mirror of
https://github.com/hwchase17/langchain.git
synced 2026-02-04 00:00:34 +00:00
Compare commits
3 Commits
langchain-
...
eugene/web
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
22cfb1ea06 | ||
|
|
62dc24dccc | ||
|
|
fc56e4b678 |
@@ -118,6 +118,9 @@ if TYPE_CHECKING:
|
||||
from langchain_community.retrievers.weaviate_hybrid_search import (
|
||||
WeaviateHybridSearchRetriever, # noqa: F401
|
||||
)
|
||||
from langchain_community.retrievers.web_research import (
|
||||
WebResearchRetriever, # noqa: F401
|
||||
)
|
||||
from langchain_community.retrievers.wikipedia import (
|
||||
WikipediaRetriever, # noqa: F401
|
||||
)
|
||||
@@ -208,6 +211,7 @@ _module_lookup = {
|
||||
"TavilySearchAPIRetriever": "langchain_community.retrievers.tavily_search_api",
|
||||
"VespaRetriever": "langchain_community.retrievers.vespa_retriever",
|
||||
"WeaviateHybridSearchRetriever": "langchain_community.retrievers.weaviate_hybrid_search", # noqa: E501
|
||||
"WebResearchRetriever": "langchain_community.retrievers.web_research",
|
||||
"WikipediaRetriever": "langchain_community.retrievers.wikipedia",
|
||||
"YouRetriever": "langchain_community.retrievers.you",
|
||||
"ZepRetriever": "langchain_community.retrievers.zep",
|
||||
|
||||
239
libs/community/langchain_community/retrievers/web_research.py
Normal file
239
libs/community/langchain_community/retrievers/web_research.py
Normal file
@@ -0,0 +1,239 @@
|
||||
import logging
|
||||
import re
|
||||
from typing import List, Optional
|
||||
|
||||
from langchain_core.callbacks import (
|
||||
AsyncCallbackManagerForRetrieverRun,
|
||||
CallbackManagerForRetrieverRun,
|
||||
)
|
||||
from langchain_core.documents import Document
|
||||
from langchain_core.language_models import BaseLLM
|
||||
from langchain_core.output_parsers import BaseOutputParser
|
||||
from langchain_core.prompts import BasePromptTemplate, PromptTemplate
|
||||
from langchain_core.pydantic_v1 import BaseModel, Field
|
||||
from langchain_core.retrievers import BaseRetriever
|
||||
from langchain_core.vectorstores import VectorStore
|
||||
from langchain_text_splitters import RecursiveCharacterTextSplitter, TextSplitter
|
||||
|
||||
from langchain_community.document_loaders import AsyncHtmlLoader
|
||||
from langchain_community.document_transformers import Html2TextTransformer
|
||||
from langchain_community.llms import LlamaCpp
|
||||
from langchain_community.utilities import GoogleSearchAPIWrapper
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class SearchQueries(BaseModel):
|
||||
"""Search queries to research for the user's goal."""
|
||||
|
||||
queries: List[str] = Field(
|
||||
..., description="List of search queries to look up on Google"
|
||||
)
|
||||
|
||||
|
||||
DEFAULT_LLAMA_SEARCH_PROMPT = PromptTemplate(
|
||||
input_variables=["question"],
|
||||
template="""<<SYS>> \n You are an assistant tasked with improving Google search \
|
||||
results. \n <</SYS>> \n\n [INST] Generate THREE Google search queries that \
|
||||
are similar to this question. The output should be a numbered list of questions \
|
||||
and each should have a question mark at the end: \n\n {question} [/INST]""",
|
||||
)
|
||||
|
||||
DEFAULT_SEARCH_PROMPT = PromptTemplate(
|
||||
input_variables=["question"],
|
||||
template="""You are an assistant tasked with improving Google search \
|
||||
results. Generate THREE Google search queries that are similar to \
|
||||
this question. The output should be a numbered list of questions and each \
|
||||
should have a question mark at the end: {question}""",
|
||||
)
|
||||
|
||||
|
||||
class QuestionListOutputParser(BaseOutputParser[List[str]]):
|
||||
"""Output parser for a list of numbered questions."""
