVNUZ3220OjKDBRGwHe12BxBr7u597TOzbZNNWJIQNskueVSZ9Oy5Z3dvcu89l/vY7C4CFTs6KOJcH6NC21ESdp1tComkKAgqdup0QFQmOhpbqrYVaXV0aJyxiiU9u9mUZOCv3j9277nf6/d9v+/7zvZiBmm6iBX7iKgYSAPQIAfd2l7U0CYT6cYvCjIy0lgYbo/G4kOmJk7+MG0Yqh50u4EqurCKFCC6IJbdGcYN08Bwk3dVQhU3wwks5CZTm50y0nWQQrozeMdmJ8QkkmI4g861SJKws9apYQmRo6kjzbllY61TxgKSyIeUalA8pmRREYmWbmgIyM5gEkg6qnUaSFYJYMPUiC3torcU0wgIJJuHhtNYN6z98/EdABAi4g8pEAuikrJ+m8qLaq1DQEkJGKhEUCmokr1VGkBIpYAkZlBhxsoaBaoqiRCU5e5+HSsj1SwoI6eiy8Wlci4USVkxrPEoAVHf7G7PkUIqDsblZVzMaJbSDSAqEqkMJQGCp6BW5C/MFagADhAnVJUkqzBjvH+uDtatfW0ARmPzXAINpq19QJO9/MG53zVTMUQZWcVw++XhqsJL4TgXw7r8Y/Mc6zkFWvsqJDw3zxgZWo6CmPiwnqb3z9ZHQkrKSFtDDM09oyFdJW2B7ikQM8PUtw8TLtBrfyxW+2NvtHWWxL/Ylg03El6sY/G0WeugvY42oDlYmvU4GG+Q44I854i0xUfC1TDxK9IwFteAoicJFU2ztBdh2lQGkFAKX5HwY2XCSTZl+KQtKZRVsY6oKiprpIfqnBkMqrnx4Ex3UVhLAUXMV8JaxyrMD+azgwI0BSGdGZTpQJ7nxAQyYXK8aqJquByGAKJk3Rpiae/+qmS29iWSK00xNEUzR7IU6XMkibJI6ln5rU6nbg17aJp+/nIFAw8gMsdFnq48L87V0JBMSCvHvuSGDwQCR6+sNOuKIyoB/3w0hFE0Fw3DyvrzlytUXeyl9ZHsrDYlCtbkCnLoYz0AIS/rpZlkgKYTwMvxnM+T8EGO9UEv7z1MJl+ExEuZTBVrBqUjSFaRkbMma2WQLc9ZiGM8nJdkWucQFSiZAoqZiUZczkGvc6gakjAQDsAkBQFMI2qm/6xiY+/6+rbmcClGQIYxHhDRw+/Zl/f1wWRfQg7lUNwTiAs+RsFrNrV0xF2NmmfA71Kjme56LHd3x2TI5tRIjO1rohgfz7A+v5/lKMZFu8iUUk39PIwMCp2eVj7CmevyeqSzKSA2RrubeiMZF611NRiDjJoRcS4Qz/Zgo9/or491d3DqYKx9TS6Xp1vCrfGe5oS/q1Py+dZJ0J/IJnztZnN8fdf6dfl6r9ri6W/pEPPJNpIiMNIhd52DNKxIih6qjg1FxoYqD40vSM8OTZ1DqBQm5Jq/Iusca8lqjypSrs4RK1cYkX8go5hooNB6rKDJR0lhzIwohMxNG3LxCNfLh1k6BnSlK94Ge/yg2aer9AbIrkl1cJGGgWRLfBDPqQzrZSi6WhwvzfsrrXkJ+v+J6lAPNXcLUFF15g4rKlhXxGSyEEMamSqrBCVsCmTba6gQXkN11vda4wEGcjwDOC7hY3mB4akGskdnvf1vZwyXr4oikEjjZaB1MM2FnEGe55x1DhmE/F4yY5Wb7u5CuVGV1B/sQ99/4Fpb5anZ2Xl81wS95OjHt9/yI9/q5pOrvtg+fk18/OSOBYsbLPjSiuTNPz6ZWXqiNL3rl+Ntpat3tC7k8Crujc9X2n/W8myIPj3l+PZvJi6Uvv7Xafma9z960K9O//uFc3vOfvj0ha+/2vh7b0f9qeuXfLg3f3t69Lv3OLmJV35w/fKNU9rjy9CGG/+0Y/navbueff1eI/KPp3a2PDDy7r7eJ8++3XvmkcXnJm95caXN5p7wneUXbxsLCXsWsE99eTR86KWFdjoSdO7cfOCuD1aNnmq4jrWfWvKfn/904nv+N6Pf+fPLtz5xtTq86FvNW78ZXRqUIm/ALNe/5dXoOyt2Bz955nzq4v3PnVj9/jsLD996w/Q/a3q9Y8WrPrjwVvbobcdHho7fG3zzht3pnlOK1Dv1ykcfo9Gf3P3JjVsXnXni7cU13e8dWPrqVctCJ5oOS48/1Hn6/rVdj/Xd99WeL++848nPtn26rOHacTuSb25ZqSxww4V/W3Rx4NMjf72Nnjr368deDq42zt+04tBdb02J9LYv7Pcd2VAIp361+/Oh35mZbqX14tY9Z8b+/ug3dptterrG9hlmzlM1Ntt/AUZXjK8=

View File

@@ -1 +1 @@
eNptVGtsFFUUXh6RthaiwUQMaCcbEB+925ndZemuMXRtS+1KH7RLbQHFu3fu7kx3dmaYudP0AYlUIU2BkMFQAsEX3e7i2lKaklSiqDxtgKRAiVqJVQMiVqBi8AHa1NvSAg3Mr5l7zvm+c77v3KmPV2FNFxV5UqsoE6xBROiHbtbHNbzawDp5OxbBRFD4aHFRqb/Z0MS+eQIhqu7JyICqaIMyETRFFZENKZGMKi4jgnUdhrAeDSh8Td/GOmsEVq8iShjLutXDsXZnunU8xepZUWfVFAlbPVZDx5o13YoU2oRM6IEfSxITwQxkKmkxAwOKQZgAhppuXfsaxVB4LNE0JEGDx8ABBCiGDWCnBKyDXUihCI6odB5iaBSftbFr4wKGPB223/JoVFB0YnbcN0A7RAirBGAZKbwoh8y2UK2opjM8DkqQ4ARtT8ajCpmJMMYqgJJYhTurgU6gKEt0LkDECKatmh8VFvlX5eWX5RbGboOa+6CqSiKCI+UZlboit45NC0iNiu8PJ0Y0AVQomZhd3vE2M4prqB0yw9qcbhu7715qCdKOY+po/NN7AypEYYoDxqw2Y7eL996bo+hmSwFERaUTIKGGBLMFahGXc8KUmiGPDGrGs4vvpxsL3qVz2Di7LbNjArBeIyOzJQglHXfc8eBOSYIa6QCsC7Bc1wRoTLQagBTKYH7I7h0XUMJyiAhmM+dw79GwrtINxm/FaBkx9Poo9RKf6o6Prd3uolfGN2FTNIe6ah70C0Y6w7qYAqgxlHgBw7k8DodnAcvkFfhbs8dI/A90qcOvQVkPUqdyx5cmjgRDDmM+kf3AdUmM3Swg8uZn9H0Vy+VFjBLVtzQYUivD4mpfdkmuXIjzDtzVRdFCUBZrR2lH6vrmOtwuxwLeEQA4EOSB0525ELjddg4E7PZM3pnJLXTyruYqEZoJzsYxIUUJSbgdBQGCSMDgtjRmPKei0FuQn91aDkqUgEJ04IchMyorMo6VYo26YSaQpBg8XX8Nx7IXgxJvhbnfzSGHk0OIDbpYJ0J28BJdm3GZ7sgQHbk7o7+BddQKjR4dm9SYtjHJMvpM4U3vlt6s1PXDjddbtu/3dTX4DrRmzWl882RK8qTcM+wFsmHJFfaCmLxs+AVf07asXek363p6mtpnzXFlXixdoaRdORL+/otzXWn/3fht6Je2J6/GH59Ztqf35c5GzTX/cMo7Rw9AbUbF9OfLMhuaG6Z/JzQ2/ylfLbh88tbez+teHxx4sUxYv62846a2dueeG/pftpZDU+Ytx+zvm5fUD56dSba+sfXsnJvdaUNTC6tbHu5RdyyrkN4f/Km7vXvn1uRzvVP7d/262pcX7Qn+7bV9nDqwuf/I7NOPda9LKX8i6UTS9g+eSr34yIWpCCataaqesaZ2yfkvvYsHTmya/+zpfDjNe+iZHHsFTDpzLPlUsfZj70P95uGs050rGdIp/sxseO9S+aLBYPm50uWTvx4Qma6VBw+d/yal88S3T9srZs2eW9XWdPSfafytpQ0AHpl3POXkHzsuNa77anebr2hXR9+15/Yfr62MWJu9nwy9Wrzoes7xoZ7o5R/eHbpW9e90i2V4eIrF9ARTHZMtlv8BHmuAkg==
eNptU39QFGUYPhQbUhmIGZv6R3ZupBqHvdtjr+OApomOEEQ6hBsGRhM/dj9ul9vbXXe/xQO0ApnUKZlZSy2omYjjzllJpSgkMSMpayAHGkeHqRwrM5pKBRRicqDvTjAZ3b++fX887/s+z/s2hmugovKSGNPJiwgqgEH4R9UbwwrcpkEVNYX8EHESGyxyl3jaNYUfTeEQktVMqxXIvAWIiFMkmWcsjOS31tisfqiqwAvVYKXE1o4eqDf7QaACST4oquZMwkal2VMJ80IQtmyqNyuSAPHLrKlQMWMvI+FORBQxeaAgEH5IAKIaQxCgUtIQUQmBopp3vhQBklgoRAIZAWgsJGmSA7xPI9NwHYqm0iNwCPplPBjSlEgVykLtDHMQsHjsS6bEICepSO+6b5RjgGGgjEgoMhLLi179Q28dL6cSLKwSAIIG7lGEUa50wwehTAKBr4GhO1n6cSDLAs+AiN9arUpi5/xMJKqV4f1uIzI6iRkRkd6TvdCHtagWMy/ilmmHhToeIFUEeFHA3JECwC2F5Kj/5L0OGTA+jEPOq6qH7iQfvTdGUvWOQsC4SxZBAoXh9A6g+B32j++1K5qIeD/Uw66i+8vNO/8vR1tsNkt61yJgtVZk9I4qIKiw6y7Jd1MMrBVNUg6SsvUsgoZIqSUZCVfQ26ijCwQKUPQiTm+32TMOK1CV8bLCXSGchjS1MYjFgkPfhOf36wN3wYLUbwRzsGz6KQ+npRK2dMLNICKyJITNnkmnZdopYl2hp9M1X8TzQJW6PAoQ1Sqs1AsLWxFmOE30QdZwPXAfjPkjInlW78PvCspGF+Ruc2nFG9VAYVFengLp9EKQzX8SIBlB0lgS4QuEZHTYANJHiUo7nWG3MU4nTdMOSDkhpKg0J2ScjN3BVjrp9hoe6IbNYiO8kuQV4DFXLukCDAfJkiglejin/MXswnxXZxlZLFVKSCU9wKsHRUmEoRKoYBV0I1oa77UCQzi9OLtc73aydqqqislgYYbdARhAPo/XZYGeu+MHI0cRvfQGLIGCTV/FbE9+Pc4U/ZZu2Fjh++G5lXNrW7ZM/NLU/XDs7eKxM3knv9/t79gFm1rdzdKzBefyD51fMXPtzLWH6pNuz64fa+xn9r63emqw9eKtyetTJ2Zvjxe03hz/Z+I7/+eXXvlyiX+M9+hGVuKjb69pfrUkvro5fsVfAyUDSUfGPgrPVF86MXx15u+JmlObyfSyrSnCwGu/TQ+ezmnvGcnal9TzFhe6fPnJ3tjTwZTDKf1E74/jzRWtMX03hp7Y8vMzhscovb717LSntzP2wrBpX9ZI/fpCNjl3uvQcvcz37k/9S8uWX+mPXftHnJLw+9Z453Dir6adVXE79geW7whIm74orTMm8xL2tx0cWt3YQO+5cv79FSNnYzYfevoGiHGzw490p3rjbnEttXvaOro+fXy7mnqhqGX51QtF617+rK7hYvIyI/+0+4rnsYI1U/WDe8etbWhoYBX4NuPrJZM335lobPhXqH/zYFlXX/mqp0ZndzuO/HkrATM8N7fURLZuWDkdYzL9Byv+bUg=

View File

@@ -1 +1 @@
eNqdVX1sE+cdDnSsdNqg7WhHitrerFYgyDl3vvP5S+4WO1kwIbWTeCFmouH13Wv74rt7L/fh2CaglbVoKF3bK6hp1Q/RJNhtloQAUUrDR2Gj2ibaIjZ1ItCVdm01NqXrumkIqSvda8cZieCvWbLPd+/v83l+z+92FjNQ00WkLBoRFQNqgDfwjW7tLGqw24S68VhBhkYKCUORcFt00NTE6bUpw1B1b20tUEU7UqECRDuP5NoMXcungFGL/6sSLIcZiiMhNy1ts8lQ10ES6jbvT7bZeIQzKYbNa4tCSSJkSACiC6XxJY5Mg4hDoOm2GpuGJIhtTB1qtu1bamwyEqCEHyRVg2TsTtIwtTjCdrqhQSDbvAkg6XB7MQWBgFt6aiiFdMMaW1jkAcDzEPtDhUeCqCSt0WReVGsIASYkYMBhXJoCyxBYw2kIVRJIYgYWZr2scaCqksiD0nltl46UkUorpJFT4Y3Hw6XaSdy3YlgTYVxEXag2ksNoKgRt52g7PZ4ldQOIioThISWA6ymo5fOj8w9UwKdxELLClFWYdR6bb4N0a38z4MNtC0ICjU9Z+4Emc+zh+c81UzFEGVrFYOTGdJXD6+kYO+2wuw8uCKznFN7aX4b89QXO0NByJI9wDOsVamwOHwkqSSNlDdKU+1UN6iqeDfizAnYzTH3nEOYCvv3bYmVIBsJNcyR+UPW9oXrMi3U8mjJrCIojmoFGOCiHk6A5L8N4WQ/R2BwdCVbSRG9Kw8GoBhQ9galomKO9yKdMJQ2F4eBNCT9eIhx3UyofjyEJsyrSIVmpyhrpIFtn1UGG6g/PTheJtCRQxHw5rXW8zHxPPtsj8KYgpDI9MuXJs4wYhyafmKi4qBoqpcEFkbJuDTI0O1Y5mcN+GPdKkTRFUvRUltQwFJIoixjP8m9Foro15KQo6siNBgZWFRZzkaXKnxPzLTQoY9JKua+HYT0ez7GbG82FYrCJx8VNLbTS4fxqaIesH7nRoBJigNJHsnPWpChY0w/gm06WYwDnctJ0nIlzgHYybifPO+Jx2gGcXMLlfAPrXORxlBKZKtIMUoc83kdGzpqukUG2pDM/g/043KmPEBVeMgXYZsbrUakH3UeoGpQQEA7wCZIHfAqSs/NnFetjD9c1h4LDbbjIIEJpET5zYdHKzk4+0RmX/XqCozktHNmoC4w9vSnTwWyoz6wPqmZrY0NQkNrzrhTNBc0mj9xD0i6WdrjcboeHpO2UHauUpELOphArpSI9kiMUYlvr8jFRocS0XbBvyCWNpBM1mNFQw8b2bgwzn3C2bwyCSDYaVpxNdTnUGg8505nG9nadk9nopqA7nd0cyNY1uzqCsXSek1uEaCJmpDwUZW+I4RaBkfLX+gg8sCIG3V+RDYllQ5ZE4/JSc6LxEUIZGL994Yr0Eevxfg8rUs5HtJUQhvgKZNgmGtD/MFLg9F4MjJkRBb87Bto7pM0bOsXubn0zciZBc93miJnPIEHgskoItCQ6+fWmqnW75yHD0k6SqoDDUay7PJrXS/8/q5rsIOdvATKszr7IigrSFTGRKLRBDavKGuYlZAp422uwEPwR2VoXsyY8NM+wNO9h3dDjTiQ8ZADv0blo/9sZQ6VXRRFIePAyvHU4xfhtXpZlbD5CBn43hzVWft09WigNqpJ8a9Gx+/uWVpU/t+Dv118/0XpKuUh9+/hf1rlf2jOQufv0O/CHj27Z9TK3Ynp82a6ac5P3xO6sz8daPrl0q0eZ2bpqvG9Zb2/4c6t3S9XSwbeWPdb14C/t59/b3tKbi5y9OPjum5/9AHoe6n3yhQPTH3187WB2xZnT/3iPWbuD/9OaS0v6pGO+X68dEDYOT1/Z/izqs7256qfvpid2//Ebj4wibt3f+U83vR47Uf38qOtboZkPv1xc9aGZ3dNY/KL//KnP/jn6++9bUmTG3lxly7+wNnBndfyvHTWrI7nfXP7mxS+vLJk4d5IMPO4I3NVy377lKvt+IL30nu/K937H+9Wil9/fc7TxwW2BfXd/tOa2fP/PDx26qlwLnZ5a/Xxg6oMLB3dMHZk8cdu5Teyf+/Pyi69MPrHmd0c/efr8rfS+4pKTTwHvVz/eesfA54v7Z5Zffmbr5ENndov3M6pv50zswmsn7ludH23vEsSadwrr9kbJv+32jAauXLhaPf4cvPaHty9NnH3jF+lrjTsW7/3VyVfP3N6yyrw329X33Ni/O+X+6uW7loD/iCuelaiCPzUC0dmeBy4/vvLoIW7s1MqB6ifF8/8Sv1hVouiWqgF09VwT5uu/A4Sdew==
eNqdVW1sG0UadluuQoJDOqVAdRLqYsEJQnez6931V3Cp4zjNR12ncUJT0J1vvDu2N96v7sw6cXL9cYWrQNypXVqoysePUscuJm2aNrQcbenpuCvtFXEH3J0IEhVV+VFAgBAoIEGBWce5Jmp/3f7weGbeeT+e531mtlWL0EKKoS+ZUHQMLSBhMkHOtqoFt9gQ4UcrGsR5Qy73JlP9+21LmWnOY2yicEsLMBXGMKEOFEYytJYi1yLlAW4h/00V1t2UM4Zcmtk55tUgQiAHkTdMPTzmlQwSSsdk4u2HqkppkALUkFEgQ8awMZWBwELe1ZTXMlToWtkIWt6tvyYrmiFD1V3KmZjmGZHGtpUxXFudrHJkRNiCQCOTLFARJAsYaiYpjBi6vlgmsLWah0AmZe8o5w2EnUOLC5kEkgSJd6hLhqzoOedgblQxV1MyzKoAwxrJXod1mJxaAUKTBqpShJW5U85hYJqqIgF3v2UIGfpEo1oal0x47XbNrY0m2OjYmU6SJKJdLb0lgrhOcYwQZNjDIzTCQNFVAiGtApJPxazvn1i4YQKpQJzQDTadytzhQwttDOSMJ4CUTC1yCSwp74wDS/MLRxeuW7aOFQ061VjvteEam1fD8QzHMYGpRY5RSZec8ToNxxcdhtgq0ZJBfDj72EPz+KhQz+G8s58ThAMWRCbpH/hIhRzDNtpWJlzAN89WG430QrJnnsQLntvL7YQX51R/3l5NcQEqKWHKx/oEihPCvC/MB6l1if6JWCNM/3VpmOq3gI6yhIr4PO1VKW/rBSjXYtcl/JRLOKnGTZ/0KQ1HTANBupGVMzFI980piO5qPzrXXbRh5YCujNbDOqfqzA+PjgzLki3L+eKwxoZGBV7JQFvKTjeOmJbhhiEJ0Rpy9vt57lBjZx77GqmVpTmWZrlXR2jS6FBVNIXgWf9tyBg5ZZFl2VeuNcBEd0TwVYGtf68ttLCgRkhzY191I4RCoZPXN5p3xROTUEB8dbEVgguz4XwaeuVag4aLF1g0MTJvTSuyM3MXmaSDok/MhPggHwqwPlEUWAGEIBviQhzL+WR/6M9E/IpEvLhkmoaFaQQlcmfhkjOzWgMjrs4iPCfyflJpK6XokmrLMGVn2g23BtRKmRZUDSBPxjroGJDykE7V+8+ptm/eEE10xWopkmTMMAoKfPL9JcvSaSmbzmiRbpvBw1GspyxN8aVD6YQh2pIciOfibahL797UWSxuiveYWxL2MM0FfCEuIIpikOYYluEYjjZ4vbetLbNe7tR7Ep1tfWzRH+gG4kDM6var6eSD3XhTVttUjJo+f1f/6IC4rs0uDPWW1qc5ExaVUDZbTG5WChrGMcvkt8QHbMbfNxQl1QCcj7S0UqQ3FYJvpKEQmiiEdvUhhtl5fbRSch2DCLP4NmylOsl1n9TVUiuVcsGEZAQaTCkYRjYYOpzZTTCwi4ocCchxkOhghmzWig32GcxwMj2QeyjR548XgqZtGsPRQk6IM2aiJ7cABJHjabaBg58VgvUuvJr6/5nVsUF6oeDppDn3rlV1A+lKNltJQYsIyKlJqmHL5GK3YIVw3hfd7EwHZYHNZiWBC/plnvVxdBu5Mue9/e96KLuvQhWopMeKknM0z0e8YUHgva2UBiJBP5FT/fX7fcXtST339yVo1RM3eurfMnVjIrmUW3Hyi8mR2Zu3/yxw4+37f3XXL/WO9Sti3d9MPXx59j+zB52VP5z4+MjvVp76mn1371vrTzd59iFu+b7uczWrMvZd8MrIoFGrHrxjw8Y1H1xUhbGts98cPffb5vDG6Hmxec0B5taBt6jCkbGHSrv/+LZ4x+y6j9nzRz7dfuCedU3wD5c+/9D3qfXZnn9/Nn5lYuDp8q3Lue3Hb/B8eCIkdTx7ac/K2CRa23xz9LZ7zrzR4/nrrscf23nn5b+8c+Tyc53xp9/2T6X/QX90Q8/uNWvvfeAX3S9euW1F1y0B1Hp81/uPfPW3A5nJJ9CqHS+Fz773+n/PTH/7+co3ey/eT8fOr/ryqWPh3Tft8O38051LdzX9/ESP58KzSz5JP//oV/2h37Davzpex4ePN1XP/fPs9N17B59punD6k+8vHTvrjPsvqmv3lZu5B+4dO7f55dPGD7mpyar25Rt3K8+3v7f8zNDUO8fWfnFSf62819rzPUH3xx+XeW46fd+7zlKP5yeHyHrs

