mirror of
https://github.com/hwchase17/langchain.git
synced 2026-02-05 08:40:36 +00:00
Compare commits
1 Commits
langchain=
...
erick/impr
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
dc7e597363 |
@@ -10,7 +10,7 @@ You can use the dev container configuration in this folder to build and run the
|
||||
You may use the button above, or follow these steps to open this repo in a Codespace:
|
||||
1. Click the **Code** drop-down menu at the top of https://github.com/langchain-ai/langchain.
|
||||
1. Click on the **Codespaces** tab.
|
||||
1. Click **Create codespace on master**.
|
||||
1. Click **Create codespace on master** .
|
||||
|
||||
For more info, check out the [GitHub documentation](https://docs.github.com/en/free-pro-team@latest/github/developing-online-with-codespaces/creating-a-codespace#creating-a-codespace).
|
||||
|
||||
|
||||
@@ -12,7 +12,7 @@
|
||||
|
||||
// The optional 'workspaceFolder' property is the path VS Code should open by default when
|
||||
// connected. This is typically a file mount in .devcontainer/docker-compose.yml
|
||||
"workspaceFolder": "/workspaces/langchain",
|
||||
"workspaceFolder": "/workspaces/${localWorkspaceFolderBasename}",
|
||||
|
||||
// Prevent the container from shutting down
|
||||
"overrideCommand": true
|
||||
|
||||
@@ -5,10 +5,10 @@ services:
|
||||
dockerfile: libs/langchain/dev.Dockerfile
|
||||
context: ..
|
||||
volumes:
|
||||
# Update this to wherever you want VS Code to mount the folder of your project
|
||||
- ..:/workspaces/langchain:cached
|
||||
# Update this to wherever you want VS Code to mount the folder of your project
|
||||
- ..:/workspaces:cached
|
||||
networks:
|
||||
- langchain-network
|
||||
- langchain-network
|
||||
# environment:
|
||||
# MONGO_ROOT_USERNAME: root
|
||||
# MONGO_ROOT_PASSWORD: example123
|
||||
@@ -28,3 +28,5 @@ services:
|
||||
networks:
|
||||
langchain-network:
|
||||
driver: bridge
|
||||
|
||||
|
||||
|
||||
317
.github/CONTRIBUTING.md
vendored
317
.github/CONTRIBUTING.md
vendored
@@ -3,4 +3,319 @@
|
||||
Hi there! Thank you for even being interested in contributing to LangChain.
|
||||
As an open-source project in a rapidly developing field, we are extremely open to contributions, whether they involve new features, improved infrastructure, better documentation, or bug fixes.
|
||||
|
||||
To learn how to contribute to LangChain, please follow the [contribution guide here](https://python.langchain.com/docs/contributing/).
|
||||
## 🗺️ Guidelines
|
||||
|
||||
### 👩💻 Contributing Code
|
||||
|
||||
To contribute to this project, please follow the ["fork and pull request"](https://docs.github.com/en/get-started/quickstart/contributing-to-projects) workflow.
|
||||
Please do not try to push directly to this repo unless you are a maintainer.
|
||||
|
||||
Please follow the checked-in pull request template when opening pull requests. Note related issues and tag relevant
|
||||
maintainers.
|
||||
|
||||
Pull requests cannot land without passing the formatting, linting, and testing checks first. See [Testing](#testing) and
|
||||
[Formatting and Linting](#formatting-and-linting) for how to run these checks locally.
|
||||
|
||||
It's essential that we maintain great documentation and testing. If you:
|
||||
- Fix a bug
|
||||
- Add a relevant unit or integration test when possible. These live in `tests/unit_tests` and `tests/integration_tests`.
|
||||
- Make an improvement
|
||||
- Update any affected example notebooks and documentation. These live in `docs`.
|
||||
- Update unit and integration tests when relevant.
|
||||
- Add a feature
|
||||
- Add a demo notebook in `docs/modules`.
|
||||
- Add unit and integration tests.
|
||||
|
||||
We are a small, progress-oriented team. If there's something you'd like to add or change, opening a pull request is the
|
||||
best way to get our attention.
|
||||
|
||||
### 🚩GitHub Issues
|
||||
|
||||
Our [issues](https://github.com/langchain-ai/langchain/issues) page is kept up to date with bugs, improvements, and feature requests.
|
||||
|
||||
There is a taxonomy of labels to help with sorting and discovery of issues of interest. Please use these to help organize issues.
|
||||
|
||||
If you start working on an issue, please assign it to yourself.
|
||||
|
||||
If you are adding an issue, please try to keep it focused on a single, modular bug/improvement/feature.
|
||||
If two issues are related, or blocking, please link them rather than combining them.
|
||||
|
||||
We will try to keep these issues as up-to-date as possible, though
|
||||
with the rapid rate of development in this field some may get out of date.
|
||||
If you notice this happening, please let us know.
|
||||
|
||||
### 🙋Getting Help
|
||||
|
||||
Our goal is to have the simplest developer setup possible. Should you experience any difficulty getting setup, please
|
||||
contact a maintainer! Not only do we want to help get you unblocked, but we also want to make sure that the process is
|
||||
smooth for future contributors.
|
||||
|
||||
In a similar vein, we do enforce certain linting, formatting, and documentation standards in the codebase.
|
||||
If you are finding these difficult (or even just annoying) to work with, feel free to contact a maintainer for help -
|
||||
we do not want these to get in the way of getting good code into the codebase.
|
||||
|
||||
## 🚀 Quick Start
|
||||
|
||||
This quick start guide explains how to run the repository locally.
|
||||
For a [development container](https://containers.dev/), see the [.devcontainer folder](https://github.com/langchain-ai/langchain/tree/master/.devcontainer).
|
||||
|
||||
### Dependency Management: Poetry and other env/dependency managers
|
||||
|
||||
This project utilizes [Poetry](https://python-poetry.org/) v1.6.1+ as a dependency manager.
|
||||
|
||||
❗Note: *Before installing Poetry*, if you use `Conda`, create and activate a new Conda env (e.g. `conda create -n langchain python=3.9`)
|
||||
|
||||
Install Poetry: **[documentation on how to install it](https://python-poetry.org/docs/#installation)**.
|
||||
|
||||
❗Note: If you use `Conda` or `Pyenv` as your environment/package manager, after installing Poetry,
|
||||
tell Poetry to use the virtualenv python environment (`poetry config virtualenvs.prefer-active-python true`)
|
||||
|
||||
### Core vs. Experimental
|
||||
|
||||
This repository contains two separate projects:
|
||||
- `langchain`: core langchain code, abstractions, and use cases.
|
||||
- `langchain.experimental`: see the [Experimental README](https://github.com/langchain-ai/langchain/tree/master/libs/experimental/README.md) for more information.
|
||||
|
||||
Each of these has its own development environment. Docs are run from the top-level makefile, but development
|
||||
is split across separate test & release flows.
|
||||
|
||||
For this quickstart, start with langchain core:
|
||||
|
||||
```bash
|
||||
cd libs/langchain
|
||||
```
|
||||
|
||||
### Local Development Dependencies
|
||||
|
||||
Install langchain development requirements (for running langchain, running examples, linting, formatting, tests, and coverage):
|
||||
|
||||
```bash
|
||||
poetry install --with test
|
||||
```
|
||||
|
||||
Then verify dependency installation:
|
||||
|
||||
```bash
|
||||
make test
|
||||
```
|
||||
|
||||
If the tests don't pass, you may need to pip install additional dependencies, such as `numexpr` and `openapi_schema_pydantic`.
|
||||
|
||||
If during installation you receive a `WheelFileValidationError` for `debugpy`, please make sure you are running
|
||||
Poetry v1.6.1+. This bug was present in older versions of Poetry (e.g. 1.4.1) and has been resolved in newer releases.
|
||||
If you are still seeing this bug on v1.6.1, you may also try disabling "modern installation"
|
||||
(`poetry config installer.modern-installation false`) and re-installing requirements.
|
||||
See [this `debugpy` issue](https://github.com/microsoft/debugpy/issues/1246) for more details.
|
||||
|
||||
### Testing
|
||||
|
||||
_some test dependencies are optional; see section about optional dependencies_.
|
||||
|
||||
Unit tests cover modular logic that does not require calls to outside APIs.
|
||||
If you add new logic, please add a unit test.
|
||||
|
||||
To run unit tests:
|
||||
|
||||
```bash
|
||||
make test
|
||||
```
|
||||
|
||||
To run unit tests in Docker:
|
||||
|
||||
```bash
|
||||
make docker_tests
|
||||
```
|
||||
|
||||
There are also [integration tests and code-coverage](https://github.com/langchain-ai/langchain/tree/master/libs/langchain/tests/README.md) available.
|
||||
|
||||
### Formatting and Linting
|
||||
|
||||
Run these locally before submitting a PR; the CI system will check also.
|
||||
|
||||
#### Code Formatting
|
||||
|
||||
Formatting for this project is done via [ruff](https://docs.astral.sh/ruff/rules/).
|
||||
|
||||
To run formatting for docs, cookbook and templates:
|
||||
|
||||
```bash
|
||||
make format
|
||||
```
|
||||
|
||||
To run formatting for a library, run the same command from the relevant library directory:
|
||||
|
||||
```bash
|
||||
cd libs/{LIBRARY}
|
||||
make format
|
||||
```
|
||||
|
||||
Additionally, you can run the formatter only on the files that have been modified in your current branch as compared to the master branch using the format_diff command:
|
||||
|
||||
```bash
|
||||
make format_diff
|
||||
```
|
||||
|
||||
This is especially useful when you have made changes to a subset of the project and want to ensure your changes are properly formatted without affecting the rest of the codebase.
|
||||
|
||||
#### Linting
|
||||
|
||||
Linting for this project is done via a combination of [ruff](https://docs.astral.sh/ruff/rules/) and [mypy](http://mypy-lang.org/).
|
||||
|
||||
To run linting for docs, cookbook and templates:
|
||||
|
||||
```bash
|
||||
make lint
|
||||
```
|
||||
|
||||
To run linting for a library, run the same command from the relevant library directory:
|
||||
|
||||
```bash
|
||||
cd libs/{LIBRARY}
|
||||
make lint
|
||||
```
|
||||
|
||||
In addition, you can run the linter only on the files that have been modified in your current branch as compared to the master branch using the lint_diff command:
|
||||
|
||||
```bash
|
||||
make lint_diff
|
||||
```
|
||||
|
||||
This can be very helpful when you've made changes to only certain parts of the project and want to ensure your changes meet the linting standards without having to check the entire codebase.
|
||||
|
||||
We recognize linting can be annoying - if you do not want to do it, please contact a project maintainer, and they can help you with it. We do not want this to be a blocker for good code getting contributed.
|
||||
|
||||
#### Spellcheck
|
||||
|
||||
Spellchecking for this project is done via [codespell](https://github.com/codespell-project/codespell).
|
||||
Note that `codespell` finds common typos, so it could have false-positive (correctly spelled but rarely used) and false-negatives (not finding misspelled) words.
|
||||
|
||||
To check spelling for this project:
|
||||
|
||||
```bash
|
||||
make spell_check
|
||||
```
|
||||
|
||||
To fix spelling in place:
|
||||
|
||||
```bash
|
||||
make spell_fix
|
||||
```
|
||||
|
||||
If codespell is incorrectly flagging a word, you can skip spellcheck for that word by adding it to the codespell config in the `pyproject.toml` file.
|
||||
|
||||
```python
|
||||
[tool.codespell]
|
||||
...
|
||||
# Add here:
|
||||
ignore-words-list = 'momento,collison,ned,foor,reworkd,parth,whats,aapply,mysogyny,unsecure'
|
||||
```
|
||||
|
||||
## Working with Optional Dependencies
|
||||
|
||||
Langchain relies heavily on optional dependencies to keep the Langchain package lightweight.
|
||||
|
||||
If you're adding a new dependency to Langchain, assume that it will be an optional dependency, and
|
||||
that most users won't have it installed.
|
||||
|
||||
Users who do not have the dependency installed should be able to **import** your code without
|
||||
any side effects (no warnings, no errors, no exceptions).
|
||||
|
||||
To introduce the dependency to the pyproject.toml file correctly, please do the following:
|
||||
|
||||
1. Add the dependency to the main group as an optional dependency
|
||||
```bash
|
||||
poetry add --optional [package_name]
|
||||
```
|
||||
2. Open pyproject.toml and add the dependency to the `extended_testing` extra
|
||||
3. Relock the poetry file to update the extra.
|
||||
```bash
|
||||
poetry lock --no-update
|
||||
```
|
||||
4. Add a unit test that the very least attempts to import the new code. Ideally, the unit
|
||||
test makes use of lightweight fixtures to test the logic of the code.
|
||||
5. Please use the `@pytest.mark.requires(package_name)` decorator for any tests that require the dependency.
|
||||
|
||||
## Adding a Jupyter Notebook
|
||||
|
||||
If you are adding a Jupyter Notebook example, you'll want to install the optional `dev` dependencies.
|
||||
|
||||
To install dev dependencies:
|
||||
|
||||
```bash
|
||||
poetry install --with dev
|
||||
```
|
||||
|
||||
Launch a notebook:
|
||||
|
||||
```bash
|
||||
poetry run jupyter notebook
|
||||
```
|
||||
|
||||
When you run `poetry install`, the `langchain` package is installed as editable in the virtualenv, so your new logic can be imported into the notebook.
|
||||
|
||||
## Documentation
|
||||
|
||||
While the code is split between `langchain` and `langchain.experimental`, the documentation is one holistic thing.
|
||||
This covers how to get started contributing to documentation.
|
||||
|
||||
From the top-level of this repo, install documentation dependencies:
|
||||
|
||||
```bash
|
||||
poetry install
|
||||
```
|
||||
|
||||
### Contribute Documentation
|
||||
|
||||
The docs directory contains Documentation and API Reference.
|
||||
|
||||
Documentation is built using [Docusaurus 2](https://docusaurus.io/).
|
||||
|
||||
API Reference are largely autogenerated by [sphinx](https://www.sphinx-doc.org/en/master/) from the code.
|
||||
For that reason, we ask that you add good documentation to all classes and methods.
|
||||
|
||||
Similar to linting, we recognize documentation can be annoying. If you do not want to do it, please contact a project maintainer, and they can help you with it. We do not want this to be a blocker for good code getting contributed.
|
||||
|
||||
### Build Documentation Locally
|
||||
|
||||
In the following commands, the prefix `api_` indicates that those are operations for the API Reference.
|
||||
|
||||
Before building the documentation, it is always a good idea to clean the build directory:
|
||||
|
||||
```bash
|
||||
make docs_clean
|
||||
make api_docs_clean
|
||||
```
|
||||
|
||||
Next, you can build the documentation as outlined below:
|
||||
|
||||
```bash
|
||||
make docs_build
|
||||
make api_docs_build
|
||||
```
|
||||
|
||||
Finally, run the link checker to ensure all links are valid:
|
||||
|
||||
```bash
|
||||
make docs_linkcheck
|
||||
make api_docs_linkcheck
|
||||
```
|
||||
|
||||
### Verify Documentation changes
|
||||
|
||||
After pushing documentation changes to the repository, you can preview and verify that the changes are
|
||||
what you wanted by clicking the `View deployment` or `Visit Preview` buttons on the pull request `Conversation` page.
|
||||
This will take you to a preview of the documentation changes.
|
||||
This preview is created by [Vercel](https://vercel.com/docs/getting-started-with-vercel).
|
||||
|
||||
## 🏭 Release Process
|
||||
|
||||
As of now, LangChain has an ad hoc release process: releases are cut with high frequency by
|
||||
a developer and published to [PyPI](https://pypi.org/project/langchain/).
|
||||
|
||||
LangChain follows the [semver](https://semver.org/) versioning standard. However, as pre-1.0 software,
|
||||
even patch releases may contain [non-backwards-compatible changes](https://semver.org/#spec-item-4).
|
||||
|
||||
### 🌟 Recognition
|
||||
|
||||
If your contribution has made its way into a release, we will want to give you credit on Twitter (only if you want though)!
|
||||
If you have a Twitter account you would like us to mention, please let us know in the PR or through another means.
|
||||
|
||||
38
.github/DISCUSSION_TEMPLATE/ideas.yml
vendored
38
.github/DISCUSSION_TEMPLATE/ideas.yml
vendored
@@ -1,38 +0,0 @@
|
||||
labels: [idea]
|
||||
body:
|
||||
- type: checkboxes
|
||||
id: checks
|
||||
attributes:
|
||||
label: Checked
|
||||
description: Please confirm and check all the following options.
|
||||
options:
|
||||
- label: I searched existing ideas and did not find a similar one
|
||||
required: true
|
||||
- label: I added a very descriptive title
|
||||
required: true
|
||||
- label: I've clearly described the feature request and motivation for it
|
||||
required: true
|
||||
- type: textarea
|
||||
id: feature-request
|
||||
validations:
|
||||
required: true
|
||||
attributes:
|
||||
label: Feature request
|
||||
description: |
|
||||
A clear and concise description of the feature proposal. Please provide links to any relevant GitHub repos, papers, or other resources if relevant.
|
||||
- type: textarea
|
||||
id: motivation
|
||||
validations:
|
||||
required: true
|
||||
attributes:
|
||||
label: Motivation
|
||||
description: |
|
||||
Please outline the motivation for the proposal. Is your feature request related to a problem? e.g., I'm always frustrated when [...]. If this is related to another GitHub issue, please link here too.
|
||||
- type: textarea
|
||||
id: proposal
|
||||
validations:
|
||||
required: false
|
||||
attributes:
|
||||
label: Proposal (If applicable)
|
||||
description: |
|
||||
If you would like to propose a solution, please describe it here.
|
||||
122
.github/DISCUSSION_TEMPLATE/q-a.yml
vendored
122
.github/DISCUSSION_TEMPLATE/q-a.yml
vendored
@@ -1,122 +0,0 @@
|
||||
labels: [Question]
|
||||
body:
|
||||
- type: markdown
|
||||
attributes:
|
||||
value: |
|
||||
Thanks for your interest in LangChain 🦜️🔗!
|
||||
|
||||
Please follow these instructions, fill every question, and do every step. 🙏
|
||||
|
||||
We're asking for this because answering questions and solving problems in GitHub takes a lot of time --
|
||||
this is time that we cannot spend on adding new features, fixing bugs, writing documentation or reviewing pull requests.
|
||||
|
||||
By asking questions in a structured way (following this) it will be much easier for us to help you.
|
||||
|
||||
There's a high chance that by following this process, you'll find the solution on your own, eliminating the need to submit a question and wait for an answer. 😎
|
||||
|
||||
As there are many questions submitted every day, we will **DISCARD** and close the incomplete ones.
|
||||
|
||||
That will allow us (and others) to focus on helping people like you that follow the whole process. 🤓
|
||||
|
||||
Relevant links to check before opening a question to see if your question has already been answered, fixed or
|
||||
if there's another way to solve your problem:
|
||||
|
||||
[LangChain documentation with the integrated search](https://python.langchain.com/docs/get_started/introduction),
|
||||
[API Reference](https://api.python.langchain.com/en/stable/),
|
||||
[GitHub search](https://github.com/langchain-ai/langchain),
|
||||
[LangChain Github Discussions](https://github.com/langchain-ai/langchain/discussions),
|
||||
[LangChain Github Issues](https://github.com/langchain-ai/langchain/issues?q=is%3Aissue),
|
||||
[LangChain ChatBot](https://chat.langchain.com/)
|
||||
- type: checkboxes
|
||||
id: checks
|
||||
attributes:
|
||||
label: Checked other resources
|
||||
description: Please confirm and check all the following options.
|
||||
options:
|
||||
- label: I added a very descriptive title to this question.
|
||||
required: true
|
||||
- label: I searched the LangChain documentation with the integrated search.
|
||||
required: true
|
||||
- label: I used the GitHub search to find a similar question and didn't find it.
|
||||
required: true
|
||||
- type: checkboxes
|
||||
id: help
|
||||
attributes:
|
||||
label: Commit to Help
|
||||
description: |
|
||||
After submitting this, I commit to one of:
|
||||
|
||||
* Read open questions until I find 2 where I can help someone and add a comment to help there.
|
||||
* I already hit the "watch" button in this repository to receive notifications and I commit to help at least 2 people that ask questions in the future.
|
||||
* Once my question is answered, I will mark the answer as "accepted".
|
||||
options:
|
||||
- label: I commit to help with one of those options 👆
|
||||
required: true
|
||||
- type: textarea
|
||||
id: example
|
||||
attributes:
|
||||
label: Example Code
|
||||
description: |
|
||||
Please add a self-contained, [minimal, reproducible, example](https://stackoverflow.com/help/minimal-reproducible-example) with your use case.
|
||||
|
||||
If a maintainer can copy it, run it, and see it right away, there's a much higher chance that you'll be able to get help.
|
||||
|
||||
**Important!**
|
||||
|
||||
* Use code tags (e.g., ```python ... ```) to correctly [format your code](https://help.github.com/en/github/writing-on-github/creating-and-highlighting-code-blocks#syntax-highlighting).
|
||||
* INCLUDE the language label (e.g. `python`) after the first three backticks to enable syntax highlighting. (e.g., ```python rather than ```).
|
||||
* Reduce your code to the minimum required to reproduce the issue if possible. This makes it much easier for others to help you.
|
||||
* Avoid screenshots when possible, as they are hard to read and (more importantly) don't allow others to copy-and-paste your code.
|
||||
|
||||
placeholder: |
|
||||
from langchain_core.runnables import RunnableLambda
|
||||
|
||||
def bad_code(inputs) -> int:
|
||||
raise NotImplementedError('For demo purpose')
|
||||
|
||||
chain = RunnableLambda(bad_code)
|
||||
chain.invoke('Hello!')
|
||||
render: python
|
||||
validations:
|
||||
required: true
|
||||
- type: textarea
|
||||
id: description
|
||||
attributes:
|
||||
label: Description
|
||||
description: |
|
||||
What is the problem, question, or error?
|
||||
|
||||
Write a short description explaining what you are doing, what you expect to happen, and what is currently happening.
|
||||
placeholder: |
|
||||
* I'm trying to use the `langchain` library to do X.
|
||||
* I expect to see Y.
|
||||
* Instead, it does Z.
|
||||
validations:
|
||||
required: true
|
||||
- type: textarea
|
||||
id: system-info
|
||||
attributes:
|
||||
label: System Info
|
||||
description: |
|
||||
Please share your system info with us.
|
||||
|
||||
"pip freeze | grep langchain"
|
||||
platform (windows / linux / mac)
|
||||
python version
|
||||
|
||||
OR if you're on a recent version of langchain-core you can paste the output of:
|
||||
|
||||
python -m langchain_core.sys_info
|
||||
placeholder: |
|
||||
"pip freeze | grep langchain"
|
||||
platform
|
||||
python version
|
||||
|
||||
Alternatively, if you're on a recent version of langchain-core you can paste the output of:
|
||||
|
||||
python -m langchain_core.sys_info
|
||||
|
||||
These will only surface LangChain packages, don't forget to include any other relevant
|
||||
packages you're using (if you're not sure what's relevant, you can paste the entire output of `pip freeze`).
|
||||
validations:
|
||||
required: true
|
||||
184
.github/ISSUE_TEMPLATE/bug-report.yml
vendored
184
.github/ISSUE_TEMPLATE/bug-report.yml
vendored
@@ -1,120 +1,106 @@
|
||||
name: "\U0001F41B Bug Report"
|
||||
description: Report a bug in LangChain. To report a security issue, please instead use the security option below. For questions, please use the GitHub Discussions.
|
||||
description: Submit a bug report to help us improve LangChain. To report a security issue, please instead use the security option below.
|
||||
labels: ["02 Bug Report"]
|
||||
body:
|
||||
- type: markdown
|
||||
attributes:
|
||||
value: >
|
||||
Thank you for taking the time to file a bug report.
|
||||
|
||||
Use this to report bugs in LangChain.
|
||||
|
||||
If you're not certain that your issue is due to a bug in LangChain, please use [GitHub Discussions](https://github.com/langchain-ai/langchain/discussions)
|
||||
to ask for help with your issue.
|
||||
|
||||
Relevant links to check before filing a bug report to see if your issue has already been reported, fixed or
|
||||
if there's another way to solve your problem:
|
||||
|
||||
[LangChain documentation with the integrated search](https://python.langchain.com/docs/get_started/introduction),
|
||||
[API Reference](https://api.python.langchain.com/en/stable/),
|
||||
[GitHub search](https://github.com/langchain-ai/langchain),
|
||||
[LangChain Github Discussions](https://github.com/langchain-ai/langchain/discussions),
|
||||
[LangChain Github Issues](https://github.com/langchain-ai/langchain/issues?q=is%3Aissue),
|
||||
[LangChain ChatBot](https://chat.langchain.com/)
|
||||
- type: checkboxes
|
||||
id: checks
|
||||
Thank you for taking the time to file a bug report. Before creating a new
|
||||
issue, please make sure to take a few moments to check the issue tracker
|
||||
for existing issues about the bug.
|
||||
|
||||
- type: textarea
|
||||
id: system-info
|
||||
attributes:
|
||||
label: Checked other resources
|
||||
description: Please confirm and check all the following options.
|
||||
label: System Info
|
||||
description: Please share your system info with us.
|
||||
placeholder: LangChain version, platform, python version, ...
|
||||
validations:
|
||||
required: true
|
||||
|
||||
- type: textarea
|
||||
id: who-can-help
|
||||
attributes:
|
||||
label: Who can help?
|
||||
description: |
|
||||
Your issue will be replied to more quickly if you can figure out the right person to tag with @
|
||||
If you know how to use git blame, that is the easiest way, otherwise, here is a rough guide of **who to tag**.
|
||||
|
||||
The core maintainers strive to read all issues, but tagging them will help them prioritize.
|
||||
|
||||
Please tag fewer than 3 people.
|
||||
|
||||
@hwchase17 - project lead
|
||||
|
||||
Tracing / Callbacks
|
||||
- @agola11
|
||||
|
||||
Async
|
||||
- @agola11
|
||||
|
||||
DataLoader Abstractions
|
||||
- @eyurtsev
|
||||
|
||||
LLM/Chat Wrappers
|
||||
- @hwchase17
|
||||
- @agola11
|
||||
|
||||
Tools / Toolkits
|
||||
- ...
|
||||
|
||||
placeholder: "@Username ..."
|
||||
|
||||
- type: checkboxes
|
||||
id: information-scripts-examples
|
||||
attributes:
|
||||
label: Information
|
||||
description: "The problem arises when using:"
|
||||
options:
|
||||
- label: I added a very descriptive title to this issue.
|
||||
required: true
|
||||
- label: I searched the LangChain documentation with the integrated search.
|
||||
required: true
|
||||
- label: I used the GitHub search to find a similar question and didn't find it.
|
||||
required: true
|
||||
- label: I am sure that this is a bug in LangChain rather than my code.
|
||||
required: true
|
||||
- label: The bug is not resolved by updating to the latest stable version of LangChain (or the specific integration package).
|
||||
required: true
|
||||
- label: "The official example notebooks/scripts"
|
||||
- label: "My own modified scripts"
|
||||
|
||||
- type: checkboxes
|
||||
id: related-components
|
||||
attributes:
|
||||
label: Related Components
|
||||
description: "Select the components related to the issue (if applicable):"
|
||||
options:
|
||||
- label: "LLMs/Chat Models"
|
||||
- label: "Embedding Models"
|
||||
- label: "Prompts / Prompt Templates / Prompt Selectors"
|
||||
- label: "Output Parsers"
|
||||
- label: "Document Loaders"
|
||||
- label: "Vector Stores / Retrievers"
|
||||
- label: "Memory"
|
||||
- label: "Agents / Agent Executors"
|
||||
- label: "Tools / Toolkits"
|
||||
- label: "Chains"
|
||||
- label: "Callbacks/Tracing"
|
||||
- label: "Async"
|
||||
|
||||
- type: textarea
|
||||
id: reproduction
|
||||
validations:
|
||||
required: true
|
||||
attributes:
|
||||
label: Example Code
|
||||
label: Reproduction
|
||||
description: |
|
||||
Please add a self-contained, [minimal, reproducible, example](https://stackoverflow.com/help/minimal-reproducible-example) with your use case.
|
||||
|
||||
If a maintainer can copy it, run it, and see it right away, there's a much higher chance that you'll be able to get help.
|
||||
|
||||
**Important!**
|
||||
|
||||
* Use code tags (e.g., ```python ... ```) to correctly [format your code](https://help.github.com/en/github/writing-on-github/creating-and-highlighting-code-blocks#syntax-highlighting).
|
||||
* INCLUDE the language label (e.g. `python`) after the first three backticks to enable syntax highlighting. (e.g., ```python rather than ```).
|
||||
* Reduce your code to the minimum required to reproduce the issue if possible. This makes it much easier for others to help you.
|
||||
* Avoid screenshots when possible, as they are hard to read and (more importantly) don't allow others to copy-and-paste your code.
|
||||
Please provide a [code sample](https://stackoverflow.com/help/minimal-reproducible-example) that reproduces the problem you ran into. It can be a Colab link or just a code snippet.
|
||||
If you have code snippets, error messages, stack traces please provide them here as well.
|
||||
Important! Use code tags to correctly format your code. See https://help.github.com/en/github/writing-on-github/creating-and-highlighting-code-blocks#syntax-highlighting
|
||||
Avoid screenshots when possible, as they are hard to read and (more importantly) don't allow others to copy-and-paste your code.
|
||||
|
||||
placeholder: |
|
||||
The following code:
|
||||
|
||||
```python
|
||||
from langchain_core.runnables import RunnableLambda
|
||||
Steps to reproduce the behavior:
|
||||
|
||||
1.
|
||||
2.
|
||||
3.
|
||||
|
||||
def bad_code(inputs) -> int:
|
||||
raise NotImplementedError('For demo purpose')
|
||||
|
||||
chain = RunnableLambda(bad_code)
|
||||
chain.invoke('Hello!')
|
||||
```
|
||||
- type: textarea
|
||||
id: error
|
||||
validations:
|
||||
required: false
|
||||
attributes:
|
||||
label: Error Message and Stack Trace (if applicable)
|
||||
description: |
|
||||
If you are reporting an error, please include the full error message and stack trace.
|
||||
placeholder: |
|
||||
Exception + full stack trace
|
||||
- type: textarea
|
||||
id: description
|
||||
attributes:
|
||||
label: Description
|
||||
description: |
|
||||
What is the problem, question, or error?
|
||||
|
||||
Write a short description telling what you are doing, what you expect to happen, and what is currently happening.
|
||||
placeholder: |
|
||||
* I'm trying to use the `langchain` library to do X.
|
||||
* I expect to see Y.
|
||||
* Instead, it does Z.
|
||||
id: expected-behavior
|
||||
validations:
|
||||
required: true
|
||||
- type: textarea
|
||||
id: system-info
|
||||
attributes:
|
||||
label: System Info
|
||||
description: |
|
||||
Please share your system info with us.
|
||||
|
||||
"pip freeze | grep langchain"
|
||||
platform (windows / linux / mac)
|
||||
python version
|
||||
|
||||
OR if you're on a recent version of langchain-core you can paste the output of:
|
||||
|
||||
python -m langchain_core.sys_info
|
||||
placeholder: |
|
||||
"pip freeze | grep langchain"
|
||||
platform
|
||||
python version
|
||||
|
||||
Alternatively, if you're on a recent version of langchain-core you can paste the output of:
|
||||
|
||||
python -m langchain_core.sys_info
|
||||
|
||||
These will only surface LangChain packages, don't forget to include any other relevant
|
||||
packages you're using (if you're not sure what's relevant, you can paste the entire output of `pip freeze`).
|
||||
validations:
|
||||
required: true
|
||||
label: Expected behavior
|
||||
description: "A clear and concise description of what you would expect to happen."
|
||||
|
||||
14
.github/ISSUE_TEMPLATE/config.yml
vendored
14
.github/ISSUE_TEMPLATE/config.yml
vendored
@@ -1,12 +1,6 @@
|
||||
blank_issues_enabled: false
|
||||
blank_issues_enabled: true
|
||||
version: 2.1
|
||||
contact_links:
|
||||
- name: 🤔 Question or Problem
|
||||
about: Ask a question or ask about a problem in GitHub Discussions.
|
||||
url: https://www.github.com/langchain-ai/langchain/discussions/categories/q-a
|
||||
- name: Feature Request
|
||||
url: https://www.github.com/langchain-ai/langchain/discussions/categories/ideas
|
||||
about: Suggest a feature or an idea
|
||||
- name: Show and tell
|
||||
about: Show what you built with LangChain
|
||||
url: https://www.github.com/langchain-ai/langchain/discussions/categories/show-and-tell
|
||||
- name: Discord
|
||||
url: https://discord.gg/6adMQxSpJS
|
||||
about: General community discussions
|
||||
|
||||
45
.github/ISSUE_TEMPLATE/documentation.yml
vendored
45
.github/ISSUE_TEMPLATE/documentation.yml
vendored
@@ -4,55 +4,16 @@ title: "DOC: <Please write a comprehensive title after the 'DOC: ' prefix>"
|
||||
labels: [03 - Documentation]
|
||||
|
||||
body:
|
||||
- type: markdown
|
||||
attributes:
|
||||
value: >
|
||||
Thank you for taking the time to report an issue in the documentation.
|
||||
|
||||
Only report issues with documentation here, explain if there are
|
||||
any missing topics or if you found a mistake in the documentation.
|
||||
|
||||
Do **NOT** use this to ask usage questions or reporting issues with your code.
|
||||
|
||||
If you have usage questions or need help solving some problem,
|
||||
please use [GitHub Discussions](https://github.com/langchain-ai/langchain/discussions).
|
||||
|
||||
If you're in the wrong place, here are some helpful links to find a better
|
||||
place to ask your question:
|
||||
|
||||
[LangChain documentation with the integrated search](https://python.langchain.com/docs/get_started/introduction),
|
||||
[API Reference](https://api.python.langchain.com/en/stable/),
|
||||
[GitHub search](https://github.com/langchain-ai/langchain),
|
||||
[LangChain Github Discussions](https://github.com/langchain-ai/langchain/discussions),
|
||||
[LangChain Github Issues](https://github.com/langchain-ai/langchain/issues?q=is%3Aissue),
|
||||
[LangChain ChatBot](https://chat.langchain.com/)
|
||||
- type: input
|
||||
id: url
|
||||
attributes:
|
||||
label: URL
|
||||
description: URL to documentation
|
||||
validations:
|
||||
required: false
|
||||
- type: checkboxes
|
||||
id: checks
|
||||
attributes:
|
||||
label: Checklist
|
||||
description: Please confirm and check all the following options.
|
||||
options:
|
||||
- label: I added a very descriptive title to this issue.
|
||||
required: true
|
||||
- label: I included a link to the documentation page I am referring to (if applicable).
|
||||
required: true
|
||||
- type: textarea
|
||||
attributes:
|
||||
label: "Issue with current documentation:"
|
||||
description: >
|
||||
Please make sure to leave a reference to the document/code you're
|
||||
referring to. Feel free to include names of classes, functions, methods
|
||||
or concepts you'd like to see documented more.
|
||||
referring to.
|
||||
|
||||
- type: textarea
|
||||
attributes:
|
||||
label: "Idea or request for content:"
|
||||
description: >
|
||||
Please describe as clearly as possible what topics you think are missing
|
||||
from the current documentation.
|
||||
from the current documentation.
|
||||
30
.github/ISSUE_TEMPLATE/feature-request.yml
vendored
Normal file
30
.github/ISSUE_TEMPLATE/feature-request.yml
vendored
Normal file
@@ -0,0 +1,30 @@
|
||||
name: "\U0001F680 Feature request"
|
||||
description: Submit a proposal/request for a new LangChain feature
|
||||
labels: ["02 Feature Request"]
|
||||
body:
|
||||
- type: textarea
|
||||
id: feature-request
|
||||
validations:
|
||||
required: true
|
||||
attributes:
|
||||
label: Feature request
|
||||
description: |
|
||||
A clear and concise description of the feature proposal. Please provide links to any relevant GitHub repos, papers, or other resources if relevant.
|
||||
|
||||
- type: textarea
|
||||
id: motivation
|
||||
validations:
|
||||
required: true
|
||||
attributes:
|
||||
label: Motivation
|
||||
description: |
|
||||
Please outline the motivation for the proposal. Is your feature request related to a problem? e.g., I'm always frustrated when [...]. If this is related to another GitHub issue, please link here too.
|
||||
|
||||
- type: textarea
|
||||
id: contribution
|
||||
validations:
|
||||
required: true
|
||||
attributes:
|
||||
label: Your contribution
|
||||
description: |
|
||||
Is there any way that you could help, e.g. by submitting a PR? Make sure to read the CONTRIBUTING.MD [readme](https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md)
|
||||
18
.github/ISSUE_TEMPLATE/other.yml
vendored
Normal file
18
.github/ISSUE_TEMPLATE/other.yml
vendored
Normal file
@@ -0,0 +1,18 @@
|
||||
name: Other Issue
|
||||
description: Raise an issue that wouldn't be covered by the other templates.
|
||||
title: "Issue: <Please write a comprehensive title after the 'Issue: ' prefix>"
|
||||
labels: [04 - Other]
|
||||
|
||||
body:
|
||||
- type: textarea
|
||||
attributes:
|
||||
label: "Issue you'd like to raise."
|
||||
description: >
|
||||
Please describe the issue you'd like to raise as clearly as possible.
|
||||
Make sure to include any relevant links or references.
|
||||
|
||||
- type: textarea
|
||||
attributes:
|
||||
label: "Suggestion:"
|
||||
description: >
|
||||
Please outline a suggestion to improve the issue here.
|
||||
25
.github/ISSUE_TEMPLATE/privileged.yml
vendored
25
.github/ISSUE_TEMPLATE/privileged.yml
vendored
@@ -1,25 +0,0 @@
|
||||
name: 🔒 Privileged
|
||||
description: You are a LangChain maintainer, or was asked directly by a maintainer to create an issue here. If not, check the other options.
|
||||
body:
|
||||
- type: markdown
|
||||
attributes:
|
||||
value: |
|
||||
Thanks for your interest in LangChain! 🚀
|
||||
|
||||
If you are not a LangChain maintainer or were not asked directly by a maintainer to create an issue, then please start the conversation in a [Question in GitHub Discussions](https://github.com/langchain-ai/langchain/discussions/categories/q-a) instead.
|
||||
|
||||
You are a LangChain maintainer if you maintain any of the packages inside of the LangChain repository
|
||||
or are a regular contributor to LangChain with previous merged pull requests.
|
||||
- type: checkboxes
|
||||
id: privileged
|
||||
attributes:
|
||||
label: Privileged issue
|
||||
description: Confirm that you are allowed to create an issue here.
|
||||
options:
|
||||
- label: I am a LangChain maintainer, or was asked directly by a LangChain maintainer to create an issue here.
|
||||
required: true
|
||||
- type: textarea
|
||||
id: content
|
||||
attributes:
|
||||
label: Issue Content
|
||||
description: Add the content of the issue here.
|
||||
37
.github/PULL_REQUEST_TEMPLATE.md
vendored
37
.github/PULL_REQUEST_TEMPLATE.md
vendored
@@ -1,29 +1,20 @@
|
||||
Thank you for contributing to LangChain!
|
||||
<!-- Thank you for contributing to LangChain!
|
||||
|
||||
- [ ] **PR title**: "package: description"
|
||||
- Where "package" is whichever of langchain, community, core, experimental, etc. is being modified. Use "docs: ..." for purely docs changes, "templates: ..." for template changes, "infra: ..." for CI changes.
|
||||
- Example: "community: add foobar LLM"
|
||||
Replace this entire comment with:
|
||||
- **Description:** a description of the change,
|
||||
- **Issue:** the issue # it fixes (if applicable),
|
||||
- **Dependencies:** any dependencies required for this change,
|
||||
- **Tag maintainer:** for a quicker response, tag the relevant maintainer (see below),
|
||||
- **Twitter handle:** we announce bigger features on Twitter. If your PR gets announced, and you'd like a mention, we'll gladly shout you out!
|
||||
|
||||
Please make sure your PR is passing linting and testing before submitting. Run `make format`, `make lint` and `make test` to check this locally.
|
||||
|
||||
- [ ] **PR message**: ***Delete this entire checklist*** and replace with
|
||||
- **Description:** a description of the change
|
||||
- **Issue:** the issue # it fixes, if applicable
|
||||
- **Dependencies:** any dependencies required for this change
|
||||
- **Twitter handle:** if your PR gets announced, and you'd like a mention, we'll gladly shout you out!
|
||||
See contribution guidelines for more information on how to write/run tests, lint, etc:
|
||||
https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md
|
||||
|
||||
|
||||
- [ ] **Add tests and docs**: If you're adding a new integration, please include
|
||||
If you're adding a new integration, please include:
|
||||
1. a test for the integration, preferably unit tests that do not rely on network access,
|
||||
2. an example notebook showing its use. It lives in `docs/docs/integrations` directory.
|
||||
2. an example notebook showing its use. It lives in `docs/extras` directory.
|
||||
|
||||
|
||||
- [ ] **Lint and test**: Run `make format`, `make lint` and `make test` from the root of the package(s) you've modified. See contribution guidelines for more: https://python.langchain.com/docs/contributing/
|
||||
|
||||
Additional guidelines:
|
||||
- Make sure optional dependencies are imported within a function.
|
||||
- Please do not add dependencies to pyproject.toml files (even optional ones) unless they are required for unit tests.
|
||||
- Most PRs should not touch more than one package.
|
||||
- Changes should be backwards compatible.
|
||||
- If you are adding something to community, do not re-import it in langchain.
|
||||
|
||||
If no one reviews your PR within a few days, please @-mention one of baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
|
||||
If no one reviews your PR within a few days, please @-mention one of @baskaryan, @eyurtsev, @hwchase17.