|
||||
|
||||
def parse(self, text: str) -> List[str]:
|
||||
lines = re.findall(r"\d+\..*?(?:\n|$)", text)
|
||||
return lines
|
||||
|
||||
|
||||
try:
|
||||
from langchain.chains import LLMChain
|
||||
from langchain.chains.prompt_selector import ConditionalPromptSelector
|
||||
|
||||
DEFAULT_TEXT_SPLITTER = RecursiveCharacterTextSplitter(
|
||||
chunk_size=1500, chunk_overlap=150
|
||||
)
|
||||
|
||||
class WebResearchRetriever(BaseRetriever):
|
||||
"""`Google Search API` retriever."""
|
||||
|
||||
# Inputs
|
||||
vectorstore: VectorStore = Field(
|
||||
..., description="Vector store for storing web pages"
|
||||
)
|
||||
llm_chain: LLMChain
|
||||
search: GoogleSearchAPIWrapper = Field(
|
||||
..., description="Google Search API Wrapper"
|
||||
)
|
||||
num_search_results: int = Field(
|
||||
1, description="Number of pages per Google search"
|
||||
)
|
||||
text_splitter: TextSplitter = Field(
|
||||
RecursiveCharacterTextSplitter(chunk_size=1500, chunk_overlap=50),
|
||||
description="Text splitter for splitting web pages into chunks",
|
||||
)
|
||||
url_database: List[str] = Field(
|
||||
default_factory=list, description="List of processed URLs"
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def from_llm(
|
||||
cls,
|
||||
vectorstore: VectorStore,
|
||||
llm: BaseLLM,
|
||||
search: GoogleSearchAPIWrapper,
|
||||
prompt: Optional[BasePromptTemplate] = None,
|
||||
num_search_results: int = 1,
|
||||
text_splitter: RecursiveCharacterTextSplitter = DEFAULT_TEXT_SPLITTER,
|
||||
) -> "WebResearchRetriever":
|
||||
"""Initialize from llm using default template.
|
||||
|
||||
Args:
|
||||
vectorstore: Vector store for storing web pages
|
||||
llm: llm for search question generation
|
||||
search: GoogleSearchAPIWrapper
|
||||
prompt: prompt to generating search questions
|
||||
num_search_results: Number of pages per Google search
|
||||
text_splitter: Text splitter for splitting web pages into chunks
|
||||
|
||||
Returns:
|
||||
WebResearchRetriever
|
||||
"""
|
||||
|
||||
if not prompt:
|
||||
QUESTION_PROMPT_SELECTOR = ConditionalPromptSelector(
|
||||
default_prompt=DEFAULT_SEARCH_PROMPT,
|
||||
conditionals=[
|
||||
(
|
||||
lambda llm: isinstance(llm, LlamaCpp),
|
||||
DEFAULT_LLAMA_SEARCH_PROMPT,
|
||||
)
|
||||
],
|
||||
)
|
||||
prompt = QUESTION_PROMPT_SELECTOR.get_prompt(llm)
|
||||
|
||||
# Use chat model prompt
|
||||
llm_chain = LLMChain(
|
||||
llm=llm,
|
||||
prompt=prompt,
|
||||
output_parser=QuestionListOutputParser(),
|
||||
)
|
||||
|
||||
return cls(
|
||||
vectorstore=vectorstore,
|
||||
llm_chain=llm_chain,
|
||||
search=search,
|
||||
num_search_results=num_search_results,
|
||||
text_splitter=text_splitter,
|
||||
)
|
||||
|
||||
def clean_search_query(self, query: str) -> str:
|
||||
# Some search tools (e.g., Google) will
|
||||
# fail to return results if query has a
|
||||
# leading digit: 1. "LangCh..."
|
||||
# Check if the first character is a digit
|
||||
if query[0].isdigit():
|
||||
# Find the position of the first quote
|
||||
first_quote_pos = query.find('"')
|
||||
if first_quote_pos != -1:
|
||||
# Extract the part of the string after the quote
|
||||
query = query[first_quote_pos + 1 :]
|
||||
# Remove the trailing quote if present
|
||||
if query.endswith('"'):
|
||||
query = query[:-1]
|
||||
return query.strip()
|
||||
|
||||
def search_tool(self, query: str, num_search_results: int = 1) -> List[dict]:
|
||||
"""Returns num_search_results pages per Google search."""
|
||||
query_clean = self.clean_search_query(query)
|
||||
result = self.search.results(query_clean, num_search_results)
|
||||
return result
|
||||
|
||||
def _get_relevant_documents(
|
||||
self,
|
||||
query: str,
|
||||
*,
|
||||
run_manager: CallbackManagerForRetrieverRun,
|
||||
) -> List[Document]:
|
||||
"""Search Google for documents related to the query input.