View File

@@ -1 +1 @@
eNptVXlsFGUUb8FYg4RUg2iIqduVxAQ725md2ZNU6LW1Qnd7LJTSYPn2m293pztX59ijFdGCRCIIg3IJVqBlF2stYhsuqTFeoCiJHNESQvxDMFYTbqMkgN9ut9IGJtnNzLz3/d7vvfd7bzpTUaSonCTm9nGihhQANfygGp0pBbXpSNVWJQWkhSW2p9bX4O/WFW54dljTZNVdXAxkziLJSAScBUpCcZQqhmGgFeN7mUcZmJ6AxCaG4x1mAakqCCHV7G7uMEMJRxI1s9ssczBiAiYFiKwkmERdCCDFXGRWJB5hq67ip+VLi8yCxCIevwjJGkFbbISmKwEJ+6magoBgdgcBr6Iis4YEGWeArfg0aXEtT4URYHF6F3Lye8KSqhn9EynvAxAijIlEKLGcGDI+DrVzcpGJRUEeaKgXExVRpiBGbwQhmQA8F0XJ0VPGJ0CWeQ6CtL24VZXEvmxihJaQ0f3m3nQ+BK6CqBmDPkyitLq4NoFrK5ooi52yUJ/ECVUDnMjjYhE8wHyScsb+2XiDDGAEgxDZvhnJ0cP9430k1dhTA6CvYQIkUGDY2AMUwc4MjH+v6KLGCchIldfeHy5rvBeOtlBWi3P/BGA1IUJjT6YNByccRpqSIKCEMYxdZBJKUoRDxrncvJYWGGwJCCWJKqUxHvR4xPkeuSHKxSo4ts7ZtiDm9NQtbK3iWgKKpC9ssQVtchNBORjK6nA6rTaCspAWnDNRHobWhL4gZqulyqpF2MjRkTaucYE34q22+ivraOgi+RoZvORzufyNXrHyRVQpu1wKFKOeejVQB1B9VX29FtNL6/yoIVIdb5VsdY3WJaXQWeubXweiMsW3Ly5nHKxVnWPClPUox5Z4I1RFqz8QtdlfXBimvazPW9nkrWTb2LL6Jb4oYnxtLQ0tiwOLrNVwHGcnZSfILG07yTjJ9NU/phgeiSEtbHRTVnKvglQZzw5amcSF1HS1swerE/1wPJUdot2++feEPaOnAivVGPKH9SITaTfVAMVkJa02E2V307SbsZuqavx95dkw/gcKc78fD6AaxOKsHBuEFAzrYgSxveUPHIGh9Ajg/qbp42ElUFyWVERkWRl9i4n60e1BVFcMjM4bISkhIHLtmbDGUGYWYu3xGAt1lg1HYwLpamdoLoB0GBzMHpEVKR0GEyIE1ei2knR/1jKmxl6cK0lQJEFSR+IEnn3EcwKH65n5z64w1eix4WIfut9BkyIIL7sUk+kG+fl4DwUJWMbp2PdgGJfLdfTBTmNQNHZxORxHJnqpaDwbyiqoh+53yELsJtW++Jg3wbHG8Cz80GIjaZvL6bJbqQAJSARJu9NJIRsZDFIOysY4DuNtyEGMkm6mLCkaoSKI97WWMIaLBBBPb54SmrLRdpzpHBMnQl5nUYMeqJDSOWCBywriJcDug0ECAhhGxKj+jFRFk7e0prr8wGJivJAInzz6rUiJkipywWCyASm4MUYv5CWdxStUQclyD1Ff2mQMuihIM1TA5gQuxslSFFGGl9MY2v+y60nv3xTgMfcoNAbCdInZzTC0eY5JACVOO25T5ovyejKdqxj6Jnf1M289kpO5JuPf3btrN/4ofknmr7qcmHIiNG/Wa28qked7u5o/HFnfe/yX7V+f2U90nO7Mv/yya97j/tk3N3716px3hpdefrZs73Tm2XcbpyaEs//Yaz4oODBw+edke9eFfaeOne0/44hdTAKpWJs+PTiU+3bo7Krt52bP4248puZNLTz07YnEjqLTTNPgTvsk/4ZNM44NfBdYu655+1XGO+M5hGbl+ehrBY+VHf/89uq1S77YHGTd7sbWK12b5g30r8kfWTvlie+PbinY5nGPFDpmlh7c//uJQrmW6Xpj2ZG6Ef9cbUV9cvBk3+01sZtlrX98dD73uievcf23pzYXmMteOLfmvbc2nHE3NP/w0yud01a3vTLYfXtax9YdT81kW3duW9e/9eKkDdUX8x7dtePqlIp9fx08NrPwx5yKlcaK0OFLy59uHrk29++SX58u6jz+8eTCfy8eXb595ZUv7rT+uej8w8mC81t+29D90JMnTTuXrXN3dd16v2rv9bKRx3fonw6t6LhUfmNyutiTc26dzvfcmZST8x/1AE4b
eNptVWtsFFUULhIU/CMiKlEC40JCgM50Zmf21Vqx7FJobNnSXWiXh5u7d+52pzuvzmPZLaKhEklEsKPGxII8t7ultuVRVARKAgmCkYAGDFlMIEGMKCKJ0SiBgHe3W2kD82N37j3nfuc753z3THs2gTRdUOQxvYJsIA1AAy90qz2roVYT6cb6jISMmMKn6/2B4G5TE3JzYoah6uVlZUAVKEVFMhAoqEhlCaYMxoBRht9VERVg0hGFT+XeXWOTkK6DZqTbyokVa2xQwaFkAy9sqgDjBCA0IPOKRMimFEGarZSwaYqI8nZTx+u1q/COpPBIzG81qwbJUg7SMLWIkveV8S6D/3VDQ0DCiygQdYQ3DCSpOCXsmMeiKc/abAwBHid8uWRiOqbohtU/Oom9AEKE8ZEMFV6Qm62+5jZBLSV4FBWBgXowcxkVSmT1xBFSSSAKCZQZOmXtA6oqChDk7WUtuiL3FjMljZSKHjb35LMjcV1kwzroxySqasrqU7jaMsFQnJui9yVJ3QCCLOLykSLAfDJqwX5kpEEFMI5ByGInrczQ4f6RPopuddUB6A+MggQajFldQJOc3MDIfc2UDUFCVtZb/3C4ovFBOJZiGMq1fxSwnpKh1VVoxJejDiNDS5FQwRjWTjoDFSUuICv3ZzgMo+GIVEkvCqyGSbfaEoQN1aK5mIm0LnC5mpY6fLpz4aKGUFgPaouESFiohiTjsnsYl8PhYEmGoimGYkifSYVbW5OaZ+GS1jgdFms4KVXbxFeFFtY7l4nVcktESbqF+fZQi1iPElEoBhtbwi2IYpUmuQ60ur1L6huqG+mQ7EkmI0Ba4vVG/WJVBYHZmQmBr+SWsUq9BFoT82vbgn7GHpcSTVRYEhvtXkOJL/fVsgbV5mUXBVtCI+jRmCFdZOikOTedf/qHtSEiudmIWbsZ1t2tIV3F9wa9ncElM0y9PY11iM6czhYv0C7/aw8k/FzahzVpDQZjZinBuAg/NAg7becIhitn7eUsSyysC/Z6i2GCj5Tg/iC+enoUy3DBsOSzMGbKccT3eB8p9sG82HEn8/TxLSVRUlV0RBZZWb1NZMPQ5CBrfANDN4tUtGYgC22FsNZgQfWr25KreWjyfCyxWqI9bRwrRJAJoweLR1RNyYfBhEhJt3Y7HPb+omVYdz04V5pkaJJmDidJfM2RKEgCrmfhtzi+dCvtwMU+9LAD7hfCgy7LFbpBHxvpoSEJCzYf+wEM5/F4jj7aaRiKxS4el+vwaC8djWTD2CX90MMORYhdtN6bHPYmBd7KzcSLsJPnaIhQBEVRlHaxHIMflkEOYI9GgRugr/DoEyBGyTdTVTSD1BHEs9pIWblSCSTzM6aSZRysE2daQQgyFE0eBcyIT8nnoFcQqoZEBfB7vdWkF8AYIgMF/VlZX2hxVV2N94smcqSQSL869J3IyoouC9FoJoA03BirB4qKyeNhqaEMxmqoClkH3Zg95umMuu2Ig9BJzsdjaBjtf9ml85M2C0TMPQGtgRhbaSvnONZWQUig0u3EbSp8TdZl8rnKzSfHLJm+cXxJ4RkrdhyXT9ATfbduPxk/N8G2Y7L14qSWcX1t3RcCSxdsHphJbb55aUvPs1evzN0wueH4yQ2pbblcpe+9db1EM/HC4l2fzwlJ21+5+OOGU0fu/PLzxUtKmB/M/hDf8nFiYJ3bXXt7Xfu9lc+A5Z91pL+fVTpVO9HRSUW/NSyUO/pE3576cSuk2Z/4D6wvb+zkO88eOJ6bMvs779nLtq+nVPylXO+ee/edrXU/zetacCu1qWP7PObxs907Sv55ve1qJ3HsVcDt/COe3cioh268/NRJI3thx/RzH360p4/tmv5v6EoNuTbgvnb5esdv3zRd/5WJ/D54pftO46Retq+r/cw0c3zt+cDUlbK7fewM78pN10JvzOjt7jgUfNOYOHEl17Rq6/nYwdzfp1c8nb2Z7t/bsOulCXffnyVu/PSCo/wG/9bVex+cuv58Scn9+2NL7m5bOg08VlLyH7A2NRs=

View File

@@ -1 +1 @@
eNptVXlsFGUULxCPqFFT0UQ82G40IdKZndnZs4e17LaldEuPXbSFkPrtN9/sTHeuzrHd3arYVv4weI0oEpNKeu1iKQWlYgUxHqmagBojlRQV9Q/iAcYgicYL/Ha7lTYwyR4z732/93vv/d6bvmwCabqgyEvGBdlAGoAGvtGtvqyGukykG09kJGTwCjvS3BSODJuaMHsfbxiqXuZwAFUgFRXJQCChIjkStAPywHDg/6qI8jAjUYVNzYo9dgnpOogh3V62qccOFRxJNuxl9ggSRZuEbMDWqcTxT1QxDVsUAU23l9o1RUTYx9SRZn90c6ldUlgk4gcx1SAY0k0YphZVsJ9uaAhI9jIOiDp6NMsjwOKUThXdPMIrumFNLKa5D0CIMAKSocIKcszaG0sLaqmNRZwIDDSGyckoXwRrLI6QSgBRSKDM3ClrP1BVUYAgZ3d06oo8XkiGMFIqutw8lmNP4Mxlw5pswiSq6x3NKVxP2UaTHpqk9ycJ3QCCLOICESLAfDJq3n54oUEFMI5BiEKvrMzc4YmFPopujTYC2BReBAk0yFujQJM8rgMLn2umbAgSsrKB5svDFYyXwjEk7SR9ry0C1lMytEbzRX9z0WFkaCkCKhjDGqQyUFHiArJOLrmmowNyHVGpsjb9oDvQ3bRefyjlrVlvxkFAhrViMl0fqlFrYmRYpM0Etc5sp/hGgva6aKfX52PcBE1SJM6ZqDdDBt1c16lIzqivfmMqInVQzTBc19jA1DJiWCATDfUh3ddYw7W2mu4gUtvWyc1NnBxYX90AIw0BMaShQFuQbE9Wp9zORMuGuDvUBTtCAlPdqdVHNRALAX96Y7Mn2F5uw5TNhMBWJmtJ0q02JJy6DMNdUF3DC2l6bXojG6+JSeFgROl6MBzkw+2tvpYFnCnKQ1AF2h7K5aNy18S8YkQkxwzeGqYp324N6SqeF9SfwYU0TL1vBKsTHfs4WxicoaaGS8K+bSSIlWodifBmqY3y2BqBZnNSTreN9pQxTJnbbatrjIwHCmEiVxTmaxENyDqHxVkzPwhZyJtyHLFjgSuOwJHcCOD+5ujj0SRQUlV0RBRYWeNtROvcxiDqgwfm5o1QtBiQhXQ+rHUkPwvd6WQ3C02W5RPdEuVPuxghikzITRaOqJqSC4MJEZJuDTNO70TBMq/GMZwrRdAUQdGHkoSGSyEKkoDrmf8urC3dGsHlp6YudzDwpsELLuvKd4N6Z6GHhiQs41zsSzAuv9//9pWd5qEY7OL3eg4t9tLRQja0U9KnLncoQAxR+nhy3psQWGv2HnzTwXm8yIO8XhhlIeeNAhcHnSwLvBTnpwDyM2/h3SdAjJJrpqpoBqEjiHe0kbJmSyWQzG2eSoZ2Mx6cablNkKFosihsRoNKLge93KZqSFQAuw9yBASQR8Sc/qxssH19dWN94GAbsVBIRJM6937IyoouCxyXCSMNN8Yag6JisniFaigTqCVaq9utST8NGRfN0ZwPeZiojyXW4OU0j/a/7EZy+zcLRMw9Aa0DPFNpL3O5GHu5TQKVPg9uU/4t0pvJ5SrHppfsXbnt2qL8tQx/Ll58qvWo/BV189tnVh+s+KoXffTGmYbeO7ctvap4eeU9Wx/YHn+SmL53ak/F91scq1bv6Ms84Kg4dvYGbsffrUWrYjM3viBM7vT89edMokcnPt/y1Ndffvbtl+lzp3ue/Ca7r/fu/pfRVb9sGbQemtk66Ekvr1smFXe+d3ajTB49zR3evLdn6N5t9x/9edX5mek0ufnkF4+0kCf6Xy+JPTdzo3x90eMvXfjk9v7pujf6p8/eKljtJ3YnfigpevHjWFDgPhrq3z27dsV1fYPP/jucWnqmdG3//rqBd8u43/64lny3/7bQrl/f3zy1Zri8Vl1608slz5/46YPjzu8H4cDqrZ/+vaTqFSY9Bocqb/rn9qqp76ZeLe7MPHd+f3Oksqe06LHfD/946niYbrljtPivp0vu2LFn+8CKN6tKHNe0rp1cee409/szm1DL5PmK2VHnSRdfd3oq+U173S1DO40L5cd6TmVPkccvwqriDx9ePrkhxA+kNiXvbNipnO+AP9z1R++t8FD31au7dv5W1Vbx46e7JmrP3XL9wZn3tq4IhyaqBi7senZ6Zb4ny4oyzKFhP27Qf7FZXVw=
eNptVXtsE3UcH8MgUUEJCkQTvBTlIbvurr2+NhfoujoK6zbWMcoIlOvdr71b77V7dO0Ir/GcEOBEIT54CKMlzRiMbTwm4x/kFQyJgpgJ6CAxPkZMQBNBjPhr18kWuD96/X2/39/n+/p8v9eUjAJZYUVhRCsrqEAmKRUeFL0pKYN6DSjqugQPVEakWyorfNUHNJntfYdRVUkpyM8nJdYoSkAgWSMl8vlRPJ9iSDUf/pc4kIFpCYp0vHf7cgMPFIUMA8VQgCxebqBE6EpQ4cFQDTgO4QFCInViBL6CoqYiQUDKiiEPMcgiB9JWmgJkw4olUMKLNODSorCkomajBVU1OSimbQUoxeFbUWVA8vAQIjkFQIEKeAkmBg3TWJjRtiLJAJKGaf+Q80oLIyqq3jY8lSMkRQGIDwRKpFkhrB8ON7JSHkKDEEeqIAXjF0CmUHoqAoCEkhwbBYmBW/pRUpI4liLT+vw6RRRas/mialwCT6tT6exQWB1B1TsrYBBOT35lHNZcQHAjYTdiR2OoopKswMEiohwJ40lIGf0XQxUSSUUgCJrtp54YuNw21EZU9INekqrwDYMkZYrRD5IybyU6hsplTVBZHuhJV+XT7rLKJ+7MRhw32tqHAStxgdIPZhpxYthloMpxlBIhhv45lqBEMcICvfd+IECFAkG+qDwQrGFrg3MCxVUYUeOiTcAPfJgvEvVWe+qKrQsX0VUxu8BFF5U7UdxmcuA2i8XqQHEjZsSNOIo5Of8cY71pzkJ/CRVjmGrVNN8bwGzEArbGBVSV9ou1NQruqdHCc/C4sQEPlS1g3FXOuFaplXKlbndFsadeNhbzrgYz4W60+nhigRguRGB0WpSli2qpWqu7qsEi1FviXo32WZ0RWTLFJDzgsTJOsnw+VQYwvMFmLhkantliQrFshFaMsGPpp22QGxwQwiqjH8AJ4pAMFAlOD1ibgCVTNaWpBfIQfHUxmR2j/RXznlB4QksJ5KTeU81oeQhuQyooFTFhJgLBiQKzqcCCI6Xe6lZX1k31MynYXi2TghKCNHQPUj5JMZoQAXTK9Uyy96TJDjuZDh9OKQpikqgANBuV3upHqwb2B+op6RiYLFSUw6TANmbc6j0Z1jc0xhpoSqNpJtrAY45GwswGgUaFOrNXJFlMu4EBobyiH7BhjrasZpB3KZgrhuIYiuHdMRSOOeBYnoX1zPxml5iit1hgsU8+baDCrQPXXZLIdAM7M9RCBjwkbNr3ExjC4XCcfrbRIJQZmjhslu7hVgoYGg1u4pWTTxtkIfZjSmts0Bplab33LXgI0LagzRHEYeEpm4V2OIAdd9B0KEiE7BhuxSyn4OpjKYiSbqYkyiqqAApubDWu9+bxZCy9Y4rMuMVshZkWIqxAcRoNfFqwREznoBQikgw4kaSPuN5DXSTFANSX4Z+eLIGT5vW4jvvRoURCK6SBr0VSEBWBDYUSPiDDxugpihM1Gi5LGSQgVpVzkd5ppwkcw3AToIHDHgI0WgzX0CDa/7RrSW/aJMnB2KOU3sGYiwwFBGE2FCI8WWS3wjZlvilrEulchfC5EVvf3Dw6J/OM5OY7hRvYK6f7X1u8VG4eeWlD3Ze7kJ5XR8vexftmvPR+7eYtM4zz2vpeWPN46faavOcvrd/48e7bV+5GRiBlM63IhztbG8WJf728bdXeVOnf3YF/7ScDroed/an7hdf767fdKZhxKO48J6becPecuLjhZnPNiLcp+fD1yzfqlnzXbxpf1MXsaP3jtP/WtRcnF7s2H6u9vqNqx/xJ50atnJiTc+Sht7B7wuPmMfTeLX9OOnC3krviyjFs927ajn9y8Zv2k3s87q1f/9S16rdxtVdzI+tGgdVT990823d7mT/s33H23tg9tzoebZg7dpxzyvTXuf62By1zlXurL46lnvv1/J7claf+MfcJm0wgurZr/Mp3Nx699nC297MH5jPmKyU9Y6ZPOdUp0fcNHRdy+yqMkdiuwIPZPT+jVycvMbXWTCvE94an7vLpTc0Hd9/79tNfdt847t55/vzmY+s/mEsVzrx8x/D9hVmzOuznzG2P+qrKyg1b9fYff9/Sjz1Ydv+h/NGFO7Ng4R8/Hpkzratb78nNyfkPIFJRJQ==

View File

@@ -1 +0,0 @@
eNqdVWtwE9cVtovbuCmQtKGY0OmgKAmQ4JV3tbJerpzIsuWY2JaxZPzg4V7tXkkr78t7d23JxpNCMm1TG6dbm2nKQDLBD4HiBxQSHFI8GVIaaGknkISODW1DJo/OZMiESaZJhhL36uFgD/yqfkjavd95fd855+5KdEAFcZKYO8aJKlQAo+IHpO9KKLBdg0h9alSAakRih+t8/sCQpnAzD0dUVUbOoiIgcyZJhiLgTIwkFHVQRUwEqEX4v8zDtJvhoMTGZ3Mf6TYKECEQhsjo3NJtZCQcSlSNTmMjNliHDGoEGjohwD+KgRMNfu8jxkKjIvEQQzQEFWPPtkKjILGQxy/CskpYJELgRA6jkKpAIBidIcAjWGhUoSDjKlRNwbakicRvJInPhFXjcsphSBPTRWLjb/46u40iEFKnYai2ZlPBABYiRuHkDMZYCdWFqZowQAYKtsPEoZQPWcF8KCoH00+8xIB579nYOFtODBt7enB5mF9OgSxO7SYSl5lFSsEoZFSM7NnWk4hAwOIQzwxHJKTqE4uJnwQMAzEnUGQkFnvXx8NdnFxoYGGIBypMYrZFmC5TT7ZBKBOA5zrgaMZKPwxkmecy4YuiSBLHsuoQqURuPU6m9CCwlKKqH/PhJNxVRXVx3CGigTJZKRN1OEYgFXAijxUneIDzGZXT568uPJAB04adENnu00czxhMLMRLSR2oA4/MvcgkUJqKPAEWwWo4ufK9oosoJUE946m4Nlz28GY42UWaT/cgixyguMvpIupGOLzKGqhInGAn70F8gJ+b54aEYViP6EE05DioQybjf4ZOj2EzV0K5hrAU8dyaR7fsDvsfnRfxnTsFwOdZFPxmIaIUG0mqoAYrBTJqLDZTVSdNOC22orAmMebJhAreV4UhAASIKYSkq5mVPMBFNbINs0nNbwU+mBMfVpNLHo0XAmCwhSGSz0seaiPrMxBNV5Ucz3UVIShiIXFc6rH4yrXxnV6yTZTSWjXR0CqSjy0JzQagxoWNZEzwCqTA4IUJAmBwrOZE9mec+iWslCYokSOpEjMCzCnlO4DCf6e/s2kH6cDFJklO3AlSpDeIFlbCQ6c/0QoQCBSxaKvZNNxaHw/GH24PmXdEY4rAVn1iMQnBhNpRZQFO3ArIuDpBoLDaPJjhWn3kAP7SabRaKtNtIyk4DlmSDdiugg5AGVruZCdqLLa+k9gGDvaTElCVFJRBk8I5V4/pMoQBiqTlz0VQxZpEkS/BqZHiNhX4tWC6lakAlBlmBvATYSSZEMICJQCLTf3qivLnWXVPlSfpxkh5JauPgb2ZzV7W2MqHWoOBSZU+V2xoHQnu8vbjGjTRLwL7JXS/5N1eihvYyjxm1uDvaGqjI5hqCwkWYbXa7mSYoE2nCU0qwgUoEo22g1WNTWpHVFmDZOMNuDDTEvU1Nzc1as6MOVfg2bWLKKnzmmKUOKqQnYAGo3RGtkarVliaOlWJ2WfXxUTcdEDyq6tjULlVX14r18VhluLjM29q5WeVsSK3AJeJl6yoqMeCGxfsSubJjQ+CxIVJDY3OS80NTYmDTxLhMi1dkieExfGf5RD5eYvCnGIb4F+9tP6dCV60kwplBTIzWwbEu2ttIosdpqoGOhsrsUm2jucsW0hyVDc0+r6XFvtlnCtdvjJV7y7xoATN2i40gs+RYSYs93Zo3U/8/s3q5iVi4BQifnLmcE6KERC4UGvVDBU+VnmR4SWPxtlfgqMdL1Lub9WMOiqEtFCgO2c1BOmiHRBneo/PevtkZw6mrIgF43HgdjH40QruMTouFNpYYBOCyW/GMpa/wnaOZi+v0t5as6c3PSX+W9PlrpEvk0pPXG/N/8oZn+u7u6ZfO3DkWOQ5c/OvmVcnqSxvZswP/Hhd+PVd6ppZf9/HPvvpp/o4dz7w/dOyuVUt+5z716OC+8oYXP3X2rxFLC0ufOHH9P9e+tnad/WT7J1xNdLzz4y/Ia0s/m6pwr7v4I5Bsua9qqKSp6f2ntmsrifBn6/s/6l15sPrnf37rV3tPjXx3wyFof/5vv71iuTN8Td+2+qE33aem7+ijXpbmpn37r9zzAO90VDys9hfkVz3/x1VNQzvyptCF7/89byB3hfee6L9OiIOrc9m+jd9ujK6/3HP9fJzs3bCn9MZ/lRvvbCU+atwy+8Hx0JaZL7e9Yh7q2v85+od10Nby+drdn5Y+t3UFs9Qy2SLuHPzaW/vg7PeczGvC+cDBs8eXX1+2/v6pgsuP/n7nHRMzuz9oeWzdue8sl/9Umje5/4m+viPP2vpfHGLe+PKF1p3mCuGvQ6/KK5RDIxv8vZdfGti9bHntO7PON/ddvTvaltxbby55e3vHvdoBcuvR3H3j/YZ734v+cnLlQOPbF5Y+/ZeO0zfGf7B18Nll5650XFs7EMrLGzo7J35YfFXsOtQ7p6/Jue/w2nMXZoNrT3/1mmdvxVz+3J6L3ZetS5dfLXqIfPDpi9L9r++zJbtXv/vcj8GeD+sLIm0bLn2RG99f23je+J5U8NYP837x7l1Y7bm5JTnanIMn8nJy/gcqPgKj

