Compare commits

...

22 Commits

Author SHA1 Message Date
ccurme
403fae8eec core: release 0.3.56 (#31000) 2025-04-24 13:22:31 -04:00
Jacob Lee
d6b50ad3f6 docs: Update Google Analytics tag in docs (#31001) 2025-04-24 10:19:10 -07:00
ccurme
10a9c24dae openai: fix streaming reasoning without summaries (#30999)
Following https://github.com/langchain-ai/langchain/pull/30909: need to
retain "empty" reasoning output when streaming, e.g.,
```python
{'id': 'rs_...', 'summary': [], 'type': 'reasoning'}
```
Tested by existing integration tests, which are currently failing.
2025-04-24 16:01:45 +00:00
ccurme
8fc7a723b9 core: release 0.3.56rc1 (#30998) 2025-04-24 15:09:44 +00:00
ccurme
f4863f82e2 core[patch]: fix edge cases for _is_openai_data_block (#30997) 2025-04-24 10:48:52 -04:00
Philipp Schmid
ae4b6380d9 Documentation: Add Google Gemini dropdown (#30995)
This PR adds Google Gemini (via AI Studio and Gemini API). Feel free to
change the ordering, if needed.

---------

Co-authored-by: Chester Curme <chester.curme@gmail.com>
2025-04-24 10:00:16 -04:00
Philipp Schmid
ffbc64c72a Documentation: Improve structure of Google integrations page (#30992)
This PR restructures the main Google integrations documentation page
(`docs/docs/integrations/providers/google.mdx`) for better clarity and
updates content.

**Key changes:**

* **Separated Sections:** Divided integrations into distinct `Google
Generative AI (Gemini API & AI Studio)`, `Google Cloud`, and `Other
Google Products` sections.
* **Updated Generative AI:** Refreshed the introduction and the `Google
Generative AI` section with current information and quickstart examples
for the Gemini API via `langchain-google-genai`.
* **Reorganized Content:** Moved non-Cloud Platform specific
integrations (e.g., Drive, GMail, Search tools, ScaNN) to the `Other
Google Products` section.
* **Cleaned Up:** Minor improvements to descriptions and code snippets.

This aims to make it easier for users to find the relevant Google
integrations based on whether they are using the Gemini API directly or
Google Cloud services.

| Before                | After      |
|-----------------------|------------|
| ![Screenshot 2025-04-24 at 14 56
23](https://github.com/user-attachments/assets/ff967ec8-a833-4e8f-8015-61af8a4fac8b)
| ![Screenshot 2025-04-24 at 14 56
15](https://github.com/user-attachments/assets/179163f1-e805-484a-bbf6-99f05e117b36)
|

---------

Co-authored-by: Chester Curme <chester.curme@gmail.com>
2025-04-24 09:58:46 -04:00
Jacob Lee
6b0b317cb5 feat(core): Autogenerate filenames for when converting file content blocks to OpenAI format (#30984)
CC @ccurme

---------

Co-authored-by: Chester Curme <chester.curme@gmail.com>
2025-04-24 13:36:31 +00:00
ccurme
21962e2201 docs: temporarily disable milvus in API ref build (#30996) 2025-04-24 09:31:23 -04:00
Behrad Hemati
1eb0bdadfa community: add indexname to other functions in opensearch (#30987)
- [x] **PR title**: "community: add indexname to other functions in
opensearch"



- [x] **PR message**:
- **Description:** add ability to over-ride index-name if provided in
the kwargs of sub-functions. When used in WSGI application it's crucial
to be able to dynamically change parameters.


- [ ] **Add tests and docs**:


- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
2025-04-24 08:59:33 -04:00
Nicky Parseghian
7ecdac5240 community: Strip URLs from sitemap. (#30830)
Fixes #30829

- **Description:** Simply strips the loc value when building the
element.
    - **Issue:** Fixes #30829
2025-04-23 18:18:42 -04:00
ccurme
faef3e5d50 core, standard-tests: support PDF and audio input in Chat Completions format (#30979)
Chat models currently implement support for:
- images in OpenAI Chat Completions format
- other multimodal types (e.g., PDF and audio) in a cross-provider
[standard
format](https://python.langchain.com/docs/how_to/multimodal_inputs/)

Here we update core to extend support to PDF and audio input in Chat
Completions format. **If an OAI-format PDF or audio content block is
passed into any chat model, it will be transformed to the LangChain
standard format**. We assume that any chat model supporting OAI-format
PDF or audio has implemented support for the standard format.
2025-04-23 18:32:51 +00:00
Bagatur
d4fc734250 core[patch]: update dict prompt template (#30967)
Align with JS changes made in
https://github.com/langchain-ai/langchainjs/pull/8043
2025-04-23 10:04:50 -07:00
ccurme
4bc70766b5 core, openai: support standard multi-modal blocks in convert_to_openai_messages (#30968) 2025-04-23 11:20:44 -04:00
ccurme
e4877e5ef1 fireworks: release 0.3.0 (#30977) 2025-04-23 10:08:38 -04:00
Christophe Bornet
8c5ae108dd text-splitters: Set strict mypy rules (#30900)
* Add strict mypy rules
* Fix mypy violations
* Add error codes to all type ignores
* Add ruff rule PGH003
* Bump mypy version to 1.15
2025-04-22 20:41:24 -07:00
ccurme
eedda164c6 fireworks[minor]: remove default model and temperature (#30965)
`mixtral-8x-7b-instruct` was recently retired from Fireworks Serverless.

Here we remove the default model altogether, so that the model must be
explicitly specified on init:
```python
ChatFireworks(model="accounts/fireworks/models/llama-v3p1-70b-instruct")  # for example
```

We also set a null default for `temperature`, which previously defaulted
to 0.0. This parameter will no longer be included in request payloads
unless it is explicitly provided.
2025-04-22 15:58:58 -04:00
Grant
4be55f7c89 docs: fix typo at 175 (#30966)
**Description:** Corrected pre-buit to pre-built.
**Issue:** Little typo.
2025-04-22 18:13:07 +00:00
CLOVA Studio 개발
577cb53a00 community: update Naver integration to use langchain-naver package and improve documentation (#30956)
## **Description:** 
This PR was requested after the `langchain-naver` partner-managed
packages were completed.
We build our package as requested in [this
comment](https://github.com/langchain-ai/langchain/pull/29243#issuecomment-2595222791)
and the initial version is now uploaded to
[pypi](https://pypi.org/project/langchain-naver/).
So we've updated some our documents with the additional changed features
and how to download our partner-managed package.

## **Dependencies:** 

https://github.com/langchain-ai/langchain/pull/29243#issuecomment-2595222791

---------

Co-authored-by: ccurme <chester.curme@gmail.com>
2025-04-22 12:00:10 -04:00
ccurme
a7c1bccd6a openai[patch]: remove xfails from image token counting tests (#30963)
These appear to be passing again.
2025-04-22 15:55:33 +00:00
ccurme
25d77aa8b4 community: release 0.3.22 (#30962) 2025-04-22 15:34:47 +00:00
ccurme
59fd4cb4c0 docs: update package registry sort order (#30960) 2025-04-22 15:27:32 +00:00
55 changed files with 1765 additions and 1549 deletions

View File

@@ -172,7 +172,7 @@ Indexing is the process of keeping your vectorstore in-sync with the underlying
### Tools
LangChain [Tools](/docs/concepts/tools) contain a description of the tool (to pass to the language model) as well as the implementation of the function to call. Refer [here](/docs/integrations/tools/) for a list of pre-buit tools.
LangChain [Tools](/docs/concepts/tools) contain a description of the tool (to pass to the language model) as well as the implementation of the function to call. Refer [here](/docs/integrations/tools/) for a list of pre-built tools.
- [How to: create tools](/docs/how_to/custom_tools)
- [How to: use built-in tools and toolkits](/docs/how_to/tools_builtin)

View File

@@ -17,21 +17,21 @@
"source": [
"# ChatClovaX\n",
"\n",
"This notebook provides a quick overview for getting started with Navers HyperCLOVA X [chat models](https://python.langchain.com/docs/concepts/chat_models) via CLOVA Studio. For detailed documentation of all ChatClovaX features and configurations head to the [API reference](https://python.langchain.com/api_reference/community/chat_models/langchain_community.chat_models.naver.ChatClovaX.html).\n",
"This notebook provides a quick overview for getting started with Navers HyperCLOVA X [chat models](https://python.langchain.com/docs/concepts/chat_models) via CLOVA Studio. For detailed documentation of all ChatClovaX features and configurations head to the [API reference](https://guide.ncloud-docs.com/docs/clovastudio-dev-langchain).\n",
"\n",
"[CLOVA Studio](http://clovastudio.ncloud.com/) has several chat models. You can find information about latest models and their costs, context windows, and supported input types in the CLOVA Studio API Guide [documentation](https://api.ncloud-docs.com/docs/clovastudio-chatcompletions).\n",
"[CLOVA Studio](http://clovastudio.ncloud.com/) has several chat models. You can find information about latest models and their costs, context windows, and supported input types in the CLOVA Studio Guide [documentation](https://guide.ncloud-docs.com/docs/clovastudio-model).\n",
"\n",
"## Overview\n",
"### Integration details\n",
"\n",
"| Class | Package | Local | Serializable | JS support | Package downloads | Package latest |\n",
"| :--- | :--- |:-----:| :---: |:------------------------------------------------------------------------:| :---: | :---: |\n",
"| [ChatClovaX](https://python.langchain.com/api_reference/community/chat_models/langchain_community.chat_models.naver.ChatClovaX.html) | [langchain-community](https://python.langchain.com/api_reference/community/index.html) | ❌ | ❌ | ❌ | ![PyPI - Downloads](https://img.shields.io/pypi/dm/langchain_community?style=flat-square&label=%20) | ![PyPI - Version](https://img.shields.io/pypi/v/langchain_community?style=flat-square&label=%20) |\n",
"| [ChatClovaX](https://guide.ncloud-docs.com/docs/clovastudio-dev-langchain#HyperCLOVAX%EB%AA%A8%EB%8D%B8%EC%9D%B4%EC%9A%A9) | [langchain-naver](https://pypi.org/project/langchain-naver/) | ❌ | ❌ | ❌ | ![PyPI - Downloads](https://img.shields.io/pypi/dm/langchain_naver?style=flat-square&label=%20) | ![PyPI - Version](https://img.shields.io/pypi/v/langchain_naver?style=flat-square&label=%20) |\n",
"\n",
"### Model features\n",
"| [Tool calling](/docs/how_to/tool_calling/) | [Structured output](/docs/how_to/structured_output/) | JSON mode | [Image input](/docs/how_to/multimodal_inputs/) | Audio input | Video input | [Token-level streaming](/docs/how_to/chat_streaming/) | Native async | [Token usage](/docs/how_to/chat_token_usage_tracking/) | [Logprobs](/docs/how_to/logprobs/) |\n",
"|:------------------------------------------:| :---: | :---: | :---: | :---: | :---: |:-----------------------------------------------------:| :---: |:------------------------------------------------------:|:----------------------------------:|\n",
"|| ❌ | ❌ | | ❌ | ❌ | ✅ | ✅ | ✅ | ❌ |\n",
"|| ❌ | ❌ | | ❌ | ❌ | ✅ | ✅ | ✅ | ❌ |\n",
"\n",
"## Setup\n",
"\n",
@@ -39,26 +39,23 @@
"\n",
"1. Creating [NAVER Cloud Platform](https://www.ncloud.com/) account\n",
"2. Apply to use [CLOVA Studio](https://www.ncloud.com/product/aiService/clovaStudio)\n",
"3. Create a CLOVA Studio Test App or Service App of a model to use (See [here](https://guide.ncloud-docs.com/docs/en/clovastudio-playground01#테스트앱생성).)\n",
"3. Create a CLOVA Studio Test App or Service App of a model to use (See [here](https://guide.ncloud-docs.com/docs/clovastudio-playground-testapp).)\n",
"4. Issue a Test or Service API key (See [here](https://api.ncloud-docs.com/docs/ai-naver-clovastudio-summary#API%ED%82%A4).)\n",
"\n",
"### Credentials\n",
"\n",
"Set the `NCP_CLOVASTUDIO_API_KEY` environment variable with your API key.\n",
" - Note that if you are using a legacy API Key (that doesn't start with `nv-*` prefix), you might need to get an additional API Key by clicking `App Request Status` > `Service App, Test App List` > `Details button for each app` in [CLOVA Studio](https://clovastudio.ncloud.com/studio-application/service-app) and set it as `NCP_APIGW_API_KEY`.\n",
"Set the `CLOVASTUDIO_API_KEY` environment variable with your API key.\n",
"\n",
"You can add them to your environment variables as below:\n",
"\n",
"``` bash\n",
"export NCP_CLOVASTUDIO_API_KEY=\"your-api-key-here\"\n",
"# Uncomment below to use a legacy API key\n",
"# export NCP_APIGW_API_KEY=\"your-api-key-here\"\n",
"export CLOVASTUDIO_API_KEY=\"your-api-key-here\"\n",
"```"
]
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 2,
"id": "2def81b5-b023-4f40-a97b-b2c5ca59d6a9",
"metadata": {},
"outputs": [],
@@ -66,22 +63,19 @@
"import getpass\n",
"import os\n",
"\n",
"if not os.getenv(\"NCP_CLOVASTUDIO_API_KEY\"):\n",
" os.environ[\"NCP_CLOVASTUDIO_API_KEY\"] = getpass.getpass(\n",
" \"Enter your NCP CLOVA Studio API Key: \"\n",
" )\n",
"# Uncomment below to use a legacy API key\n",
"# if not os.getenv(\"NCP_APIGW_API_KEY\"):\n",
"# os.environ[\"NCP_APIGW_API_KEY\"] = getpass.getpass(\n",
"# \"Enter your NCP API Gateway API key: \"\n",
"# )"
"if not os.getenv(\"CLOVASTUDIO_API_KEY\"):\n",
" os.environ[\"CLOVASTUDIO_API_KEY\"] = getpass.getpass(\n",
" \"Enter your CLOVA Studio API Key: \"\n",
" )"
]
},
{
"cell_type": "markdown",
"id": "7c695442",
"metadata": {},
"source": "To enable automated tracing of your model calls, set your [LangSmith](https://docs.smith.langchain.com/) API key:"
"source": [
"To enable automated tracing of your model calls, set your [LangSmith](https://docs.smith.langchain.com/) API key:"
]
},
{
"cell_type": "code",
@@ -101,7 +95,7 @@
"source": [
"### Installation\n",
"\n",
"The LangChain Naver integration lives in the `langchain-community` package:"
"The LangChain Naver integration lives in the `langchain-naver` package:"
]
},
{
@@ -112,7 +106,7 @@
"outputs": [],
"source": [
"# install package\n",
"!pip install -qU langchain-community"
"%pip install -qU langchain-naver"
]
},
{
@@ -127,21 +121,19 @@
},
{
"cell_type": "code",
"execution_count": 2,
"execution_count": 3,
"id": "cb09c344-1836-4e0c-acf8-11d13ac1dbae",
"metadata": {},
"outputs": [],
"source": [
"from langchain_community.chat_models import ChatClovaX\n",
"from langchain_naver import ChatClovaX\n",
"\n",
"chat = ChatClovaX(\n",
" model=\"HCX-003\",\n",
" max_tokens=100,\n",
" model=\"HCX-005\",\n",
" temperature=0.5,\n",
" # clovastudio_api_key=\"...\" # set if you prefer to pass api key directly instead of using environment variables\n",
" # task_id=\"...\" # set if you want to use fine-tuned model\n",
" # service_app=False # set True if using Service App. Default value is False (means using Test App)\n",
" # include_ai_filters=False # set True if you want to detect inappropriate content. Default value is False\n",
" max_tokens=None,\n",
" timeout=None,\n",
" max_retries=2,\n",
" # other params...\n",
")"
]
@@ -153,12 +145,12 @@
"source": [
"## Invocation\n",
"\n",
"In addition to invoke, we also support batch and stream functionalities."
"In addition to invoke, `ChatClovaX` also support batch and stream functionalities."
]
},
{
"cell_type": "code",
"execution_count": 3,
"execution_count": 4,
"id": "62e0dbc3",
"metadata": {
"tags": []
@@ -167,10 +159,10 @@
{
"data": {
"text/plain": [
"AIMessage(content='저는 네이버 AI를 사용하는 것이 좋아요.', additional_kwargs={}, response_metadata={'stop_reason': 'stop_before', 'input_length': 25, 'output_length': 14, 'seed': 1112164354, 'ai_filter': None}, id='run-b57bc356-1148-4007-837d-cc409dbd57cc-0', usage_metadata={'input_tokens': 25, 'output_tokens': 14, 'total_tokens': 39})"
"AIMessage(content='네이버 인공지능을 사용하는 것을 정말 좋아합니다.', additional_kwargs={'refusal': None}, response_metadata={'token_usage': {'completion_tokens': 11, 'prompt_tokens': 28, 'total_tokens': 39, 'completion_tokens_details': None, 'prompt_tokens_details': None}, 'model_name': 'HCX-005', 'system_fingerprint': None, 'id': 'b70c26671cd247a0864115bacfb5fc12', 'finish_reason': 'stop', 'logprobs': None}, id='run-3faf6a8d-d5da-49ad-9fbb-7b56ed23b484-0', usage_metadata={'input_tokens': 28, 'output_tokens': 11, 'total_tokens': 39, 'input_token_details': {}, 'output_token_details': {}})"
]
},
"execution_count": 3,
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
@@ -190,7 +182,7 @@
},
{
"cell_type": "code",
"execution_count": 4,
"execution_count": 5,
"id": "24e7377f",
"metadata": {},
"outputs": [
@@ -198,7 +190,7 @@
"name": "stdout",
"output_type": "stream",
"text": [
"저는 네이버 AI를 사용하는 것이 좋아요.\n"
"네이버 인공지능을 사용하는 것을 정말 좋아합니다.\n"
]
}
],
@@ -218,17 +210,17 @@
},
{
"cell_type": "code",
"execution_count": 5,
"execution_count": 6,
"id": "e197d1d7-a070-4c96-9f8a-a0e86d046e0b",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"AIMessage(content='저는 네이버 AI를 사용하는 것 좋아.', additional_kwargs={}, response_metadata={'stop_reason': 'stop_before', 'input_length': 25, 'output_length': 14, 'seed': 2575184681, 'ai_filter': None}, id='run-7014b330-eba3-4701-bb62-df73ce39b854-0', usage_metadata={'input_tokens': 25, 'output_tokens': 14, 'total_tokens': 39})"
"AIMessage(content='저는 네이버 인공지능을 사용하는 것 좋아합니다.', additional_kwargs={'refusal': None}, response_metadata={'token_usage': {'completion_tokens': 10, 'prompt_tokens': 28, 'total_tokens': 38, 'completion_tokens_details': None, 'prompt_tokens_details': None}, 'model_name': 'HCX-005', 'system_fingerprint': None, 'id': 'b7a826d17fcf4fee8386fca2ebc63284', 'finish_reason': 'stop', 'logprobs': None}, id='run-35957816-3325-4d9c-9441-e40704912be6-0', usage_metadata={'input_tokens': 28, 'output_tokens': 10, 'total_tokens': 38, 'input_token_details': {}, 'output_token_details': {}})"
]
},
"execution_count": 5,
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
@@ -266,7 +258,7 @@
},
{
"cell_type": "code",
"execution_count": 6,
"execution_count": 7,
"id": "2c07af21-dda5-4514-b4de-1f214c2cebcd",
"metadata": {},
"outputs": [
@@ -274,7 +266,7 @@
"name": "stdout",
"output_type": "stream",
"text": [
"Certainly! In Korean, \"Hi\" is pronounced as \"안녕\" (annyeong). The first syllable, \"안,\" sounds like the \"ahh\" sound in \"apple,\" while the second syllable, \"녕,\" sounds like the \"yuh\" sound in \"you.\" So when you put them together, it's like saying \"ahhyuh-nyuhng.\" Remember to pronounce each syllable clearly and separately for accurate pronunciation."
"In Korean, the informal way of saying 'hi' is \"안녕\" (annyeong). If you're addressing someone older or showing more respect, you would use \"안녕하세요\" (annjeonghaseyo). Both phrases are used as greetings similar to 'hello'. Remember, pronunciation is key so make sure to pronounce each syllable clearly: 안-녀-엉 (an-nyeo-eong) and 안-녕-하-세-요 (an-nyeong-ha-se-yo)."
]
}
],
@@ -298,115 +290,37 @@
"\n",
"### Using fine-tuned models\n",
"\n",
"You can call fine-tuned models by passing in your corresponding `task_id` parameter. (You dont need to specify the `model_name` parameter when calling fine-tuned model.)\n",
"You can call fine-tuned models by passing the `task_id` to the `model` parameter as: `ft:{task_id}`.\n",
"\n",
"You can check `task_id` from corresponding Test App or Service App details."
]
},
{
"cell_type": "code",
"execution_count": 7,
"execution_count": null,
"id": "cb436788",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"AIMessage(content='저는 네이버 AI를 사용하는 것이 너무 좋아요.', additional_kwargs={}, response_metadata={'stop_reason': 'stop_before', 'input_length': 25, 'output_length': 15, 'seed': 52559061, 'ai_filter': None}, id='run-5bea8d4a-48f3-4c34-ae70-66e60dca5344-0', usage_metadata={'input_tokens': 25, 'output_tokens': 15, 'total_tokens': 40})"
"AIMessage(content='네이버 인공지능을 사용하는 것을 정말 좋아합니다.', additional_kwargs={'refusal': None}, response_metadata={'token_usage': {'completion_tokens': 11, 'prompt_tokens': 28, 'total_tokens': 39, 'completion_tokens_details': None, 'prompt_tokens_details': None}, 'model_name': 'HCX-005', 'system_fingerprint': None, 'id': '2222d6d411a948c883aac1e03ca6cebe', 'finish_reason': 'stop', 'logprobs': None}, id='run-9696d7e2-7afa-4bb4-9c03-b95fcf678ab8-0', usage_metadata={'input_tokens': 28, 'output_tokens': 11, 'total_tokens': 39, 'input_token_details': {}, 'output_token_details': {}})"
]
},
"execution_count": 7,
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"fine_tuned_model = ChatClovaX(\n",
" task_id=\"5s8egt3a\", # set if you want to use fine-tuned model\n",
" model=\"ft:a1b2c3d4\", # set as `ft:{task_id}` with your fine-tuned model's task id\n",
" # other params...\n",
")\n",
"\n",
"fine_tuned_model.invoke(messages)"
]
},
{
"cell_type": "markdown",
"id": "f428deaf",
"metadata": {},
"source": [
"### Service App\n",
"\n",
"When going live with production-level application using CLOVA Studio, you should apply for and use Service App. (See [here](https://guide.ncloud-docs.com/docs/en/clovastudio-playground01#서비스앱신청).)\n",
"\n",
"For a Service App, you should use a corresponding Service API key and can only be called with it."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "dcf566df",
"metadata": {},
"outputs": [],
"source": [
"# Update environment variables\n",
"\n",
"os.environ[\"NCP_CLOVASTUDIO_API_KEY\"] = getpass.getpass(\n",
" \"Enter NCP CLOVA Studio Service API Key: \"\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "cebe27ae",
"metadata": {},
"outputs": [],
"source": [
"chat = ChatClovaX(\n",
" service_app=True, # True if you want to use your service app, default value is False.\n",
" # clovastudio_api_key=\"...\" # if you prefer to pass api key in directly instead of using env vars\n",
" model=\"HCX-003\",\n",
" # other params...\n",
")\n",
"ai_msg = chat.invoke(messages)"
]
},
{
"cell_type": "markdown",
"id": "d73e7140",
"metadata": {},
"source": [
"### AI Filter\n",
"\n",
"AI Filter detects inappropriate output such as profanity from the test app (or service app included) created in Playground and informs the user. See [here](https://guide.ncloud-docs.com/docs/en/clovastudio-playground01#AIFilter) for details."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "32bfbc93",
"metadata": {},
"outputs": [],
"source": [
"chat = ChatClovaX(\n",
" model=\"HCX-003\",\n",
" include_ai_filters=True, # True if you want to enable ai filter\n",
" # other params...\n",
")\n",
"\n",
"ai_msg = chat.invoke(messages)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "7bd9e179",
"metadata": {},
"outputs": [],
"source": [
"print(ai_msg.response_metadata[\"ai_filter\"])"
]
},
{
"cell_type": "markdown",
"id": "3a5bb5ca-c3ae-4a58-be67-2cd18574b9a3",
@@ -414,13 +328,13 @@
"source": [
"## API reference\n",
"\n",
"For detailed documentation of all ChatNaver features and configurations head to the API reference: https://python.langchain.com/api_reference/community/chat_models/langchain_community.chat_models.naver.ChatClovaX.html"
"For detailed documentation of all ChatClovaX features and configurations head to the [API reference](https://guide.ncloud-docs.com/docs/clovastudio-dev-langchain)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
@@ -434,7 +348,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.3"
"version": "3.12.8"
}
},
"nbformat": 4,