|
||||
-->
|
||||
|
||||
7
.github/actions/people/Dockerfile
vendored
7
.github/actions/people/Dockerfile
vendored
@@ -1,7 +0,0 @@
|
||||
FROM python:3.9
|
||||
|
||||
RUN pip install httpx PyGithub "pydantic==2.0.2" pydantic-settings "pyyaml>=5.3.1,<6.0.0"
|
||||
|
||||
COPY ./app /app
|
||||
|
||||
CMD ["python", "/app/main.py"]
|
||||
11
.github/actions/people/action.yml
vendored
11
.github/actions/people/action.yml
vendored
@@ -1,11 +0,0 @@
|
||||
# Adapted from https://github.com/tiangolo/fastapi/blob/master/.github/actions/people/action.yml
|
||||
name: "Generate LangChain People"
|
||||
description: "Generate the data for the LangChain People page"
|
||||
author: "Jacob Lee <jacob@langchain.dev>"
|
||||
inputs:
|
||||
token:
|
||||
description: 'User token, to read the GitHub API. Can be passed in using {{ secrets.LANGCHAIN_PEOPLE_GITHUB_TOKEN }}'
|
||||
required: true
|
||||
runs:
|
||||
using: 'docker'
|
||||
image: 'Dockerfile'
|
||||
646
.github/actions/people/app/main.py
vendored
646
.github/actions/people/app/main.py
vendored
@@ -1,646 +0,0 @@
|
||||
# Adapted from https://github.com/tiangolo/fastapi/blob/master/.github/actions/people/app/main.py
|
||||
|
||||
import logging
|
||||
import subprocess
|
||||
import sys
|
||||
from collections import Counter
|
||||
from datetime import datetime, timedelta, timezone
|
||||
from pathlib import Path
|
||||
from typing import Any, Container, Dict, List, Set, Union
|
||||
|
||||
import httpx
|
||||
import yaml
|
||||
from github import Github
|
||||
from pydantic import BaseModel, SecretStr
|
||||
from pydantic_settings import BaseSettings
|
||||
|
||||
github_graphql_url = "https://api.github.com/graphql"
|
||||
questions_category_id = "DIC_kwDOIPDwls4CS6Ve"
|
||||
|
||||
# discussions_query = """
|
||||
# query Q($after: String, $category_id: ID) {
|
||||
# repository(name: "langchain", owner: "langchain-ai") {
|
||||
# discussions(first: 100, after: $after, categoryId: $category_id) {
|
||||
# edges {
|
||||
# cursor
|
||||
# node {
|
||||
# number
|
||||
# author {
|
||||
# login
|
||||
# avatarUrl
|
||||
# url
|
||||
# }
|
||||
# title
|
||||
# createdAt
|
||||
# comments(first: 100) {
|
||||
# nodes {
|
||||
# createdAt
|
||||
# author {
|
||||
# login
|
||||
# avatarUrl
|
||||
# url
|
||||
# }
|
||||
# isAnswer
|
||||
# replies(first: 10) {
|
||||
# nodes {
|
||||
# createdAt
|
||||
# author {
|
||||
# login
|
||||
# avatarUrl
|
||||
# url
|
||||
# }
|
||||
# }
|
||||
# }
|
||||
# }
|
||||
# }
|
||||
# }
|
||||
# }
|
||||
# }
|
||||
# }
|
||||
# }
|
||||
# """
|
||||
|
||||
# issues_query = """
|
||||
# query Q($after: String) {
|
||||
# repository(name: "langchain", owner: "langchain-ai") {
|
||||
# issues(first: 100, after: $after) {
|
||||
# edges {
|
||||
# cursor
|
||||
# node {
|
||||
# number
|
||||
# author {
|
||||
# login
|
||||
# avatarUrl
|
||||
# url
|
||||
# }
|
||||
# title
|
||||
# createdAt
|
||||
# state
|
||||
# comments(first: 100) {
|
||||
# nodes {
|
||||
# createdAt
|
||||
# author {
|
||||
# login
|
||||
# avatarUrl
|
||||
# url
|
||||
# }
|
||||
# }
|
||||
# }
|
||||
# }
|
||||
# }
|
||||
# }
|
||||
# }
|
||||
# }
|
||||
# """
|
||||
|
||||
prs_query = """
|
||||
query Q($after: String) {
|
||||
repository(name: "langchain", owner: "langchain-ai") {
|
||||
pullRequests(first: 100, after: $after, states: MERGED) {
|
||||
edges {
|
||||
cursor
|
||||
node {
|
||||
changedFiles
|
||||
additions
|
||||
deletions
|
||||
number
|
||||
labels(first: 100) {
|
||||
nodes {
|
||||
name
|
||||
}
|
||||
}
|
||||
author {
|
||||
login
|
||||
avatarUrl
|
||||
url
|
||||
... on User {
|
||||
twitterUsername
|
||||
}
|
||||
}
|
||||
title
|
||||
createdAt
|
||||
state
|
||||
reviews(first:100) {
|
||||
nodes {
|
||||
author {
|
||||
login
|
||||
avatarUrl
|
||||
url
|
||||
... on User {
|
||||
twitterUsername
|
||||
}
|
||||
}
|
||||
state
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
"""
|
||||
|
||||
|
||||
class Author(BaseModel):
|
||||
login: str
|
||||
avatarUrl: str
|
||||
url: str
|
||||
twitterUsername: Union[str, None] = None
|
||||
|
||||
|
||||
# Issues and Discussions
|
||||
|
||||
|
||||
class CommentsNode(BaseModel):
|
||||
createdAt: datetime
|
||||
author: Union[Author, None] = None
|
||||
|
||||
|
||||
class Replies(BaseModel):
|
||||
nodes: List[CommentsNode]
|
||||
|
||||
|
||||
class DiscussionsCommentsNode(CommentsNode):
|
||||
replies: Replies
|
||||
|
||||
|
||||
class Comments(BaseModel):
|
||||
nodes: List[CommentsNode]
|
||||
|
||||
|
||||
class DiscussionsComments(BaseModel):
|
||||
nodes: List[DiscussionsCommentsNode]
|
||||
|
||||
|
||||
class IssuesNode(BaseModel):
|
||||
number: int
|
||||
author: Union[Author, None] = None
|
||||
title: str
|
||||
createdAt: datetime
|
||||
state: str
|
||||
comments: Comments
|
||||
|
||||
|
||||
class DiscussionsNode(BaseModel):
|
||||
number: int
|
||||
author: Union[Author, None] = None
|
||||
title: str
|
||||
createdAt: datetime
|
||||
comments: DiscussionsComments
|
||||
|
||||
|
||||
class IssuesEdge(BaseModel):
|
||||
cursor: str
|
||||
node: IssuesNode
|
||||
|
||||
|
||||
class DiscussionsEdge(BaseModel):
|
||||
cursor: str
|
||||
node: DiscussionsNode
|
||||
|
||||
|
||||
class Issues(BaseModel):
|
||||
edges: List[IssuesEdge]
|
||||
|
||||
|
||||
class Discussions(BaseModel):
|
||||
edges: List[DiscussionsEdge]
|
||||
|
||||
|
||||
class IssuesRepository(BaseModel):
|
||||
issues: Issues
|
||||
|
||||
|
||||
class DiscussionsRepository(BaseModel):
|
||||
discussions: Discussions
|
||||
|
||||
|
||||
class IssuesResponseData(BaseModel):
|
||||
repository: IssuesRepository
|
||||
|
||||
|
||||
class DiscussionsResponseData(BaseModel):
|
||||
repository: DiscussionsRepository
|
||||
|
||||
|
||||
class IssuesResponse(BaseModel):
|
||||
data: IssuesResponseData
|
||||
|
||||
|
||||
class DiscussionsResponse(BaseModel):
|
||||
data: DiscussionsResponseData
|
||||
|
||||
|
||||
# PRs
|
||||
|
||||
|
||||
class LabelNode(BaseModel):
|
||||
name: str
|
||||
|
||||
|
||||
class Labels(BaseModel):
|
||||
nodes: List[LabelNode]
|
||||
|
||||
|
||||
class ReviewNode(BaseModel):
|
||||
author: Union[Author, None] = None
|
||||
state: str
|
||||
|
||||
|
||||
class Reviews(BaseModel):
|
||||
nodes: List[ReviewNode]
|
||||
|
||||
|
||||
class PullRequestNode(BaseModel):
|
||||
number: int
|
||||
labels: Labels
|
||||
author: Union[Author, None] = None
|
||||
changedFiles: int
|
||||
additions: int
|
||||
deletions: int
|
||||
title: str
|
||||
createdAt: datetime
|
||||
state: str
|
||||
reviews: Reviews
|
||||
# comments: Comments
|
||||
|
||||
|
||||
class PullRequestEdge(BaseModel):
|
||||
cursor: str
|
||||
node: PullRequestNode
|
||||
|
||||
|
||||
class PullRequests(BaseModel):
|
||||
edges: List[PullRequestEdge]
|
||||
|
||||
|
||||
class PRsRepository(BaseModel):
|
||||
pullRequests: PullRequests
|
||||
|
||||
|
||||
class PRsResponseData(BaseModel):
|
||||
repository: PRsRepository
|
||||
|
||||
|
||||
class PRsResponse(BaseModel):
|
||||
data: PRsResponseData
|
||||
|
||||
|
||||
class Settings(BaseSettings):
|
||||
input_token: SecretStr
|
||||
github_repository: str
|
||||
httpx_timeout: int = 30
|
||||
|
||||
|
||||
def get_graphql_response(
|
||||
*,
|
||||
settings: Settings,
|
||||
query: str,
|
||||
after: Union[str, None] = None,
|
||||
category_id: Union[str, None] = None,
|
||||
) -> Dict[str, Any]:
|
||||
headers = {"Authorization": f"token {settings.input_token.get_secret_value()}"}
|
||||
# category_id is only used by one query, but GraphQL allows unused variables, so
|
||||
# keep it here for simplicity
|
||||
variables = {"after": after, "category_id": category_id}
|
||||
response = httpx.post(
|
||||
github_graphql_url,
|
||||
headers=headers,
|
||||
timeout=settings.httpx_timeout,
|
||||
json={"query": query, "variables": variables, "operationName": "Q"},
|
||||
)
|
||||
if response.status_code != 200:
|
||||
logging.error(
|
||||
f"Response was not 200, after: {after}, category_id: {category_id}"
|
||||
)
|
||||
logging.error(response.text)
|
||||
raise RuntimeError(response.text)
|
||||
data = response.json()
|
||||
if "errors" in data:
|
||||
logging.error(f"Errors in response, after: {after}, category_id: {category_id}")
|
||||
logging.error(data["errors"])
|
||||
logging.error(response.text)
|
||||
raise RuntimeError(response.text)
|
||||
return data
|
||||
|
||||
|
||||
# def get_graphql_issue_edges(*, settings: Settings, after: Union[str, None] = None):
|
||||
# data = get_graphql_response(settings=settings, query=issues_query, after=after)
|
||||
# graphql_response = IssuesResponse.model_validate(data)
|
||||
# return graphql_response.data.repository.issues.edges
|
||||
|
||||
|
||||
# def get_graphql_question_discussion_edges(
|
||||
# *,
|
||||
# settings: Settings,
|
||||
# after: Union[str, None] = None,
|
||||
# ):
|
||||
# data = get_graphql_response(
|
||||
# settings=settings,
|
||||
# query=discussions_query,
|
||||
# after=after,
|
||||
# category_id=questions_category_id,
|
||||
# )
|
||||
# graphql_response = DiscussionsResponse.model_validate(data)
|
||||
# return graphql_response.data.repository.discussions.edges
|
||||
|
||||
|
||||
def get_graphql_pr_edges(*, settings: Settings, after: Union[str, None] = None):
|
||||
if after is None:
|
||||
print("Querying PRs...")
|
||||
else:
|
||||
print(f"Querying PRs with cursor {after}...")
|
||||
data = get_graphql_response(settings=settings, query=prs_query, after=after)
|
||||
graphql_response = PRsResponse.model_validate(data)
|
||||
return graphql_response.data.repository.pullRequests.edges
|
||||
|
||||
|
||||
# def get_issues_experts(settings: Settings):
|
||||
# issue_nodes: List[IssuesNode] = []
|
||||
# issue_edges = get_graphql_issue_edges(settings=settings)
|
||||
|
||||
# while issue_edges:
|
||||
# for edge in issue_edges:
|
||||
# issue_nodes.append(edge.node)
|
||||
# last_edge = issue_edges[-1]
|
||||
# issue_edges = get_graphql_issue_edges(settings=settings, after=last_edge.cursor)
|
||||
|
||||
# commentors = Counter()
|
||||
# last_month_commentors = Counter()
|
||||
# authors: Dict[str, Author] = {}
|
||||
|
||||
# now = datetime.now(tz=timezone.utc)
|
||||
# one_month_ago = now - timedelta(days=30)
|
||||
|
||||
# for issue in issue_nodes:
|
||||
# issue_author_name = None
|
||||
# if issue.author:
|
||||
# authors[issue.author.login] = issue.author
|
||||
# issue_author_name = issue.author.login
|
||||
# issue_commentors = set()
|
||||
# for comment in issue.comments.nodes:
|
||||
# if comment.author:
|
||||
# authors[comment.author.login] = comment.author
|
||||
# if comment.author.login != issue_author_name:
|
||||
# issue_commentors.add(comment.author.login)
|
||||
# for author_name in issue_commentors:
|
||||
# commentors[author_name] += 1
|
||||
# if issue.createdAt > one_month_ago:
|
||||
# last_month_commentors[author_name] += 1
|
||||
|
||||
# return commentors, last_month_commentors, authors
|
||||
|
||||
|
||||
# def get_discussions_experts(settings: Settings):
|
||||
# discussion_nodes: List[DiscussionsNode] = []
|
||||
# discussion_edges = get_graphql_question_discussion_edges(settings=settings)
|
||||
|
||||
# while discussion_edges:
|
||||
# for discussion_edge in discussion_edges:
|
||||
# discussion_nodes.append(discussion_edge.node)
|
||||
# last_edge = discussion_edges[-1]
|
||||
# discussion_edges = get_graphql_question_discussion_edges(
|
||||
# settings=settings, after=last_edge.cursor
|
||||
# )
|
||||
|
||||
# commentors = Counter()
|
||||
# last_month_commentors = Counter()
|
||||
# authors: Dict[str, Author] = {}
|
||||
|
||||
# now = datetime.now(tz=timezone.utc)
|
||||
# one_month_ago = now - timedelta(days=30)
|
||||
|
||||
# for discussion in discussion_nodes:
|
||||
# discussion_author_name = None
|
||||
# if discussion.author:
|
||||
# authors[discussion.author.login] = discussion.author
|
||||
# discussion_author_name = discussion.author.login
|
||||
# discussion_commentors = set()
|
||||
# for comment in discussion.comments.nodes:
|
||||
# if comment.author:
|
||||
# authors[comment.author.login] = comment.author
|
||||
# if comment.author.login != discussion_author_name:
|
||||
# discussion_commentors.add(comment.author.login)
|
||||
# for reply in comment.replies.nodes:
|
||||
# if reply.author:
|
||||
# authors[reply.author.login] = reply.author
|
||||
# if reply.author.login != discussion_author_name:
|
||||
# discussion_commentors.add(reply.author.login)
|
||||
# for author_name in discussion_commentors:
|
||||
# commentors[author_name] += 1
|
||||
# if discussion.createdAt > one_month_ago:
|
||||
# last_month_commentors[author_name] += 1
|
||||
# return commentors, last_month_commentors, authors
|
||||
|
||||
|
||||
# def get_experts(settings: Settings):
|
||||
# (
|
||||
# discussions_commentors,
|
||||
# discussions_last_month_commentors,
|
||||
# discussions_authors,
|
||||
# ) = get_discussions_experts(settings=settings)
|
||||
# commentors = discussions_commentors
|
||||
# last_month_commentors = discussions_last_month_commentors
|
||||
# authors = {**discussions_authors}
|
||||
# return commentors, last_month_commentors, authors
|
||||
|
||||
|
||||
def _logistic(x, k):
|
||||
return x / (x + k)
|
||||
|
||||
|
||||
def get_contributors(settings: Settings):
|
||||
pr_nodes: List[PullRequestNode] = []
|
||||
pr_edges = get_graphql_pr_edges(settings=settings)
|
||||
|
||||
while pr_edges:
|
||||
for edge in pr_edges:
|
||||
pr_nodes.append(edge.node)
|
||||
last_edge = pr_edges[-1]
|
||||
pr_edges = get_graphql_pr_edges(settings=settings, after=last_edge.cursor)
|
||||
|
||||
contributors = Counter()
|
||||
contributor_scores = Counter()
|
||||
recent_contributor_scores = Counter()
|
||||
reviewers = Counter()
|
||||
authors: Dict[str, Author] = {}
|
||||
|
||||
for pr in pr_nodes:
|
||||
pr_reviewers: Set[str] = set()
|
||||
for review in pr.reviews.nodes:
|
||||
if review.author:
|
||||
authors[review.author.login] = review.author
|
||||
pr_reviewers.add(review.author.login)
|
||||
for reviewer in pr_reviewers:
|
||||
reviewers[reviewer] += 1
|
||||
if pr.author:
|
||||
authors[pr.author.login] = pr.author
|
||||
contributors[pr.author.login] += 1
|
||||
files_changed = pr.changedFiles
|
||||
lines_changed = pr.additions + pr.deletions
|
||||
score = _logistic(files_changed, 20) + _logistic(lines_changed, 100)
|
||||
contributor_scores[pr.author.login] += score
|
||||
three_months_ago = datetime.now(timezone.utc) - timedelta(days=3 * 30)
|
||||
if pr.createdAt > three_months_ago:
|
||||
recent_contributor_scores[pr.author.login] += score
|
||||
return (
|
||||
contributors,
|
||||
contributor_scores,
|
||||
recent_contributor_scores,
|
||||
reviewers,
|
||||
authors,
|
||||
)
|
||||
|
||||
|
||||
def get_top_users(
|
||||
*,
|
||||
counter: Counter,
|
||||
min_count: int,
|
||||
authors: Dict[str, Author],
|
||||
skip_users: Container[str],
|
||||
):
|
||||
users = []
|
||||
for commentor, count in counter.most_common():
|
||||
if commentor in skip_users:
|
||||
continue
|
||||
if count >= min_count:
|
||||
author = authors[commentor]
|
||||
users.append(
|
||||
{
|
||||
"login": commentor,
|
||||
"count": count,
|
||||
"avatarUrl": author.avatarUrl,
|
||||
"twitterUsername": author.twitterUsername,
|
||||
"url": author.url,
|
||||
}
|
||||
)
|
||||
return users
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
logging.basicConfig(level=logging.INFO)
|
||||
settings = Settings()
|
||||
logging.info(f"Using config: {settings.model_dump_json()}")
|
||||
g = Github(settings.input_token.get_secret_value())
|
||||
repo = g.get_repo(settings.github_repository)
|
||||
# question_commentors, question_last_month_commentors, question_authors = get_experts(
|
||||
# settings=settings
|
||||
# )
|
||||
(
|
||||
contributors,
|
||||
contributor_scores,
|
||||
recent_contributor_scores,
|
||||
reviewers,
|
||||
pr_authors,
|
||||
) = get_contributors(settings=settings)
|
||||
# authors = {**question_authors, **pr_authors}
|
||||
authors = {**pr_authors}
|
||||
maintainers_logins = {
|
||||
"hwchase17",
|
||||
"agola11",
|
||||
"baskaryan",
|
||||
"hinthornw",
|
||||
"nfcampos",
|
||||
"efriis",
|
||||
"eyurtsev",
|
||||
"rlancemartin",
|
||||
"ccurme",
|
||||
"vbarda",
|
||||
}
|
||||
hidden_logins = {
|
||||
"dev2049",
|
||||
"vowelparrot",
|
||||
"obi1kenobi",
|
||||
"langchain-infra",
|
||||
"jacoblee93",
|
||||
"isahers1",
|
||||
"dqbd",
|
||||
"bracesproul",
|
||||
"akira",
|
||||
}
|
||||
bot_names = {"dosubot", "github-actions", "CodiumAI-Agent"}
|
||||
maintainers = []
|
||||
for login in maintainers_logins:
|
||||
user = authors[login]
|
||||
maintainers.append(
|
||||
{
|
||||
"login": login,
|
||||
"count": contributors[login], # + question_commentors[login],
|
||||
"avatarUrl": user.avatarUrl,
|
||||
"twitterUsername": user.twitterUsername,
|
||||
"url": user.url,
|
||||
}
|
||||
)
|
||||
|
||||
# min_count_expert = 10
|
||||
# min_count_last_month = 3
|
||||
min_score_contributor = 1
|
||||
min_count_reviewer = 5
|
||||
skip_users = maintainers_logins | bot_names | hidden_logins
|
||||
# experts = get_top_users(
|
||||
# counter=question_commentors,
|
||||
# min_count=min_count_expert,
|
||||
# authors=authors,
|
||||
# skip_users=skip_users,
|
||||
# )
|
||||
# last_month_active = get_top_users(
|
||||
# counter=question_last_month_commentors,
|
||||
# min_count=min_count_last_month,
|
||||
# authors=authors,
|
||||
# skip_users=skip_users,
|
||||
# )
|
||||
top_recent_contributors = get_top_users(
|
||||
counter=recent_contributor_scores,
|
||||
min_count=min_score_contributor,
|
||||
authors=authors,
|
||||
skip_users=skip_users,
|
||||
)
|
||||
top_contributors = get_top_users(
|
||||
counter=contributor_scores,
|
||||
min_count=min_score_contributor,
|
||||
authors=authors,
|
||||
skip_users=skip_users,
|
||||
)
|
||||
top_reviewers = get_top_users(
|
||||
counter=reviewers,
|
||||
min_count=min_count_reviewer,
|
||||
authors=authors,
|
||||
skip_users=skip_users,
|
||||
)
|
||||
|
||||
people = {
|
||||
"maintainers": maintainers,
|
||||
# "experts": experts,
|
||||
# "last_month_active": last_month_active,
|
||||
"top_recent_contributors": top_recent_contributors,
|
||||
"top_contributors": top_contributors,
|
||||
"top_reviewers": top_reviewers,
|
||||
}
|
||||
people_path = Path("./docs/data/people.yml")
|
||||
people_old_content = people_path.read_text(encoding="utf-8")
|
||||
new_people_content = yaml.dump(
|
||||
people, sort_keys=False, width=200, allow_unicode=True
|
||||
)
|
||||
if people_old_content == new_people_content:
|
||||
logging.info("The LangChain People data hasn't changed, finishing.")
|
||||
sys.exit(0)
|
||||
people_path.write_text(new_people_content, encoding="utf-8")
|
||||
logging.info("Setting up GitHub Actions git user")
|
||||
subprocess.run(["git", "config", "user.name", "github-actions"], check=True)
|
||||
subprocess.run(
|
||||
["git", "config", "user.email", "github-actions@github.com"], check=True
|
||||
)
|
||||
branch_name = "langchain/langchain-people"
|
||||
logging.info(f"Creating a new branch {branch_name}")
|
||||
subprocess.run(["git", "checkout", "-B", branch_name], check=True)
|
||||
logging.info("Adding updated file")
|
||||
subprocess.run(["git", "add", str(people_path)], check=True)
|
||||
logging.info("Committing updated file")
|
||||
message = "👥 Update LangChain people data"
|
||||
result = subprocess.run(["git", "commit", "-m", message], check=True)
|
||||
logging.info("Pushing branch")
|
||||
subprocess.run(["git", "push", "origin", branch_name, "-f"], check=True)
|
||||
logging.info("Creating PR")
|
||||
pr = repo.create_pull(title=message, body=message, base="master", head=branch_name)
|
||||
logging.info(f"Created PR: {pr.number}")
|
||||
logging.info("Finished")
|
||||
10
.github/actions/poetry_setup/action.yml
vendored
10
.github/actions/poetry_setup/action.yml
vendored
@@ -26,13 +26,12 @@ inputs:
|
||||
runs:
|
||||
using: composite
|
||||
steps:
|
||||
- uses: actions/setup-python@v5
|
||||
- uses: actions/setup-python@v4
|
||||
name: Setup python ${{ inputs.python-version }}
|
||||
id: setup-python
|
||||
with:
|
||||
python-version: ${{ inputs.python-version }}
|
||||
|
||||
- uses: actions/cache@v4
|
||||
- uses: actions/cache@v3
|
||||
id: cache-bin-poetry
|
||||
name: Cache Poetry binary - Python ${{ inputs.python-version }}
|
||||
env:
|
||||
@@ -75,11 +74,10 @@ runs:
|
||||
env:
|
||||
POETRY_VERSION: ${{ inputs.poetry-version }}
|
||||
PYTHON_VERSION: ${{ inputs.python-version }}
|
||||
# Install poetry using the python version installed by setup-python step.
|
||||
run: pipx install "poetry==$POETRY_VERSION" --python '${{ steps.setup-python.outputs.python-path }}' --verbose
|
||||
run: pipx install "poetry==$POETRY_VERSION" --python "python$PYTHON_VERSION" --verbose
|
||||
|
||||
- name: Restore pip and poetry cached dependencies
|
||||
uses: actions/cache@v4
|
||||
uses: actions/cache@v3
|
||||
env:
|
||||
SEGMENT_DOWNLOAD_TIMEOUT_MIN: "4"
|
||||
WORKDIR: ${{ inputs.working-directory == '' && '.' || inputs.working-directory }}
|
||||
|
||||
218
.github/scripts/check_diff.py
vendored
218
.github/scripts/check_diff.py
vendored
@@ -1,218 +0,0 @@
|
||||
import glob
|
||||
import json
|
||||
import os
|
||||
import re
|
||||
import sys
|
||||
import tomllib
|
||||
from collections import defaultdict
|
||||
from typing import Dict, List, Set
|
||||
from pathlib import Path
|
||||
|
||||
|
||||
LANGCHAIN_DIRS = [
|
||||
"libs/core",
|
||||
"libs/text-splitters",
|
||||
"libs/langchain",
|
||||
"libs/community",
|
||||
"libs/experimental",
|
||||
]
|
||||
|
||||
|
||||
def all_package_dirs() -> Set[str]:
|
||||
return {
|
||||
"/".join(path.split("/")[:-1]).lstrip("./")
|
||||
for path in glob.glob("./libs/**/pyproject.toml", recursive=True)
|
||||
if "libs/cli" not in path and "libs/standard-tests" not in path
|
||||
}
|
||||
|
||||
|
||||
def dependents_graph() -> dict:
|
||||
"""
|
||||
Construct a mapping of package -> dependents, such that we can
|
||||
run tests on all dependents of a package when a change is made.
|
||||
"""
|
||||
dependents = defaultdict(set)
|
||||
|
||||
for path in glob.glob("./libs/**/pyproject.toml", recursive=True):
|
||||
if "template" in path:
|
||||
continue
|
||||
|
||||
# load regular and test deps from pyproject.toml
|
||||
with open(path, "rb") as f:
|
||||
pyproject = tomllib.load(f)["tool"]["poetry"]
|
||||
|
||||
pkg_dir = "libs" + "/".join(path.split("libs")[1].split("/")[:-1])
|
||||
for dep in [
|
||||
*pyproject["dependencies"].keys(),
|
||||
*pyproject["group"]["test"]["dependencies"].keys(),
|
||||
]:
|
||||
if "langchain" in dep:
|
||||
dependents[dep].add(pkg_dir)
|
||||
continue
|
||||
|
||||
# load extended deps from extended_testing_deps.txt
|
||||
package_path = Path(path).parent
|
||||
extended_requirement_path = package_path / "extended_testing_deps.txt"
|
||||
if extended_requirement_path.exists():
|
||||
with open(extended_requirement_path, "r") as f:
|
||||
extended_deps = f.read().splitlines()
|
||||
for depline in extended_deps:
|
||||
if depline.startswith("-e "):
|
||||
# editable dependency
|
||||
assert depline.startswith(
|
||||
"-e ../partners/"
|
||||
), "Extended test deps should only editable install partner packages"
|
||||
partner = depline.split("partners/")[1]
|
||||
dep = f"langchain-{partner}"
|
||||
else:
|
||||
dep = depline.split("==")[0]
|
||||
|
||||
if "langchain" in dep:
|
||||
dependents[dep].add(pkg_dir)
|
||||
return dependents
|
||||
|
||||
|
||||
def add_dependents(dirs_to_eval: Set[str], dependents: dict) -> List[str]:
|
||||
updated = set()
|
||||
for dir_ in dirs_to_eval:
|
||||
# handle core manually because it has so many dependents
|
||||
if "core" in dir_:
|
||||
updated.add(dir_)
|
||||
continue
|
||||
pkg = "langchain-" + dir_.split("/")[-1]
|
||||
updated.update(dependents[pkg])
|
||||
updated.add(dir_)
|
||||
return list(updated)
|
||||
|
||||
|
||||
def _get_configs_for_single_dir(job: str, dir_: str) -> List[Dict[str, str]]:
|
||||
min_python = "3.8"
|
||||
max_python = "3.12"
|
||||
|
||||
# custom logic for specific directories
|
||||
if dir_ == "libs/partners/milvus":
|
||||
# milvus poetry doesn't allow 3.12 because they
|
||||
# declare deps in funny way
|
||||
max_python = "3.11"
|
||||
|
||||
return [
|
||||
{"working-directory": dir_, "python-version": min_python},
|
||||
{"working-directory": dir_, "python-version": max_python},
|
||||
]
|
||||
|
||||
|
||||
def _get_configs_for_multi_dirs(
|
||||
job: str, dirs_to_run: List[str], dependents: dict
|
||||
) -> List[Dict[str, str]]:
|
||||
if job == "lint":
|
||||
dirs = add_dependents(
|
||||
dirs_to_run["lint"] | dirs_to_run["test"] | dirs_to_run["extended-test"],
|
||||
dependents,
|
||||
)
|
||||
elif job in ["test", "compile-integration-tests", "dependencies"]:
|
||||
dirs = add_dependents(
|
||||
dirs_to_run["test"] | dirs_to_run["extended-test"], dependents
|
||||
)
|
||||
elif job == "extended-tests":
|
||||
dirs = list(dirs_to_run["extended-test"])
|
||||
else:
|
||||
raise ValueError(f"Unknown job: {job}")
|
||||
|
||||
return [
|
||||
config for dir_ in dirs for config in _get_configs_for_single_dir(job, dir_)
|
||||
]
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
files = sys.argv[1:]
|
||||
|
||||
dirs_to_run: Dict[str, set] = {
|
||||
"lint": set(),
|
||||
"test": set(),
|
||||
"extended-test": set(),
|
||||
}
|
||||
docs_edited = False
|
||||
|
||||
if len(files) >= 300:
|
||||
# max diff length is 300 files - there are likely files missing
|
||||
dirs_to_run["lint"] = all_package_dirs()
|
||||
dirs_to_run["test"] = all_package_dirs()
|
||||
dirs_to_run["extended-test"] = set(LANGCHAIN_DIRS)
|
||||
for file in files:
|
||||
if any(
|
||||
file.startswith(dir_)
|
||||
for dir_ in (
|
||||
".github/workflows",
|
||||
".github/tools",
|
||||
".github/actions",
|
||||
".github/scripts/check_diff.py",
|
||||
)
|
||||
):
|
||||
# add all LANGCHAIN_DIRS for infra changes
|
||||
dirs_to_run["extended-test"].update(LANGCHAIN_DIRS)
|
||||
dirs_to_run["lint"].add(".")
|
||||
|
||||
if any(file.startswith(dir_) for dir_ in LANGCHAIN_DIRS):
|
||||
# add that dir and all dirs after in LANGCHAIN_DIRS
|
||||
# for extended testing
|
||||
found = False
|
||||
for dir_ in LANGCHAIN_DIRS:
|
||||
if file.startswith(dir_):
|
||||
found = True
|
||||
if found:
|
||||
dirs_to_run["extended-test"].add(dir_)
|
||||
elif file.startswith("libs/standard-tests"):
|
||||
# TODO: update to include all packages that rely on standard-tests (all partner packages)
|
||||
# note: won't run on external repo partners
|
||||
dirs_to_run["lint"].add("libs/standard-tests")
|
||||
dirs_to_run["test"].add("libs/partners/mistralai")
|
||||
dirs_to_run["test"].add("libs/partners/openai")
|
||||
dirs_to_run["test"].add("libs/partners/anthropic")
|
||||
dirs_to_run["test"].add("libs/partners/ai21")
|
||||
dirs_to_run["test"].add("libs/partners/fireworks")
|
||||
dirs_to_run["test"].add("libs/partners/groq")
|
||||
|
||||
elif file.startswith("libs/cli"):
|
||||
# todo: add cli makefile
|
||||
pass
|
||||
elif file.startswith("libs/partners"):
|
||||
partner_dir = file.split("/")[2]
|
||||
if os.path.isdir(f"libs/partners/{partner_dir}") and [
|
||||
filename
|
||||
for filename in os.listdir(f"libs/partners/{partner_dir}")
|
||||
if not filename.startswith(".")
|
||||
] != ["README.md"]:
|
||||
dirs_to_run["test"].add(f"libs/partners/{partner_dir}")
|
||||
# Skip if the directory was deleted or is just a tombstone readme
|
||||
elif file.startswith("libs/"):
|
||||
raise ValueError(
|
||||
f"Unknown lib: {file}. check_diff.py likely needs "
|
||||
"an update for this new library!"
|
||||
)
|
||||
elif any(file.startswith(p) for p in ["docs/", "templates/", "cookbook/"]):
|
||||
if file.startswith("docs/"):
|
||||
docs_edited = True
|
||||
dirs_to_run["lint"].add(".")
|
||||
|
||||
dependents = dependents_graph()
|
||||
|
||||
# we now have dirs_by_job
|
||||
# todo: clean this up
|
||||
|
||||
map_job_to_configs = {
|
||||
job: _get_configs_for_multi_dirs(job, dirs_to_run, dependents)
|
||||
for job in [
|
||||
"lint",
|
||||
"test",
|
||||
"extended-tests",
|
||||
"compile-integration-tests",
|
||||
"dependencies",
|
||||
]
|
||||
}
|
||||
map_job_to_configs["test-doc-imports"] = (
|
||||
[{"python-version": "3.12"}] if docs_edited else []
|
||||
)
|
||||
|
||||
for key, value in map_job_to_configs.items():
|
||||
json_output = json.dumps(value)
|
||||
print(f"{key}={json_output}")
|
||||
35
.github/scripts/check_prerelease_dependencies.py
vendored
35
.github/scripts/check_prerelease_dependencies.py
vendored
@@ -1,35 +0,0 @@
|
||||
import sys
|
||||
import tomllib
|
||||
|
||||
if __name__ == "__main__":
|
||||
# Get the TOML file path from the command line argument
|
||||
toml_file = sys.argv[1]
|
||||
|
||||
# read toml file
|
||||
with open(toml_file, "rb") as file:
|
||||
toml_data = tomllib.load(file)
|
||||
|
||||
# see if we're releasing an rc
|
||||
version = toml_data["tool"]["poetry"]["version"]
|
||||
releasing_rc = "rc" in version
|
||||
|
||||
# if not, iterate through dependencies and make sure none allow prereleases
|
||||
if not releasing_rc:
|
||||
dependencies = toml_data["tool"]["poetry"]["dependencies"]
|
||||
for lib in dependencies:
|
||||
dep_version = dependencies[lib]
|
||||
dep_version_string = (
|
||||
dep_version["version"] if isinstance(dep_version, dict) else dep_version
|
||||
)
|
||||
|
||||
if "rc" in dep_version_string:
|
||||
raise ValueError(
|
||||
f"Dependency {lib} has a prerelease version. Please remove this."
|
||||
)
|
||||
|
||||
if isinstance(dep_version, dict) and dep_version.get(
|
||||
"allow-prereleases", False
|
||||
):
|
||||
raise ValueError(
|
||||
f"Dependency {lib} has allow-prereleases set to true. Please remove this."
|
||||
)
|
||||
78
.github/scripts/get_min_versions.py
vendored
78
.github/scripts/get_min_versions.py
vendored
@@ -1,78 +0,0 @@
|
||||
import sys
|
||||
|
||||
import tomllib
|
||||
from packaging.version import parse as parse_version
|
||||
import re
|
||||
|
||||
MIN_VERSION_LIBS = [
|
||||
"langchain-core",
|
||||
"langchain-community",
|
||||
"langchain",
|
||||
"langchain-text-splitters",
|
||||
"SQLAlchemy",
|
||||
]
|
||||
|
||||
|
||||
def get_min_version(version: str) -> str:
|
||||
# base regex for x.x.x with cases for rc/post/etc
|
||||
# valid strings: https://peps.python.org/pep-0440/#public-version-identifiers
|
||||
vstring = r"\d+(?:\.\d+){0,2}(?:(?:a|b|rc|\.post|\.dev)\d+)?"
|
||||
# case ^x.x.x
|
||||
_match = re.match(f"^\\^({vstring})$", version)
|
||||
if _match:
|
||||
return _match.group(1)
|
||||
|
||||
# case >=x.x.x,<y.y.y
|
||||
_match = re.match(f"^>=({vstring}),<({vstring})$", version)
|
||||
if _match:
|
||||
_min = _match.group(1)
|
||||
_max = _match.group(2)
|
||||
assert parse_version(_min) < parse_version(_max)
|
||||
return _min
|
||||
|
||||
# case x.x.x
|
||||
_match = re.match(f"^({vstring})$", version)
|
||||
if _match:
|
||||
return _match.group(1)
|
||||
|
||||
raise ValueError(f"Unrecognized version format: {version}")
|
||||
|
||||
|
||||
def get_min_version_from_toml(toml_path: str):
|
||||
# Parse the TOML file
|
||||
with open(toml_path, "rb") as file:
|
||||
toml_data = tomllib.load(file)
|
||||
|
||||
# Get the dependencies from tool.poetry.dependencies
|
||||
dependencies = toml_data["tool"]["poetry"]["dependencies"]
|
||||
|
||||
# Initialize a dictionary to store the minimum versions
|
||||
min_versions = {}
|
||||
|
||||
# Iterate over the libs in MIN_VERSION_LIBS
|
||||
for lib in MIN_VERSION_LIBS:
|
||||
# Check if the lib is present in the dependencies
|
||||
if lib in dependencies:
|
||||
# Get the version string
|
||||
version_string = dependencies[lib]
|
||||
|
||||
if isinstance(version_string, dict):
|
||||
version_string = version_string["version"]
|
||||
|
||||
# Use parse_version to get the minimum supported version from version_string
|
||||
min_version = get_min_version(version_string)
|
||||
|
||||
# Store the minimum version in the min_versions dictionary
|
||||
min_versions[lib] = min_version
|
||||
|
||||
return min_versions
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
# Get the TOML file path from the command line argument
|
||||
toml_file = sys.argv[1]
|
||||
|
||||
# Call the function to get the minimum versions
|
||||
min_versions = get_min_version_from_toml(toml_file)
|
||||
|
||||
print(" ".join([f"{lib}=={version}" for lib, version in min_versions.items()]))
|
||||
7
.github/workflows/.codespell-exclude
vendored
7
.github/workflows/.codespell-exclude
vendored
@@ -1,7 +0,0 @@
|
||||
libs/community/langchain_community/llms/yuan2.py
|
||||
"NotIn": "not in",
|
||||
- `/checkin`: Check-in
|
||||
docs/docs/integrations/providers/trulens.mdx
|
||||
self.assertIn(
|
||||
from trulens_eval import Tru
|
||||
tru = Tru()
|
||||
21
.github/workflows/_compile_integration_test.yml
vendored
21
.github/workflows/_compile_integration_test.yml
vendored
@@ -7,13 +7,9 @@ on:
|
||||
required: true
|
||||
type: string
|
||||
description: "From which folder this pipeline executes"
|
||||
python-version:
|
||||
required: true
|
||||
type: string
|
||||
description: "Python version to use"
|
||||
|
||||
env:
|
||||
POETRY_VERSION: "1.7.1"
|
||||
POETRY_VERSION: "1.6.1"
|
||||
|
||||
jobs:
|
||||
build:
|
||||
@@ -21,21 +17,28 @@ jobs:
|
||||
run:
|
||||
working-directory: ${{ inputs.working-directory }}
|
||||
runs-on: ubuntu-latest
|
||||
name: "poetry run pytest -m compile tests/integration_tests #${{ inputs.python-version }}"
|
||||
strategy:
|
||||
matrix:
|
||||
python-version:
|
||||
- "3.8"
|
||||
- "3.9"
|
||||
- "3.10"
|
||||
- "3.11"
|
||||
name: Python ${{ matrix.python-version }}
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
|
||||
- name: Set up Python ${{ inputs.python-version }} + Poetry ${{ env.POETRY_VERSION }}
|
||||
- name: Set up Python ${{ matrix.python-version }} + Poetry ${{ env.POETRY_VERSION }}
|
||||
uses: "./.github/actions/poetry_setup"
|
||||
with:
|
||||
python-version: ${{ inputs.python-version }}
|
||||
python-version: ${{ matrix.python-version }}
|
||||
poetry-version: ${{ env.POETRY_VERSION }}
|
||||
working-directory: ${{ inputs.working-directory }}
|
||||
cache-key: compile-integration
|
||||
|
||||
- name: Install integration dependencies
|
||||
shell: bash
|
||||
run: poetry install --with=test_integration,test
|
||||
run: poetry install --with=test_integration
|
||||
|
||||
- name: Check integration tests compile
|
||||
shell: bash
|
||||
|
||||
114
.github/workflows/_dependencies.yml
vendored
114
.github/workflows/_dependencies.yml
vendored
@@ -1,114 +0,0 @@
|
||||
name: dependencies
|
||||
|
||||
on:
|
||||
workflow_call:
|
||||
inputs:
|
||||
working-directory:
|
||||
required: true
|
||||
type: string
|
||||
description: "From which folder this pipeline executes"
|
||||
langchain-location:
|
||||
required: false
|
||||
type: string
|
||||
description: "Relative path to the langchain library folder"
|
||||
python-version:
|
||||
required: true
|
||||
type: string
|
||||
description: "Python version to use"
|
||||
|
||||
env:
|
||||
POETRY_VERSION: "1.7.1"
|
||||
|
||||
jobs:
|
||||
build:
|
||||
defaults:
|
||||
run:
|
||||
working-directory: ${{ inputs.working-directory }}
|
||||
runs-on: ubuntu-latest
|
||||
name: dependency checks ${{ inputs.python-version }}
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
|
||||
- name: Set up Python ${{ inputs.python-version }} + Poetry ${{ env.POETRY_VERSION }}
|
||||
uses: "./.github/actions/poetry_setup"
|
||||
with:
|
||||
python-version: ${{ inputs.python-version }}
|
||||
poetry-version: ${{ env.POETRY_VERSION }}
|
||||
working-directory: ${{ inputs.working-directory }}
|
||||
cache-key: pydantic-cross-compat
|
||||
|
||||
- name: Install dependencies
|
||||
shell: bash
|
||||
run: poetry install
|
||||
|
||||
- name: Check imports with base dependencies
|
||||
shell: bash
|
||||
run: poetry run make check_imports
|
||||
|
||||
- name: Install test dependencies
|
||||
shell: bash
|
||||
run: poetry install --with test
|
||||
|
||||
- name: Install langchain editable
|
||||
working-directory: ${{ inputs.working-directory }}
|
||||
if: ${{ inputs.langchain-location }}
|
||||
env:
|
||||
LANGCHAIN_LOCATION: ${{ inputs.langchain-location }}
|
||||
run: |
|
||||
poetry run pip install -e "$LANGCHAIN_LOCATION"
|
||||
|
||||
- name: Install the opposite major version of pydantic
|
||||
# If normal tests use pydantic v1, here we'll use v2, and vice versa.
|
||||
shell: bash
|
||||
# airbyte currently doesn't support pydantic v2
|
||||
if: ${{ !startsWith(inputs.working-directory, 'libs/partners/airbyte') }}
|
||||
run: |
|
||||
# Determine the major part of pydantic version
|
||||
REGULAR_VERSION=$(poetry run python -c "import pydantic; print(pydantic.__version__)" | cut -d. -f1)
|
||||
|
||||
if [[ "$REGULAR_VERSION" == "1" ]]; then
|
||||
PYDANTIC_DEP=">=2.1,<3"
|
||||
TEST_WITH_VERSION="2"
|
||||
elif [[ "$REGULAR_VERSION" == "2" ]]; then
|
||||
PYDANTIC_DEP="<2"
|
||||
TEST_WITH_VERSION="1"
|
||||
else
|
||||
echo "Unexpected pydantic major version '$REGULAR_VERSION', cannot determine which version to use for cross-compatibility test."