View File

@@ -1 +1 @@
eNptVH1QFGUYhxzDRi3I0rLUnQOyyXuP3dvz4BgtTzBkEA7hciATfG/3vbuVvX2X/bjghBoVZgJMW5qxKSYy77ijG0IuFC0/pkadMZWZJv8orBynj2HUP0qzHM2il09ldP/afZ/n+f2e5/d73t0eCyJFFbCU3CNIGlIgp5EP1dgeU1CtjlStKRpAmh/zkVJXuTusK8JQpl/TZDU3KwvKggVKml/BssBZOBzICjJZAaSq0IfUiAfz9UNtW00BWFet4RokqaZchrbazKbJFFPuxq0mBYvIlGvSVaSYzCYOkyYkjRy4kShSAURBagsppqAH6xrlQVBRTY2bCAbmkUjSOBHqPAIs8EOhRgdWQkCzdDaB0lBAJvNoukLwaQvdGPMjyJNhLyalRfxY1YzEfQPshxyHZA0gicO8IPmMT30hQTZTPPKKUENx0p6ExhQy4jUIyQCKQhD11wFVg4IkkrmAJgQQadX4pMTlri4o3LCmJDoOavRBWRYFDo6WZ21RsdQzMS3Q6mV0fzg+qgkgQkmaccg52WZWaT2xQ6Joi81hofvupRYh6Tgqj8WP3BuQIVdDcMCE1UZ0vLj33hysGl3FkHOVT4OECuc3uqASsNumTano0uigRiyv9H66ieBdOtbCWC05iWnAar3EGV1eKKooMeXBVEmcGMkC2g5o5tA0aKQp9YDDhMH4mO6dFFBEkk/zG2GGdXQrSJXJBqMdUVKm6er2CPESnTsdm1i7fa6iyU3YGcknrhrH3H7dTNF2qhgqFCFeTjH2XJbNteVQBcXunrwJEvcDXUq4FSipXuLUmsmliXF+XapBfDzvgesSn7hZQOCNo+S9mmaKvF5vbQUKWiX7entdTijEhoLlzs/v6oIVH5SE0BjtaN1QBuuws8t51gOQx8sDmyMnGzgcVgZ4rNYc3pbDZNt4ezgoQCPOWBjKh7FPRPs5L+Ag50dgXBojll9Z4iwuzOupAGXYgzUVuKHPiEhYQtFypBA3jDgnYp0n66+gaN7LoMxZaRxwMBxrYzia53mbjeOsYDVZm0mZpmSIjN6dsd/ANmKFQo5OJbctaZuVNPbM4A1nzY+r5jSPtMbPVh1t6y9Z+EfmO+cfLnseFT32kye6eIj9q0JZ8YE++NnIse8FqmvptuM3b2RoTpw4+eLAK2/82dXx7dlrhzF+aeX80PBx+5Lfd33E5H2Y8qr7ibDwCPtspnnuvPDuLRXMiSrzTHPi0ecqL8zf6Gt4b+Cfhjc7Ftxa6a2YvSzhufXvdfv6yzd/3lTUkrJQmPfVly5r+p32XXuNNG/hby2uO4ODm5uzv7g+6/y+1rLXryWX3Fl7sNBYtWjw0rn3q2K2/Nuwdgl/Ib/UdyO5c1WBa757755Oai5dr2+mbqd6n3p8x3B/U//w38sDKSlPdxfO7sx0preAupnh1NP5zRdTnvHSja2dPyxa8e5q1zeJdZc6Th1IpDYUFPVsDLLmK/7XZgxc6V56pOrYiau754TPlL7N76P3rBWXFaf/Up16OTPtu6bMWKp13VXfmdmhxe0bXlhUe/J69HSf/WA4vvjr7gW9/z35K27I4EZ87Tcah48frhohqo+MzEhKOed+i30oKel/M3dwnw==
eNptU29QFGUYx5wIUyY/ZMWHar0ZKp3bu13uuD9gxHHkpUgccBkmgu/tvtwtt7e77b6LdxglSM2U0swOqEzK9MfjLq9LITGaTPtQFs1kMjZDkijqJHxIbGrSGG2g987DZHQ/vfv8+T3P8/s9T1usCcoKJwoLEpyAoAwYhH8UrS0mw1dVqKD2aBAiv8hG3BXVnv2qzI3m+hGSlAKjEUicAQjIL4sSxxgYMWhsoo1BqCjAB5WIV2TDo7u26oIgVI/EABQUXQFBU3lmPaGbC8KWjVt1sshD/NKpCpR12MuIuBMBJU0eyPNEEBKAaMQQBPCKKiK8EMiKrmVTEkhkIZ8MZHigspA0kX7ABVQyD9ehTJQ1CYdgUMKDIVVOVqEMVEvMDwGLxz6fsTTiFxWk9d81yiHAMFBCJBQYkeUEn/apr5mT9AQLG3iAYBz3KMAUV1o8AKFEAp5rgtFbWVofkCSeY0DSb2xURCGRnolEYQne7Y4nRycxIwLSBh1zfRjdYcy8gFs2WQxUX4hUEOAEHnNH8gC3FJVS/qN3OiTABDAOmVZVi95KPnhnjKhoveWAqaieBwlkxq/1AjloMR++0y6rAuKCUIs53XeXSzv/L2cy0LTB2j8PWAkLjNbbAHgF9t8m+XZKHGtlIikLSdGD86AhksMkI+IK2ofUwTkCeSj4kF/bT5vtH8tQkfCywu1RnIZUpS2CxYI/DsXS+/VRRdmc1DsjpVg27ZjHr+oJ2kpUMIhILglBmwtMeQUmK+Eq9ySc6SKee6rU75GBoDRgpZ6f24oY41eFAGTjznvuQzx9RCTHal/hdz1F01V0CWdRnSG6zOYoAeH1DkuTy30kRDK8qLIkwhcIydSwIaSNEnZLvs1szwdsvt1M51tsXjND2/OslB2Txlqphv1NHNDitIEmfKLo4+Eh52rSCRg/JKtTlGix0g0vOsrXOBM1ZJXoFZFCeoBPiwiiAKPVUMYqaPFUabzXMozi9CrHBm3Axpqphgav18bCPAtgAFmC12WOntvjR5JHkbr0ViyBjE0nFmx5ckdWRupbuK6yPnC2eMnsynjdX5fazTlouneYHlpdWJB5bnPOxYnOlpffz/3ldG7+8vGWM+c2V7SN1y/qoZv1/T9P9B2fGWl5bebPy+oXN29M28fEolVTT5y3VtR80PFs+coqNRu0bo8skuKVJ/tBa09obY13V+31gTHD9h3BOmFk75bfp25kLk60d5zp+zc8s8f/d0F4svLSu5mvPGObLhe2+bhFjTmbu2qvhk+Nf5NVFwKmQ9J7npUvfTLYN1kYr11/32JzieRqLjvw9pVG+Y/fBtx9F648UtSara3qLs593HH14sPktoUdKzqGfW8NudZ8P3Ry49kHm05X9zzd3LXkCHt9afY+hy6WuWldUceFLxPa3mVjnQ7X8Gf7iJFO7uLyE7ujv1JTEzX6YepRPel2vX68+c099ffH17zx2NABavcLVx7a/cB3X7efLnvqYFbZTyuWdU+e6vLtHPMVdg98+87la58X/3D9OXT4WO0MZnh2dmHG0WulN/9ZkJHxH+xyZNQ=

View File

@@ -1 +1 @@
eNqdVXlsVNUaLzQIUZOnL/G5gV5G8OVp78zdZm0mtp12Smk7085MKYVoOXPumc5l7ta7TGeK+CLU5UUN3qYxkryEpe2M1AI2rYKFGtG4gGiCC6EaMS4Ed1/Ce7iDZ6ZTaQN/vfvHzD3323+/7/vOlnwaabqgyAtGBdlAGoAGPujWlryGuk2kG305CRlJhR9qCUdjg6YmTN+VNAxV9zkcQBXsiopkINihIjnStAMmgeHA76qIim6G4gqfnc5ssklI10EX0m2+9ZtsUMGRZMPms6kCTBGA0IDMKxIhm1IcabYKm6aICEtNHZ8231thkxQeifhDl2qQrN1JGqYWV7CebmgISDZfAog6qrAZSFJxBViKrSk7tTmfRIDH5W0bSiq6Ye2bn/B+ACHCHpEMFV6Qu6y9Xb2CWkHwKCECA43gNGVUhMMaSSGkkkAU0ig3Y2U9B1RVFCAoyB0bdUUeLZVFGlkVXS4eKVRDYgxkw5oI4ySqGxwtWYysTNB2F22nn8uQugEEWcRQkSLA+eTUovzQXIEKYAo7IUusWbkZ431zdRTdGm4GMByd5xJoMGkNA01yceNzv2umbAgSsvKBlsvDlYSXwrF2mrF7xuY51rMytIaLJByYZ4wMLUtCBfuwdlH7ZvERkdxlJK1BmqGe0ZCu4j5BW3PYzDD1LUOYC3T8zXypYXaHG2dJPF1241At5sWaiiXNCoJyEc1AIxiKcRK0y8eyPs5J1DfHRgOlMLEr0jAWw82mJzAVdbO052HSlFOIHwlckfCpAuG4mkL6uDFJlFEVHZGlrKzRtWRkZlLIhtrxme4iFa0LyEJvMaw1VWS+pzfTw0OT55PpHony9nKsEEcmTEyUTFRNKYTBCZGSjsHxuPeVJLPYj+BaKZKmSIqezJC4z5EoSALGs/hbGlfdGnJSFHXwcgVDSSE82HmOKj4vzdXQkIRJK8S+5Ibzer2Hr6w064rFKl63e3K+lo7mZkMzkn7wcoWSi92UPpqZ1SYF3ppegQ+dLpZ1cpDj4jDOMF4WxIsviEpAlmHdHs+LePIFiL0UyFQVzSB1BPFuMrLWdIUEMoU587O0k3XhSisJQYaiyaOoGa9VCjXolYSqIVEB/H6YICGASUTO9J+Vr+0IVTc3BEaiOMmAoqQE1P/hgps6O2GiMy75s/VaeyYRDMqNQTWaFnpqBb7V093U4wm2tm2sFzrjmmK2dToTTrWDpN0czeBkGSdJ2yk7nlIykIRM1mzqcbbQNQ0ybBfYVLfQ3hRKhRqYWF0rC72U2KyC1WGvN9YekutWoTrV69WgnA5G9HgrQJH6SMToMatbYyiaashsVJyt7cy6auhpCTe2grRKi71rA5ybZwolAiPpd1QSuGEFDLq/NDYkHhuyMDRuHzU7NJUEXwTGb5+/IiuJVXjXh2UxW0lECwgj/A8kFBUM5A8pMpoewMCYaYH3h1J07cZYPO10rWpLsiE+HKrrCNXx3XxNZF04jbhwd2e0c218DdMA5yDjoV0kVQLHRXGeYmteSv3/zOqFteTcLUCG1ZlLLS8ruiwkErko0vBUWSNQVEweb3sN5QJBMlLdYU14achydJx1JRKUh6dpsgbv0Vlvf+6MocJVkQcibrw0tMaTrN/m4zjWVklIwO9x4RkrXn0P5gqNKne9tuDB2x9bUlZ8yh/vp5VXqOse+vG3q9/Sq1YM/BWlFr+/q+m7qrY2a8zxrz1w/flFNyy/sOlMX//OyJ7Gh3/9furwoXO0rW91tV6TfftJ95rm28a/PSMcuG/42QPfgnOTnxw9++rmQ/cN3Lqt6vOd1EfL1N9am18URhcOBH98unLDkiPOjtMrv2Leerdu8S13VC3qQN3MDvudpyb3bj/eb3SvORnU/sP9/Yfrl/ctPaS8+cyi+0/8+/hnO1aXnx6/OvmAYOvzDdY8xPwwXJ+zXi//InjHl/b05NLyxeibjiW59cPv/O+9M+FjsZPb995zrnFqYN0vk+rLh08c+WBwbGIw/+iT2+Td5+9a8fw73N+u4Xbs3Ar6/5s2Tn1a9h4b2Nr0BHfup4c7lpdtjz0wcd2xm/dXX3sMbBq94d3Hq7hbfu55av3p309F2i+O3V52dsP1tWDZkqP7zy77cGnf4vPtH6HX7t3w9ZHvVj6ycOVB9aoFK1Nt/+z9+i+37frH6j13qyePfn/h4+3hE26M9cWL5WXjb4CnLiwsK/sDSUeFGQ==
eNqdVWtsU1Uc3+SDssSoUUNUkMvEaHD39t7e29eWGreWsSmjZS2w8rCcnnva3vW+eh9dO/CD0xgRFS8xSqKMx0qrdQ4IExA3o6JEIxoFNRlGo4mPmPhAIxFExXO7TrbAJ++H3p7z/5//4/f7/84dKOeQpguKXD8syAbSADTwQrcGyhrKmkg3Hi5JyEgrfDEcikSHTE2YWJQ2DFVvdjiAKlCKimQgUFCRHDnGAdPAcOD/qoiqYYoJhS9MPLahUUK6DlJIb2wm1mxohApOJRt40agKMEMAQgMyr0iEbEoJpDU2EY2aIiLbbup4/cA6vCMpPBLtrZRqkCzlIg1TSyi2r4x3GfzWDQ0BCS+SQNQR3jCQpOKWsKMdi6boB8ppBHjc8JZiWtENa2RmC3sBhAhHRzJUeEFOWS+n+gW1ieBRUgQGquC6ZVQFyKpkEFJJIAo5VJo8Ze0DqioKENh2R6+uyMO1PkmjoKJLzRW7NxKjIhvWaAgX0drpCBcw1jLBUJyXovflSd0Agixi8EgR4HpKatX+2nSDCmAGByFrPFqlycMj030U3drTBWAoMiMk0GDa2gM0yc0dmL6vmbIhSMgqB8KXpqsZL6ZjKYahPPtnBNYLMrT2VGk4NOMwMrQCCRUcw9pFj0zhIyI5ZaStIYb1vqAhXcWTgx4q4WOGqQ8UMRfo+Lvl2gjtDt03ReKXdXOKQcyLNR5Nm00E4yFC0CCctJMjGK6ZdTazLLGkKzocqKWJXpaG/VE8fHoSU7F4ivYyTJtyBvGVwGUJH7cJx93Y5eM5JVFeVXRE1qqyhnvI7kntkJ3BA5PTRSpaCshCfzWtNV5lvq8/38dDk+fTuT6J9vVzrJBAJkyO1o6ommKnwQWRkm4NOX3OkZplCvsK7pUmGZqkmSN5Eg86EgVJwHhWf2sC1q2ii6bpw5c6GEoGYamXObr6vD7dQ0MSJs3OfTEM5/P5xi7vNBWKxS4+j+fITC8dTa+GcUr64UsdaiF20/pwfsqbFHhrYiFexHm3h3ZBt8uFmKTXyXsTTg4kII+c0OWBnkTyVSx+AeIoNpmqohmkjiC+rYyCNdEkgbytMz/LuFg37rSFEGQomjyKmImgYvegtxCqhkQF8HsD7WQAwDQiI9X5s8rB2LLWrs5AJYKLDChKRkBbT9XPisdhMp6Q/HRHpA/mvWpvFHa3i+YyJpFd7PH0rHAFdfeSju5YXI9qHUIiLrRDkvE4fYzH5XKxJEPRFEMxZNCk4tlsXvMtWZ7N0HGxk5MKS3v41tiSsHul2C73JpS8V2hzxnrFMMoloRhd1RvvRRSr9MhdIOsNLA93t6+iY7Ivn08AaXkgkAyJrbgbYKT9jhYCz6aA8fXXFEJihZC2PlzN9JQ+Wgi+ioGfmnkbthAd+KIPyWKhhYjYYCL8BhKKCAbyL1NkNPE0xsDMCbyfW8kqYQlkc21L+6MhxpmRcj1UXBJXOQOY1tXBpaxB9QfYjmhvbBoINMaBruHgpjlvdQovlv4/qzrYQ04XPBlSJ79oZVnRZSGZLEWQhgVkVaComDy+2DVUwpx3t8asUS/P0ckk4GiIEAehm2zDV+ZUtP+uh6L9VSgDEc9YDloH0qy/sZnj2MYWQgJ+rxvLqfrde7Bkz6Sceqc+PH/zVXXVZ5b41JvLjtLXBn851/D+98Xegd1t8kfXv3DVplva7tS2dyXUsZHx1qcrF558viSFN/wKBlO5XN91cO2KsfVrDw7wKVO7MHqqaccHv60ZEz1bzvz00rl15IlDN95tHPkuq3715/UL561jN23/9J6GD+rvu3KAKJY2/0it+6YwePXOow3GPtczW5+LDYZ/+Wzb8ZNN87eTi2YPzvnRn3h8/xenH3myNDD//n2FjdHm0/dzb2w+ecexw4F5N1BjqwYfXnDrjl3BwPpHTv2QaJj7yficXdt+eOXWM38LW48da1573trx++qbvv38xIOn022VO0Y37jz/6P4tYOifeKc8L/fMvW856AV01zXZvzYenT33pgWz/daBs/f2xOpn7/n7G2Jtw0Sbmftw6L3ks7ftXTz3YKT0asemYwt/PjS4864Muln97MWv3z56+x8fz8fQXbgwq27pE9edBVfU1f0LdzdoqQ==

View File

@@ -1 +1 @@
eNptVGtMFFcUxtCSKlqosRHtD4bVPmKZ3ZndZdndii0siiiPhd2UajV4d+ayM7A7M8zcQYFaK7aagFoHbNWaGpF1wQ0iBEWRWpVq1dZXGm3VWLRNg9EIplKD9VF7QVCJzq+Ze875vnO+79ypqC+BssKLwqhGXkBQBgzCH4pWUS/DYhUq6POgHyJOZAPObJe7TpX5i29yCEmK3WAAEq8HAuJkUeIZPSP6DSW0wQ8VBXihEvCIbOnFL8t1frAkH4lFUFB0dpoymuN1wyk6+8flOln0QZ1dpypQ1sXrGBE3ISB8kCfzCBKAUDhRRoQkQj8BPKKKCA8EsqJbuhDjiCz04VTGB1QWkiaSA3yRShoxCWWiEjEcgn4Jz4RUGXNQemppPQcBiwfuCnstwIkK0lqeG2IXYBgoIRIKjMjyglfb6S3jpXiChQU+gGAItyjAQZW0UBGEEgl8fAlsXUIqCPCCD89GIt4Pcavajqxsd35a+oczs4KPQbVmIEk+ngED5YZCRRQahyYmUakEnw+HBnQhsVgC0vYmD7dpcJZiSwSC0ptteqr5WWofwB0HpcF4x7MBCTBFGIccslsLPi5uejZHVLTtmYDJdo2ABDLDaduB7LeYR0wpq8LAoFq9w/k83VDwKZ1JTxv11pYRwEqpwGjbC4BPgS1PPHhSEsJGmkjKQlL03hHQEMmlJCNiBq2WahoW0AcFL+K0OtpsapChIuEthiuCuAypSkUAewlPHq8fWr1t2XOHN2F1IBW7qh1wc2o8QVmITCATmDiBoC12k8meYCLSMt2NjiES9wtdanHLQFAKsFMzh5emnuFUoQiyIccL1yU0dLtIntW+w+/5FO12leQIljkSci2WzB7RmZPqRIUZ7U91EWUvEPiyQdqBuotTTTaLKYE1eUjoKWBJs82aSNpsRpr0GI1W1mylE82spa6EB1qI1tOEVxS9PrjLMYt0AIaDpGtQGq0+dV5Wcma6o/EjMlf0iEgh3cCrBQRRgEEXlLEbWojxiSqL11+GQVyemzxP222jGZOZZm3QVkCbPFYjmYLXZlimJzIEBu7O4K9gObZCxkdHR/XGVr0SNviEs9XZ4jkq+ujBn45P1Hedb+uYsP4N4u/sadOkDyq2flWTMb71RMbGSa3jzn+6+K/dkSHrvC39fZv7p15pv7Cvc82lnsSJefce9N03xAp38vqLux72HuxtkqZbb/m2UK6GyXbUNTqqNNpdN59QutZcvnp1TF5UXMK+S033oqN4tb39sr9ts/d0xzcn1p18/Urv6bUr9/7bI0/oJcekuF/ZmlR1+Ig1pcE6yR2TWlU9Z/+r7zvJX/unRBV2nkveGpEx/l71jOKYKeqipJSfKwpv/BGzqmD5/OQFG9APaest46gv6sq4ms/kosjc0bEnNvxTeYx21hx4Se28NN3ZPPVuau3ps/a3y06N3z92T7yzdvaRmzF7zjgSDlMhw/VZF5rbVnE5i7pTF76VU7jAEhvdek29Wbb5zLhw7vsVtPtC39m71V0BInNs4FBPrrnfEee+s+74Eu5r3y0uJy2Ljasua+iG22I+STf0RRxq+bPgv7zMa8U3NnWr6Ya1+yoDrvUb61aWvzP27NV1jm+THngqQ7MTujOWnfpx9c7fr3csLpze8/IKY3tnXEL53JTeZOeDTbeL8pyTI279cvu3yvcm8nPaEmcQO97Vt3Wdr+0tzo+MqMq4f+xQd2Pkyu5la2qS2srL7A9HhYU9ehQepj6sCEaEh4X9D/5zr+U=
eNptU3tsE3Uc3wRFGLKpOIcQuTTDsLhre2vXbSUIpYPNwVjdinW8xq93v/Zuvd7d7q6jHS66Bw8zEjglEubGa31R92oQpkNChCwBo5g4CA4nM8BgoCQoII9g8NeyIQTur99935/P5/utD1VDUWJ4LrGd4WQoAlJGP5JSHxJhlQdKcmPQDWWap/yWkjJrm0dkBmbRsixIRo0GCIwacDIt8gJDqknerakmNG4oScAJJb+dp3wDO9ap3MBbIfMuyEkqI0Zos/SZmGosCFlWrFOJPAvRS+WRoKhCXpJHk3ByzGQTGRliAJNoXpQxgYduDNh5j4zZIRAlVe2qWDGegmwsmGSBh4K4DqcB4/LgWaiXVqfNiZWUoVtA4GSPGOukVWtrQzQEFIJ+LiHFT/OSrESfgtMFSBIKMg45kqcYzql0OGsYIROjoIMFMoygOTkY50uJuCAUcMAy1TD4MEvpBoLAMiSI+TWVEs+1j+LCZZ8An3ZHYvBxxAonKz2msTk0Fh9in0Mj6wxqbbcXl2TAcCziD2cBGikoxP2HHncIgHShOvioskrwYXLn4zG8pASKAVlS9kRJIJK0EgCi26Df/7hd9HAy44ZKyGx5ut2o8/92OjVBqHOiTxSWfBypBByAlWD0EcmPUiJIKx2uNeBaoueJ0lAWfTjJow7KHm3nGIEs5JwyrbQR2bqwCCUBLSxsCKI02SPV+5FY8IfjodEd21uyeEzqzf58JJty2Ep7MjEiByshZSy2JBihN+qyjHodVlBsbTePNrE+U6WoVQSc5EBKLRzbihBJezgXpCLmZ+5DZPSQcIZSvkXvCi2xoDTHvIQp9HIOU3nVkvwam6m0Sqo84MVJlvdQuIyuEOJxsF5ZGcD0kIR2u94BCSo3R59DGewIuJ7IgiBP58jNJtuqGaBECDWBOXneycIu8yLcDEga4mVxSpRQfvlSU/G75vYP8FLezssSbgVOxc/xHAyWQRGpoETirdFeizCI0ktN5cpXuZRe63BQlCFXn62zG/LwBWhdxuh5BN8fO4r4tdchCURk6ku8PrPpxYT4Ny5fKeF/1U7uOzJpz2J10VbDsUl3vgYf1T23SjPOmFzH9h9MbbpZWLna8ueh5KLBa+lba2ruz7060HdymfqKMDg02NJ//87N4VsTh2rfPHvst89Gzgxvv3HypC71tciGxNa1R8uY8afDqcdb1n4yp2Xl8NmMi1N6Nl5LO5/B87d7uv7Z+G/rjU6YlS6d7rn8esGxoeFrw+HBgqmN4ZT5BakNOwgTnTtdn5b/ZXNlb/I8C37wzOcTssEbmGXCW9Nqi7fMKPUnsvkj5ZbiuZlVV9V7V6eszZ57vf7nyxMvdYc3vpM0+3a1oj+adLf5nFhU13t+Vlh38FLTlWnpJd7ozEad59DRWztnTV54dv/8BtXLTfypqP70eHNpRX9DN3C9vWZqrhT8rmth+oHCjoyWFMbWXztj0ZwjjS/tDrxA0sLFfTeya4+betMK69btXlPeza5PSqCydnZ+vGukfmVq3YJw74aMmb90XOjyfT+F6HP9/eFfrfYt09eX2ye9OtJ878d5EanSey+5+73C509tjxoLMpYC0ybbJiI0f/rh4MA384YOl124Oztt24llU/bNWZ4q/rH+/E+bb9pO7Ct63xfIyzMWBX5vpJd1bNthsyx/peLTXa3NtnYK0u1t2yqW16sou3VFEpL2wYNxCaGA84vLzyUk/AexLZt7