View File

@@ -90,7 +90,7 @@
},
{
"cell_type": "code",
"execution_count": 3,
"execution_count": null,
"id": "d285fd7f",
"metadata": {},
"outputs": [],
@@ -99,7 +99,7 @@
"\n",
"# Initialize a Fireworks model\n",
"llm = Fireworks(\n",
" model=\"accounts/fireworks/models/mixtral-8x7b-instruct\",\n",
" model=\"accounts/fireworks/models/llama-v3p1-8b-instruct\",\n",
" base_url=\"https://api.fireworks.ai/inference/v1/completions\",\n",
")"
]
@@ -176,7 +176,7 @@
},
{
"cell_type": "code",
"execution_count": 6,
"execution_count": null,
"id": "b801c20d",
"metadata": {},
"outputs": [
@@ -192,7 +192,7 @@
"source": [
"# Setting additional parameters: temperature, max_tokens, top_p\n",
"llm = Fireworks(\n",
" model=\"accounts/fireworks/models/mixtral-8x7b-instruct\",\n",
" model=\"accounts/fireworks/models/llama-v3p1-8b-instruct\",\n",
" temperature=0.7,\n",
" max_tokens=15,\n",
" top_p=1.0,\n",
@@ -218,7 +218,7 @@
},
{
"cell_type": "code",
"execution_count": 7,
"execution_count": null,
"id": "fd2c6bc1",
"metadata": {},
"outputs": [
@@ -235,7 +235,7 @@
"from langchain_fireworks import Fireworks\n",
"\n",
"llm = Fireworks(\n",
" model=\"accounts/fireworks/models/mixtral-8x7b-instruct\",\n",
" model=\"accounts/fireworks/models/llama-v3p1-8b-instruct\",\n",
" temperature=0.7,\n",
" max_tokens=15,\n",
" top_p=1.0,\n",

File diff suppressed because it is too large Load Diff

View File

@@ -10,19 +10,23 @@ Please refer to [NCP User Guide](https://guide.ncloud-docs.com/docs/clovastudio-
## Installation and Setup
- Get a CLOVA Studio API Key by [issuing it](https://api.ncloud-docs.com/docs/ai-naver-clovastudio-summary#API%ED%82%A4) and set it as an environment variable (`NCP_CLOVASTUDIO_API_KEY`).
- If you are using a legacy API Key (that doesn't start with `nv-*` prefix), you might need to get an additional API Key by [creating your app](https://guide.ncloud-docs.com/docs/en/clovastudio-playground01#create-test-app) and set it as `NCP_APIGW_API_KEY`.
- Get a CLOVA Studio API Key by [issuing it](https://api.ncloud-docs.com/docs/ai-naver-clovastudio-summary#API%ED%82%A4) and set it as an environment variable (`CLOVASTUDIO_API_KEY`).
Naver integrations live in two packages:
- `langchain-naver-community`: a dedicated integration package for Naver. It is a community-maintained package and is not officially maintained by Naver or LangChain.
- `langchain-community`: a collection of [third-party integrations](https://python.langchain.com/docs/concepts/architecture/#langchain-community),
including Naver. **New features should be implemented in the dedicated `langchain-naver-community` package**.
- `langchain-naver`: a dedicated integration package for Naver.
- `langchain-naver-community`: a community-maintained package and is not officially maintained by Naver or LangChain.
```bash
pip install -U langchain-community langchain-naver-community
pip install -U langchain-naver
# pip install -U langchain-naver-community // Install to use Naver Search tool.
```
> **(Note)** Naver integration via `langchain-community`, a collection of [third-party integrations](https://python.langchain.com/docs/concepts/architecture/#langchain-community), is outdated.
> - **Use `langchain-naver` instead as new features should only be implemented via this package**.
> - If you are using `langchain-community` (outdated) and got a legacy API Key (that doesn't start with `nv-*` prefix), you should set it as `NCP_CLOVASTUDIO_API_KEY`, and might need to get an additional API Gateway API Key by [creating your app](https://guide.ncloud-docs.com/docs/en/clovastudio-playground01#create-test-app) and set it as `NCP_APIGW_API_KEY`.
## Chat models
### ChatClovaX
@@ -30,7 +34,7 @@ pip install -U langchain-community langchain-naver-community
See a [usage example](/docs/integrations/chat/naver).
```python
from langchain_community.chat_models import ChatClovaX
from langchain_naver import ChatClovaX
```
## Embedding models
@@ -40,7 +44,7 @@ from langchain_community.chat_models import ChatClovaX
See a [usage example](/docs/integrations/text_embedding/naver).
```python
from langchain_community.embeddings import ClovaXEmbeddings
from langchain_naver import ClovaXEmbeddings
```
## Tools

View File

@@ -17,14 +17,14 @@
"source": [
"# ClovaXEmbeddings\n",
"\n",
"This notebook covers how to get started with embedding models provided by CLOVA Studio. For detailed documentation on `ClovaXEmbeddings` features and configuration options, please refer to the [API reference](https://python.langchain.com/api_reference/community/embeddings/langchain_community.embeddings.naver.ClovaXEmbeddings.html).\n",
"This notebook covers how to get started with embedding models provided by CLOVA Studio. For detailed documentation on `ClovaXEmbeddings` features and configuration options, please refer to the [API reference](https://guide.ncloud-docs.com/docs/clovastudio-dev-langchain#%EC%9E%84%EB%B2%A0%EB%94%A9%EB%8F%84%EA%B5%AC%EC%9D%B4%EC%9A%A9).\n",
"\n",
"## Overview\n",
"### Integration details\n",
"\n",
"| Provider | Package |\n",
"|:--------:|:-------:|\n",
"| [Naver](/docs/integrations/providers/naver.mdx) | [langchain-community](https://python.langchain.com/api_reference/community/embeddings/langchain_community.embeddings.naver.ClovaXEmbeddings.html) |\n",
"| [Naver](/docs/integrations/providers/naver.mdx) | [langchain-naver](https://pypi.org/project/langchain-naver/) |\n",
"\n",
"## Setup\n",
"\n",
@@ -33,12 +33,11 @@
"1. Creating [NAVER Cloud Platform](https://www.ncloud.com/) account \n",
"2. Apply to use [CLOVA Studio](https://www.ncloud.com/product/aiService/clovaStudio)\n",
"3. Create a CLOVA Studio Test App or Service App of a model to use (See [here](https://guide.ncloud-docs.com/docs/clovastudio-explorer03#%ED%85%8C%EC%8A%A4%ED%8A%B8%EC%95%B1%EC%83%9D%EC%84%B1).)\n",
"4. Issue a Test or Service API key (See [here](https://api.ncloud-docs.com/docs/ai-naver-clovastudio-summary#API%ED%82%A4).)\n",
"4. Issue a Test or Service API key (See [here](https://guide.ncloud-docs.com/docs/clovastudio-explorer-testapp).)\n",
"\n",
"### Credentials\n",
"\n",
"Set the `NCP_CLOVASTUDIO_API_KEY` environment variable with your API key.\n",
" - Note that if you are using a legacy API Key (that doesn't start with `nv-*` prefix), you might need two additional keys to be set as environment variables (`NCP_APIGW_API_KEY` and `NCP_CLOVASTUDIO_APP_ID`. They could be found by clicking `App Request Status` > `Service App, Test App List` > `Details` button for each app in [CLOVA Studio](https://clovastudio.ncloud.com/studio-application/service-app)."
"Set the `CLOVASTUDIO_API_KEY` environment variable with your API key."
]
},
{
@@ -51,30 +50,8 @@
"import getpass\n",
"import os\n",
"\n",
"if not os.getenv(\"NCP_CLOVASTUDIO_API_KEY\"):\n",
" os.environ[\"NCP_CLOVASTUDIO_API_KEY\"] = getpass.getpass(\n",
" \"Enter NCP CLOVA Studio API Key: \"\n",
" )"
]
},
{
"cell_type": "markdown",
"id": "b31fc062",
"metadata": {},
"source": [
"Uncomment below to use a legacy API key:"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "83520d8e-ecf8-4e47-b3bc-1ac205b3a2ab",
"metadata": {},
"outputs": [],
"source": [
"# if not os.getenv(\"NCP_APIGW_API_KEY\"):\n",
"# os.environ[\"NCP_APIGW_API_KEY\"] = getpass.getpass(\"Enter NCP API Gateway API Key: \")\n",
"# os.environ[\"NCP_CLOVASTUDIO_APP_ID\"] = input(\"Enter NCP CLOVA Studio App ID: \")"
"if not os.getenv(\"CLOVASTUDIO_API_KEY\"):\n",
" os.environ[\"CLOVASTUDIO_API_KEY\"] = getpass.getpass(\"Enter CLOVA Studio API Key: \")"
]
},
{
@@ -84,7 +61,7 @@
"source": [
"### Installation\n",
"\n",
"ClovaXEmbeddings integration lives in the `langchain_community` package:"
"ClovaXEmbeddings integration lives in the `langchain_naver` package:"
]
},
{
@@ -95,7 +72,7 @@
"outputs": [],
"source": [
"# install package\n",
"!pip install -U langchain-community"
"%pip install -qU langchain-naver"
]
},
{
@@ -113,7 +90,7 @@
},
{
"cell_type": "code",
"execution_count": 7,
"execution_count": null,
"id": "62e0dbc3",
"metadata": {
"scrolled": true,
@@ -121,10 +98,10 @@
},
"outputs": [],
"source": [
"from langchain_community.embeddings import ClovaXEmbeddings\n",
"from langchain_naver import ClovaXEmbeddings\n",
"\n",
"embeddings = ClovaXEmbeddings(\n",
" model=\"clir-emb-dolphin\" # set with the model name of corresponding app id. Default is `clir-emb-dolphin`\n",
" model=\"clir-emb-dolphin\" # set with the model name of corresponding test/service app. Default is `clir-emb-dolphin`\n",
")"
]
},
@@ -225,7 +202,7 @@
},
{
"cell_type": "code",
"execution_count": 10,
"execution_count": null,
"id": "1f2e6104",
"metadata": {},
"outputs": [
@@ -239,55 +216,12 @@
}
],
"source": [
"text2 = \"LangChain is the framework for building context-aware reasoning applications\"\n",
"text2 = \"LangChain is a framework for building context-aware reasoning applications\"\n",
"two_vectors = embeddings.embed_documents([text, text2])\n",
"for vector in two_vectors:\n",
" print(str(vector)[:100]) # Show the first 100 characters of the vector"
]
},
{
"cell_type": "markdown",
"id": "eee40d32367cc5c4",
"metadata": {},
"source": [
"## Additional functionalities\n",
"\n",
"### Service App\n",
"\n",
"When going live with production-level application using CLOVA Studio, you should apply for and use Service App. (See [here](https://guide.ncloud-docs.com/docs/en/clovastudio-playground01#서비스앱신청).)\n",
"\n",
"For a Service App, you should use a corresponding Service API key and can only be called with it."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "08f9f44e-c6a4-4163-8caf-27a0cda345b7",
"metadata": {},
"outputs": [],
"source": [
"# Update environment variables\n",
"\n",
"os.environ[\"NCP_CLOVASTUDIO_API_KEY\"] = getpass.getpass(\n",
" \"Enter NCP CLOVA Studio API Key for Service App: \"\n",
")\n",
"# Uncomment below to use a legacy API key:\n",
"os.environ[\"NCP_CLOVASTUDIO_APP_ID\"] = input(\"Enter NCP CLOVA Studio Service App ID: \")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "86f59698-b3f4-4b19-a9d4-4facfcea304b",
"metadata": {},
"outputs": [],
"source": [
"embeddings = ClovaXEmbeddings(\n",
" service_app=True,\n",
" model=\"clir-emb-dolphin\", # set with the model name of corresponding app id of your Service App\n",
")"
]
},
{
"cell_type": "markdown",
"id": "1ddeaee9",
@@ -295,7 +229,7 @@
"source": [
"## API Reference\n",
"\n",
"For detailed documentation on `ClovaXEmbeddings` features and configuration options, please refer to the [API reference](https://python.langchain.com/latest/api_reference/community/embeddings/langchain_community.embeddings.naver.ClovaXEmbeddings.html)."
"For detailed documentation on `ClovaXEmbeddings` features and configuration options, please refer to the [API reference](https://guide.ncloud-docs.com/docs/clovastudio-dev-langchain#%EC%9E%84%EB%B2%A0%EB%94%A9%EB%8F%84%EA%B5%AC%EC%9D%B4%EC%9A%A9)."
]
}
],