|
||||
exit 1
|
||||
fi
|
||||
|
||||
# Install via `pip` instead of `poetry add` to avoid changing lockfile,
|
||||
# which would prevent caching from working: the cache would get saved
|
||||
# to a different key than where it gets loaded from.
|
||||
poetry run pip install "pydantic${PYDANTIC_DEP}"
|
||||
|
||||
# Ensure that the correct pydantic is installed now.
|
||||
echo "Checking pydantic version... Expecting ${TEST_WITH_VERSION}"
|
||||
|
||||
# Determine the major part of pydantic version
|
||||
CURRENT_VERSION=$(poetry run python -c "import pydantic; print(pydantic.__version__)" | cut -d. -f1)
|
||||
|
||||
# Check that the major part of pydantic version is as expected, if not
|
||||
# raise an error
|
||||
if [[ "$CURRENT_VERSION" != "$TEST_WITH_VERSION" ]]; then
|
||||
echo "Error: expected pydantic version ${CURRENT_VERSION} to have been installed, but found: ${TEST_WITH_VERSION}"
|
||||
exit 1
|
||||
fi
|
||||
echo "Found pydantic version ${CURRENT_VERSION}, as expected"
|
||||
- name: Run pydantic compatibility tests
|
||||
# airbyte currently doesn't support pydantic v2
|
||||
if: ${{ !startsWith(inputs.working-directory, 'libs/partners/airbyte') }}
|
||||
shell: bash
|
||||
run: make test
|
||||
|
||||
- name: Ensure the tests did not create any additional files
|
||||
shell: bash
|
||||
run: |
|
||||
set -eu
|
||||
|
||||
STATUS="$(git status)"
|
||||
echo "$STATUS"
|
||||
|
||||
# grep will exit non-zero if the target message isn't found,
|
||||
# and `set -e` above will cause the step to fail.
|
||||
echo "$STATUS" | grep 'nothing to commit, working tree clean'
|
||||
100
.github/workflows/_integration_test.yml
vendored
100
.github/workflows/_integration_test.yml
vendored
@@ -1,100 +0,0 @@
|
||||
name: Integration tests
|
||||
|
||||
on:
|
||||
workflow_dispatch:
|
||||
inputs:
|
||||
working-directory:
|
||||
required: true
|
||||
type: string
|
||||
python-version:
|
||||
required: true
|
||||
type: string
|
||||
description: "Python version to use"
|
||||
|
||||
env:
|
||||
POETRY_VERSION: "1.7.1"
|
||||
|
||||
jobs:
|
||||
build:
|
||||
defaults:
|
||||
run:
|
||||
working-directory: ${{ inputs.working-directory }}
|
||||
runs-on: ubuntu-latest
|
||||
name: Python ${{ inputs.python-version }}
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
|
||||
- name: Set up Python ${{ inputs.python-version }} + Poetry ${{ env.POETRY_VERSION }}
|
||||
uses: "./.github/actions/poetry_setup"
|
||||
with:
|
||||
python-version: ${{ inputs.python-version }}
|
||||
poetry-version: ${{ env.POETRY_VERSION }}
|
||||
working-directory: ${{ inputs.working-directory }}
|
||||
cache-key: core
|
||||
|
||||
- name: Install dependencies
|
||||
shell: bash
|
||||
run: poetry install --with test,test_integration
|
||||
|
||||
- name: Install deps outside pyproject
|
||||
if: ${{ startsWith(inputs.working-directory, 'libs/community/') }}
|
||||
shell: bash
|
||||
run: poetry run pip install "boto3<2" "google-cloud-aiplatform<2"
|
||||
|
||||
- name: 'Authenticate to Google Cloud'
|
||||
id: 'auth'
|
||||
uses: google-github-actions/auth@v2
|
||||
with:
|
||||
credentials_json: '${{ secrets.GOOGLE_CREDENTIALS }}'
|
||||
|
||||
- name: Run integration tests
|
||||
shell: bash
|
||||
env:
|
||||
AI21_API_KEY: ${{ secrets.AI21_API_KEY }}
|
||||
FIREWORKS_API_KEY: ${{ secrets.FIREWORKS_API_KEY }}
|
||||
GOOGLE_API_KEY: ${{ secrets.GOOGLE_API_KEY }}
|
||||
ANTHROPIC_API_KEY: ${{ secrets.ANTHROPIC_API_KEY }}
|
||||
AZURE_OPENAI_API_VERSION: ${{ secrets.AZURE_OPENAI_API_VERSION }}
|
||||
AZURE_OPENAI_API_BASE: ${{ secrets.AZURE_OPENAI_API_BASE }}
|
||||
AZURE_OPENAI_API_KEY: ${{ secrets.AZURE_OPENAI_API_KEY }}
|
||||
AZURE_OPENAI_CHAT_DEPLOYMENT_NAME: ${{ secrets.AZURE_OPENAI_CHAT_DEPLOYMENT_NAME }}
|
||||
AZURE_OPENAI_LLM_DEPLOYMENT_NAME: ${{ secrets.AZURE_OPENAI_LLM_DEPLOYMENT_NAME }}
|
||||
AZURE_OPENAI_EMBEDDINGS_DEPLOYMENT_NAME: ${{ secrets.AZURE_OPENAI_EMBEDDINGS_DEPLOYMENT_NAME }}
|
||||
MISTRAL_API_KEY: ${{ secrets.MISTRAL_API_KEY }}
|
||||
TOGETHER_API_KEY: ${{ secrets.TOGETHER_API_KEY }}
|
||||
OPENAI_API_KEY: ${{ secrets.OPENAI_API_KEY }}
|
||||
GROQ_API_KEY: ${{ secrets.GROQ_API_KEY }}
|
||||
NVIDIA_API_KEY: ${{ secrets.NVIDIA_API_KEY }}
|
||||
GOOGLE_SEARCH_API_KEY: ${{ secrets.GOOGLE_SEARCH_API_KEY }}
|
||||
GOOGLE_CSE_ID: ${{ secrets.GOOGLE_CSE_ID }}
|
||||
EXA_API_KEY: ${{ secrets.EXA_API_KEY }}
|
||||
NOMIC_API_KEY: ${{ secrets.NOMIC_API_KEY }}
|
||||
WATSONX_APIKEY: ${{ secrets.WATSONX_APIKEY }}
|
||||
WATSONX_PROJECT_ID: ${{ secrets.WATSONX_PROJECT_ID }}
|
||||
PINECONE_API_KEY: ${{ secrets.PINECONE_API_KEY }}
|
||||
PINECONE_ENVIRONMENT: ${{ secrets.PINECONE_ENVIRONMENT }}
|
||||
ASTRA_DB_API_ENDPOINT: ${{ secrets.ASTRA_DB_API_ENDPOINT }}
|
||||
ASTRA_DB_APPLICATION_TOKEN: ${{ secrets.ASTRA_DB_APPLICATION_TOKEN }}
|
||||
ASTRA_DB_KEYSPACE: ${{ secrets.ASTRA_DB_KEYSPACE }}
|
||||
ES_URL: ${{ secrets.ES_URL }}
|
||||
ES_CLOUD_ID: ${{ secrets.ES_CLOUD_ID }}
|
||||
ES_API_KEY: ${{ secrets.ES_API_KEY }}
|
||||
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }} # for airbyte
|
||||
MONGODB_ATLAS_URI: ${{ secrets.MONGODB_ATLAS_URI }}
|
||||
VOYAGE_API_KEY: ${{ secrets.VOYAGE_API_KEY }}
|
||||
COHERE_API_KEY: ${{ secrets.COHERE_API_KEY }}
|
||||
UPSTAGE_API_KEY: ${{ secrets.UPSTAGE_API_KEY }}
|
||||
run: |
|
||||
make integration_tests
|
||||
|
||||
- name: Ensure the tests did not create any additional files
|
||||
shell: bash
|
||||
run: |
|
||||
set -eu
|
||||
|
||||
STATUS="$(git status)"
|
||||
echo "$STATUS"
|
||||
|
||||
# grep will exit non-zero if the target message isn't found,
|
||||
# and `set -e` above will cause the step to fail.
|
||||
echo "$STATUS" | grep 'nothing to commit, working tree clean'
|
||||
67
.github/workflows/_lint.yml
vendored
67
.github/workflows/_lint.yml
vendored
@@ -11,13 +11,9 @@ on:
|
||||
required: false
|
||||
type: string
|
||||
description: "Relative path to the langchain library folder"
|
||||
python-version:
|
||||
required: true
|
||||
type: string
|
||||
description: "Python version to use"
|
||||
|
||||
env:
|
||||
POETRY_VERSION: "1.7.1"
|
||||
POETRY_VERSION: "1.6.1"
|
||||
WORKDIR: ${{ inputs.working-directory == '' && '.' || inputs.working-directory }}
|
||||
|
||||
# This env var allows us to get inline annotations when ruff has complaints.
|
||||
@@ -25,15 +21,26 @@ env:
|
||||
|
||||
jobs:
|
||||
build:
|
||||
name: "make lint #${{ inputs.python-version }}"
|
||||
runs-on: ubuntu-latest
|
||||
strategy:
|
||||
matrix:
|
||||
# Only lint on the min and max supported Python versions.
|
||||
# It's extremely unlikely that there's a lint issue on any version in between
|
||||
# that doesn't show up on the min or max versions.
|
||||
#
|
||||
# GitHub rate-limits how many jobs can be running at any one time.
|
||||
# Starting new jobs is also relatively slow,
|
||||
# so linting on fewer versions makes CI faster.
|
||||
python-version:
|
||||
- "3.8"
|
||||
- "3.11"
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
|
||||
- name: Set up Python ${{ inputs.python-version }} + Poetry ${{ env.POETRY_VERSION }}
|
||||
- name: Set up Python ${{ matrix.python-version }} + Poetry ${{ env.POETRY_VERSION }}
|
||||
uses: "./.github/actions/poetry_setup"
|
||||
with:
|
||||
python-version: ${{ inputs.python-version }}
|
||||
python-version: ${{ matrix.python-version }}
|
||||
poetry-version: ${{ env.POETRY_VERSION }}
|
||||
working-directory: ${{ inputs.working-directory }}
|
||||
cache-key: lint-with-extras
|
||||
@@ -61,7 +68,7 @@ jobs:
|
||||
# It doesn't matter how you change it, any change will cause a cache-bust.
|
||||
working-directory: ${{ inputs.working-directory }}
|
||||
run: |
|
||||
poetry install --with lint,typing
|
||||
poetry install --with dev,lint,test,typing
|
||||
|
||||
- name: Install langchain editable
|
||||
working-directory: ${{ inputs.working-directory }}
|
||||
@@ -69,52 +76,18 @@ jobs:
|
||||
env:
|
||||
LANGCHAIN_LOCATION: ${{ inputs.langchain-location }}
|
||||
run: |
|
||||
poetry run pip install -e "$LANGCHAIN_LOCATION"
|
||||
pip install -e "$LANGCHAIN_LOCATION"
|
||||
|
||||
- name: Get .mypy_cache to speed up mypy
|
||||
uses: actions/cache@v4
|
||||
uses: actions/cache@v3
|
||||
env:
|
||||
SEGMENT_DOWNLOAD_TIMEOUT_MIN: "2"
|
||||
with:
|
||||
path: |
|
||||
${{ env.WORKDIR }}/.mypy_cache
|
||||
key: mypy-lint-${{ runner.os }}-${{ runner.arch }}-py${{ inputs.python-version }}-${{ inputs.working-directory }}-${{ hashFiles(format('{0}/poetry.lock', inputs.working-directory)) }}
|
||||
|
||||
key: mypy-${{ runner.os }}-${{ runner.arch }}-py${{ matrix.python-version }}-${{ inputs.working-directory }}-${{ hashFiles(format('{0}/poetry.lock', env.WORKDIR)) }}
|
||||
|
||||
- name: Analysing the code with our lint
|
||||
working-directory: ${{ inputs.working-directory }}
|
||||
run: |
|
||||
make lint_package
|
||||
|
||||
- name: Install unit test dependencies
|
||||
# Also installs dev/lint/test/typing dependencies, to ensure we have
|
||||
# type hints for as many of our libraries as possible.
|
||||
# This helps catch errors that require dependencies to be spotted, for example:
|
||||
# https://github.com/langchain-ai/langchain/pull/10249/files#diff-935185cd488d015f026dcd9e19616ff62863e8cde8c0bee70318d3ccbca98341
|
||||
#
|
||||
# If you change this configuration, make sure to change the `cache-key`
|
||||
# in the `poetry_setup` action above to stop using the old cache.
|
||||
# It doesn't matter how you change it, any change will cause a cache-bust.
|
||||
if: ${{ ! startsWith(inputs.working-directory, 'libs/partners/') }}
|
||||
working-directory: ${{ inputs.working-directory }}
|
||||
run: |
|
||||
poetry install --with test
|
||||
- name: Install unit+integration test dependencies
|
||||
if: ${{ startsWith(inputs.working-directory, 'libs/partners/') }}
|
||||
working-directory: ${{ inputs.working-directory }}
|
||||
run: |
|
||||
poetry install --with test,test_integration
|
||||
|
||||
- name: Get .mypy_cache_test to speed up mypy
|
||||
uses: actions/cache@v4
|
||||
env:
|
||||
SEGMENT_DOWNLOAD_TIMEOUT_MIN: "2"
|
||||
with:
|
||||
path: |
|
||||
${{ env.WORKDIR }}/.mypy_cache_test
|
||||
key: mypy-test-${{ runner.os }}-${{ runner.arch }}-py${{ inputs.python-version }}-${{ inputs.working-directory }}-${{ hashFiles(format('{0}/poetry.lock', inputs.working-directory)) }}
|
||||
|
||||
- name: Analysing the code with our lint
|
||||
working-directory: ${{ inputs.working-directory }}
|
||||
run: |
|
||||
make lint_tests
|
||||
make lint
|
||||
|
||||
93
.github/workflows/_pydantic_compatibility.yml
vendored
Normal file
93
.github/workflows/_pydantic_compatibility.yml
vendored
Normal file
@@ -0,0 +1,93 @@
|
||||
name: pydantic v1/v2 compatibility
|
||||
|
||||
on:
|
||||
workflow_call:
|
||||
inputs:
|
||||
working-directory:
|
||||
required: true
|
||||
type: string
|
||||
description: "From which folder this pipeline executes"
|
||||
|
||||
env:
|
||||
POETRY_VERSION: "1.6.1"
|
||||
|
||||
jobs:
|
||||
build:
|
||||
defaults:
|
||||
run:
|
||||
working-directory: ${{ inputs.working-directory }}
|
||||
runs-on: ubuntu-latest
|
||||
strategy:
|
||||
matrix:
|
||||
python-version:
|
||||
- "3.8"
|
||||
- "3.9"
|
||||
- "3.10"
|
||||
- "3.11"
|
||||
name: Pydantic v1/v2 compatibility - Python ${{ matrix.python-version }}
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
|
||||
- name: Set up Python ${{ matrix.python-version }} + Poetry ${{ env.POETRY_VERSION }}
|
||||
uses: "./.github/actions/poetry_setup"
|
||||
with:
|
||||
python-version: ${{ matrix.python-version }}
|
||||
poetry-version: ${{ env.POETRY_VERSION }}
|
||||
working-directory: ${{ inputs.working-directory }}
|
||||
cache-key: pydantic-cross-compat
|
||||
|
||||
- name: Install dependencies
|
||||
shell: bash
|
||||
run: poetry install
|
||||
|
||||
- name: Install the opposite major version of pydantic
|
||||
# If normal tests use pydantic v1, here we'll use v2, and vice versa.
|
||||
shell: bash
|
||||
run: |
|
||||
# Determine the major part of pydantic version
|
||||
REGULAR_VERSION=$(poetry run python -c "import pydantic; print(pydantic.__version__)" | cut -d. -f1)
|
||||
|
||||
if [[ "$REGULAR_VERSION" == "1" ]]; then
|
||||
PYDANTIC_DEP=">=2.1,<3"
|
||||
TEST_WITH_VERSION="2"
|
||||
elif [[ "$REGULAR_VERSION" == "2" ]]; then
|
||||
PYDANTIC_DEP="<2"
|
||||
TEST_WITH_VERSION="1"
|
||||
else
|
||||
echo "Unexpected pydantic major version '$REGULAR_VERSION', cannot determine which version to use for cross-compatibility test."
|
||||
exit 1
|
||||
fi
|
||||
|
||||
# Install via `pip` instead of `poetry add` to avoid changing lockfile,
|
||||
# which would prevent caching from working: the cache would get saved
|
||||
# to a different key than where it gets loaded from.
|
||||
poetry run pip install "pydantic${PYDANTIC_DEP}"
|
||||
|
||||
# Ensure that the correct pydantic is installed now.
|
||||
echo "Checking pydantic version... Expecting ${TEST_WITH_VERSION}"
|
||||
|
||||
# Determine the major part of pydantic version
|
||||
CURRENT_VERSION=$(poetry run python -c "import pydantic; print(pydantic.__version__)" | cut -d. -f1)
|
||||
|
||||
# Check that the major part of pydantic version is as expected, if not
|
||||
# raise an error
|
||||
if [[ "$CURRENT_VERSION" != "$TEST_WITH_VERSION" ]]; then
|
||||
echo "Error: expected pydantic version ${CURRENT_VERSION} to have been installed, but found: ${TEST_WITH_VERSION}"
|
||||
exit 1
|
||||
fi
|
||||
echo "Found pydantic version ${CURRENT_VERSION}, as expected"
|
||||
- name: Run pydantic compatibility tests
|
||||
shell: bash
|
||||
run: make test
|
||||
|
||||
- name: Ensure the tests did not create any additional files
|
||||
shell: bash
|
||||
run: |
|
||||
set -eu
|
||||
|
||||
STATUS="$(git status)"
|
||||
echo "$STATUS"
|
||||
|
||||
# grep will exit non-zero if the target message isn't found,
|
||||
# and `set -e` above will cause the step to fail.
|
||||
echo "$STATUS" | grep 'nothing to commit, working tree clean'
|
||||
235
.github/workflows/_release.yml
vendored
235
.github/workflows/_release.yml
vendored
@@ -1,5 +1,5 @@
|
||||
name: release
|
||||
run-name: Release ${{ inputs.working-directory }} by @${{ github.actor }}
|
||||
|
||||
on:
|
||||
workflow_call:
|
||||
inputs:
|
||||
@@ -7,26 +7,14 @@ on:
|
||||
required: true
|
||||
type: string
|
||||
description: "From which folder this pipeline executes"
|
||||
workflow_dispatch:
|
||||
inputs:
|
||||
working-directory:
|
||||
required: true
|
||||
type: string
|
||||
default: 'libs/langchain'
|
||||
dangerous-nonmaster-release:
|
||||
required: false
|
||||
type: boolean
|
||||
default: false
|
||||
description: "Release from a non-master branch (danger!)"
|
||||
|
||||
env:
|
||||
PYTHON_VERSION: "3.11"
|
||||
POETRY_VERSION: "1.7.1"
|
||||
PYTHON_VERSION: "3.10"
|
||||
POETRY_VERSION: "1.6.1"
|
||||
|
||||
jobs:
|
||||
build:
|
||||
if: github.ref == 'refs/heads/master' || inputs.dangerous-nonmaster-release
|
||||
environment: Scheduled testing
|
||||
if: github.ref == 'refs/heads/master'
|
||||
runs-on: ubuntu-latest
|
||||
|
||||
outputs:
|
||||
@@ -60,7 +48,7 @@ jobs:
|
||||
working-directory: ${{ inputs.working-directory }}
|
||||
|
||||
- name: Upload build
|
||||
uses: actions/upload-artifact@v4
|
||||
uses: actions/upload-artifact@v3
|
||||
with:
|
||||
name: dist
|
||||
path: ${{ inputs.working-directory }}/dist/
|
||||
@@ -72,83 +60,22 @@ jobs:
|
||||
run: |
|
||||
echo pkg-name="$(poetry version | cut -d ' ' -f 1)" >> $GITHUB_OUTPUT
|
||||
echo version="$(poetry version --short)" >> $GITHUB_OUTPUT
|
||||
release-notes:
|
||||
needs:
|
||||
- build
|
||||
runs-on: ubuntu-latest
|
||||
outputs:
|
||||
release-body: ${{ steps.generate-release-body.outputs.release-body }}
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
with:
|
||||
repository: langchain-ai/langchain
|
||||
path: langchain
|
||||
sparse-checkout: | # this only grabs files for relevant dir
|
||||
${{ inputs.working-directory }}
|
||||
ref: master # this scopes to just master branch
|
||||
fetch-depth: 0 # this fetches entire commit history
|
||||
- name: Check Tags
|
||||
id: check-tags
|
||||
shell: bash
|
||||
working-directory: langchain/${{ inputs.working-directory }}
|
||||
env:
|
||||
PKG_NAME: ${{ needs.build.outputs.pkg-name }}
|
||||
VERSION: ${{ needs.build.outputs.version }}
|
||||
run: |
|
||||
REGEX="^$PKG_NAME==\\d+\\.\\d+\\.\\d+\$"
|
||||
echo $REGEX
|
||||
PREV_TAG=$(git tag --sort=-creatordate | grep -P $REGEX || true | head -1)
|
||||
TAG="${PKG_NAME}==${VERSION}"
|
||||
if [ "$TAG" == "$PREV_TAG" ]; then
|
||||
echo "No new version to release"
|
||||
exit 1
|
||||
fi
|
||||
echo tag="$TAG" >> $GITHUB_OUTPUT
|
||||
echo prev-tag="$PREV_TAG" >> $GITHUB_OUTPUT
|
||||
- name: Generate release body
|
||||
id: generate-release-body
|
||||
working-directory: langchain
|
||||
env:
|
||||
WORKING_DIR: ${{ inputs.working-directory }}
|
||||
PKG_NAME: ${{ needs.build.outputs.pkg-name }}
|
||||
TAG: ${{ steps.check-tags.outputs.tag }}
|
||||
PREV_TAG: ${{ steps.check-tags.outputs.prev-tag }}
|
||||
run: |
|
||||
PREAMBLE="Changes since $PREV_TAG"
|
||||
# if PREV_TAG is empty, then we are releasing the first version
|
||||
if [ -z "$PREV_TAG" ]; then
|
||||
PREAMBLE="Initial release"
|
||||
PREV_TAG=$(git rev-list --max-parents=0 HEAD)
|
||||
fi
|
||||
{
|
||||
echo 'release-body<<EOF'
|
||||
echo $PREAMBLE
|
||||
echo
|
||||
git log --format="%s" "$PREV_TAG"..HEAD -- $WORKING_DIR
|
||||
echo EOF
|
||||
} >> "$GITHUB_OUTPUT"
|
||||
|
||||
test-pypi-publish:
|
||||
needs:
|
||||
- build
|
||||
- release-notes
|
||||
uses:
|
||||
./.github/workflows/_test_release.yml
|
||||
permissions: write-all
|
||||
with:
|
||||
working-directory: ${{ inputs.working-directory }}
|
||||
dangerous-nonmaster-release: ${{ inputs.dangerous-nonmaster-release }}
|
||||
secrets: inherit
|
||||
|
||||
pre-release-checks:
|
||||
needs:
|
||||
- build
|
||||
- release-notes
|
||||
- test-pypi-publish
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
|
||||
# We explicitly *don't* set up caching here. This ensures our tests are
|
||||
# maximally sensitive to catching breakage.
|
||||
#
|
||||
@@ -161,142 +88,39 @@ jobs:
|
||||
# - Tests pass, because the dependency is present even though it wasn't specified.
|
||||
# - The package is published, and it breaks on the missing dependency when
|
||||
# used in the real world.
|
||||
|
||||
- name: Set up Python + Poetry ${{ env.POETRY_VERSION }}
|
||||
uses: "./.github/actions/poetry_setup"
|
||||
- uses: actions/setup-python@v4
|
||||
with:
|
||||
python-version: ${{ env.PYTHON_VERSION }}
|
||||
poetry-version: ${{ env.POETRY_VERSION }}
|
||||
working-directory: ${{ inputs.working-directory }}
|
||||
|
||||
- name: Import published package
|
||||
- name: Test published package
|
||||
shell: bash
|
||||
working-directory: ${{ inputs.working-directory }}
|
||||
env:
|
||||
PKG_NAME: ${{ needs.build.outputs.pkg-name }}
|
||||
VERSION: ${{ needs.build.outputs.version }}
|
||||
# Here we use:
|
||||
# - The default regular PyPI index as the *primary* index, meaning
|
||||
# that it takes priority (https://pypi.org/simple)
|
||||
# - The test PyPI index as an extra index, so that any dependencies that
|
||||
# Here we specify:
|
||||
# - The test PyPI index as the *primary* index, meaning that it takes priority.
|
||||
# - The regular PyPI index as an extra index, so that any dependencies that
|
||||
# are not found on test PyPI can be resolved and installed anyway.
|
||||
# (https://test.pypi.org/simple). This will include the PKG_NAME==VERSION
|
||||
# package because VERSION will not have been uploaded to regular PyPI yet.
|
||||
# - attempt install again after 5 seconds if it fails because there is
|
||||
# sometimes a delay in availability on test pypi
|
||||
#
|
||||
# Without the former, we might install the wrong langchain release.
|
||||
# Without the latter, we might not be able to install langchain's dependencies.
|
||||
#
|
||||
# TODO: add more in-depth pre-publish tests after testing that importing works
|
||||
run: |
|
||||
poetry run pip install \
|
||||
--extra-index-url https://test.pypi.org/simple/ \
|
||||
"$PKG_NAME==$VERSION" || \
|
||||
( \
|
||||
sleep 5 && \
|
||||
poetry run pip install \
|
||||
--extra-index-url https://test.pypi.org/simple/ \
|
||||
"$PKG_NAME==$VERSION" \
|
||||
)
|
||||
pip install \
|
||||
--index-url https://test.pypi.org/simple/ \
|
||||
--extra-index-url https://pypi.org/simple/ \
|
||||
"$PKG_NAME==$VERSION"
|
||||
|
||||
# Replace all dashes in the package name with underscores,
|
||||
# since that's how Python imports packages with dashes in the name.
|
||||
IMPORT_NAME="$(echo "$PKG_NAME" | sed s/-/_/g)"
|
||||
|
||||
poetry run python -c "import $IMPORT_NAME; print(dir($IMPORT_NAME))"
|
||||
|
||||
- name: Import test dependencies
|
||||
run: poetry install --with test
|
||||
working-directory: ${{ inputs.working-directory }}
|
||||
|
||||
# Overwrite the local version of the package with the test PyPI version.
|
||||
- name: Import published package (again)
|
||||
working-directory: ${{ inputs.working-directory }}
|
||||
shell: bash
|
||||
env:
|
||||
PKG_NAME: ${{ needs.build.outputs.pkg-name }}
|
||||
VERSION: ${{ needs.build.outputs.version }}
|
||||
run: |
|
||||
poetry run pip install \
|
||||
--extra-index-url https://test.pypi.org/simple/ \
|
||||
"$PKG_NAME==$VERSION"
|
||||
|
||||
- name: Run unit tests
|
||||
run: make tests
|
||||
working-directory: ${{ inputs.working-directory }}
|
||||
|
||||
- name: Check for prerelease versions
|
||||
working-directory: ${{ inputs.working-directory }}
|
||||
run: |
|
||||
poetry run python $GITHUB_WORKSPACE/.github/scripts/check_prerelease_dependencies.py pyproject.toml
|
||||
|
||||
- name: Get minimum versions
|
||||
working-directory: ${{ inputs.working-directory }}
|
||||
id: min-version
|
||||
run: |
|
||||
poetry run pip install packaging
|
||||
min_versions="$(poetry run python $GITHUB_WORKSPACE/.github/scripts/get_min_versions.py pyproject.toml)"
|
||||
echo "min-versions=$min_versions" >> "$GITHUB_OUTPUT"
|
||||
echo "min-versions=$min_versions"
|
||||
|
||||
- name: Run unit tests with minimum dependency versions
|
||||
if: ${{ steps.min-version.outputs.min-versions != '' }}
|
||||
env:
|
||||
MIN_VERSIONS: ${{ steps.min-version.outputs.min-versions }}
|
||||
run: |
|
||||
poetry run pip install --force-reinstall $MIN_VERSIONS --editable .
|
||||
make tests
|
||||
working-directory: ${{ inputs.working-directory }}
|
||||
|
||||
- name: 'Authenticate to Google Cloud'
|
||||
id: 'auth'
|
||||
uses: google-github-actions/auth@v2
|
||||
with:
|
||||
credentials_json: '${{ secrets.GOOGLE_CREDENTIALS }}'
|
||||
|
||||
- name: Import integration test dependencies
|
||||
run: poetry install --with test,test_integration
|
||||
working-directory: ${{ inputs.working-directory }}
|
||||
|
||||
- name: Run integration tests
|
||||
if: ${{ startsWith(inputs.working-directory, 'libs/partners/') }}
|
||||
env:
|
||||
AI21_API_KEY: ${{ secrets.AI21_API_KEY }}
|
||||
GOOGLE_API_KEY: ${{ secrets.GOOGLE_API_KEY }}
|
||||
ANTHROPIC_API_KEY: ${{ secrets.ANTHROPIC_API_KEY }}
|
||||
MISTRAL_API_KEY: ${{ secrets.MISTRAL_API_KEY }}
|
||||
TOGETHER_API_KEY: ${{ secrets.TOGETHER_API_KEY }}
|
||||
OPENAI_API_KEY: ${{ secrets.OPENAI_API_KEY }}
|
||||
AZURE_OPENAI_API_VERSION: ${{ secrets.AZURE_OPENAI_API_VERSION }}
|
||||
AZURE_OPENAI_API_BASE: ${{ secrets.AZURE_OPENAI_API_BASE }}
|
||||
AZURE_OPENAI_API_KEY: ${{ secrets.AZURE_OPENAI_API_KEY }}
|
||||
AZURE_OPENAI_CHAT_DEPLOYMENT_NAME: ${{ secrets.AZURE_OPENAI_CHAT_DEPLOYMENT_NAME }}
|
||||
AZURE_OPENAI_LLM_DEPLOYMENT_NAME: ${{ secrets.AZURE_OPENAI_LLM_DEPLOYMENT_NAME }}
|
||||
AZURE_OPENAI_EMBEDDINGS_DEPLOYMENT_NAME: ${{ secrets.AZURE_OPENAI_EMBEDDINGS_DEPLOYMENT_NAME }}
|
||||
NVIDIA_API_KEY: ${{ secrets.NVIDIA_API_KEY }}
|
||||
GOOGLE_SEARCH_API_KEY: ${{ secrets.GOOGLE_SEARCH_API_KEY }}
|
||||
GOOGLE_CSE_ID: ${{ secrets.GOOGLE_CSE_ID }}
|
||||
GROQ_API_KEY: ${{ secrets.GROQ_API_KEY }}
|
||||
EXA_API_KEY: ${{ secrets.EXA_API_KEY }}
|
||||
NOMIC_API_KEY: ${{ secrets.NOMIC_API_KEY }}
|
||||
WATSONX_APIKEY: ${{ secrets.WATSONX_APIKEY }}
|
||||
WATSONX_PROJECT_ID: ${{ secrets.WATSONX_PROJECT_ID }}
|
||||
PINECONE_API_KEY: ${{ secrets.PINECONE_API_KEY }}
|
||||
PINECONE_ENVIRONMENT: ${{ secrets.PINECONE_ENVIRONMENT }}
|
||||
ASTRA_DB_API_ENDPOINT: ${{ secrets.ASTRA_DB_API_ENDPOINT }}
|
||||
ASTRA_DB_APPLICATION_TOKEN: ${{ secrets.ASTRA_DB_APPLICATION_TOKEN }}
|
||||
ASTRA_DB_KEYSPACE: ${{ secrets.ASTRA_DB_KEYSPACE }}
|
||||
ES_URL: ${{ secrets.ES_URL }}
|
||||
ES_CLOUD_ID: ${{ secrets.ES_CLOUD_ID }}
|
||||
ES_API_KEY: ${{ secrets.ES_API_KEY }}
|
||||
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }} # for airbyte
|
||||
MONGODB_ATLAS_URI: ${{ secrets.MONGODB_ATLAS_URI }}
|
||||
VOYAGE_API_KEY: ${{ secrets.VOYAGE_API_KEY }}
|
||||
UPSTAGE_API_KEY: ${{ secrets.UPSTAGE_API_KEY }}
|
||||
FIREWORKS_API_KEY: ${{ secrets.FIREWORKS_API_KEY }}
|
||||
run: make integration_tests
|
||||
working-directory: ${{ inputs.working-directory }}
|
||||
python -c "import $IMPORT_NAME; print(dir($IMPORT_NAME))"
|
||||
|
||||
publish:
|
||||
needs:
|
||||
- build
|
||||
- release-notes
|
||||
- test-pypi-publish
|
||||
- pre-release-checks
|
||||
runs-on: ubuntu-latest
|
||||
@@ -323,7 +147,7 @@ jobs:
|
||||
working-directory: ${{ inputs.working-directory }}
|
||||
cache-key: release
|
||||
|
||||
- uses: actions/download-artifact@v4
|
||||
- uses: actions/download-artifact@v3
|
||||
with:
|
||||
name: dist
|
||||
path: ${{ inputs.working-directory }}/dist/
|
||||
@@ -338,7 +162,6 @@ jobs:
|
||||
mark-release:
|
||||
needs:
|
||||
- build
|
||||
- release-notes
|
||||
- test-pypi-publish
|
||||
- pre-release-checks
|
||||
- publish
|
||||
@@ -363,18 +186,18 @@ jobs:
|
||||
working-directory: ${{ inputs.working-directory }}
|
||||
cache-key: release
|
||||
|
||||
- uses: actions/download-artifact@v4
|
||||
- uses: actions/download-artifact@v3
|
||||
with:
|
||||
name: dist
|
||||
path: ${{ inputs.working-directory }}/dist/
|
||||
|
||||
- name: Create Tag
|
||||
|
||||
- name: Create Release
|
||||
uses: ncipollo/release-action@v1
|
||||
if: ${{ inputs.working-directory == 'libs/langchain' }}
|
||||
with:
|
||||
artifacts: "dist/*"
|
||||
token: ${{ secrets.GITHUB_TOKEN }}
|
||||
generateReleaseNotes: false
|
||||
tag: ${{needs.build.outputs.pkg-name}}==${{ needs.build.outputs.version }}
|
||||
body: ${{ needs.release-notes.outputs.release-body }}
|
||||
commit: ${{ github.sha }}
|
||||
makeLatest: ${{ needs.build.outputs.pkg-name == 'langchain-core'}}
|
||||
draft: false
|
||||
generateReleaseNotes: true
|
||||
tag: v${{ needs.build.outputs.version }}
|
||||
commit: master
|
||||
|
||||
36
.github/workflows/_test.yml
vendored
36
.github/workflows/_test.yml
vendored
@@ -7,17 +7,9 @@ on:
|
||||
required: true
|
||||
type: string
|
||||
description: "From which folder this pipeline executes"
|
||||
langchain-location:
|
||||
required: false
|
||||
type: string
|
||||
description: "Relative path to the langchain library folder"
|
||||
python-version:
|
||||
required: true
|
||||
type: string
|
||||
description: "Python version to use"
|
||||
|
||||
env:
|
||||
POETRY_VERSION: "1.7.1"
|
||||
POETRY_VERSION: "1.6.1"
|
||||
|
||||
jobs:
|
||||
build:
|
||||
@@ -25,34 +17,32 @@ jobs:
|
||||
run:
|
||||
working-directory: ${{ inputs.working-directory }}
|
||||
runs-on: ubuntu-latest
|
||||
name: "make test #${{ inputs.python-version }}"
|
||||
strategy:
|
||||
matrix:
|
||||
python-version:
|
||||
- "3.8"
|
||||
- "3.9"
|
||||
- "3.10"
|
||||
- "3.11"
|
||||
name: Python ${{ matrix.python-version }}
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
|
||||
- name: Set up Python ${{ inputs.python-version }} + Poetry ${{ env.POETRY_VERSION }}
|
||||
- name: Set up Python ${{ matrix.python-version }} + Poetry ${{ env.POETRY_VERSION }}
|
||||
uses: "./.github/actions/poetry_setup"
|
||||
with:
|
||||
python-version: ${{ inputs.python-version }}
|
||||
python-version: ${{ matrix.python-version }}
|
||||
poetry-version: ${{ env.POETRY_VERSION }}
|
||||
working-directory: ${{ inputs.working-directory }}
|
||||
cache-key: core
|
||||
|
||||
- name: Install dependencies
|
||||
shell: bash
|
||||
run: poetry install --with test
|
||||
|
||||
- name: Install langchain editable
|
||||
working-directory: ${{ inputs.working-directory }}
|
||||
if: ${{ inputs.langchain-location }}
|
||||
env:
|
||||
LANGCHAIN_LOCATION: ${{ inputs.langchain-location }}
|
||||
run: |
|
||||
poetry run pip install -e "$LANGCHAIN_LOCATION"
|
||||
run: poetry install
|
||||
|
||||
- name: Run core tests
|
||||
shell: bash
|
||||
run: |
|
||||
make test
|
||||
run: make test
|
||||
|
||||
- name: Ensure the tests did not create any additional files
|
||||
shell: bash
|
||||
|
||||
51
.github/workflows/_test_doc_imports.yml
vendored
51
.github/workflows/_test_doc_imports.yml
vendored
@@ -1,51 +0,0 @@
|
||||
name: test_doc_imports
|
||||
|
||||
on:
|
||||
workflow_call:
|
||||
inputs:
|
||||
python-version:
|
||||
required: true
|
||||
type: string
|
||||
description: "Python version to use"
|
||||
|
||||
env:
|
||||
POETRY_VERSION: "1.7.1"
|
||||
|
||||
jobs:
|
||||
build:
|
||||
runs-on: ubuntu-latest
|
||||
name: "check doc imports #${{ inputs.python-version }}"
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
|
||||
- name: Set up Python ${{ inputs.python-version }} + Poetry ${{ env.POETRY_VERSION }}
|
||||
uses: "./.github/actions/poetry_setup"
|
||||
with:
|
||||
python-version: ${{ inputs.python-version }}
|
||||
poetry-version: ${{ env.POETRY_VERSION }}
|
||||
cache-key: core
|
||||
|
||||
- name: Install dependencies
|
||||
shell: bash
|
||||
run: poetry install --with test
|
||||
|
||||
- name: Install langchain editable
|
||||
run: |
|
||||
poetry run pip install -e libs/core libs/langchain libs/community libs/experimental
|
||||
|
||||
- name: Check doc imports
|
||||
shell: bash
|
||||
run: |
|
||||
poetry run python docs/scripts/check_imports.py
|
||||
|
||||
- name: Ensure the test did not create any additional files
|
||||
shell: bash
|
||||
run: |
|
||||
set -eu
|
||||
|
||||
STATUS="$(git status)"
|
||||
echo "$STATUS"
|
||||
|
||||
# grep will exit non-zero if the target message isn't found,
|
||||
# and `set -e` above will cause the step to fail.
|
||||
echo "$STATUS" | grep 'nothing to commit, working tree clean'
|
||||
13
.github/workflows/_test_release.yml
vendored
13
.github/workflows/_test_release.yml
vendored
@@ -7,19 +7,14 @@ on:
|
||||
required: true
|
||||
type: string
|
||||
description: "From which folder this pipeline executes"
|
||||
dangerous-nonmaster-release:
|
||||
required: false
|
||||
type: boolean
|
||||
default: false
|
||||
description: "Release from a non-master branch (danger!)"
|
||||
|
||||
env:
|
||||
POETRY_VERSION: "1.7.1"
|
||||
POETRY_VERSION: "1.6.1"
|
||||
PYTHON_VERSION: "3.10"
|
||||
|
||||
jobs:
|
||||
build:
|
||||
if: github.ref == 'refs/heads/master' || inputs.dangerous-nonmaster-release
|
||||
if: github.ref == 'refs/heads/master'
|
||||
runs-on: ubuntu-latest
|
||||
|
||||
outputs:
|
||||
@@ -53,7 +48,7 @@ jobs:
|
||||
working-directory: ${{ inputs.working-directory }}
|
||||
|
||||
- name: Upload build
|
||||
uses: actions/upload-artifact@v4
|
||||
uses: actions/upload-artifact@v3
|
||||
with:
|
||||
name: test-dist
|
||||
path: ${{ inputs.working-directory }}/dist/
|
||||
@@ -81,7 +76,7 @@ jobs:
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
|
||||
- uses: actions/download-artifact@v4
|
||||
- uses: actions/download-artifact@v3
|
||||
with:
|
||||
name: test-dist
|
||||
path: ${{ inputs.working-directory }}/dist/
|
||||
|
||||
25
.github/workflows/check-broken-links.yml
vendored
25
.github/workflows/check-broken-links.yml
vendored
@@ -1,25 +0,0 @@
|
||||
name: Check Broken Links
|
||||
|
||||
on:
|
||||
workflow_dispatch:
|
||||
schedule:
|
||||
- cron: '0 13 * * *'
|
||||
|
||||
jobs:
|
||||
check-links:
|
||||
if: github.repository_owner == 'langchain-ai'
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
- name: Use Node.js 18.x
|
||||
uses: actions/setup-node@v3
|
||||
with:
|
||||
node-version: 18.x
|
||||
cache: "yarn"
|
||||
cache-dependency-path: ./docs/yarn.lock
|
||||
- name: Install dependencies
|
||||
run: yarn install --immutable --mode=skip-build
|
||||
working-directory: ./docs
|
||||
- name: Check broken links
|
||||
run: yarn check-broken-links
|
||||
working-directory: ./docs
|
||||
166
.github/workflows/check_diffs.yml
vendored
166
.github/workflows/check_diffs.yml
vendored
@@ -1,166 +0,0 @@
|
||||
---
|
||||
name: CI
|
||||
|
||||
on:
|
||||
push:
|
||||
branches: [master]
|
||||
pull_request:
|
||||
|
||||
# If another push to the same PR or branch happens while this workflow is still running,
|
||||
# cancel the earlier run in favor of the next run.
|
||||
#
|
||||
# There's no point in testing an outdated version of the code. GitHub only allows
|
||||
# a limited number of job runners to be active at the same time, so it's better to cancel
|
||||
# pointless jobs early so that more useful jobs can run sooner.
|
||||
concurrency:
|
||||
group: ${{ github.workflow }}-${{ github.ref }}
|
||||
cancel-in-progress: true
|
||||
|
||||
env:
|
||||
POETRY_VERSION: "1.7.1"
|
||||
|
||||
jobs:
|
||||
build:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
- uses: actions/setup-python@v5
|
||||
with:
|
||||
python-version: '3.11'
|
||||
- id: files
|
||||
uses: Ana06/get-changed-files@v2.2.0
|
||||
- id: set-matrix
|
||||
run: |
|
||||
python .github/scripts/check_diff.py ${{ steps.files.outputs.all }} >> $GITHUB_OUTPUT
|
||||
outputs:
|
||||
lint: ${{ steps.set-matrix.outputs.lint }}
|
||||
test: ${{ steps.set-matrix.outputs.test }}
|
||||
extended-tests: ${{ steps.set-matrix.outputs.extended-tests }}
|
||||
compile-integration-tests: ${{ steps.set-matrix.outputs.compile-integration-tests }}
|
||||
dependencies: ${{ steps.set-matrix.outputs.dependencies }}
|
||||
test-doc-imports: ${{ steps.set-matrix.outputs.test-doc-imports }}
|
||||
lint:
|
||||
name: cd ${{ matrix.job-configs.working-directory }}
|
||||
needs: [ build ]
|
||||
if: ${{ needs.build.outputs.lint != '[]' }}
|
||||
strategy:
|
||||
matrix:
|
||||
job-configs: ${{ fromJson(needs.build.outputs.lint) }}
|
||||
uses: ./.github/workflows/_lint.yml
|
||||
with:
|
||||
working-directory: ${{ matrix.job-configs.working-directory }}
|
||||
python-version: ${{ matrix.job-configs.python-version }}
|
||||
secrets: inherit
|
||||
|
||||
test:
|
||||
name: cd ${{ matrix.job-configs.working-directory }}
|
||||
needs: [ build ]
|
||||
if: ${{ needs.build.outputs.test != '[]' }}
|
||||
strategy:
|
||||
matrix:
|
||||
job-configs: ${{ fromJson(needs.build.outputs.test) }}
|
||||
uses: ./.github/workflows/_test.yml
|
||||
with:
|
||||
working-directory: ${{ matrix.job-configs.working-directory }}
|
||||
python-version: ${{ matrix.job-configs.python-version }}
|
||||
secrets: inherit
|
||||
|
||||
test-doc-imports:
|
||||
needs: [ build ]
|
||||
if: ${{ needs.build.outputs.test-doc-imports != '[]' }}
|
||||
strategy:
|
||||
matrix:
|
||||
job-configs: ${{ fromJson(needs.build.outputs.test-doc-imports) }}
|
||||
uses: ./.github/workflows/_test_doc_imports.yml
|
||||
secrets: inherit
|
||||
with:
|
||||
python-version: ${{ matrix.job-configs.python-version }}
|
||||
|
||||
compile-integration-tests:
|
||||
name: cd ${{ matrix.job-configs.working-directory }}
|
||||
needs: [ build ]
|
||||
if: ${{ needs.build.outputs.compile-integration-tests != '[]' }}
|
||||
strategy:
|
||||
matrix:
|
||||
job-configs: ${{ fromJson(needs.build.outputs.compile-integration-tests) }}
|
||||
uses: ./.github/workflows/_compile_integration_test.yml
|
||||
with:
|
||||
working-directory: ${{ matrix.job-configs.working-directory }}
|
||||
python-version: ${{ matrix.job-configs.python-version }}
|
||||
secrets: inherit
|
||||
|
||||
dependencies:
|
||||
name: cd ${{ matrix.job-configs.working-directory }}
|
||||
needs: [ build ]
|
||||
if: ${{ needs.build.outputs.dependencies != '[]' }}
|
||||
strategy:
|
||||
matrix:
|
||||
job-configs: ${{ fromJson(needs.build.outputs.dependencies) }}
|
||||
uses: ./.github/workflows/_dependencies.yml
|
||||
with:
|
||||
working-directory: ${{ matrix.job-configs.working-directory }}
|
||||
python-version: ${{ matrix.job-configs.python-version }}
|
||||
secrets: inherit
|
||||
|
||||
extended-tests:
|
||||
name: "cd ${{ matrix.job-configs.working-directory }} / make extended_tests #${{ matrix.job-configs.python-version }}"
|
||||
needs: [ build ]
|
||||
if: ${{ needs.build.outputs.extended-tests != '[]' }}
|
||||
strategy:
|
||||
matrix:
|
||||
# note different variable for extended test dirs
|
||||
job-configs: ${{ fromJson(needs.build.outputs.extended-tests) }}
|
||||
runs-on: ubuntu-latest
|
||||
defaults:
|
||||
run:
|
||||
working-directory: ${{ matrix.job-configs.working-directory }}
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
|
||||
- name: Set up Python ${{ matrix.job-configs.python-version }} + Poetry ${{ env.POETRY_VERSION }}
|
||||
uses: "./.github/actions/poetry_setup"
|
||||
with:
|
||||
python-version: ${{ matrix.job-configs.python-version }}
|
||||
poetry-version: ${{ env.POETRY_VERSION }}
|
||||
working-directory: ${{ matrix.job-configs.working-directory }}
|
||||
cache-key: extended
|
||||
|
||||
- name: Install dependencies
|
||||
shell: bash
|
||||
run: |
|
||||
echo "Running extended tests, installing dependencies with poetry..."