|
||||
|
||||
Args:
|
||||
query: user query
|
||||
|
||||
Returns:
|
||||
Relevant documents from all various urls.
|
||||
"""
|
||||
|
||||
# Get search questions
|
||||
logger.info("Generating questions for Google Search ...")
|
||||
result = self.llm_chain({"question": query})
|
||||
logger.info(f"Questions for Google Search (raw): {result}")
|
||||
questions = result["text"]
|
||||
logger.info(f"Questions for Google Search: {questions}")
|
||||
|
||||
# Get urls
|
||||
logger.info("Searching for relevant urls...")
|
||||
urls_to_look = []
|
||||
for query in questions:
|
||||
# Google search
|
||||
search_results = self.search_tool(query, self.num_search_results)
|
||||
logger.info("Searching for relevant urls...")
|
||||
logger.info(f"Search results: {search_results}")
|
||||
for res in search_results:
|
||||
if res.get("link", None):
|
||||
urls_to_look.append(res["link"])
|
||||
|
||||
# Relevant urls
|
||||
urls = set(urls_to_look)
|
||||
|
||||
# Check for any new urls that we have not processed
|
||||
new_urls = list(urls.difference(self.url_database))
|
||||
|
||||
logger.info(f"New URLs to load: {new_urls}")
|
||||
# Load, split, and add new urls to vectorstore
|
||||
if new_urls:
|
||||
loader = AsyncHtmlLoader(new_urls, ignore_load_errors=True)
|
||||
html2text = Html2TextTransformer()
|
||||
logger.info("Indexing new urls...")
|
||||
docs = loader.load()
|
||||
docs = list(html2text.transform_documents(docs))
|
||||
docs = self.text_splitter.split_documents(docs)
|
||||
self.vectorstore.add_documents(docs)
|
||||
self.url_database.extend(new_urls)
|
||||
|
||||
# Search for relevant splits
|
||||
# TODO: make this async
|
||||
logger.info("Grabbing most relevant splits from urls...")
|
||||
docs = []
|
||||
for query in questions:
|
||||
docs.extend(self.vectorstore.similarity_search(query))
|
||||
|
||||
# Get unique docs
|
||||
unique_documents_dict = {
|
||||
(doc.page_content, tuple(sorted(doc.metadata.items()))): doc
|
||||
for doc in docs
|
||||
}
|
||||
unique_documents = list(unique_documents_dict.values())
|
||||
return unique_documents
|
||||
|
||||
async def _aget_relevant_documents(
|
||||
self,
|
||||
query: str,
|
||||
*,
|
||||
run_manager: AsyncCallbackManagerForRetrieverRun,
|
||||
) -> List[Document]:
|
||||
raise NotImplementedError
|
||||
except ImportError:
|
||||
# placeholder for when langchain is not installed
|
||||
class WebResearchRetriever: # type: ignore[no-redef]
|
||||
pass
|
||||
@@ -1,223 +1,15 @@
|
||||
import logging
|
||||
import re
|
||||
from typing import List, Optional
|
||||
|
||||
from langchain_community.document_loaders import AsyncHtmlLoader
|
||||
from langchain_community.document_transformers import Html2TextTransformer
|
||||
from langchain_community.llms import LlamaCpp
|
||||
from langchain_community.utilities import GoogleSearchAPIWrapper
|
||||
from langchain_core.callbacks import (
|
||||
AsyncCallbackManagerForRetrieverRun,
|
||||
CallbackManagerForRetrieverRun,
|
||||
)
|
||||
from langchain_core.documents import Document
|
||||
from langchain_core.language_models import BaseLLM
|
||||
from langchain_core.output_parsers import BaseOutputParser
|
||||
from langchain_core.prompts import BasePromptTemplate, PromptTemplate
|
||||
from langchain_core.pydantic_v1 import BaseModel, Field
|
||||
from langchain_core.retrievers import BaseRetriever
|
||||
from langchain_core.vectorstores import VectorStore
|
||||
from langchain_text_splitters import RecursiveCharacterTextSplitter, TextSplitter
|
||||
|
||||
from langchain.chains import LLMChain
|
||||
from langchain.chains.prompt_selector import ConditionalPromptSelector
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class SearchQueries(BaseModel):
|
||||
"""Search queries to research for the user's goal."""