View File

@@ -135,6 +135,13 @@ ${llmVarName} = AzureChatOpenAI(
apiKeyName: "AZURE_OPENAI_API_KEY",
packageName: "langchain[openai]",
},
{
value: "google_genai",
label: "Google Gemini",
model: "gemini-2.0-flash",
apiKeyName: "GOOGLE_API_KEY",
packageName: "langchain[google-genai]",
},
{
value: "google_vertexai",
label: "Google Vertex",

View File

@@ -3,3 +3,4 @@ function gtag(){dataLayer.push(arguments);}
gtag('js', new Date());
gtag('config', 'G-9B66JQQH2F');
gtag('config', 'G-47WX3HKKY2');

View File

@@ -185,7 +185,7 @@ class SitemapLoader(WebBaseLoader):
els.append(
{
tag: prop.text
tag: prop.text.strip()
for tag in ["loc", "lastmod", "changefreq", "priority"]
if (prop := url.find(tag))
}

View File

@@ -480,6 +480,8 @@ class OpenSearchVectorSearch(VectorStore):
bulk_size = bulk_size if bulk_size is not None else self.bulk_size
_validate_embeddings_and_bulk_size(len(embeddings), bulk_size)
index_name = kwargs.get("index_name", self.index_name)
if self.index_name is None:
raise ValueError("index_name must be provided.")
text_field = kwargs.get("text_field", "text")
dim = len(embeddings[0])
engine = kwargs.get("engine", self.engine)
@@ -522,6 +524,8 @@ class OpenSearchVectorSearch(VectorStore):
bulk_size = bulk_size if bulk_size is not None else self.bulk_size
_validate_embeddings_and_bulk_size(len(embeddings), bulk_size)
index_name = kwargs.get("index_name", self.index_name)
if self.index_name is None:
raise ValueError("index_name must be provided.")
text_field = kwargs.get("text_field", "text")
dim = len(embeddings[0])
engine = kwargs.get("engine", self.engine)
@@ -735,12 +739,14 @@ class OpenSearchVectorSearch(VectorStore):
raise ImportError(IMPORT_OPENSEARCH_PY_ERROR)
body = []
index_name = kwargs.get("index_name", self.index_name)
if self.index_name is None:
raise ValueError("index_name must be provided.")
if ids is None:
raise ValueError("ids must be provided.")
for _id in ids:
body.append({"_op_type": "delete", "_index": self.index_name, "_id": _id})
body.append({"_op_type": "delete", "_index": index_name, "_id": _id})
if len(body) > 0:
try:
@@ -766,8 +772,10 @@ class OpenSearchVectorSearch(VectorStore):
"""
if ids is None:
raise ValueError("No ids provided to delete.")
actions = [{"delete": {"_index": self.index_name, "_id": id_}} for id_ in ids]
index_name = kwargs.get("index_name", self.index_name)
if self.index_name is None:
raise ValueError("index_name must be provided.")
actions = [{"delete": {"_index": index_name, "_id": id_}} for id_ in ids]
response = await self.async_client.bulk(body=actions, **kwargs)
return not any(
item.get("delete", {}).get("error") for item in response["items"]
@@ -1096,6 +1104,8 @@ class OpenSearchVectorSearch(VectorStore):
search_type = kwargs.get("search_type", "approximate_search")
vector_field = kwargs.get("vector_field", "vector_field")
index_name = kwargs.get("index_name", self.index_name)
if self.index_name is None:
raise ValueError("index_name must be provided.")
filter = kwargs.get("filter", {})
if (

View File

@@ -7,8 +7,8 @@ authors = []
license = { text = "MIT" }
requires-python = "<4.0,>=3.9"
dependencies = [
"langchain-core<1.0.0,>=0.3.51",
"langchain<1.0.0,>=0.3.23",
"langchain-core<1.0.0,>=0.3.55",
"langchain<1.0.0,>=0.3.24",
"SQLAlchemy<3,>=1.4",
"requests<3,>=2",
"PyYAML>=5.3",
@@ -22,7 +22,7 @@ dependencies = [
"numpy>=2.1.0; python_version>='3.13'",
]
name = "langchain-community"
version = "0.3.21"
version = "0.3.22"
description = "Community contributed LangChain integrations."
readme = "README.md"

View File

@@ -1,155 +0,0 @@
import importlib
import inspect
import pkgutil
from types import ModuleType
from langchain_core.load.mapping import SERIALIZABLE_MAPPING
def import_all_modules(package_name: str) -> dict:
package = importlib.import_module(package_name)
classes: dict = {}
def _handle_module(module: ModuleType) -> None:
# Iterate over all members of the module
names = dir(module)
if hasattr(module, "__all__"):
names += list(module.__all__)
names = sorted(set(names))
for name in names:
# Check if it's a class or function
attr = getattr(module, name)
if not inspect.isclass(attr):
continue
if not hasattr(attr, "is_lc_serializable") or not isinstance(attr, type):
continue
if (
isinstance(attr.is_lc_serializable(), bool)
and attr.is_lc_serializable()
):
key = tuple(attr.lc_id())
value = tuple(attr.__module__.split(".") + [attr.__name__])
if key in classes and classes[key] != value:
raise ValueError
classes[key] = value
_handle_module(package)
for importer, modname, ispkg in pkgutil.walk_packages(
package.__path__, package.__name__ + "."
):
try:
module = importlib.import_module(modname)
except ModuleNotFoundError:
continue
_handle_module(module)
return classes
def test_import_all_modules() -> None:
"""Test import all modules works as expected"""
all_modules = import_all_modules("langchain")
filtered_modules = [
k
for k in all_modules
if len(k) == 4 and tuple(k[:2]) == ("langchain", "chat_models")
]
# This test will need to be updated if new serializable classes are added
# to community
assert sorted(filtered_modules) == sorted(
[
("langchain", "chat_models", "azure_openai", "AzureChatOpenAI"),
("langchain", "chat_models", "bedrock", "BedrockChat"),
("langchain", "chat_models", "anthropic", "ChatAnthropic"),
("langchain", "chat_models", "fireworks", "ChatFireworks"),
("langchain", "chat_models", "google_palm", "ChatGooglePalm"),
("langchain", "chat_models", "openai", "ChatOpenAI"),
("langchain", "chat_models", "vertexai", "ChatVertexAI"),
]
)
def test_serializable_mapping() -> None:
to_skip = {
# This should have had a different namespace, as it was never
# exported from the langchain module, but we keep for whoever has
# already serialized it.
("langchain", "prompts", "image", "ImagePromptTemplate"): (
"langchain_core",
"prompts",
"image",
"ImagePromptTemplate",
),
# This is not exported from langchain, only langchain_core
("langchain_core", "prompts", "structured", "StructuredPrompt"): (
"langchain_core",
"prompts",
"structured",
"StructuredPrompt",
),
# This is not exported from langchain, only langchain_core
("langchain", "schema", "messages", "RemoveMessage"): (
"langchain_core",
"messages",
"modifier",
"RemoveMessage",
),
("langchain", "chat_models", "mistralai", "ChatMistralAI"): (
"langchain_mistralai",
"chat_models",
"ChatMistralAI",
),
("langchain_groq", "chat_models", "ChatGroq"): (
"langchain_groq",
"chat_models",
"ChatGroq",
),
("langchain_sambanova", "chat_models", "ChatSambaNovaCloud"): (
"langchain_sambanova",
"chat_models",
"ChatSambaNovaCloud",
),
("langchain_sambanova", "chat_models", "ChatSambaStudio"): (
"langchain_sambanova",
"chat_models",
"ChatSambaStudio",
),
# TODO(0.3): For now we're skipping the below two tests. Need to fix
# so that it only runs when langchain-aws, langchain-google-genai
# are installed.
("langchain", "chat_models", "bedrock", "ChatBedrock"): (
"langchain_aws",
"chat_models",
"bedrock",
"ChatBedrock",
),
("langchain_google_genai", "chat_models", "ChatGoogleGenerativeAI"): (
"langchain_google_genai",
"chat_models",
"ChatGoogleGenerativeAI",
),
}
serializable_modules = import_all_modules("langchain")
missing = set(SERIALIZABLE_MAPPING).difference(
set(serializable_modules).union(to_skip)
)
assert missing == set()
extra = set(serializable_modules).difference(SERIALIZABLE_MAPPING)
assert extra == set()
for k, import_path in serializable_modules.items():
import_dir, import_obj = import_path[:-1], import_path[-1]
# Import module
mod = importlib.import_module(".".join(import_dir))
# Import class
cls = getattr(mod, import_obj)
assert list(k) == cls.lc_id()

12
libs/community/uv.lock generated
View File

@@ -1,5 +1,4 @@
version = 1
revision = 1
requires-python = ">=3.9, <4.0"
resolution-markers = [
"python_full_version >= '3.13' and platform_python_implementation == 'PyPy'",
@@ -1498,7 +1497,7 @@ wheels = [
[[package]]
name = "langchain"
version = "0.3.23"
version = "0.3.24"
source = { editable = "../langchain" }
dependencies = [
{ name = "async-timeout", marker = "python_full_version < '3.11'" },
@@ -1539,7 +1538,6 @@ requires-dist = [
{ name = "requests", specifier = ">=2,<3" },
{ name = "sqlalchemy", specifier = ">=1.4,<3" },
]
provides-extras = ["community", "anthropic", "openai", "azure-ai", "cohere", "google-vertexai", "google-genai", "fireworks", "ollama", "together", "mistralai", "huggingface", "groq", "aws", "deepseek", "xai", "perplexity"]
[package.metadata.requires-dev]
codespell = [{ name = "codespell", specifier = ">=2.2.0,<3.0.0" }]
@@ -1596,7 +1594,7 @@ test-integration = [
typing = [
{ name = "langchain-core", editable = "../core" },
{ name = "langchain-text-splitters", editable = "../text-splitters" },
{ name = "mypy", specifier = ">=1.10,<2.0" },
{ name = "mypy", specifier = ">=1.15,<2.0" },
{ name = "mypy-protobuf", specifier = ">=3.0.0,<4.0.0" },
{ name = "numpy", marker = "python_full_version < '3.13'", specifier = ">=1.26.4" },
{ name = "numpy", marker = "python_full_version >= '3.13'", specifier = ">=2.1.0" },
@@ -1610,7 +1608,7 @@ typing = [
[[package]]
name = "langchain-community"
version = "0.3.21"
version = "0.3.22"
source = { editable = "." }
dependencies = [
{ name = "aiohttp" },
@@ -1757,7 +1755,7 @@ typing = [
[[package]]
name = "langchain-core"
version = "0.3.51"
version = "0.3.55"
source = { editable = "../core" }
dependencies = [
{ name = "jsonpatch" },
@@ -1816,7 +1814,7 @@ typing = [
[[package]]
name = "langchain-tests"
version = "0.3.17"
version = "0.3.19"
source = { editable = "../standard-tests" }
dependencies = [
{ name = "httpx" },

View File

@@ -0,0 +1,139 @@
import re
from collections.abc import Sequence
from typing import Optional
from langchain_core.messages import BaseMessage
def _is_openai_data_block(block: dict) -> bool:
"""Check if the block contains multimodal data in OpenAI Chat Completions format."""
if block.get("type") == "image_url":
if (
(set(block.keys()) <= {"type", "image_url", "detail"})
and (image_url := block.get("image_url"))
and isinstance(image_url, dict)
):
url = image_url.get("url")
if isinstance(url, str):
return True
elif block.get("type") == "file":
if (file := block.get("file")) and isinstance(file, dict):
file_data = file.get("file_data")
if isinstance(file_data, str):
return True
elif block.get("type") == "input_audio": # noqa: SIM102
if (input_audio := block.get("input_audio")) and isinstance(input_audio, dict):
audio_data = input_audio.get("data")
audio_format = input_audio.get("format")
if isinstance(audio_data, str) and isinstance(audio_format, str):
return True
else:
return False
return False
def _parse_data_uri(uri: str) -> Optional[dict]:
"""Parse a data URI into its components. If parsing fails, return None.
Example:
.. code-block:: python
data_uri = "..."
parsed = _parse_data_uri(data_uri)
assert parsed == {
"source_type": "base64",
"mime_type": "image/jpeg",
"data": "/9j/4AAQSkZJRg...",
}
"""
regex = r"^data:(?P<mime_type>[^;]+);base64,(?P<data>.+)$"
match = re.match(regex, uri)
if match is None:
return None
return {
"source_type": "base64",
"data": match.group("data"),
"mime_type": match.group("mime_type"),
}
def _convert_openai_format_to_data_block(block: dict) -> dict:
"""Convert OpenAI image content block to standard data content block.
If parsing fails, pass-through.
Args:
block: The OpenAI image content block to convert.
Returns:
The converted standard data content block.
"""
if block["type"] == "image_url":
parsed = _parse_data_uri(block["image_url"]["url"])
if parsed is not None:
parsed["type"] = "image"
return parsed
return block
if block["type"] == "file":
parsed = _parse_data_uri(block["file"]["file_data"])
if parsed is not None:
parsed["type"] = "file"
if filename := block["file"].get("filename"):
parsed["filename"] = filename
return parsed
return block
if block["type"] == "input_audio":
data = block["input_audio"].get("data")
format = block["input_audio"].get("format")
if data and format:
return {
"type": "audio",
"source_type": "base64",
"data": data,
"mime_type": f"audio/{format}",
}
return block
return block
def _normalize_messages(messages: Sequence[BaseMessage]) -> list[BaseMessage]:
"""Extend support for message formats.
Chat models implement support for images in OpenAI Chat Completions format, as well
as other multimodal data as standard data blocks. This function extends support to
audio and file data in OpenAI Chat Completions format by converting them to standard
data blocks.
"""
formatted_messages = []
for message in messages:
formatted_message = message
if isinstance(message.content, list):
for idx, block in enumerate(message.content):
if (
isinstance(block, dict)
# Subset to (PDF) files and audio, as most relevant chat models
# support images in OAI format (and some may not yet support the
# standard data block format)
and block.get("type") in ("file", "input_audio")
and _is_openai_data_block(block)
):
if formatted_message is message:
formatted_message = message.model_copy()
# Also shallow-copy content
formatted_message.content = list(formatted_message.content)
formatted_message.content[idx] = ( # type: ignore[index] # mypy confused by .model_copy
_convert_openai_format_to_data_block(block)
)
formatted_messages.append(formatted_message)
return formatted_messages

View File

@@ -40,6 +40,7 @@ from langchain_core.callbacks import (
Callbacks,
)
from langchain_core.globals import get_llm_cache
from langchain_core.language_models._utils import _normalize_messages
from langchain_core.language_models.base import (
BaseLanguageModel,
LangSmithParams,
@@ -489,7 +490,8 @@ class BaseChatModel(BaseLanguageModel[BaseMessage], ABC):
self.rate_limiter.acquire(blocking=True)
try:
for chunk in self._stream(messages, stop=stop, **kwargs):
input_messages = _normalize_messages(messages)
for chunk in self._stream(input_messages, stop=stop, **kwargs):
if chunk.message.id is None:
chunk.message.id = f"run-{run_manager.run_id}"
chunk.message.response_metadata = _gen_info_and_msg_metadata(chunk)
@@ -574,8 +576,9 @@ class BaseChatModel(BaseLanguageModel[BaseMessage], ABC):
generation: Optional[ChatGenerationChunk] = None
try:
input_messages = _normalize_messages(messages)
async for chunk in self._astream(
messages,
input_messages,
stop=stop,
**kwargs,
):
@@ -753,7 +756,10 @@ class BaseChatModel(BaseLanguageModel[BaseMessage], ABC):
batch_size=len(messages),
)
results = []
for i, m in enumerate(messages):
input_messages = [
_normalize_messages(message_list) for message_list in messages
]
for i, m in enumerate(input_messages):
try:
results.append(
self._generate_with_cache(
@@ -865,6 +871,9 @@ class BaseChatModel(BaseLanguageModel[BaseMessage], ABC):
run_id=run_id,
)
input_messages = [
_normalize_messages(message_list) for message_list in messages
]
results = await asyncio.gather(
*[
self._agenerate_with_cache(
@@ -873,7 +882,7 @@ class BaseChatModel(BaseLanguageModel[BaseMessage], ABC):
run_manager=run_managers[i] if run_managers else None,
**kwargs,
)
for i, m in enumerate(messages)
for i, m in enumerate(input_messages)
],
return_exceptions=True,
)

View File

@@ -540,6 +540,12 @@ SERIALIZABLE_MAPPING: dict[tuple[str, ...], tuple[str, ...]] = {
"chat_models",
"ChatSambaStudio",
),
("langchain_core", "prompts", "message", "_DictMessagePromptTemplate"): (
"langchain_core",
"prompts",
"dict",
"DictPromptTemplate",
),
}
# Needed for backwards compatibility for old versions of LangChain where things

View File

@@ -33,6 +33,7 @@ if TYPE_CHECKING:
)
from langchain_core.messages.chat import ChatMessage, ChatMessageChunk
from langchain_core.messages.content_blocks import (
convert_to_openai_data_block,
convert_to_openai_image_block,
is_data_content_block,
)
@@ -83,6 +84,7 @@ __all__ = (
"ToolMessageChunk",
"RemoveMessage",
"_message_from_dict",
"convert_to_openai_data_block",
"convert_to_openai_image_block",
"convert_to_messages",
"get_buffer_string",
@@ -124,6 +126,7 @@ _dynamic_imports = {
"MessageLikeRepresentation": "utils",
"_message_from_dict": "utils",
"convert_to_messages": "utils",
"convert_to_openai_data_block": "content_blocks",
"convert_to_openai_image_block": "content_blocks",
"convert_to_openai_messages": "utils",
"filter_messages": "utils",