View File

@@ -1 +1 @@
eNqdVXtQE3cexwd3Fp8z0mp91DTYuaGyYTebhBBEB0JA5CmJAvYc3Oz+kqzJPtxHgOATtVpRe+uJelrbUZA4FLCeUK1o1XpqK56jrcphxbNnLa3a4mOQ01O8X2I4YfSv25k8dn/fx+f7+Xy/3y33e4Eg0hw7oI5mJSAQpARvRKXcL4CFMhCllTUMkFwcVZ2bY7VVyQLd9q5LknjRFBtL8LSG4wFL0BqSY2K9WCzpIqRY+J/3gGCYajtHlbbxZWoGiCLhBKLa9F6ZmuRgJlZSm9T5Ai0BFaESXZwgqXgOMCrCzsmSyg4IQVTHqAXOA6CdLAJBvXhejJrhKOCBD5y8hOAaPSLJgp2DdqIkAIJRmxyERwSL/S5AULCsD6tdnCgpDf2B7iVIEkB/wJIcRbNOpd7po/kYFQUcHkICtRAeC4I0KLVuAHiE8NBeUPPcS/mM4HkPTRKB89gFIsfWhcpBpFIevHxcG8COwNpZSWnMgSCS0mNzSyGjrArTGDAN9lkJIkoEzXogRYiHgHhq+OB5c98DniDdMAgSUkupee7c0NeGE5XdWQSZY+0XkhBIl7KbEBiDbn/f54LMSjQDFL859+V0ocMX6XANptUY9/ULLJaypLI7SPmBfs5AEkoRkoMxlJ1oQy8/HsA6JZdShWHaPQIQedgfYEUNdJNksbwaagHOfu0PNcqunIxeEa+FjalOgbooR2wuOUaFGlRZhKDSolq9CjOYcNyk16vSsmx15lAa2ytl2GcTCFZ0QCksvbL7SZfMugFVa36l4EcCgsNqAvBhGyKghOdEgIRQKXUFSN7zCUHSU/Y/7y6EE5wES/uCaZUjQeWLfSXFFClTlMtbzKDxPh1O24FMOhpDLrzABdJAQAgjKtWYNl7bEDrqJb8WFosiGIqg2KESRIBceGiGhoQGv0NzCn31KIoefNlA4twATrRfhwavL/taCICBqgWSvwiji4+PP/xqo95QODSJj9Mf6m8lgr5oMC0jHnzZIBRiFyrWlfRaIzSltE2GN0V2vcGoi3Po4wzxFEUSqENH2YFdq9WSlFZnB9QXcNBpEkYJqMnDpYGIgIRLSSpV2mIYoiQwaIk4pscNsNIEFc2SHpkCVtmewgVqEBNUvAA8HEHtNaciZoJ0AcQabEDFn1KYnZSVbq61QpBmjnPTYOOVAWOLikhHkZ1JTPXN0ZuLc7LF/NI4S7bsJswsmeop8aVnWniLU2P1YLIXnSkXoq4sBIvTYdo4oxHXI5gG1cAxRdLlTAnLTVvAMVq7MX1uqY0pQnNJa1pWBp6Ke6y0xpuRnikasyyOvDxZnwL4gplsbo6DNWcnZZC2DLMnUwDmghRNYUlSqV7rnTXbrc9cSBZl0njSAiHdLhDOTCLeNzfXkFIISyQkV2Jsggp2LA1JTwzNDQLnBglMTZwJ7Z2aBBUVJCZR039HJqhmwCWfw3pKE1TWAMMA/hIMsMJ9nZjNsaBtEyRG9tJUYkmqRqPnM7xakSWtC0k+2UX7sBm+uZTb4mSsKTZu4RxristamGec1YcZFOJBQ+QYUJ0x2JovoP+fqD4vQPquASSHf/4287OcyNIOR40VCHCqlFrSw8kUXPcCqIGNkJdUqDTGYySuw4ABcziMuN1IIclwkfZG+9/SqA68K/yEBzael1T2u/BEtUmnw9UJKoZINBrgjAXfectrAo3KOk8OvDOpYkhY8BoEP8+erbN9v3Z82qjFrfmRD6ZOefivk7cXt4xb9Jph8N7jr80aVf/buKzT7bPNs/+efcrx9lHlny1bVrLfbNxs/NOYebeExx9Z5z2VB5z/2/mryTfKnNNG/nLnt59+6vF3c3fbbz79w69LlnTd4HvugGc/nGiPfXhf/m7ziGtPNlz7UkYSO97eaamZd2Wo6US5796TtpM3H2zf/umn276egFZ+/ut8Z37LbXw8OOHsGLOl9T/nPq5KY9gfWsPDjrU+LjTmHZu+7T0jd9SirT2EGA6sVi9LNVbOuGGr2hblvkJ+i7+Zt/vp5mO+lctWdEVcvbR04tDapvmad/jI+VM2JDfvmqQ6zXC4jahSDWmua4qOj2h5ffHay+a4CGP4zXNnDgyaKKYuX69acnxgyoCLg2l3YkHnsMNR6Fvvr5xfvqfl9fqfR+ywzdn+45OOmSBq6qyn+q4LEZfLlqxpDN9hd9LvH8yPxCnHzFV3BcuksnUDjVVf/Xi2u33rlbyx4drp81O14VlTm6b4Ms4nfJOJZ1pGzK5f+uzRluQtJbUXpz005nd1NZ6N+ktFdWXhB5Gyxt28q3jf/RsXHnZkYavemGk+FbbzMlLxhaljuH9X9/Ws5aMvblVvPD0x7vejMyJ2n+veIHdmZEab7hf80o5P1o1tkkb+fLtt7erj0Wv+XN69FnCFkWMHN308aHTymOhlK5KursubQM24NyCja3TxmXeio+p6bEzzowjH2fGbFpz+XbtL3LnIXtNJRrR8tz36H+tvnXGc3/rttJ6Sg7c+OLDibmr3I/PhisimoqEm8G7r3PWraxyTxoQdvVQ57hNPOj6k4/jlU58oEddPXhrREK+5R98/Oc3t0eyY3BD7fef1+kHbKtJzNv/13rnusRvqTw/3kmsWbSz4aE9P3I5OonNT2pWeSf8mvyqbMOyEb9SwC9MrF8WMjvnw6tLKiX9sWDneUrrmrdY3Zp2ZPNDLZjZ3+C8UDn9wqKLR8ubky3F7sh8vvDcy2NKDwoatcuwtDw8L+y+SEjoQ
eNqdVX1QFOcZP9EkpU1rRDM41Oh6UTDIHrt3e19cz3ocCIzCAXfgSWKve7vv3a3sF7t7B4ehMWiNtmPsoqnVdho/4I4wfEigiDE4dqqpydBMJtEOpB+2aWNorNJqM62Jgb53HBVG/+r+cXvv+z7v73me3+95nm2NR4AkMwK/oJvhFSCRlAIXstoal0BDGMjKnhgHlJBAt1e63J5TYYkZzw0piigX5OeTIqMTRMCTjI4SuPwInk+FSCUf/hdZkIRp9wt0dPzwTi0HZJkMAllbgDy7U0sJ0BWvwIV2q8QoACEROSRICiIKgENIvxBWED8gJVmbh2glgQUJy7AMJG3LdrjDCTRgE1tBUUENOiOqhCW/kLDl4S4O37IiAZKDiwDJygBuKIATYXLQMIGF6cwt8RAgaZj6wfaQICtq7/xk+kiKAhAd8JRAM3xQ7Qk2M2IeQoMASyqgC2bAgyRValc9ACJKskwExGZuqadJUWQZikyc5++QBb47lTGqREXw4HFXIjcU8sMr6qALBuEoy6+MQtZ5BNcRFh12ugmVFZLhWUgjypIwnpiYPD8390AkqXoIgqYUVWMzl3vn2giy2lFOUi73PEhSokJqBylxJmJg7r4U5hWGA2rcWfmgu9ThfXcGHY7rzP3zgOUoT6kdSRnOzLsMFCmKUgLEUE9gvbP8sIAPKiH1FE5YOiUgi7CGwO4YvKaE5dZ2qAUYvRxPFdNJ1+ZZEf+oyWwvgrqoI55QOA/BzYiLUhA9picQnCgw6AsIK1JS7ul2ptx4HipDv0cieTkApSielT1OhcJ8PaC7nA8VfCQhOMwmET6sUxQ0iYIM0FRUarcXrZ7pIrSsaGCmulBBCpI805x0q44klW9sbmqkqTBNhyKNHGZtJgyMH4SpwGDqiigJCTcwIJST1Xaj0WLoTR3Nkt8Fk8VQHEMx/I0mFFY6YBmOgYQmf1O9nLiLYdjwgwaKUA9g18cJLPmcn2shAQ6qlnB+H4awWq1vPtxoFsoATaxm4xvzrWQwNxpcz8nDDxqkIE5icnfTrDXK0Or4Grjw4Sag12MGvQGzGHHaBEgDbcIIU4DETAHcSBjOwu5nKIiSUFOEYwWVAQUHlxJVx/M4sinRaHYDbjSYYKY2hOEpNkwDd9hfJCRykG2IKAFWIOk+5ybUSVIhgLqTBajGi7ZVOMrLnF1uGKRTEOoZ0PbhgoU+HxXw+Tl7hc9fy9T5S32F1RhR66T1wAvcmLs+Uu4p21Fo2rqNrm6y8GwEgqC4WW/FzUajyYriOkyH63AUc7DeUl2DvnSrt4hqCoU8ir6q3IeZiRqm1gkUhfYKdbUyXlYbDpbiUV0jHthSEyqudkTDleEStqS42FVY1iDpCjlno4Eobja5OaJGCMJsSCVkz7chsDgZyK891SIobBE00SDGAmy2QWwIneTArps/Dm1IKZz5Lp6N2hB3gkwA3yQH3HB42ysEHowfhhyEIwxtr6PqTMXVjUa+wRgtD9Nuk6NeEvVNIu4rM4UcZEUVtQVgeKPZUDSXBINRj2IpHqCYlmQV3g/9/4xqyIvO7XjUJc583OK8IPNMIBBzAwk2kNpFsUKYhpNdAjGoebVjmzpooQksEAAWykpSlgCg0UI4M2fR/jcf2hOfhTjJwhqLUOpAyGDXFhCEQWtDONJuMcF2Sn4CX4wlapIPXkpzrfrhVzTJZyHb5hJ+hz1+afLusj35IxbH+wh67Nl+cuMZ8saUxj7qvHB5sHtT7Dm1N3PZl7d2r4j/7fR36F2uyWBbs2vprtFXxrP07lPHYp99cOPgq6vOD37x2NkD525tn75564aTO3IzJ2jbqX789pKhf9P/mjh29L3Bn195ZMPl7IzctZ9+dPvejoazddvzHjuRvvYuPdBTcWTgqufc8Nc/uPvR88aCG396vGxor2+pZlf8z1vsUtkLrxtH71Adq5cMHu7x6RbQ+H88b1de3K+t//GrRUu9+18aEpYPZncWrqlat79uo+5E4/nRr02tPL1k4/LrE1rHx+uysnqJd48MtE7+7LeV4SWVxy8Ob7721it/Z3sQW0lb5r2B7LGMTRPq5h+ktUifdcZ6CxYP5hx98rl/LD7w4s19Z35xSx471Lq21nV89V8fufbWcfpK//dbJsZWejd8K6NUc+Cp33z1PDnx1PpLhgVu2+Qd4vrKHWc6Lncezry3IcOUvjT3R6aCoWDa2F9ettSs9xQQT144VJjz3nefX7O4M/26dmxfttp7dk/p+23W3Nbs6vSekkPIqsJFR0w3F33+RIs1svugQlxZzvx+2Us98RVZb+ZUBW83ZP7q0WDfNbz6anpsRcMnX3pf+F763sVDB8j1p6aq+1bYXjOrlWnxJ/btNX3zyifpFyZX7/rDt4++8+HyY7XmrMjF9GHvSnH8mds5//zUv8y47vOtsbs1U4/y7raTd27n/vKow+2Ovv5uTl/gi+m4sPobd6xD01XZTz9zaGSd8afv9Hf8RHv819s3uKbSNJrp6YWakrrXrmYs0mj+C91Z35g=

View File

@@ -1 +1 @@
eNrVVk1vG0UY5uPGkV8wWiEhIa+9ttfr2iiHKFRtoVGLaqqitlqNZ1/vDtmd2c7MxnEjHyg9Iy2/oCVRUkUtRQVxgUocOfAHwoHfwjtrO6VO2lThhGXL9vs1z/v1zN7b3wSluRRvP+bCgKLM4B/93b19BXcK0Ob+XgYmkdHOhfODnULxww8SY3LdbzRozus64yapp1TELKFc1JnMGlyM5O5QRpPf9xOgEYa/f/CFBuWuxiBM+bO1rvzcfNLw6s160+8+XWUMcuOeF0xGXMTlk/guz2skglFKDezN1OWPNM9TzqjF2PhKS3GwJoWACnN5sAGQuzTlm/BIgc4xDfhmTxtqCn1vF+PCn3/sZ6A1jeH7K58twP391vu/2fBauxjMKJm6q2kqx+56lbcuH360+wliKJ8PkqJGvICsU0VaXqtDmkG/3e77XXJhffDriTGuKB5zUT74acAzTGtJ+mSNsgQWLuWzvBhidjWS0S0XQa4E3v5qatxrm6w8rCftFafv+23nY9SvtDq9lud5taTttnonKJ4vwTm/lUsN7sVZzpjTyTm/0O9ep2pS7s2g/mCtsHnuZRCxScqdoNv6ZSnAOoLGDqPO83auc1oeYGdJLGWcwtMbrrWuYHDsTfnQ27uqaJzR8pGQLrNleHbDxTLTSMbuAMcQ3EtReUg6TW/YG3UpbfqtJgPai+g51qI96nm9YdRrHZIT81hTECFeTlNd7hpVwONFBoNJDsfnaH8BbN7kJvmUCtLsdT3ief3qbZtcjfXXOFMKm/nXOw+2nfn2OH3Hq/fqncCpOVzgzAkGIY5urJ3+tjNM5TDURmLGEIKgwxQip29h1ZZ1WGzAYNfaGCjCcmgwIWzRLE9Bh1mRGp5TZZaDnG6Bq4fLbSCkPMS9VpNlA6nikCmoShJGXM+VI6wganM6ybB6y045Zi8FTUP01se9dPtVWWugiiXHpIkch8akYcEXImNHITQcVBgVao6OTqqyplLEdtvR38dVsO7KzAVNf1pzxlJt6NwG0EzmYFGGXGxyA/oI411tohBpK8fu206+jAmDDKlBpNhvJEM0FCMe28MLDS9VO8olEuhRJoymEBZ5eEfzu4gftygGhbC8CuhCK0yCJY90mCI9oHMzWCgjORahgCw3kxfePmptuIV1FetIEA4nVWItr9dtdlredPreq1l85TQWxw9KdUOlWQM76OYKa2Qalo21+R/R+7enkftZiHs3eu2FEFiuODN1P2ZzqjInUtV/ZvZjZH7O959UFOyy+U10RMpvSq+vuwz2cDiQJsv9YpMzqcTy5fAyqb57eduZzV6YUJ0gF3Y832/RUbPdhqDZ6QbQ9TvtgAWdTsBgBM0RZThijEZeuzXy293uMPCY3w4gYBEbBoBMmlHBRzi3dnE5rvZN52jYUTsbbY2/UGLwaw2/rlbCAW6gnVDnds1JGa4cMhJ2BVFhqRBxwZDf0GNjTNWM6+cTiL9vvtFZFwsEtz5zOuuZs6CnJTe3qjlnPcYsPPrOl7IgVAHBS5IibdoLz5CRVKRiGxxVlwo9BttRgpfYhq4T5AhiEkArO0JWkXPAoSFyRBRg8wGJm1Szv2WIkWQWofJZRK2TSyMywbMjKT40ZEPIcaWfmdbIV4U2RNMJCqlZMlwgUABEg90Aezg+avGsyDBCRCzB/CucxcK4hvot8fn8/D7ZXkCZkltibQYWpXPYVrhaOferB4G8MOEmVdzeKHYinIW37f/MxZZ/UdgQK5jhVPSdkTtbB2eKr9tvHGo6ffEsgDa3p/8A34xtTA==
eNrtVUFrJEUUZvGPFIUgyPRMz0zPTNKSQwhhV9wQxSjIbmgq1a+7a9Nd1VtVnclsmINxrx7aX6AmJEvYVQ/iRRc8evAPxLv/w1fdMxuNkV32IAgODNPzXr33vvfqe18fnx+ANkLJW0+FtKAZt/jHfHF8ruFhBcY+PivAZio+ub25c1JpcflmZm1pwl6PlaJrCmGzbs5kyjMmZJeroidkok73VDz7+TwDFmP6xxcfGdDeegrS1t+7002cV856frff7Q9Wvl3nHErrbUquYiHT+ln6SJQdEkOSMwtnrbv+jpVlLjhzGHsPjJIXG0pKaDDXF/sApcdycQBPNJgS24DPzoxltjLHp5gXfv3lvABjWApfb7+3BPf5yceC1RcIg6RKpTk85QonIa1nZyX8veQZtoIzq8+rA8GVlj84bMZ4iMRqlXtb7NB1Wp+Mff+na771PFdTb6sZqKm/evubjUWpuyBTm9UnwcroxxtjtrVIhay/vCQ3ujc0xJhHsNzUp1ZXcBrj2OrnO1nVIf0J2eaWDPxBQPpBOByEwxG5vbXzjDOegcfbTPUTqbzGcr6eW+/DA15fdrPhGg2DYEjfIQVbG4xWB77vd7KhN1i9wfH8GrbNw1IZ8O60g8Z+b57Hlb+hzad4Zxo58Nut34/ogp00pH530h0HtEPxNgCvNoLDUujmXiIrCqChrPK8Q/eY5VmE8UjeCHtLRErDI1phRFHlVpRM2whkXCokPA3dsDrUcJZDVJXRQyMeQYT10xQ0Dfuu3SuvtJlGsCbKBRIY3eOlM1ZTGUkoSju7ig7Q69ItTze5XhiivZkFQ8OBvzrpjwb+vEOFRLpKDhGyPjUONq4MLqWFiIkI91HPEDrbyyFeIlc6jTiCauYQC7NwJsgE11emppG1eVSJZYDFHccOBegorhbzi9msqZYrmbr9wQRBAzZT2i4M/QABGmAap3sNw1TpfVO6tIarEiKHScgD0bS3RDKMjFUad++v0fP5P0vN2sukBr9oNT2dFz1M7ZVa4Q30nGQY+78GvZ4GrQTBv6JBwX9Bg964e0RblkUZMxnq0MgPggFL+sMhjPujyRgmwWg45uPRaMwhgX7CeD+YcBb7w0ESDCeTvbHPg+EYxjzme2NABSuYFAky1K2cwD24R1/QGr0tiQ0+ocXizwb+vN8Yd1BgHBfpLsogx53EdUaCICocICKuOK4YRuxPmW71Y8E1fL73SrXuVAhuqw163Zpt0pc1tzjVoa9bxi4jQvqJqgjTQJgkzBjhRNSSRGnS6ApujcekmYK7UWKZ2TddgmpAbAZ4yt2/c5QCkBhEJUQDXj6g6pFmDQ8tsYq0GZqYZdYueTchM6wdK/mWJftSTRt/e7RDHlTGEsNmaGT22sElAg1ADLgNdMULdiiKqsAMMXFS8qd0DgsXBrr35QeL+iE5WkKZk/tyowWL1gVsZ1xvgkPqXi5lZaMDpoWTX8cIuox299+GuPEvBxvhBAtkRUgTr10HOsfP7iunmuMbAw4ZZmvO7M7/ACbG6BE=