|
||||
poetry install --with test
|
||||
poetry run pip install uv
|
||||
poetry run uv pip install -r extended_testing_deps.txt
|
||||
|
||||
- name: Run extended tests
|
||||
run: make extended_tests
|
||||
|
||||
- name: Ensure the tests did not create any additional files
|
||||
shell: bash
|
||||
run: |
|
||||
set -eu
|
||||
|
||||
STATUS="$(git status)"
|
||||
echo "$STATUS"
|
||||
|
||||
# grep will exit non-zero if the target message isn't found,
|
||||
# and `set -e` above will cause the step to fail.
|
||||
echo "$STATUS" | grep 'nothing to commit, working tree clean'
|
||||
ci_success:
|
||||
name: "CI Success"
|
||||
needs: [build, lint, test, compile-integration-tests, dependencies, extended-tests, test-doc-imports]
|
||||
if: |
|
||||
always()
|
||||
runs-on: ubuntu-latest
|
||||
env:
|
||||
JOBS_JSON: ${{ toJSON(needs) }}
|
||||
RESULTS_JSON: ${{ toJSON(needs.*.result) }}
|
||||
EXIT_CODE: ${{!contains(needs.*.result, 'failure') && !contains(needs.*.result, 'cancelled') && '0' || '1'}}
|
||||
steps:
|
||||
- name: "CI Success"
|
||||
run: |
|
||||
echo $JOBS_JSON
|
||||
echo $RESULTS_JSON
|
||||
echo "Exiting with $EXIT_CODE"
|
||||
exit $EXIT_CODE
|
||||
36
.github/workflows/check_new_docs.yml
vendored
36
.github/workflows/check_new_docs.yml
vendored
@@ -1,36 +0,0 @@
|
||||
---
|
||||
name: Integration docs lint
|
||||
|
||||
on:
|
||||
push:
|
||||
branches: [master]
|
||||
pull_request:
|
||||
|
||||
# If another push to the same PR or branch happens while this workflow is still running,
|
||||
# cancel the earlier run in favor of the next run.
|
||||
#
|
||||
# There's no point in testing an outdated version of the code. GitHub only allows
|
||||
# a limited number of job runners to be active at the same time, so it's better to cancel
|
||||
# pointless jobs early so that more useful jobs can run sooner.
|
||||
concurrency:
|
||||
group: ${{ github.workflow }}-${{ github.ref }}
|
||||
cancel-in-progress: true
|
||||
|
||||
jobs:
|
||||
build:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
- uses: actions/setup-python@v5
|
||||
with:
|
||||
python-version: '3.10'
|
||||
- id: files
|
||||
uses: Ana06/get-changed-files@v2.2.0
|
||||
with:
|
||||
filter: |
|
||||
*.ipynb
|
||||
*.md
|
||||
*.mdx
|
||||
- name: Check new docs
|
||||
run: |
|
||||
python docs/scripts/check_templates.py ${{ steps.files.outputs.added }}
|
||||
19
.github/workflows/codespell.yml
vendored
19
.github/workflows/codespell.yml
vendored
@@ -1,18 +1,18 @@
|
||||
---
|
||||
name: CI / cd . / make spell_check
|
||||
name: Codespell
|
||||
|
||||
on:
|
||||
push:
|
||||
branches: [master, v0.1]
|
||||
branches: [master]
|
||||
pull_request:
|
||||
branches: [master, v0.1]
|
||||
branches: [master]
|
||||
|
||||
permissions:
|
||||
contents: read
|
||||
|
||||
jobs:
|
||||
codespell:
|
||||
name: (Check for spelling errors)
|
||||
name: Check for spelling errors
|
||||
runs-on: ubuntu-latest
|
||||
|
||||
steps:
|
||||
@@ -29,9 +29,8 @@ jobs:
|
||||
python .github/workflows/extract_ignored_words_list.py
|
||||
id: extract_ignore_words
|
||||
|
||||
# - name: Codespell
|
||||
# uses: codespell-project/actions-codespell@v2
|
||||
# with:
|
||||
# skip: guide_imports.json,*.ambr,./cookbook/data/imdb_top_1000.csv,*.lock
|
||||
# ignore_words_list: ${{ steps.extract_ignore_words.outputs.ignore_words_list }}
|
||||
# exclude_file: ./.github/workflows/codespell-exclude
|
||||
- name: Codespell
|
||||
uses: codespell-project/actions-codespell@v2
|
||||
with:
|
||||
skip: guide_imports.json
|
||||
ignore_words_list: ${{ steps.extract_ignore_words.outputs.ignore_words_list }}
|
||||
|
||||
35
.github/workflows/doc_lint.yml
vendored
Normal file
35
.github/workflows/doc_lint.yml
vendored
Normal file
@@ -0,0 +1,35 @@
|
||||
---
|
||||
name: Docs, templates, cookbook lint
|
||||
|
||||
on:
|
||||
push:
|
||||
branches: [ master ]
|
||||
pull_request:
|
||||
paths:
|
||||
- 'docs/**'
|
||||
- 'templates/**'
|
||||
- 'cookbook/**'
|
||||
- '.github/workflows/_lint.yml'
|
||||
- '.github/workflows/doc_lint.yml'
|
||||
workflow_dispatch:
|
||||
|
||||
jobs:
|
||||
check:
|
||||
runs-on: ubuntu-latest
|
||||
|
||||
steps:
|
||||
- name: Checkout repository
|
||||
uses: actions/checkout@v4
|
||||
|
||||
- name: Run import check
|
||||
run: |
|
||||
# We should not encourage imports directly from main init file
|
||||
# Expect for hub
|
||||
git grep 'from langchain import' {docs/docs,templates,cookbook} | grep -vE 'from langchain import (hub)' && exit 1 || exit 0
|
||||
|
||||
lint:
|
||||
uses:
|
||||
./.github/workflows/_lint.yml
|
||||
with:
|
||||
working-directory: "."
|
||||
secrets: inherit
|
||||
@@ -3,8 +3,6 @@ import toml
|
||||
pyproject_toml = toml.load("pyproject.toml")
|
||||
|
||||
# Extract the ignore words list (adjust the key as per your TOML structure)
|
||||
ignore_words_list = (
|
||||
pyproject_toml.get("tool", {}).get("codespell", {}).get("ignore-words-list")
|
||||
)
|
||||
ignore_words_list = pyproject_toml.get("tool", {}).get("codespell", {}).get("ignore-words-list")
|
||||
|
||||
print(f"::set-output name=ignore_words_list::{ignore_words_list}")
|
||||
print(f"::set-output name=ignore_words_list::{ignore_words_list}")
|
||||
105
.github/workflows/langchain_ci.yml
vendored
Normal file
105
.github/workflows/langchain_ci.yml
vendored
Normal file
@@ -0,0 +1,105 @@
|
||||
---
|
||||
name: libs/langchain CI
|
||||
|
||||
on:
|
||||
push:
|
||||
branches: [ master ]
|
||||
pull_request:
|
||||
paths:
|
||||
- '.github/actions/poetry_setup/action.yml'
|
||||
- '.github/tools/**'
|
||||
- '.github/workflows/_lint.yml'
|
||||
- '.github/workflows/_test.yml'
|
||||
- '.github/workflows/_pydantic_compatibility.yml'
|
||||
- '.github/workflows/langchain_ci.yml'
|
||||
- 'libs/*'
|
||||
- 'libs/langchain/**'
|
||||
workflow_dispatch: # Allows to trigger the workflow manually in GitHub UI
|
||||
|
||||
# If another push to the same PR or branch happens while this workflow is still running,
|
||||
# cancel the earlier run in favor of the next run.
|
||||
#
|
||||
# There's no point in testing an outdated version of the code. GitHub only allows
|
||||
# a limited number of job runners to be active at the same time, so it's better to cancel
|
||||
# pointless jobs early so that more useful jobs can run sooner.
|
||||
concurrency:
|
||||
group: ${{ github.workflow }}-${{ github.ref }}
|
||||
cancel-in-progress: true
|
||||
|
||||
env:
|
||||
POETRY_VERSION: "1.6.1"
|
||||
WORKDIR: "libs/langchain"
|
||||
|
||||
jobs:
|
||||
lint:
|
||||
uses:
|
||||
./.github/workflows/_lint.yml
|
||||
with:
|
||||
working-directory: libs/langchain
|
||||
secrets: inherit
|
||||
|
||||
test:
|
||||
uses:
|
||||
./.github/workflows/_test.yml
|
||||
with:
|
||||
working-directory: libs/langchain
|
||||
secrets: inherit
|
||||
|
||||
compile-integration-tests:
|
||||
uses:
|
||||
./.github/workflows/_compile_integration_test.yml
|
||||
with:
|
||||
working-directory: libs/langchain
|
||||
secrets: inherit
|
||||
|
||||
pydantic-compatibility:
|
||||
uses:
|
||||
./.github/workflows/_pydantic_compatibility.yml
|
||||
with:
|
||||
working-directory: libs/langchain
|
||||
secrets: inherit
|
||||
|
||||
extended-tests:
|
||||
runs-on: ubuntu-latest
|
||||
defaults:
|
||||
run:
|
||||
working-directory: ${{ env.WORKDIR }}
|
||||
strategy:
|
||||
matrix:
|
||||
python-version:
|
||||
- "3.8"
|
||||
- "3.9"
|
||||
- "3.10"
|
||||
- "3.11"
|
||||
name: Python ${{ matrix.python-version }} extended tests
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
|
||||
- name: Set up Python ${{ matrix.python-version }} + Poetry ${{ env.POETRY_VERSION }}
|
||||
uses: "./.github/actions/poetry_setup"
|
||||
with:
|
||||
python-version: ${{ matrix.python-version }}
|
||||
poetry-version: ${{ env.POETRY_VERSION }}
|
||||
working-directory: libs/langchain
|
||||
cache-key: extended
|
||||
|
||||
- name: Install dependencies
|
||||
shell: bash
|
||||
run: |
|
||||
echo "Running extended tests, installing dependencies with poetry..."
|
||||
poetry install -E extended_testing
|
||||
|
||||
- name: Run extended tests
|
||||
run: make extended_tests
|
||||
|
||||
- name: Ensure the tests did not create any additional files
|
||||
shell: bash
|
||||
run: |
|
||||
set -eu
|
||||
|
||||
STATUS="$(git status)"
|
||||
echo "$STATUS"
|
||||
|
||||
# grep will exit non-zero if the target message isn't found,
|
||||
# and `set -e` above will cause the step to fail.
|
||||
echo "$STATUS" | grep 'nothing to commit, working tree clean'
|
||||
47
.github/workflows/langchain_cli_ci.yml
vendored
Normal file
47
.github/workflows/langchain_cli_ci.yml
vendored
Normal file
@@ -0,0 +1,47 @@
|
||||
---
|
||||
name: libs/cli CI
|
||||
|
||||
on:
|
||||
push:
|
||||
branches: [ master ]
|
||||
pull_request:
|
||||
paths:
|
||||
- '.github/actions/poetry_setup/action.yml'
|
||||
- '.github/tools/**'
|
||||
- '.github/workflows/_lint.yml'
|
||||
- '.github/workflows/_test.yml'
|
||||
- '.github/workflows/_pydantic_compatibility.yml'
|
||||
- '.github/workflows/langchain_cli_ci.yml'
|
||||
- 'libs/cli/**'
|
||||
- 'libs/*'
|
||||
workflow_dispatch: # Allows to trigger the workflow manually in GitHub UI
|
||||
|
||||
# If another push to the same PR or branch happens while this workflow is still running,
|
||||
# cancel the earlier run in favor of the next run.
|
||||
#
|
||||
# There's no point in testing an outdated version of the code. GitHub only allows
|
||||
# a limited number of job runners to be active at the same time, so it's better to cancel
|
||||
# pointless jobs early so that more useful jobs can run sooner.
|
||||
concurrency:
|
||||
group: ${{ github.workflow }}-${{ github.ref }}
|
||||
cancel-in-progress: true
|
||||
|
||||
env:
|
||||
POETRY_VERSION: "1.6.1"
|
||||
WORKDIR: "libs/cli"
|
||||
|
||||
jobs:
|
||||
lint:
|
||||
uses:
|
||||
./.github/workflows/_lint.yml
|
||||
with:
|
||||
working-directory: libs/cli
|
||||
langchain-location: ../langchain
|
||||
secrets: inherit
|
||||
|
||||
test:
|
||||
uses:
|
||||
./.github/workflows/_test.yml
|
||||
with:
|
||||
working-directory: libs/cli
|
||||
secrets: inherit
|
||||
13
.github/workflows/langchain_cli_release.yml
vendored
Normal file
13
.github/workflows/langchain_cli_release.yml
vendored
Normal file
@@ -0,0 +1,13 @@
|
||||
---
|
||||
name: libs/cli Release
|
||||
|
||||
on:
|
||||
workflow_dispatch: # Allows to trigger the workflow manually in GitHub UI
|
||||
|
||||
jobs:
|
||||
release:
|
||||
uses:
|
||||
./.github/workflows/_release.yml
|
||||
with:
|
||||
working-directory: libs/cli
|
||||
secrets: inherit
|
||||
137
.github/workflows/langchain_experimental_ci.yml
vendored
Normal file
137
.github/workflows/langchain_experimental_ci.yml
vendored
Normal file
@@ -0,0 +1,137 @@
|
||||
---
|
||||
name: libs/experimental CI
|
||||
|
||||
on:
|
||||
push:
|
||||
branches: [ master ]
|
||||
pull_request:
|
||||
paths:
|
||||
- '.github/actions/poetry_setup/action.yml'
|
||||
- '.github/tools/**'
|
||||
- '.github/workflows/_lint.yml'
|
||||
- '.github/workflows/_test.yml'
|
||||
- '.github/workflows/langchain_experimental_ci.yml'
|
||||
- 'libs/*'
|
||||
- 'libs/experimental/**'
|
||||
workflow_dispatch: # Allows to trigger the workflow manually in GitHub UI
|
||||
|
||||
# If another push to the same PR or branch happens while this workflow is still running,
|
||||
# cancel the earlier run in favor of the next run.
|
||||
#
|
||||
# There's no point in testing an outdated version of the code. GitHub only allows
|
||||
# a limited number of job runners to be active at the same time, so it's better to cancel
|
||||
# pointless jobs early so that more useful jobs can run sooner.
|
||||
concurrency:
|
||||
group: ${{ github.workflow }}-${{ github.ref }}
|
||||
cancel-in-progress: true
|
||||
|
||||
env:
|
||||
POETRY_VERSION: "1.6.1"
|
||||
WORKDIR: "libs/experimental"
|
||||
|
||||
jobs:
|
||||
lint:
|
||||
uses:
|
||||
./.github/workflows/_lint.yml
|
||||
with:
|
||||
working-directory: libs/experimental
|
||||
langchain-location: ../langchain
|
||||
secrets: inherit
|
||||
|
||||
test:
|
||||
uses:
|
||||
./.github/workflows/_test.yml
|
||||
with:
|
||||
working-directory: libs/experimental
|
||||
secrets: inherit
|
||||
|
||||
compile-integration-tests:
|
||||
uses:
|
||||
./.github/workflows/_compile_integration_test.yml
|
||||
with:
|
||||
working-directory: libs/experimental
|
||||
secrets: inherit
|
||||
|
||||
# It's possible that langchain-experimental works fine with the latest *published* langchain,
|
||||
# but is broken with the langchain on `master`.
|
||||
#
|
||||
# We want to catch situations like that *before* releasing a new langchain, hence this test.
|
||||
test-with-latest-langchain:
|
||||
runs-on: ubuntu-latest
|
||||
defaults:
|
||||
run:
|
||||
working-directory: ${{ env.WORKDIR }}
|
||||
strategy:
|
||||
matrix:
|
||||
python-version:
|
||||
- "3.8"
|
||||
- "3.9"
|
||||
- "3.10"
|
||||
- "3.11"
|
||||
name: test with unpublished langchain - Python ${{ matrix.python-version }}
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
|
||||
- name: Set up Python ${{ matrix.python-version }} + Poetry ${{ env.POETRY_VERSION }}
|
||||
uses: "./.github/actions/poetry_setup"
|
||||
with:
|
||||
python-version: ${{ matrix.python-version }}
|
||||
poetry-version: ${{ env.POETRY_VERSION }}
|
||||
working-directory: ${{ env.WORKDIR }}
|
||||
cache-key: unpublished-langchain
|
||||
|
||||
- name: Install dependencies
|
||||
shell: bash
|
||||
run: |
|
||||
echo "Running tests with unpublished langchain, installing dependencies with poetry..."
|
||||
poetry install
|
||||
|
||||
echo "Editably installing langchain outside of poetry, to avoid messing up lockfile..."
|
||||
poetry run pip install -e ../langchain
|
||||
|
||||
- name: Run tests
|
||||
run: make test
|
||||
extended-tests:
|
||||
runs-on: ubuntu-latest
|
||||
defaults:
|
||||
run:
|
||||
working-directory: ${{ env.WORKDIR }}
|
||||
strategy:
|
||||
matrix:
|
||||
python-version:
|
||||
- "3.8"
|
||||
- "3.9"
|
||||
- "3.10"
|
||||
- "3.11"
|
||||
name: Python ${{ matrix.python-version }} extended tests
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
|
||||
- name: Set up Python ${{ matrix.python-version }} + Poetry ${{ env.POETRY_VERSION }}
|
||||
uses: "./.github/actions/poetry_setup"
|
||||
with:
|
||||
python-version: ${{ matrix.python-version }}
|
||||
poetry-version: ${{ env.POETRY_VERSION }}
|
||||
working-directory: libs/experimental
|
||||
cache-key: extended
|
||||
|
||||
- name: Install dependencies
|
||||
shell: bash
|
||||
run: |
|
||||
echo "Running extended tests, installing dependencies with poetry..."
|
||||
poetry install -E extended_testing
|
||||
|
||||
- name: Run extended tests
|
||||
run: make extended_tests
|
||||
|
||||
- name: Ensure the tests did not create any additional files
|
||||
shell: bash
|
||||
run: |
|
||||
set -eu
|
||||
|
||||
STATUS="$(git status)"
|
||||
echo "$STATUS"
|
||||
|
||||
# grep will exit non-zero if the target message isn't found,
|
||||
# and `set -e` above will cause the step to fail.
|
||||
echo "$STATUS" | grep 'nothing to commit, working tree clean'
|
||||
13
.github/workflows/langchain_experimental_release.yml
vendored
Normal file
13
.github/workflows/langchain_experimental_release.yml
vendored
Normal file
@@ -0,0 +1,13 @@
|
||||
---
|
||||
name: libs/experimental Release
|
||||
|
||||
on:
|
||||
workflow_dispatch: # Allows to trigger the workflow manually in GitHub UI
|
||||
|
||||
jobs:
|
||||
release:
|
||||
uses:
|
||||
./.github/workflows/_release.yml
|
||||
with:
|
||||
working-directory: libs/experimental
|
||||
secrets: inherit
|
||||
13
.github/workflows/langchain_experimental_test_release.yml
vendored
Normal file
13
.github/workflows/langchain_experimental_test_release.yml
vendored
Normal file
@@ -0,0 +1,13 @@
|
||||
---
|
||||
name: Experimental Test Release
|
||||
|
||||
on:
|
||||
workflow_dispatch: # Allows to trigger the workflow manually in GitHub UI
|
||||
|
||||
jobs:
|
||||
release:
|
||||
uses:
|
||||
./.github/workflows/_test_release.yml
|
||||
with:
|
||||
working-directory: libs/experimental
|
||||
secrets: inherit
|
||||
27
.github/workflows/langchain_release.yml
vendored
Normal file
27
.github/workflows/langchain_release.yml
vendored
Normal file
@@ -0,0 +1,27 @@
|
||||
---
|
||||
name: libs/langchain Release
|
||||
|
||||
on:
|
||||
workflow_dispatch: # Allows to trigger the workflow manually in GitHub UI
|
||||
|
||||
jobs:
|
||||
release:
|
||||
uses:
|
||||
./.github/workflows/_release.yml
|
||||
with:
|
||||
working-directory: libs/langchain
|
||||
secrets: inherit
|
||||
|
||||
# N.B.: It's possible that PyPI doesn't make the new release visible / available
|
||||
# immediately after publishing. If that happens, the docker build might not
|
||||
# create a new docker image for the new release, since it won't see it.
|
||||
#
|
||||
# If this ends up being a problem, add a check to the end of the `_release.yml`
|
||||
# workflow that prevents the workflow from finishing until the new release
|
||||
# is visible and installable on PyPI.
|
||||
release-docker:
|
||||
needs:
|
||||
- release
|
||||
uses:
|
||||
./.github/workflows/langchain_release_docker.yml
|
||||
secrets: inherit
|
||||
13
.github/workflows/langchain_test_release.yml
vendored
Normal file
13
.github/workflows/langchain_test_release.yml
vendored
Normal file
@@ -0,0 +1,13 @@
|
||||
---
|
||||
name: Test Release
|
||||
|
||||
on:
|
||||
workflow_dispatch: # Allows to trigger the workflow manually in GitHub UI
|
||||
|
||||
jobs:
|
||||
release:
|
||||
uses:
|
||||
./.github/workflows/_test_release.yml
|
||||
with:
|
||||
working-directory: libs/langchain
|
||||
secrets: inherit
|
||||
37
.github/workflows/people.yml
vendored
37
.github/workflows/people.yml
vendored
@@ -1,37 +0,0 @@
|
||||
name: LangChain People
|
||||
|
||||
on:
|
||||
schedule:
|
||||
- cron: "0 14 1 * *"
|
||||
push:
|
||||
branches: [jacob/people]
|
||||
workflow_dispatch:
|
||||
inputs:
|
||||
debug_enabled:
|
||||
description: 'Run the build with tmate debugging enabled (https://github.com/marketplace/actions/debugging-with-tmate)'
|
||||
required: false
|
||||
default: 'false'
|
||||
|
||||
jobs:
|
||||
langchain-people:
|
||||
if: github.repository_owner == 'langchain-ai'
|
||||
runs-on: ubuntu-latest
|
||||
permissions: write-all
|
||||
steps:
|
||||
- name: Dump GitHub context
|
||||
env:
|
||||
GITHUB_CONTEXT: ${{ toJson(github) }}
|
||||
run: echo "$GITHUB_CONTEXT"
|
||||
- uses: actions/checkout@v4
|
||||
# Ref: https://github.com/actions/runner/issues/2033
|
||||
- name: Fix git safe.directory in container
|
||||
run: mkdir -p /home/runner/work/_temp/_github_home && printf "[safe]\n\tdirectory = /github/workspace" > /home/runner/work/_temp/_github_home/.gitconfig
|
||||
# Allow debugging with tmate
|
||||
- name: Setup tmate session
|
||||
uses: mxschmitt/action-tmate@v3
|
||||
if: ${{ github.event_name == 'workflow_dispatch' && github.event.inputs.debug_enabled == 'true' }}
|
||||
with:
|
||||
limit-access-to-actor: true
|
||||
- uses: ./.github/actions/people
|
||||
with:
|
||||
token: ${{ secrets.LANGCHAIN_PEOPLE_GITHUB_TOKEN }}
|
||||
90
.github/workflows/scheduled_test.yml
vendored
90
.github/workflows/scheduled_test.yml
vendored
@@ -6,64 +6,37 @@ on:
|
||||
- cron: '0 13 * * *'
|
||||
|
||||
env:
|
||||
POETRY_VERSION: "1.7.1"
|
||||
POETRY_VERSION: "1.6.1"
|
||||
|
||||
jobs:
|
||||
build:
|
||||
if: github.repository_owner == 'langchain-ai'
|
||||
name: Python ${{ matrix.python-version }} - ${{ matrix.working-directory }}
|
||||
defaults:
|
||||
run:
|
||||
working-directory: libs/langchain
|
||||
runs-on: ubuntu-latest
|
||||
environment: Scheduled testing
|
||||
strategy:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
python-version:
|
||||
- "3.8"
|
||||
- "3.9"
|
||||
- "3.10"
|
||||
- "3.11"
|
||||
working-directory:
|
||||
- "libs/partners/openai"
|
||||
- "libs/partners/anthropic"
|
||||
- "libs/partners/ai21"
|
||||
- "libs/partners/fireworks"
|
||||
- "libs/partners/groq"
|
||||
- "libs/partners/mistralai"
|
||||
- "libs/partners/together"
|
||||
- "libs/partners/google-vertexai"
|
||||
- "libs/partners/google-genai"
|
||||
- "libs/partners/aws"
|
||||
|
||||
name: Python ${{ matrix.python-version }}
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
with:
|
||||
path: langchain
|
||||
- uses: actions/checkout@v4
|
||||
with:
|
||||
repository: langchain-ai/langchain-google
|
||||
path: langchain-google
|
||||
- uses: actions/checkout@v4
|
||||
with:
|
||||
repository: langchain-ai/langchain-aws
|
||||
path: langchain-aws
|
||||
|
||||
- name: Move libs
|
||||
run: |
|
||||
rm -rf \
|
||||
langchain/libs/partners/google-genai \
|
||||
langchain/libs/partners/google-vertexai
|
||||
mv langchain-google/libs/genai langchain/libs/partners/google-genai
|
||||
mv langchain-google/libs/vertexai langchain/libs/partners/google-vertexai
|
||||
mv langchain-aws/libs/aws langchain/libs/partners/aws
|
||||
|
||||
- name: Set up Python ${{ matrix.python-version }}
|
||||
uses: "./langchain/.github/actions/poetry_setup"
|
||||
uses: "./.github/actions/poetry_setup"
|
||||
with:
|
||||
python-version: ${{ matrix.python-version }}
|
||||
poetry-version: ${{ env.POETRY_VERSION }}
|
||||
working-directory: langchain/${{ matrix.working-directory }}
|
||||
working-directory: libs/langchain
|
||||
cache-key: scheduled
|
||||
|
||||
- name: 'Authenticate to Google Cloud'
|
||||
id: 'auth'
|
||||
uses: google-github-actions/auth@v2
|
||||
uses: 'google-github-actions/auth@v1'
|
||||
with:
|
||||
credentials_json: '${{ secrets.GOOGLE_CREDENTIALS }}'
|
||||
|
||||
@@ -72,47 +45,36 @@ jobs:
|
||||
with:
|
||||
aws-access-key-id: ${{ secrets.AWS_ACCESS_KEY_ID }}
|
||||
aws-secret-access-key: ${{ secrets.AWS_SECRET_ACCESS_KEY }}
|
||||
aws-region: ${{ secrets.AWS_REGION }}
|
||||
aws-region: ${{ vars.AWS_REGION }}
|
||||
|
||||
- name: Install dependencies
|
||||
working-directory: libs/langchain
|
||||
shell: bash
|
||||
run: |
|
||||
echo "Running scheduled tests, installing dependencies with poetry..."
|
||||
cd langchain/${{ matrix.working-directory }}
|
||||
poetry install --with=test_integration,test
|
||||
poetry install --with=test_integration
|
||||
poetry run pip install google-cloud-aiplatform
|
||||
poetry run pip install "boto3>=1.28.57"
|
||||
if [[ ${{ matrix.python-version }} != "3.8" ]]
|
||||
then
|
||||
poetry run pip install fireworks-ai
|
||||
fi
|
||||
|
||||
- name: Run integration tests
|
||||
- name: Run tests
|
||||
shell: bash
|
||||
env:
|
||||
OPENAI_API_KEY: ${{ secrets.OPENAI_API_KEY }}
|
||||
ANTHROPIC_API_KEY: ${{ secrets.ANTHROPIC_API_KEY }}
|
||||
AZURE_OPENAI_API_VERSION: ${{ secrets.AZURE_OPENAI_API_VERSION }}
|
||||
AZURE_OPENAI_API_BASE: ${{ secrets.AZURE_OPENAI_API_BASE }}
|
||||
AZURE_OPENAI_API_KEY: ${{ secrets.AZURE_OPENAI_API_KEY }}
|
||||
AZURE_OPENAI_CHAT_DEPLOYMENT_NAME: ${{ secrets.AZURE_OPENAI_CHAT_DEPLOYMENT_NAME }}
|
||||
AZURE_OPENAI_LLM_DEPLOYMENT_NAME: ${{ secrets.AZURE_OPENAI_LLM_DEPLOYMENT_NAME }}
|
||||
AZURE_OPENAI_EMBEDDINGS_DEPLOYMENT_NAME: ${{ secrets.AZURE_OPENAI_EMBEDDINGS_DEPLOYMENT_NAME }}
|
||||
AI21_API_KEY: ${{ secrets.AI21_API_KEY }}
|
||||
AZURE_OPENAI_DEPLOYMENT_NAME: ${{ secrets.AZURE_OPENAI_DEPLOYMENT_NAME }}
|
||||
FIREWORKS_API_KEY: ${{ secrets.FIREWORKS_API_KEY }}
|
||||
GROQ_API_KEY: ${{ secrets.GROQ_API_KEY }}
|
||||
MISTRAL_API_KEY: ${{ secrets.MISTRAL_API_KEY }}
|
||||
TOGETHER_API_KEY: ${{ secrets.TOGETHER_API_KEY }}
|
||||
COHERE_API_KEY: ${{ secrets.COHERE_API_KEY }}
|
||||
NVIDIA_API_KEY: ${{ secrets.NVIDIA_API_KEY }}
|
||||
GOOGLE_API_KEY: ${{ secrets.GOOGLE_API_KEY }}
|
||||
GOOGLE_SEARCH_API_KEY: ${{ secrets.GOOGLE_SEARCH_API_KEY }}
|
||||
GOOGLE_CSE_ID: ${{ secrets.GOOGLE_CSE_ID }}
|
||||
run: |
|
||||
cd langchain/${{ matrix.working-directory }}
|
||||
make integration_tests
|
||||
|
||||
- name: Remove external libraries
|
||||
run: |
|
||||
rm -rf \
|
||||
langchain/libs/partners/google-genai \
|
||||
langchain/libs/partners/google-vertexai \
|
||||
langchain/libs/partners/aws
|
||||
make scheduled_tests
|
||||
|
||||
- name: Ensure the tests did not create any additional files
|
||||
working-directory: langchain
|
||||
shell: bash
|
||||
run: |
|
||||
set -eu
|
||||
|
||||
|
||||
37
.github/workflows/templates_ci.yml
vendored
Normal file
37
.github/workflows/templates_ci.yml
vendored
Normal file
@@ -0,0 +1,37 @@
|
||||
---
|
||||
name: templates CI
|
||||
|
||||
on:
|
||||
push:
|
||||
branches: [ master ]
|
||||
pull_request:
|
||||
paths:
|
||||
- '.github/actions/poetry_setup/action.yml'
|
||||
- '.github/tools/**'
|
||||
- '.github/workflows/_lint.yml'
|
||||
- '.github/workflows/templates_ci.yml'
|
||||
- 'templates/**'
|
||||
workflow_dispatch: # Allows to trigger the workflow manually in GitHub UI
|
||||
|
||||
# If another push to the same PR or branch happens while this workflow is still running,
|
||||
# cancel the earlier run in favor of the next run.
|
||||
#
|
||||
# There's no point in testing an outdated version of the code. GitHub only allows
|
||||
# a limited number of job runners to be active at the same time, so it's better to cancel
|
||||
# pointless jobs early so that more useful jobs can run sooner.
|
||||
concurrency:
|
||||
group: ${{ github.workflow }}-${{ github.ref }}
|
||||
cancel-in-progress: true
|
||||
|
||||
env:
|
||||
POETRY_VERSION: "1.6.1"
|
||||
WORKDIR: "templates"
|
||||
|
||||
jobs:
|
||||
lint:
|
||||
uses:
|
||||
./.github/workflows/_lint.yml
|
||||
with:
|
||||
working-directory: templates
|
||||
langchain-location: ../libs/langchain
|
||||
secrets: inherit
|
||||
15
.gitignore
vendored
15
.gitignore
vendored
@@ -115,11 +115,13 @@ celerybeat.pid
|
||||
# Environments
|
||||
.env
|
||||
.envrc
|
||||
.venv*
|
||||
venv*
|
||||
.venv
|
||||
.venvs
|
||||
env/
|
||||
venv/
|
||||
ENV/
|
||||
env.bak/
|
||||
venv.bak/
|
||||
|
||||
# Spyder project settings
|
||||
.spyderproject
|
||||
@@ -133,7 +135,6 @@ env.bak/
|
||||
|
||||
# mypy
|
||||
.mypy_cache/
|
||||
.mypy_cache_test/
|
||||
.dmypy.json
|
||||
dmypy.json
|
||||
|
||||
@@ -166,7 +167,8 @@ docs/node_modules/
|
||||
docs/.docusaurus/
|
||||
docs/.cache-loader/
|
||||
docs/_dist
|
||||
docs/api_reference/*api_reference.rst
|
||||
docs/api_reference/api_reference.rst
|
||||
docs/api_reference/experimental_api_reference.rst
|
||||
docs/api_reference/_build
|
||||
docs/api_reference/*/
|
||||
!docs/api_reference/_static/
|
||||
@@ -176,7 +178,4 @@ docs/docs/build
|
||||
docs/docs/node_modules
|
||||
docs/docs/yarn.lock
|
||||
_dist
|
||||
docs/docs/templates
|
||||
|
||||
prof
|
||||
virtualenv/
|
||||
docs/docs/templates
|
||||
@@ -4,17 +4,20 @@
|
||||
# Required
|
||||
version: 2
|
||||
|
||||
formats:
|
||||
- pdf
|
||||
|
||||
# Set the version of Python and other tools you might need
|
||||
build:
|
||||
os: ubuntu-22.04
|
||||
tools:
|
||||
python: "3.11"
|
||||
commands:
|
||||
- mkdir -p $READTHEDOCS_OUTPUT
|
||||
- cp -r api_reference_build/* $READTHEDOCS_OUTPUT
|
||||
- python -mvirtualenv $READTHEDOCS_VIRTUALENV_PATH
|
||||
- python -m pip install --upgrade --no-cache-dir pip setuptools
|
||||
- python -m pip install --upgrade --no-cache-dir sphinx readthedocs-sphinx-ext
|
||||
- python -m pip install --exists-action=w --no-cache-dir -r docs/api_reference/requirements.txt
|
||||
- python docs/api_reference/create_api_rst.py
|
||||
- cat docs/api_reference/conf.py
|
||||
- python -m sphinx -T -E -b html -d _build/doctrees -c docs/api_reference docs/api_reference $READTHEDOCS_OUTPUT/html -j auto
|
||||
|
||||
# Build documentation in the docs/ directory with Sphinx
|
||||
sphinx:
|
||||
configuration: docs/api_reference/conf.py
|
||||
|
||||
12
LICENSE
12
LICENSE
@@ -1,6 +1,6 @@
|
||||
MIT License
|
||||
The MIT License
|
||||
|
||||
Copyright (c) LangChain, Inc.
|
||||
Copyright (c) Harrison Chase
|
||||
|
||||
Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
of this software and associated documentation files (the "Software"), to deal
|
||||
@@ -9,13 +9,13 @@ to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||
copies of the Software, and to permit persons to whom the Software is
|
||||
furnished to do so, subject to the following conditions:
|
||||
|
||||
The above copyright notice and this permission notice shall be included in all
|
||||
copies or substantial portions of the Software.
|
||||
The above copyright notice and this permission notice shall be included in
|
||||
all copies or substantial portions of the Software.
|
||||
|
||||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||||
SOFTWARE.
|
||||
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
||||
THE SOFTWARE.
|
||||
21
MIGRATE.md
21
MIGRATE.md
@@ -1,18 +1,9 @@
|
||||
# Migrating
|
||||
|
||||
## 🚨Breaking Changes for select chains (SQLDatabase) on 7/28/23
|
||||
|
||||
In an effort to make `langchain` leaner and safer, we are moving select chains to `langchain_experimental`.
|
||||
This migration has already started, but we are remaining backwards compatible until 7/28.
|
||||
On that date, we will remove functionality from `langchain`.
|
||||
Read more about the motivation and the progress [here](https://github.com/langchain-ai/langchain/discussions/8043).
|
||||
|
||||
### Migrating to `langchain_experimental`
|
||||
# Migrating to `langchain_experimental`
|
||||
|
||||
We are moving any experimental components of LangChain, or components with vulnerability issues, into `langchain_experimental`.
|
||||
This guide covers how to migrate.
|
||||
|
||||
### Installation
|
||||
## Installation
|
||||
|
||||
Previously:
|
||||
|
||||
@@ -22,7 +13,7 @@ Now (only if you want to access things in experimental):
|
||||
|
||||
`pip install -U langchain langchain_experimental`
|
||||
|
||||
### Things in `langchain.experimental`
|
||||
## Things in `langchain.experimental`
|
||||
|
||||
Previously:
|
||||
|
||||
@@ -32,7 +23,7 @@ Now:
|
||||
|
||||
`from langchain_experimental import ...`
|
||||
|
||||
### PALChain
|
||||
## PALChain
|
||||
|
||||
Previously:
|
||||
|
||||
@@ -42,7 +33,7 @@ Now:
|
||||
|
||||
`from langchain_experimental.pal_chain import PALChain`
|
||||
|
||||
### SQLDatabaseChain
|
||||
## SQLDatabaseChain
|
||||
|
||||
Previously:
|
||||
|
||||
@@ -56,7 +47,7 @@ Alternatively, if you are just interested in using the query generation part of
|
||||
|
||||
`from langchain.chains import create_sql_query_chain`
|
||||
|
||||
### `load_prompt` for Python files
|
||||
## `load_prompt` for Python files
|
||||
|
||||
Note: this only applies if you want to load Python files as prompts.
|
||||
If you want to load json/yaml files, no change is needed.
|
||||
|
||||
71
Makefile
71
Makefile
@@ -1,60 +1,39 @@
|
||||
.PHONY: all clean help docs_build docs_clean docs_linkcheck api_docs_build api_docs_clean api_docs_linkcheck spell_check spell_fix lint lint_package lint_tests format format_diff
|
||||
.PHONY: all clean docs_build docs_clean docs_linkcheck api_docs_build api_docs_clean api_docs_linkcheck
|
||||
|
||||
## help: Show this help info.
|
||||
help: Makefile
|
||||
@printf "\n\033[1mUsage: make <TARGETS> ...\033[0m\n\n\033[1mTargets:\033[0m\n\n"
|
||||
@sed -n 's/^## //p' $< | awk -F':' '{printf "\033[36m%-30s\033[0m %s\n", $$1, $$2}' | sort | sed -e 's/^/ /'
|
||||
|
||||
## all: Default target, shows help.
|
||||
# Default target executed when no arguments are given to make.
|
||||
all: help
|
||||
|
||||
## clean: Clean documentation and API documentation artifacts.
|
||||
clean: docs_clean api_docs_clean
|
||||
|
||||
######################
|
||||
# DOCUMENTATION
|
||||
######################
|
||||
|
||||
## docs_build: Build the documentation.
|
||||
clean: docs_clean api_docs_clean
|
||||
|
||||
|
||||
docs_build:
|
||||
cd docs && make build
|
||||
docs/.local_build.sh
|
||||
|
||||
## docs_clean: Clean the documentation build artifacts.
|
||||
docs_clean:
|
||||
cd docs && make clean
|
||||
rm -r _dist
|
||||
|
||||
## docs_linkcheck: Run linkchecker on the documentation.
|
||||
docs_linkcheck:
|
||||
poetry run linkchecker _dist/docs/ --ignore-url node_modules
|
||||
|
||||
## api_docs_build: Build the API Reference documentation.
|
||||
api_docs_build:
|
||||
poetry run python docs/api_reference/create_api_rst.py
|
||||
cd docs/api_reference && poetry run make html
|
||||
|
||||
API_PKG ?= text-splitters
|
||||
|
||||
api_docs_quick_preview:
|
||||
poetry run pip install "pydantic<2"
|
||||
poetry run python docs/api_reference/create_api_rst.py $(API_PKG)
|
||||
cd docs/api_reference && poetry run make html
|
||||
open docs/api_reference/_build/html/$(shell echo $(API_PKG) | sed 's/-/_/g')_api_reference.html
|
||||
|
||||
## api_docs_clean: Clean the API Reference documentation build artifacts.
|
||||
api_docs_clean:
|
||||
find ./docs/api_reference -name '*_api_reference.rst' -delete
|
||||
git clean -fdX ./docs/api_reference
|
||||
|
||||
rm -f docs/api_reference/api_reference.rst
|
||||
cd docs/api_reference && poetry run make clean
|
||||
|
||||
## api_docs_linkcheck: Run linkchecker on the API Reference documentation.
|
||||
api_docs_linkcheck:
|
||||
poetry run linkchecker docs/api_reference/_build/html/index.html
|
||||
|
||||
## spell_check: Run codespell on the project.
|
||||
spell_check:
|
||||
poetry run codespell --toml pyproject.toml
|
||||
|
||||
## spell_fix: Run codespell on the project and fix the errors.
|
||||
spell_fix:
|
||||
poetry run codespell --toml pyproject.toml -w
|
||||
|
||||
@@ -62,14 +41,28 @@ spell_fix:
|
||||
# LINTING AND FORMATTING
|
||||
######################
|
||||
|
||||
## lint: Run linting on the project.
|
||||
lint lint_package lint_tests:
|
||||
poetry run ruff check docs templates cookbook
|
||||
poetry run ruff format docs templates cookbook --diff
|
||||
poetry run ruff check --select I docs templates cookbook
|
||||
git grep 'from langchain import' docs/docs templates cookbook | grep -vE 'from langchain import (hub)' && exit 1 || exit 0
|
||||
lint:
|
||||
poetry run ruff docs templates cookbook
|
||||
poetry run black docs templates cookbook --diff
|
||||
|
||||
## format: Format the project files.
|
||||
format format_diff:
|
||||
poetry run ruff format docs templates cookbook
|
||||
poetry run ruff check --select I --fix docs templates cookbook
|
||||
poetry run black docs templates cookbook
|
||||
poetry run ruff --select I --fix docs templates cookbook
|
||||
|
||||
######################
|
||||
# HELP
|
||||
######################
|
||||
|
||||
help:
|
||||
@echo '===================='
|
||||
@echo '-- DOCUMENTATION --'
|
||||
@echo 'clean - run docs_clean and api_docs_clean'
|
||||
@echo 'docs_build - build the documentation'
|
||||
@echo 'docs_clean - clean the documentation build artifacts'
|
||||
@echo 'docs_linkcheck - run linkchecker on the documentation'
|
||||
@echo 'api_docs_build - build the API Reference documentation'
|
||||
@echo 'api_docs_clean - clean the API Reference documentation build artifacts'
|
||||
@echo 'api_docs_linkcheck - run linkchecker on the API Reference documentation'
|
||||
@echo 'spell_check - run codespell on the project'
|
||||
@echo 'spell_fix - run codespell on the project and fix the errors'
|
||||
@echo '-- TEST and LINT tasks are within libs/*/ per-package --'
|
||||
|
||||
174
README.md
174
README.md
@@ -1,136 +1,104 @@
|
||||
# 🦜️🔗 LangChain
|
||||
|
||||
⚡ Build context-aware reasoning applications ⚡
|
||||
⚡ Building applications with LLMs through composability ⚡
|
||||
|
||||
[](https://github.com/langchain-ai/langchain/releases)
|
||||
[](https://github.com/langchain-ai/langchain/actions/workflows/check_diffs.yml)
|
||||
[](https://opensource.org/licenses/MIT)
|
||||
[](https://pypistats.org/packages/langchain-core)
|
||||
[](https://star-history.com/#langchain-ai/langchain)
|
||||
[](https://libraries.io/github/langchain-ai/langchain)
|
||||
[](https://github.com/langchain-ai/langchain/issues)
|
||||
[](https://vscode.dev/redirect?url=vscode://ms-vscode-remote.remote-containers/cloneInVolume?url=https://github.com/langchain-ai/langchain)
|
||||
[](https://codespaces.new/langchain-ai/langchain)
|
||||
[](https://github.com/langchain-ai/langchain/releases)
|
||||
[](https://github.com/langchain-ai/langchain/actions/workflows/langchain_ci.yml)
|
||||
[](https://github.com/langchain-ai/langchain/actions/workflows/langchain_experimental_ci.yml)
|
||||
[](https://pepy.tech/project/langchain)
|
||||
[](https://opensource.org/licenses/MIT)
|
||||
[](https://twitter.com/langchainai)
|
||||
[](https://discord.gg/6adMQxSpJS)
|
||||
[](https://vscode.dev/redirect?url=vscode://ms-vscode-remote.remote-containers/cloneInVolume?url=https://github.com/langchain-ai/langchain)
|
||||
[](https://codespaces.new/langchain-ai/langchain)
|
||||
[](https://star-history.com/#langchain-ai/langchain)
|
||||
[](https://libraries.io/github/langchain-ai/langchain)
|
||||
[](https://github.com/langchain-ai/langchain/issues)
|
||||
|
||||
Looking for the JS/TS library? Check out [LangChain.js](https://github.com/langchain-ai/langchainjs).
|
||||
|
||||
Looking for the JS/TS version? Check out [LangChain.js](https://github.com/langchain-ai/langchainjs).
|
||||
|
||||
To help you ship LangChain apps to production faster, check out [LangSmith](https://smith.langchain.com).
|
||||
[LangSmith](https://smith.langchain.com) is a unified developer platform for building, testing, and monitoring LLM applications.
|
||||
Fill out [this form](https://www.langchain.com/contact-sales) to speak with our sales team.
|
||||
Fill out [this form](https://airtable.com/appwQzlErAS2qiP0L/shrGtGaVBVAz7NcV2) to get off the waitlist or speak with our sales team
|
||||
|
||||
## 🚨Breaking Changes for select chains (SQLDatabase) on 7/28/23
|
||||
|
||||
In an effort to make `langchain` leaner and safer, we are moving select chains to `langchain_experimental`.
|
||||
This migration has already started, but we are remaining backwards compatible until 7/28.
|
||||
On that date, we will remove functionality from `langchain`.
|
||||
Read more about the motivation and the progress [here](https://github.com/langchain-ai/langchain/discussions/8043).
|
||||
Read how to migrate your code [here](MIGRATE.md).
|
||||
|
||||
## Quick Install
|
||||
|
||||
With pip:
|
||||
```bash
|
||||
pip install langchain
|
||||
```
|
||||
`pip install langchain`
|
||||
or
|
||||
`pip install langsmith && conda install langchain -c conda-forge`
|
||||
|
||||
With conda:
|
||||
```bash
|
||||
conda install langchain -c conda-forge
|
||||
```
|
||||
## 🤔 What is this?
|
||||
|
||||
## 🤔 What is LangChain?
|
||||
Large language models (LLMs) are emerging as a transformative technology, enabling developers to build applications that they previously could not. However, using these LLMs in isolation is often insufficient for creating a truly powerful app - the real power comes when you can combine them with other sources of computation or knowledge.
|
||||
|
||||
**LangChain** is a framework for developing applications powered by large language models (LLMs).
|
||||
This library aims to assist in the development of those types of applications. Common examples of these applications include:
|
||||
|
||||
For these applications, LangChain simplifies the entire application lifecycle:
|
||||
**❓ Question Answering over specific documents**
|
||||
|
||||
- **Open-source libraries**: Build your applications using LangChain's open-source [building blocks](https://python.langchain.com/v0.2/docs/concepts#langchain-expression-language-lcel), [components](https://python.langchain.com/v0.2/docs/concepts), and [third-party integrations](https://python.langchain.com/v0.2/docs/integrations/platforms/).
|
||||
Use [LangGraph](/docs/concepts/#langgraph) to build stateful agents with first-class streaming and human-in-the-loop support.
|
||||
- **Productionization**: Inspect, monitor, and evaluate your apps with [LangSmith](https://docs.smith.langchain.com/) so that you can constantly optimize and deploy with confidence.
|
||||
- **Deployment**: Turn your LangGraph applications into production-ready APIs and Assistants with [LangGraph Cloud](https://langchain-ai.github.io/langgraph/cloud/).
|
||||
- [Documentation](https://python.langchain.com/docs/use_cases/question_answering/)
|
||||
- End-to-end Example: [Question Answering over Notion Database](https://github.com/hwchase17/notion-qa)
|
||||
|
||||
### Open-source libraries
|
||||
- **`langchain-core`**: Base abstractions and LangChain Expression Language.
|
||||
- **`langchain-community`**: Third party integrations.
|
||||
- Some integrations have been further split into **partner packages** that only rely on **`langchain-core`**. Examples include **`langchain_openai`** and **`langchain_anthropic`**.