|
||||
|
||||
queries: List[str] = Field(
|
||||
..., description="List of search queries to look up on Google"
|
||||
)
|
||||
|
||||
|
||||
DEFAULT_LLAMA_SEARCH_PROMPT = PromptTemplate(
|
||||
input_variables=["question"],
|
||||
template="""<<SYS>> \n You are an assistant tasked with improving Google search \
|
||||
results. \n <</SYS>> \n\n [INST] Generate THREE Google search queries that \
|
||||
are similar to this question. The output should be a numbered list of questions \
|
||||
and each should have a question mark at the end: \n\n {question} [/INST]""",
|
||||
from langchain_community.retrievers.web_research import (
|
||||
DEFAULT_LLAMA_SEARCH_PROMPT,
|
||||
DEFAULT_SEARCH_PROMPT,
|
||||
QuestionListOutputParser,
|
||||
SearchQueries,
|
||||
WebResearchRetriever,
|
||||
)
|
||||
|
||||
DEFAULT_SEARCH_PROMPT = PromptTemplate(
|
||||
input_variables=["question"],
|
||||
template="""You are an assistant tasked with improving Google search \
|
||||
results. Generate THREE Google search queries that are similar to \
|
||||
this question. The output should be a numbered list of questions and each \
|
||||
should have a question mark at the end: {question}""",
|
||||
)
|
||||
|
||||
|
||||
class QuestionListOutputParser(BaseOutputParser[List[str]]):
|
||||
"""Output parser for a list of numbered questions."""
|
||||
|
||||
def parse(self, text: str) -> List[str]:
|
||||
lines = re.findall(r"\d+\..*?(?:\n|$)", text)
|
||||
return lines
|
||||
|
||||
|
||||
class WebResearchRetriever(BaseRetriever):
|
||||
"""`Google Search API` retriever."""
|
||||
|
||||
# Inputs
|
||||
vectorstore: VectorStore = Field(
|
||||
..., description="Vector store for storing web pages"
|
||||
)
|
||||
llm_chain: LLMChain
|
||||
search: GoogleSearchAPIWrapper = Field(..., description="Google Search API Wrapper")
|
||||
num_search_results: int = Field(1, description="Number of pages per Google search")
|
||||
text_splitter: TextSplitter = Field(
|
||||
RecursiveCharacterTextSplitter(chunk_size=1500, chunk_overlap=50),
|
||||
description="Text splitter for splitting web pages into chunks",
|
||||
)
|
||||
url_database: List[str] = Field(
|
||||
default_factory=list, description="List of processed URLs"
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def from_llm(
|
||||
cls,
|
||||
vectorstore: VectorStore,
|
||||
llm: BaseLLM,
|
||||
search: GoogleSearchAPIWrapper,
|
||||
prompt: Optional[BasePromptTemplate] = None,
|
||||
num_search_results: int = 1,
|
||||
text_splitter: RecursiveCharacterTextSplitter = RecursiveCharacterTextSplitter(
|
||||
chunk_size=1500, chunk_overlap=150
|
||||
),
|
||||
) -> "WebResearchRetriever":
|
||||
"""Initialize from llm using default template.
|
||||
|
||||
Args:
|
||||
vectorstore: Vector store for storing web pages
|
||||
llm: llm for search question generation
|
||||
search: GoogleSearchAPIWrapper
|
||||
prompt: prompt to generating search questions
|
||||
num_search_results: Number of pages per Google search
|
||||
text_splitter: Text splitter for splitting web pages into chunks
|
||||
|
||||
Returns:
|
||||
WebResearchRetriever
|
||||
"""
|
||||
|
||||
if not prompt:
|
||||
QUESTION_PROMPT_SELECTOR = ConditionalPromptSelector(
|
||||
default_prompt=DEFAULT_SEARCH_PROMPT,
|
||||
conditionals=[
|
||||
(lambda llm: isinstance(llm, LlamaCpp), DEFAULT_LLAMA_SEARCH_PROMPT)
|
||||
],
|
||||
)
|
||||
prompt = QUESTION_PROMPT_SELECTOR.get_prompt(llm)
|
||||
|
||||
# Use chat model prompt
|
||||
llm_chain = LLMChain(
|
||||
llm=llm,
|
||||
prompt=prompt,
|
||||
output_parser=QuestionListOutputParser(),
|
||||
)
|
||||
|
||||
return cls(
|
||||
vectorstore=vectorstore,
|
||||
llm_chain=llm_chain,
|
||||
search=search,
|
||||
num_search_results=num_search_results,
|
||||
text_splitter=text_splitter,
|
||||
)
|
||||
|
||||
def clean_search_query(self, query: str) -> str:
|
||||
# Some search tools (e.g., Google) will
|
||||
# fail to return results if query has a
|
||||
# leading digit: 1. "LangCh..."
|
||||
# Check if the first character is a digit
|
||||
if query[0].isdigit():
|
||||
# Find the position of the first quote
|
||||
first_quote_pos = query.find('"')
|
||||
if first_quote_pos != -1:
|
||||
# Extract the part of the string after the quote
|
||||
query = query[first_quote_pos + 1 :]
|
||||
# Remove the trailing quote if present
|
||||
if query.endswith('"'):
|
||||
query = query[:-1]
|
||||
return query.strip()
|
||||
|
||||
def search_tool(self, query: str, num_search_results: int = 1) -> List[dict]:
|
||||
"""Returns num_search_results pages per Google search."""
|
||||
query_clean = self.clean_search_query(query)
|
||||
result = self.search.results(query_clean, num_search_results)
|
||||
return result
|
||||
|
||||
def _get_relevant_documents(
|
||||
self,
|
||||
query: str,
|
||||
*,
|
||||
run_manager: CallbackManagerForRetrieverRun,
|
||||
) -> List[Document]:
|
||||
"""Search Google for documents related to the query input.
|
||||
|
||||
Args:
|
||||
query: user query
|
||||
|
||||
Returns:
|
||||
Relevant documents from all various urls.
|
||||
"""
|
||||
|
||||
# Get search questions
|
||||
logger.info("Generating questions for Google Search ...")
|
||||
result = self.llm_chain({"question": query})
|
||||
logger.info(f"Questions for Google Search (raw): {result}")
|
||||
questions = result["text"]
|
||||
logger.info(f"Questions for Google Search: {questions}")
|
||||
|
||||
# Get urls
|
||||
logger.info("Searching for relevant urls...")
|
||||
urls_to_look = []
|
||||
for query in questions:
|
||||
# Google search
|
||||
search_results = self.search_tool(query, self.num_search_results)
|
||||
logger.info("Searching for relevant urls...")
|
||||
logger.info(f"Search results: {search_results}")
|
||||
for res in search_results:
|
||||
if res.get("link", None):
|
||||
urls_to_look.append(res["link"])
|
||||
|
||||
# Relevant urls
|
||||
urls = set(urls_to_look)
|
||||
|
||||
# Check for any new urls that we have not processed
|
||||
new_urls = list(urls.difference(self.url_database))
|
||||
|
||||
logger.info(f"New URLs to load: {new_urls}")
|
||||
# Load, split, and add new urls to vectorstore
|
||||
if new_urls:
|
||||
loader = AsyncHtmlLoader(new_urls, ignore_load_errors=True)
|
||||
html2text = Html2TextTransformer()
|
||||
logger.info("Indexing new urls...")
|
||||
docs = loader.load()
|
||||
docs = list(html2text.transform_documents(docs))
|
||||
docs = self.text_splitter.split_documents(docs)
|
||||
self.vectorstore.add_documents(docs)
|
||||
self.url_database.extend(new_urls)
|
||||
|
||||
# Search for relevant splits
|
||||
# TODO: make this async
|
||||
logger.info("Grabbing most relevant splits from urls...")
|
||||
docs = []
|
||||
for query in questions:
|
||||
docs.extend(self.vectorstore.similarity_search(query))
|
||||
|
||||
# Get unique docs
|
||||
unique_documents_dict = {
|
||||
(doc.page_content, tuple(sorted(doc.metadata.items()))): doc for doc in docs
|
||||
}
|
||||
unique_documents = list(unique_documents_dict.values())
|
||||
return unique_documents
|
||||
|
||||
async def _aget_relevant_documents(
|
||||
self,
|
||||
query: str,
|
||||
*,
|
||||
run_manager: AsyncCallbackManagerForRetrieverRun,
|
||||
) -> List[Document]:
|
||||
raise NotImplementedError
|
||||
__all__ = [
|
||||
"SearchQueries",
|
||||
"DEFAULT_LLAMA_SEARCH_PROMPT",
|
||||
"DEFAULT_SEARCH_PROMPT",
|
||||
"QuestionListOutputParser",
|
||||
"WebResearchRetriever",
|
||||
]
|
||||
|
||||
Reference in New Issue
Block a user