View File

@@ -1,5 +1,6 @@
"""Types for content blocks."""
import warnings
from typing import Any, Literal, Union
from pydantic import TypeAdapter, ValidationError
@@ -108,3 +109,47 @@ def convert_to_openai_image_block(content_block: dict[str, Any]) -> dict:
}
error_message = "Unsupported source type. Only 'url' and 'base64' are supported."
raise ValueError(error_message)
def convert_to_openai_data_block(block: dict) -> dict:
"""Format standard data content block to format expected by OpenAI."""
if block["type"] == "image":
formatted_block = convert_to_openai_image_block(block)
elif block["type"] == "file":
if block["source_type"] == "base64":
file = {"file_data": f"data:{block['mime_type']};base64,{block['data']}"}
if filename := block.get("filename"):
file["filename"] = filename
elif (metadata := block.get("metadata")) and ("filename" in metadata):
file["filename"] = metadata["filename"]
else:
warnings.warn(
"OpenAI may require a filename for file inputs. Specify a filename "
"in the content block: {'type': 'file', 'source_type': 'base64', "
"'mime_type': 'application/pdf', 'data': '...', "
"'filename': 'my-pdf'}",
stacklevel=1,
)
formatted_block = {"type": "file", "file": file}
elif block["source_type"] == "id":
formatted_block = {"type": "file", "file": {"file_id": block["id"]}}
else:
error_msg = "source_type base64 or id is required for file blocks."
raise ValueError(error_msg)
elif block["type"] == "audio":
if block["source_type"] == "base64":
format = block["mime_type"].split("/")[-1]
formatted_block = {
"type": "input_audio",
"input_audio": {"data": block["data"], "format": format},
}
else:
error_msg = "source_type base64 is required for audio blocks."
raise ValueError(error_msg)
else:
error_msg = f"Block of type {block['type']} is not supported."
raise ValueError(error_msg)
return formatted_block

View File

@@ -12,6 +12,7 @@ from __future__ import annotations
import base64
import inspect
import json
import logging
import math
from collections.abc import Iterable, Sequence
from functools import partial
@@ -30,6 +31,7 @@ from typing import (
from pydantic import Discriminator, Field, Tag
from langchain_core.exceptions import ErrorCode, create_message
from langchain_core.messages import convert_to_openai_data_block, is_data_content_block
from langchain_core.messages.ai import AIMessage, AIMessageChunk
from langchain_core.messages.base import BaseMessage, BaseMessageChunk
from langchain_core.messages.chat import ChatMessage, ChatMessageChunk
@@ -46,6 +48,8 @@ if TYPE_CHECKING:
from langchain_core.prompt_values import PromptValue
from langchain_core.runnables.base import Runnable
logger = logging.getLogger(__name__)
def _get_type(v: Any) -> str:
"""Get the type associated with the object for serialization purposes."""
@@ -1067,6 +1071,17 @@ def convert_to_openai_messages(
"image_url": block["image_url"],
}
)
# Standard multi-modal content block
elif is_data_content_block(block):
formatted_block = convert_to_openai_data_block(block)
if (
formatted_block.get("type") == "file"
and "file" in formatted_block
and "filename" not in formatted_block["file"]
):
logger.info("Generating a fallback filename.")
formatted_block["file"]["filename"] = "LC_AUTOGENERATED"
content.append(formatted_block)
# Anthropic and Bedrock converse format
elif (block.get("type") == "image") or "image" in block:
# Anthropic

View File

@@ -44,6 +44,7 @@ if TYPE_CHECKING:
MessagesPlaceholder,
SystemMessagePromptTemplate,
)
from langchain_core.prompts.dict import DictPromptTemplate
from langchain_core.prompts.few_shot import (
FewShotChatMessagePromptTemplate,
FewShotPromptTemplate,
@@ -68,6 +69,7 @@ __all__ = (
"BasePromptTemplate",
"ChatMessagePromptTemplate",
"ChatPromptTemplate",
"DictPromptTemplate",
"FewShotPromptTemplate",
"FewShotPromptWithTemplates",
"FewShotChatMessagePromptTemplate",
@@ -94,6 +96,7 @@ _dynamic_imports = {
"BaseChatPromptTemplate": "chat",
"ChatMessagePromptTemplate": "chat",
"ChatPromptTemplate": "chat",
"DictPromptTemplate": "dict",
"HumanMessagePromptTemplate": "chat",
"MessagesPlaceholder": "chat",
"SystemMessagePromptTemplate": "chat",

View File

@@ -37,10 +37,10 @@ from langchain_core.messages import (
from langchain_core.messages.base import get_msg_title_repr
from langchain_core.prompt_values import ChatPromptValue, ImageURL, PromptValue
from langchain_core.prompts.base import BasePromptTemplate
from langchain_core.prompts.dict import DictPromptTemplate
from langchain_core.prompts.image import ImagePromptTemplate
from langchain_core.prompts.message import (
BaseMessagePromptTemplate,
_DictMessagePromptTemplate,
)
from langchain_core.prompts.prompt import PromptTemplate
from langchain_core.prompts.string import (
@@ -396,9 +396,7 @@ class _StringImageMessagePromptTemplate(BaseMessagePromptTemplate):
prompt: Union[
StringPromptTemplate,
list[
Union[StringPromptTemplate, ImagePromptTemplate, _DictMessagePromptTemplate]
],
list[Union[StringPromptTemplate, ImagePromptTemplate, DictPromptTemplate]],
]
"""Prompt template."""
additional_kwargs: dict = Field(default_factory=dict)
@@ -447,7 +445,12 @@ class _StringImageMessagePromptTemplate(BaseMessagePromptTemplate):
raise ValueError(msg)
prompt = []
for tmpl in template:
if isinstance(tmpl, str) or isinstance(tmpl, dict) and "text" in tmpl:
if (
isinstance(tmpl, str)
or isinstance(tmpl, dict)
and "text" in tmpl
and set(tmpl.keys()) <= {"type", "text"}
):
if isinstance(tmpl, str):
text: str = tmpl
else:
@@ -457,7 +460,15 @@ class _StringImageMessagePromptTemplate(BaseMessagePromptTemplate):
text, template_format=template_format
)
)
elif isinstance(tmpl, dict) and "image_url" in tmpl:
elif (
isinstance(tmpl, dict)
and "image_url" in tmpl
and set(tmpl.keys())
<= {
"type",
"image_url",
}
):
img_template = cast("_ImageTemplateParam", tmpl)["image_url"]
input_variables = []
if isinstance(img_template, str):
@@ -503,7 +514,7 @@ class _StringImageMessagePromptTemplate(BaseMessagePromptTemplate):
"format."
)
raise ValueError(msg)
data_template_obj = _DictMessagePromptTemplate(
data_template_obj = DictPromptTemplate(
template=cast("dict[str, Any]", tmpl),
template_format=template_format,
)
@@ -592,7 +603,7 @@ class _StringImageMessagePromptTemplate(BaseMessagePromptTemplate):
elif isinstance(prompt, ImagePromptTemplate):
formatted = prompt.format(**inputs)
content.append({"type": "image_url", "image_url": formatted})
elif isinstance(prompt, _DictMessagePromptTemplate):
elif isinstance(prompt, DictPromptTemplate):
formatted = prompt.format(**inputs)
content.append(formatted)
return self._msg_class(
@@ -624,7 +635,7 @@ class _StringImageMessagePromptTemplate(BaseMessagePromptTemplate):
elif isinstance(prompt, ImagePromptTemplate):
formatted = await prompt.aformat(**inputs)
content.append({"type": "image_url", "image_url": formatted})
elif isinstance(prompt, _DictMessagePromptTemplate):
elif isinstance(prompt, DictPromptTemplate):
formatted = prompt.format(**inputs)
content.append(formatted)
return self._msg_class(

View File

@@ -0,0 +1,137 @@
"""Dict prompt template."""
import warnings
from functools import cached_property
from typing import Any, Literal, Optional
from langchain_core.load import dumpd
from langchain_core.prompts.string import (
DEFAULT_FORMATTER_MAPPING,
get_template_variables,
)
from langchain_core.runnables import RunnableConfig, RunnableSerializable
from langchain_core.runnables.config import ensure_config
class DictPromptTemplate(RunnableSerializable[dict, dict]):
"""Template represented by a dict.
Recognizes variables in f-string or mustache formatted string dict values. Does NOT
recognize variables in dict keys. Applies recursively.
"""
template: dict[str, Any]
template_format: Literal["f-string", "mustache"]
@property
def input_variables(self) -> list[str]:
"""Template input variables."""
return _get_input_variables(self.template, self.template_format)
def format(self, **kwargs: Any) -> dict[str, Any]:
"""Format the prompt with the inputs."""
return _insert_input_variables(self.template, kwargs, self.template_format)
async def aformat(self, **kwargs: Any) -> dict[str, Any]:
"""Format the prompt with the inputs."""
return self.format(**kwargs)
def invoke(
self, input: dict, config: Optional[RunnableConfig] = None, **kwargs: Any
) -> dict:
"""Invoke the prompt."""
return self._call_with_config(
lambda x: self.format(**x),
input,
ensure_config(config),
run_type="prompt",
serialized=self._serialized,
**kwargs,
)
@property
def _prompt_type(self) -> str:
return "dict-prompt"
@cached_property
def _serialized(self) -> dict[str, Any]:
return dumpd(self)
@classmethod
def is_lc_serializable(cls) -> bool:
"""Return whether or not the class is serializable.
Returns: True.
"""
return True
@classmethod
def get_lc_namespace(cls) -> list[str]:
"""Serialization namespace."""
return ["langchain_core", "prompts", "dict"]
def pretty_repr(self, *, html: bool = False) -> str:
"""Human-readable representation.
Args:
html: Whether to format as HTML. Defaults to False.
Returns:
Human-readable representation.
"""
raise NotImplementedError
def _get_input_variables(
template: dict, template_format: Literal["f-string", "mustache"]
) -> list[str]:
input_variables = []
for v in template.values():
if isinstance(v, str):
input_variables += get_template_variables(v, template_format)
elif isinstance(v, dict):
input_variables += _get_input_variables(v, template_format)
elif isinstance(v, (list, tuple)):
for x in v:
if isinstance(x, str):
input_variables += get_template_variables(x, template_format)
elif isinstance(x, dict):
input_variables += _get_input_variables(x, template_format)
else:
pass
return list(set(input_variables))
def _insert_input_variables(
template: dict[str, Any],
inputs: dict[str, Any],
template_format: Literal["f-string", "mustache"],
) -> dict[str, Any]:
formatted = {}
formatter = DEFAULT_FORMATTER_MAPPING[template_format]
for k, v in template.items():
if isinstance(v, str):
formatted[k] = formatter(v, **inputs)
elif isinstance(v, dict):
if k == "image_url" and "path" in v:
msg = (
"Specifying image inputs via file path in environments with "
"user-input paths is a security vulnerability. Out of an abundance "
"of caution, the utility has been removed to prevent possible "
"misuse."
)
warnings.warn(msg, stacklevel=2)
formatted[k] = _insert_input_variables(v, inputs, template_format)
elif isinstance(v, (list, tuple)):
formatted_v = []
for x in v:
if isinstance(x, str):
formatted_v.append(formatter(x, **inputs))
elif isinstance(x, dict):
formatted_v.append(
_insert_input_variables(x, inputs, template_format)
)
formatted[k] = type(v)(formatted_v)
else:
formatted[k] = v
return formatted

View File

@@ -3,14 +3,10 @@
from __future__ import annotations
from abc import ABC, abstractmethod
from typing import TYPE_CHECKING, Any, Literal
from typing import TYPE_CHECKING, Any
from langchain_core.load import Serializable
from langchain_core.messages import BaseMessage, convert_to_messages
from langchain_core.prompts.string import (
DEFAULT_FORMATTER_MAPPING,
get_template_variables,
)
from langchain_core.messages import BaseMessage
from langchain_core.utils.interactive_env import is_interactive_env
if TYPE_CHECKING:
@@ -98,89 +94,3 @@ class BaseMessagePromptTemplate(Serializable, ABC):
prompt = ChatPromptTemplate(messages=[self])
return prompt + other
class _DictMessagePromptTemplate(BaseMessagePromptTemplate):
"""Template represented by a dict that recursively fills input vars in string vals.
Special handling of image_url dicts to load local paths. These look like:
``{"type": "image_url", "image_url": {"path": "..."}}``
"""
template: dict[str, Any]
template_format: Literal["f-string", "mustache"]
def format_messages(self, **kwargs: Any) -> list[BaseMessage]:
msg_dict = _insert_input_variables(self.template, kwargs, self.template_format)
return convert_to_messages([msg_dict])
@property
def input_variables(self) -> list[str]:
return _get_input_variables(self.template, self.template_format)
@property
def _prompt_type(self) -> str:
return "message-dict-prompt"
@classmethod
def get_lc_namespace(cls) -> list[str]:
return ["langchain_core", "prompts", "message"]
def format(
self,
**kwargs: Any,
) -> dict[str, Any]:
"""Format the prompt with the inputs."""
return _insert_input_variables(self.template, kwargs, self.template_format)
def _get_input_variables(
template: dict, template_format: Literal["f-string", "mustache"]
) -> list[str]:
input_variables = []
for v in template.values():
if isinstance(v, str):
input_variables += get_template_variables(v, template_format)
elif isinstance(v, dict):
input_variables += _get_input_variables(v, template_format)
elif isinstance(v, (list, tuple)):
for x in v:
if isinstance(x, str):
input_variables += get_template_variables(x, template_format)
elif isinstance(x, dict):
input_variables += _get_input_variables(x, template_format)
return list(set(input_variables))
def _insert_input_variables(
template: dict[str, Any],
inputs: dict[str, Any],
template_format: Literal["f-string", "mustache"],
) -> dict[str, Any]:
formatted = {}
formatter = DEFAULT_FORMATTER_MAPPING[template_format]
for k, v in template.items():
if isinstance(v, str):
formatted[k] = formatter(v, **inputs)
elif isinstance(v, dict):
# No longer support loading local images.
if k == "image_url" and "path" in v:
msg = (
"Specifying image inputs via file path in environments with "
"user-input paths is a security vulnerability. Out of an abundance "
"of caution, the utility has been removed to prevent possible "
"misuse."
)
raise ValueError(msg)
formatted[k] = _insert_input_variables(v, inputs, template_format)
elif isinstance(v, (list, tuple)):
formatted_v = []
for x in v:
if isinstance(x, str):
formatted_v.append(formatter(x, **inputs))
elif isinstance(x, dict):
formatted_v.append(
_insert_input_variables(x, inputs, template_format)
)
formatted[k] = type(v)(formatted_v)
return formatted

View File

@@ -1,3 +1,3 @@
"""langchain-core version information and utilities."""
VERSION = "0.3.55"
VERSION = "0.3.56"

View File

@@ -17,7 +17,7 @@ dependencies = [
"pydantic<3.0.0,>=2.7.4; python_full_version >= \"3.12.4\"",
]
name = "langchain-core"
version = "0.3.55"
version = "0.3.56"
description = "Building applications with LLMs through composability"
readme = "README.md"

View File

@@ -13,6 +13,7 @@ from langchain_core.language_models import (
FakeListChatModel,
ParrotFakeChatModel,
)
from langchain_core.language_models._utils import _normalize_messages
from langchain_core.language_models.fake_chat_models import FakeListChatModelError
from langchain_core.messages import (
AIMessage,
@@ -455,3 +456,143 @@ def test_trace_images_in_openai_format() -> None:
"url": "https://example.com/image.png",
}
]
def test_extend_support_to_openai_multimodal_formats() -> None:
"""Test that chat models normalize OpenAI file and audio inputs."""
llm = ParrotFakeChatModel()
messages = [
{
"role": "user",
"content": [
{"type": "text", "text": "Hello"},
{
"type": "image_url",
"image_url": {"url": "https://example.com/image.png"},
},
{
"type": "image_url",
"image_url": {"url": "..."},
},
{
"type": "file",
"file": {
"filename": "draconomicon.pdf",
"file_data": "data:application/pdf;base64,<base64 string>",
},
},
{
"type": "file",
"file": {
"file_data": "data:application/pdf;base64,<base64 string>",
},
},
{
"type": "file",
"file": {"file_id": "<file id>"},
},
{
"type": "input_audio",
"input_audio": {"data": "<base64 data>", "format": "wav"},
},
],
},
]
expected_content = [
{"type": "text", "text": "Hello"},
{
"type": "image_url",
"image_url": {"url": "https://example.com/image.png"},
},
{
"type": "image_url",
"image_url": {"url": "..."},
},
{
"type": "file",
"source_type": "base64",
"data": "<base64 string>",
"mime_type": "application/pdf",
"filename": "draconomicon.pdf",
},
{
"type": "file",
"source_type": "base64",
"data": "<base64 string>",
"mime_type": "application/pdf",
},
{
"type": "file",
"file": {"file_id": "<file id>"},
},
{
"type": "audio",
"source_type": "base64",
"data": "<base64 data>",
"mime_type": "audio/wav",
},
]
response = llm.invoke(messages)
assert response.content == expected_content
# Test no mutation
assert messages[0]["content"] == [
{"type": "text", "text": "Hello"},
{
"type": "image_url",
"image_url": {"url": "https://example.com/image.png"},
},
{
"type": "image_url",
"image_url": {"url": "..."},
},
{
"type": "file",
"file": {
"filename": "draconomicon.pdf",
"file_data": "data:application/pdf;base64,<base64 string>",
},
},
{
"type": "file",
"file": {
"file_data": "data:application/pdf;base64,<base64 string>",
},
},
{
"type": "file",
"file": {"file_id": "<file id>"},
},
{
"type": "input_audio",
"input_audio": {"data": "<base64 data>", "format": "wav"},
},
]
def test_normalize_messages_edge_cases() -> None:
# Test some blocks that should pass through
messages = [
HumanMessage(
content=[
{
"type": "file",
"file": "uri",
},
{
"type": "input_file",
"file_data": "uri",
"filename": "file-name",
},
{
"type": "input_audio",
"input_audio": "uri",
},
{
"type": "input_image",
"image_url": "uri",
},
]
)
]
assert messages == _normalize_messages(messages)

View File

@@ -33,6 +33,7 @@ EXPECTED_ALL = [
"filter_messages",
"merge_message_runs",
"trim_messages",
"convert_to_openai_data_block",
"convert_to_openai_image_block",
"convert_to_openai_messages",
]