View File

@@ -1 +1 @@
eNptVG1MFFcUXZUooj/aWpM2mjputZbK7M7sLAtLo5UuYlBZiCxksa307czbnZHZeePMGwTFJkLVVtRkaGPSxqrIsttuQaTYGENpsZZW0baoxEg3MTZ+tRqjqfUj2kgfCCrR+TXz7r3n3HvOfVMTq4CaLiFlTLOkYKgBHpMP3ayJaXCVAXX8YTQMsYiESGFBka/R0KT+2SLGqp5ltwNVsgEFixpSJd7Go7C9grWHoa6DENQjASRU9dettYZBZRlG5VDRrVks43CmWUdSrFnvrLVqSIbWLKuhQ82aZuURaULB5MAHZZkKQwpQK0kxBQLIwFQAAk23rnuPYCAByiSNl4EhQJqjRSCVG7SDEDAck0GgMAyrZB5saASfsTHrYiIEAhn2rOX5iIh0bLY9NUAr4HmoYhoqPBIkJWS2hNZIaholwKAMMIyT9hQ4pJAZL4dQpYEsVcD2SlrHQFJkMheNpTAkrZpfeQt8ZYvyShZ6ow9BzX1AVWWJB4Pl9pU6UpqHp6VxlQqfDscHNaGJUAo2D2SPtGkvrCJ2KBRjc7ptzL4nqWVAOo6qQ/GOJwMq4MsJDj1stRl9WLz3yRykm035gC8oGgUJNF40m4AWdjlHTakZyuCgZsxT+DTdcPAxHWdjHbbMtlHAepXCm01BIOuw7ZEHj0rixEiOZlw0wx4YBQ2xVkXziDCYDczeEQFlqISwaDaynPtLDeoq2WBYGyVl2NBrIsRLePxIbHjt9hQsGdmELZEc4qrZ6RONNIpxUflAowhxOsW6sjguK52lFuX7mj3DJL5nutTm04CiB4lTC0eWJsaLhlIOhbjnmesSH75ZtCSY35H3MoZd5k33ZLCOVeWoeKVRIvBVyFfqCR18rAvSQkCR1gzRDtb1z+LcLi5d4AI0DAQF2unOzKDdbgdLBxyOTMGZyWY4BVdjhQTMOGtjqRBCIRm28kGaB7wI6YfSmLGcUm92fp6n2U8vQwGEddoHQmZEQQqMFkGNuGHGeRkZAll/DUY9ufSy7FJzv5vlOScrpLNAcHOBTAf9NlmbEZkeyRAZvDtDv4H1xAqNHHWP2TyjLtky9IwTzOy6xILJGwY2x5fYvDeUlNTv0/79JvXTefv3NTm7l4YuHO/jj35xYhY7c6DzTGLD9p1J986e+qR3au3h8Zuq5asdqwsO35yy6djfV28+OHU+NLejbp3T3+B99dc3evqnT5y79IXLG4+6hfRm/5/UNqtLbEzddjrxbUaD/er9ew/CnS2r/Q1TSwLdlxK3jD0n4W1b06F5s5dD5kbt0ppdJ6fg+vfrT06/21X2X5K3smnS7+rO4lJ514xzXdePfl4/se9U0tkdf8HFiyIoeGfFb19PvrJ1fteE3hePrE/xv5zck3x59yuTLzx3PokHydX1lSnV1XmJrhW5V3q2zEntzQMTsg+9nuMoBcknuiceL9TOnR8/v/7HBb3tO2bidukitXHnJf9b14P+vqLlY09fkagD73YeStxJae8585qj9KVpsypatv90d4Jwr/gjGhye/XPKsX8+u7R5/S97WhYX7Gg7mCgRt97q+yMnt1a937r7g4sfb7m/K+/ED292XLt2e5rFMjAwzpJ7fZKTG2ux/A/oUIK0
eNptU31QFGUYP7TMCRoZnWkmamA7hj8y9thlz+Ug+8BDTAyOuAMVMXlv973b5fZ21913CVJHjtLGUpu1j5mmsJLjLk8SL3EcE5uIGG1qJE0swhz+0JE0p8bJyGaQ3juBYHT/evf5+D3P8/s9T2u0EWq6qMgpnaKMoAY4hH90szWqwY0G1NFrkSBEgsKHK11uT7uhiUM5AkKqXpSXB1TRBmQkaIoqcjZOCeY10nlBqOvAD/WwV+Gbh97dZA2Cpg1ICUBZtxYRNJVvzyWsU0HYsm6TVVMkiF9WQ4eaFXs5BXcio4TJAyWJCEICEA0YggBexUCEFwJNt25ZnwBSeCglAjkJGDwkGVIAYsAg83EdiqEKEnAIBlU8GDK0RBXKRm2JChDweOyLlvSwoOjIjN81ShfgOKgiEsqcwouy3/zM/4qo5hI89EkAwRjuUYZJrsxYAEKVBJLYCCN3ssxDQFUlkQMJf16DrsidkzORqFmFd7tjidFJzIiMzKPFU33kVTZj5mXcMsPaqENNpI6AKEuYO1ICuKWImvQfn+lQARfAOOSkqmbkTvLBmTGKbnaUA87lngUJNE4wO4AWZO2HZ9o1Q0ZiEJpRZ+Xd5Sad/5djbDRtK4jPAtabZc7s8AFJh/FpkqdTYlgrhqRYkqKPzoKGSGsmOQVXMD+hDk4RKEHZjwSznbYXfqpBXcXLCl+N4DRk6K1hLBb8/lR0cr/2uVZNSb0zXIJlM094BCOXoAsIF4eIxJIQtL2IyS+y08SKck+nc7KI554qxT0akHUfVmr51FZEOcGQA5CPOe+5D7HJIyJF3uzB7w0UXRqQ/QXLlWoBVi8p4dwVqwur1wjBI00kJykGTyJ8gZBMDtuEzCGCc3gdPtpBF7KQKXSwNM+ydi/DUpwdMA6Gge2NIjBjtI0m/Iril2CXs5R0Ak6ApDtJiRktWVtRXL7S2bmGrFK8CtJJD/CbYVmRYcQNNayCGUuWxnutwQhOrypea3Y7eDvl8/FLHLCwgPGyheQyvC5T9EyPH04cRfLSQ1gCDZv6U4ysN+dbkt/cF15cFRh+Lv32k28f+8f66LMPzlu/rMxdd6q3+/XHrnrZX8yX2wd37nv/yIGMiTFrR2jvvC+vpOn9o/FvalwnLzdMtGX9PbCh5vpP1984fy06/tburIn6EIvssecH2+an/p6zq8W9q2H3Q6lSv/vrhQcufR695cusk25sPlG3tVZ+b13uoYWst+/GlZvZZ0bHRttKdzx1VYyMjGyrW9B1Nv3c2T7i2NI/Qx/1WV5q8i3qUh+pXlzdPqaODHiOdd73sNAycvqvvVWLhn4dvfgtjNT3Dj29ee617GYqVFbbeqE3p9byQIY74+Pv0syBPadN1x/B1J9XrjAyfyvOP7dnyGlX5+34MKObvmVvCRwufYYc2ZFW27r98px4Zjmz4AnWfn77xoKT3tC/++vlUO2NHwdTe8YXV5Z/wbkqtsVLvFu7LzC3s9+5mL9x+RqtYv9XS7dEeryXbMNnwo/X5K7+YE7O8MQPjfrx8fstlomJuZabLY6ysRSL5T/v1GTL

View File

@@ -1 +1 @@
eNptVWtsG1UWdgiPwv6gCIraCi2uQQiBrzMPj2OnhG5qO2lIY8eJQxJKa13fuc5MPK/Mw45TWtqEh4BdYKBQIfEojWO3aUiBPiClRS2IR0XDQ4BEgIVKkP2xoouAVVeobLvXjrNN1M4Py3fOud/5zjnfOTNUzGDdEFWlalxUTKxDZJKDYQ8VddxvYcN8oCBjU1D5fFu0Iz5i6eL0bYJpakZdTQ3URI+qYQWKHqTKNRm6BgnQrCH/NQmXYfJJlc9Nb9nokrFhwF5suOrWbXQhlURSTFedq01EaSd06lDhVdmpWHIS606YVDPYSbncLl2VMPGyDKy7Nq13u2SVxxJ50auZgPVwwLT0pEr8DFPHUHbVpaBkYLfLxLJGMiFWcpvyBDYVBQx5kuZ3jsV5QTVMe2Ih9b0QIUwwsYJUXlR67Vd6B0XN7eRxSoImHiOEFVwujD2WxlgDUBIzuDB7y34VapokIliy1/QZqjJeSRCYOQ1faB4r5QNINRTT3h8lJBqaa9pypMaKk/b4aA/96gAwTCgqEikakCDhU9DK9rfmGzSI0gQEVPpnF2YvT8z3UQ17tBWiaMcCSKgjwR6Fuuzz7pv/XrcUU5SxXQy2XRiuYjwfjvXQjMf/2gJgI6cge7TchjcWXMamngNIJRj2y1QBqWpaxPbXVVckEiiVSMr1uSa9ayDV2Ki0NGodGTEbEvmYv39t1t8Y6+xrEhNJXbU6E1yK03oAXeulmVq/n+EA7aE8JGcQFBCTs9ZmuTZ6dbOCukQ23S92rY2kI81MPBxjUYCSWjV4VzQQiHdFlPAaHNYCAR0pmcZ2IxmDuL2pvd3MWg2xOO5INw/0qVysi7mnAfnboi0xmNFoabA76K3lGWOlk1C2MiJfH0nTob54MsP51nQKbISPRsI9kTDfz69uvyeawd5of6Ij0Z28m2lG8zj7aR+gKrR9lNdPlZ6JOcVIWOk1BXuEZvy7dGxoZIbwcIEU0rSMoTxRJz7xYbEyTDujLeeFfX0+RJRqH4kLlttJ+ZytUHcyFMM5aV8dy9Z5fc6m1vh4sBImflFhvhYng2ikiDjDc4NQRIKlpDE/FrzoCBwpjQDpb4k+GVaABzTVwKDCyh7vBu2zWwQ0h/bNzhtQ9V6oiIPlsPaR8ixkBweyPLJ4XshkZSow6GXFJLZQan/liqarpTCEEJANe4ShvBMVy5wax0iuFKApQNGHBgCZfSyJskjqWf6trDLDznOk2G9e6GCqaUyWXtFb7gb19nwPHctExqXY52G8gUDg8MWd5qBY4hKo5Q4t9DLwfDY0IxtvXuhQgdhJGeMDc95A5O3pm8khkfKxqJZJJiFLQ4ZPMhxXy9DkmPLXYl+AqZ0k21BEBKXUTE3VTWBgRPa2mbOn3TIcKG2eepbmWB/JdKVTVJBk8bjDSobUUg5E4JqOJRXye1EKIIgEDGb1ZxdDPZGG1ubgwW4wX0ggqs1+M4qKaihiKlXowDppjD2GJNXiyQrVcSHYCNobeuz9ARqxXjoJ/QHM+XmaBqvJcppD+7/s8qX9W4QS4Z5B9j6BrXfVeb2sa6VThvV+H2lT+cuytVDKVel9r2rLjY8tcpSf6r8+9ZEyTC0O/+e+B2e4Ry6ZqsbTu8ZeP4VinUv0n6q+XfrNgYfvvG7m+9uvvSrUOqp0n3hu4yT7QzC06JmhiStnlgQ3rOMmP379zKkhfPUTv4LJv292nz4arspG90xNPfR+A8zsPfpLEzdTOHhV2/JN73xbFVw0cbzvxfwed8t2sOtvjiX86HvHvzTpY++fOsE/m38s0rPs+LHPudzji1b8+OlmUoSTT08cd5/d/cXJ+tu3Tpy5ZfUu9rb4rb9tGOSXi3f8RfEOKeiTLnRyh3DHn46ZI/GuVafvby/s//in+z44M7jiwL87/7UlNzK8pwmJLU9cs6LmVGiqZ03fC7vBP4TTO4Yhs2r6M/hw9dqVD13+3HLx2V8u23evg9n9h7BiG7th69Jt757uvim/bKvg/fVn9/bDUdSy/uwHmx3PD4cXT1rOm1e9lBWMxX/+KiH/99Fvjn4xvHH7Dfq2k+8su/S68Vjx845zM9f88/CThy7tfUH6+fsXf1+6qdrhOHeu2jE0tXPH2Uscjv8BZV1LvA==
eNptVWtsFFUULgKRRxQwBDBRGDZFA3S2Mzuzr9aGlC2Fhpbdbtc+VFzv3rnTne68Oo/ttgQTSklDJMqg6A8CEbrsmlJasKQ8Skl4Ki9REyGVBCT8wMRQiCJqYoJ3t1tpA/Njd+45537n9Z0z7ek40nRBkSf1CLKBNAANfNCt9rSGmk2kGx0pCRlRhUsG/DWhLlMThpdFDUPViwoLgSrYFRXJQLBDRSqM04UwCoxC/K6KKAuTjChc6/CODTYJ6TpoRLqtiHh3gw0q2JVs4IMtIMAYAQgNyJwiEbIpRZBGgIgSRwRlKyBsmiKijJ2pI822cT2WSAqHxIyoUTVIxu4kDVOLKBlbGUtp/K8bGgISPvBA1BEWGEhScWrYMINF2b0b01EEOJz4rbzZyaiiG1bvxGT6AIQI4yMZKpwgN1oHG9sEtYDgEC8CA3XjDGSULZXVHUNIJYEoxFFq9JZ1CKiqKECQ0Rc26Yrck8uYNFpV9Ky6O5MdiesjG9YRPw6itKIw0IqrLhO0nfXYqUMJUjeAIIu4jKQIcDwpNasfHK9QAYxhEDLXUSs1erl3vI2iW/urAPTXTIAEGoxa+4Emudj+8XLNlA1BQlbaF3jWXU751B1jp2m7+/AEYL1Vhtb+bCOOTriMDK2VhArGsPZSKagoMQFZw7+Hw5APR6QSak1NC0x41KYQDJaL5jo60rzK7a5/21mmu1avCTaE9ZC2RoiEhXJI0m6Hl3Y7nU6GpO2UnbbTZJlpDzc3JzTv6urmGBUWK1iptbKeK21YHXDViuVyU0RJeISVjoYmMYDiPBRDdU3hJmRnlHq5CjR7fNWBYHkd1SB7E4kIkKp9Pt4vlhYTODozLnAlbC2jBCTQHF9Z2Rby046YFK+3hyWxzuEzlNg7ZZWMYW/zMWtCTQ3jwqNwhFQuQhfFeqjM0zvGDRHJjUbU6qJZ11ca0lU8P2hzCpfMMPX2JOYhuvJtOjdI+/xrn1J4XrIMc9IaCkXNAoJ2E35oEA7KwRI0W8Q4ihgnsboq1OPLuQk9l4KHQ3gEdR7TcNUY5dMwasoxxHX7nkv2oQzZcScz4eMpJVFCVXRE5qKyeurJ4OgGISvK+kcni1S0RiALbVm31lCW9S1tiRYOmhwXjbdIlLeNZYQIMiF/JHdF1ZSMGxwQKelWF+Nw9OY0Y7zrxrlSJE2RFH0iQeIxR6IgCbie2d/cGtOtpBMX+9izBrhfCC+8NJvtBnVqvIWGJEzYjO+nMKzX6z35fKMxKAabeN2uExOtdDQ+Gtoh6ceeNchB7KP0nsSYNSlw1nA+PoQB74q4OMR4XQxDcR7ew7p5wHo5ikFOnoGe43j1CRCjZJqpKppB6gjinW20WsMFEkhkdkwJQzsZF860mBBkKJocqjEjZUomB72YUDUkKoDr85WTPgCjiKzJ8s9KlzWsK62q8A3Uk+OJRPrV0e9FWlZ0WeD5VA3ScGOsbigqJoeXpYZSGCtY2mAd8XAsxfMR2gsgz0LoIlfiNTSG9j/tkplNmwYijj0Orf4oU2IrYlnGVkxIoMTjwm3KflU2pTK5yo3nJ4UWfTQtL/tMFrdflc9QszsetM64fG/KHGLV1YOd7T9rv+4Nbule5vhuxzHz5IVb3y86N1g3fVLw9PnOf97q7x+cueDusntL7349N3/5ga7Bb87zA6/evvZF38xPZo38JhzfffXA7XsXH6NzZy9sOjBru2G8lF9bO3kp+2LB69Pa33Du+Vi+K+zIr5i57Eqpe+BMkF2YP+cnecsP1MIlu/vLlpz+47OhqdvogdjtVNfFO7vS4oKFO2ecnD/14aNHW+mRgHvG/FvL/Wdmz7oW2LeYku7vEhZ56m+8z56vPGimH/g/Zeddv3Op5d9k387qU1dem/ZJquLPjs+PGouox7fk0JPlFw+evRQs/3t6avq2Nzs9H54Cs+LbtneMXKxILCm4vKnjx1Mts+1bChavKO4sVfovWzdsL99cWvNecsr6V/5asefLS9cvzf2lp+b+1ptrRzavwOV78mRynvbBw17wQl7ef6XuMgw=

View File

@@ -1 +1 @@
eNptVQtsU+cVDgLRVlPaTBQQQms8066Q5rfv9fUzWZSmdpI6iZM0NiGhm9Lf//3te+P7yn04thmtgE6jQCXuKgErj6rE2DRNwrOUhoQ92CrYoy+1SEm39N2qXdVpQ5Xo6Ep/O85IBFfy495z/u9855zvnLs1n8SqxsvSohFe0rEKkU5uNHNrXsUDBtb0J3Mi1jmZzXZ2hCNDhspPVXG6rmg1djtUeJusYAnyNiSL9iRtRxzU7eS/IuAiTDYqs+kpYZNVxJoG41iz1jy6yYpkEknSrTXWCBYEi4gt0NIvJ8hPVDZ0SxRDVbNWW1VZwMTH0LBq3fzzaqsos1ggD+KKDhibC+iGGpWJn6arGIrWmhgUNLw5z2HIkpRmyiqynKzp5thCmscgQpggYAnJLC/FzdF4hleqLSyOCVDHw4SchItFMIcTGCsACnwS52ZPmcehogg8ggW7vV+TpZFSMkBPK/hm83CBPSCZS7p5uoOQaAjaO9OknpKFtrlpG308BTQd8pJACgQESPjklKL93HyDAlGCgIBSr8zc7OGx+T6yZh4JQdQRXgAJVcSZR6Aqup2n5j9XDUnnRWzm/Z03hysZb4RjbLTD5j2xAFhLS8g8Uiz6ywsOY11NAyQTDPN5KodkOcFjc3rRbX19KNYXFeuaMt0u/2BHu7Yh7WlsNxLQL6EmIZUJtjUqjXFbWKCNJNVi9FJcCNAeJ+3weL2MC9A2ykZyBkGjTac7m/tl0RH1BjemI2If1YnCzaFWpokRwrwt2Rps07yhxlhXl+EKYKWnRersiEn+9oZWFGn1C20q9vcEbL2phrTLkXxkfcLVNoD62nimoV8NRlUYb4O+zMZOd6C31kIoG0merUs12WwupTXp0CQUHkDKQxyfoR/ObGQTjXExHIjIA93hABfu7fI+Mo8zRbkBVaLtppxeqnCNzSlGwFJc58whmvIeVbGmkHnB23KkkLqhbc0SdeK/XsyXBudwR+sNYa/IBohSzckIZ1RbKLclBFWLg3K4LLS7hmFqXC5Lcygy4i+FidxSmCciKpS0GBFn49wg5BFnSAnMDvtvOQKThREg/S3QJ6MJcEqRNQxKrMyRHtA1uzFAMHBqdt6ArMahxGeKYc3J4iwMZlKDLDJYlksOipQv42T4KDZQ7HTpiKLKhTCEEBA1c8jh842VLHNqHCa5UoCmAEWPp4BKSiHwIk/qWfwurS3NzJLyU2dvdtDJpiELLu8sdoM6P99DxSKRcSH2DRinz+ebuLXTHBRDXHwe1/hCLw3PZ0M7RO3szQ4liMOUNpKa8wY8a07dS276fJjC0EVHfYybdUVdvhhiPZQbuukoZijswK+Q3ccjglJopiKrOtAwIjtaT5tT1SJMFTZPHUO7GDfJtNbCS0gwWBw2ogG5kINWa1FULMiQPYZiAEHEYTCrPzMf6G1vCAX9Z3rAfCGBDmX2/ZCXZE3iY7FcGKukMeYwEmSDJStUxTl/E+hq6DVP+2jEOGkcY1inj4l6WfAQWU5zaP+XXbawf/NQINyTyDzFMXXWGqeTsdZaRFjndZM2Fd8iW3KFXKX4nxaNV+68vax4LSaf69d3dYUSq+mKyX8d2/eFcNu7q5d91Mq3b9nzxuUjtidPXnzry5aXutdkp8Z/fPW3K0frL+fKPz58YdOVQzO/mLi77A/9J5Y8v4t9Z6nnfF91d1/lXy69bH+xo/Lcu5V3TTx+deK7787uF+pH/rj2Ae7KD5Y/F/HsmH5/N/hm8ai15dUvaybPHXztqxU71ZllgNd7Ly+5Z6/nCj044P/oku6uryrv/WWw+oMXyspSn7934M3Et2v2UKsO7l4R/nX5jk9euf3BgLrqh4779vdkVgxtiXy8anPlJvFQw6PlQoV77RrB+megL0ruCd11f7Mwc6Guauq+JduOP3PHvrVM7dF1W39/9av/bNtu7GWlNwZf+9G//+c7MfSTwHR2zROvJv4pOtYHfnPxM/2pddsP/WNlWf21S/qGv+2oeKH8Z7T4ZvwCnz6+7IJtqZo88Oxj0c+XTvz0qbG/Vz1dPdq68pnlLVXbMp13JnYfPKM33L2y7vrqT5+Y+dX5UXkmWl/RAh97e/32o6PjUmrtzn32r186eWXXtd9Z4bfi8m6B/rSOG8Gf3em59y0tKrw4/d+laPuZ+uzjr1/70F5s0OIyZnDa3Uy69T3LDll/
eNptVX1sE2UYHwMTBFRCAP9Q4Kya6dzb3bXXdt1YYOsGm6PrtnZjQ7Be7972br2v3Uc/BhjcFAXGx4EkSvwD99GOOcYWFj4FEghiAE1MJDhQZoSEqCAqJigxwbddJ1vg/uj1fZ7n/T1fv+e5tmQEKioniVP6OVGDCkVr6KAabUkFtuhQ1d5NCFBjJaa7xuP1dekKN5LLapqsFubnUzJnlmQoUpyZloT8CJFPs5SWj/7LPEzDdAckJj6yY61JgKpKhaBqKsTeWGuiJeRK1NDB5IM8jwkQo7BmKYxeAUnXsACkFNWUh5kUiYcpK12Fimn9GiQRJAbyKVFI1oDVbAOargSklK2IpAR6q5oCKQEdghSvQiTQoCCjxJBhCgs3O9YnWUgxKO1rWbO7WUnVjIHJqRygaBoifCjSEsOJIWN/qJWT8zAGBnlKg30ofhGmC2X0hSGUAcVzEZgYu2UMUrLMczSV0uc3q5LYn8kXaHEZPqruS2UHUHVEzRj2oCBKKvNr4qjmIkaYyQIzPhgDqkZxIo+KCHgKxZOQ0/rjExUyRYcRCMj000iMXR6YaCOpRo+boj3eSZCUQrNGD6UIdvLgRLmiixonQCPpqnnUXUb50J3VTBBmx9AkYDUu0kZPuhGHJ12GmhIHtIQwjE/xBC1JYQ4aI3/6/XTQHxCKq/2BBm5VoMJfWoeTDS7GAhuhF/eGI25fZXOpfWUTUxcrEPlIU3UJIBwWJ+Gw2exOQJhxM2EmAF7CN1aYWywVKxvL6BjL+jRLrduPO8h6rsEFNY1plFY1qERlgx6qIOLmKBFcUc+W15XE9Rp9Ob+8vNxTWtmimEsFV9RKlrfavQJZL4WKMBSdHuGY4lX0Knt5XdQmttjibp3x2kvCimyJyYS/0s6WUNW19AqIE1GHtWxieFabBeCZCO04WYCnnoFxbvBQDGms0UWQZK8CVRlND2xPoJJputrWjXgIL36ZzIxRp6fqIYXnd5chThonfKyehxEOzENrmAW3kBhBFlothTYcW+729bsybnyPpeCQT6FENYhoWD5O+STN6mIYMn2ux5L9RIrsqJOp8NGUAhiTJRWCTFRGfyOoG9sfoLLs4NhkAUkJUSLXmnZrnEizPtoaizK0zjBsJCrgzlbSygWgTgeHM1dkRUq5QQEBQTW6SCs5kNGM864P5YoDAgc4cSwG0JhDnhM4VM/0b2aJqUa3DRX7yKMGGto6aN0lyXQ38JMTLRQoIMKmfD+EIZ1O5+ePNxqHsiITp8N+bLKVCidGQ1gE9cijBhmITlztj41bA44xRl5CB78tYLMU4EwAWi023A6DpA1xK2CF0BZwWgnoPIpWH0cjlFQzZUnRgApptLG1uDGSJ1Cx1I4pthI2qx1lWoRxIs3rDPTqgTIplYNahMkK5CWKOeBaBlwUzULgTfPPSJahSXNXug41golEAh557GuRFCVV5ILBhBcqqDFGH81LOoOWpQITCKuupMkYLmBIAvkNEiiFgiBkQClaQ+No/9OuO7VpkxSPYo/QxkHWWmwqJEmrqQgTqOICO2pT+pvyTiKVqxg6O2Xtoi3Ts9LPVL52qPoMPvf7u/Oeyc8Dzdk9nTNzS2dN3zRlWumG3Mvxre4Fp368l+3rfbBt58ZDH5gX/rbu5vG70ey9qwe+2NtxKXD+/L2cy44793YlO0avn17zw3u3Ni9smWNeJAqtna1b24ISe2OlzvT2L97cNZhwl4HvjiS6buUteOr9ZAjU1m07aczb/df27RvX77vecb+dfC7yetXX2GfE4pysrNHbI8ws59v7iFmtpyo2XTy21HZtdXaNsa79la9uNWqzL13dubHtLZZecuXlG3OffiLY++KZnF+m80/+8/ybp6uOLO0KL5u9pWrw/tSra/HlH7avufDB3T2699Vvr0X/bt71jbe2fE/LOen3ozO33SY7gzPcC+f3+S4MzNlwObLlvqe4vjz3tY9nAJzc+PMfV6qFy6MveArrKoZHfxrpPXxO2NPF3oyHquDw0EfS7nYmeeWB415T/69Ha/5VKwtzzlbNz0uqz87oqNdu3xn2DuxchKr84MHUrP07pi35JDsr6z8PST+u