|
||||
- **`langchain`**: Chains, agents, and retrieval strategies that make up an application's cognitive architecture.
|
||||
- **[`LangGraph`](https://langchain-ai.github.io/langgraph/)**: A library for building robust and stateful multi-actor applications with LLMs by modeling steps as edges and nodes in a graph. Integrates smoothly with LangChain, but can be used without it.
|
||||
**💬 Chatbots**
|
||||
|
||||
### Productionization:
|
||||
- **[LangSmith](https://docs.smith.langchain.com/)**: A developer platform that lets you debug, test, evaluate, and monitor chains built on any LLM framework and seamlessly integrates with LangChain.
|
||||
|
||||
### Deployment:
|
||||
- **[LangGraph Cloud](https://langchain-ai.github.io/langgraph/cloud/)**: Turn your LangGraph applications into production-ready APIs and Assistants.
|
||||
|
||||

|
||||
|
||||
## 🧱 What can you build with LangChain?
|
||||
|
||||
**❓ Question answering with RAG**
|
||||
|
||||
- [Documentation](https://python.langchain.com/v0.2/docs/tutorials/rag/)
|
||||
- End-to-end Example: [Chat LangChain](https://chat.langchain.com) and [repo](https://github.com/langchain-ai/chat-langchain)
|
||||
|
||||
**🧱 Extracting structured output**
|
||||
|
||||
- [Documentation](https://python.langchain.com/v0.2/docs/tutorials/extraction/)
|
||||
- End-to-end Example: [SQL Llama2 Template](https://github.com/langchain-ai/langchain-extract/)
|
||||
|
||||
**🤖 Chatbots**
|
||||
|
||||
- [Documentation](https://python.langchain.com/v0.2/docs/tutorials/chatbot/)
|
||||
- End-to-end Example: [Web LangChain (web researcher chatbot)](https://weblangchain.vercel.app) and [repo](https://github.com/langchain-ai/weblangchain)
|
||||
|
||||
And much more! Head to the [Tutorials](https://python.langchain.com/v0.2/docs/tutorials/) section of the docs for more.
|
||||
|
||||
## 🚀 How does LangChain help?
|
||||
The main value props of the LangChain libraries are:
|
||||
1. **Components**: composable building blocks, tools and integrations for working with language models. Components are modular and easy-to-use, whether you are using the rest of the LangChain framework or not
|
||||
2. **Off-the-shelf chains**: built-in assemblages of components for accomplishing higher-level tasks
|
||||
|
||||
Off-the-shelf chains make it easy to get started. Components make it easy to customize existing chains and build new ones.
|
||||
|
||||
## LangChain Expression Language (LCEL)
|
||||
|
||||
LCEL is the foundation of many of LangChain's components, and is a declarative way to compose chains. LCEL was designed from day 1 to support putting prototypes in production, with no code changes, from the simplest “prompt + LLM” chain to the most complex chains.
|
||||
|
||||
- **[Overview](https://python.langchain.com/v0.2/docs/concepts/#langchain-expression-language-lcel)**: LCEL and its benefits
|
||||
- **[Interface](https://python.langchain.com/v0.2/docs/concepts/#runnable-interface)**: The standard Runnable interface for LCEL objects
|
||||
- **[Primitives](https://python.langchain.com/v0.2/docs/how_to/#langchain-expression-language-lcel)**: More on the primitives LCEL includes
|
||||
- **[Cheatsheet](https://python.langchain.com/v0.2/docs/how_to/lcel_cheatsheet/)**: Quick overview of the most common usage patterns
|
||||
|
||||
## Components
|
||||
|
||||
Components fall into the following **modules**:
|
||||
|
||||
**📃 Model I/O**
|
||||
|
||||
This includes [prompt management](https://python.langchain.com/v0.2/docs/concepts/#prompt-templates), [prompt optimization](https://python.langchain.com/v0.2/docs/concepts/#example-selectors), a generic interface for [chat models](https://python.langchain.com/v0.2/docs/concepts/#chat-models) and [LLMs](https://python.langchain.com/v0.2/docs/concepts/#llms), and common utilities for working with [model outputs](https://python.langchain.com/v0.2/docs/concepts/#output-parsers).
|
||||
|
||||
**📚 Retrieval**
|
||||
|
||||
Retrieval Augmented Generation involves [loading data](https://python.langchain.com/v0.2/docs/concepts/#document-loaders) from a variety of sources, [preparing it](https://python.langchain.com/v0.2/docs/concepts/#text-splitters), then [searching over (a.k.a. retrieving from)](https://python.langchain.com/v0.2/docs/concepts/#retrievers) it for use in the generation step.
|
||||
- [Documentation](https://python.langchain.com/docs/use_cases/chatbots/)
|
||||
- End-to-end Example: [Chat-LangChain](https://github.com/langchain-ai/chat-langchain)
|
||||
|
||||
**🤖 Agents**
|
||||
|
||||
Agents allow an LLM autonomy over how a task is accomplished. Agents make decisions about which Actions to take, then take that Action, observe the result, and repeat until the task is complete. LangChain provides a [standard interface for agents](https://python.langchain.com/v0.2/docs/concepts/#agents), along with [LangGraph](https://github.com/langchain-ai/langgraph) for building custom agents.
|
||||
- [Documentation](https://python.langchain.com/docs/modules/agents/)
|
||||
- End-to-end Example: [GPT+WolframAlpha](https://huggingface.co/spaces/JavaFXpert/Chat-GPT-LangChain)
|
||||
|
||||
## 📖 Documentation
|
||||
|
||||
Please see [here](https://python.langchain.com) for full documentation, which includes:
|
||||
Please see [here](https://python.langchain.com) for full documentation on:
|
||||
|
||||
- [Introduction](https://python.langchain.com/v0.2/docs/introduction/): Overview of the framework and the structure of the docs.
|
||||
- [Tutorials](https://python.langchain.com/docs/use_cases/): If you're looking to build something specific or are more of a hands-on learner, check out our tutorials. This is the best place to get started.
|
||||
- [How-to guides](https://python.langchain.com/v0.2/docs/how_to/): Answers to “How do I….?” type questions. These guides are goal-oriented and concrete; they're meant to help you complete a specific task.
|
||||
- [Conceptual guide](https://python.langchain.com/v0.2/docs/concepts/): Conceptual explanations of the key parts of the framework.
|
||||
- [API Reference](https://api.python.langchain.com): Thorough documentation of every class and method.
|
||||
- Getting started (installation, setting up the environment, simple examples)
|
||||
- How-To examples (demos, integrations, helper functions)
|
||||
- Reference (full API docs)
|
||||
- Resources (high-level explanation of core concepts)
|
||||
|
||||
## 🌐 Ecosystem
|
||||
## 🚀 What can this help with?
|
||||
|
||||
- [🦜🛠️ LangSmith](https://docs.smith.langchain.com/): Trace and evaluate your language model applications and intelligent agents to help you move from prototype to production.
|
||||
- [🦜🕸️ LangGraph](https://langchain-ai.github.io/langgraph/): Create stateful, multi-actor applications with LLMs. Integrates smoothly with LangChain, but can be used without it.
|
||||
- [🦜🏓 LangServe](https://python.langchain.com/docs/langserve): Deploy LangChain runnables and chains as REST APIs.
|
||||
There are six main areas that LangChain is designed to help with.
|
||||
These are, in increasing order of complexity:
|
||||
|
||||
**📃 LLMs and Prompts:**
|
||||
|
||||
This includes prompt management, prompt optimization, a generic interface for all LLMs, and common utilities for working with LLMs.
|
||||
|
||||
**🔗 Chains:**
|
||||
|
||||
Chains go beyond a single LLM call and involve sequences of calls (whether to an LLM or a different utility). LangChain provides a standard interface for chains, lots of integrations with other tools, and end-to-end chains for common applications.
|
||||
|
||||
**📚 Data Augmented Generation:**
|
||||
|
||||
Data Augmented Generation involves specific types of chains that first interact with an external data source to fetch data for use in the generation step. Examples include summarization of long pieces of text and question/answering over specific data sources.
|
||||
|
||||
**🤖 Agents:**
|
||||
|
||||
Agents involve an LLM making decisions about which Actions to take, taking that Action, seeing an Observation, and repeating that until done. LangChain provides a standard interface for agents, a selection of agents to choose from, and examples of end-to-end agents.
|
||||
|
||||
**🧠 Memory:**
|
||||
|
||||
Memory refers to persisting state between calls of a chain/agent. LangChain provides a standard interface for memory, a collection of memory implementations, and examples of chains/agents that use memory.
|
||||
|
||||
**🧐 Evaluation:**
|
||||
|
||||
[BETA] Generative models are notoriously hard to evaluate with traditional metrics. One new way of evaluating them is by using language models themselves to do the evaluation. LangChain provides some prompts/chains for assisting in this.
|
||||
|
||||
For more information on these concepts, please see our [full documentation](https://python.langchain.com).
|
||||
|
||||
## 💁 Contributing
|
||||
|
||||
As an open-source project in a rapidly developing field, we are extremely open to contributions, whether it be in the form of a new feature, improved infrastructure, or better documentation.
|
||||
|
||||
For detailed information on how to contribute, see [here](https://python.langchain.com/v0.2/docs/contributing/).
|
||||
|
||||
## 🌟 Contributors
|
||||
|
||||
[](https://github.com/langchain-ai/langchain/graphs/contributors)
|
||||
For detailed information on how to contribute, see [here](.github/CONTRIBUTING.md).
|
||||
|
||||
61
SECURITY.md
61
SECURITY.md
@@ -1,61 +1,6 @@
|
||||
# Security Policy
|
||||
|
||||
## Reporting OSS Vulnerabilities
|
||||
## Reporting a Vulnerability
|
||||
|
||||
LangChain is partnered with [huntr by Protect AI](https://huntr.com/) to provide
|
||||
a bounty program for our open source projects.
|
||||
|
||||
Please report security vulnerabilities associated with the LangChain
|
||||
open source projects by visiting the following link:
|
||||
|
||||
[https://huntr.com/bounties/disclose/](https://huntr.com/bounties/disclose/?target=https%3A%2F%2Fgithub.com%2Flangchain-ai%2Flangchain&validSearch=true)
|
||||
|
||||
Before reporting a vulnerability, please review:
|
||||
|
||||
1) In-Scope Targets and Out-of-Scope Targets below.
|
||||
2) The [langchain-ai/langchain](https://python.langchain.com/docs/contributing/repo_structure) monorepo structure.
|
||||
3) LangChain [security guidelines](https://python.langchain.com/docs/security) to
|
||||
understand what we consider to be a security vulnerability vs. developer
|
||||
responsibility.
|
||||
|
||||
### In-Scope Targets
|
||||
|
||||
The following packages and repositories are eligible for bug bounties:
|
||||
|
||||
- langchain-core
|
||||
- langchain (see exceptions)
|
||||
- langchain-community (see exceptions)
|
||||
- langgraph
|
||||
- langserve
|
||||
|
||||
### Out of Scope Targets
|
||||
|
||||
All out of scope targets defined by huntr as well as:
|
||||
|
||||
- **langchain-experimental**: This repository is for experimental code and is not
|
||||
eligible for bug bounties, bug reports to it will be marked as interesting or waste of
|
||||
time and published with no bounty attached.
|
||||
- **tools**: Tools in either langchain or langchain-community are not eligible for bug
|
||||
bounties. This includes the following directories
|
||||
- langchain/tools
|
||||
- langchain-community/tools
|
||||
- Please review our [security guidelines](https://python.langchain.com/docs/security)
|
||||
for more details, but generally tools interact with the real world. Developers are
|
||||
expected to understand the security implications of their code and are responsible
|
||||
for the security of their tools.
|
||||
- Code documented with security notices. This will be decided done on a case by
|
||||
case basis, but likely will not be eligible for a bounty as the code is already
|
||||
documented with guidelines for developers that should be followed for making their
|
||||
application secure.
|
||||
- Any LangSmith related repositories or APIs see below.
|
||||
|
||||
## Reporting LangSmith Vulnerabilities
|
||||
|
||||
Please report security vulnerabilities associated with LangSmith by email to `security@langchain.dev`.
|
||||
|
||||
- LangSmith site: https://smith.langchain.com
|
||||
- SDK client: https://github.com/langchain-ai/langsmith-sdk
|
||||
|
||||
### Other Security Concerns
|
||||
|
||||
For any other security concerns, please contact us at `security@langchain.dev`.
|
||||
Please report security vulnerabilities by email to `security@langchain.dev`.
|
||||
This email is an alias to a subset of our maintainers, and will ensure the issue is promptly triaged and acted upon as needed.
|
||||
|
||||
@@ -1,932 +0,0 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"id": "BYejgj8Zf-LG",
|
||||
"tags": []
|
||||
},
|
||||
"source": [
|
||||
"## Getting started with LangChain and Gemma, running locally or in the Cloud"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"id": "2IxjMb9-jIJ8"
|
||||
},
|
||||
"source": [
|
||||
"### Installing dependencies"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 1,
|
||||
"metadata": {
|
||||
"colab": {
|
||||
"base_uri": "https://localhost:8080/"
|
||||
},
|
||||
"executionInfo": {
|
||||
"elapsed": 9436,
|
||||
"status": "ok",
|
||||
"timestamp": 1708975187360,
|
||||
"user": {
|
||||
"displayName": "",
|
||||
"userId": ""
|
||||
},
|
||||
"user_tz": -60
|
||||
},
|
||||
"id": "XZaTsXfcheTF",
|
||||
"outputId": "eb21d603-d824-46c5-f99f-087fb2f618b1",
|
||||
"tags": []
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"!pip install --upgrade langchain langchain-google-vertexai"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"id": "IXmAujvC3Kwp"
|
||||
},
|
||||
"source": [
|
||||
"### Running the model"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"id": "CI8Elyc5gBQF"
|
||||
},
|
||||
"source": [
|
||||
"Go to the VertexAI Model Garden on Google Cloud [console](https://pantheon.corp.google.com/vertex-ai/publishers/google/model-garden/335), and deploy the desired version of Gemma to VertexAI. It will take a few minutes, and after the endpoint it ready, you need to copy its number."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 1,
|
||||
"metadata": {
|
||||
"id": "gv1j8FrVftsC"
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# @title Basic parameters\n",
|
||||
"project: str = \"PUT_YOUR_PROJECT_ID_HERE\" # @param {type:\"string\"}\n",
|
||||
"endpoint_id: str = \"PUT_YOUR_ENDPOINT_ID_HERE\" # @param {type:\"string\"}\n",
|
||||
"location: str = \"PUT_YOUR_ENDPOINT_LOCAtION_HERE\" # @param {type:\"string\"}"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 3,
|
||||
"metadata": {
|
||||
"executionInfo": {
|
||||
"elapsed": 3,
|
||||
"status": "ok",
|
||||
"timestamp": 1708975440503,
|
||||
"user": {
|
||||
"displayName": "",
|
||||
"userId": ""
|
||||
},
|
||||
"user_tz": -60
|
||||
},
|
||||
"id": "bhIHsFGYjtFt",
|
||||
"tags": []
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stderr",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"2024-02-27 17:15:10.457149: I tensorflow/core/util/port.cc:113] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`.\n",
|
||||
"2024-02-27 17:15:10.508925: E external/local_xla/xla/stream_executor/cuda/cuda_dnn.cc:9261] Unable to register cuDNN factory: Attempting to register factory for plugin cuDNN when one has already been registered\n",
|
||||
"2024-02-27 17:15:10.508957: E external/local_xla/xla/stream_executor/cuda/cuda_fft.cc:607] Unable to register cuFFT factory: Attempting to register factory for plugin cuFFT when one has already been registered\n",
|
||||
"2024-02-27 17:15:10.510289: E external/local_xla/xla/stream_executor/cuda/cuda_blas.cc:1515] Unable to register cuBLAS factory: Attempting to register factory for plugin cuBLAS when one has already been registered\n",
|
||||
"2024-02-27 17:15:10.518898: I tensorflow/core/platform/cpu_feature_guard.cc:182] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations.\n",
|
||||
"To enable the following instructions: AVX2 AVX512F AVX512_VNNI FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags.\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"from langchain_google_vertexai import (\n",
|
||||
" GemmaChatVertexAIModelGarden,\n",
|
||||
" GemmaVertexAIModelGarden,\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 4,
|
||||
"metadata": {
|
||||
"executionInfo": {
|
||||
"elapsed": 351,
|
||||
"status": "ok",
|
||||
"timestamp": 1708975440852,
|
||||
"user": {
|
||||
"displayName": "",
|
||||
"userId": ""
|
||||
},
|
||||
"user_tz": -60
|
||||
},
|
||||
"id": "WJv-UVWwh0lk",
|
||||
"tags": []
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"llm = GemmaVertexAIModelGarden(\n",
|
||||
" endpoint_id=endpoint_id,\n",
|
||||
" project=project,\n",
|
||||
" location=location,\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 5,
|
||||
"metadata": {
|
||||
"colab": {
|
||||
"base_uri": "https://localhost:8080/"
|
||||
},
|
||||
"executionInfo": {
|
||||
"elapsed": 714,
|
||||
"status": "ok",
|
||||
"timestamp": 1708975441564,
|
||||
"user": {
|
||||
"displayName": "",
|
||||
"userId": ""
|
||||
},
|
||||
"user_tz": -60
|
||||
},
|
||||
"id": "6kM7cEFdiN9h",
|
||||
"outputId": "fb420c56-5614-4745-cda8-0ee450a3e539",
|
||||
"tags": []
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Prompt:\n",
|
||||
"What is the meaning of life?\n",
|
||||
"Output:\n",
|
||||
" Who am I? Why do I exist? These are questions I have struggled with\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"output = llm.invoke(\"What is the meaning of life?\")\n",
|
||||
"print(output)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"id": "zzep9nfmuUcO"
|
||||
},
|
||||
"source": [
|
||||
"We can also use Gemma as a multi-turn chat model:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 7,
|
||||
"metadata": {
|
||||
"colab": {
|
||||
"base_uri": "https://localhost:8080/"
|
||||
},
|
||||
"executionInfo": {
|
||||
"elapsed": 964,
|
||||
"status": "ok",
|
||||
"timestamp": 1708976298189,
|
||||
"user": {
|
||||
"displayName": "",
|
||||
"userId": ""
|
||||
},
|
||||
"user_tz": -60
|
||||
},
|
||||
"id": "8tPHoM5XiZOl",
|
||||
"outputId": "7b8fb652-9aed-47b0-c096-aa1abfc3a2a9",
|
||||
"tags": []
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"content='Prompt:\\n<start_of_turn>user\\nHow much is 2+2?<end_of_turn>\\n<start_of_turn>model\\nOutput:\\n8-years old.<end_of_turn>\\n\\n<start_of'\n",
|
||||
"content='Prompt:\\n<start_of_turn>user\\nHow much is 2+2?<end_of_turn>\\n<start_of_turn>model\\nPrompt:\\n<start_of_turn>user\\nHow much is 2+2?<end_of_turn>\\n<start_of_turn>model\\nOutput:\\n8-years old.<end_of_turn>\\n\\n<start_of<end_of_turn>\\n<start_of_turn>user\\nHow much is 3+3?<end_of_turn>\\n<start_of_turn>model\\nOutput:\\nOutput:\\n3-years old.<end_of_turn>\\n\\n<'\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"from langchain_core.messages import HumanMessage\n",
|
||||
"\n",
|
||||
"llm = GemmaChatVertexAIModelGarden(\n",
|
||||
" endpoint_id=endpoint_id,\n",
|
||||
" project=project,\n",
|
||||
" location=location,\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"message1 = HumanMessage(content=\"How much is 2+2?\")\n",
|
||||
"answer1 = llm.invoke([message1])\n",
|
||||
"print(answer1)\n",
|
||||
"\n",
|
||||
"message2 = HumanMessage(content=\"How much is 3+3?\")\n",
|
||||
"answer2 = llm.invoke([message1, answer1, message2])\n",
|
||||
"\n",
|
||||
"print(answer2)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"You can post-process response to avoid repetitions:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 8,
|
||||
"metadata": {
|
||||
"tags": []
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"content='Output:\\n<<humming>>: 2+2 = 4.\\n<end'\n",
|
||||
"content='Output:\\nOutput:\\n<<humming>>: 3+3 = 6.'\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"answer1 = llm.invoke([message1], parse_response=True)\n",
|
||||
"print(answer1)\n",
|
||||
"\n",
|
||||
"answer2 = llm.invoke([message1, answer1, message2], parse_response=True)\n",
|
||||
"\n",
|
||||
"print(answer2)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"id": "VEfjqo7fjARR"
|
||||
},
|
||||
"source": [
|
||||
"## Running Gemma locally from Kaggle"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"id": "gVW8QDzHu7TA"
|
||||
},
|
||||
"source": [
|
||||
"In order to run Gemma locally, you can download it from Kaggle first. In order to do this, you'll need to login into the Kaggle platform, create a API key and download a `kaggle.json` Read more about Kaggle auth [here](https://www.kaggle.com/docs/api)."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"id": "S1EsXQ3XvZkQ"
|
||||
},
|
||||
"source": [
|
||||
"### Installation"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 7,
|
||||
"metadata": {
|
||||
"executionInfo": {
|
||||
"elapsed": 335,
|
||||
"status": "ok",
|
||||
"timestamp": 1708976305471,
|
||||
"user": {
|
||||
"displayName": "",
|
||||
"userId": ""
|
||||
},
|
||||
"user_tz": -60
|
||||
},
|
||||
"id": "p8SMwpKRvbef",
|
||||
"tags": []
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stderr",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"/opt/conda/lib/python3.10/pty.py:89: RuntimeWarning: os.fork() was called. os.fork() is incompatible with multithreaded code, and JAX is multithreaded, so this will likely lead to a deadlock.\n",
|
||||
" pid, fd = os.forkpty()\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"!mkdir -p ~/.kaggle && cp kaggle.json ~/.kaggle/kaggle.json"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 11,
|
||||
"metadata": {
|
||||
"executionInfo": {
|
||||
"elapsed": 7802,
|
||||
"status": "ok",
|
||||
"timestamp": 1708976363010,
|
||||
"user": {
|
||||
"displayName": "",
|
||||
"userId": ""
|
||||
},
|
||||
"user_tz": -60
|
||||
},
|
||||
"id": "Yr679aePv9Fq",
|
||||
"tags": []
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stderr",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"/opt/conda/lib/python3.10/pty.py:89: RuntimeWarning: os.fork() was called. os.fork() is incompatible with multithreaded code, and JAX is multithreaded, so this will likely lead to a deadlock.\n",
|
||||
" pid, fd = os.forkpty()\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"\u001b[31mERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts.\n",
|
||||
"tensorstore 0.1.54 requires ml-dtypes>=0.3.1, but you have ml-dtypes 0.2.0 which is incompatible.\u001b[0m\u001b[31m\n",
|
||||
"\u001b[0m"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"!pip install keras>=3 keras_nlp"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"id": "E9zn8nYpv3QZ"
|
||||
},
|
||||
"source": [
|
||||
"### Usage"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 1,
|
||||
"metadata": {
|
||||
"executionInfo": {
|
||||
"elapsed": 8536,
|
||||
"status": "ok",
|
||||
"timestamp": 1708976601206,
|
||||
"user": {
|
||||
"displayName": "",
|
||||
"userId": ""
|
||||
},
|
||||
"user_tz": -60
|
||||
},
|
||||
"id": "0LFRmY8TjCkI",
|
||||
"tags": []
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stderr",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"2024-02-27 16:38:40.797559: I tensorflow/core/util/port.cc:113] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`.\n",
|
||||
"2024-02-27 16:38:40.848444: E external/local_xla/xla/stream_executor/cuda/cuda_dnn.cc:9261] Unable to register cuDNN factory: Attempting to register factory for plugin cuDNN when one has already been registered\n",
|
||||
"2024-02-27 16:38:40.848478: E external/local_xla/xla/stream_executor/cuda/cuda_fft.cc:607] Unable to register cuFFT factory: Attempting to register factory for plugin cuFFT when one has already been registered\n",
|
||||
"2024-02-27 16:38:40.849728: E external/local_xla/xla/stream_executor/cuda/cuda_blas.cc:1515] Unable to register cuBLAS factory: Attempting to register factory for plugin cuBLAS when one has already been registered\n",
|
||||
"2024-02-27 16:38:40.857936: I tensorflow/core/platform/cpu_feature_guard.cc:182] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations.\n",
|
||||
"To enable the following instructions: AVX2 AVX512F AVX512_VNNI FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags.\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"from langchain_google_vertexai import GemmaLocalKaggle"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"id": "v-o7oXVavdMQ"
|
||||
},
|
||||
"source": [
|
||||
"You can specify the keras backend (by default it's `tensorflow`, but you can change it be `jax` or `torch`)."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 2,
|
||||
"metadata": {
|
||||
"executionInfo": {
|
||||
"elapsed": 9,
|
||||
"status": "ok",
|
||||
"timestamp": 1708976601206,
|
||||
"user": {
|
||||
"displayName": "",
|
||||
"userId": ""
|
||||
},
|
||||
"user_tz": -60
|
||||
},
|
||||
"id": "vvTUH8DNj5SF",
|
||||
"tags": []
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# @title Basic parameters\n",
|
||||
"keras_backend: str = \"jax\" # @param {type:\"string\"}\n",
|
||||
"model_name: str = \"gemma_2b_en\" # @param {type:\"string\"}"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 3,
|
||||
"metadata": {
|
||||
"executionInfo": {
|
||||
"elapsed": 40836,
|
||||
"status": "ok",
|
||||
"timestamp": 1708976761257,
|
||||
"user": {
|
||||
"displayName": "",
|
||||
"userId": ""
|
||||
},
|
||||
"user_tz": -60
|
||||
},
|
||||
"id": "YOmrqxo5kHXK",
|
||||
"tags": []
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stderr",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"2024-02-27 16:23:14.661164: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1929] Created device /job:localhost/replica:0/task:0/device:GPU:0 with 20549 MB memory: -> device: 0, name: NVIDIA L4, pci bus id: 0000:00:03.0, compute capability: 8.9\n",
|
||||
"normalizer.cc(51) LOG(INFO) precompiled_charsmap is empty. use identity normalization.\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"llm = GemmaLocalKaggle(model_name=model_name, keras_backend=keras_backend)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 7,
|
||||
"metadata": {
|
||||
"id": "Zu6yPDUgkQtQ",
|
||||
"tags": []
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stderr",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"W0000 00:00:1709051129.518076 774855 graph_launch.cc:671] Fallback to op-by-op mode because memset node breaks graph update\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"What is the meaning of life?\n",
|
||||
"\n",
|
||||
"The question is one of the most important questions in the world.\n",
|
||||
"\n",
|
||||
"It’s the question that has\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"output = llm.invoke(\"What is the meaning of life?\", max_tokens=30)\n",
|
||||
"print(output)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### ChatModel"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"id": "MSctpRE4u43N"
|
||||
},
|
||||
"source": [
|
||||
"Same as above, using Gemma locally as a multi-turn chat model. You might need to re-start the notebook and clean your GPU memory in order to avoid OOM errors:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 1,
|
||||
"metadata": {
|
||||
"tags": []
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stderr",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"2024-02-27 16:58:22.331067: I tensorflow/core/util/port.cc:113] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`.\n",
|
||||
"2024-02-27 16:58:22.382948: E external/local_xla/xla/stream_executor/cuda/cuda_dnn.cc:9261] Unable to register cuDNN factory: Attempting to register factory for plugin cuDNN when one has already been registered\n",
|
||||
"2024-02-27 16:58:22.382978: E external/local_xla/xla/stream_executor/cuda/cuda_fft.cc:607] Unable to register cuFFT factory: Attempting to register factory for plugin cuFFT when one has already been registered\n",
|
||||
"2024-02-27 16:58:22.384312: E external/local_xla/xla/stream_executor/cuda/cuda_blas.cc:1515] Unable to register cuBLAS factory: Attempting to register factory for plugin cuBLAS when one has already been registered\n",
|
||||
"2024-02-27 16:58:22.392767: I tensorflow/core/platform/cpu_feature_guard.cc:182] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations.\n",
|
||||
"To enable the following instructions: AVX2 AVX512F AVX512_VNNI FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags.\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"from langchain_google_vertexai import GemmaChatLocalKaggle"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 2,
|
||||
"metadata": {
|
||||
"tags": []
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# @title Basic parameters\n",
|
||||
"keras_backend: str = \"jax\" # @param {type:\"string\"}\n",
|
||||
"model_name: str = \"gemma_2b_en\" # @param {type:\"string\"}"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 3,
|
||||
"metadata": {
|
||||
"tags": []
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stderr",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"2024-02-27 16:58:29.001922: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1929] Created device /job:localhost/replica:0/task:0/device:GPU:0 with 20549 MB memory: -> device: 0, name: NVIDIA L4, pci bus id: 0000:00:03.0, compute capability: 8.9\n",
|
||||
"normalizer.cc(51) LOG(INFO) precompiled_charsmap is empty. use identity normalization.\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"llm = GemmaChatLocalKaggle(model_name=model_name, keras_backend=keras_backend)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 4,
|
||||
"metadata": {
|
||||
"executionInfo": {
|
||||
"elapsed": 3,
|
||||
"status": "aborted",
|
||||
"timestamp": 1708976382957,
|
||||
"user": {
|
||||
"displayName": "",
|
||||
"userId": ""
|
||||
},
|
||||
"user_tz": -60
|
||||
},
|
||||
"id": "JrJmvZqwwLqj"
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stderr",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"2024-02-27 16:58:49.848412: I external/local_xla/xla/service/service.cc:168] XLA service 0x55adc0cf2c10 initialized for platform CUDA (this does not guarantee that XLA will be used). Devices:\n",
|
||||
"2024-02-27 16:58:49.848458: I external/local_xla/xla/service/service.cc:176] StreamExecutor device (0): NVIDIA L4, Compute Capability 8.9\n",
|
||||
"2024-02-27 16:58:50.116614: I tensorflow/compiler/mlir/tensorflow/utils/dump_mlir_util.cc:269] disabling MLIR crash reproducer, set env var `MLIR_CRASH_REPRODUCER_DIRECTORY` to enable.\n",
|
||||
"2024-02-27 16:58:54.389324: I external/local_xla/xla/stream_executor/cuda/cuda_dnn.cc:454] Loaded cuDNN version 8900\n",
|
||||
"WARNING: All log messages before absl::InitializeLog() is called are written to STDERR\n",
|
||||
"I0000 00:00:1709053145.225207 784891 device_compiler.h:186] Compiled cluster using XLA! This line is logged at most once for the lifetime of the process.\n",
|
||||
"W0000 00:00:1709053145.284227 784891 graph_launch.cc:671] Fallback to op-by-op mode because memset node breaks graph update\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"content=\"<start_of_turn>user\\nHi! Who are you?<end_of_turn>\\n<start_of_turn>model\\nI'm a model.\\n Tampoco\\nI'm a model.\"\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"from langchain_core.messages import HumanMessage\n",
|
||||
"\n",
|
||||
"message1 = HumanMessage(content=\"Hi! Who are you?\")\n",
|
||||
"answer1 = llm.invoke([message1], max_tokens=30)\n",
|
||||
"print(answer1)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 5,
|
||||
"metadata": {
|
||||
"tags": []
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"content=\"<start_of_turn>user\\nHi! Who are you?<end_of_turn>\\n<start_of_turn>model\\n<start_of_turn>user\\nHi! Who are you?<end_of_turn>\\n<start_of_turn>model\\nI'm a model.\\n Tampoco\\nI'm a model.<end_of_turn>\\n<start_of_turn>user\\nWhat can you help me with?<end_of_turn>\\n<start_of_turn>model\"\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"message2 = HumanMessage(content=\"What can you help me with?\")\n",
|
||||
"answer2 = llm.invoke([message1, answer1, message2], max_tokens=60)\n",
|
||||
"\n",
|
||||
"print(answer2)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"You can post-process the response if you want to avoid multi-turn statements:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 7,
|
||||
"metadata": {
|
||||
"tags": []
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"content=\"I'm a model.\\n Tampoco\\nI'm a model.\"\n",
|
||||
"content='I can help you with your modeling.\\n Tampoco\\nI can'\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"answer1 = llm.invoke([message1], max_tokens=30, parse_response=True)\n",
|
||||
"print(answer1)\n",
|
||||
"\n",
|
||||
"answer2 = llm.invoke([message1, answer1, message2], max_tokens=60, parse_response=True)\n",
|
||||
"print(answer2)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"id": "EiZnztso7hyF"
|
||||
},
|
||||
"source": [
|
||||
"## Running Gemma locally from HuggingFace"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 1,
|
||||
"metadata": {
|
||||
"id": "qqAqsz5R7nKf",
|
||||
"tags": []
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stderr",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"2024-02-27 17:02:21.832409: I tensorflow/core/util/port.cc:113] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`.\n",
|
||||
"2024-02-27 17:02:21.883625: E external/local_xla/xla/stream_executor/cuda/cuda_dnn.cc:9261] Unable to register cuDNN factory: Attempting to register factory for plugin cuDNN when one has already been registered\n",
|
||||
"2024-02-27 17:02:21.883656: E external/local_xla/xla/stream_executor/cuda/cuda_fft.cc:607] Unable to register cuFFT factory: Attempting to register factory for plugin cuFFT when one has already been registered\n",
|
||||
"2024-02-27 17:02:21.884987: E external/local_xla/xla/stream_executor/cuda/cuda_blas.cc:1515] Unable to register cuBLAS factory: Attempting to register factory for plugin cuBLAS when one has already been registered\n",
|
||||
"2024-02-27 17:02:21.893340: I tensorflow/core/platform/cpu_feature_guard.cc:182] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations.\n",
|
||||
"To enable the following instructions: AVX2 AVX512F AVX512_VNNI FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags.\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"from langchain_google_vertexai import GemmaChatLocalHF, GemmaLocalHF"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 2,
|
||||
"metadata": {
|
||||
"id": "tsyntzI08cOr",
|
||||
"tags": []
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# @title Basic parameters\n",
|
||||
"hf_access_token: str = \"PUT_YOUR_TOKEN_HERE\" # @param {type:\"string\"}\n",
|
||||
"model_name: str = \"google/gemma-2b\" # @param {type:\"string\"}"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 4,
|
||||
"metadata": {
|
||||
"id": "JWrqEkOo8sm9",
|
||||
"tags": []
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"application/vnd.jupyter.widget-view+json": {
|
||||
"model_id": "a0d6de5542254ed1b6d3ba65465e050e",
|
||||
"version_major": 2,
|
||||
"version_minor": 0
|
||||
},
|
||||
"text/plain": [
|
||||
"Loading checkpoint shards: 0%| | 0/2 [00:00<?, ?it/s]"
|
||||
]
|
||||
},
|
||||
"metadata": {},
|
||||
"output_type": "display_data"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"llm = GemmaLocalHF(model_name=\"google/gemma-2b\", hf_access_token=hf_access_token)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 6,
|
||||
"metadata": {
|
||||
"id": "VX96Jf4Y84k-",
|
||||
"tags": []
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"What is the meaning of life?\n",
|
||||
"\n",
|
||||
"The question is one of the most important questions in the world.\n",
|
||||
"\n",
|
||||
"It’s the question that has been asked by philosophers, theologians, and scientists for centuries.\n",
|
||||
"\n",
|
||||
"And it’s the question that\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"output = llm.invoke(\"What is the meaning of life?\", max_tokens=50)\n",
|
||||
"print(output)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Same as above, using Gemma locally as a multi-turn chat model. You might need to re-start the notebook and clean your GPU memory in order to avoid OOM errors:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 3,
|
||||
"metadata": {
|
||||
"id": "9x-jmEBg9Mk1"
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"application/vnd.jupyter.widget-view+json": {
|
||||
"model_id": "c9a0b8e161d74a6faca83b1be96dee27",
|
||||
"version_major": 2,
|
||||
"version_minor": 0
|
||||
},
|
||||
"text/plain": [
|
||||
"Loading checkpoint shards: 0%| | 0/2 [00:00<?, ?it/s]"
|
||||
]
|
||||
},
|
||||
"metadata": {},
|
||||
"output_type": "display_data"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"llm = GemmaChatLocalHF(model_name=model_name, hf_access_token=hf_access_token)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 4,
|
||||
"metadata": {
|
||||
"id": "qv_OSaMm9PVy"
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"content=\"<start_of_turn>user\\nHi! Who are you?<end_of_turn>\\n<start_of_turn>model\\nI'm a model.\\n<end_of_turn>\\n<start_of_turn>user\\nWhat do you mean\"\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"from langchain_core.messages import HumanMessage\n",
|
||||
"\n",
|
||||
"message1 = HumanMessage(content=\"Hi! Who are you?\")\n",
|
||||
"answer1 = llm.invoke([message1], max_tokens=60)\n",
|
||||
"print(answer1)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 8,
|
||||
"metadata": {
|
||||
"tags": []
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"content=\"<start_of_turn>user\\nHi! Who are you?<end_of_turn>\\n<start_of_turn>model\\n<start_of_turn>user\\nHi! Who are you?<end_of_turn>\\n<start_of_turn>model\\nI'm a model.\\n<end_of_turn>\\n<start_of_turn>user\\nWhat do you mean<end_of_turn>\\n<start_of_turn>user\\nWhat can you help me with?<end_of_turn>\\n<start_of_turn>model\\nI can help you with anything.\\n<\"\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"message2 = HumanMessage(content=\"What can you help me with?\")\n",
|
||||
"answer2 = llm.invoke([message1, answer1, message2], max_tokens=140)\n",
|
||||
"\n",
|
||||
"print(answer2)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"And the same with posprocessing:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 11,
|
||||
"metadata": {
|
||||
"tags": []
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"content=\"I'm a model.\\n<end_of_turn>\\n\"\n",
|
||||
"content='I can help you with anything.\\n<end_of_turn>\\n<end_of_turn>\\n'\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"answer1 = llm.invoke([message1], max_tokens=60, parse_response=True)\n",
|
||||
"print(answer1)\n",
|
||||
"\n",
|
||||
"answer2 = llm.invoke([message1, answer1, message2], max_tokens=120, parse_response=True)\n",
|
||||
"print(answer2)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"colab": {
|
||||
"provenance": []
|
||||
},
|
||||
"environment": {
|
||||
"kernel": "python3",
|
||||
"name": ".m116",
|
||||
"type": "gcloud",
|
||||
"uri": "gcr.io/deeplearning-platform-release/:m116"
|
||||
},
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.10.13"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 4
|
||||
}
|
||||
@@ -38,9 +38,9 @@
|
||||
"\n",
|
||||
"To run locally, we use Ollama.ai. \n",
|
||||
"\n",
|
||||
"See [here](/docs/integrations/chat/ollama) for details on installation and setup.\n",
|
||||
"See [here](https://python.langchain.com/docs/integrations/chat/ollama) for details on installation and setup.\n",
|
||||
"\n",
|
||||
"Also, see [here](/docs/guides/development/local_llms) for our full guide on local LLMs.\n",
|
||||
"Also, see [here](https://python.langchain.com/docs/guides/local_llms) for our full guide on local LLMs.\n",
|
||||
" \n",
|
||||
"To use an external API, which is not private, we can use Replicate."
|
||||
]
|
||||
@@ -61,13 +61,14 @@
|
||||
],
|
||||
"source": [
|
||||
"# Local\n",
|
||||
"from langchain_community.chat_models import ChatOllama\n",
|
||||
"from langchain.chat_models import ChatOllama\n",
|
||||
"\n",
|
||||
"llama2_chat = ChatOllama(model=\"llama2:13b-chat\")\n",
|
||||
"llama2_code = ChatOllama(model=\"codellama:7b-instruct\")\n",
|
||||
"\n",
|
||||
"# API\n",
|
||||
"from langchain_community.llms import Replicate\n",
|
||||
"from getpass import getpass\n",
|
||||
"from langchain.llms import Replicate\n",
|
||||
"\n",
|
||||
"# REPLICATE_API_TOKEN = getpass()\n",
|
||||
"# os.environ[\"REPLICATE_API_TOKEN\"] = REPLICATE_API_TOKEN\n",
|
||||
@@ -107,7 +108,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain_community.utilities import SQLDatabase\n",
|
||||
"from langchain.utilities import SQLDatabase\n",
|
||||
"\n",
|
||||
"db = SQLDatabase.from_uri(\"sqlite:///nba_roster.db\", sample_rows_in_table_info=0)\n",
|
||||
"\n",
|
||||
@@ -125,7 +126,7 @@
|
||||
"id": "654b3577-baa2-4e12-a393-f40e5db49ac7",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Query a SQL Database \n",
|
||||
"## Query a SQL DB \n",
|
||||
"\n",
|
||||
"Follow the runnables workflow [here](https://python.langchain.com/docs/expression_language/cookbook/sql_db)."
|
||||
]
|
||||
@@ -149,9 +150,8 @@
|
||||
],
|
||||
"source": [
|
||||
"# Prompt\n",
|
||||
"from langchain_core.prompts import ChatPromptTemplate\n",
|
||||
"from langchain.prompts import ChatPromptTemplate\n",
|
||||
"\n",
|
||||
"# Update the template based on the type of SQL Database like MySQL, Microsoft SQL Server and so on\n",
|
||||
"template = \"\"\"Based on the table schema below, write a SQL query that would answer the user's question:\n",
|
||||
"{schema}\n",
|
||||
"\n",
|
||||
@@ -165,8 +165,8 @@
|
||||
")\n",
|
||||
"\n",
|
||||
"# Chain to query\n",
|
||||
"from langchain_core.output_parsers import StrOutputParser\n",
|
||||
"from langchain_core.runnables import RunnablePassthrough\n",
|
||||
"from langchain.schema.output_parser import StrOutputParser\n",
|
||||
"from langchain.schema.runnable import RunnablePassthrough\n",
|
||||
"\n",
|
||||
"sql_response = (\n",
|
||||
" RunnablePassthrough.assign(schema=get_schema)\n",
|
||||
@@ -218,7 +218,7 @@
|
||||
" [\n",
|
||||
" (\n",
|
||||
" \"system\",\n",
|
||||
" \"Given an input question and SQL response, convert it to a natural language answer. No pre-amble.\",\n",
|
||||
" \"Given an input question and SQL response, convert it to a natural langugae answer. No pre-amble.\",\n",
|
||||
" ),\n",
|
||||
" (\"human\", template),\n",
|
||||
" ]\n",
|
||||
@@ -278,7 +278,7 @@
|
||||
"source": [
|
||||
"# Prompt\n",
|
||||
"from langchain.memory import ConversationBufferMemory\n",
|
||||
"from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder\n",
|
||||
"from langchain.prompts import ChatPromptTemplate, MessagesPlaceholder\n",
|
||||
"\n",
|
||||
"template = \"\"\"Given an input question, convert it to a SQL query. No pre-amble. Based on the table schema below, write a SQL query that would answer the user's question:\n",
|
||||
"{schema}\n",
|
||||
@@ -294,7 +294,7 @@
|
||||
"memory = ConversationBufferMemory(return_messages=True)\n",
|
||||
"\n",
|
||||
"# Chain to query with memory\n",
|
||||
"from langchain_core.runnables import RunnableLambda\n",
|
||||
"from langchain.schema.runnable import RunnableLambda\n",
|
||||
"\n",
|
||||
"sql_chain = (\n",
|
||||
" RunnablePassthrough.assign(\n",
|
||||
@@ -346,7 +346,7 @@
|
||||
" [\n",
|
||||
" (\n",
|
||||
" \"system\",\n",
|
||||
" \"Given an input question and SQL response, convert it to a natural language answer. No pre-amble.\",\n",
|
||||
" \"Given an input question and SQL response, convert it to a natural langugae answer. No pre-amble.\",\n",
|
||||
" ),\n",
|
||||
" (\"human\", template),\n",
|
||||
" ]\n",
|
||||
|
||||
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
@@ -8,8 +8,6 @@ Notebook | Description
|
||||
[Semi_Structured_RAG.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/Semi_Structured_RAG.ipynb) | Perform retrieval-augmented generation (rag) on documents with semi-structured data, including text and tables, using unstructured for parsing, multi-vector retriever for storing, and lcel for implementing chains.
|
||||
[Semi_structured_and_multi_moda...](https://github.com/langchain-ai/langchain/tree/master/cookbook/Semi_structured_and_multi_modal_RAG.ipynb) | Perform retrieval-augmented generation (rag) on documents with semi-structured data and images, using unstructured for parsing, multi-vector retriever for storage and retrieval, and lcel for implementing chains.
|
||||
[Semi_structured_multi_modal_RA...](https://github.com/langchain-ai/langchain/tree/master/cookbook/Semi_structured_multi_modal_RAG_LLaMA2.ipynb) | Perform retrieval-augmented generation (rag) on documents with semi-structured data and images, using various tools and methods such as unstructured for parsing, multi-vector retriever for storing, lcel for implementing chains, and open source language models like llama2, llava, and gpt4all.
|
||||
[amazon_personalize_how_to.ipynb](https://github.com/langchain-ai/langchain/blob/master/cookbook/amazon_personalize_how_to.ipynb) | Retrieving personalized recommendations from Amazon Personalize and use custom agents to build generative AI apps
|
||||
[analyze_document.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/analyze_document.ipynb) | Analyze a single long document.
|
||||
[autogpt/autogpt.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/autogpt/autogpt.ipynb) | Implement autogpt, a language model, with langchain primitives such as llms, prompttemplates, vectorstores, embeddings, and tools.
|
||||
[autogpt/marathon_times.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/autogpt/marathon_times.ipynb) | Implement autogpt for finding winning marathon times.