View File

@@ -1186,6 +1186,76 @@ def test_convert_to_openai_messages_developer() -> None:
assert result == [{"role": "developer", "content": "a"}] * 2
def test_convert_to_openai_messages_multimodal() -> None:
messages = [
HumanMessage(
content=[
{"type": "text", "text": "Text message"},
{
"type": "image",
"source_type": "url",
"url": "https://example.com/test.png",
},
{
"type": "image",
"source_type": "base64",
"data": "<base64 string>",
"mime_type": "image/png",
},
{
"type": "file",
"source_type": "base64",
"data": "<base64 string>",
"mime_type": "application/pdf",
"filename": "test.pdf",
},
{
"type": "file",
"source_type": "id",
"id": "file-abc123",
},
{
"type": "audio",
"source_type": "base64",
"data": "<base64 string>",
"mime_type": "audio/wav",
},
]
)
]
result = convert_to_openai_messages(messages, text_format="block")
assert len(result) == 1
message = result[0]
assert len(message["content"]) == 6
# Test adding filename
messages = [
HumanMessage(
content=[
{
"type": "file",
"source_type": "base64",
"data": "<base64 string>",
"mime_type": "application/pdf",
},
]
)
]
with pytest.warns(match="filename"):
result = convert_to_openai_messages(messages, text_format="block")
assert len(result) == 1
message = result[0]
assert len(message["content"]) == 1
block = message["content"][0]
assert block == {
"type": "file",
"file": {
"file_data": "data:application/pdf;base64,<base64 string>",
"filename": "LC_AUTOGENERATED",
},
}
def test_count_tokens_approximately_empty_messages() -> None:
# Test with empty message list
assert count_tokens_approximately([]) == 0

View File

@@ -3135,6 +3135,27 @@
'name': 'PromptTemplate',
'type': 'constructor',
}),
dict({
'id': list([
'langchain_core',
'prompts',
'dict',
'DictPromptTemplate',
]),
'kwargs': dict({
'template': dict({
'cache_control': dict({
'type': '{foo}',
}),
'text': "What's in this image?",
'type': 'text',
}),
'template_format': 'f-string',
}),
'lc': 1,
'name': 'DictPromptTemplate',
'type': 'constructor',
}),
dict({
'id': list([
'langchain',

View File

@@ -973,6 +973,11 @@ def test_chat_tmpl_serdes(snapshot: SnapshotAssertion) -> None:
"hello",
{"text": "What's in this image?"},
{"type": "text", "text": "What's in this image?"},
{
"type": "text",
"text": "What's in this image?",
"cache_control": {"type": "{foo}"},
},
{
"type": "image_url",
"image_url": "data:image/jpeg;base64,{my_image}",
@@ -1012,7 +1017,7 @@ def test_chat_tmpl_serdes(snapshot: SnapshotAssertion) -> None:
@pytest.mark.xfail(
reason=(
"In a breaking release, we can update `_convert_to_message_template` to use "
"_DictMessagePromptTemplate for all `dict` inputs, allowing for templatization "
"DictPromptTemplate for all `dict` inputs, allowing for templatization "
"of message attributes outside content blocks. That would enable the below "
"test to pass."
)

View File

@@ -0,0 +1,34 @@
from langchain_core.load import load
from langchain_core.prompts.dict import DictPromptTemplate
def test__dict_message_prompt_template_fstring() -> None:
template = {
"type": "text",
"text": "{text1}",
"cache_control": {"type": "{cache_type}"},
}
prompt = DictPromptTemplate(template=template, template_format="f-string")
expected = {
"type": "text",
"text": "important message",
"cache_control": {"type": "ephemeral"},
}
actual = prompt.format(text1="important message", cache_type="ephemeral")
assert actual == expected
def test_deserialize_legacy() -> None:
ser = {
"type": "constructor",
"lc": 1,
"id": ["langchain_core", "prompts", "message", "_DictMessagePromptTemplate"],
"kwargs": {
"template_format": "f-string",
"template": {"type": "audio", "audio": "{audio_data}"},
},
}
expected = DictPromptTemplate(
template={"type": "audio", "audio": "{audio_data}"}, template_format="f-string"
)
assert load(ser) == expected

View File

@@ -6,6 +6,7 @@ EXPECTED_ALL = [
"BasePromptTemplate",
"ChatMessagePromptTemplate",
"ChatPromptTemplate",
"DictPromptTemplate",
"FewShotPromptTemplate",
"FewShotPromptWithTemplates",
"FewShotChatMessagePromptTemplate",

View File

@@ -1,61 +0,0 @@
from pathlib import Path
from langchain_core.messages import AIMessage, BaseMessage, ToolMessage
from langchain_core.prompts.message import _DictMessagePromptTemplate
CUR_DIR = Path(__file__).parent.absolute().resolve()
def test__dict_message_prompt_template_fstring() -> None:
template = {
"role": "assistant",
"content": [
{"type": "text", "text": "{text1}", "cache_control": {"type": "ephemeral"}},
],
"name": "{name1}",
"tool_calls": [
{
"name": "{tool_name1}",
"args": {"arg1": "{tool_arg1}"},
"id": "1",
"type": "tool_call",
}
],
}
prompt = _DictMessagePromptTemplate(template=template, template_format="f-string")
expected: BaseMessage = AIMessage(
[
{
"type": "text",
"text": "important message",
"cache_control": {"type": "ephemeral"},
},
],
name="foo",
tool_calls=[
{
"name": "do_stuff",
"args": {"arg1": "important arg1"},
"id": "1",
"type": "tool_call",
}
],
)
actual = prompt.format_messages(
text1="important message",
name1="foo",
tool_arg1="important arg1",
tool_name1="do_stuff",
)[0]
assert actual == expected
template = {
"role": "tool",
"content": "{content1}",
"tool_call_id": "1",
"name": "{name1}",
}
prompt = _DictMessagePromptTemplate(template=template, template_format="f-string")
expected = ToolMessage("foo", name="bar", tool_call_id="1")
actual = prompt.format_messages(content1="foo", name1="bar")[0]
assert actual == expected

4
libs/core/uv.lock generated
View File

@@ -937,7 +937,7 @@ wheels = [
[[package]]
name = "langchain-core"
version = "0.3.55"
version = "0.3.56"
source = { editable = "." }
dependencies = [
{ name = "jsonpatch" },
@@ -1104,7 +1104,7 @@ test-integration = [
]
typing = [
{ name = "lxml-stubs", specifier = ">=0.5.1,<1.0.0" },
{ name = "mypy", specifier = ">=1.10,<2.0" },
{ name = "mypy", specifier = ">=1.15,<2.0" },
{ name = "tiktoken", specifier = ">=0.8.0,<1.0.0" },
{ name = "types-requests", specifier = ">=2.31.0.20240218,<3.0.0.0" },
]