View File

@@ -1 +1 @@
eNptVXtsU2UUL6AZQWVoFBON8VogGbjb3UfbtcUZt3Udc6zd1sKYaJqv3/3a3vW+dh/tHszgUOKDMa4CYkRA2FqzjDkdkzeKBsWIkaB/OCCQaGKEGaPxFcPLr10nW+D+cXPvPef7nd8553fO7c4kkarxsjRjkJd0pAKo4xfN7M6oqNVAmv5iWkR6XOb66gPB0B5D5ceWxHVd0TwlJUDhbbKCJMDboCyWJOkSGAd6CX5WBJSD6YvIXPvY2k6riDQNxJBm9azutEIZR5J0q8daz8MEAQgVSJwsEpIhRpBKgIicRARlLbaqsoCwl6Eh1dr1XLFVlDkk4A8xRSdZm4PUDTUiYz9NVxEQrZ4oEDRUbNWRqOBMsBWfpmxUVyaOAIfTvGCZ1xeXNd0cmk79fQAhwphIgjLHSzFzb6yDV4oJDkUFoKMBTFhCucKYAwmEFBIIfBKlJ06Zw0BRBB6CrL2kRZOlwXyCpN6uoFvNA9l8SFwNSTf3BTCJ8pqS+nZcY4mgbU7aRg+3kZoOeEnARSMFgPmklZz98FSDAmACg5D5/pnpicNDU31kzeyvAzAQnAYJVBg3+4EqOu0jU7+rhqTzIjIzlfW3hssbb4ZjbTRjc30wDVhrl6DZn2vD/mmHka62k1DGGOa7VBrKcoJH5tkZBeEwjIYjYll7tdrUFvX5pFqfEkzyKS/PNbhal6dcvoYVLdV8OKLKxoqwI+pQmkm61E4zpS4X4yBpG2XDOZOVcci0G8tTjnq6okaCTTybaOWblvsT/homVNXAQjcl1Cng6YDbHWryS1XLUJXidqtQSvoatUgDQI3VjY16yihvCKFgoqatRXY0NDHPlENXfaC2ASQVWuhYVWkv5RhtKYEpG0meK/MnaG9LKJJ0OJetiLN+LuCvavZXca1cReMzgSSyB1rDwfCqyEqmBk7h7KKdJJWn7aTsLip7DU0qRkBSTI+be2jG9Z6KNAXPEFqXxoXUDa27D6sTnTqZyQ/T7kDtTWHP7/NipZpHQ3GjmKCcRB1QCYZiHATt9LCsx+4kqutCg5X5MKHbCvODEB5ELYrFWTU5CBkYN6QE4gYqbzsCR7MjgPubpY+HlURtiqwhMs/KHFxFNk5sEbLGOzIxb6SsxoDEd+TCmkdzs5DqaEtx0OC4eDIlUu4OO8tHkAGj+/JHFFXOhsGESFHDxXExQ3nLpBoHcK4USVMkRR9qI/HsI4EXeVzP3D2/yjSzz4GLfeBWB11OILz0MvZcN6hjUz1UJGIZZ2PfhLG73e4jt3eahGKxi7vUeWi6l4amsqEZUTtwq0MeYjelDbZNepM8Z44txC9hdykHWQcCkYg9iqIMa3c5KQo5aQTcTpaNMgfxNuQhRsk2U5FVndQQxHtbbzfHikXQlt08ZSztYPExainBS1AwOBQ0Il45mwMWuKIiQQbc+zBKQgDjiJzQn5nxNvvL62oqP1pFThUSGVAm/hkZSdYkPhpNB5GKG2MOQEE2OLxCVZSu9JGN5c3mPjcNWTsdKYWcq9TF0TRZgZfTJNr/suvL7t8MEDD3JDRH4myZ1WO3s9alhAjKXE7cptyf5YV0NlcpdmJG96OvzbbkrlkbXg/Xfkbdf+LilcUVOw6D8eubjy0uerWQ8Xq9T289b7zF3/f66nc2dKVqzu19xP9bf+E/qW8uHfwn+uC9Ff273O+u+XpT08qeoZFfLl1fYfvwzROf9ZwtenIk3PvN/tR58a8HetZ9Wlz6ye+7HtKCzXcW9Uh06pN53Qlm58JLT3x1pnnWkgVP3dnMt+ruHRuHk7XsoWVn+MyzD395/NvtR6penPdh4thje+YP97sPvly4Zc6R2KLTV7/3zjZ8L81BF2p7ly/o6TzZ4ztd94v+5B1zV47GHts2tOXy5Ss/7ty8eC9be/F32LVo9M/xT2f84Sto6v38zPpfF1RcePuVy29s+s4TbC4+vWbt3PVf9o3uuTa3c1vy7nsYx+lTP7DRlyxc47/HK4pia+7Z3fT3OTi6KWrZffzkxyPb/5C+2Hroam9XoavgNWLO+FPLnvfIF38inhj++OzGx6WZwcJfg2pRffddsXnDkdGWQODa/ur3Xt3y3SLXOKfd+OnUlZ8LLJYbN2ZZNj9EJK7PtFj+A1XHTc0=
eNptVX1sE2UYHyAIxOAiqAn+sUvBRHDX3vWuXbs5ktExQDa6jwIrhpS3773XXntfu4+uHRKyOUgIDDgJMVFAga7FOccmhI8pKhINGBMSwI8ZIcAfEgNBEREVyXzbdbIF7o/23ud53t/z9Xue68gmkKYLijyhV5ANpAFo4INudWQ11GIi3ejMSMiIKly63t8UOGBqwtD8qGGoernDAVTBrqhIBoIdKpIjQTtgFBgO/K6KKA+TDitcaujNdTYJ6TqIIN1WTry2zgYV7Eo28MFWL8A4AQgNyJwiEbIphZFGgLCSQARlKyVsmiKinJ2pI822fg2WSAqHxJwoohokY3eRhqmFlZytjKU0/tcNDQEJH3gg6ggLDCSpODVsmMOi7NT6bBQBDid+uag4HVV0w+obn8whACHC+EiGCifIEevDSJuglhIc4kVgoB6cgYzypbJ64gipJBCFBMqM3LL6gaqKAgQ5vSOmK3JvIWPSSKnoUXVPLjsS10c2rCN+HETVUkd9ClddJmg767FT/UlSN4Agi7iMpAhwPBk1r/94rEIFMI5ByEJHrczI5b6xNopuddcB6G8aBwk0GLW6gSa52cNj5ZopG4KErKyv/lF3BeVDd4ydpu1lA+OA9ZQMre58I46Nu4wMLUVCBWNY+6gMVJS4gKyh30MhyIfCUiW1pKkVJj1qLAAba0RzOR1uWVRW1rzCVa27Fy9pDIb0gLZECIeEGkjSZU4vXeZyuRiStlN22k6T1aY91NKS1LyLG1riVEhcykqp2mauKri43r1SrJFjYSXpERY6gzGxHiV4KAZWxUIxZGeUZrkOtHh8DfWNNauooOxNJsNAavD5eL9YVUHg6MyEwFWyKxmlXgItiYW1bQE/7YxLiWZ7SBJXOX2GEl9dXcsY9jYfsyQQC44Jj8IRUoUI3RTroXJP3yg3RCRHjKh1gGbdBzWkq3h+0BsZXDLD1DvSmIfomzPZwiDt9y97SOHn0tWYk9bJQNQsJegywg8Nwkk5WYJmyxlnOcMSi+sCvb6Cm8BjKTgQwCOo85iGi0Ypn4VRU44jrsf3WLKfzJEddzIXPp5SEiVVRUdkISqrt5lsHNkg5NLqwyOTRSpaBMhCW96tdTLP+ta2ZCsHTY6LJlolytvGMkIYmZA/UriiakrODQ6IlHTrgMdL9xU0o7zrwblSJE2RFD2YJPGYI1GQBFzP/G9hjelW2oWLffxRA9wvhBdels13g/p0rIWGJEzYnO+HMKzX6/3k8UajUAw28Za5B8db6WhsNLRT0o8/alCA2E/pvclRa1LgrKG5+BDyeHBbEcWHUZgHTJhy8U6Ogy7K5QE8T1HMCbz6BIhRcs1UFc0gdQTxzjZS1lCpBJK5HVPJ0C7GjTOtIAQZiiaHmsxwtZLLQa8gVA2JCuAO+WpIH4BRRDbl+Wdlq4PLq+qW+o42k2OJRPrVke9FVlZ0WeD5TBPScGOsHigqJoeXpYYyGKuxKmgd8XAsxfMgzEIXw0LoJhfiNTSK9j/t0rlNmwUijj0BrcNRptJWzrKMrYKQQKXHjduU/6q0Z3K5ypEvJzSUbJlalH8miTto/2mqeOO9f6ff+DkdW+hbdnTG1M7ptU9N3XfG7Nt8aqBrvTV9xXCFNvvH9xK3f1vwWeuv8vP0lI86Otqjns3f9XB/9/8z+ODqpUtiy7vkMceuttWV117mh+7emXjtCnXj6Vl/XH976oXVG+d2LVh7dcfMTReNvZfSd145F6mM1m2c/0Ns2dlv5/oP6vGdtRdKS3Z3WRMrZ90kw1sH1gxv2jb4BTlLnD08j2w7F++89tdmWq2ZPPn4vfMzv3/i9rTpB6aZoYp3trefrrueeilT0T1l/Ybd6VppT/B+e8ndrovny7p9t7pmvL9368a9t+Z8dfl+1+CGF0+VX1g9/+zr+2e0/3Kz+MnsC9uufH6meNUc73ZH565nn3nr6+0zJnZsmfLBTn12l7uiJDXvWv+ei3eDr7Jz24f/7JROWIM1kT03/T+FtJIHE4uKhocnFT0oPrUW4Pf/ANGuMu4=

View File

@@ -1 +1 @@
eNrVVk1vG0UY5uPGkV8wWiEhIa+99vojNilSFKq2QGhRTNUqRKvZ3de70+zObGdm47iRD5SekZZf0JIorqKWooK4QCWOHPgD4cBv4Z21nVInbapwwrJl+/2a5/16Zu9OtkEqJvibjxjXIGmg8Y/67u5Ewu0clL53kIKORbh36WJ/L5fs6L1Y60z1ajWasapKmY6rCeVREFPGq4FIa4wPxL4vwtHvkxhoiOHvHX6pQNorEXBd/GysSz87G9Wcar1ab3aerAQBZNq+yAMRMh4Vj6M7LKuQEAYJ1XAwVRc/0ixLWEANxtotJfjhquAcSszF4RZAZtOEbcNDCSrDNOCbA6WpztXdfYwLf/4xSUEpGsH3Vz+dg/v7jXd/M+GVsjGYliKxV5JEDO21Mm9VPPhg/2PEUDzrx3mFOG2yRiVpOI0Wqbd7rttrdsiltf6vp8a4KlnEeHH/pz5LMa0F6eNVGsQwdymeZrmP2VVISndsBHmh7UxWEm2vbwfFUTV2L1i9ZtO1PkT9hUar23AcpxK7dqN7iuLZApyLO5lQYF+e5ow5nZ7zc/3+dSpHxcEU6g/GCptnfwY80nGx1+40flkIsIagscOoc5y964wWh9hZEgkRJfDkhm2sSxgMe1M8cA6uSRqltHjIhR2YMjy9YWOZaSgiu49jCPaVsDgi9S64IQ0dGviNptsMO92u67ZD120N/G7Q8Y/IqXmsSggRL6OJKva1zOHRPIP+KIOTczSZA5s1uU4+oRwP7zjEcXrl2zS5HOuvcaYkNvOvt+7vWrPtsXqWU+1WW22rYjGOM8cD8HB0I2X1di0/Eb6ntMCMwQNO/QRCq2dgVRZ1WGzAYOsuBgqxHAq0Bzs0zRJQXponmmVU6sUgZ1vg6uFya/Ao83Cv5WjRQMjICySUJfFCpmbKAVYQtRkdpVi9RacMsxecJh56q5Neyn1Z1gqoDOIT0lgMPa0TL2dzkTaj4GkG0gtzOUNHR2VZE8Ejs+3o38RVMO5SzwT15rhiDYXcUpkJoAKRgUHpMb7NNKhjjHeUDj2krQy7bzr5IiYM4lONSLHfSIZoyAcsMofnCl6odpgJJNDjTAKagJdn3m3F7iB+3KIIJMJySqBzLdcxljxUXoL0gM719lwZiiH3OKSZHj33bqLWhJtbl7GOBZ4/KhNrON1OvdVwxuN3Xs7iq2exOH5QqmoySWvYQTuTWCNtJwlNac1wstL/I5L/9iyKPw9974evvBbahjHOTeCPghlh6VMJ6z/z+wlKX+q0HpdEbAez++iYml+XZF91JRzgcCBZFpN8mwVC8sUr4kVqfXtr15pOoBdTFSMjtrsubYR+q9nsgOu3lgKn7dA2DZxGp7UUBp1BnZpXE6DdqDfDeqPjDzqOj2Wtt5baroN8mlLOBji3Zn0ZLviGdTzyqJ0OuMJfKNH4tYpf10phH/fQTKi1WbGSABcPeQm7gqiwVIg4D5Dl0GNrSOWU8WcTiL83XuusyzmCW5s6nffMadCzkptZVazzHqPnHj1r48rn6/3N5eX1m+sffURuipxQCQQvTopUai5BTQZCkpKBcHBtytUQTH8JXmxbqkqQMYiOAa3MQBlFxgBHiIgBkYCjAEjmpNyEHU20INMIpc88apVcGZARnh0K/r4mW1wMS/3UtEJu5UoTRUcopHrBcI5AAhAFZh/M4fj4xdI8xQghMXTzr3AGS8AUVJeXa9Osv+JfzID0yO4c0xjFq1PUKJ3hN8KVMkqPbNTK0pVPC1muvW0qmbl2zMBY8yhmPKaupjvzuntY0hSHpmcN7Om2WGN8bb52qPH4+QMD2myO/wFK03fT
eNrtVVFv3EQQVsUfWa2QkND5zufz3SUmrRRFUVuVEFACUhUia8+es7exd93ddS7X6B4IfeXB/AIgUVJFLfCAeIFKPPLAHwjv/A9m7bsEQlCrPtfSyXczOzPfzH7z3dHZPijNpbj1nAsDikUGf+ivj84UPC5Bm6enOZhUxsd317ePS8Uv3k2NKXTQ6bCCt3XOTdrOmEiilHHRjmTe4WIsT0Yynv52lgKLMf3T8081KGc1AWGqn+zpOs4pph233W13vaUfVqMICuOsi0jGXCTVi+QJL1okhnHGDJw27upHVhQZj5jF2HmkpThfk0JAjbk63wMoHJbxfXimQBfYBnx5qg0zpT46wbzwx+9nOWjNEvhu88EC3FfHn3FWnSMMkkiZZPA8kjgJYRwzLeC/JU+xFZxZdVbu80gq8bPFprWDSIySmbPBDmyn1fHAdX+95lvNMjlxNuqB6urb979fm5f6EERi0urYX+r/cmPMpuIJF9U3F+RG95qCGPNwlunqxKgSTmIcW/VyOy1bpDskm5Ehnuv5pOsHPS/o9cndje0XEYtScKImU/VMSKe2nK1mxtnaj6qLdtq7TQPf79EPSM5ue/1lz3XdVtpzvOUbHC+vYVs/KKQG514zaOz35nlc+WvafIF3ppADf97665DO2UkD6raH7YFPWxRvA/BqQzgouKrvJTQ8BxqIMstadMRMlIYYj+QNsbcxT2hwSEuMyMvM8IIpE4KIC4mEp4EdVovqiGUQlkX4WPMnEGL9JAFFg65t98orTKoQrA4zjgRG92DhjOVEhALywkyvon302nSL03WuS0M4mhrQNPDc5WG377mzFuUC6SoiCJH1ibawcWVwKQ2EjIe4j2qK0Nkog3iBXKokjBBUPYeY67lzjEywfaVyEhqThSVfBBjcceyQgwrjcj6/mE3rapkUid0fTODXYFOpzNzQ9RGgBqZwutcwTKTa04VNqyNZQGgxcbHP6/YWSHqhNlLh7v07ejb7f6lZe5XU4AetuqOyvIOpnUJJvAEny1jOOlY4tHmrRG+mREvDt0p0qUTv7B3ShmthynSKajRY7jEvHvV9fwi9UX8pcgcuG7DI9Yb9pTgajrvMPj7AwOv6cdcbjsZDd4Q4u/2lQc9FHcuZ4GNkqF08jtuwQy/Jjd6Gyhq/ocXgaw1fH9fGbZQZy0W6i2IY4WbiUiNBEBUOEBGXES4aRuxNmGpUZM41/L7zWrXulQhuowl605pN0lc1Nz/Vom9axiwiArpz/6Ot7d2Vla2HW3fukIeyJEwBYYIwrbkVVkPGUpFaa3CHHCb0BOz9EsP0nm4T1AZiUsBTlg3WUXBAmhA5JgqQCoBKSOqlPDDESNJkqGMWWdvk/phMsXYsxXuG7Ak5qf3N0RZ5VGpDNJuikZlrBxcIFADRYPfRFs/ZAc/LHDPExArLP9JZLBHX0F5Z6TRdfy4+mQMJyOEC0wzNaw1qtM7xW+NqnSUgO516dNT+AxWlCfeZ4lajLWHoIoulRxNqb2cx9xBHmiNpAjp2mm2hM3x2XzvVDP9W4IBhtvrM7uxvcr/ytw==