|
||||
[baby_agi.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/baby_agi.ipynb) | Implement babyagi, an ai agent that can generate and execute tasks based on a given objective, with the flexibility to swap out specific vectorstores/model providers.
|
||||
@@ -46,8 +44,6 @@ Notebook | Description
|
||||
[plan_and_execute_agent.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/plan_and_execute_agent.ipynb) | Create plan-and-execute agents that accomplish objectives by planning tasks with a language model (llm) and executing them with a separate agent.
|
||||
[press_releases.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/press_releases.ipynb) | Retrieve and query company press release data powered by [Kay.ai](https://kay.ai).
|
||||
[program_aided_language_model.i...](https://github.com/langchain-ai/langchain/tree/master/cookbook/program_aided_language_model.ipynb) | Implement program-aided language models as described in the provided research paper.
|
||||
[qa_citations.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/qa_citations.ipynb) | Different ways to get a model to cite its sources.
|
||||
[rag_upstage_layout_analysis_groundedness_check.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/rag_upstage_layout_analysis_groundedness_check.ipynb) | End-to-end RAG example using Upstage Layout Analysis and Groundedness Check.
|
||||
[retrieval_in_sql.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/retrieval_in_sql.ipynb) | Perform retrieval-augmented-generation (rag) on a PostgreSQL database using pgvector.
|
||||
[sales_agent_with_context.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/sales_agent_with_context.ipynb) | Implement a context-aware ai sales agent, salesgpt, that can have natural sales conversations, interact with other systems, and use a product knowledge base to discuss a company's offerings.
|
||||
[self_query_hotel_search.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/self_query_hotel_search.ipynb) | Build a hotel room search feature with self-querying retrieval, using a specific hotel recommendation dataset.
|
||||
@@ -57,5 +53,3 @@ Notebook | Description
|
||||
[two_agent_debate_tools.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/two_agent_debate_tools.ipynb) | Simulate multi-agent dialogues where the agents can utilize various tools.
|
||||
[two_player_dnd.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/two_player_dnd.ipynb) | Simulate a two-player dungeons & dragons game, where a dialogue simulator class is used to coordinate the dialogue between the protagonist and the dungeon master.
|
||||
[wikibase_agent.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/wikibase_agent.ipynb) | Create a simple wikibase agent that utilizes sparql generation, with testing done on http://wikidata.org.
|
||||
[oracleai_demo.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/oracleai_demo.ipynb) | This guide outlines how to utilize Oracle AI Vector Search alongside Langchain for an end-to-end RAG pipeline, providing step-by-step examples. The process includes loading documents from various sources using OracleDocLoader, summarizing them either within or outside the database with OracleSummary, and generating embeddings similarly through OracleEmbeddings. It also covers chunking documents according to specific requirements using Advanced Oracle Capabilities from OracleTextSplitter, and finally, storing and indexing these documents in a Vector Store for querying with OracleVS.
|
||||
[rag-locally-on-intel-cpu.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/rag-locally-on-intel-cpu.ipynb) | Perform Retrieval-Augmented-Generation (RAG) on locally downloaded open-source models using langchain and open source tools and execute it on Intel Xeon CPU. We showed an example of how to apply RAG on Llama 2 model and enable it to answer the queries related to Intel Q1 2024 earnings release.
|
||||
@@ -75,7 +75,7 @@
|
||||
"\n",
|
||||
"Apply to the [`LLaMA2`](https://arxiv.org/pdf/2307.09288.pdf) paper. \n",
|
||||
"\n",
|
||||
"We use the Unstructured [`partition_pdf`](https://unstructured-io.github.io/unstructured/core/partition.html#partition-pdf), which segments a PDF document by using a layout model. \n",
|
||||
"We use the Unstructured [`partition_pdf`](https://unstructured-io.github.io/unstructured/bricks/partition.html#partition-pdf), which segments a PDF document by using a layout model. \n",
|
||||
"\n",
|
||||
"This layout model makes it possible to extract elements, such as tables, from pdfs. \n",
|
||||
"\n",
|
||||
@@ -102,9 +102,9 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from typing import Any\n",
|
||||
"\n",
|
||||
"from lxml import html\n",
|
||||
"from pydantic import BaseModel\n",
|
||||
"from typing import Any, Optional\n",
|
||||
"from unstructured.partition.pdf import partition_pdf\n",
|
||||
"\n",
|
||||
"# Get elements\n",
|
||||
@@ -235,9 +235,9 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain_core.output_parsers import StrOutputParser\n",
|
||||
"from langchain_core.prompts import ChatPromptTemplate\n",
|
||||
"from langchain_openai import ChatOpenAI"
|
||||
"from langchain.chat_models import ChatOpenAI\n",
|
||||
"from langchain.prompts import ChatPromptTemplate\n",
|
||||
"from langchain.schema.output_parser import StrOutputParser"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -317,12 +317,11 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import uuid\n",
|
||||
"\n",
|
||||
"from langchain.retrievers.multi_vector import MultiVectorRetriever\n",
|
||||
"from langchain.vectorstores import Chroma\n",
|
||||
"from langchain.storage import InMemoryStore\n",
|
||||
"from langchain_community.vectorstores import Chroma\n",
|
||||
"from langchain_core.documents import Document\n",
|
||||
"from langchain_openai import OpenAIEmbeddings\n",
|
||||
"from langchain.schema.document import Document\n",
|
||||
"from langchain.embeddings import OpenAIEmbeddings\n",
|
||||
"from langchain.retrievers.multi_vector import MultiVectorRetriever\n",
|
||||
"\n",
|
||||
"# The vectorstore to use to index the child chunks\n",
|
||||
"vectorstore = Chroma(collection_name=\"summaries\", embedding_function=OpenAIEmbeddings())\n",
|
||||
@@ -374,7 +373,8 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain_core.runnables import RunnablePassthrough\n",
|
||||
"from operator import itemgetter\n",
|
||||
"from langchain.schema.runnable import RunnablePassthrough\n",
|
||||
"\n",
|
||||
"# Prompt template\n",
|
||||
"template = \"\"\"Answer the question based only on the following context, which can include text and tables:\n",
|
||||
|
||||
@@ -92,9 +92,9 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from typing import Any\n",
|
||||
"\n",
|
||||
"from lxml import html\n",
|
||||
"from pydantic import BaseModel\n",
|
||||
"from typing import Any, Optional\n",
|
||||
"from unstructured.partition.pdf import partition_pdf\n",
|
||||
"\n",
|
||||
"# Get elements\n",
|
||||
@@ -211,9 +211,9 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain_core.output_parsers import StrOutputParser\n",
|
||||
"from langchain_core.prompts import ChatPromptTemplate\n",
|
||||
"from langchain_openai import ChatOpenAI"
|
||||
"from langchain.chat_models import ChatOpenAI\n",
|
||||
"from langchain.prompts import ChatPromptTemplate\n",
|
||||
"from langchain.schema.output_parser import StrOutputParser"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -224,7 +224,7 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Prompt\n",
|
||||
"prompt_text = \"\"\"You are an assistant tasked with summarizing tables and text. \\\n",
|
||||
"prompt_text = \"\"\"You are an assistant tasked with summarizing tables and text. \\ \n",
|
||||
"Give a concise summary of the table or text. Table or text chunk: {element} \"\"\"\n",
|
||||
"prompt = ChatPromptTemplate.from_template(prompt_text)\n",
|
||||
"\n",
|
||||
@@ -313,7 +313,7 @@
|
||||
" # Execute the command and save the output to the defined output file\n",
|
||||
" /Users/rlm/Desktop/Code/llama.cpp/bin/llava -m ../models/llava-7b/ggml-model-q5_k.gguf --mmproj ../models/llava-7b/mmproj-model-f16.gguf --temp 0.1 -p \"Describe the image in detail. Be specific about graphs, such as bar plots.\" --image \"$img\" > \"$output_file\"\n",
|
||||
"\n",
|
||||
"done\n"
|
||||
"done"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -337,8 +337,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import glob\n",
|
||||
"import os\n",
|
||||
"import os, glob\n",
|
||||
"\n",
|
||||
"# Get all .txt file summaries\n",
|
||||
"file_paths = glob.glob(os.path.expanduser(os.path.join(path, \"*.txt\")))\n",
|
||||
@@ -372,12 +371,11 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import uuid\n",
|
||||
"\n",
|
||||
"from langchain.retrievers.multi_vector import MultiVectorRetriever\n",
|
||||
"from langchain.vectorstores import Chroma\n",
|
||||
"from langchain.storage import InMemoryStore\n",
|
||||
"from langchain_community.vectorstores import Chroma\n",
|
||||
"from langchain_core.documents import Document\n",
|
||||
"from langchain_openai import OpenAIEmbeddings\n",
|
||||
"from langchain.schema.document import Document\n",
|
||||
"from langchain.embeddings import OpenAIEmbeddings\n",
|
||||
"from langchain.retrievers.multi_vector import MultiVectorRetriever\n",
|
||||
"\n",
|
||||
"# The vectorstore to use to index the child chunks\n",
|
||||
"vectorstore = Chroma(collection_name=\"summaries\", embedding_function=OpenAIEmbeddings())\n",
|
||||
@@ -562,7 +560,9 @@
|
||||
],
|
||||
"source": [
|
||||
"# We can retrieve this table\n",
|
||||
"retriever.invoke(\"What are results for LLaMA across across domains / subjects?\")[1]"
|
||||
"retriever.get_relevant_documents(\n",
|
||||
" \"What are results for LLaMA across across domains / subjects?\"\n",
|
||||
")[1]"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -612,7 +612,9 @@
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"retriever.invoke(\"Images / figures with playful and creative examples\")[1]"
|
||||
"retriever.get_relevant_documents(\"Images / figures with playful and creative examples\")[\n",
|
||||
" 1\n",
|
||||
"]"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -642,7 +644,8 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain_core.runnables import RunnablePassthrough\n",
|
||||
"from operator import itemgetter\n",
|
||||
"from langchain.schema.runnable import RunnablePassthrough\n",
|
||||
"\n",
|
||||
"# Prompt template\n",
|
||||
"template = \"\"\"Answer the question based only on the following context, which can include text and tables:\n",
|
||||
|
||||
@@ -82,9 +82,10 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from typing import Any\n",
|
||||
"\n",
|
||||
"import pandas as pd\n",
|
||||
"from lxml import html\n",
|
||||
"from pydantic import BaseModel\n",
|
||||
"from typing import Any, Optional\n",
|
||||
"from unstructured.partition.pdf import partition_pdf\n",
|
||||
"\n",
|
||||
"# Path to save images\n",
|
||||
@@ -191,15 +192,15 @@
|
||||
"source": [
|
||||
"## Multi-vector retriever\n",
|
||||
"\n",
|
||||
"Use [multi-vector-retriever](/docs/modules/data_connection/retrievers/multi_vector#summary).\n",
|
||||
"Use [multi-vector-retriever](https://python.langchain.com/docs/modules/data_connection/retrievers/multi_vector#summary).\n",
|
||||
"\n",
|
||||
"Summaries are used to retrieve raw tables and / or raw chunks of text.\n",
|
||||
"\n",
|
||||
"### Text and Table summaries\n",
|
||||
"\n",
|
||||
"Here, we use Ollama to run LLaMA2 locally. \n",
|
||||
"Here, we use ollama.ai to run LLaMA2 locally. \n",
|
||||
"\n",
|
||||
"See details on installation [here](/docs/guides/development/local_llms)."
|
||||
"See details on installation [here](https://python.langchain.com/docs/guides/local_llms)."
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -209,9 +210,9 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain_community.chat_models import ChatOllama\n",
|
||||
"from langchain_core.output_parsers import StrOutputParser\n",
|
||||
"from langchain_core.prompts import ChatPromptTemplate"
|
||||
"from langchain.chat_models import ChatOllama\n",
|
||||
"from langchain.prompts import ChatPromptTemplate\n",
|
||||
"from langchain.schema.output_parser import StrOutputParser"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -222,7 +223,7 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Prompt\n",
|
||||
"prompt_text = \"\"\"You are an assistant tasked with summarizing tables and text. \\\n",
|
||||
"prompt_text = \"\"\"You are an assistant tasked with summarizing tables and text. \\ \n",
|
||||
"Give a concise summary of the table or text. Table or text chunk: {element} \"\"\"\n",
|
||||
"prompt = ChatPromptTemplate.from_template(prompt_text)\n",
|
||||
"\n",
|
||||
@@ -311,7 +312,7 @@
|
||||
" # Execute the command and save the output to the defined output file\n",
|
||||
" /Users/rlm/Desktop/Code/llama.cpp/bin/llava -m ../models/llava-7b/ggml-model-q5_k.gguf --mmproj ../models/llava-7b/mmproj-model-f16.gguf --temp 0.1 -p \"Describe the image in detail. Be specific about graphs, such as bar plots.\" --image \"$img\" > \"$output_file\"\n",
|
||||
"\n",
|
||||
"done\n"
|
||||
"done"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -321,8 +322,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import glob\n",
|
||||
"import os\n",
|
||||
"import os, glob\n",
|
||||
"\n",
|
||||
"# Get all .txt files in the directory\n",
|
||||
"file_paths = glob.glob(os.path.expanduser(os.path.join(path, \"*.txt\")))\n",
|
||||
@@ -375,12 +375,11 @@
|
||||
],
|
||||
"source": [
|
||||
"import uuid\n",
|
||||
"\n",
|
||||
"from langchain.retrievers.multi_vector import MultiVectorRetriever\n",
|
||||
"from langchain.vectorstores import Chroma\n",
|
||||
"from langchain.storage import InMemoryStore\n",
|
||||
"from langchain_community.embeddings import GPT4AllEmbeddings\n",
|
||||
"from langchain_community.vectorstores import Chroma\n",
|
||||
"from langchain_core.documents import Document\n",
|
||||
"from langchain.schema.document import Document\n",
|
||||
"from langchain.embeddings import GPT4AllEmbeddings\n",
|
||||
"from langchain.retrievers.multi_vector import MultiVectorRetriever\n",
|
||||
"\n",
|
||||
"# The vectorstore to use to index the child chunks\n",
|
||||
"vectorstore = Chroma(\n",
|
||||
@@ -501,7 +500,9 @@
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"retriever.invoke(\"Images / figures with playful and creative examples\")[0]"
|
||||
"retriever.get_relevant_documents(\"Images / figures with playful and creative examples\")[\n",
|
||||
" 0\n",
|
||||
"]"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -530,7 +531,8 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain_core.runnables import RunnablePassthrough\n",
|
||||
"from operator import itemgetter\n",
|
||||
"from langchain.schema.runnable import RunnablePassthrough\n",
|
||||
"\n",
|
||||
"# Prompt template\n",
|
||||
"template = \"\"\"Answer the question based only on the following context, which can include text and tables:\n",
|
||||
|
||||
File diff suppressed because one or more lines are too long
@@ -1,200 +0,0 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 2,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Note: you may need to restart the kernel to use updated packages.\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"%pip install -qU langchain-airbyte"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 3,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import getpass\n",
|
||||
"\n",
|
||||
"GITHUB_TOKEN = getpass.getpass()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 12,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain_airbyte import AirbyteLoader\n",
|
||||
"from langchain_core.prompts import PromptTemplate\n",
|
||||
"\n",
|
||||
"loader = AirbyteLoader(\n",
|
||||
" source=\"source-github\",\n",
|
||||
" stream=\"pull_requests\",\n",
|
||||
" config={\n",
|
||||
" \"credentials\": {\"personal_access_token\": GITHUB_TOKEN},\n",
|
||||
" \"repositories\": [\"langchain-ai/langchain\"],\n",
|
||||
" },\n",
|
||||
" template=PromptTemplate.from_template(\n",
|
||||
" \"\"\"# {title}\n",
|
||||
"by {user[login]}\n",
|
||||
"\n",
|
||||
"{body}\"\"\"\n",
|
||||
" ),\n",
|
||||
" include_metadata=False,\n",
|
||||
")\n",
|
||||
"docs = loader.load()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 19,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"# Updated partners/ibm README\n",
|
||||
"by williamdevena\n",
|
||||
"\n",
|
||||
"## PR title\n",
|
||||
"partners: changed the README file for the IBM Watson AI integration in the libs/partners/ibm folder.\n",
|
||||
"\n",
|
||||
"## PR message\n",
|
||||
"Description: Changed the README file of partners/ibm following the docs on https://python.langchain.com/docs/integrations/llms/ibm_watsonx\n",
|
||||
"\n",
|
||||
"The README includes:\n",
|
||||
"\n",
|
||||
"- Brief description\n",
|
||||
"- Installation\n",
|
||||
"- Setting-up instructions (API key, project id, ...)\n",
|
||||
"- Basic usage:\n",
|
||||
" - Loading the model\n",
|
||||
" - Direct inference\n",
|
||||
" - Chain invoking\n",
|
||||
" - Streaming the model output\n",
|
||||
" \n",
|
||||
"Issue: https://github.com/langchain-ai/langchain/issues/17545\n",
|
||||
"\n",
|
||||
"Dependencies: None\n",
|
||||
"\n",
|
||||
"Twitter handle: None\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"print(docs[-2].page_content)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 39,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"10283"
|
||||
]
|
||||
},
|
||||
"execution_count": 39,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"len(docs)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 29,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import tiktoken\n",
|
||||
"from langchain_community.vectorstores import Chroma\n",
|
||||
"from langchain_openai import OpenAIEmbeddings\n",
|
||||
"\n",
|
||||
"enc = tiktoken.get_encoding(\"cl100k_base\")\n",
|
||||
"\n",
|
||||
"vectorstore = Chroma.from_documents(\n",
|
||||
" docs,\n",
|
||||
" embedding=OpenAIEmbeddings(\n",
|
||||
" disallowed_special=(enc.special_tokens_set - {\"<|endofprompt|>\"})\n",
|
||||
" ),\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 40,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"retriever = vectorstore.as_retriever()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 42,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"[Document(page_content='# Updated partners/ibm README\\nby williamdevena\\n\\n## PR title\\r\\npartners: changed the README file for the IBM Watson AI integration in the libs/partners/ibm folder.\\r\\n\\r\\n## PR message\\r\\nDescription: Changed the README file of partners/ibm following the docs on https://python.langchain.com/docs/integrations/llms/ibm_watsonx\\r\\n\\r\\nThe README includes:\\r\\n\\r\\n- Brief description\\r\\n- Installation\\r\\n- Setting-up instructions (API key, project id, ...)\\r\\n- Basic usage:\\r\\n - Loading the model\\r\\n - Direct inference\\r\\n - Chain invoking\\r\\n - Streaming the model output\\r\\n \\r\\nIssue: https://github.com/langchain-ai/langchain/issues/17545\\r\\n\\r\\nDependencies: None\\r\\n\\r\\nTwitter handle: None'),\n",
|
||||
" Document(page_content='# Updated partners/ibm README\\nby williamdevena\\n\\n## PR title\\r\\npartners: changed the README file for the IBM Watson AI integration in the `libs/partners/ibm` folder. \\r\\n\\r\\n\\r\\n\\r\\n## PR message\\r\\n- **Description:** Changed the README file of partners/ibm following the docs on https://python.langchain.com/docs/integrations/llms/ibm_watsonx\\r\\n\\r\\n The README includes:\\r\\n - Brief description\\r\\n - Installation\\r\\n - Setting-up instructions (API key, project id, ...)\\r\\n - Basic usage:\\r\\n - Loading the model\\r\\n - Direct inference\\r\\n - Chain invoking\\r\\n - Streaming the model output\\r\\n\\r\\n\\r\\n- **Issue:** #17545\\r\\n- **Dependencies:** None\\r\\n- **Twitter handle:** None'),\n",
|
||||
" Document(page_content='# IBM: added partners package `langchain_ibm`, added llm\\nby MateuszOssGit\\n\\n - **Description:** Added `langchain_ibm` as an langchain partners package of IBM [watsonx.ai](https://www.ibm.com/products/watsonx-ai) LLM provider (`WatsonxLLM`)\\r\\n - **Dependencies:** [ibm-watsonx-ai](https://pypi.org/project/ibm-watsonx-ai/),\\r\\n - **Tag maintainer:** : \\r\\n\\r\\nPlease make sure your PR is passing linting and testing before submitting. Run `make format`, `make lint` and `make test` to check this locally. ✅'),\n",
|
||||
" Document(page_content='# Add WatsonX support\\nby baptistebignaud\\n\\nIt is a connector to use a LLM from WatsonX.\\r\\nIt requires python SDK \"ibm-generative-ai\"\\r\\n\\r\\n(It might not be perfect since it is my first PR on a public repository 😄)')]"
|
||||
]
|
||||
},
|
||||
"execution_count": 42,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"retriever.invoke(\"pull requests related to IBM\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": ".venv",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.11.4"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 2
|
||||
}
|
||||
@@ -1,284 +0,0 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Amazon Personalize\n",
|
||||
"\n",
|
||||
"[Amazon Personalize](https://docs.aws.amazon.com/personalize/latest/dg/what-is-personalize.html) is a fully managed machine learning service that uses your data to generate item recommendations for your users. It can also generate user segments based on the users' affinity for certain items or item metadata.\n",
|
||||
"\n",
|
||||
"This notebook goes through how to use Amazon Personalize Chain. You need a Amazon Personalize campaign_arn or a recommender_arn before you get started with the below notebook.\n",
|
||||
"\n",
|
||||
"Following is a [tutorial](https://github.com/aws-samples/retail-demo-store/blob/master/workshop/1-Personalization/Lab-1-Introduction-and-data-preparation.ipynb) to setup a campaign_arn/recommender_arn on Amazon Personalize. Once the campaign_arn/recommender_arn is setup, you can use it in the langchain ecosystem. \n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## 1. Install Dependencies"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"scrolled": true
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"!pip install boto3"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## 2. Sample Use-cases"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### 2.1 [Use-case-1] Setup Amazon Personalize Client and retrieve recommendations"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain_experimental.recommenders import AmazonPersonalize\n",
|
||||
"\n",
|
||||
"recommender_arn = \"<insert_arn>\"\n",
|
||||
"\n",
|
||||
"client = AmazonPersonalize(\n",
|
||||
" credentials_profile_name=\"default\",\n",
|
||||
" region_name=\"us-west-2\",\n",
|
||||
" recommender_arn=recommender_arn,\n",
|
||||
")\n",
|
||||
"client.get_recommendations(user_id=\"1\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
"jupyter": {
|
||||
"outputs_hidden": false
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
"### 2.2 [Use-case-2] Invoke Personalize Chain for summarizing results"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
"jupyter": {
|
||||
"outputs_hidden": false
|
||||
}
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain.llms.bedrock import Bedrock\n",
|
||||
"from langchain_experimental.recommenders import AmazonPersonalizeChain\n",
|
||||
"\n",
|
||||
"bedrock_llm = Bedrock(model_id=\"anthropic.claude-v2\", region_name=\"us-west-2\")\n",
|
||||
"\n",
|
||||
"# Create personalize chain\n",
|
||||
"# Use return_direct=True if you do not want summary\n",
|
||||
"chain = AmazonPersonalizeChain.from_llm(\n",
|
||||
" llm=bedrock_llm, client=client, return_direct=False\n",
|
||||
")\n",
|
||||
"response = chain({\"user_id\": \"1\"})\n",
|
||||
"print(response)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### 2.3 [Use-Case-3] Invoke Amazon Personalize Chain using your own prompt"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain.prompts.prompt import PromptTemplate\n",
|
||||
"\n",
|
||||
"RANDOM_PROMPT_QUERY = \"\"\"\n",
|
||||
"You are a skilled publicist. Write a high-converting marketing email advertising several movies available in a video-on-demand streaming platform next week, \n",
|
||||
" given the movie and user information below. Your email will leverage the power of storytelling and persuasive language. \n",
|
||||
" The movies to recommend and their information is contained in the <movie> tag. \n",
|
||||
" All movies in the <movie> tag must be recommended. Give a summary of the movies and why the human should watch them. \n",
|
||||
" Put the email between <email> tags.\n",
|
||||
"\n",
|
||||
" <movie>\n",
|
||||
" {result} \n",
|
||||
" </movie>\n",
|
||||
"\n",
|
||||
" Assistant:\n",
|
||||
" \"\"\"\n",
|
||||
"\n",
|
||||
"RANDOM_PROMPT = PromptTemplate(input_variables=[\"result\"], template=RANDOM_PROMPT_QUERY)\n",
|
||||
"\n",
|
||||
"chain = AmazonPersonalizeChain.from_llm(\n",
|
||||
" llm=bedrock_llm, client=client, return_direct=False, prompt_template=RANDOM_PROMPT\n",
|
||||
")\n",
|
||||
"chain.run({\"user_id\": \"1\", \"item_id\": \"234\"})"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### 2.4 [Use-case-4] Invoke Amazon Personalize in a Sequential Chain "
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain.chains import LLMChain, SequentialChain\n",
|
||||
"\n",
|
||||
"RANDOM_PROMPT_QUERY_2 = \"\"\"\n",
|
||||
"You are a skilled publicist. Write a high-converting marketing email advertising several movies available in a video-on-demand streaming platform next week, \n",
|
||||
" given the movie and user information below. Your email will leverage the power of storytelling and persuasive language. \n",
|
||||
" You want the email to impress the user, so make it appealing to them.\n",
|
||||
" The movies to recommend and their information is contained in the <movie> tag. \n",
|
||||
" All movies in the <movie> tag must be recommended. Give a summary of the movies and why the human should watch them. \n",
|
||||
" Put the email between <email> tags.\n",
|
||||
"\n",
|
||||
" <movie>\n",
|
||||
" {result}\n",
|
||||
" </movie>\n",
|
||||
"\n",
|
||||
" Assistant:\n",
|
||||
" \"\"\"\n",
|
||||
"\n",
|
||||
"RANDOM_PROMPT_2 = PromptTemplate(\n",
|
||||
" input_variables=[\"result\"], template=RANDOM_PROMPT_QUERY_2\n",
|
||||
")\n",
|
||||
"personalize_chain_instance = AmazonPersonalizeChain.from_llm(\n",
|
||||
" llm=bedrock_llm, client=client, return_direct=True\n",
|
||||
")\n",
|
||||
"random_chain_instance = LLMChain(llm=bedrock_llm, prompt=RANDOM_PROMPT_2)\n",
|
||||
"overall_chain = SequentialChain(\n",
|
||||
" chains=[personalize_chain_instance, random_chain_instance],\n",
|
||||
" input_variables=[\"user_id\"],\n",
|
||||
" verbose=True,\n",
|
||||
")\n",
|
||||
"overall_chain.run({\"user_id\": \"1\", \"item_id\": \"234\"})"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
"jupyter": {
|
||||
"outputs_hidden": false
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
"### 2.5 [Use-case-5] Invoke Amazon Personalize and retrieve metadata "
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
"jupyter": {
|
||||
"outputs_hidden": false
|
||||
}
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"recommender_arn = \"<insert_arn>\"\n",
|
||||
"metadata_column_names = [\n",
|
||||
" \"<insert metadataColumnName-1>\",\n",
|
||||
" \"<insert metadataColumnName-2>\",\n",
|
||||
"]\n",
|
||||
"metadataMap = {\"ITEMS\": metadata_column_names}\n",
|
||||
"\n",
|
||||
"client = AmazonPersonalize(\n",
|
||||
" credentials_profile_name=\"default\",\n",
|
||||
" region_name=\"us-west-2\",\n",
|
||||
" recommender_arn=recommender_arn,\n",
|
||||
")\n",
|
||||
"client.get_recommendations(user_id=\"1\", metadataColumns=metadataMap)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
"jupyter": {
|
||||
"outputs_hidden": false
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
"### 2.6 [Use-Case 6] Invoke Personalize Chain with returned metadata for summarizing results"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
"jupyter": {
|
||||
"outputs_hidden": false
|
||||
}
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"bedrock_llm = Bedrock(model_id=\"anthropic.claude-v2\", region_name=\"us-west-2\")\n",
|
||||
"\n",
|
||||
"# Create personalize chain\n",
|
||||
"# Use return_direct=True if you do not want summary\n",
|
||||
"chain = AmazonPersonalizeChain.from_llm(\n",
|
||||
" llm=bedrock_llm, client=client, return_direct=False\n",
|
||||
")\n",
|
||||
"response = chain({\"user_id\": \"1\", \"metadata_columns\": metadataMap})\n",
|
||||
"print(response)"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3 (ipykernel)",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.11.7"
|
||||
},
|
||||
"vscode": {
|
||||
"interpreter": {
|
||||
"hash": "15e58ce194949b77a891bd4339ce3d86a9bd138e905926019517993f97db9e6c"
|
||||
}
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 4
|
||||
}
|
||||
@@ -1,105 +0,0 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "f69d4a4c-137d-47e9-bea1-786afce9c1c0",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Analyze a single long document\n",
|
||||
"\n",
|
||||
"The AnalyzeDocumentChain takes in a single document, splits it up, and then runs it through a CombineDocumentsChain."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 3,
|
||||
"id": "2a0707ce-6d2d-471b-bc33-64da32a7b3f0",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"with open(\"../docs/docs/modules/state_of_the_union.txt\") as f:\n",
|
||||
" state_of_the_union = f.read()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 7,
|
||||
"id": "ca14d161-2d5b-4a6c-a296-77d8ce4b28cd",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain.chains import AnalyzeDocumentChain\n",
|
||||
"from langchain_openai import ChatOpenAI\n",
|
||||
"\n",
|
||||
"llm = ChatOpenAI(model=\"gpt-3.5-turbo\", temperature=0)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 8,
|
||||
"id": "9f97406c-85a9-45fb-99ce-9138c0ba3731",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain.chains.question_answering import load_qa_chain\n",
|
||||
"\n",
|
||||
"qa_chain = load_qa_chain(llm, chain_type=\"map_reduce\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 9,
|
||||
"id": "0871a753-f5bb-4b4f-a394-f87f2691f659",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"qa_document_chain = AnalyzeDocumentChain(combine_docs_chain=qa_chain)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 10,
|
||||
"id": "e6f86428-3c2c-46a0-a57c-e22826fdbf91",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"'The President said, \"Tonight, I’d like to honor someone who has dedicated his life to serve this country: Justice Stephen Breyer—an Army veteran, Constitutional scholar, and retiring Justice of the United States Supreme Court. Justice Breyer, thank you for your service.\"'"
|
||||
]
|
||||
},
|
||||
"execution_count": 10,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"qa_document_chain.run(\n",
|
||||
" input_document=state_of_the_union,\n",
|
||||
" question=\"what did the president say about justice breyer?\",\n",
|
||||
")"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3 (ipykernel)",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.9.1"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 5
|
||||
}
|
||||
File diff suppressed because one or more lines are too long
@@ -1,922 +0,0 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"id": "rT1cmV4qCa2X"
|
||||
},
|
||||
"source": [
|
||||
"# Using Apache Kafka to route messages\n",
|
||||
"\n",
|
||||
"---\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"This notebook shows you how to use LangChain's standard chat features while passing the chat messages back and forth via Apache Kafka.\n",
|
||||
"\n",
|
||||
"This goal is to simulate an architecture where the chat front end and the LLM are running as separate services that need to communicate with one another over an internal network.\n",
|
||||
"\n",
|
||||
"It's an alternative to typical pattern of requesting a response from the model via a REST API (there's more info on why you would want to do this at the end of the notebook)."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"id": "UPYtfAR_9YxZ"
|
||||
},
|
||||
"source": [
|
||||
"### 1. Install the main dependencies\n",
|
||||
"\n",
|
||||
"Dependencies include:\n",
|
||||
"\n",
|
||||
"- The Quix Streams library for managing interactions with Apache Kafka (or Kafka-like tools such as Redpanda) in a \"Pandas-like\" way.\n",
|
||||
"- The LangChain library for managing interactions with Llama-2 and storing conversation state."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"id": "ZX5tfKiy9cN-"
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"!pip install quixstreams==2.1.2a langchain==0.0.340 huggingface_hub==0.19.4 langchain-experimental==0.0.42 python-dotenv"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"id": "losTSdTB9d9O"
|
||||
},
|
||||
"source": [
|
||||
"### 2. Build and install the llama-cpp-python library (with CUDA enabled so that we can advantage of Google Colab GPU\n",
|
||||
"\n",
|
||||
"The `llama-cpp-python` library is a Python wrapper around the `llama-cpp` library which enables you to efficiently leverage just a CPU to run quantized LLMs.\n",
|
||||
"\n",
|
||||
"When you use the standard `pip install llama-cpp-python` command, you do not get GPU support by default. Generation can be very slow if you rely on just the CPU in Google Colab, so the following command adds an extra option to build and install\n",
|
||||
"`llama-cpp-python` with GPU support (make sure you have a GPU-enabled runtime selected in Google Colab)."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"id": "-JCQdl1G9tbl"
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"!CMAKE_ARGS=\"-DLLAMA_CUBLAS=on\" FORCE_CMAKE=1 pip install llama-cpp-python"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"id": "5_vjVIAh9rLl"
|
||||
},
|
||||
"source": [
|
||||
"### 3. Download and setup Kafka and Zookeeper instances\n",
|
||||
"\n",
|
||||
"Download the Kafka binaries from the Apache website and start the servers as daemons. We'll use the default configurations (provided by Apache Kafka) for spinning up the instances."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 3,
|
||||
"metadata": {
|
||||
"id": "zFz7czGRW5Wr"
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"!curl -sSOL https://dlcdn.apache.org/kafka/3.6.1/kafka_2.13-3.6.1.tgz\n",
|
||||
"!tar -xzf kafka_2.13-3.6.1.tgz"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"id": "Uf7NR_UZ9wye"
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"!./kafka_2.13-3.6.1/bin/zookeeper-server-start.sh -daemon ./kafka_2.13-3.6.1/config/zookeeper.properties\n",
|
||||
"!./kafka_2.13-3.6.1/bin/kafka-server-start.sh -daemon ./kafka_2.13-3.6.1/config/server.properties\n",
|
||||
"!echo \"Waiting for 10 secs until kafka and zookeeper services are up and running\"\n",
|
||||
"!sleep 10"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"id": "H3SafFuS94p1"
|
||||
},
|
||||
"source": [
|
||||
"### 4. Check that the Kafka Daemons are running\n",
|
||||
"\n",
|
||||
"Show the running processes and filter it for Java processes (you should see two—one for each server)."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"id": "CZDC2lQP99yp"
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"!ps aux | grep -E '[j]ava'"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"id": "Snoxmjb5-V37"
|
||||
},
|
||||
"source": [
|
||||
"### 5. Import the required dependencies and initialize required variables\n",
|
||||
"\n",
|
||||
"Import the Quix Streams library for interacting with Kafka, and the necessary LangChain components for running a `ConversationChain`."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 9,
|
||||
"metadata": {
|
||||
"id": "plR9e_MF-XL5"
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Import utility libraries\n",
|
||||
"import json\n",
|
||||
"import random\n",
|
||||
"import re\n",
|
||||
"import time\n",
|
||||
"import uuid\n",
|
||||
"from os import environ\n",
|
||||
"from pathlib import Path\n",
|
||||
"from random import choice, randint, random\n",
|
||||
"\n",
|
||||
"from dotenv import load_dotenv\n",
|
||||
"\n",
|
||||
"# Import a Hugging Face utility to download models directly from Hugging Face hub:\n",
|
||||
"from huggingface_hub import hf_hub_download\n",
|
||||
"from langchain.chains import ConversationChain\n",
|
||||
"\n",
|
||||
"# Import Langchain modules for managing prompts and conversation chains:\n",
|
||||
"from langchain.llms import LlamaCpp\n",
|
||||
"from langchain.memory import ConversationTokenBufferMemory\n",
|
||||
"from langchain.prompts import PromptTemplate, load_prompt\n",
|
||||
"from langchain_core.messages import SystemMessage\n",
|
||||
"from langchain_experimental.chat_models import Llama2Chat\n",
|
||||
"from quixstreams import Application, State, message_key\n",
|
||||
"\n",
|
||||
"# Import Quix dependencies\n",
|
||||
"from quixstreams.kafka import Producer\n",
|
||||
"\n",
|
||||
"# Initialize global variables.\n",
|
||||
"AGENT_ROLE = \"AI\"\n",
|
||||
"chat_id = \"\"\n",
|
||||
"\n",
|
||||
"# Set the current role to the role constant and initialize variables for supplementary customer metadata:\n",
|
||||
"role = AGENT_ROLE"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"id": "HgJjJ9aZ-liy"
|
||||
},
|
||||
"source": [
|
||||
"### 6. Download the \"llama-2-7b-chat.Q4_K_M.gguf\" model\n",
|
||||
"\n",
|
||||
"Download the quantized LLama-2 7B model from Hugging Face which we will use as a local LLM (rather than relying on REST API calls to an external service)."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 7,
|
||||
"metadata": {
|
||||
"colab": {
|
||||
"base_uri": "https://localhost:8080/",
|
||||
"height": 67,
|
||||
"referenced_widgets": [
|
||||
"969343cdbe604a26926679bbf8bd2dda",
|
||||
"d8b8370c9b514715be7618bfe6832844",
|
||||
"0def954cca89466b8408fadaf3b82e64",
|
||||
"462482accc664729980562e208ceb179",
|
||||
"80d842f73c564dc7b7cc316c763e2633",
|
||||
"fa055d9f2a9d4a789e9cf3c89e0214e5",
|
||||
"30ecca964a394109ac2ad757e3aec6c0",
|
||||
"fb6478ce2dac489bb633b23ba0953c5c",
|
||||
"734b0f5da9fc4307a95bab48cdbb5d89",
|
||||
"b32f3a86a74741348511f4e136744ac8",
|
||||
"e409071bff5a4e2d9bf0e9f5cc42231b"
|
||||
]
|
||||
},
|
||||
"id": "Qwu4YoSA-503",
|
||||
"outputId": "f956976c-7485-415b-ac93-4336ade31964"
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"The model path does not exist in state. Downloading model...\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"data": {
|
||||
"application/vnd.jupyter.widget-view+json": {
|
||||
"model_id": "969343cdbe604a26926679bbf8bd2dda",
|
||||
"version_major": 2,
|
||||
"version_minor": 0
|
||||
},
|
||||
"text/plain": [
|
||||
"llama-2-7b-chat.Q4_K_M.gguf: 0%| | 0.00/4.08G [00:00<?, ?B/s]"
|
||||
]
|
||||
},
|
||||
"metadata": {},
|
||||
"output_type": "display_data"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"model_name = \"llama-2-7b-chat.Q4_K_M.gguf\"\n",
|
||||
"model_path = f\"./state/{model_name}\"\n",
|
||||
"\n",
|
||||
"if not Path(model_path).exists():\n",
|
||||
" print(\"The model path does not exist in state. Downloading model...\")\n",
|
||||
" hf_hub_download(\"TheBloke/Llama-2-7b-Chat-GGUF\", model_name, local_dir=\"state\")\n",
|
||||
"else:\n",
|
||||
" print(\"Loading model from state...\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"id": "6AN6TXsF-8wx"
|
||||
},
|
||||
"source": [
|
||||
"### 7. Load the model and initialize conversational memory\n",
|
||||
"\n",
|
||||
"Load Llama 2 and set the conversation buffer to 300 tokens using `ConversationTokenBufferMemory`. This value was used for running Llama in a CPU only container, so you can raise it if running in Google Colab. It prevents the container that is hosting the model from running out of memory.\n",
|
||||
"\n",
|
||||
"Here, we're overriding the default system persona so that the chatbot has the personality of Marvin The Paranoid Android from the Hitchhiker's Guide to the Galaxy."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"id": "7zLO3Jx3_Kkg"
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Load the model with the appropriate parameters:\n",
|
||||
"llm = LlamaCpp(\n",
|
||||
" model_path=model_path,\n",
|
||||
" max_tokens=250,\n",
|
||||
" top_p=0.95,\n",
|
||||
" top_k=150,\n",
|
||||
" temperature=0.7,\n",
|
||||
" repeat_penalty=1.2,\n",
|
||||
" n_ctx=2048,\n",
|
||||
" streaming=False,\n",
|
||||
" n_gpu_layers=-1,\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"model = Llama2Chat(\n",
|
||||
" llm=llm,\n",
|
||||
" system_message=SystemMessage(\n",
|
||||
" content=\"You are a very bored robot with the personality of Marvin the Paranoid Android from The Hitchhiker's Guide to the Galaxy.\"\n",
|
||||
" ),\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"# Defines how much of the conversation history to give to the model\n",
|
||||
"# during each exchange (300 tokens, or a little over 300 words)\n",
|
||||
"# Function automatically prunes the oldest messages from conversation history that fall outside the token range.\n",
|
||||
"memory = ConversationTokenBufferMemory(\n",
|
||||
" llm=llm,\n",
|
||||
" max_token_limit=300,\n",
|
||||
" ai_prefix=\"AGENT\",\n",
|
||||
" human_prefix=\"HUMAN\",\n",
|
||||
" return_messages=True,\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"# Define a custom prompt\n",
|
||||
"prompt_template = PromptTemplate(\n",
|
||||
" input_variables=[\"history\", \"input\"],\n",
|
||||
" template=\"\"\"\n",
|
||||
" The following text is the history of a chat between you and a humble human who needs your wisdom.\n",
|
||||
" Please reply to the human's most recent message.\n",
|
||||
" Current conversation:\\n{history}\\nHUMAN: {input}\\:nANDROID:\n",
|
||||
" \"\"\",\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"chain = ConversationChain(llm=model, prompt=prompt_template, memory=memory)\n",
|
||||
"\n",
|
||||
"print(\"--------------------------------------------\")\n",
|
||||
"print(f\"Prompt={chain.prompt}\")\n",
|
||||
"print(\"--------------------------------------------\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"id": "m4ZeJ9mG_PEA"
|
||||
},
|
||||
"source": [
|
||||
"### 8. Initialize the chat conversation with the chat bot\n",
|
||||
"\n",
|
||||
"We configure the chatbot to initialize the conversation by sending a fixed greeting to a \"chat\" Kafka topic. The \"chat\" topic gets automatically created when we send the first message."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"id": "KYyo5TnV_YC3"
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"def chat_init():\n",
|
||||
" chat_id = str(\n",
|
||||
" uuid.uuid4()\n",
|
||||
" ) # Give the conversation an ID for effective message keying\n",
|
||||
" print(\"======================================\")\n",
|
||||
" print(f\"Generated CHAT_ID = {chat_id}\")\n",
|
||||
" print(\"======================================\")\n",
|
||||
"\n",
|
||||
" # Use a standard fixed greeting to kick off the conversation\n",
|
||||
" greet = \"Hello, my name is Marvin. What do you want?\"\n",
|
||||
"\n",
|
||||
" # Initialize a Kafka Producer using the chat ID as the message key\n",
|
||||
" with Producer(\n",
|
||||
" broker_address=\"127.0.0.1:9092\",\n",
|
||||
" extra_config={\"allow.auto.create.topics\": \"true\"},\n",
|
||||
" ) as producer:\n",
|
||||
" value = {\n",
|
||||
" \"uuid\": chat_id,\n",
|
||||
" \"role\": role,\n",
|
||||
" \"text\": greet,\n",
|
||||
" \"conversation_id\": chat_id,\n",
|
||||
" \"Timestamp\": time.time_ns(),\n",
|
||||
" }\n",
|
||||
" print(f\"Producing value {value}\")\n",
|
||||
" producer.produce(\n",
|
||||
" topic=\"chat\",\n",
|
||||
" headers=[(\"uuid\", str(uuid.uuid4()))], # a dict is also allowed here\n",
|
||||
" key=chat_id,\n",
|
||||
" value=json.dumps(value), # needs to be a string\n",
|
||||
" )\n",
|
||||
"\n",
|
||||
" print(\"Started chat\")\n",
|
||||
" print(\"--------------------------------------------\")\n",
|
||||
" print(value)\n",
|
||||
" print(\"--------------------------------------------\")\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"chat_init()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"id": "gArPPx2f_bgf"
|
||||
},
|
||||
"source": [
|
||||
"### 9. Initialize the reply function\n",
|
||||
"\n",
|
||||
"This function defines how the chatbot should reply to incoming messages. Instead of sending a fixed message like the previous cell, we generate a reply using Llama-2 and send that reply back to the \"chat\" Kafka topic."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 13,
|
||||
"metadata": {
|
||||
"id": "yN5t71hY_hgn"
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"def reply(row: dict, state: State):\n",
|
||||
" print(\"-------------------------------\")\n",
|
||||
" print(\"Received:\")\n",
|
||||
" print(row)\n",
|
||||
" print(\"-------------------------------\")\n",
|
||||
" print(f\"Thinking about the reply to: {row['text']}...\")\n",
|
||||
"\n",
|
||||
" msg = chain.run(row[\"text\"])\n",
|
||||
" print(f\"{role.upper()} replying with: {msg}\\n\")\n",
|
||||
"\n",
|
||||
" row[\"role\"] = role\n",
|
||||
" row[\"text\"] = msg\n",
|
||||
"\n",
|
||||
" # Replace previous role and text values of the row so that it can be sent back to Kafka as a new message\n",
|
||||
" # containing the agents role and reply\n",
|
||||
" return row"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"id": "HZHwmIR0_kFY"
|
||||
},
|
||||
"source": [
|
||||
"### 10. Check the Kafka topic for new human messages and have the model generate a reply\n",
|
||||
"\n",
|
||||
"If you are running this cell for this first time, run it and wait until you see Marvin's greeting ('Hello my name is Marvin...') in the console output. Stop the cell manually and proceed to the next cell where you'll be prompted for your reply.\n",
|
||||
"\n",
|
||||
"Once you have typed in your message, come back to this cell. Your reply is also sent to the same \"chat\" topic. The Kafka consumer checks for new messages and filters out messages that originate from the chatbot itself, leaving only the latest human messages.\n",
|
||||
"\n",
|
||||
"Once a new human message is detected, the reply function is triggered.\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"_STOP THIS CELL MANUALLY WHEN YOU RECEIVE A REPLY FROM THE LLM IN THE OUTPUT_"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"id": "-adXc3eQ_qwI"
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Define your application and settings\n",
|
||||
"app = Application(\n",
|
||||
" broker_address=\"127.0.0.1:9092\",\n",
|
||||
" consumer_group=\"aichat\",\n",
|
||||
" auto_offset_reset=\"earliest\",\n",
|
||||
" consumer_extra_config={\"allow.auto.create.topics\": \"true\"},\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"# Define an input topic with JSON deserializer\n",
|
||||
"input_topic = app.topic(\"chat\", value_deserializer=\"json\")\n",
|
||||
"# Define an output topic with JSON serializer\n",
|
||||
"output_topic = app.topic(\"chat\", value_serializer=\"json\")\n",
|
||||
"# Initialize a streaming dataframe based on the stream of messages from the input topic:\n",
|
||||
"sdf = app.dataframe(topic=input_topic)\n",
|
||||
"\n",
|
||||
"# Filter the SDF to include only incoming rows where the roles that dont match the bot's current role\n",
|
||||
"sdf = sdf.update(\n",
|
||||
" lambda val: print(\n",
|
||||
" f\"Received update: {val}\\n\\nSTOP THIS CELL MANUALLY TO HAVE THE LLM REPLY OR ENTER YOUR OWN FOLLOWUP RESPONSE\"\n",
|
||||
" )\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"# So that it doesn't reply to its own messages\n",
|
||||
"sdf = sdf[sdf[\"role\"] != role]\n",
|
||||
"\n",
|
||||
"# Trigger the reply function for any new messages(rows) detected in the filtered SDF\n",
|
||||
"sdf = sdf.apply(reply, stateful=True)\n",
|
||||
"\n",
|
||||
"# Check the SDF again and filter out any empty rows\n",
|
||||
"sdf = sdf[sdf.apply(lambda row: row is not None)]\n",
|
||||
"\n",
|
||||
"# Update the timestamp column to the current time in nanoseconds\n",
|
||||
"sdf[\"Timestamp\"] = sdf[\"Timestamp\"].apply(lambda row: time.time_ns())\n",
|
||||
"\n",
|
||||
"# Publish the processed SDF to a Kafka topic specified by the output_topic object.\n",
|
||||
"sdf = sdf.to_topic(output_topic)\n",
|
||||
"\n",
|
||||
"app.run(sdf)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"id": "EwXYrmWD_0CX"
|
||||
},
|
||||
"source": [
|
||||
"\n",
|
||||
"### 11. Enter a human message\n",
|
||||
"\n",
|
||||
"Run this cell to enter your message that you want to sent to the model. It uses another Kafka producer to send your text to the \"chat\" Kafka topic for the model to pick up (requires running the previous cell again)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"id": "6sxOPxSP_3iu"
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"chat_input = input(\"Please enter your reply: \")\n",
|
||||
"myreply = chat_input\n",
|
||||
"\n",
|
||||
"msgvalue = {\n",
|
||||
" \"uuid\": chat_id, # leave empty for now\n",
|
||||
" \"role\": \"human\",\n",
|
||||
" \"text\": myreply,\n",
|
||||
" \"conversation_id\": chat_id,\n",
|
||||
" \"Timestamp\": time.time_ns(),\n",
|
||||
"}\n",
|
||||
"\n",
|
||||
"with Producer(\n",
|
||||
" broker_address=\"127.0.0.1:9092\",\n",
|
||||
" extra_config={\"allow.auto.create.topics\": \"true\"},\n",
|
||||
") as producer:\n",
|
||||
" value = msgvalue\n",
|
||||
" producer.produce(\n",
|
||||
" topic=\"chat\",\n",
|
||||
" headers=[(\"uuid\", str(uuid.uuid4()))], # a dict is also allowed here\n",
|
||||
" key=chat_id, # leave empty for now\n",
|
||||
" value=json.dumps(value), # needs to be a string\n",
|
||||
" )\n",
|
||||
"\n",
|
||||
"print(\"Replied to chatbot with message: \")\n",
|
||||
"print(\"--------------------------------------------\")\n",
|
||||
"print(value)\n",
|
||||
"print(\"--------------------------------------------\")\n",
|
||||
"print(\"\\n\\nRUN THE PREVIOUS CELL TO HAVE THE CHATBOT GENERATE A REPLY\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"id": "cSx3s7TBBegg"
|
||||
},
|
||||
"source": [
|
||||
"### Why route chat messages through Kafka?\n",
|
||||
"\n",
|
||||
"It's easier to interact with the LLM directly using LangChains built-in conversation management features. Plus you can also use a REST API to generate a response from an externally hosted model. So why go to the trouble of using Apache Kafka?\n",
|
||||
"\n",
|
||||
"There are a few reasons, such as:\n",
|
||||
"\n",
|
||||
" * **Integration**: Many enterprises want to run their own LLMs so that they can keep their data in-house. This requires integrating LLM-powered components into existing architectures that might already be decoupled using some kind of message bus.\n",
|
||||
"\n",
|
||||
" * **Scalability**: Apache Kafka is designed with parallel processing in mind, so many teams prefer to use it to more effectively distribute work to available workers (in this case the \"worker\" is a container running an LLM).\n",
|
||||
"\n",
|
||||
" * **Durability**: Kafka is designed to allow services to pick up where another service left off in the case where that service experienced a memory issue or went offline. This prevents data loss in highly complex, distributed architectures where multiple systems are communicating with one another (LLMs being just one of many interdependent systems that also include vector databases and traditional databases).\n",
|
||||
"\n",
|
||||
"For more background on why event streaming is a good fit for Gen AI application architecture, see Kai Waehner's article [\"Apache Kafka + Vector Database + LLM = Real-Time GenAI\"](https://www.kai-waehner.de/blog/2023/11/08/apache-kafka-flink-vector-database-llm-real-time-genai/)."