View File

@@ -5,615 +5,641 @@ packages:
- name: langchain-core
path: libs/core
repo: langchain-ai/langchain
downloads: 34037607
downloads_updated_at: '2025-04-04T17:02:05.408319+00:00'
downloads: 51178135
downloads_updated_at: '2025-04-22T15:24:39.289813+00:00'
- name: langchain-text-splitters
path: libs/text-splitters
repo: langchain-ai/langchain
downloads: 15929924
downloads_updated_at: '2025-04-04T17:02:05.408319+00:00'
downloads: 18371499
downloads_updated_at: '2025-04-22T15:24:39.289813+00:00'
- name: langchain
path: libs/langchain
repo: langchain-ai/langchain
downloads: 57432421
downloads_updated_at: '2025-04-04T17:02:05.408319+00:00'
downloads: 68611637
downloads_updated_at: '2025-04-22T15:24:39.289813+00:00'
- name: langchain-community
path: libs/community
repo: langchain-ai/langchain
downloads: 18667783
downloads_updated_at: '2025-04-04T17:02:05.408319+00:00'
downloads: 20961009
downloads_updated_at: '2025-04-22T15:24:39.289813+00:00'
- name: langchain-experimental
path: libs/experimental
repo: langchain-ai/langchain-experimental
downloads: 1898303
downloads_updated_at: '2025-04-04T17:02:05.408319+00:00'
downloads: 1651817
downloads_updated_at: '2025-04-22T15:24:39.289813+00:00'
- name: langchain-cli
path: libs/cli
repo: langchain-ai/langchain
downloads: 52317
downloads_updated_at: '2025-04-04T17:02:05.408319+00:00'
downloads: 55074
downloads_updated_at: '2025-04-22T15:24:39.289813+00:00'
- name: langchain-ai21
path: libs/ai21
repo: langchain-ai/langchain-ai21
downloads: 4634
downloads_updated_at: '2025-04-04T17:02:05.408319+00:00'
downloads: 4684
downloads_updated_at: '2025-04-22T15:24:39.289813+00:00'
- name: langchain-anthropic
path: libs/partners/anthropic
repo: langchain-ai/langchain
js: '@langchain/anthropic'
downloads: 2206405
downloads_updated_at: '2025-04-04T17:02:05.408319+00:00'
downloads: 2205980
downloads_updated_at: '2025-04-22T15:24:39.289813+00:00'
- name: langchain-chroma
path: libs/partners/chroma
repo: langchain-ai/langchain
downloads: 653121
downloads_updated_at: '2025-04-04T17:02:05.408319+00:00'
downloads: 934777
downloads_updated_at: '2025-04-22T15:24:39.289813+00:00'
- name: langchain-exa
path: libs/partners/exa
repo: langchain-ai/langchain
provider_page: exa_search
js: '@langchain/exa'
downloads: 5577
downloads_updated_at: '2025-04-04T17:02:05.408319+00:00'
downloads: 5949
downloads_updated_at: '2025-04-22T15:24:39.289813+00:00'
- name: langchain-fireworks
path: libs/partners/fireworks
repo: langchain-ai/langchain
downloads: 252470
downloads_updated_at: '2025-04-04T17:02:05.408319+00:00'
downloads: 253744
downloads_updated_at: '2025-04-22T15:24:39.289813+00:00'
- name: langchain-groq
path: libs/partners/groq
repo: langchain-ai/langchain
js: '@langchain/groq'
downloads: 623776
downloads_updated_at: '2025-04-04T17:02:05.408319+00:00'
downloads: 713166
downloads_updated_at: '2025-04-22T15:24:39.289813+00:00'
- name: langchain-huggingface
path: libs/partners/huggingface
repo: langchain-ai/langchain
downloads: 520031
downloads_updated_at: '2025-04-04T17:02:05.408319+00:00'
downloads: 565389
downloads_updated_at: '2025-04-22T15:24:39.289813+00:00'
- name: langchain-ibm
path: libs/ibm
repo: langchain-ai/langchain-ibm
js: '@langchain/ibm'
downloads: 138680
downloads_updated_at: '2025-04-04T17:02:05.408319+00:00'
downloads: 193195
downloads_updated_at: '2025-04-22T15:24:39.289813+00:00'
- name: langchain-localai
path: libs/localai
repo: mkhludnev/langchain-localai
downloads: 551
downloads_updated_at: '2025-04-04T17:02:05.408319+00:00'
downloads: 811
downloads_updated_at: '2025-04-22T15:24:39.289813+00:00'
- name: langchain-milvus
path: libs/milvus
repo: langchain-ai/langchain-milvus
downloads: 212461
downloads_updated_at: '2025-04-04T17:02:05.408319+00:00'
disabled: true
downloads: 207750
downloads_updated_at: '2025-04-22T15:24:39.289813+00:00'
- name: langchain-mistralai
path: libs/partners/mistralai
repo: langchain-ai/langchain
js: '@langchain/mistralai'
downloads: 347559
downloads_updated_at: '2025-04-04T17:02:05.408319+00:00'
downloads: 333887
downloads_updated_at: '2025-04-22T15:24:39.289813+00:00'
- name: langchain-mongodb
path: libs/langchain-mongodb
repo: langchain-ai/langchain-mongodb
provider_page: mongodb_atlas
js: '@langchain/mongodb'
downloads: 206335
downloads_updated_at: '2025-04-04T17:02:05.408319+00:00'
downloads: 229323
downloads_updated_at: '2025-04-22T15:24:39.289813+00:00'
- name: langchain-nomic
path: libs/partners/nomic
repo: langchain-ai/langchain
js: '@langchain/nomic'
downloads: 13770
downloads_updated_at: '2025-04-04T17:02:05.408319+00:00'
downloads: 13453
downloads_updated_at: '2025-04-22T15:24:39.289813+00:00'
- name: langchain-openai
path: libs/partners/openai
repo: langchain-ai/langchain
js: '@langchain/openai'
downloads: 11970288
downloads_updated_at: '2025-04-04T17:02:05.408319+00:00'
downloads: 12632953
downloads_updated_at: '2025-04-22T15:24:39.289813+00:00'
- name: langchain-pinecone
path: libs/pinecone
repo: langchain-ai/langchain-pinecone
js: '@langchain/pinecone'
downloads: 460930
downloads_updated_at: '2025-04-04T17:02:05.408319+00:00'
downloads: 731139
downloads_updated_at: '2025-04-22T15:24:39.289813+00:00'
- name: langchain-prompty
path: libs/partners/prompty
repo: langchain-ai/langchain
provider_page: microsoft
downloads: 1434
downloads_updated_at: '2025-04-04T17:02:05.408319+00:00'
downloads: 2215
downloads_updated_at: '2025-04-22T15:24:39.289813+00:00'
- name: langchain-qdrant
path: libs/partners/qdrant
repo: langchain-ai/langchain
js: '@langchain/qdrant'
downloads: 157906
downloads_updated_at: '2025-04-04T17:02:05.408319+00:00'
downloads: 156264
downloads_updated_at: '2025-04-22T15:24:39.289813+00:00'
- name: langchain-scrapegraph
path: .
repo: ScrapeGraphAI/langchain-scrapegraph
downloads: 1248
downloads_updated_at: '2025-04-04T17:02:05.408319+00:00'
downloads: 1338
downloads_updated_at: '2025-04-22T15:24:39.289813+00:00'
- name: langchain-sema4
path: libs/sema4
repo: langchain-ai/langchain-sema4
provider_page: robocorp
downloads: 1661
downloads_updated_at: '2025-04-04T17:02:05.408319+00:00'
downloads: 1864
downloads_updated_at: '2025-04-22T15:24:39.289813+00:00'
- name: langchain-together
path: libs/together
repo: langchain-ai/langchain-together
downloads: 87068
downloads_updated_at: '2025-04-04T17:02:05.408319+00:00'
downloads: 84925
downloads_updated_at: '2025-04-22T15:24:39.289813+00:00'
- name: langchain-upstage
path: libs/upstage
repo: langchain-ai/langchain-upstage
downloads: 19096
downloads_updated_at: '2025-04-04T17:02:05.408319+00:00'
downloads: 20074
downloads_updated_at: '2025-04-22T15:24:39.289813+00:00'
- name: langchain-voyageai
path: libs/partners/voyageai
repo: langchain-ai/langchain
downloads: 32072
downloads_updated_at: '2025-04-04T17:02:05.408319+00:00'
downloads: 31164
downloads_updated_at: '2025-04-22T15:24:39.289813+00:00'
- name: langchain-aws
name_title: AWS
path: libs/aws
repo: langchain-ai/langchain-aws
js: '@langchain/aws'
downloads: 2406627
downloads_updated_at: '2025-04-04T17:02:05.408319+00:00'
downloads: 2756214
downloads_updated_at: '2025-04-22T15:24:39.289813+00:00'
- name: langchain-astradb
path: libs/astradb
repo: langchain-ai/langchain-datastax
downloads: 93059
downloads_updated_at: '2025-04-04T17:02:05.408319+00:00'
downloads: 100973
downloads_updated_at: '2025-04-22T15:24:39.289813+00:00'
- name: langchain-google-genai
name_title: Google Generative AI
path: libs/genai
repo: langchain-ai/langchain-google
provider_page: google
js: '@langchain/google-genai'
downloads: 1436931
downloads_updated_at: '2025-04-04T17:02:05.408319+00:00'
downloads: 1860492
downloads_updated_at: '2025-04-22T15:24:39.289813+00:00'
- name: langchain-google-vertexai
path: libs/vertexai
repo: langchain-ai/langchain-google
provider_page: google
js: '@langchain/google-vertexai'
downloads: 12451626
downloads_updated_at: '2025-04-04T17:02:05.408319+00:00'
downloads: 14375847
downloads_updated_at: '2025-04-22T15:24:39.289813+00:00'
- name: langchain-google-community
path: libs/community
repo: langchain-ai/langchain-google
provider_page: google
downloads: 4685976
downloads_updated_at: '2025-04-04T17:02:05.408319+00:00'
downloads: 4565784
downloads_updated_at: '2025-04-22T15:24:39.289813+00:00'
- name: langchain-weaviate
path: libs/weaviate
repo: langchain-ai/langchain-weaviate
js: '@langchain/weaviate'
downloads: 51226
downloads_updated_at: '2025-04-04T17:02:05.408319+00:00'
downloads: 42280
downloads_updated_at: '2025-04-22T15:24:39.289813+00:00'
- name: langchain-cohere
path: libs/cohere
repo: langchain-ai/langchain-cohere
js: '@langchain/cohere'
downloads: 824573
downloads_updated_at: '2025-04-04T17:02:05.408319+00:00'
downloads: 816207
downloads_updated_at: '2025-04-22T15:24:39.289813+00:00'
- name: langchain-elasticsearch
path: libs/elasticsearch
repo: langchain-ai/langchain-elastic
downloads: 172813
downloads_updated_at: '2025-04-04T17:02:05.408319+00:00'
downloads: 182874
downloads_updated_at: '2025-04-22T15:24:39.289813+00:00'
- name: langchain-nvidia-ai-endpoints
path: libs/ai-endpoints
repo: langchain-ai/langchain-nvidia
provider_page: nvidia
downloads: 190677
downloads_updated_at: '2025-04-04T17:02:05.408319+00:00'
downloads: 178772
downloads_updated_at: '2025-04-22T15:24:39.289813+00:00'
- name: langchain-postgres
path: .
repo: langchain-ai/langchain-postgres
provider_page: pgvector
downloads: 464832
downloads_updated_at: '2025-04-04T17:02:05.408319+00:00'
downloads: 751590
downloads_updated_at: '2025-04-22T15:24:39.289813+00:00'
- name: langchain-redis
path: libs/redis
repo: langchain-ai/langchain-redis
js: '@langchain/redis'
downloads: 34437
downloads_updated_at: '2025-04-04T17:02:05.408319+00:00'
downloads: 43514
downloads_updated_at: '2025-04-22T15:24:39.289813+00:00'
- name: langchain-unstructured
path: libs/unstructured
repo: langchain-ai/langchain-unstructured
downloads: 160903
downloads_updated_at: '2025-04-04T17:02:05.408319+00:00'
downloads: 152489
downloads_updated_at: '2025-04-22T15:24:39.289813+00:00'
- name: langchain-azure-ai
path: libs/azure-ai
repo: langchain-ai/langchain-azure
provider_page: azure_ai
js: '@langchain/openai'
downloads: 25508
downloads_updated_at: '2025-04-04T17:02:05.408319+00:00'
downloads: 29862
downloads_updated_at: '2025-04-22T15:24:39.289813+00:00'
- name: langchain-azure-dynamic-sessions
path: libs/azure-dynamic-sessions
repo: langchain-ai/langchain-azure
provider_page: microsoft
js: '@langchain/azure-dynamic-sessions'
downloads: 10158
downloads_updated_at: '2025-04-04T17:02:05.408319+00:00'
downloads: 9328
downloads_updated_at: '2025-04-22T15:24:39.289813+00:00'
- name: langchain-sqlserver
path: libs/sqlserver
repo: langchain-ai/langchain-azure
provider_page: microsoft
downloads: 2337
downloads_updated_at: '2025-04-04T17:02:05.408319+00:00'
downloads: 2519
downloads_updated_at: '2025-04-22T15:24:39.289813+00:00'
- name: langchain-cerebras
path: libs/cerebras
repo: langchain-ai/langchain-cerebras
downloads: 57330
downloads_updated_at: '2025-04-04T17:02:05.408319+00:00'
downloads: 66301
downloads_updated_at: '2025-04-22T15:24:39.289813+00:00'
- name: langchain-snowflake
path: libs/snowflake
repo: langchain-ai/langchain-snowflake
downloads: 1906
downloads_updated_at: '2025-04-04T17:02:05.408319+00:00'
downloads: 2235
downloads_updated_at: '2025-04-22T15:24:39.289813+00:00'
- name: databricks-langchain
name_title: Databricks
path: integrations/langchain
repo: databricks/databricks-ai-bridge
provider_page: databricks
downloads: 116103
downloads_updated_at: '2025-04-04T17:02:05.408319+00:00'
downloads: 112136
downloads_updated_at: '2025-04-22T15:24:39.289813+00:00'
- name: langchain-couchbase
path: .
repo: Couchbase-Ecosystem/langchain-couchbase
downloads: 744
downloads_updated_at: '2025-04-04T17:02:05.408319+00:00'
downloads: 1251
downloads_updated_at: '2025-04-22T15:24:39.289813+00:00'
- name: langchain-ollama
path: libs/partners/ollama
repo: langchain-ai/langchain
js: '@langchain/ollama'
downloads: 948150
downloads_updated_at: '2025-04-04T17:02:05.408319+00:00'
downloads: 924780
downloads_updated_at: '2025-04-22T15:24:39.289813+00:00'
- name: langchain-box
path: libs/box
repo: box-community/langchain-box
downloads: 563
downloads_updated_at: '2025-04-04T17:02:05.408319+00:00'
downloads: 703
downloads_updated_at: '2025-04-22T15:24:39.289813+00:00'
- name: langchain-tests
path: libs/standard-tests
repo: langchain-ai/langchain
downloads: 252853
downloads_updated_at: '2025-04-04T17:02:05.408319+00:00'
downloads: 267152
downloads_updated_at: '2025-04-22T15:24:39.289813+00:00'
- name: langchain-neo4j
path: libs/neo4j
repo: langchain-ai/langchain-neo4j
downloads: 50662
downloads_updated_at: '2025-04-04T17:02:05.408319+00:00'
downloads: 55071
downloads_updated_at: '2025-04-22T15:24:39.289813+00:00'
- name: langchain-linkup
path: .
repo: LinkupPlatform/langchain-linkup
downloads: 581
downloads_updated_at: '2025-04-04T17:02:05.408319+00:00'
downloads: 782
downloads_updated_at: '2025-04-22T15:24:39.289813+00:00'
- name: langchain-yt-dlp
path: .
repo: aqib0770/langchain-yt-dlp
downloads: 2254
downloads_updated_at: '2025-04-04T17:02:05.408319+00:00'
downloads: 2369
downloads_updated_at: '2025-04-22T15:24:39.289813+00:00'
- name: langchain-oceanbase
path: .
repo: oceanbase/langchain-oceanbase
downloads: 71
downloads_updated_at: '2025-04-04T17:02:05.408319+00:00'
downloads: 73
downloads_updated_at: '2025-04-22T15:24:39.289813+00:00'
- name: langchain-predictionguard
path: .
repo: predictionguard/langchain-predictionguard
downloads: 3230
downloads_updated_at: '2025-04-04T17:02:05.408319+00:00'
downloads: 4063
downloads_updated_at: '2025-04-22T15:24:39.289813+00:00'
- name: langchain-cratedb
path: .
repo: crate/langchain-cratedb
downloads: 185
downloads_updated_at: '2025-04-04T17:02:05.408319+00:00'
downloads: 216
downloads_updated_at: '2025-04-22T15:24:39.289813+00:00'
- name: langchain-modelscope
path: .
repo: modelscope/langchain-modelscope
downloads: 122
downloads_updated_at: '2025-04-04T17:02:05.408319+00:00'
downloads: 141
downloads_updated_at: '2025-04-22T15:24:39.289813+00:00'
- name: langchain-falkordb
path: .
repo: kingtroga/langchain-falkordb
downloads: 139
downloads_updated_at: '2025-04-04T17:02:05.408319+00:00'
downloads: 129
downloads_updated_at: '2025-04-22T15:24:39.289813+00:00'
- name: langchain-dappier
path: .
repo: DappierAI/langchain-dappier
downloads: 234
downloads_updated_at: '2025-04-04T17:02:05.408319+00:00'
downloads: 343
downloads_updated_at: '2025-04-22T15:24:39.289813+00:00'
- name: langchain-pull-md
path: .
repo: chigwell/langchain-pull-md
downloads: 117
downloads_updated_at: '2025-04-04T17:02:05.408319+00:00'
downloads: 135
downloads_updated_at: '2025-04-22T15:24:39.289813+00:00'
- name: langchain-kuzu
path: .
repo: kuzudb/langchain-kuzu
downloads: 352
downloads_updated_at: '2025-04-04T17:02:05.408319+00:00'
downloads: 760
downloads_updated_at: '2025-04-22T15:24:39.289813+00:00'
- name: langchain-docling
path: .
repo: DS4SD/docling-langchain
downloads: 16426
downloads_updated_at: '2025-04-04T17:02:05.408319+00:00'
downloads: 18845
downloads_updated_at: '2025-04-22T15:24:39.289813+00:00'
- name: langchain-lindorm-integration
path: .
repo: AlwaysBluer/langchain-lindorm-integration
provider_page: lindorm
downloads: 69
downloads_updated_at: '2025-04-04T17:02:05.408319+00:00'
downloads_updated_at: '2025-04-22T15:24:39.289813+00:00'
- name: langchain-hyperbrowser
path: .
repo: hyperbrowserai/langchain-hyperbrowser
downloads: 203
downloads_updated_at: '2025-04-04T17:02:05.408319+00:00'
downloads: 523
downloads_updated_at: '2025-04-22T15:25:01.432566+00:00'
- name: langchain-fmp-data
path: .
repo: MehdiZare/langchain-fmp-data
downloads: 100
downloads_updated_at: '2025-04-04T17:02:05.408319+00:00'
downloads: 108
downloads_updated_at: '2025-04-22T15:25:01.432566+00:00'
- name: tilores-langchain
name_title: Tilores
path: .
repo: tilotech/tilores-langchain
provider_page: tilores
downloads: 93
downloads_updated_at: '2025-04-04T17:02:05.408319+00:00'
downloads: 124
downloads_updated_at: '2025-04-22T15:25:01.432566+00:00'
- name: langchain-pipeshift
path: .
repo: pipeshift-org/langchain-pipeshift
downloads: 88
downloads_updated_at: '2025-04-04T17:02:05.408319+00:00'
downloads: 119
downloads_updated_at: '2025-04-22T15:25:01.432566+00:00'
- name: langchain-payman-tool
path: .
repo: paymanai/langchain-payman-tool
downloads: 223
downloads_updated_at: '2025-04-04T17:02:05.408319+00:00'
downloads: 226
downloads_updated_at: '2025-04-22T15:25:01.432566+00:00'
- name: langchain-sambanova
path: .
repo: sambanova/langchain-sambanova
downloads: 51371
downloads_updated_at: '2025-04-04T17:02:05.408319+00:00'
downloads: 53108
downloads_updated_at: '2025-04-22T15:25:01.432566+00:00'
- name: langchain-deepseek
path: libs/partners/deepseek
repo: langchain-ai/langchain
provider_page: deepseek
js: '@langchain/deepseek'
downloads: 66642
downloads_updated_at: '2025-04-04T17:02:05.408319+00:00'
downloads: 100570
downloads_updated_at: '2025-04-22T15:25:01.432566+00:00'
- name: langchain-jenkins
path: .
repo: Amitgb14/langchain_jenkins
downloads: 194
downloads_updated_at: '2025-04-04T17:02:05.408319+00:00'
downloads: 200
downloads_updated_at: '2025-04-22T15:25:01.432566+00:00'
- name: langchain-goodfire
path: .
repo: keenanpepper/langchain-goodfire
downloads: 332
downloads_updated_at: '2025-04-04T17:02:05.408319+00:00'
downloads: 314
downloads_updated_at: '2025-04-22T15:25:01.432566+00:00'
- name: langchain-nimble
path: .
repo: Nimbleway/langchain-nimble
downloads: 160
downloads_updated_at: '2025-04-04T17:02:05.408319+00:00'
downloads: 214
downloads_updated_at: '2025-04-22T15:25:01.432566+00:00'
- name: langchain-apify
path: .
repo: apify/langchain-apify
downloads: 748
downloads_updated_at: '2025-04-04T17:02:05.408319+00:00'
downloads: 886
downloads_updated_at: '2025-04-22T15:25:01.432566+00:00'
- name: langfair
name_title: LangFair
path: .
repo: cvs-health/langfair
downloads: 1051
downloads_updated_at: '2025-04-04T17:02:05.408319+00:00'
downloads: 1692
downloads_updated_at: '2025-04-22T15:25:01.432566+00:00'
- name: langchain-abso
path: .
repo: lunary-ai/langchain-abso
downloads: 190
downloads_updated_at: '2025-04-04T17:02:05.408319+00:00'
downloads: 233
downloads_updated_at: '2025-04-22T15:25:01.432566+00:00'
- name: langchain-graph-retriever
name_title: Graph RAG
path: packages/langchain-graph-retriever
repo: datastax/graph-rag
provider_page: graph_rag
downloads: 13573
downloads_updated_at: '2025-04-04T17:02:05.408319+00:00'
downloads: 47297
downloads_updated_at: '2025-04-22T15:25:01.432566+00:00'
- name: langchain-xai
path: libs/partners/xai
repo: langchain-ai/langchain
downloads: 37703
downloads_updated_at: '2025-04-04T17:02:05.408319+00:00'
downloads: 44422
downloads_updated_at: '2025-04-22T15:25:01.432566+00:00'
- name: langchain-salesforce
path: .
repo: colesmcintosh/langchain-salesforce
downloads: 366
downloads_updated_at: '2025-04-04T17:02:05.408319+00:00'
downloads: 455
downloads_updated_at: '2025-04-22T15:25:01.432566+00:00'
- name: langchain-discord-shikenso
path: .
repo: Shikenso-Analytics/langchain-discord
downloads: 138
downloads_updated_at: '2025-04-04T17:02:05.408319+00:00'
downloads: 137
downloads_updated_at: '2025-04-22T15:25:01.432566+00:00'
- name: langchain-vdms
name_title: VDMS
path: .
repo: IntelLabs/langchain-vdms
downloads: 1455
downloads_updated_at: '2025-04-04T17:02:05.408319+00:00'
downloads: 11847
downloads_updated_at: '2025-04-22T15:25:01.432566+00:00'
- name: langchain-deeplake
path: .
repo: activeloopai/langchain-deeplake
downloads: 186
downloads_updated_at: '2025-04-04T17:02:05.408319+00:00'
downloads: 117
downloads_updated_at: '2025-04-22T15:25:01.432566+00:00'
- name: langchain-cognee
path: .
repo: topoteretes/langchain-cognee
downloads: 114
downloads_updated_at: '2025-04-04T17:02:05.408319+00:00'
downloads_updated_at: '2025-04-22T15:25:24.644345+00:00'
- name: langchain-prolog
path: .
repo: apisani1/langchain-prolog
downloads: 198
downloads_updated_at: '2025-04-04T17:02:05.408319+00:00'
downloads: 175
downloads_updated_at: '2025-04-22T15:25:24.644345+00:00'
- name: langchain-permit
path: .
repo: permitio/langchain-permit
downloads: 240
downloads_updated_at: '2025-04-04T17:02:05.408319+00:00'
downloads: 266
downloads_updated_at: '2025-04-22T15:25:24.644345+00:00'
- name: langchain-pymupdf4llm
path: .
repo: lakinduboteju/langchain-pymupdf4llm
downloads: 2354
downloads_updated_at: '2025-04-04T17:02:05.408319+00:00'
downloads: 5324
downloads_updated_at: '2025-04-22T15:25:24.644345+00:00'
- name: langchain-writer
path: .
repo: writer/langchain-writer
downloads: 545
downloads_updated_at: '2025-04-04T17:02:05.408319+00:00'
downloads: 728
downloads_updated_at: '2025-04-22T15:25:24.644345+00:00'
- name: langchain-taiga
name_title: Taiga
path: .
repo: Shikenso-Analytics/langchain-taiga
downloads: 250
downloads_updated_at: '2025-04-04T17:02:05.408319+00:00'
downloads: 439
downloads_updated_at: '2025-04-22T15:25:24.644345+00:00'
- name: langchain-tableau
name_title: Tableau
path: .
repo: Tab-SE/tableau_langchain
downloads: 195
downloads_updated_at: '2025-04-04T17:02:05.408319+00:00'
downloads: 551
downloads_updated_at: '2025-04-22T15:25:24.644345+00:00'
- name: ads4gpts-langchain
name_title: ADS4GPTs
path: libs/python-sdk/ads4gpts-langchain
repo: ADS4GPTs/ads4gpts
provider_page: ads4gpts
downloads: 930
downloads_updated_at: '2025-04-04T17:02:05.408319+00:00'
downloads: 626
downloads_updated_at: '2025-04-22T15:25:24.644345+00:00'
- name: langchain-contextual
name_title: Contextual AI
path: langchain-contextual
repo: ContextualAI//langchain-contextual
downloads: 785
downloads_updated_at: '2025-04-04T17:02:05.408319+00:00'
downloads: 365
downloads_updated_at: '2025-04-22T15:25:24.644345+00:00'
- name: langchain-valthera
name_title: Valthera
path: .
repo: valthera/langchain-valthera
downloads: 560
downloads_updated_at: '2025-04-04T17:02:26.080646+00:00'
downloads: 213
downloads_updated_at: '2025-04-22T15:25:24.644345+00:00'
- name: langchain-opengradient
path: .
repo: OpenGradient/og-langchain
downloads: 408
downloads_updated_at: '2025-04-04T17:02:26.080646+00:00'
downloads: 263
downloads_updated_at: '2025-04-22T15:25:24.644345+00:00'
- name: goat-sdk-adapter-langchain
name_title: GOAT SDK
path: python/src/adapters/langchain
repo: goat-sdk/goat
provider_page: goat
downloads: 421
downloads_updated_at: '2025-04-04T17:02:05.408319+00:00'
downloads: 418
downloads_updated_at: '2025-04-22T15:25:24.644345+00:00'
- name: langchain-netmind
path: .
repo: protagolabs/langchain-netmind
downloads: 186
downloads_updated_at: '2025-04-04T17:02:26.080646+00:00'
downloads: 65
downloads_updated_at: '2025-04-22T15:25:24.644345+00:00'
- name: langchain-agentql
path: langchain
repo: tinyfish-io/agentql-integrations
downloads: 502
downloads_updated_at: '2025-04-04T17:02:43.163359+00:00'
downloads: 227
downloads_updated_at: '2025-04-22T15:25:24.644345+00:00'
- name: langchain-xinference
path: .
repo: TheSongg/langchain-xinference
downloads: 188
downloads_updated_at: '2025-04-04T17:02:43.163359+00:00'
downloads: 132
downloads_updated_at: '2025-04-22T15:25:24.644345+00:00'
- name: powerscale-rag-connector
name_title: PowerScale RAG Connector
path: .
repo: dell/powerscale-rag-connector
provider_page: dell
downloads: 158
downloads_updated_at: '2025-04-04T17:02:43.163359+00:00'
downloads: 89
downloads_updated_at: '2025-04-22T15:25:24.644345+00:00'
- name: langchain-tavily
path: .
repo: tavily-ai/langchain-tavily
downloads: 3298
downloads_updated_at: '2025-04-04T17:04:16.538679+00:00'
downloads: 13796
downloads_updated_at: '2025-04-22T15:25:24.644345+00:00'
- name: langchain-zotero-retriever
name_title: Zotero
path: .
repo: TimBMK/langchain-zotero-retriever
provider_page: zotero
downloads: 169
downloads_updated_at: '2025-04-04T17:04:16.538679+00:00'
- name: langchain-naver-community
downloads: 72
downloads_updated_at: '2025-04-22T15:25:24.644345+00:00'
- name: langchain-naver
name_title: Naver
path: .
repo: NaverCloudPlatform/langchain-naver
provider_page: naver
downloads: 239
downloads_updated_at: '2025-04-22T15:43:47.979572+00:00'
- name: langchain-naver-community
name_title: Naver (community-maintained)
path: .
repo: e7217/langchain-naver-community
provider_page: naver
downloads: 141
downloads_updated_at: '2025-04-04T17:04:16.538679+00:00'
downloads: 119
downloads_updated_at: '2025-04-22T15:25:24.644345+00:00'
- name: langchain-memgraph
path: .
repo: memgraph/langchain-memgraph
downloads: 250
downloads_updated_at: '2025-04-04T17:04:16.538679+00:00'
downloads: 222
downloads_updated_at: '2025-04-22T15:25:24.644345+00:00'
- name: langchain-vectara
path: libs/vectara
repo: vectara/langchain-vectara
downloads: 227
downloads_updated_at: '2025-04-04T17:04:16.538679+00:00'
downloads: 284
downloads_updated_at: '2025-04-22T15:25:24.644345+00:00'
- name: langchain-oxylabs
path: .
repo: oxylabs/langchain-oxylabs
downloads: 141
downloads_updated_at: '2025-04-22T15:25:24.644345+00:00'
- name: langchain-perplexity
path: libs/partners/perplexity
repo: langchain-ai/langchain
downloads: 3297
downloads_updated_at: '2025-04-22T15:25:24.644345+00:00'
- name: langchain-runpod
name_title: RunPod
path: .
repo: runpod/langchain-runpod
provider_page: runpod
downloads: 145
downloads_updated_at: '2025-04-04T17:06:18.386313+00:00'
downloads: 283
downloads_updated_at: '2025-04-22T15:25:24.644345+00:00'
- name: langchain-mariadb
path: .
repo: mariadb-corporation/langchain-mariadb
downloads: 741
downloads_updated_at: '2025-04-04T17:06:18.386313+00:00'
downloads: 428
downloads_updated_at: '2025-04-22T15:25:24.644345+00:00'
- name: langchain-qwq
path: .
repo: yigit353/langchain-qwq
provider_page: alibaba_cloud
downloads: 1062
downloads_updated_at: '2025-04-22T15:25:24.644345+00:00'
- name: langchain-litellm
path: .
repo: akshay-dongare/langchain-litellm
downloads: 2114
downloads_updated_at: '2025-04-22T15:25:24.644345+00:00'
- name: langchain-cloudflare
repo: cloudflare/langchain-cloudflare
path: .
repo: cloudflare/langchain-cloudflare
downloads: 766
downloads_updated_at: '2025-04-22T15:25:24.644345+00:00'
- name: langchain-ydb
path: .
repo: ydb-platform/langchain-ydb
downloads: 231
downloads_updated_at: '2025-04-22T15:25:24.644345+00:00'
- name: langchain-singlestore
name_title: SingleStore
path: .
repo: singlestore-labs/langchain-singlestore
downloads: 116
downloads_updated_at: '2025-04-22T15:25:24.644345+00:00'
- name: langchain-galaxia-retriever
provider_page: galaxia
path: .
repo: rrozanski-smabbler/galaxia-langchain
provider_page: galaxia
downloads: 319
downloads_updated_at: '2025-04-22T15:25:24.644345+00:00'
- name: langchain-valyu
path: .
repo: valyu-network/langchain-valyu
downloads: 120
downloads_updated_at: '2025-04-22T15:25:24.644345+00:00'