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

View File

@@ -1 +1 @@
eNp9Vg1sE9cdh9CIbZoKdB2FrixXtxtblbPPn7GdpltiJ8FhTpw4IQkpzZ7vnn0X31fu3cV2sqwt0HXqWNtjVTe129pBsKsQAgg6KEmAjFQqtBtrx5CCtApNaM1EVxWKVlE02LuzDc4S7WSf7t3/6/f/vq25AaggThKXjnGiChVAq/iA9K05BfZrEKnbswJUWYkZibRE23drCjf7CKuqMvLbbEDmrJIMRcBZaUmwDdhtNAtUG36WeWiqGYlJTObCsm1DFgEiBBIQWfw9QxZawqZE1eK3dGIBok7hgLgeESzkEqz6vcdFAl/5e1TSFBr6CXv+GBLjkiIAQ7efiGqDGYJDhGe943HLYkKORYSaoAIFDrCGYIyXRAYuJulcRNJEaYg5CU6kWYgIxEoKDhmhsphgoLFUWhSJh9gvDUHFMryl0iJIDOTxi4Sski6JFDiRM7ggknF4YG9ev8U/ZFEzsiHYhySxF2H1AsB8pSfMc+eJgYhWONlAhoVqRZQycUDCMEyYicMkIgYQZAhJ5DP4ZtIT3AAUCWT6iSoJIDIEzanQpBXeGjoYK7YuKzi7isoZWRuyANPIQuPtWBIUAEgLMVQSKZaj8/H+/2gMkyqnmvHLe2S8yIcFqQonJizDlRaM1kwIWhyJUcQJbD4URIQUN41EI/WBUEMocNu/PKA+DeOLZ0yWPH4DAI6FgEryUdBnWC5iC9xGcBseUBSQsQwPG5nt1zgFMrjOixErxbxlnhrI/K+fUqwP0io+A4bhDBHAR0qyEAc8gtiKCISFKowYYVm/qmjQgILPEAhFoRwLAYNb/cMlq0ZYCan6+Pz23Q9oGuIihSItMTjW+r7EICdXEgyM80CFo7hnRWgOB300CaFMAh4nL5uX0g8AWeY52vTSZlTtWKHHScOxheRRo0ZIPBBEVT/cgkHUhmyRDJ4zImG3euxW+4E0iVTAiTyeGyQPMJ6sbNInSgkyoJNYCVmYYXo2LzxeyiMhfU8Y0C3ReSqBQrP6HqAIHteh0veKJqqcAPVcILLQXIF4x5zTandYvQfnKUYZkdb3mEF/q5TAQh7nkcxPU30iBlVgNealtWReWmWgIHhknk2oKhmSlrBp/XdUlpakJAf12au9vXS8NybUdDs76+0+r+COdgxGumJMCrbI0YBHSfY7+EiHS+sOJUErnY4FUgnSXuX0VvmoKqebtFspK44UaVXbEl3ugbpw7SYqCJrrI43xwRiAbdoAG2psSFDhDbW8VAU43ueNuewQdDUGqbiXjjWk3GHkVtLWzeIPaiWqzdvPB5iOViWsdGRSrdUERqcNcEyNK+iKapvSkXZ3fZKFDg6m6xpDstCJegN9nU2ovmHD4EYPH0kpqXAJPIfLTlIFhB7K5aWMa7xYUjwUEyqr7/b6fG8UJ+m2LA6ZqqGtI7h84Xvv5AoLZ1fLxjuVv3okiEtZn+qETCVBuYkGGCMclMNNOOx+h9vv9BCN4faxQMFM+6KVe7BdwX0dx5msL3ZKjmY1MQmZ0cCiPTJl9AjOpAEfrwcSpmUJQbKASh/rItvyq5YMBQ/lG5KUlAQQuUHTrD5lNktqMJ1iaI1h2IGUQPkGXU4uBjU6frgggqe1YQYDIgWk767yeccLlGK5jmJfKdJOkZT9WJpUcCh4TuBwPM17Yd8jfcSNg310IYMqJSH+Msi5zGxQx0s58FLFBWvYvqPG5fP5JhdnKqpyYhaf03VsPheCpWjsDgEdXchQULGLQmPpIjfJMfrsw/jQC6qq3LgrPJCCTqeT9lH45/ABr8cbhx6Xx/NWfliSqpFMGa9xEkEaf9yoGX22UgBpYzTVOO1upwd7Wm0sfF5jYFSLBSXDB1RNyArkJcDsp+MkDfBeJvP1p+eC3c214VDg911kaSGRLXL+wyonSkjk4vFsFCo4MfoozUsag2esArOBBrKttls/7KMYd9znise8HtpJebxkHZ5eRW23y27EGNA5wGPsA7R+iHXWWPwul9NSTQigxuvBaTI/v57O5pfn20tPVPzsS0vMaxn+37q1o21a/DV17+RnXz8/cans/bKJjX/Y16o8d66n5cG6J24stSX5dz3C6F9vDpXzq3dl22yPTWacr6w9EZ1Z8+L2nU/PpVdOdZw+8vkntZ99fOXK0JGzTz56+vylB177/JN/sS+sm3no1AMfRravOL+PmupY887c2tV3Z062usmrE3//cfTSxJfnfh50f7D5Gzv3hQY/eIl5lX+Vf+7hqYkD1YGympc+/lZsx8G/XHv+sTdnUt+Z/fbNX12bq5FWnbl8D31xx/3rT06trzh690rb65T/9d+OvfbIxQu36jpru6e3PTQuPXr5xQtW6iqf+kW2o2NaKO8v31pW8bUvvnLml64/9Z5Ndj/7x4vX14RXNG35x0d7W+Dmy+9N9356efLB8PG96xTp2tzp5TSoO7uK3h+tOJX76Q9/80/hjW2+Xf+Ovn2je8XLUtefK6eemr5rfNPYDcvNuv0vr/F+90TfvXfdt+7MM8fOnV0eipcH9557cuJ601Bz87H/VFwvX1kmfL+759mdMx/NvPvKqStNt94cEDKOr37zby33dC2vq7q5feYnK/qOr/v0xPDJ4+KGI3Nju68/dX/PfWvPbK0Y6Fn6vu+LZUaWli0hn/jRZDN+/i9JH4XO
eNp9VmtsFNcV5lVBUlTVFaRJq8J4i00CnvU8dtdeI5eYtY0XsL1g1w8K3dydubMz9ryYO+PdtbEiIJUquT86aUSjVCQh2LvIGAewRQ0uRFUT59WSkLSJjExTwQ+qFIggoQ1Ugt6ZXZt17XalHc3c8/rO+c499+7PdEEDSZq6cEhSTWgAzsQfyN6fMeAeCyLzubQCTVHj+yONTc1HLEOaXCeapo4qSkuBLnk1HapA8nKaUtpFl3IiMEvxuy5D101/TONTlxaf7PEoECEQh8hTQfykx8NpOJZq4g9PKzYhNhkSUNciQoRSXDQ37lIJ/Ms+mzTL4GAFQWc/w6qgGQpwvFcQTVZ3ipAQEVjL7PLMZ8TMY7QFGlCRgOgYxmRN5eF8luw8li5Kx4wlJJUTISKQqBm4aIQpYoGDxlNCeAxNhk5mFoKGp3c3XlE0HsrOUlw3SZ9GKpIquZoQ6bhKMJoNgjV6PGZKd607kKZGEY6iAEc1/9NRy3vlIeIMSXcwOoZVKkq4kCDhICBcFrGMiAEEeUJT5RR+uPK41AVVArkpoxICqDzBSSZ0ZblVxwfvdRDoBubaMCWXwx4PcMPMB6AZW4McCG0ujhIiIUpctvz/H5Eb1pTMbDmzeblLuRIh05DUuKcXL2HYLknofwFymjuOUYSrEaEJbqymSE0oXBsOzaSaxdVhYZhCylXJpuHiwHVR0CyGci7d+DMoQzNA8oACwwApT2+vS/keSzIg7+yD6RrOwr/7v7xBfm7iWqwDcqazAnhecuyAHMmnRwAygk44FSjzOXIqxzn9ZhoWdHHhFQiUGdOMCAGPB8NfFxT0ixoy7eHZm/11wHEQNzNUOY3HJNjH492SXkLwUJCBCQfxBlehO0rswU4IdRLImNl01so+AXRdljg341Kns4dyA4F0MpwrHnQaiMTjQzXt0UYMoipcGknhqaQStNcf9PpPJElkAkmV8ZQhZYDxpHVXPp4v0AHXiZ2QuYlnp7PGw/k6GrIH6gHX2DTLJTA40R4AhhLwjeSvG5ZqSgq0M6HI3HA54cNwrJemvWUnZzlGKZWzB9yin8kXiFDGdJLZ2WuPx6AJvM509eZNV68ODAR/OysmNI0UyWk4tH2YSnOa1ilBe/J2NMoJ0ZhSabG8Gd0mhONt4Y4Ohm5goqEWth5GNm+uE7tam6JaVO+uboHeKp0i6TI24PP7GRa/eikv7aVJDSBBqKna1hII8F6l29fQyYFYCtS30+3xiKTxfG1bNayFlhBSpGqG3hRvSWBgotKhCfFkZHu54vXHuxEjJzq3b02KrfFWocanb99AYHRWl8RX/phNQBElqsq2dDFiOxXepjE7+IDFbe8oDwXrYQ1VTdV5YUphO9vz4NG+IEnlEAYoXznl/IanW0qGatwU7SNBn//o9MA9kMYlMy20vx+3L/zjO5nc8fRa49aHnf9YfzVuZftcs2iVEFSQ2IJnPEMxfvyo8FEVLE1srm8eCuXCNM/buSebDbzJBcxkzfROyXCipXZCfjA07x455+wRzKQDH58kJEzqGoJkDpU91EbuyB7MZLh6JLshSc2IA1XqdsPa59zNkuhOJnjO4nmxK6FQwW4fK8WgxQmjORM8zZ0wGBCpIPtIoLxsOCeZbtdBnCtmniIp+mySNHApZEmRcD3dZ+52gOx+Py722FwFU+uE+B6R8blsUOfzNfABjBvWif3QjS8YDP5ufqVpVyxWCbK+s7O1EMxHQzMKGpurkHPxGoWGktPapMTbk2vwR1SgWY71lZcFIFPO4I7meMEP+CAb5HmGCVLCmey8JE2HTB0f+SSCHL4KmSl7skQBSWc0VbK0nw3gTDc4lwPZ4mGTFavWnBzQBkI3oKwB/vVQLRkC+Ogmm9z+szPV7Q1V9eHQ6TYyv5HIRj17DcuoGlIlQUg3QQMTYw9ysmbxeMYaMI197ahqt0fLBaGMhYyfjnEB/E6Tm/D0mvY203b9zoDOABlj7+LsEZGt9FT4fKxnA6GAyvIApsm9rO1LZ0/VtxYeX923bIH7W4z/Dx78Yse4epX69vU7K98MfNq2r2jjlaPjZmt/MNO3aF9h6+3iFe/+cv2u5X94sKquq+SJM4uHwckR9sUnbhYWLKoLFT59Y82xT37zVQbeOXHvTsPlA/eTU+eVZ99QP6v0/1v/7Ab4hJ16f/26+7HLT37afWDbhZefWRlh/jk4eSN2btfx22/tXbAzc/Gr0Ql01pS2Hvxo78ulH99VXlIuXD/0w58VPHrrhWWFb4JkzystV5euiH34vWJy4snvP3fl1JolS+L3Hnnn8adOjS4fKWi+wFz6/b3DS6Srq5cXrSiaWvp8S2TFsdXtLQeLlh2cmHqBWl9V8P6PdpccTr4n9F272sw8c7lm8u1Th+hrd29duTg2sfRf3/nga/jTXw2MHVv03t/lL9ae+pJ69e3qn1873Hdz3aqv/7bzg5XjZaN7jiZ6Pzpw65u1vo3f/cb1tpce+cfNPmugVeLDxQ2XlhT95Vt36n5w7NeHissWPh/+/Av1frp3S8Ppu6vvFkQerTwyvPfp+s8rbo09duKND589vnvnquWhqc0TpwffDTy+99WPe/98fhANfPmne+pThcHiV1xOFi8Ye7H0IokJ+g+b7YS9

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

View File

@@ -1 +0,0 @@
eNrVVk1v3EQYBiQuHPkFI4sTWu96v7Lxoh5CqMpXaFHSUtRW1qz92h5iz7gz42y20R4oPSOZX1BIlFRRS1FBXKASRw78gXDgt/DOeDcp27RBrYREtJF35/163q9nfPtgC6Rigr96n3ENkoYaf6hvbh9IuFmC0nf2c9CpiHYvnN/YLSU7eivVulDDVosWrKlyptNmRnkSppTxZijyFuOx2BuJaPLbQQo0Qvd3Di8rkO5KAlxXPxlta+cWk5bXbDfb3cHDlTCEQrvneSgixpPqQXKLFQ0SQZxRDfu1uPqBFkXGQmowtr5Qgh+uCs7BYq4ONwEKl2ZsC+5JUAWmAV/tK011qW7voV/44/eDHJSiCXx38aM5uL9eefPhVdcEyNzz2wVD0+pb78cNliMOdyXLxNi9KFnCeHX30VX3PappJBJ3A0sF7gdRdUR6PdoP+wM/Xu72o+7SEu32Rh3wRyH1BrG/HH2PIDWm7n4MPNFptbs06PxsAirlGpEUmbtGt019UOZ5e1eonFT7ddD7c+ONSQFPF+DBKg1TmLupHhXlCOUNkqM/zPPckrd/SdIkp9U9LtzQKO9hClA9/gyiBun45EPKScfr9Em7N+wsD9s+ubC2sXuF0eoQW0MSIZIMfl2AW5dlzU4GluvtI3KqwqqECLEzmqlqT8sSDlYy7a5vhdVRM+2ec4a9Xtd5B8Ge6/T9jud5jbTrdvxTBAfz1jzeSMsG8doWd9sfeMTzhvZjcJ+O8/2604jzl1Pl8/Y+XpBiTKHgCXM71l/iTEmcjT9fu7vjzLbHGTpe02+2O07DYRxnjocQ4OgmyhnuOKNMjAKlBTYCAuB0lEHkDE09GosyxAHobL2LjiIcNQU6gG2aFxmoIC8zzQoq9aKTszVw9XC5NQSUBbjXcrKoIGQShBLsZAURUzNhjK1DaUEnOTZy0ajA7AWnWYDW6mkr1X1W1gqoDNOnTlMxDrTOgpLNj7RZs0AzkEFUyhk6OrFlzQRPzLajfQ9Hx5hLPTto96YNZyzkpiqMAxWKAgzKgPEtpkEdY7yldBQgbRU4XKaT/8SETkZUI1LsN5IhKvKYJSZ4qeAf1Y4KgQR6nElIMwjKIrip2C3EjwOWgERYngU6l3KdYskjFWTINmjcXpoLIzHmAYe80JMT6x5Kjbu5tvV1fBCMJjaxjucP2v2ON52+8WwWXz+LxfEfT1Xr+NSlrKVuZq6dHldNlIbcLSRWTrcMRyv9PyL9r/cRG+5udVBusVBIvsjRe+1u13seST+wXOqGM+I9Ztf74cyRPpWvF4n13xLnWQT8wsR6+kW3F519R/ynXPt6Z8epRzJIqUqRIvvRUtjxwB9Qj3ajcCn2+/1B26ft5T6Mlv3lQeTHISxTrwdhO4oHXrfXi2O/0/MHMArjERJsTjmLcXAtmYS4UMg32DV0jk3EwGWI7GUYHdngmnO8CXhSz73Cb3ii8bGKj0v2cAOX1oyvc6PhbI6prK+A2Qji92svHWvd7t5a7fF5QWvLl8lu5qHhPC8M40Wpgy0qmWFOk6IT4eTihqKhFkWwaZ5GFph3Q3tFooVxomcOg1jIHJMbOrFbd9w5EeLpBdxvTnAKrSWxnIYr1SD2ygJCiZpwbV5ekT2zCcGVlhif7MyATImlLaIFkSU3jxSygsSMR0SnaM/VGGSTXOaYgLJHSPCSqAJCFjNQGJikTB1HNhFrWUh4mY9QV8Rkfg8bBxMyZio1ocRIY10bhGZjvLmIJWsyEaU8AUU1yYVCvLZcU4JUhneLapLPRUlCzFtIXAuLayYiowlikJDBFuUaE87K3CYmQZeSW1Xr0r7WG9A8OcHHagXzhjHCd4zmdX6dfwJIiDNI2A6Em1ml2rUiMY7Ak2nbjjaI4FhvqjZrG2sRw3gRmSKJbaERz2too16iaK0NY5qqIn6se+3zJDbhNLdFpbZutiAKYJ6FQtrNKV4bKpSssJ7Ju2hLJcRlZnxyoZ9IbI7I+otqKWwzpZtkJVOiQYpFTOOUhekcDLPlq49sDWweFw1kg90WQBiuMxW3Cmp4ne+cLMDU6H86K8KQ7NiZnjpT/LvRePFtmk5PXgTR6sb0b0XzJ70=

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

View File

@@ -1 +0,0 @@
eNrVV01vHEkZBg4cOPILSiMOgKbH3e2Z8QfKwYqtbJY4DuvJfmgTtWq63+ku3FPVqar2ZBL5QNgz0vALFmLZqyhh0YK4QCSOHPgD4cBv4anqGX9MvDjKAQnLVnfXW+9bz/v1vOVnp4ekjVDyuy+FtKR5avFhfvvsVNOjmoz94mRMtlDZ81s7g+e1Fm9+VFhbmc2VFV6JjhkLW3RKLvO04EJ2UjVeEXKkjocqm/79tCCewfwXL+4b0sFWTtLO/ux2e72gmq6EnagTra59vZWmVNlgR6YqEzKfvcqfiKrNMhqV3NJJI579kVdVKVLuMK780ij54qaSkjzm2YsDoirgpTikrzSZCm7Qr0+M5bY2z45hl/75j9MxGcNz+v3ezxfg/v2dH379aeAOKIOdx5WA6ux34Z8GYgwcwVZZqkmwp0Uu5OzLbz4NtrnlmcqDAUJFwe1s9obROmU8HfFhL10L+931KKI4XuO9NI7769l6/w8AaeF6cIdkbovZ8/5a/Bd3oDGBE2lVBrv8sYsPZGF4/DHX09lJc+jLhfJgWtHbAXh1k6cFLczMvqnqIeRtNoY9+HmjH57c0zwf89lXUgWp23wMF2j2+hPK2izeYB9yyeIw7rGouxmvb+Ll1u7g+ceCz14gNSxXKi/pb0twm7Ds+spAuH76hl254aamDNgFL83s2OqaTrdKG+wfprM3nWL1Rmuz211t/Qxgb8S9jTgMw3axGsQbVwhOF6l5PSjqNgsjjzvaWAtZGG76X4f7apwfNJkGzr9eKV+k9/WSFGcqQxfUfVn/CjWlURv/+t6XT1vz7mlttsLORieKW+2WkKg5mVKC0s1Na/Npa1iqYWKsQiIoIcmHJWWtTReP9rIMOAjG9ldhKEOpGbIJPebjqiSTjOvSiopru2zk+h1oPTS3pYSLBH2tp8sblM6TVJOvrCQTZi4cIXWQVnw6RiKXlSp4ryQvE2ibt7XM6rd5bYjrtHhrtVCTxNoyqcViybo2S6wgnWS1nqPjUx/WUsncdTv0uygdp67tfCHqHrVbE6UPTOUMmFRV5FAmQh4KS+YM4xNjswS0VaG4XCYvY4KRIbdAinyDDLFRjkTuDq8NXYp2VikQ6JknKS8pqavkkRFPgB8FlpMGrNADXUilLRDyzCQl2AbKUX8hzNREJpLGlZ2ea3chdeYWu72ts4VkOPWOxeHGWtSLw6OjH3w7i+9fx+L4w6pZOVsNuFgxj0rHKmAjMzWWxkGlETm74jja2P8j0v/NCbChd2en9aFIlZbLHH0c9fv9/0bSrzyXBumceM/Y9WU6N2Sv5OtlYn1X4ryOgN+bWK8edMfZ9TPif8q133/2tNWUZFJwU4AiV6Oo1896I1rd6Pai9XWiaC2OetEwXO+vRXEWx8N1zOPR+ihKw17YG/W6vbXeRrcbdylb7TmmHnMpRihc188CHf9566zaIW1q2+ANKxaPm3jc84sDNKYr0dbDdqtM0YkgKqQbqJB9IK5T0B40DiZcNyNgXoJ4//ydztr3/bXbaL3voY3V67yb72q33vcYu9DYbH2masY1MdSL5wn0shG5pIxZxRYXTDYBDzDO9n9xh7kZN8SU6zyQt9DD0mkKWdWWed5C27SZH0uwycxUWndBBUOWU4a21WAB9jRDm+DliPnB5k7SNdRsAXOlUgeMW/fBwA8gbMPUyH82u7nMILC1ln6RSzMhDTT3Jeap8Wuges1MRakYCTIOR/OeMlmPh5DB4GICO4UpHDSFw6GGFtFuM15OMLOYp2k2VbU+hwpsY2XghVVVcnC0AAkELpYpwqE0OuKSA0PAxkdJhxwhTlVZj6V3+9wPb9MH3EVR5ucARbPhQuDvEphwjmikNNCWfktj2LAR6uKi19YNyDZTEkng5sDrNPAuITIs9xmdx9onc+5WwQ8Rak8ADrdVqjTezNn/IEDsq2QJ6p47E/nw60MCoTTKHXZJ4v4F0WPPuvOgoAIRtSUtd/ZZUTd5GQlcZ86rwIHdvb8/YJnCxRohKSg9uJjBIeEkQnQprT1qYTvs9shtYTlZV86kNTybFKK8uI83BtrAN9G4kSyVpHXP3A3jB/KB3N5jd/cGYO0DV6FTtr17h7kZR+5SZtiPb9/d3/lo0Gb3721vDXbabHvnzo5/frR3j5FNOz/xYb4cywdyoJwV7V1nuD3VZca27nyy9dn+pb7x+X6rcJxFQwTHeGPA1ap3ALa3lQdsDkQFJWFwDlVYH7ievHDavA1g1iC0Y77oTV++Z/XUAOj4uzWoITnkWvglR2rz7ofQd5CjrQUhJU0VgJdGQTNHWkf4efhudo6Ozi/W2PDw6D8mPJsi