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"accelerator": "GPU",
|
||||
"colab": {
|
||||
"gpuType": "T4",
|
||||
"provenance": []
|
||||
},
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"name": "python"
|
||||
},
|
||||
"widgets": {
|
||||
"application/vnd.jupyter.widget-state+json": {
|
||||
"0def954cca89466b8408fadaf3b82e64": {
|
||||
"model_module": "@jupyter-widgets/controls",
|
||||
"model_module_version": "1.5.0",
|
||||
"model_name": "FloatProgressModel",
|
||||
"state": {
|
||||
"_dom_classes": [],
|
||||
"_model_module": "@jupyter-widgets/controls",
|
||||
"_model_module_version": "1.5.0",
|
||||
"_model_name": "FloatProgressModel",
|
||||
"_view_count": null,
|
||||
"_view_module": "@jupyter-widgets/controls",
|
||||
"_view_module_version": "1.5.0",
|
||||
"_view_name": "ProgressView",
|
||||
"bar_style": "success",
|
||||
"description": "",
|
||||
"description_tooltip": null,
|
||||
"layout": "IPY_MODEL_fb6478ce2dac489bb633b23ba0953c5c",
|
||||
"max": 4081004224,
|
||||
"min": 0,
|
||||
"orientation": "horizontal",
|
||||
"style": "IPY_MODEL_734b0f5da9fc4307a95bab48cdbb5d89",
|
||||
"value": 4081004224
|
||||
}
|
||||
},
|
||||
"30ecca964a394109ac2ad757e3aec6c0": {
|
||||
"model_module": "@jupyter-widgets/controls",
|
||||
"model_module_version": "1.5.0",
|
||||
"model_name": "DescriptionStyleModel",
|
||||
"state": {
|
||||
"_model_module": "@jupyter-widgets/controls",
|
||||
"_model_module_version": "1.5.0",
|
||||
"_model_name": "DescriptionStyleModel",
|
||||
"_view_count": null,
|
||||
"_view_module": "@jupyter-widgets/base",
|
||||
"_view_module_version": "1.2.0",
|
||||
"_view_name": "StyleView",
|
||||
"description_width": ""
|
||||
}
|
||||
},
|
||||
"462482accc664729980562e208ceb179": {
|
||||
"model_module": "@jupyter-widgets/controls",
|
||||
"model_module_version": "1.5.0",
|
||||
"model_name": "HTMLModel",
|
||||
"state": {
|
||||
"_dom_classes": [],
|
||||
"_model_module": "@jupyter-widgets/controls",
|
||||
"_model_module_version": "1.5.0",
|
||||
"_model_name": "HTMLModel",
|
||||
"_view_count": null,
|
||||
"_view_module": "@jupyter-widgets/controls",
|
||||
"_view_module_version": "1.5.0",
|
||||
"_view_name": "HTMLView",
|
||||
"description": "",
|
||||
"description_tooltip": null,
|
||||
"layout": "IPY_MODEL_b32f3a86a74741348511f4e136744ac8",
|
||||
"placeholder": "",
|
||||
"style": "IPY_MODEL_e409071bff5a4e2d9bf0e9f5cc42231b",
|
||||
"value": " 4.08G/4.08G [00:33<00:00, 184MB/s]"
|
||||
}
|
||||
},
|
||||
"734b0f5da9fc4307a95bab48cdbb5d89": {
|
||||
"model_module": "@jupyter-widgets/controls",
|
||||
"model_module_version": "1.5.0",
|
||||
"model_name": "ProgressStyleModel",
|
||||
"state": {
|
||||
"_model_module": "@jupyter-widgets/controls",
|
||||
"_model_module_version": "1.5.0",
|
||||
"_model_name": "ProgressStyleModel",
|
||||
"_view_count": null,
|
||||
"_view_module": "@jupyter-widgets/base",
|
||||
"_view_module_version": "1.2.0",
|
||||
"_view_name": "StyleView",
|
||||
"bar_color": null,
|
||||
"description_width": ""
|
||||
}
|
||||
},
|
||||
"80d842f73c564dc7b7cc316c763e2633": {
|
||||
"model_module": "@jupyter-widgets/base",
|
||||
"model_module_version": "1.2.0",
|
||||
"model_name": "LayoutModel",
|
||||
"state": {
|
||||
"_model_module": "@jupyter-widgets/base",
|
||||
"_model_module_version": "1.2.0",
|
||||
"_model_name": "LayoutModel",
|
||||
"_view_count": null,
|
||||
"_view_module": "@jupyter-widgets/base",
|
||||
"_view_module_version": "1.2.0",
|
||||
"_view_name": "LayoutView",
|
||||
"align_content": null,
|
||||
"align_items": null,
|
||||
"align_self": null,
|
||||
"border": null,
|
||||
"bottom": null,
|
||||
"display": null,
|
||||
"flex": null,
|
||||
"flex_flow": null,
|
||||
"grid_area": null,
|
||||
"grid_auto_columns": null,
|
||||
"grid_auto_flow": null,
|
||||
"grid_auto_rows": null,
|
||||
"grid_column": null,
|
||||
"grid_gap": null,
|
||||
"grid_row": null,
|
||||
"grid_template_areas": null,
|
||||
"grid_template_columns": null,
|
||||
"grid_template_rows": null,
|
||||
"height": null,
|
||||
"justify_content": null,
|
||||
"justify_items": null,
|
||||
"left": null,
|
||||
"margin": null,
|
||||
"max_height": null,
|
||||
"max_width": null,
|
||||
"min_height": null,
|
||||
"min_width": null,
|
||||
"object_fit": null,
|
||||
"object_position": null,
|
||||
"order": null,
|
||||
"overflow": null,
|
||||
"overflow_x": null,
|
||||
"overflow_y": null,
|
||||
"padding": null,
|
||||
"right": null,
|
||||
"top": null,
|
||||
"visibility": null,
|
||||
"width": null
|
||||
}
|
||||
},
|
||||
"969343cdbe604a26926679bbf8bd2dda": {
|
||||
"model_module": "@jupyter-widgets/controls",
|
||||
"model_module_version": "1.5.0",
|
||||
"model_name": "HBoxModel",
|
||||
"state": {
|
||||
"_dom_classes": [],
|
||||
"_model_module": "@jupyter-widgets/controls",
|
||||
"_model_module_version": "1.5.0",
|
||||
"_model_name": "HBoxModel",
|
||||
"_view_count": null,
|
||||
"_view_module": "@jupyter-widgets/controls",
|
||||
"_view_module_version": "1.5.0",
|
||||
"_view_name": "HBoxView",
|
||||
"box_style": "",
|
||||
"children": [
|
||||
"IPY_MODEL_d8b8370c9b514715be7618bfe6832844",
|
||||
"IPY_MODEL_0def954cca89466b8408fadaf3b82e64",
|
||||
"IPY_MODEL_462482accc664729980562e208ceb179"
|
||||
],
|
||||
"layout": "IPY_MODEL_80d842f73c564dc7b7cc316c763e2633"
|
||||
}
|
||||
},
|
||||
"b32f3a86a74741348511f4e136744ac8": {
|
||||
"model_module": "@jupyter-widgets/base",
|
||||
"model_module_version": "1.2.0",
|
||||
"model_name": "LayoutModel",
|
||||
"state": {
|
||||
"_model_module": "@jupyter-widgets/base",
|
||||
"_model_module_version": "1.2.0",
|
||||
"_model_name": "LayoutModel",
|
||||
"_view_count": null,
|
||||
"_view_module": "@jupyter-widgets/base",
|
||||
"_view_module_version": "1.2.0",
|
||||
"_view_name": "LayoutView",
|
||||
"align_content": null,
|
||||
"align_items": null,
|
||||
"align_self": null,
|
||||
"border": null,
|
||||
"bottom": null,
|
||||
"display": null,
|
||||
"flex": null,
|
||||
"flex_flow": null,
|
||||
"grid_area": null,
|
||||
"grid_auto_columns": null,
|
||||
"grid_auto_flow": null,
|
||||
"grid_auto_rows": null,
|
||||
"grid_column": null,
|
||||
"grid_gap": null,
|
||||
"grid_row": null,
|
||||
"grid_template_areas": null,
|
||||
"grid_template_columns": null,
|
||||
"grid_template_rows": null,
|
||||
"height": null,
|
||||
"justify_content": null,
|
||||
"justify_items": null,
|
||||
"left": null,
|
||||
"margin": null,
|
||||
"max_height": null,
|
||||
"max_width": null,
|
||||
"min_height": null,
|
||||
"min_width": null,
|
||||
"object_fit": null,
|
||||
"object_position": null,
|
||||
"order": null,
|
||||
"overflow": null,
|
||||
"overflow_x": null,
|
||||
"overflow_y": null,
|
||||
"padding": null,
|
||||
"right": null,
|
||||
"top": null,
|
||||
"visibility": null,
|
||||
"width": null
|
||||
}
|
||||
},
|
||||
"d8b8370c9b514715be7618bfe6832844": {
|
||||
"model_module": "@jupyter-widgets/controls",
|
||||
"model_module_version": "1.5.0",
|
||||
"model_name": "HTMLModel",
|
||||
"state": {
|
||||
"_dom_classes": [],
|
||||
"_model_module": "@jupyter-widgets/controls",
|
||||
"_model_module_version": "1.5.0",
|
||||
"_model_name": "HTMLModel",
|
||||
"_view_count": null,
|
||||
"_view_module": "@jupyter-widgets/controls",
|
||||
"_view_module_version": "1.5.0",
|
||||
"_view_name": "HTMLView",
|
||||
"description": "",
|
||||
"description_tooltip": null,
|
||||
"layout": "IPY_MODEL_fa055d9f2a9d4a789e9cf3c89e0214e5",
|
||||
"placeholder": "",
|
||||
"style": "IPY_MODEL_30ecca964a394109ac2ad757e3aec6c0",
|
||||
"value": "llama-2-7b-chat.Q4_K_M.gguf: 100%"
|
||||
}
|
||||
},
|
||||
"e409071bff5a4e2d9bf0e9f5cc42231b": {
|
||||
"model_module": "@jupyter-widgets/controls",
|
||||
"model_module_version": "1.5.0",
|
||||
"model_name": "DescriptionStyleModel",
|
||||
"state": {
|
||||
"_model_module": "@jupyter-widgets/controls",
|
||||
"_model_module_version": "1.5.0",
|
||||
"_model_name": "DescriptionStyleModel",
|
||||
"_view_count": null,
|
||||
"_view_module": "@jupyter-widgets/base",
|
||||
"_view_module_version": "1.2.0",
|
||||
"_view_name": "StyleView",
|
||||
"description_width": ""
|
||||
}
|
||||
},
|
||||
"fa055d9f2a9d4a789e9cf3c89e0214e5": {
|
||||
"model_module": "@jupyter-widgets/base",
|
||||
"model_module_version": "1.2.0",
|
||||
"model_name": "LayoutModel",
|
||||
"state": {
|
||||
"_model_module": "@jupyter-widgets/base",
|
||||
"_model_module_version": "1.2.0",
|
||||
"_model_name": "LayoutModel",
|
||||
"_view_count": null,
|
||||
"_view_module": "@jupyter-widgets/base",
|
||||
"_view_module_version": "1.2.0",
|
||||
"_view_name": "LayoutView",
|
||||
"align_content": null,
|
||||
"align_items": null,
|
||||
"align_self": null,
|
||||
"border": null,
|
||||
"bottom": null,
|
||||
"display": null,
|
||||
"flex": null,
|
||||
"flex_flow": null,
|
||||
"grid_area": null,
|
||||
"grid_auto_columns": null,
|
||||
"grid_auto_flow": null,
|
||||
"grid_auto_rows": null,
|
||||
"grid_column": null,
|
||||
"grid_gap": null,
|
||||
"grid_row": null,
|
||||
"grid_template_areas": null,
|
||||
"grid_template_columns": null,
|
||||
"grid_template_rows": null,
|
||||
"height": null,
|
||||
"justify_content": null,
|
||||
"justify_items": null,
|
||||
"left": null,
|
||||
"margin": null,
|
||||
"max_height": null,
|
||||
"max_width": null,
|
||||
"min_height": null,
|
||||
"min_width": null,
|
||||
"object_fit": null,
|
||||
"object_position": null,
|
||||
"order": null,
|
||||
"overflow": null,
|
||||
"overflow_x": null,
|
||||
"overflow_y": null,
|
||||
"padding": null,
|
||||
"right": null,
|
||||
"top": null,
|
||||
"visibility": null,
|
||||
"width": null
|
||||
}
|
||||
},
|
||||
"fb6478ce2dac489bb633b23ba0953c5c": {
|
||||
"model_module": "@jupyter-widgets/base",
|
||||
"model_module_version": "1.2.0",
|
||||
"model_name": "LayoutModel",
|
||||
"state": {
|
||||
"_model_module": "@jupyter-widgets/base",
|
||||
"_model_module_version": "1.2.0",
|
||||
"_model_name": "LayoutModel",
|
||||
"_view_count": null,
|
||||
"_view_module": "@jupyter-widgets/base",
|
||||
"_view_module_version": "1.2.0",
|
||||
"_view_name": "LayoutView",
|
||||
"align_content": null,
|
||||
"align_items": null,
|
||||
"align_self": null,
|
||||
"border": null,
|
||||
"bottom": null,
|
||||
"display": null,
|
||||
"flex": null,
|
||||
"flex_flow": null,
|
||||
"grid_area": null,
|
||||
"grid_auto_columns": null,
|
||||
"grid_auto_flow": null,
|
||||
"grid_auto_rows": null,
|
||||
"grid_column": null,
|
||||
"grid_gap": null,
|
||||
"grid_row": null,
|
||||
"grid_template_areas": null,
|
||||
"grid_template_columns": null,
|
||||
"grid_template_rows": null,
|
||||
"height": null,
|
||||
"justify_content": null,
|
||||
"justify_items": null,
|
||||
"left": null,
|
||||
"margin": null,
|
||||
"max_height": null,
|
||||
"max_width": null,
|
||||
"min_height": null,
|
||||
"min_width": null,
|
||||
"object_fit": null,
|
||||
"object_position": null,
|
||||
"order": null,
|
||||
"overflow": null,
|
||||
"overflow_x": null,
|
||||
"overflow_y": null,
|
||||
"padding": null,
|
||||
"right": null,
|
||||
"top": null,
|
||||
"visibility": null,
|
||||
"width": null
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 0
|
||||
}
|
||||
@@ -27,10 +27,10 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain.utilities import SerpAPIWrapper\n",
|
||||
"from langchain.agents import Tool\n",
|
||||
"from langchain_community.tools.file_management.read import ReadFileTool\n",
|
||||
"from langchain_community.tools.file_management.write import WriteFileTool\n",
|
||||
"from langchain_community.utilities import SerpAPIWrapper\n",
|
||||
"from langchain.tools.file_management.write import WriteFileTool\n",
|
||||
"from langchain.tools.file_management.read import ReadFileTool\n",
|
||||
"\n",
|
||||
"search = SerpAPIWrapper()\n",
|
||||
"tools = [\n",
|
||||
@@ -61,9 +61,9 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain.vectorstores import FAISS\n",
|
||||
"from langchain.docstore import InMemoryDocstore\n",
|
||||
"from langchain_community.vectorstores import FAISS\n",
|
||||
"from langchain_openai import OpenAIEmbeddings"
|
||||
"from langchain.embeddings import OpenAIEmbeddings"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -101,7 +101,7 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain_experimental.autonomous_agents import AutoGPT\n",
|
||||
"from langchain_openai import ChatOpenAI"
|
||||
"from langchain.chat_models import ChatOpenAI"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -167,7 +167,7 @@
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain_community.chat_message_histories import FileChatMessageHistory\n",
|
||||
"from langchain.memory.chat_message_histories import FileChatMessageHistory\n",
|
||||
"\n",
|
||||
"agent = AutoGPT.from_llm_and_tools(\n",
|
||||
" ai_name=\"Tom\",\n",
|
||||
|
||||
@@ -34,19 +34,18 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# General\n",
|
||||
"import asyncio\n",
|
||||
"import os\n",
|
||||
"\n",
|
||||
"import nest_asyncio\n",
|
||||
"import pandas as pd\n",
|
||||
"from langchain.docstore.document import Document\n",
|
||||
"from langchain_experimental.agents.agent_toolkits.pandas.base import (\n",
|
||||
" create_pandas_dataframe_agent,\n",
|
||||
")\n",
|
||||
"from langchain_experimental.autonomous_agents import AutoGPT\n",
|
||||
"from langchain_openai import ChatOpenAI\n",
|
||||
"from langchain.chat_models import ChatOpenAI\n",
|
||||
"\n",
|
||||
"# Needed since jupyter runs an async eventloop\n",
|
||||
"from langchain.agents.agent_toolkits.pandas.base import create_pandas_dataframe_agent\n",
|
||||
"from langchain.docstore.document import Document\n",
|
||||
"import asyncio\n",
|
||||
"import nest_asyncio\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"# Needed synce jupyter runs an async eventloop\n",
|
||||
"nest_asyncio.apply()"
|
||||
]
|
||||
},
|
||||
@@ -59,7 +58,7 @@
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"llm = ChatOpenAI(model=\"gpt-4\", temperature=1.0)"
|
||||
"llm = ChatOpenAI(model_name=\"gpt-4\", temperature=1.0)"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -93,10 +92,9 @@
|
||||
"import os\n",
|
||||
"from contextlib import contextmanager\n",
|
||||
"from typing import Optional\n",
|
||||
"\n",
|
||||
"from langchain.agents import tool\n",
|
||||
"from langchain_community.tools.file_management.read import ReadFileTool\n",
|
||||
"from langchain_community.tools.file_management.write import WriteFileTool\n",
|
||||
"from langchain.tools.file_management.read import ReadFileTool\n",
|
||||
"from langchain.tools.file_management.write import WriteFileTool\n",
|
||||
"\n",
|
||||
"ROOT_DIR = \"./data/\"\n",
|
||||
"\n",
|
||||
@@ -225,13 +223,14 @@
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain.chains.qa_with_sources.loading import (\n",
|
||||
" BaseCombineDocumentsChain,\n",
|
||||
" load_qa_with_sources_chain,\n",
|
||||
")\n",
|
||||
"from langchain.tools import BaseTool, DuckDuckGoSearchRun\n",
|
||||
"from langchain_text_splitters import RecursiveCharacterTextSplitter\n",
|
||||
"from langchain.text_splitter import RecursiveCharacterTextSplitter\n",
|
||||
"\n",
|
||||
"from pydantic import Field\n",
|
||||
"from langchain.chains.qa_with_sources.loading import (\n",
|
||||
" load_qa_with_sources_chain,\n",
|
||||
" BaseCombineDocumentsChain,\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"def _get_text_splitter():\n",
|
||||
@@ -312,9 +311,10 @@
|
||||
"source": [
|
||||
"# Memory\n",
|
||||
"import faiss\n",
|
||||
"from langchain.vectorstores import FAISS\n",
|
||||
"from langchain.docstore import InMemoryDocstore\n",
|
||||
"from langchain_community.vectorstores import FAISS\n",
|
||||
"from langchain_openai import OpenAIEmbeddings\n",
|
||||
"from langchain.embeddings import OpenAIEmbeddings\n",
|
||||
"from langchain.tools.human.tool import HumanInputRun\n",
|
||||
"\n",
|
||||
"embeddings_model = OpenAIEmbeddings()\n",
|
||||
"embedding_size = 1536\n",
|
||||
|
||||
File diff suppressed because one or more lines are too long
@@ -29,10 +29,17 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from typing import Optional\n",
|
||||
"import os\n",
|
||||
"from collections import deque\n",
|
||||
"from typing import Dict, List, Optional, Any\n",
|
||||
"\n",
|
||||
"from langchain_experimental.autonomous_agents import BabyAGI\n",
|
||||
"from langchain_openai import OpenAI, OpenAIEmbeddings"
|
||||
"from langchain.chains import LLMChain\nfrom langchain.llms import OpenAI\nfrom langchain.prompts import PromptTemplate\n",
|
||||
"from langchain.embeddings import OpenAIEmbeddings\n",
|
||||
"from langchain.llms import BaseLLM\n",
|
||||
"from langchain.schema.vectorstore import VectorStore\n",
|
||||
"from pydantic import BaseModel, Field\n",
|
||||
"from langchain.chains.base import Chain\n",
|
||||
"from langchain_experimental.autonomous_agents import BabyAGI"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -52,8 +59,8 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain.docstore import InMemoryDocstore\n",
|
||||
"from langchain_community.vectorstores import FAISS"
|
||||
"from langchain.vectorstores import FAISS\n",
|
||||
"from langchain.docstore import InMemoryDocstore"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
||||
@@ -25,12 +25,17 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from typing import Optional\n",
|
||||
"import os\n",
|
||||
"from collections import deque\n",
|
||||
"from typing import Dict, List, Optional, Any\n",
|
||||
"\n",
|
||||
"from langchain.chains import LLMChain\n",
|
||||
"from langchain.prompts import PromptTemplate\n",
|
||||
"from langchain_experimental.autonomous_agents import BabyAGI\n",
|
||||
"from langchain_openai import OpenAI, OpenAIEmbeddings"
|
||||
"from langchain.chains import LLMChain\nfrom langchain.llms import OpenAI\nfrom langchain.prompts import PromptTemplate\n",
|
||||
"from langchain.embeddings import OpenAIEmbeddings\n",
|
||||
"from langchain.llms import BaseLLM\n",
|
||||
"from langchain.schema.vectorstore import VectorStore\n",
|
||||
"from pydantic import BaseModel, Field\n",
|
||||
"from langchain.chains.base import Chain\n",
|
||||
"from langchain_experimental.autonomous_agents import BabyAGI"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -61,8 +66,8 @@
|
||||
"source": [
|
||||
"%pip install faiss-cpu > /dev/null\n",
|
||||
"%pip install google-search-results > /dev/null\n",
|
||||
"from langchain.docstore import InMemoryDocstore\n",
|
||||
"from langchain_community.vectorstores import FAISS"
|
||||
"from langchain.vectorstores import FAISS\n",
|
||||
"from langchain.docstore import InMemoryDocstore"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -105,10 +110,8 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain.agents import AgentExecutor, Tool, ZeroShotAgent\n",
|
||||
"from langchain.chains import LLMChain\n",
|
||||
"from langchain_community.utilities import SerpAPIWrapper\n",
|
||||
"from langchain_openai import OpenAI\n",
|
||||
"from langchain.agents import ZeroShotAgent, Tool, AgentExecutor\n",
|
||||
"from langchain.llms import OpenAI\nfrom langchain.utilities import SerpAPIWrapper\nfrom langchain.chains import LLMChain\n",
|
||||
"\n",
|
||||
"todo_prompt = PromptTemplate.from_template(\n",
|
||||
" \"You are a planner who is an expert at coming up with a todo list for a given objective. Come up with a todo list for this objective: {objective}\"\n",
|
||||
|
||||
@@ -35,18 +35,17 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from typing import List\n",
|
||||
"\n",
|
||||
"from langchain.chat_models import ChatOpenAI\n",
|
||||
"from langchain.prompts.chat import (\n",
|
||||
" HumanMessagePromptTemplate,\n",
|
||||
" SystemMessagePromptTemplate,\n",
|
||||
" HumanMessagePromptTemplate,\n",
|
||||
")\n",
|
||||
"from langchain.schema import (\n",
|
||||
" AIMessage,\n",
|
||||
" BaseMessage,\n",
|
||||
" HumanMessage,\n",
|
||||
" SystemMessage,\n",
|
||||
")\n",
|
||||
"from langchain_openai import ChatOpenAI"
|
||||
" BaseMessage,\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -90,7 +89,7 @@
|
||||
" ) -> AIMessage:\n",
|
||||
" messages = self.update_messages(input_message)\n",
|
||||
"\n",
|
||||
" output_message = self.model.invoke(messages)\n",
|
||||
" output_message = self.model(messages)\n",
|
||||
" self.update_messages(output_message)\n",
|
||||
"\n",
|
||||
" return output_message"
|
||||
|
||||
@@ -47,9 +47,10 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from IPython.display import SVG\n",
|
||||
"\n",
|
||||
"from langchain_experimental.cpal.base import CPALChain\n",
|
||||
"from langchain_experimental.pal_chain import PALChain\n",
|
||||
"from langchain_openai import OpenAI\n",
|
||||
"from langchain.llms import OpenAI\n",
|
||||
"\n",
|
||||
"llm = OpenAI(temperature=0, max_tokens=512)\n",
|
||||
"cpal_chain = CPALChain.from_univariate_prompt(llm=llm, verbose=True)\n",
|
||||
|
||||
@@ -23,9 +23,9 @@
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"1. Prepare data:\n",
|
||||
" 1. Upload all python project files using the `langchain_community.document_loaders.TextLoader`. We will call these files the **documents**.\n",
|
||||
" 2. Split all documents to chunks using the `langchain_text_splitters.CharacterTextSplitter`.\n",
|
||||
" 3. Embed chunks and upload them into the DeepLake using `langchain.embeddings.openai.OpenAIEmbeddings` and `langchain_community.vectorstores.DeepLake`\n",
|
||||
" 1. Upload all python project files using the `langchain.document_loaders.TextLoader`. We will call these files the **documents**.\n",
|
||||
" 2. Split all documents to chunks using the `langchain.text_splitter.CharacterTextSplitter`.\n",
|
||||
" 3. Embed chunks and upload them into the DeepLake using `langchain.embeddings.openai.OpenAIEmbeddings` and `langchain.vectorstores.DeepLake`\n",
|
||||
"2. Question-Answering:\n",
|
||||
" 1. Build a chain from `langchain.chat_models.ChatOpenAI` and `langchain.chains.ConversationalRetrievalChain`\n",
|
||||
" 2. Prepare questions.\n",
|
||||
@@ -166,7 +166,7 @@
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"from langchain_community.document_loaders import TextLoader\n",
|
||||
"from langchain.document_loaders import TextLoader\n",
|
||||
"\n",
|
||||
"root_dir = \"../../../../../../libs\"\n",
|
||||
"\n",
|
||||
@@ -177,7 +177,7 @@
|
||||
" try:\n",
|
||||
" loader = TextLoader(os.path.join(dirpath, file), encoding=\"utf-8\")\n",
|
||||
" docs.extend(loader.load_and_split())\n",
|
||||
" except Exception:\n",
|
||||
" except Exception as e:\n",
|
||||
" pass\n",
|
||||
"print(f\"{len(docs)}\")"
|
||||
]
|
||||
@@ -621,7 +621,7 @@
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"from langchain_text_splitters import CharacterTextSplitter\n",
|
||||
"from langchain.text_splitter import CharacterTextSplitter\n",
|
||||
"\n",
|
||||
"text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)\n",
|
||||
"texts = text_splitter.split_documents(docs)\n",
|
||||
@@ -648,7 +648,7 @@
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"OpenAIEmbeddings(client=<class 'openai.api_resources.embedding.Embedding'>, model='text-embedding-ada-002', deployment='text-embedding-ada-002', openai_api_version='', openai_api_base='', openai_api_type='', openai_proxy='', embedding_ctx_length=8191, openai_api_key='', openai_organization='', allowed_special=set(), disallowed_special='all', chunk_size=1000, max_retries=6, request_timeout=None, headers=None, tiktoken_model_name=None, show_progress_bar=False, model_kwargs={})"
|
||||
"OpenAIEmbeddings(client=<class 'openai.api_resources.embedding.Embedding'>, model='text-embedding-ada-002', deployment='text-embedding-ada-002', openai_api_version='', openai_api_base='', openai_api_type='', openai_proxy='', embedding_ctx_length=8191, openai_api_key='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', openai_organization='', allowed_special=set(), disallowed_special='all', chunk_size=1000, max_retries=6, request_timeout=None, headers=None, tiktoken_model_name=None, show_progress_bar=False, model_kwargs={})"
|
||||
]
|
||||
},
|
||||
"execution_count": 13,
|
||||
@@ -657,7 +657,7 @@
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"from langchain_openai import OpenAIEmbeddings\n",
|
||||
"from langchain.embeddings.openai import OpenAIEmbeddings\n",
|
||||
"\n",
|
||||
"embeddings = OpenAIEmbeddings()\n",
|
||||
"embeddings"
|
||||
@@ -706,7 +706,7 @@
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"<langchain_community.vectorstores.deeplake.DeepLake at 0x7fe1b67d7a30>"
|
||||
"<langchain.vectorstores.deeplake.DeepLake at 0x7fe1b67d7a30>"
|
||||
]
|
||||
},
|
||||
"execution_count": 15,
|
||||
@@ -715,7 +715,8 @@
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"from langchain_community.vectorstores import DeepLake\n",
|
||||
"from langchain.vectorstores import DeepLake\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"username = \"<USERNAME_OR_ORG>\"\n",
|
||||
"\n",
|
||||
@@ -740,7 +741,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# from langchain_community.vectorstores import DeepLake\n",
|
||||
"# from langchain.vectorstores import DeepLake\n",
|
||||
"\n",
|
||||
"# db = DeepLake.from_documents(\n",
|
||||
"# texts, embeddings, dataset_path=f\"hub://{<org_id>}/langchain-code\", runtime={\"tensor_db\": True}\n",
|
||||
@@ -833,8 +834,8 @@
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain.chat_models import ChatOpenAI\n",
|
||||
"from langchain.chains import ConversationalRetrievalChain\n",
|
||||
"from langchain_openai import ChatOpenAI\n",
|
||||
"\n",
|
||||
"model = ChatOpenAI(\n",
|
||||
" model_name=\"gpt-3.5-turbo-0613\"\n",
|
||||
@@ -933,7 +934,7 @@
|
||||
"**Answer**: The LangChain class includes various types of retrievers such as:\n",
|
||||
"\n",
|
||||
"- ArxivRetriever\n",
|
||||
"- AzureAISearchRetriever\n",
|
||||
"- AzureCognitiveSearchRetriever\n",
|
||||
"- BM25Retriever\n",
|
||||
"- ChaindeskRetriever\n",
|
||||
"- ChatGPTPluginRetriever\n",
|
||||
@@ -993,7 +994,7 @@
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"{'question': 'LangChain possesses a variety of retrievers including:\\n\\n1. ArxivRetriever\\n2. AzureAISearchRetriever\\n3. BM25Retriever\\n4. ChaindeskRetriever\\n5. ChatGPTPluginRetriever\\n6. ContextualCompressionRetriever\\n7. DocArrayRetriever\\n8. ElasticSearchBM25Retriever\\n9. EnsembleRetriever\\n10. GoogleVertexAISearchRetriever\\n11. AmazonKendraRetriever\\n12. KNNRetriever\\n13. LlamaIndexGraphRetriever\\n14. LlamaIndexRetriever\\n15. MergerRetriever\\n16. MetalRetriever\\n17. MilvusRetriever\\n18. MultiQueryRetriever\\n19. ParentDocumentRetriever\\n20. PineconeHybridSearchRetriever\\n21. PubMedRetriever\\n22. RePhraseQueryRetriever\\n23. RemoteLangChainRetriever\\n24. SelfQueryRetriever\\n25. SVMRetriever\\n26. TFIDFRetriever\\n27. TimeWeightedVectorStoreRetriever\\n28. VespaRetriever\\n29. WeaviateHybridSearchRetriever\\n30. WebResearchRetriever\\n31. WikipediaRetriever\\n32. ZepRetriever\\n33. ZillizRetriever\\n\\nIt also includes self query translators like:\\n\\n1. ChromaTranslator\\n2. DeepLakeTranslator\\n3. MyScaleTranslator\\n4. PineconeTranslator\\n5. QdrantTranslator\\n6. WeaviateTranslator\\n\\nAnd remote retrievers like:\\n\\n1. RemoteLangChainRetriever'}"
|
||||
"{'question': 'LangChain possesses a variety of retrievers including:\\n\\n1. ArxivRetriever\\n2. AzureCognitiveSearchRetriever\\n3. BM25Retriever\\n4. ChaindeskRetriever\\n5. ChatGPTPluginRetriever\\n6. ContextualCompressionRetriever\\n7. DocArrayRetriever\\n8. ElasticSearchBM25Retriever\\n9. EnsembleRetriever\\n10. GoogleVertexAISearchRetriever\\n11. AmazonKendraRetriever\\n12. KNNRetriever\\n13. LlamaIndexGraphRetriever\\n14. LlamaIndexRetriever\\n15. MergerRetriever\\n16. MetalRetriever\\n17. MilvusRetriever\\n18. MultiQueryRetriever\\n19. ParentDocumentRetriever\\n20. PineconeHybridSearchRetriever\\n21. PubMedRetriever\\n22. RePhraseQueryRetriever\\n23. RemoteLangChainRetriever\\n24. SelfQueryRetriever\\n25. SVMRetriever\\n26. TFIDFRetriever\\n27. TimeWeightedVectorStoreRetriever\\n28. VespaRetriever\\n29. WeaviateHybridSearchRetriever\\n30. WebResearchRetriever\\n31. WikipediaRetriever\\n32. ZepRetriever\\n33. ZillizRetriever\\n\\nIt also includes self query translators like:\\n\\n1. ChromaTranslator\\n2. DeepLakeTranslator\\n3. MyScaleTranslator\\n4. PineconeTranslator\\n5. QdrantTranslator\\n6. WeaviateTranslator\\n\\nAnd remote retrievers like:\\n\\n1. RemoteLangChainRetriever'}"
|
||||
]
|
||||
},
|
||||
"execution_count": 31,
|
||||
@@ -1117,7 +1118,7 @@
|
||||
"The LangChain class includes various types of retrievers such as:\n",
|
||||
"\n",
|
||||
"- ArxivRetriever\n",
|
||||
"- AzureAISearchRetriever\n",
|
||||
"- AzureCognitiveSearchRetriever\n",
|
||||
"- BM25Retriever\n",
|
||||
"- ChaindeskRetriever\n",
|
||||
"- ChatGPTPluginRetriever\n",
|
||||
|
||||
@@ -1,557 +0,0 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Setup Environment"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Python Modules"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Install the following Python modules:\n",
|
||||
"\n",
|
||||
"```bash\n",
|
||||
"pip install ipykernel python-dotenv cassio pandas langchain_openai langchain langchain-community langchainhub langchain_experimental openai-multi-tool-use-parallel-patch\n",
|
||||
"```"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Load the `.env` File"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Connection is via `cassio` using `auto=True` parameter, and the notebook uses OpenAI. You should create a `.env` file accordingly.\n",
|
||||
"\n",
|
||||
"For Casssandra, set:\n",
|
||||
"```bash\n",
|
||||
"CASSANDRA_CONTACT_POINTS\n",
|
||||
"CASSANDRA_USERNAME\n",
|
||||
"CASSANDRA_PASSWORD\n",
|
||||
"CASSANDRA_KEYSPACE\n",
|
||||
"```\n",
|
||||
"\n",
|
||||
"For Astra, set:\n",
|
||||
"```bash\n",
|
||||
"ASTRA_DB_APPLICATION_TOKEN\n",
|
||||
"ASTRA_DB_DATABASE_ID\n",
|
||||
"ASTRA_DB_KEYSPACE\n",
|
||||
"```\n",
|
||||
"\n",
|
||||
"For example:\n",
|
||||
"\n",
|
||||
"```bash\n",
|
||||
"# Connection to Astra:\n",
|
||||
"ASTRA_DB_DATABASE_ID=a1b2c3d4-...\n",
|
||||
"ASTRA_DB_APPLICATION_TOKEN=AstraCS:...\n",
|
||||
"ASTRA_DB_KEYSPACE=notebooks\n",
|
||||
"\n",
|
||||
"# Also set \n",
|
||||
"OPENAI_API_KEY=sk-....\n",
|
||||
"```\n",
|
||||
"\n",
|
||||
"(You may also modify the below code to directly connect with `cassio`.)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from dotenv import load_dotenv\n",
|
||||
"\n",
|
||||
"load_dotenv(override=True)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Connect to Cassandra"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import os\n",
|
||||
"\n",
|
||||
"import cassio\n",
|
||||
"\n",
|
||||
"cassio.init(auto=True)\n",
|
||||
"session = cassio.config.resolve_session()\n",
|
||||
"if not session:\n",
|
||||
" raise Exception(\n",
|
||||
" \"Check environment configuration or manually configure cassio connection parameters\"\n",
|
||||
" )\n",
|
||||
"\n",
|
||||
"keyspace = os.environ.get(\n",
|
||||
" \"ASTRA_DB_KEYSPACE\", os.environ.get(\"CASSANDRA_KEYSPACE\", None)\n",
|
||||
")\n",
|
||||
"if not keyspace:\n",
|
||||
" raise ValueError(\"a KEYSPACE environment variable must be set\")\n",
|
||||
"\n",
|
||||
"session.set_keyspace(keyspace)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Setup Database"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"This needs to be done one time only!"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Download Data"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"The dataset used is from Kaggle, the [Environmental Sensor Telemetry Data](https://www.kaggle.com/datasets/garystafford/environmental-sensor-data-132k?select=iot_telemetry_data.csv). The next cell will download and unzip the data into a Pandas dataframe. The following cell is instructions to download manually. \n",
|
||||
"\n",
|
||||
"The net result of this section is you should have a Pandas dataframe variable `df`."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"#### Download Automatically"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from io import BytesIO\n",
|
||||
"from zipfile import ZipFile\n",
|
||||
"\n",
|
||||
"import pandas as pd\n",
|
||||
"import requests\n",
|
||||
"\n",
|
||||
"datasetURL = \"https://storage.googleapis.com/kaggle-data-sets/788816/1355729/bundle/archive.zip?X-Goog-Algorithm=GOOG4-RSA-SHA256&X-Goog-Credential=gcp-kaggle-com%40kaggle-161607.iam.gserviceaccount.com%2F20240404%2Fauto%2Fstorage%2Fgoog4_request&X-Goog-Date=20240404T115828Z&X-Goog-Expires=259200&X-Goog-SignedHeaders=host&X-Goog-Signature=2849f003b100eb9dcda8dd8535990f51244292f67e4f5fad36f14aa67f2d4297672d8fe6ff5a39f03a29cda051e33e95d36daab5892b8874dcd5a60228df0361fa26bae491dd4371f02dd20306b583a44ba85a4474376188b1f84765147d3b4f05c57345e5de883c2c29653cce1f3755cd8e645c5e952f4fb1c8a735b22f0c811f97f7bce8d0235d0d3731ca8ab4629ff381f3bae9e35fc1b181c1e69a9c7913a5e42d9d52d53e5f716467205af9c8a3cc6746fc5352e8fbc47cd7d18543626bd67996d18c2045c1e475fc136df83df352fa747f1a3bb73e6ba3985840792ec1de407c15836640ec96db111b173bf16115037d53fdfbfd8ac44145d7f9a546aa\"\n",
|
||||
"\n",
|
||||
"response = requests.get(datasetURL)\n",
|
||||
"if response.status_code == 200:\n",
|
||||
" zip_file = ZipFile(BytesIO(response.content))\n",
|
||||
" csv_file_name = zip_file.namelist()[0]\n",
|
||||
"else:\n",
|
||||
" print(\"Failed to download the file\")\n",
|
||||
"\n",
|
||||
"with zip_file.open(csv_file_name) as csv_file:\n",
|
||||
" df = pd.read_csv(csv_file)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"#### Download Manually"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"You can download the `.zip` file and unpack the `.csv` contained within. Comment in the next line, and adjust the path to this `.csv` file appropriately."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# df = pd.read_csv(\"/path/to/iot_telemetry_data.csv\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Load Data into Cassandra"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"This section assumes the existence of a dataframe `df`, the following cell validates its structure. The Download section above creates this object."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"assert df is not None, \"Dataframe 'df' must be set\"\n",
|
||||
"expected_columns = [\n",
|
||||
" \"ts\",\n",
|
||||
" \"device\",\n",
|
||||
" \"co\",\n",
|
||||
" \"humidity\",\n",
|
||||
" \"light\",\n",
|
||||
" \"lpg\",\n",
|
||||
" \"motion\",\n",
|
||||
" \"smoke\",\n",
|
||||
" \"temp\",\n",
|
||||
"]\n",
|
||||
"assert all(\n",
|
||||
" [column in df.columns for column in expected_columns]\n",
|
||||
"), \"DataFrame does not have the expected columns\""
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Create and load tables:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from datetime import UTC, datetime\n",
|
||||
"\n",
|
||||
"from cassandra.query import BatchStatement\n",
|
||||
"\n",
|
||||
"# Create sensors table\n",
|
||||
"table_query = \"\"\"\n",
|
||||
"CREATE TABLE IF NOT EXISTS iot_sensors (\n",
|
||||
" device text,\n",
|
||||
" conditions text,\n",
|
||||
" room text,\n",
|
||||
" PRIMARY KEY (device)\n",
|
||||
")\n",
|
||||
"WITH COMMENT = 'Environmental IoT room sensor metadata.';\n",
|
||||
"\"\"\"\n",
|
||||
"session.execute(table_query)\n",
|
||||
"\n",
|
||||
"pstmt = session.prepare(\n",
|
||||
" \"\"\"\n",
|
||||
"INSERT INTO iot_sensors (device, conditions, room)\n",
|
||||
"VALUES (?, ?, ?)\n",
|
||||
"\"\"\"\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"devices = [\n",
|
||||
" (\"00:0f:00:70:91:0a\", \"stable conditions, cooler and more humid\", \"room 1\"),\n",
|
||||
" (\"1c:bf:ce:15:ec:4d\", \"highly variable temperature and humidity\", \"room 2\"),\n",
|
||||
" (\"b8:27:eb:bf:9d:51\", \"stable conditions, warmer and dryer\", \"room 3\"),\n",
|
||||
"]\n",
|
||||
"\n",
|
||||
"for device, conditions, room in devices:\n",
|
||||
" session.execute(pstmt, (device, conditions, room))\n",
|
||||
"\n",
|
||||
"print(\"Sensors inserted successfully.\")\n",
|
||||
"\n",
|
||||
"# Create data table\n",
|
||||
"table_query = \"\"\"\n",
|
||||
"CREATE TABLE IF NOT EXISTS iot_data (\n",
|
||||
" day text,\n",
|
||||
" device text,\n",
|
||||
" ts timestamp,\n",
|
||||
" co double,\n",
|
||||
" humidity double,\n",
|
||||
" light boolean,\n",
|
||||
" lpg double,\n",
|
||||
" motion boolean,\n",
|
||||
" smoke double,\n",
|
||||
" temp double,\n",
|
||||
" PRIMARY KEY ((day, device), ts)\n",
|
||||
")\n",
|
||||
"WITH COMMENT = 'Data from environmental IoT room sensors. Columns include device identifier, timestamp (ts) of the data collection, carbon monoxide level (co), relative humidity, light presence, LPG concentration, motion detection, smoke concentration, and temperature (temp). Data is partitioned by day and device.';\n",
|
||||
"\"\"\"\n",
|
||||
"session.execute(table_query)\n",
|
||||
"\n",
|
||||
"pstmt = session.prepare(\n",
|
||||
" \"\"\"\n",
|
||||
"INSERT INTO iot_data (day, device, ts, co, humidity, light, lpg, motion, smoke, temp)\n",
|
||||
"VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?, ?)\n",
|
||||
"\"\"\"\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"def insert_data_batch(name, group):\n",
|
||||
" batch = BatchStatement()\n",
|
||||
" day, device = name\n",
|
||||
" print(f\"Inserting batch for day: {day}, device: {device}\")\n",
|
||||
"\n",
|
||||
" for _, row in group.iterrows():\n",
|
||||
" timestamp = datetime.fromtimestamp(row[\"ts\"], UTC)\n",
|
||||
" batch.add(\n",
|
||||
" pstmt,\n",
|
||||
" (\n",
|
||||
" day,\n",
|
||||
" row[\"device\"],\n",
|
||||
" timestamp,\n",
|
||||
" row[\"co\"],\n",
|
||||
" row[\"humidity\"],\n",
|
||||
" row[\"light\"],\n",
|
||||
" row[\"lpg\"],\n",
|
||||
" row[\"motion\"],\n",
|
||||