View File

@@ -39,7 +39,7 @@ import os
# Initialize a Fireworks model
llm = Fireworks(
model="accounts/fireworks/models/mixtral-8x7b-instruct",
model="accounts/fireworks/models/llama-v3p1-8b-instruct",
base_url="https://api.fireworks.ai/inference/v1/completions",
)
```

View File

@@ -279,7 +279,7 @@ class ChatFireworks(BaseChatModel):
from langchain_fireworks.chat_models import ChatFireworks
fireworks = ChatFireworks(
model_name="accounts/fireworks/models/mixtral-8x7b-instruct")
model_name="accounts/fireworks/models/llama-v3p1-8b-instruct")
"""
@property
@@ -306,11 +306,9 @@ class ChatFireworks(BaseChatModel):
client: Any = Field(default=None, exclude=True) #: :meta private:
async_client: Any = Field(default=None, exclude=True) #: :meta private:
model_name: str = Field(
default="accounts/fireworks/models/mixtral-8x7b-instruct", alias="model"
)
model_name: str = Field(alias="model")
"""Model name to use."""
temperature: float = 0.0
temperature: Optional[float] = None
"""What sampling temperature to use."""
stop: Optional[Union[str, list[str]]] = Field(default=None, alias="stop_sequences")
"""Default stop sequences."""
@@ -397,10 +395,11 @@ class ChatFireworks(BaseChatModel):
"model": self.model_name,
"stream": self.streaming,
"n": self.n,
"temperature": self.temperature,
"stop": self.stop,
**self.model_kwargs,
}
if self.temperature is not None:
params["temperature"] = self.temperature
if self.max_tokens is not None:
params["max_tokens"] = self.max_tokens
return params

View File

@@ -7,14 +7,14 @@ authors = []
license = { text = "MIT" }
requires-python = "<4.0,>=3.9"
dependencies = [
"langchain-core<1.0.0,>=0.3.49",
"langchain-core<1.0.0,>=0.3.55",
"fireworks-ai>=0.13.0",
"openai<2.0.0,>=1.10.0",
"requests<3,>=2",
"aiohttp<4.0.0,>=3.9.1",
]
name = "langchain-fireworks"
version = "0.2.9"
version = "0.3.0"
description = "An integration package connecting Fireworks and LangChain"
readme = "README.md"

View File

@@ -13,54 +13,13 @@ from typing_extensions import TypedDict
from langchain_fireworks import ChatFireworks
def test_chat_fireworks_call() -> None:
"""Test valid call to fireworks."""
llm = ChatFireworks( # type: ignore[call-arg]
model="accounts/fireworks/models/llama-v3p1-70b-instruct", temperature=0
)
resp = llm.invoke("Hello!")
assert isinstance(resp, AIMessage)
assert len(resp.content) > 0
def test_tool_choice() -> None:
"""Test that tool choice is respected."""
llm = ChatFireworks( # type: ignore[call-arg]
model="accounts/fireworks/models/llama-v3p1-70b-instruct", temperature=0
)
class MyTool(BaseModel):
name: str
age: int
with_tool = llm.bind_tools([MyTool], tool_choice="MyTool")
resp = with_tool.invoke("Who was the 27 year old named Erick?")
assert isinstance(resp, AIMessage)
assert resp.content == "" # should just be tool call
tool_calls = resp.additional_kwargs["tool_calls"]
assert len(tool_calls) == 1
tool_call = tool_calls[0]
assert tool_call["function"]["name"] == "MyTool"
assert json.loads(tool_call["function"]["arguments"]) == {
"age": 27,
"name": "Erick",
}
assert tool_call["type"] == "function"
assert isinstance(resp.tool_calls, list)
assert len(resp.tool_calls) == 1
tool_call = resp.tool_calls[0]
assert tool_call["name"] == "MyTool"
assert tool_call["args"] == {"age": 27, "name": "Erick"}
_MODEL = "accounts/fireworks/models/llama-v3p1-8b-instruct"
def test_tool_choice_bool() -> None:
"""Test that tool choice is respected just passing in True."""
llm = ChatFireworks( # type: ignore[call-arg]
llm = ChatFireworks(
model="accounts/fireworks/models/llama-v3p1-70b-instruct", temperature=0
)
@@ -84,17 +43,9 @@ def test_tool_choice_bool() -> None:
assert tool_call["type"] == "function"
def test_stream() -> None:
"""Test streaming tokens from ChatFireworks."""
llm = ChatFireworks() # type: ignore[call-arg]
for token in llm.stream("I'm Pickle Rick"):
assert isinstance(token.content, str)
async def test_astream() -> None:
"""Test streaming tokens from ChatFireworks."""
llm = ChatFireworks() # type: ignore[call-arg]
llm = ChatFireworks(model=_MODEL)
full: Optional[BaseMessageChunk] = None
chunks_with_token_counts = 0
@@ -125,18 +76,9 @@ async def test_astream() -> None:
assert full.response_metadata["model_name"]
async def test_abatch() -> None:
"""Test abatch tokens from ChatFireworks."""
llm = ChatFireworks() # type: ignore[call-arg]
result = await llm.abatch(["I'm Pickle Rick", "I'm not Pickle Rick"])
for token in result:
assert isinstance(token.content, str)
async def test_abatch_tags() -> None:
"""Test batch tokens from ChatFireworks."""
llm = ChatFireworks() # type: ignore[call-arg]
llm = ChatFireworks(model=_MODEL)
result = await llm.abatch(
["I'm Pickle Rick", "I'm not Pickle Rick"], config={"tags": ["foo"]}
@@ -145,18 +87,9 @@ async def test_abatch_tags() -> None:
assert isinstance(token.content, str)
def test_batch() -> None:
"""Test batch tokens from ChatFireworks."""
llm = ChatFireworks() # type: ignore[call-arg]
result = llm.batch(["I'm Pickle Rick", "I'm not Pickle Rick"])
for token in result:
assert isinstance(token.content, str)
async def test_ainvoke() -> None:
"""Test invoke tokens from ChatFireworks."""
llm = ChatFireworks() # type: ignore[call-arg]
llm = ChatFireworks(model=_MODEL)
result = await llm.ainvoke("I'm Pickle Rick", config={"tags": ["foo"]})
assert isinstance(result.content, str)
@@ -164,7 +97,7 @@ async def test_ainvoke() -> None:
def test_invoke() -> None:
"""Test invoke tokens from ChatFireworks."""
llm = ChatFireworks() # type: ignore[call-arg]
llm = ChatFireworks(model=_MODEL)
result = llm.invoke("I'm Pickle Rick", config=dict(tags=["foo"]))
assert isinstance(result.content, str)

View File

@@ -17,11 +17,12 @@
}),
'max_retries': 2,
'max_tokens': 100,
'model_name': 'accounts/fireworks/models/mixtral-8x7b-instruct',
'model_name': 'accounts/fireworks/models/llama-v3p1-70b-instruct',
'n': 1,
'request_timeout': 60.0,
'stop': list([
]),
'temperature': 0.0,
}),
'lc': 1,
'name': 'ChatFireworks',

View File

@@ -15,7 +15,10 @@ class TestFireworksStandard(ChatModelUnitTests):
@property
def chat_model_params(self) -> dict:
return {"api_key": "test_api_key"}
return {
"model": "accounts/fireworks/models/llama-v3p1-70b-instruct",
"api_key": "test_api_key",
}
@property
def init_from_env_params(self) -> tuple[dict, dict, dict]:
@@ -24,7 +27,9 @@ class TestFireworksStandard(ChatModelUnitTests):
"FIREWORKS_API_KEY": "api_key",
"FIREWORKS_API_BASE": "https://base.com",
},
{},
{
"model": "accounts/fireworks/models/llama-v3p1-70b-instruct",
},
{
"fireworks_api_key": "api_key",
"fireworks_api_base": "https://base.com",

View File

@@ -1,7 +1,8 @@
version = 1
requires-python = ">=3.9, <4.0"
resolution-markers = [
"python_full_version >= '3.12.4'",
"python_full_version >= '3.13'",
"python_full_version >= '3.12.4' and python_full_version < '3.13'",
"python_full_version >= '3.12' and python_full_version < '3.12.4'",
"python_full_version < '3.12'",
]
@@ -635,7 +636,7 @@ wheels = [
[[package]]
name = "langchain-core"
version = "0.3.49"
version = "0.3.55"
source = { editable = "../../core" }
dependencies = [
{ name = "jsonpatch" },
@@ -665,16 +666,18 @@ dev = [
{ name = "jupyter", specifier = ">=1.0.0,<2.0.0" },
{ name = "setuptools", specifier = ">=67.6.1,<68.0.0" },
]
lint = [{ name = "ruff", specifier = ">=0.9.2,<1.0.0" }]
lint = [{ name = "ruff", specifier = ">=0.11.2,<0.12.0" }]
test = [
{ name = "blockbuster", specifier = "~=1.5.18" },
{ name = "freezegun", specifier = ">=1.2.2,<2.0.0" },
{ name = "grandalf", specifier = ">=0.8,<1.0" },
{ name = "langchain-tests", directory = "../../standard-tests" },
{ name = "numpy", marker = "python_full_version < '3.12'", specifier = ">=1.24.0,<2.0.0" },
{ name = "numpy", marker = "python_full_version >= '3.12'", specifier = ">=1.26.0,<3" },
{ name = "numpy", marker = "python_full_version < '3.13'", specifier = ">=1.26.4" },
{ name = "numpy", marker = "python_full_version >= '3.13'", specifier = ">=2.1.0" },
{ name = "pytest", specifier = ">=8,<9" },
{ name = "pytest-asyncio", specifier = ">=0.21.1,<1.0.0" },
{ name = "pytest-benchmark" },
{ name = "pytest-codspeed" },
{ name = "pytest-mock", specifier = ">=3.10.0,<4.0.0" },
{ name = "pytest-socket", specifier = ">=0.7.0,<1.0.0" },
{ name = "pytest-watcher", specifier = ">=0.3.4,<1.0.0" },
@@ -685,15 +688,14 @@ test = [
test-integration = []
typing = [
{ name = "langchain-text-splitters", directory = "../../text-splitters" },
{ name = "mypy", specifier = ">=1.10,<1.11" },
{ name = "types-jinja2", specifier = ">=2.11.9,<3.0.0" },
{ name = "mypy", specifier = ">=1.15,<1.16" },
{ name = "types-pyyaml", specifier = ">=6.0.12.2,<7.0.0.0" },
{ name = "types-requests", specifier = ">=2.28.11.5,<3.0.0.0" },
]
[[package]]
name = "langchain-fireworks"
version = "0.2.9"
version = "0.3.0"
source = { editable = "." }
dependencies = [
{ name = "aiohttp" },
@@ -763,7 +765,7 @@ typing = [
[[package]]
name = "langchain-tests"
version = "0.3.17"
version = "0.3.19"
source = { editable = "../../standard-tests" }
dependencies = [
{ name = "httpx" },
@@ -780,7 +782,8 @@ dependencies = [
requires-dist = [
{ name = "httpx", specifier = ">=0.25.0,<1" },
{ name = "langchain-core", editable = "../../core" },
{ name = "numpy", specifier = ">=1.26.2,<3" },
{ name = "numpy", marker = "python_full_version < '3.13'", specifier = ">=1.26.2" },
{ name = "numpy", marker = "python_full_version >= '3.13'", specifier = ">=2.1.0" },
{ name = "pytest", specifier = ">=7,<9" },
{ name = "pytest-asyncio", specifier = ">=0.20,<1" },
{ name = "pytest-socket", specifier = ">=0.6.0,<1" },
@@ -1005,7 +1008,8 @@ name = "numpy"
version = "2.2.2"
source = { registry = "https://pypi.org/simple" }
resolution-markers = [
"python_full_version >= '3.12.4'",
"python_full_version >= '3.13'",
"python_full_version >= '3.12.4' and python_full_version < '3.13'",
"python_full_version >= '3.12' and python_full_version < '3.12.4'",
]
sdist = { url = "https://files.pythonhosted.org/packages/ec/d0/c12ddfd3a02274be06ffc71f3efc6d0e457b0409c4481596881e748cb264/numpy-2.2.2.tar.gz", hash = "sha256:ed6906f61834d687738d25988ae117683705636936cc605be0bb208b23df4d8f", size = 20233295 }

View File

@@ -61,7 +61,7 @@ from langchain_core.messages import (
ToolCall,
ToolMessage,
ToolMessageChunk,
convert_to_openai_image_block,
convert_to_openai_data_block,
is_data_content_block,
)
from langchain_core.messages.ai import (
@@ -186,45 +186,6 @@ def _convert_dict_to_message(_dict: Mapping[str, Any]) -> BaseMessage:
return ChatMessage(content=_dict.get("content", ""), role=role, id=id_) # type: ignore[arg-type]
def _format_data_content_block(block: dict) -> dict:
"""Format standard data content block to format expected by OpenAI."""
if block["type"] == "image":
formatted_block = convert_to_openai_image_block(block)
elif block["type"] == "file":
if block["source_type"] == "base64":
file = {"file_data": f"data:{block['mime_type']};base64,{block['data']}"}
if filename := block.get("filename"):
file["filename"] = filename
elif (metadata := block.get("metadata")) and ("filename" in metadata):
file["filename"] = metadata["filename"]
else:
warnings.warn(
"OpenAI may require a filename for file inputs. Specify a filename "
"in the content block: {'type': 'file', 'source_type': 'base64', "
"'mime_type': 'application/pdf', 'data': '...', "
"'filename': 'my-pdf'}"
)
formatted_block = {"type": "file", "file": file}
elif block["source_type"] == "id":
formatted_block = {"type": "file", "file": {"file_id": block["id"]}}
else:
raise ValueError("source_type base64 or id is required for file blocks.")
elif block["type"] == "audio":
if block["source_type"] == "base64":
format = block["mime_type"].split("/")[-1]
formatted_block = {
"type": "input_audio",
"input_audio": {"data": block["data"], "format": format},
}
else:
raise ValueError("source_type base64 is required for audio blocks.")
else:
raise ValueError(f"Block of type {block['type']} is not supported.")
return formatted_block
def _format_message_content(content: Any) -> Any:
"""Format message content."""
if content and isinstance(content, list):
@@ -238,7 +199,7 @@ def _format_message_content(content: Any) -> Any:
):
continue
elif isinstance(block, dict) and is_data_content_block(block):
formatted_content.append(_format_data_content_block(block))
formatted_content.append(convert_to_openai_data_block(block))
# Anthropic image blocks
elif (
isinstance(block, dict)
@@ -3450,14 +3411,16 @@ def _convert_responses_chunk_to_generation_chunk(
)
elif chunk.type == "response.refusal.done":
additional_kwargs["refusal"] = chunk.refusal
elif chunk.type == "response.output_item.added" and chunk.item.type == "reasoning":
additional_kwargs["reasoning"] = chunk.item.model_dump(
exclude_none=True, mode="json"
)
elif chunk.type == "response.reasoning_summary_part.added":
additional_kwargs["reasoning"] = {
"type": "reasoning",
"id": chunk.item_id,
# langchain-core uses the `index` key to aggregate text blocks.
"summary": [
{"index": chunk.summary_index, "type": "summary_text", "text": ""}
],
]
}
elif chunk.type == "response.reasoning_summary_text.delta":
additional_kwargs["reasoning"] = {

View File

@@ -736,12 +736,6 @@ async def test_openai_response_headers_async(use_responses_api: bool) -> None:
assert "content-type" in headers
@pytest.mark.xfail(
reason=(
"As of 12.19.24 OpenAI API returns 1151 instead of 1118. Not clear yet if "
"this is an undocumented API change or a bug on their end."
)
)
def test_image_token_counting_jpeg() -> None:
model = ChatOpenAI(model="gpt-4o", temperature=0)
image_url = "https://upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Gfp-wisconsin-madison-the-nature-boardwalk.jpg/2560px-Gfp-wisconsin-madison-the-nature-boardwalk.jpg"
@@ -774,12 +768,6 @@ def test_image_token_counting_jpeg() -> None:
assert expected == actual
@pytest.mark.xfail(
reason=(
"As of 12.19.24 OpenAI API returns 871 instead of 779. Not clear yet if "
"this is an undocumented API change or a bug on their end."
)
)
def test_image_token_counting_png() -> None:
model = ChatOpenAI(model="gpt-4o", temperature=0)
image_url = "https://upload.wikimedia.org/wikipedia/commons/4/47/PNG_transparency_demonstration_1.png"

View File

@@ -103,6 +103,21 @@ class TestOpenAIStandard(ChatModelIntegrationTests):
)
_ = model.invoke([message])
# Test OpenAI Chat Completions format
message = HumanMessage(
[
{"type": "text", "text": "Summarize this document:"},
{
"type": "file",
"file": {
"filename": "test file.pdf",