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

View File

@@ -1 +1 @@
eNrtVn1wVNUVTxREQSrDRxUZ4RGa1cK+3beb7G6y6wPSkA80X23YEkdjfPv27u5z3777ePfuV5BWIjINhQ5PPlIm1AoJCQQCIpSxok1Q0xJrDDJlmC0j0trWtiPDlPpRinR63m4WJINTp+O0OpLZP/LuPffc3/md3zn3tHTHkEYkrOTukRSKNEGk8EE2tnRraFkUEbqqK4JoCPs7KsqWdEQ1KbUuRKnqtlqRYolLYUlFfkmwYC1ojVsFVbKoIXWBqmGVl5QAzneVqkIQGd/EJCnp9agmm1Q1/a9fIkLEJwWjgnGpSQNXGhIp4U1UojIifJWgBEtDgqSYAliLCJR/lIBdBiMP8LRkpw/7k/3dIST4IY5VPV6CNLYkiBSqpwou42PuMUATQB2UaCjqs4g4Yg1i2U8i8G1dmrWzfnNfiSgilbJlioj9khLUe4PNkmpm/CggCxR1Zbb1jrnWuT2lWFFQGoveE0ZIZQVZiqGdGiIqUIie6CJUoFHS0gmu0FAu2x1BhAAd+6txDPmZOgQhKYBUTmbxr+4Rr/jcIcqYoJ0yFtP06KkfZYP4YlC/F7BSgM/KSAnSkL6N606woiCGkN4jqjabjWNAUl2QEJCY3l1ZUqfhRHLviA2bIUfvBhuWyiSdyJVAmQasP/Pp8vuCkfCl0d/rR7Py2157fxbv6ZypPzcYFyEFmqDAOY2yBIlANE3qKTYiJFg4wds4Z0FRocvGeSClohz1o/qobxGOADPEw6gakrHg36Wh9HmK9dSvlzN5QQ1H1Tw3kxePNClIzjMzeeCvCfzBopMrLOI4WEKKX8WgAQKLD8IpSI9xJssX7AhhxMo4GAQ20hmPXM54zGZFMaCaLIAgkBDh4wWiJYMCjA01KIjGsRZuQpqGNRMB3UWEJoiOt4Kp9ZOm1qtMrTYLZ+HymBWNzIqsglOmSJwFSxYlqAUtkwS/xSCAdTpcxT6/zxVwsHGtOaYcAoWPVAZNqojFarql6t0KJooUCIyugE5VIKQzJmjA+OJR6TcvgbgoKxDWq1AtSijymxvYcqzFBc2P/CyUFMXmUozDEjKXRKFSNKk5reYDWQwgchUTKdNCIH2ypCAPE5CgaoUI4o2AQDFRmVoMce8GcLJknJNUfU9xkcVmKwIqbDZnbwa04VbDsp6ao2pSDCRpZiKAC3zEQH7+zMKIbLjeDHUslSKGllP5aR8ePyIin2eEDaIIYUJHVoyuwRXldcBZ6CbPZiNA2VroNGqh07hDf2kpMMFwDqYc+Rg7Z3cwtmJ3QYHbbmMqqpdcbkTPZ1wyEYkQMzPyYVy855Mp0vsEVZWlTJ+1GjR4GDEkaARRPkoDbFGvkEkL1EgQEX2HL0kRGd3/OuxOZwcIXU89DDrOaKuJ4v9YAQFBkqMaagqMPL6wB9pzwA6JwrWEjNpZsS/BwkrkirI6F5XVPNADaCE7hhI2phqWVpezVQLkpSTtguccLDDFGkx56gQa4q2eSiixWkVOetIFjzxlCRXaH+HrowowW8xUC9oIs3Y3x8HPYDYVHeWZrZCxT5CvdUGmQfBXt+n/8tqqCoQX1/Heend1ibsKJUAOFCvuQrul0OlmXTaL3e6OFXqYkauZEefMNTGkFtRkih3Kx4eqQJyUB2I5WxZ5feZ0PZBcL1EE70DCUw2ihsbOFzg57qrHaiB3/Kwf3pyT/rtx0/ra2leZSQN9E8bVvrX5X6e++9S6cftm8slS99efowvdJxwz+g4/MXinWLX2ocffbk/e+yfzTMf08MuT+Uk35y+a/bSrEn/rJ2W/KdhzgTt4iXuv/dLYFxbvnDBvjLbOPKb4fOp3Ne88Fv5Z6SF77i3rN3Mrg385cdddR1obBp1Pz3OdfiD34yNm9rR6Cv/2D5PF2tbiJ4cazty7Xa/u2zBUE/so2vtCyeIL/WMf3rfxTH7F3nZFRqfirNi/xXxg/+GZE/52MNm3Y+ubkwe83mmPbHmn/HvVbbOHvL/wvr3gV+Mvnagv3npmSfkMPP9d8g/788dXP9RfGhvccPyOY9MvDU899+L8nCk5E9cO5ObkfPrDjT/j3Ajd1ZA7MaGEKgvGUJqgvMnIOPSd65PhNSdD9bMORZ8Xuf+f2e9/HuaXfrrbnx7rAoD68iPaLYaiShj5rw9+n+PgF/FFipqvD35fjcHv+pD3VRzyZlwZ8rzrj9S8wt26umngtbHrX161UD6uTDl5/qbDiV3t5Z01rY33bUnEj9fsbvia/sG7w+eG57dP6Qk3/vWflfcF8FrHT2/84+B7w10VtfbbD7edfEu5+OJLa7Y5L+4OTLx9eIPjzsI3bpn23PfDNrV1Ox768/t940tySr7TMSfQYhIrxNdmPcPOPTh1+cqbGn9Q8u1dO8es3PRY+cTW2Y5JtuVzXRe3Pbuw7dE1N3zk/cBy2wFX7ocrblUuMDOKXp+Iz7r0eS1Pbjpf88ikZnrPN9pWL2t5v6zYd5t47NDj+dsmvMFWTn9zSv0vQ/ef/X3duA/r7nbRV8cfvePuLW39jqPHoj9+ZfgG35FN07Y+taZxZuPgg2fb58xKfbz57+NOLj/nPQhT378BkGvf4Q==
eNrtVt1uG0UUpu/AA4wWYdrKY69/4ri2VlWU/oqkjZRULVCIxrvH9jSzO9uZWcdu1QtKxR1IK/UBgKRNCf0BgRBcILhBQgIewFzwLJzZtUMStWqBgoqUKIqyZ87MfOc735xzbm4NQGkuo0P3eWRAMd/gh759c0vB1QS0uXU3BNOXwcbpkysbieLjD/rGxK1yGaLSOl/jMQSclaTqldfLLOaluB8fj5WMPR515auz8zHrgf3WBR5l9kSJQhxn/wZcs7DDewmzlxYUHqXAN9orGG4EaG+BRb35PuNRoStVyIx3RaNfjtFDeGq02ZHB6IetPrAA47i1fUGDonM9iEw6ru3gI4ctaI2oe9z0k07Jl2G5J0WgQ/wuX5z6lY88mvN9iA09Gfky4FEvfdC7xuMiCaArmIG7+XK6cbR8dHteRhFkWNLtNYCYMsEHcE+BjpFCeO+uNswk+uYmHgW/HqJbIWiNdHyxKAcQkCXAkCJEKkZT/O/fRfiYkHTrzNySksPRwyH1md8Hmh+VbmGSqBF62//z7ju+kBruCelnNKbjD6fBvhgp2prEkG77caVScQnG8BDxGwydCoh6pp9+7GaJfBcpU8j6R0+W3wsW3P9Gf7/8NJXfJ+dfn+L9/aWXNwM8Nv3uIgRFUq2R874hVbdaJ5VGy51t1avk9OLKA5aDUkgH6PROZ2RA35+m0IxiSL9ncSx4rsCyZalN/D5TGoyXmC5tfmsT66MznoHwlKEafMynGaVjGrIhRWBexW3UmvXZittGjfgiCWA56ZyQISZAt0msQEgWfDm9F7MXS81zzeMGwSNoky5HSbEQPBQDRSoSYUoWzwZegDLbRkTUl3KNw+3xpYuLp+gC04ZaWrX2qjWKBFBLQHuJmb5Xbp/BxJ2PxKid4YX2yWGMItHechIhYXVyTg4mhFVbrou/lrBxsu9kelrIDhOPuyCPz9sr5r957cJpkGeXvAvLrcW51gIMUUBGRpjFUr3RorOVUrXaGtTbZHI1mRxOHothfPwcmHWp1rASdWCBo1Q9t+S6lSny5Xz3MrK9zA3gaxm2FzGVKH+v1nDdnYf/jX34bpOEXOsimXzETOsHebmjBg9HrY9fzfzbAWjfc6yDUyR9qc3Eku90pkVyXAjXqU0zDE0JrnIWlGwYdKZbP9aodzrdDu1fOTYTbA6YQpmd3fe0iisKmKFM0wuRUYk2+AQu0VNSrTMVQEAxbCOL85lWinMJViHFr2UC31+VNy3UjQhEOn7nOnEUWIGvGum0iLMeruICxuGgyldRhGhsuPWm66Kpy7hACle7k76La8jwDK7oJNPNvpUbD/J77RNQEq97JVZ8gA+4SEIMAPU+wBoQ5IbJo3IfDSmeEgKVcdbb080TJ8+98RnGILh9RzxO7x9rliqVZsnFv41Pc/zUyHT8M4bTUzKJnxoKREEssbJrNL6Fu7DM2j3TuocrbA2okL0eUp8JLdyp3INKGQYIRR/HKgEs9NZrfilHgc62qke5EldBKakKGjkI2SqWD6+MruXdruU9ruUKxuQ65Mbb5MbXQ7q7ZO3QsRVJHfFu9/PpKkxr76atvftb1Ua10djTrH479ON1p8OM38eqHgswyIvjFJ2sPzit645tQdr+M1ubmZ1tVBtTIw+c1tRWdCL0cYtO1nrwhJ3eg0dNIIRYx5FVx7JnUPS4Yo8R6Jlk6cAs7LP1TShs+X/cGnY7NAuj0G5kgqQiHsdWFVpxaaW5gtWiXmm5tTfRQTCbm4GFXKnWmzW3NlOvoTkjBW3N+rFm0ekmQmSZd57cpvGrvDs4XDFP24P6CWCYNfeMn12dedKN7SmWKRbJCPvQX0RxA3+ePHPIZxx5MSX2ueoCDGPB7Dw9NF7BlmF8rQdD7T8aauNnnfueVxKe79j6n8M/GEwPBtODwfSFHUwDMxtVDwbTg8H0eQ6mzdq+wfSrf3swnXSr3VbCNWFEy65BuQLJMmzjJqbPDOmDiDXpMp8LjhoFtILtrNBTmYKJ7BLBVA/IdEol2dSryeGFhUV9xPpKsqum6xKZsxfudd9z5A6EItlB+ZomiUa9Mg06v1CMCE4wSrCYrGPvQ2A4gORw9gLBELGNgmKiOOkGyDUJpJ+EmA3CIiZG2pIQBUQnYcimr7NoO4/pSIO1xi7a7rfjXrocXc7n0D8AkSIW2A==

View File

@@ -1 +1 @@
eNrtWAt0E2UWbuX9EhaoAl1gKEtUyCSTtGnahAGypS2PvpZSqQulTmb+JEMnM8PMpE2oXaUCR14uAcrjFF1LSwuF8l6OCG5bKCtFscjKcrKsyMKCLiuyiyIignsnaUAQV84eD6yH5uScZP7H/e/97nfv/50prSlEkswKfOQmlleQRNEKPMgrSmskNNODZGVOtRspLoGpTE2eXOmR2IDsUhTRotcjXlfEFrAiYlhKJ0hOfZGeElmd6BJHc6yskDKiJNqlkSVREkQSfjnWzSqkQRP+laXQEpKjeCftolhe4xAkN6WQM2SB14Q8IcEJyVdlFxhfQ40LUQx4O6c2R0YSbnMiXvEHYm96gT2puiaDb05WcXnsOlpw650Cx8hwoEs/JbxO/9QWG00jUcGTeVpgWN7pr3POYkUtxiAHRymoOjTtrxyuH16bJPA8Cvriry1ASMQpji1E6yUkiwAUerFaVijFI5dWgSl0OBKvcSNZppxoW7pQiBgsC0FIPHjK+cL+z6ulb9lcR3OCjNZzAk0FnwNKOIj7CfBm8EgBJ3EO8U7F5a8garw4TdEu5K+lRYPBQGBAj2qAHejirxlny5IEr29z6xo8BIG/BtbgCicH0zUbgJEA29e+n0oPJNSfDJfeORim0trMiWF/T0ZE7VZxpQFoieJhn6TgMqIBTsXnD+BuyovDDtJAxMcmxJkNhBUSR3MeBmV77GMFNyAjWzFRQpxAMRskFNyvCP7A28VYjFMSPGKMBYspcufziIvRYjFgLx/swWA8EZdAEDCEeEYUINMyDE6FXR6JU/eE8YIZqgDhnOB0AhrBvLpv5rXQoEeFALU8GoJAlJssiqV1IS9gsZpzHilFglSQjyRJkDQysMtN5UN0pB6W6r+9VH/bUr1BR+iIGKwkDysJ8zSgcRfhsBJHXkWHZrIUo1MBwONN5kQ7Yzc7THiByxhn3AU8buW/4hMRLojBJuiv4QWZZx2OO3leJVKyXFVISYD4+DvSr50McSk4JeM5vCJ5ZAUx2lw8RZCKKIlBDA6FowjaJEEoYJHW5oF6kNhZwdLfEfaBYSGtMhtqB5A+juWRFXOwUJuUG5FqQMAYD6foVHJvBOc4Vt3Hiv5NiQk6gyEBoDAY4utCTqtmJYHzB4aKElsIlNRibvALbBQC/ZjQQCttiLoQdLgChQVcDgwL2rAySKbJGDVsIIVLkJXWEbU3EAkxlbAXesbWcAQoXAtVai1UqWf435wCSGCECUtBdsxIGE2YIdESG2sxGrDU9Mk3283rIZOYm5VlLdb6oB686dsp8tdTosixoZ6pV2GwYlD20AUU0qM48IQ6KpQWqBEnkv3r7D4FyQBVqE3gLOPfbRY4Nm6Wj3d7EoymOIFws2wi5Za86M5mWGkkEiqhHvyB6UD3EAXzFeEHC8VBsZxHQvmO1lsV5oCiJpiRPeCdLN8xU7LFi8OI+xYBq8YmZzxTC0FBElXCLA/kTklPwdMoSJ8taIIkTDgAiquAWrMoxUXqreOgEjN5zmcN9gVkTfaKLBCGzPbwkIBELJ2SWhNgtBAEfNUEBDx3WMZTOcFOcXc7INRHyNt79v94bFoqEsZnkTnZlnSbJQ15gTWKwFvijLq4eAtuNuiMRkthnBVrPRprNY7d1YfA6IxQT4Aqs6O04OUAwBKGsOfZod3ZAHI2qyAyjfJa04H70P/J2HiCuO3majoyeGHniOCnXfrL6Zn7ie7zvplwdujwzvHu5N2fHir7U1Pj2399f9L5OU1RpbpvSrqIHzdvP7nFOVeftu+0cVWUg2GvRHbfOzEmes2/eubteamLc9KE6s9G7hhle4qclnWB2f/zkrIZ7WdttS1HFX9emt3vrbSu59CIhjMXOpqu78766sbln2ms2xZVlAzoe73p17OnFx9cKC8vSzr7yG9PW6ymg3VL59Jc7NSkgV/+s4M83TbjhNzz0PnoxqmXX7lRHGM5PWIV9Xy/eWc+zR01YXe7pxc+eu6xyIiI77+KF/+wqgvevSzvEIaZk0Sguvosa1g+OA6XgEYUg3+hfVFuO+v0BItTI4EpCS49mdQorMIBIdKgJpPa9F6r3nv5HkTQfYT+wSjB/zMQfuoasW+bRvwRNSI9Q3QybRrx4dCI3xV/8fFt4u/hE38HIrveUn9lSzIzm7BeB+q7dcr8YMWNE08vXdxpyyDSl2R5bLsyxnLMFF2/58XmAXTaomkvfFjuG3lOO8jUv2Bfb7JX52Fjh7xqHif88pXk92M3XSV2Xic+Kb/e4Y3x67uNaC8t1rZPvBT4W8aZ5wp+n7TLGNllyQpitvMfxwYObJyf2xz/6gjzyWciv27U4ifFE8Jf/t6bzpyfOPdw7qmRa/3p9csOZxRe8dS9YRt/taHD9C3LTw1L3VzOc+hEEU43rNbu2LZnULd/7/TVr1vzXu8DOTlRz64+k/Kb9JVDDuf8IefD0W91vX4sO3HNqckp0cKoj+Qvja8fnTetIamwednRfkf6X2/pe3HvqIg+ET0WHfivulG4R90I3VWlu6xBXpGj1FeNXoXUqBmHvtOmDO+qDMV7FUU/FrgPRvvd9zDb1F2burul7hLNRndcm7p7WNVdQmybunsY1V30LXWXs6QxQ323l3/gUIcl++aM4Y7yfY5f6rjHu6E8pSpjft6E1d6ioxkbcx/1X/6o5WLLqPI+tQV5578aN8EhLDL9rt3Z5k9aqlMzjY/vWXn8A/7a3jcXVMRf2+jo8XjLMtOAuHe7RG1/vsAgzl8rHP748/qutgjbpMqhjlINnUofGvwaPnxn3+LZHfNesv1qw/r2s8ueS+kxf4ipl6F4uPlaxdYxK2cseORKzmVdzx3myC9KuvNXseiEd3oIF8z+EaVzyy5lPNtrlvLkL1bOm1n6eXKivSd9ZNcLwyq6vYuP6/9en+w/uiZeOJ3V6YusJ8xKU9eD/Z5YvbLBdPCIZ9X+lkfsjWVRa5YuyBuU1zz1QvnQwYGvV3zW6XjxxZydIPf+A38YqDU=
eNrtWF1vG8cVrf9D2+fBFmETg0PukhRJk1gYguM4QSXbgGw4nxWGu7PLqWZn1jOz/LDChzhB3lKAQNHntlKsRLGTFi2K5qFoXwoUaPsD2If8ltzZJVlKsGOnVZ04ICCI3Jm7d86998y9B7x7NKBKMynO3WfCUEUCAw/6l3ePFL2dUW3eu5dQ05fhwZXLNw4yxWa6b0zaqVapqAzZHktpyEhFqrg6rJKUVdJ+epEzbXxNiQr6Ja1SJVMfPjlLmPG90uJTq8LE50TEQZ8wUYqkSojxf6alKBVIfAChxoc9GY7/etSnJAS07x3f1FThzZgKM53VlyjQ8xaaBmwxM/2sVwlkUo0lDzUc2K/eWthVX/hsMwhoavBlEciQiXj6IL7D0jIKacSJofeK7enB+er540tSCJpjmR7vUZpiwtmAfqSoTiFR9N172hCT6buH4Ir+6xw+SqjWJKa/25YDGqLrFEISgJSPF/jfvwfwIe3To5c3rys5Gn86wgEJ+hQXrqZHUApsuD4O/nP2hwGXmn7EZUDy55lZBPs0C3E0Rzo9DlLP81wESD8FlAYCxJyK2PSnv3bzcr0DiVGQ2189mkrfSAjPDJf++fcFlX5z7ScLvF987weHIbid/vkWDcuoVkfXAoNqbq2BvGbHbXUaHrqyfeMBKUApSAfV0w97Y0P1/UWhzDil07+QNOWsYFPVZqmLIHGQR+NnJsLtz235AjAGHwBPGaxpAFUz4+kMJ2SEAZjvuc16u9Hy3C4wIeBZSHey3osygQLoLkoV5ZKEv1+cGzJwpFnBX3iBM0G7KGJAHJJQH0qOIRUZNxWL5wAOADIdAyIcSLnH6C9mr97afglvEW2wTavWfq2OIQHYJqB7nZi+X+2+DIW7Jvi4m+Ol3cujlIFbfycTkLAGuioH84TVOq4LfzZhs+yUZ3yFyx7hDzugiM8/Sdn/8titK1S+ct2/udPZ3uxs0REQyEjRadQqjWYHt7xKrdYZNLpofjSaO0cPxTC7eJWaoVR70FV6dCu/G27Fdb0F8p3i7R3I9g4z1N8io+42lBLo79ebrru83n+y19tto4RpXUbzh5Ro/aBoXdiAc+D67LncvhtSHfiONXDKqC+1ma8UbzqLhjcrJUNsy0xHpkJvMxJWbBh4I2pcaDZ6vaiH9y7UAnU4IApo9sqpq1W+oSgxmGh8UxiVaQNX4FX8klRDokIaYgjbyPKlnCvlzQx6jWJ3coKf7rCHFuqBoHw6++k+chS1BN810ukgZ5jswgbE4QDLd4GEsNh0G23XhaWIMA4p3I3mkxL2IMMbsKOznDendiYPinPtFVASjvtRqtgALnAZJRAA8H0APSAsFuaXyv1shMFLQrFM82k8PXzx8tXXPoEYOLP3iKXT+xfaFc9rV1z43/y4wI+NnM7+AeHESmbpY0OhIkwl9G8Ni2/AW5ni9p1F34Mdskcxl3EMqc+Jliz788Cr0gFA0RehS1CS+MN6UClQgLHt3aJg4i5VSqqShhwkZBfah18F0+qqafWEadWDmFwHTd5Ckz+O8GrLWqbjSEgtWBT9drFLF7330Pbe0wPpoOa2IXnFhMAsnH7eqpFICjYexnovaInBbeHWSUsxcmJy/fvcD/cdoJaA75Ckfcdy1X6edzrOTaFoIGPB7sCQT4ktF8inDsonUsWZTMpOj5igD3Mj5bAFrzhlxyJjIqPWi1YyiqC5OR1vdcPBb7/twNv5sMrtctxMRNI+GWkI7zNbtY0ykC6G/l7QzbGzD+XDz1ndgVSlqT1m1QAOKPw6nTf2HQHe3LJjmOEWwRbYXZr7SYE1LHQ6rfpGq9WsNSdvTSaPnugfPF4c5iPcRvNc65J1bp91iYl8HThYStP8KwwLkvRYnOUXuKTAFWTcaL+Uw9T+EuVaNn4N2fjzJ9BcT7FEZysov2XBPetS8/trqbmWmt9dqZnuNYcba6m5lppnKTWbzVMa8m/7DxOCS3VnR1AuLhcCa7G4KrrKX6XQ5hAS6OOQVcdmzwDp59rNar4sLwdU4dRa3yTctv+H7cG0s4rRKFg3MoOkAh7HdhXsudhr34Bu0fA6bv11MODE1mZgIXu1Rrvu1jcadVjOkwJr7caFdtmJMs7zyjuPHtPwVF0NDnbM494B/oR0lA/3PD8rk3k+ja0XmykiQPUH5GuimEy+SvLKJ5S8UBJ7XXWJjlJO7I+tI+OXbBuG27oWtf+TqE2fVPedVRHOVrY+dfjfdWFaWwvTtTB9doXp4E5jY7AWpmthepbCtF0/JUz/8P8WpvNptbqKmEYEaRkZoCtFeYVt3Mj0iUF9ylONIhIwzoCjFFapnaw0VjmDkYwQJyqmaKFSUa56NXp+a2tbv2BtJVrp6bqCNu2BJ81PuFxCKKMlyh9rlGngK9FUFwfyMQIFozhJ0RBmHwADAVLAOQkEQoQxShXh5fk0gFyjUAZZAtVARBA+1jYJIkQ6SxKyuJ1lO3lMTxroNXbTTr+leeVN8WahQ78EN9bjsA==

View File

@@ -27,7 +27,7 @@ LangChain has lots of different types of output parsers. This is a list of outpu
| Name | Supports Streaming | Has Format Instructions | Calls LLM | Input Type | Output Type | Description |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-------------------------|-----------|--------------------|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [Str](https://python.langchain.com/api_reference/core/output_parsers/langchain_core.output_parsers.string.StrOutputParser.html) | ✅ | | | `str` \| `Message` | String | Parses texts from message objects. Useful for handling variable formats of message content (e.g., extracting text from content blocks). |
| [JSON](https://python.langchain.com/api_reference/core/output_parsers/langchain_core.output_parsers.json.JsonOutputParser.html) | ✅ | ✅ | | `str` \| `Message` | JSON object | Returns a JSON object as specified. You can specify a Pydantic model and it will return JSON for that model. Probably the most reliable output parser for getting structured data that does NOT use function calling. |
| [JSON](https://python.langchain.com/api_reference/core/output_parsers/langchain_core.output_parsers.json.JSONOutputParser.html#langchain_core.output_parsers.json.JSONOutputParser) | ✅ | ✅ | | `str` \| `Message` | JSON object | Returns a JSON object as specified. You can specify a Pydantic model and it will return JSON for that model. Probably the most reliable output parser for getting structured data that does NOT use function calling. |
| [XML](https://python.langchain.com/api_reference/core/output_parsers/langchain_core.output_parsers.xml.XMLOutputParser.html#langchain_core.output_parsers.xml.XMLOutputParser) | ✅ | ✅ | | `str` \| `Message` | `dict` | Returns a dictionary of tags. Use when XML output is needed. Use with models that are good at writing XML (like Anthropic's). |
| [CSV](https://python.langchain.com/api_reference/core/output_parsers/langchain_core.output_parsers.list.CommaSeparatedListOutputParser.html#langchain_core.output_parsers.list.CommaSeparatedListOutputParser) | ✅ | ✅ | | `str` \| `Message` | `List[str]` | Returns a list of comma separated values. |
| [OutputFixing](https://python.langchain.com/api_reference/langchain/output_parsers/langchain.output_parsers.fix.OutputFixingParser.html#langchain.output_parsers.fix.OutputFixingParser) | | | ✅ | `str` \| `Message` | | Wraps another output parser. If that output parser errors, then this will pass the error message and the bad output to an LLM and ask it to fix the output. |

View File

@@ -74,8 +74,6 @@ As an example, query decomposition can simply be accomplished using prompting an
These can then be run sequentially or in parallel on a downstream retrieval system.
```python
from typing import List
from pydantic import BaseModel, Field
from langchain_openai import ChatOpenAI
from langchain_core.messages import SystemMessage, HumanMessage

View File

@@ -90,7 +90,7 @@ LangChain has retrievers for many popular lexical search algorithms / engines.
### Vector store
[Vector stores](/docs/concepts/vectorstores/) are a powerful and efficient way to index and retrieve unstructured data.
A vectorstore can be used as a retriever by calling the `as_retriever()` method.
An vectorstore can be used as a retriever by calling the `as_retriever()` method.
```python
vectorstore = MyVectorStore()

Some files were not shown because too many files have changed in this diff Show More