" row[\"smoke\"],\n",
|
||||
" row[\"temp\"],\n",
|
||||
" ),\n",
|
||||
" )\n",
|
||||
"\n",
|
||||
" session.execute(batch)\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"# Convert columns to appropriate types\n",
|
||||
"df[\"light\"] = df[\"light\"] == \"true\"\n",
|
||||
"df[\"motion\"] = df[\"motion\"] == \"true\"\n",
|
||||
"df[\"ts\"] = df[\"ts\"].astype(float)\n",
|
||||
"df[\"day\"] = df[\"ts\"].apply(\n",
|
||||
" lambda x: datetime.fromtimestamp(x, UTC).strftime(\"%Y-%m-%d\")\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"grouped_df = df.groupby([\"day\", \"device\"])\n",
|
||||
"\n",
|
||||
"for name, group in grouped_df:\n",
|
||||
" insert_data_batch(name, group)\n",
|
||||
"\n",
|
||||
"print(\"Data load complete\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"print(session.keyspace)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Load the Tools"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Python `import` statements for the demo:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain.agents import AgentExecutor, create_openai_tools_agent\n",
|
||||
"from langchain_community.agent_toolkits.cassandra_database.toolkit import (\n",
|
||||
" CassandraDatabaseToolkit,\n",
|
||||
")\n",
|
||||
"from langchain_community.tools.cassandra_database.prompt import QUERY_PATH_PROMPT\n",
|
||||
"from langchain_community.tools.cassandra_database.tool import (\n",
|
||||
" GetSchemaCassandraDatabaseTool,\n",
|
||||
" GetTableDataCassandraDatabaseTool,\n",
|
||||
" QueryCassandraDatabaseTool,\n",
|
||||
")\n",
|
||||
"from langchain_community.utilities.cassandra_database import CassandraDatabase\n",
|
||||
"from langchain_openai import ChatOpenAI"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"The `CassandraDatabase` object is loaded from `cassio`, though it does accept a `Session`-type parameter as an alternative."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Create a CassandraDatabase instance\n",
|
||||
"db = CassandraDatabase(include_tables=[\"iot_sensors\", \"iot_data\"])\n",
|
||||
"\n",
|
||||
"# Create the Cassandra Database tools\n",
|
||||
"query_tool = QueryCassandraDatabaseTool(db=db)\n",
|
||||
"schema_tool = GetSchemaCassandraDatabaseTool(db=db)\n",
|
||||
"select_data_tool = GetTableDataCassandraDatabaseTool(db=db)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"The tools can be invoked directly:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Test the tools\n",
|
||||
"print(\"Executing a CQL query:\")\n",
|
||||
"query = \"SELECT * FROM iot_sensors LIMIT 5;\"\n",
|
||||
"result = query_tool.run({\"query\": query})\n",
|
||||
"print(result)\n",
|
||||
"\n",
|
||||
"print(\"\\nGetting the schema for a keyspace:\")\n",
|
||||
"schema = schema_tool.run({\"keyspace\": keyspace})\n",
|
||||
"print(schema)\n",
|
||||
"\n",
|
||||
"print(\"\\nGetting data from a table:\")\n",
|
||||
"table = \"iot_data\"\n",
|
||||
"predicate = \"day = '2020-07-14' and device = 'b8:27:eb:bf:9d:51'\"\n",
|
||||
"data = select_data_tool.run(\n",
|
||||
" {\"keyspace\": keyspace, \"table\": table, \"predicate\": predicate, \"limit\": 5}\n",
|
||||
")\n",
|
||||
"print(data)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Agent Configuration"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain.agents import Tool\n",
|
||||
"from langchain_experimental.utilities import PythonREPL\n",
|
||||
"\n",
|
||||
"python_repl = PythonREPL()\n",
|
||||
"\n",
|
||||
"repl_tool = Tool(\n",
|
||||
" name=\"python_repl\",\n",
|
||||
" description=\"A Python shell. Use this to execute python commands. Input should be a valid python command. If you want to see the output of a value, you should print it out with `print(...)`.\",\n",
|
||||
" func=python_repl.run,\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain import hub\n",
|
||||
"\n",
|
||||
"llm = ChatOpenAI(temperature=0, model=\"gpt-4-1106-preview\")\n",
|
||||
"toolkit = CassandraDatabaseToolkit(db=db)\n",
|
||||
"\n",
|
||||
"# context = toolkit.get_context()\n",
|
||||
"# tools = toolkit.get_tools()\n",
|
||||
"tools = [schema_tool, select_data_tool, repl_tool]\n",
|
||||
"\n",
|
||||
"input = (\n",
|
||||
" QUERY_PATH_PROMPT\n",
|
||||
" + f\"\"\"\n",
|
||||
"\n",
|
||||
"Here is your task: In the {keyspace} keyspace, find the total number of times the temperature of each device has exceeded 23 degrees on July 14, 2020.\n",
|
||||
" Create a summary report including the name of the room. Use Pandas if helpful.\n",
|
||||
"\"\"\"\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"prompt = hub.pull(\"hwchase17/openai-tools-agent\")\n",
|
||||
"\n",
|
||||
"# messages = [\n",
|
||||
"# HumanMessagePromptTemplate.from_template(input),\n",
|
||||
"# AIMessage(content=QUERY_PATH_PROMPT),\n",
|
||||
"# MessagesPlaceholder(variable_name=\"agent_scratchpad\"),\n",
|
||||
"# ]\n",
|
||||
"\n",
|
||||
"# prompt = ChatPromptTemplate.from_messages(messages)\n",
|
||||
"# print(prompt)\n",
|
||||
"\n",
|
||||
"# Choose the LLM that will drive the agent\n",
|
||||
"# Only certain models support this\n",
|
||||
"llm = ChatOpenAI(model=\"gpt-3.5-turbo-1106\", temperature=0)\n",
|
||||
"\n",
|
||||
"# Construct the OpenAI Tools agent\n",
|
||||
"agent = create_openai_tools_agent(llm, tools, prompt)\n",
|
||||
"\n",
|
||||
"print(\"Available tools:\")\n",
|
||||
"for tool in tools:\n",
|
||||
" print(\"\\t\" + tool.name + \" - \" + tool.description + \" - \" + str(tool))"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"agent_executor = AgentExecutor(agent=agent, tools=tools, verbose=True)\n",
|
||||
"\n",
|
||||
"response = agent_executor.invoke({\"input\": input})\n",
|
||||
"\n",
|
||||
"print(response[\"output\"])"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3 (ipykernel)",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.9.1"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 4
|
||||
}
|
||||
@@ -32,20 +32,19 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import re\n",
|
||||
"from typing import Union\n",
|
||||
"\n",
|
||||
"from langchain.agents import (\n",
|
||||
" Tool,\n",
|
||||
" AgentExecutor,\n",
|
||||
" AgentOutputParser,\n",
|
||||
" LLMSingleActionAgent,\n",
|
||||
" AgentOutputParser,\n",
|
||||
")\n",
|
||||
"from langchain.chains import LLMChain\n",
|
||||
"from langchain.prompts import StringPromptTemplate\n",
|
||||
"from langchain_community.agent_toolkits import NLAToolkit\n",
|
||||
"from langchain_community.tools.plugin import AIPlugin\n",
|
||||
"from langchain_core.agents import AgentAction, AgentFinish\n",
|
||||
"from langchain_openai import OpenAI"
|
||||
"from langchain.llms import OpenAI\nfrom langchain.utilities import SerpAPIWrapper\nfrom langchain.chains import LLMChain\n",
|
||||
"from typing import List, Union\n",
|
||||
"from langchain.schema import AgentAction, AgentFinish\n",
|
||||
"from langchain.agents.agent_toolkits import NLAToolkit\n",
|
||||
"from langchain.tools.plugin import AIPlugin\n",
|
||||
"import re"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -114,9 +113,9 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain_community.vectorstores import FAISS\n",
|
||||
"from langchain_core.documents import Document\n",
|
||||
"from langchain_openai import OpenAIEmbeddings"
|
||||
"from langchain.vectorstores import FAISS\n",
|
||||
"from langchain.embeddings import OpenAIEmbeddings\n",
|
||||
"from langchain.schema import Document"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -169,7 +168,7 @@
|
||||
"\n",
|
||||
"def get_tools(query):\n",
|
||||
" # Get documents, which contain the Plugins to use\n",
|
||||
" docs = retriever.invoke(query)\n",
|
||||
" docs = retriever.get_relevant_documents(query)\n",
|
||||
" # Get the toolkits, one for each plugin\n",
|
||||
" tool_kits = [toolkits_dict[d.metadata[\"plugin_name\"]] for d in docs]\n",
|
||||
" # Get the tools: a separate NLAChain for each endpoint\n",
|
||||
|
||||
@@ -56,21 +56,20 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import re\n",
|
||||
"from typing import Union\n",
|
||||
"\n",
|
||||
"import plugnplai\n",
|
||||
"from langchain.agents import (\n",
|
||||
" Tool,\n",
|
||||
" AgentExecutor,\n",
|
||||
" AgentOutputParser,\n",
|
||||
" LLMSingleActionAgent,\n",
|
||||
" AgentOutputParser,\n",
|
||||
")\n",
|
||||
"from langchain.chains import LLMChain\n",
|
||||
"from langchain.prompts import StringPromptTemplate\n",
|
||||
"from langchain_community.agent_toolkits import NLAToolkit\n",
|
||||
"from langchain_community.tools.plugin import AIPlugin\n",
|
||||
"from langchain_core.agents import AgentAction, AgentFinish\n",
|
||||
"from langchain_openai import OpenAI"
|
||||
"from langchain.llms import OpenAI\nfrom langchain.utilities import SerpAPIWrapper\nfrom langchain.chains import LLMChain\n",
|
||||
"from typing import List, Union\n",
|
||||
"from langchain.schema import AgentAction, AgentFinish\n",
|
||||
"from langchain.agents.agent_toolkits import NLAToolkit\n",
|
||||
"from langchain.tools.plugin import AIPlugin\n",
|
||||
"import re\n",
|
||||
"import plugnplai"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -138,9 +137,9 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain_community.vectorstores import FAISS\n",
|
||||
"from langchain_core.documents import Document\n",
|
||||
"from langchain_openai import OpenAIEmbeddings"
|
||||
"from langchain.vectorstores import FAISS\n",
|
||||
"from langchain.embeddings import OpenAIEmbeddings\n",
|
||||
"from langchain.schema import Document"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -193,7 +192,7 @@
|
||||
"\n",
|
||||
"def get_tools(query):\n",
|
||||
" # Get documents, which contain the Plugins to use\n",
|
||||
" docs = retriever.invoke(query)\n",
|
||||
" docs = retriever.get_relevant_documents(query)\n",
|
||||
" # Get the toolkits, one for each plugin\n",
|
||||
" tool_kits = [toolkits_dict[d.metadata[\"plugin_name\"]] for d in docs]\n",
|
||||
" # Get the tools: a separate NLAChain for each endpoint\n",
|
||||
|
||||
File diff suppressed because it is too large
Load Diff
@@ -80,7 +80,7 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Connecting to Databricks with SQLDatabase wrapper\n",
|
||||
"from langchain_community.utilities import SQLDatabase\n",
|
||||
"from langchain.utilities import SQLDatabase\n",
|
||||
"\n",
|
||||
"db = SQLDatabase.from_databricks(catalog=\"samples\", schema=\"nyctaxi\")"
|
||||
]
|
||||
@@ -93,7 +93,7 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Creating a OpenAI Chat LLM wrapper\n",
|
||||
"from langchain_openai import ChatOpenAI\n",
|
||||
"from langchain.chat_models import ChatOpenAI\n",
|
||||
"\n",
|
||||
"llm = ChatOpenAI(temperature=0, model_name=\"gpt-4\")"
|
||||
]
|
||||
@@ -115,7 +115,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain_community.utilities import SQLDatabaseChain\n",
|
||||
"from langchain.utilities import SQLDatabaseChain\n",
|
||||
"\n",
|
||||
"db_chain = SQLDatabaseChain.from_llm(llm, db, verbose=True)"
|
||||
]
|
||||
@@ -177,7 +177,7 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain.agents import create_sql_agent\n",
|
||||
"from langchain_community.agent_toolkits import SQLDatabaseToolkit\n",
|
||||
"from langchain.agents.agent_toolkits import SQLDatabaseToolkit\n",
|
||||
"\n",
|
||||
"toolkit = SQLDatabaseToolkit(db=db, llm=llm)\n",
|
||||
"agent = create_sql_agent(llm=llm, toolkit=toolkit, verbose=True)"
|
||||
|
||||
@@ -48,16 +48,18 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import getpass\n",
|
||||
"import os\n",
|
||||
"\n",
|
||||
"from langchain.chains import RetrievalQA\n",
|
||||
"from langchain_community.vectorstores import DeepLake\n",
|
||||
"from langchain_openai import OpenAI, OpenAIEmbeddings\n",
|
||||
"from langchain_text_splitters import (\n",
|
||||
" CharacterTextSplitter,\n",
|
||||
"import getpass\n",
|
||||
"from langchain.document_loaders import PyPDFLoader, TextLoader\n",
|
||||
"from langchain.embeddings.openai import OpenAIEmbeddings\n",
|
||||
"from langchain.text_splitter import (\n",
|
||||
" RecursiveCharacterTextSplitter,\n",
|
||||
" CharacterTextSplitter,\n",
|
||||
")\n",
|
||||
"from langchain.vectorstores import DeepLake\n",
|
||||
"from langchain.chains import ConversationalRetrievalChain, RetrievalQA\n",
|
||||
"from langchain.chat_models import ChatOpenAI\n",
|
||||
"from langchain.llms import OpenAI\n",
|
||||
"\n",
|
||||
"os.environ[\"OPENAI_API_KEY\"] = getpass.getpass(\"OpenAI API Key:\")\n",
|
||||
"activeloop_token = getpass.getpass(\"Activeloop Token:\")\n",
|
||||
|
||||
File diff suppressed because one or more lines are too long
@@ -38,8 +38,9 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from elasticsearch import Elasticsearch\n",
|
||||
"from langchain.chains.elasticsearch_database import ElasticsearchDatabaseChain\n",
|
||||
"from langchain_openai import ChatOpenAI"
|
||||
"\n",
|
||||
"from langchain.chat_models import ChatOpenAI\n",
|
||||
"from langchain.chains.elasticsearch_database import ElasticsearchDatabaseChain"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -84,7 +85,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"llm = ChatOpenAI(model=\"gpt-4\", temperature=0)\n",
|
||||
"llm = ChatOpenAI(model_name=\"gpt-4\", temperature=0)\n",
|
||||
"chain = ElasticsearchDatabaseChain.from_llm(llm=llm, database=db, verbose=True)"
|
||||
]
|
||||
},
|
||||
@@ -111,6 +112,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain.chains.elasticsearch_database.prompts import DEFAULT_DSL_TEMPLATE\n",
|
||||
"from langchain.prompts.prompt import PromptTemplate\n",
|
||||
"\n",
|
||||
"PROMPT_TEMPLATE = \"\"\"Given an input question, create a syntactically correct Elasticsearch query to run. Unless the user specifies in their question a specific number of examples they wish to obtain, always limit your query to at most {top_k} results. You can order the results by a relevant column to return the most interesting examples in the database.\n",
|
||||
|
||||
@@ -19,11 +19,10 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from typing import List, Optional\n",
|
||||
"\n",
|
||||
"from langchain.chains.openai_tools import create_extraction_chain_pydantic\n",
|
||||
"from langchain_core.pydantic_v1 import BaseModel\n",
|
||||
"from langchain_openai import ChatOpenAI"
|
||||
"from langchain.chat_models import ChatOpenAI\n",
|
||||
"from langchain.pydantic_v1 import BaseModel\n",
|
||||
"from typing import Optional, List\n",
|
||||
"from langchain.chains.openai_tools import create_extraction_chain_pydantic"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -151,11 +150,11 @@
|
||||
"\n",
|
||||
"from langchain.output_parsers.openai_tools import PydanticToolsParser\n",
|
||||
"from langchain.utils.openai_functions import convert_pydantic_to_openai_tool\n",
|
||||
"from langchain_core.runnables import Runnable\n",
|
||||
"from langchain_core.pydantic_v1 import BaseModel\n",
|
||||
"from langchain_core.prompts import ChatPromptTemplate\n",
|
||||
"from langchain_core.messages import SystemMessage\n",
|
||||
"from langchain_core.language_models import BaseLanguageModel\n",
|
||||
"from langchain.schema.runnable import Runnable\n",
|
||||
"from langchain.pydantic_v1 import BaseModel\n",
|
||||
"from langchain.prompts import ChatPromptTemplate\n",
|
||||
"from langchain.schema.messages import SystemMessage\n",
|
||||
"from langchain.schema.language_model import BaseLanguageModel\n",
|
||||
"\n",
|
||||
"_EXTRACTION_TEMPLATE = \"\"\"Extract and save the relevant entities mentioned \\\n",
|
||||
"in the following passage together with their properties.\n",
|
||||
|
||||
@@ -20,7 +20,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain_community.llms.fake import FakeListLLM"
|
||||
"from langchain.llms.fake import FakeListLLM"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -30,7 +30,9 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain.agents import AgentType, initialize_agent, load_tools"
|
||||
"from langchain.agents import load_tools\n",
|
||||
"from langchain.agents import initialize_agent\n",
|
||||
"from langchain.agents import AgentType"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -100,7 +102,7 @@
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"agent.invoke(\"whats 2 + 2\")"
|
||||
"agent.run(\"whats 2 + 2\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
||||
@@ -1,245 +0,0 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "0fc0309d-4d49-4bb5-bec0-bd92c6fddb28",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Fireworks.AI + LangChain + RAG\n",
|
||||
" \n",
|
||||
"[Fireworks AI](https://python.langchain.com/docs/integrations/llms/fireworks) wants to provide the best experience when working with LangChain, and here is an example of Fireworks + LangChain doing RAG\n",
|
||||
"\n",
|
||||
"See [our models page](https://fireworks.ai/models) for the full list of models. We use `accounts/fireworks/models/mixtral-8x7b-instruct` for RAG In this tutorial.\n",
|
||||
"\n",
|
||||
"For the RAG target, we will use the Gemma technical report https://storage.googleapis.com/deepmind-media/gemma/gemma-report.pdf "
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 1,
|
||||
"id": "d12fb75a-f707-48d5-82a5-efe2d041813c",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"\n",
|
||||
"\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m A new release of pip is available: \u001b[0m\u001b[31;49m23.2.1\u001b[0m\u001b[39;49m -> \u001b[0m\u001b[32;49m24.0\u001b[0m\n",
|
||||
"\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m To update, run: \u001b[0m\u001b[32;49mpip install --upgrade pip\u001b[0m\n",
|
||||
"Note: you may need to restart the kernel to use updated packages.\n",
|
||||
"Found existing installation: langchain-fireworks 0.0.1\n",
|
||||
"Uninstalling langchain-fireworks-0.0.1:\n",
|
||||
" Successfully uninstalled langchain-fireworks-0.0.1\n",
|
||||
"Note: you may need to restart the kernel to use updated packages.\n",
|
||||
"Obtaining file:///mnt/disks/data/langchain/libs/partners/fireworks\n",
|
||||
" Installing build dependencies ... \u001b[?25ldone\n",
|
||||
"\u001b[?25h Checking if build backend supports build_editable ... \u001b[?25ldone\n",
|
||||
"\u001b[?25h Getting requirements to build editable ... \u001b[?25ldone\n",
|
||||
"\u001b[?25h Preparing editable metadata (pyproject.toml) ... \u001b[?25ldone\n",
|
||||
"\u001b[?25hRequirement already satisfied: aiohttp<4.0.0,>=3.9.1 in /mnt/disks/data/langchain/.venv/lib/python3.9/site-packages (from langchain-fireworks==0.0.1) (3.9.3)\n",
|
||||
"Requirement already satisfied: fireworks-ai<0.13.0,>=0.12.0 in /mnt/disks/data/langchain/.venv/lib/python3.9/site-packages (from langchain-fireworks==0.0.1) (0.12.0)\n",
|
||||
"Requirement already satisfied: langchain-core<0.2,>=0.1 in /mnt/disks/data/langchain/.venv/lib/python3.9/site-packages (from langchain-fireworks==0.0.1) (0.1.23)\n",
|
||||
"Requirement already satisfied: requests<3,>=2 in /mnt/disks/data/langchain/.venv/lib/python3.9/site-packages (from langchain-fireworks==0.0.1) (2.31.0)\n",
|
||||
"Requirement already satisfied: aiosignal>=1.1.2 in /mnt/disks/data/langchain/.venv/lib/python3.9/site-packages (from aiohttp<4.0.0,>=3.9.1->langchain-fireworks==0.0.1) (1.3.1)\n",
|
||||
"Requirement already satisfied: attrs>=17.3.0 in /mnt/disks/data/langchain/.venv/lib/python3.9/site-packages (from aiohttp<4.0.0,>=3.9.1->langchain-fireworks==0.0.1) (23.1.0)\n",
|
||||
"Requirement already satisfied: frozenlist>=1.1.1 in /mnt/disks/data/langchain/.venv/lib/python3.9/site-packages (from aiohttp<4.0.0,>=3.9.1->langchain-fireworks==0.0.1) (1.4.0)\n",
|
||||
"Requirement already satisfied: multidict<7.0,>=4.5 in /mnt/disks/data/langchain/.venv/lib/python3.9/site-packages (from aiohttp<4.0.0,>=3.9.1->langchain-fireworks==0.0.1) (6.0.4)\n",
|
||||
"Requirement already satisfied: yarl<2.0,>=1.0 in /mnt/disks/data/langchain/.venv/lib/python3.9/site-packages (from aiohttp<4.0.0,>=3.9.1->langchain-fireworks==0.0.1) (1.9.2)\n",
|
||||
"Requirement already satisfied: async-timeout<5.0,>=4.0 in /mnt/disks/data/langchain/.venv/lib/python3.9/site-packages (from aiohttp<4.0.0,>=3.9.1->langchain-fireworks==0.0.1) (4.0.3)\n",
|
||||
"Requirement already satisfied: httpx in /mnt/disks/data/langchain/.venv/lib/python3.9/site-packages (from fireworks-ai<0.13.0,>=0.12.0->langchain-fireworks==0.0.1) (0.26.0)\n",
|
||||
"Requirement already satisfied: httpx-sse in /mnt/disks/data/langchain/.venv/lib/python3.9/site-packages (from fireworks-ai<0.13.0,>=0.12.0->langchain-fireworks==0.0.1) (0.4.0)\n",
|
||||
"Requirement already satisfied: pydantic in /mnt/disks/data/langchain/.venv/lib/python3.9/site-packages (from fireworks-ai<0.13.0,>=0.12.0->langchain-fireworks==0.0.1) (2.4.2)\n",
|
||||
"Requirement already satisfied: Pillow in /mnt/disks/data/langchain/.venv/lib/python3.9/site-packages (from fireworks-ai<0.13.0,>=0.12.0->langchain-fireworks==0.0.1) (10.2.0)\n",
|
||||
"Requirement already satisfied: PyYAML>=5.3 in /mnt/disks/data/langchain/.venv/lib/python3.9/site-packages (from langchain-core<0.2,>=0.1->langchain-fireworks==0.0.1) (6.0.1)\n",
|
||||
"Requirement already satisfied: anyio<5,>=3 in /mnt/disks/data/langchain/.venv/lib/python3.9/site-packages (from langchain-core<0.2,>=0.1->langchain-fireworks==0.0.1) (3.7.1)\n",
|
||||
"Requirement already satisfied: jsonpatch<2.0,>=1.33 in /mnt/disks/data/langchain/.venv/lib/python3.9/site-packages (from langchain-core<0.2,>=0.1->langchain-fireworks==0.0.1) (1.33)\n",
|
||||
"Requirement already satisfied: langsmith<0.2.0,>=0.1.0 in /mnt/disks/data/langchain/.venv/lib/python3.9/site-packages (from langchain-core<0.2,>=0.1->langchain-fireworks==0.0.1) (0.1.5)\n",
|
||||
"Requirement already satisfied: packaging<24.0,>=23.2 in /mnt/disks/data/langchain/.venv/lib/python3.9/site-packages (from langchain-core<0.2,>=0.1->langchain-fireworks==0.0.1) (23.2)\n",
|
||||
"Requirement already satisfied: tenacity<9.0.0,>=8.1.0 in /mnt/disks/data/langchain/.venv/lib/python3.9/site-packages (from langchain-core<0.2,>=0.1->langchain-fireworks==0.0.1) (8.2.3)\n",
|
||||
"Requirement already satisfied: charset-normalizer<4,>=2 in /mnt/disks/data/langchain/.venv/lib/python3.9/site-packages (from requests<3,>=2->langchain-fireworks==0.0.1) (3.3.0)\n",
|
||||
"Requirement already satisfied: idna<4,>=2.5 in /mnt/disks/data/langchain/.venv/lib/python3.9/site-packages (from requests<3,>=2->langchain-fireworks==0.0.1) (3.4)\n",
|
||||
"Requirement already satisfied: urllib3<3,>=1.21.1 in /mnt/disks/data/langchain/.venv/lib/python3.9/site-packages (from requests<3,>=2->langchain-fireworks==0.0.1) (2.0.6)\n",
|
||||
"Requirement already satisfied: certifi>=2017.4.17 in /mnt/disks/data/langchain/.venv/lib/python3.9/site-packages (from requests<3,>=2->langchain-fireworks==0.0.1) (2023.7.22)\n",
|
||||
"Requirement already satisfied: sniffio>=1.1 in /mnt/disks/data/langchain/.venv/lib/python3.9/site-packages (from anyio<5,>=3->langchain-core<0.2,>=0.1->langchain-fireworks==0.0.1) (1.3.0)\n",
|
||||
"Requirement already satisfied: exceptiongroup in /mnt/disks/data/langchain/.venv/lib/python3.9/site-packages (from anyio<5,>=3->langchain-core<0.2,>=0.1->langchain-fireworks==0.0.1) (1.1.3)\n",
|
||||
"Requirement already satisfied: jsonpointer>=1.9 in /mnt/disks/data/langchain/.venv/lib/python3.9/site-packages (from jsonpatch<2.0,>=1.33->langchain-core<0.2,>=0.1->langchain-fireworks==0.0.1) (2.4)\n",
|
||||
"Requirement already satisfied: annotated-types>=0.4.0 in /mnt/disks/data/langchain/.venv/lib/python3.9/site-packages (from pydantic->fireworks-ai<0.13.0,>=0.12.0->langchain-fireworks==0.0.1) (0.5.0)\n",
|
||||
"Requirement already satisfied: pydantic-core==2.10.1 in /mnt/disks/data/langchain/.venv/lib/python3.9/site-packages (from pydantic->fireworks-ai<0.13.0,>=0.12.0->langchain-fireworks==0.0.1) (2.10.1)\n",
|
||||
"Requirement already satisfied: typing-extensions>=4.6.1 in /mnt/disks/data/langchain/.venv/lib/python3.9/site-packages (from pydantic->fireworks-ai<0.13.0,>=0.12.0->langchain-fireworks==0.0.1) (4.8.0)\n",
|
||||
"Requirement already satisfied: httpcore==1.* in /mnt/disks/data/langchain/.venv/lib/python3.9/site-packages (from httpx->fireworks-ai<0.13.0,>=0.12.0->langchain-fireworks==0.0.1) (1.0.2)\n",
|
||||
"Requirement already satisfied: h11<0.15,>=0.13 in /mnt/disks/data/langchain/.venv/lib/python3.9/site-packages (from httpcore==1.*->httpx->fireworks-ai<0.13.0,>=0.12.0->langchain-fireworks==0.0.1) (0.14.0)\n",
|
||||
"Building wheels for collected packages: langchain-fireworks\n",
|
||||
" Building editable for langchain-fireworks (pyproject.toml) ... \u001b[?25ldone\n",
|
||||
"\u001b[?25h Created wheel for langchain-fireworks: filename=langchain_fireworks-0.0.1-py3-none-any.whl size=2228 sha256=564071b120b09ec31f2dc737733448a33bbb26e40b49fcde0c129ad26045259d\n",
|
||||
" Stored in directory: /tmp/pip-ephem-wheel-cache-oz368vdk/wheels/e0/ad/31/d7e76dd73d61905ff7f369f5b0d21a4b5e7af4d3cb7487aece\n",
|
||||
"Successfully built langchain-fireworks\n",
|
||||
"Installing collected packages: langchain-fireworks\n",
|
||||
"Successfully installed langchain-fireworks-0.0.1\n",
|
||||
"\n",
|
||||
"\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m A new release of pip is available: \u001b[0m\u001b[31;49m23.2.1\u001b[0m\u001b[39;49m -> \u001b[0m\u001b[32;49m24.0\u001b[0m\n",
|
||||
"\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m To update, run: \u001b[0m\u001b[32;49mpip install --upgrade pip\u001b[0m\n",
|
||||
"Note: you may need to restart the kernel to use updated packages.\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"%pip install --quiet pypdf chromadb tiktoken openai \n",
|
||||
"%pip uninstall -y langchain-fireworks\n",
|
||||
"%pip install --editable /mnt/disks/data/langchain/libs/partners/fireworks"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 3,
|
||||
"id": "cf719376",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"<module 'fireworks' from '/mnt/disks/data/langchain/.venv/lib/python3.9/site-packages/fireworks/__init__.py'>\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"import fireworks\n",
|
||||
"\n",
|
||||
"print(fireworks)\n",
|
||||
"import fireworks.client"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "9ab49327-0532-4480-804c-d066c302a322",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Load\n",
|
||||
"import requests\n",
|
||||
"from langchain_community.document_loaders import PyPDFLoader\n",
|
||||
"\n",
|
||||
"# Download the PDF from a URL and save it to a temporary location\n",
|
||||
"url = \"https://storage.googleapis.com/deepmind-media/gemma/gemma-report.pdf\"\n",
|
||||
"response = requests.get(url, stream=True)\n",
|
||||
"file_name = \"temp_file.pdf\"\n",
|
||||
"with open(file_name, \"wb\") as pdf:\n",
|
||||
" pdf.write(response.content)\n",
|
||||
"\n",
|
||||
"loader = PyPDFLoader(file_name)\n",
|
||||
"data = loader.load()\n",
|
||||
"\n",
|
||||
"# Split\n",
|
||||
"from langchain_text_splitters import RecursiveCharacterTextSplitter\n",
|
||||
"\n",
|
||||
"text_splitter = RecursiveCharacterTextSplitter(chunk_size=2000, chunk_overlap=0)\n",
|
||||
"all_splits = text_splitter.split_documents(data)\n",
|
||||
"\n",
|
||||
"# Add to vectorDB\n",
|
||||
"from langchain_community.vectorstores import Chroma\n",
|
||||
"from langchain_fireworks.embeddings import FireworksEmbeddings\n",
|
||||
"\n",
|
||||
"vectorstore = Chroma.from_documents(\n",
|
||||
" documents=all_splits,\n",
|
||||
" collection_name=\"rag-chroma\",\n",
|
||||
" embedding=FireworksEmbeddings(),\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"retriever = vectorstore.as_retriever()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 3,
|
||||
"id": "4efaddd9-3dbb-455c-ba54-0ad7f2d2ce0f",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain_core.output_parsers import StrOutputParser\n",
|
||||
"from langchain_core.prompts import ChatPromptTemplate\n",
|
||||
"from langchain_core.pydantic_v1 import BaseModel\n",
|
||||
"from langchain_core.runnables import RunnableParallel, RunnablePassthrough\n",
|
||||
"\n",
|
||||
"# RAG prompt\n",
|
||||
"template = \"\"\"Answer the question based only on the following context:\n",
|
||||
"{context}\n",
|
||||
"\n",
|
||||
"Question: {question}\n",
|
||||
"\"\"\"\n",
|
||||
"prompt = ChatPromptTemplate.from_template(template)\n",
|
||||
"\n",
|
||||
"# LLM\n",
|
||||
"from langchain_together import Together\n",
|
||||
"\n",
|
||||
"llm = Together(\n",
|
||||
" model=\"mistralai/Mixtral-8x7B-Instruct-v0.1\",\n",
|
||||
" temperature=0.0,\n",
|
||||
" max_tokens=2000,\n",
|
||||
" top_k=1,\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"# RAG chain\n",
|
||||
"chain = (\n",
|
||||
" RunnableParallel({\"context\": retriever, \"question\": RunnablePassthrough()})\n",
|
||||
" | prompt\n",
|
||||
" | llm\n",
|
||||
" | StrOutputParser()\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 4,
|
||||
"id": "88b1ee51-1b0f-4ebf-bb32-e50e843f0eeb",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"'\\nAnswer: The architectural details of Mixtral are as follows:\\n- Dimension (dim): 4096\\n- Number of layers (n\\\\_layers): 32\\n- Dimension of each head (head\\\\_dim): 128\\n- Hidden dimension (hidden\\\\_dim): 14336\\n- Number of heads (n\\\\_heads): 32\\n- Number of kv heads (n\\\\_kv\\\\_heads): 8\\n- Context length (context\\\\_len): 32768\\n- Vocabulary size (vocab\\\\_size): 32000\\n- Number of experts (num\\\\_experts): 8\\n- Number of top k experts (top\\\\_k\\\\_experts): 2\\n\\nMixtral is based on a transformer architecture and uses the same modifications as described in [18], with the notable exceptions that Mixtral supports a fully dense context length of 32k tokens, and the feedforward block picks from a set of 8 distinct groups of parameters. At every layer, for every token, a router network chooses two of these groups (the “experts”) to process the token and combine their output additively. This technique increases the number of parameters of a model while controlling cost and latency, as the model only uses a fraction of the total set of parameters per token. Mixtral is pretrained with multilingual data using a context size of 32k tokens. It either matches or exceeds the performance of Llama 2 70B and GPT-3.5, over several benchmarks. In particular, Mixtral vastly outperforms Llama 2 70B on mathematics, code generation, and multilingual benchmarks.'"
|
||||
]
|
||||
},
|
||||
"execution_count": 4,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"chain.invoke(\"What are the Architectural details of Mixtral?\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "755cf871-26b7-4e30-8b91-9ffd698470f4",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Trace: \n",
|
||||
"\n",
|
||||
"https://smith.langchain.com/public/935fd642-06a6-4b42-98e3-6074f93115cd/r"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3 (ipykernel)",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.9.12"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 5
|
||||
}
|
||||
@@ -56,8 +56,7 @@
|
||||
"source": [
|
||||
"import os\n",
|
||||
"\n",
|
||||
"os.environ[\"SERPER_API_KEY\"] = \"\"\n",
|
||||
"os.environ[\"OPENAI_API_KEY\"] = \"\""
|
||||
"os.environ[\"SERPER_API_KEY\"] = \"\"os.environ[\"OPENAI_API_KEY\"] = \"\""
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -67,16 +66,21 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from typing import Any, List\n",
|
||||
"import re\n",
|
||||
"\n",
|
||||
"import numpy as np\n",
|
||||
"\n",
|
||||
"from langchain.schema import BaseRetriever\n",
|
||||
"from langchain.callbacks.manager import (\n",
|
||||
" AsyncCallbackManagerForRetrieverRun,\n",
|
||||
" CallbackManagerForRetrieverRun,\n",
|
||||
")\n",
|
||||
"from langchain_community.utilities import GoogleSerperAPIWrapper\n",
|
||||
"from langchain_core.documents import Document\n",
|
||||
"from langchain_core.retrievers import BaseRetriever\n",
|
||||
"from langchain_openai import ChatOpenAI, OpenAI"
|
||||
"from langchain.utilities import GoogleSerperAPIWrapper\n",
|
||||
"from langchain.embeddings import OpenAIEmbeddings\n",
|
||||
"from langchain.chat_models import ChatOpenAI\n",
|
||||
"from langchain.llms import OpenAI\n",
|
||||
"from langchain.schema import Document\n",
|
||||
"from typing import Any, List"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -362,7 +366,7 @@
|
||||
],
|
||||
"source": [
|
||||
"llm = OpenAI()\n",
|
||||
"llm.invoke(query)"
|
||||
"llm(query)"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
||||
@@ -46,12 +46,14 @@
|
||||
"source": [
|
||||
"from datetime import datetime, timedelta\n",
|
||||
"from typing import List\n",
|
||||
"from termcolor import colored\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"from langchain.chat_models import ChatOpenAI\n",
|
||||
"from langchain.docstore import InMemoryDocstore\n",
|
||||
"from langchain.embeddings import OpenAIEmbeddings\n",
|
||||
"from langchain.retrievers import TimeWeightedVectorStoreRetriever\n",
|
||||
"from langchain_community.vectorstores import FAISS\n",
|
||||
"from langchain_openai import ChatOpenAI, OpenAIEmbeddings\n",
|
||||
"from termcolor import colored"
|
||||
"from langchain.vectorstores import FAISS"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -151,7 +153,6 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import math\n",
|
||||
"\n",
|
||||
"import faiss\n",
|
||||
"\n",
|
||||
"\n",
|
||||
|
||||
@@ -27,12 +27,18 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import gymnasium as gym\n",
|
||||
"import inspect\n",
|
||||
"import tenacity\n",
|
||||
"from langchain.output_parsers import RegexParser\n",
|
||||
"\n",
|
||||
"from langchain.chat_models import ChatOpenAI\n",
|
||||
"from langchain.schema import (\n",
|
||||
" AIMessage,\n",
|
||||
" HumanMessage,\n",
|
||||
" SystemMessage,\n",
|
||||
")"
|
||||
" BaseMessage,\n",
|
||||
")\n",
|
||||
"from langchain.output_parsers import RegexParser"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -108,7 +114,7 @@
|
||||
" return obs_message\n",
|
||||
"\n",
|
||||
" def _act(self):\n",
|
||||
" act_message = self.model.invoke(self.message_history)\n",
|
||||
" act_message = self.model(self.message_history)\n",
|
||||
" self.message_history.append(act_message)\n",
|
||||
" action = int(self.action_parser.parse(act_message.content)[\"action\"])\n",
|
||||
" return action\n",
|
||||
@@ -125,7 +131,7 @@
|
||||
" ):\n",
|
||||
" with attempt:\n",
|
||||
" action = self._act()\n",
|
||||
" except tenacity.RetryError:\n",
|
||||
" except tenacity.RetryError as e:\n",
|
||||
" action = self.random_action()\n",
|
||||
" return action"
|
||||
]
|
||||
|
||||
@@ -75,8 +75,8 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain.llms import OpenAI\n",
|
||||
"from langchain_experimental.autonomous_agents import HuggingGPT\n",
|
||||
"from langchain_openai import OpenAI\n",
|
||||
"\n",
|
||||
"# %env OPENAI_API_BASE=http://localhost:8000/v1"
|
||||
]
|
||||
|
||||
@@ -20,7 +20,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain_community.chat_models.human import HumanInputChatModel"
|
||||
"from langchain.chat_models.human import HumanInputChatModel"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -55,7 +55,9 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain.agents import AgentType, initialize_agent, load_tools"
|
||||
"from langchain.agents import load_tools\n",
|
||||
"from langchain.agents import initialize_agent\n",
|
||||
"from langchain.agents import AgentType"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
||||
@@ -19,7 +19,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain_community.llms.human import HumanInputLLM"
|
||||
"from langchain.llms.human import HumanInputLLM"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -28,7 +28,9 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain.agents import AgentType, initialize_agent, load_tools"
|
||||
"from langchain.agents import load_tools\n",
|
||||
"from langchain.agents import initialize_agent\n",
|
||||
"from langchain.agents import AgentType"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
||||
@@ -20,9 +20,10 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain.chains import HypotheticalDocumentEmbedder, LLMChain\n",
|
||||
"from langchain.prompts import PromptTemplate\n",
|
||||
"from langchain_openai import OpenAI, OpenAIEmbeddings"
|
||||
"from langchain.llms import OpenAI\n",
|
||||
"from langchain.embeddings import OpenAIEmbeddings\n",
|
||||
"from langchain.chains import LLMChain, HypotheticalDocumentEmbedder\n",
|
||||
"from langchain.prompts import PromptTemplate"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -170,8 +171,8 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain_community.vectorstores import Chroma\n",
|
||||
"from langchain_text_splitters import CharacterTextSplitter\n",
|
||||
"from langchain.text_splitter import CharacterTextSplitter\n",
|
||||
"from langchain.vectorstores import Chroma\n",
|
||||
"\n",
|
||||
"with open(\"../../state_of_the_union.txt\") as f:\n",
|
||||
" state_of_the_union = f.read()\n",
|
||||
|
||||
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
@@ -49,9 +49,9 @@
|
||||
"source": [
|
||||
"# pick and configure the LLM of your choice\n",
|
||||
"\n",
|
||||
"from langchain_openai import OpenAI\n",
|
||||
"from langchain.llms import OpenAI\n",
|
||||
"\n",
|
||||
"llm = OpenAI(model=\"gpt-3.5-turbo-instruct\")"
|
||||
"llm = OpenAI(model=\"text-davinci-003\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -790,8 +790,8 @@
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"from langchain.globals import set_debug\n",
|
||||
"from langchain.prompts.prompt import PromptTemplate\n",
|
||||
"from langchain.globals import set_debug\n",
|
||||
"\n",
|
||||
"set_debug(True)\n",
|
||||
"\n",
|
||||
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user