"file_data": f"data:application/pdf;base64,{pdf_data}",
},
},
]
)
_ = model.invoke([message])
def _invoke(llm: ChatOpenAI, input_: str, stream: bool) -> AIMessage:
if stream:

View File

@@ -2036,6 +2036,24 @@ class ChatModelIntegrationTests(ChatModelTests):
)
_ = model.invoke([message])
# Test OpenAI Chat Completions format
message = HumanMessage(
[
{
"type": "text",
"text": "Summarize this document:",
},
{
"type": "file",
"file": {
"filename": "test file.pdf",
"file_data": f"data:application/pdf;base64,{pdf_data}",
},
},
]
)
_ = model.invoke([message])
def test_audio_inputs(self, model: BaseChatModel) -> None:
"""Test that the model can process audio inputs.
@@ -2093,6 +2111,21 @@ class ChatModelIntegrationTests(ChatModelTests):
)
_ = model.invoke([message])
# Test OpenAI Chat Completions format
message = HumanMessage(
[
{
"type": "text",
"text": "Describe this audio:",
},
{
"type": "input_audio",
"input_audio": {"data": audio_data, "format": "wav"},
},
]
)
_ = model.invoke([message])
def test_image_inputs(self, model: BaseChatModel) -> None:
"""Test that the model can process image inputs.

View File

@@ -43,9 +43,9 @@ lint_tests: MYPY_CACHE=.mypy_cache_test
lint lint_diff lint_package lint_tests:
./scripts/lint_imports.sh
[ "$(PYTHON_FILES)" = "" ] || uv run --group typing --group lint ruff check $(PYTHON_FILES)
[ "$(PYTHON_FILES)" = "" ] || uv run --group typing --group lint ruff format $(PYTHON_FILES) --diff
[ "$(PYTHON_FILES)" = "" ] || mkdir -p $(MYPY_CACHE) && uv run --group typing --group lint mypy $(PYTHON_FILES) --cache-dir $(MYPY_CACHE)
[ "$(PYTHON_FILES)" = "" ] || uv run --all-groups ruff check $(PYTHON_FILES)
[ "$(PYTHON_FILES)" = "" ] || uv run --all-groups ruff format $(PYTHON_FILES) --diff
[ "$(PYTHON_FILES)" = "" ] || mkdir -p $(MYPY_CACHE) && uv run --all-groups mypy $(PYTHON_FILES) --cache-dir $(MYPY_CACHE)
format format_diff:
[ "$(PYTHON_FILES)" = "" ] || uv run --all-groups ruff format $(PYTHON_FILES)

View File

@@ -68,7 +68,7 @@ class TextSplitter(BaseDocumentTransformer, ABC):
"""Split text into multiple components."""
def create_documents(
self, texts: List[str], metadatas: Optional[List[dict]] = None
self, texts: list[str], metadatas: Optional[list[dict[Any, Any]]] = None
) -> List[Document]:
"""Create documents from a list of texts."""
_metadatas = metadatas or [{}] * len(texts)

View File

@@ -353,8 +353,8 @@ class HTMLSectionSplitter:
return self.split_text_from_file(StringIO(text))
def create_documents(
self, texts: List[str], metadatas: Optional[List[dict]] = None
) -> List[Document]:
self, texts: list[str], metadatas: Optional[list[dict[Any, Any]]] = None
) -> list[Document]:
"""Create documents from a list of texts."""
_metadatas = metadatas or [{}] * len(texts)
documents = []
@@ -389,10 +389,8 @@ class HTMLSectionSplitter:
- 'tag_name': The name of the header tag (e.g., "h1", "h2").
"""
try:
from bs4 import (
BeautifulSoup, # type: ignore[import-untyped]
PageElement,
)
from bs4 import BeautifulSoup
from bs4.element import PageElement
except ImportError as e:
raise ImportError(
"Unable to import BeautifulSoup/PageElement, \
@@ -411,13 +409,13 @@ class HTMLSectionSplitter:
if i == 0:
current_header = "#TITLE#"
current_header_tag = "h1"
section_content: List = []
section_content: list[str] = []
else:
current_header = header_element.text.strip()
current_header_tag = header_element.name # type: ignore[attr-defined]
section_content = []
for element in header_element.next_elements:
if i + 1 < len(headers) and element == headers[i + 1]:
if i + 1 < len(headers) and element == headers[i + 1]: # type: ignore[comparison-overlap]
break
if isinstance(element, str):
section_content.append(element)
@@ -637,8 +635,8 @@ class HTMLSemanticPreservingSplitter(BaseDocumentTransformer):
if self._stopword_removal:
try:
import nltk # type: ignore
from nltk.corpus import stopwords # type: ignore
import nltk
from nltk.corpus import stopwords # type: ignore[import-untyped]
nltk.download("stopwords")
self._stopwords = set(stopwords.words(self._stopword_lang))
@@ -902,7 +900,7 @@ class HTMLSemanticPreservingSplitter(BaseDocumentTransformer):
return documents
def _create_documents(
self, headers: dict, content: str, preserved_elements: dict
self, headers: dict[str, str], content: str, preserved_elements: dict[str, str]
) -> List[Document]:
"""Creates Document objects from the provided headers, content, and elements.
@@ -928,7 +926,7 @@ class HTMLSemanticPreservingSplitter(BaseDocumentTransformer):
return self._further_split_chunk(content, metadata, preserved_elements)
def _further_split_chunk(
self, content: str, metadata: dict, preserved_elements: dict
self, content: str, metadata: dict[Any, Any], preserved_elements: dict[str, str]
) -> List[Document]:
"""Further splits the content into smaller chunks.
@@ -959,7 +957,7 @@ class HTMLSemanticPreservingSplitter(BaseDocumentTransformer):
return result
def _reinsert_preserved_elements(
self, content: str, preserved_elements: dict
self, content: str, preserved_elements: dict[str, str]
) -> str:
"""Reinserts preserved elements into the content into their original positions.

View File

@@ -49,12 +49,12 @@ class RecursiveJsonSplitter:
)
@staticmethod
def _json_size(data: Dict) -> int:
def _json_size(data: dict[str, Any]) -> int:
"""Calculate the size of the serialized JSON object."""
return len(json.dumps(data))
@staticmethod
def _set_nested_dict(d: Dict, path: List[str], value: Any) -> None:
def _set_nested_dict(d: dict[str, Any], path: list[str], value: Any) -> None:
"""Set a value in a nested dictionary based on the given path."""
for key in path[:-1]:
d = d.setdefault(key, {})
@@ -76,10 +76,10 @@ class RecursiveJsonSplitter:
def _json_split(
self,
data: Dict[str, Any],
current_path: Optional[List[str]] = None,
chunks: Optional[List[Dict]] = None,
) -> List[Dict]:
data: dict[str, Any],
current_path: Optional[list[str]] = None,
chunks: Optional[list[dict[str, Any]]] = None,
) -> list[dict[str, Any]]:
"""Split json into maximum size dictionaries while preserving structure."""
current_path = current_path or []
chunks = chunks if chunks is not None else [{}]
@@ -107,9 +107,9 @@ class RecursiveJsonSplitter:
def split_json(
self,
json_data: Dict[str, Any],
json_data: dict[str, Any],
convert_lists: bool = False,
) -> List[Dict]:
) -> list[dict[str, Any]]:
"""Splits JSON into a list of JSON chunks."""
if convert_lists:
chunks = self._json_split(self._list_to_dict_preprocessing(json_data))
@@ -135,11 +135,11 @@ class RecursiveJsonSplitter:
def create_documents(
self,
texts: List[Dict],
texts: list[dict[str, Any]],
convert_lists: bool = False,
ensure_ascii: bool = True,
metadatas: Optional[List[dict]] = None,
) -> List[Document]:
metadatas: Optional[list[dict[Any, Any]]] = None,
) -> list[Document]:
"""Create documents from a list of json objects (Dict)."""
_metadatas = metadatas or [{}] * len(texts)
documents = []

View File

@@ -404,18 +404,18 @@ class ExperimentalMarkdownSyntaxTextSplitter:
self.current_chunk = Document(page_content="")
# Match methods
def _match_header(self, line: str) -> Union[re.Match, None]:
def _match_header(self, line: str) -> Union[re.Match[str], None]:
match = re.match(r"^(#{1,6}) (.*)", line)
# Only matches on the configured headers
if match and match.group(1) in self.splittable_headers:
return match
return None
def _match_code(self, line: str) -> Union[re.Match, None]:
def _match_code(self, line: str) -> Union[re.Match[str], None]:
matches = [re.match(rule, line) for rule in [r"^```(.*)", r"^~~~(.*)"]]
return next((match for match in matches if match), None)
def _match_horz(self, line: str) -> Union[re.Match, None]:
def _match_horz(self, line: str) -> Union[re.Match[str], None]:
matches = [
re.match(rule, line) for rule in [r"^\*\*\*+\n", r"^---+\n", r"^___+\n"]
]

View File

@@ -35,7 +35,7 @@ class SentenceTransformersTokenTextSplitter(TextSplitter):
def _initialize_chunk_configuration(
self, *, tokens_per_chunk: Optional[int]
) -> None:
self.maximum_tokens_per_chunk = cast(int, self._model.max_seq_length)
self.maximum_tokens_per_chunk = self._model.max_seq_length
if tokens_per_chunk is None:
self.tokens_per_chunk = self.maximum_tokens_per_chunk
@@ -93,10 +93,10 @@ class SentenceTransformersTokenTextSplitter(TextSplitter):
_max_length_equal_32_bit_integer: int = 2**32
def _encode(self, text: str) -> List[int]:
def _encode(self, text: str) -> list[int]:
token_ids_with_start_and_end_token_ids = self.tokenizer.encode(
text,
max_length=self._max_length_equal_32_bit_integer,
truncation="do_not_truncate",
)
return token_ids_with_start_and_end_token_ids
return cast("list[int]", token_ids_with_start_and_end_token_ids)

View File

@@ -20,7 +20,7 @@ repository = "https://github.com/langchain-ai/langchain"
[dependency-groups]
lint = ["ruff<1.0.0,>=0.9.2", "langchain-core"]
typing = [
"mypy<2.0,>=1.10",
"mypy<2.0,>=1.15",
"lxml-stubs<1.0.0,>=0.5.1",
"types-requests<3.0.0.0,>=2.31.0.20240218",
"tiktoken<1.0.0,>=0.8.0",
@@ -48,7 +48,11 @@ test_integration = [
langchain-core = { path = "../core", editable = true }
[tool.mypy]
disallow_untyped_defs = "True"
strict = "True"
strict_bytes = "True"
enable_error_code = "deprecated"
report_deprecated_as_note = "True"
[[tool.mypy.overrides]]
module = [
"transformers",
@@ -70,7 +74,7 @@ ignore_missing_imports = "True"
target-version = "py39"
[tool.ruff.lint]
select = ["E", "F", "I", "T201", "D"]
select = ["E", "F", "I", "PGH003", "T201", "D"]
ignore = ["D100"]
[tool.coverage.run]

View File

@@ -20,7 +20,7 @@ def spacy() -> Any:
import spacy
except ImportError:
pytest.skip("Spacy not installed.")
spacy.cli.download("en_core_web_sm") # type: ignore
spacy.cli.download("en_core_web_sm") # type: ignore[attr-defined,operator,unused-ignore]
return spacy

View File

@@ -1,4 +1,5 @@
version = 1
revision = 1
requires-python = ">=3.9, <4.0"
resolution-markers = [
"python_full_version >= '3.12.4'",
@@ -1079,7 +1080,7 @@ wheels = [
[[package]]
name = "langchain-core"
version = "0.3.51"
version = "0.3.52"
source = { editable = "../core" }
dependencies = [
{ name = "jsonpatch" },
@@ -1115,10 +1116,12 @@ test = [
{ name = "freezegun", specifier = ">=1.2.2,<2.0.0" },
{ name = "grandalf", specifier = ">=0.8,<1.0" },
{ name = "langchain-tests", directory = "../standard-tests" },
{ name = "numpy", marker = "python_full_version < '3.12'", specifier = ">=1.24.0,<2.0.0" },
{ name = "numpy", marker = "python_full_version >= '3.12'", specifier = ">=1.26.0,<3" },
{ name = "numpy", marker = "python_full_version < '3.13'", specifier = ">=1.26.4" },
{ name = "numpy", marker = "python_full_version >= '3.13'", specifier = ">=2.1.0" },
{ name = "pytest", specifier = ">=8,<9" },
{ name = "pytest-asyncio", specifier = ">=0.21.1,<1.0.0" },
{ name = "pytest-benchmark" },
{ name = "pytest-codspeed" },
{ name = "pytest-mock", specifier = ">=3.10.0,<4.0.0" },
{ name = "pytest-socket", specifier = ">=0.7.0,<1.0.0" },
{ name = "pytest-watcher", specifier = ">=0.3.4,<1.0.0" },
@@ -1129,8 +1132,7 @@ test = [
test-integration = []
typing = [
{ name = "langchain-text-splitters", directory = "." },
{ name = "mypy", specifier = ">=1.10,<1.11" },
{ name = "types-jinja2", specifier = ">=2.11.9,<3.0.0" },
{ name = "mypy", specifier = ">=1.15,<1.16" },
{ name = "types-pyyaml", specifier = ">=6.0.12.2,<7.0.0.0" },
{ name = "types-requests", specifier = ">=2.28.11.5,<3.0.0.0" },
]
@@ -1207,7 +1209,7 @@ test-integration = [
]
typing = [
{ name = "lxml-stubs", specifier = ">=0.5.1,<1.0.0" },
{ name = "mypy", specifier = ">=1.10,<2.0" },
{ name = "mypy", specifier = ">=1.15,<2.0" },
{ name = "tiktoken", specifier = ">=0.8.0,<1.0.0" },
{ name = "types-requests", specifier = ">=2.31.0.20240218,<3.0.0.0" },
]
@@ -1495,46 +1497,46 @@ wheels = [
[[package]]
name = "mypy"
version = "1.14.1"
version = "1.15.0"
source = { registry = "https://pypi.org/simple" }
dependencies = [
{ name = "mypy-extensions" },
{ name = "tomli", marker = "python_full_version < '3.11'" },
{ name = "typing-extensions" },
]
sdist = { url = "https://files.pythonhosted.org/packages/b9/eb/2c92d8ea1e684440f54fa49ac5d9a5f19967b7b472a281f419e69a8d228e/mypy-1.14.1.tar.gz", hash = "sha256:7ec88144fe9b510e8475ec2f5f251992690fcf89ccb4500b214b4226abcd32d6", size = 3216051 }
sdist = { url = "https://files.pythonhosted.org/packages/ce/43/d5e49a86afa64bd3839ea0d5b9c7103487007d728e1293f52525d6d5486a/mypy-1.15.0.tar.gz", hash = "sha256:404534629d51d3efea5c800ee7c42b72a6554d6c400e6a79eafe15d11341fd43", size = 3239717 }
wheels = [
{ url = "https://files.pythonhosted.org/packages/9b/7a/87ae2adb31d68402da6da1e5f30c07ea6063e9f09b5e7cfc9dfa44075e74/mypy-1.14.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:52686e37cf13d559f668aa398dd7ddf1f92c5d613e4f8cb262be2fb4fedb0fcb", size = 11211002 },
{ url = "https://files.pythonhosted.org/packages/e1/23/eada4c38608b444618a132be0d199b280049ded278b24cbb9d3fc59658e4/mypy-1.14.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:1fb545ca340537d4b45d3eecdb3def05e913299ca72c290326be19b3804b39c0", size = 10358400 },
{ url = "https://files.pythonhosted.org/packages/43/c9/d6785c6f66241c62fd2992b05057f404237deaad1566545e9f144ced07f5/mypy-1.14.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:90716d8b2d1f4cd503309788e51366f07c56635a3309b0f6a32547eaaa36a64d", size = 12095172 },
{ url = "https://files.pythonhosted.org/packages/c3/62/daa7e787770c83c52ce2aaf1a111eae5893de9e004743f51bfcad9e487ec/mypy-1.14.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:2ae753f5c9fef278bcf12e1a564351764f2a6da579d4a81347e1d5a15819997b", size = 12828732 },
{ url = "https://files.pythonhosted.org/packages/1b/a2/5fb18318a3637f29f16f4e41340b795da14f4751ef4f51c99ff39ab62e52/mypy-1.14.1-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:e0fe0f5feaafcb04505bcf439e991c6d8f1bf8b15f12b05feeed96e9e7bf1427", size = 13012197 },
{ url = "https://files.pythonhosted.org/packages/28/99/e153ce39105d164b5f02c06c35c7ba958aaff50a2babba7d080988b03fe7/mypy-1.14.1-cp310-cp310-win_amd64.whl", hash = "sha256:7d54bd85b925e501c555a3227f3ec0cfc54ee8b6930bd6141ec872d1c572f81f", size = 9780836 },
{ url = "https://files.pythonhosted.org/packages/da/11/a9422850fd506edbcdc7f6090682ecceaf1f87b9dd847f9df79942da8506/mypy-1.14.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:f995e511de847791c3b11ed90084a7a0aafdc074ab88c5a9711622fe4751138c", size = 11120432 },
{ url = "https://files.pythonhosted.org/packages/b6/9e/47e450fd39078d9c02d620545b2cb37993a8a8bdf7db3652ace2f80521ca/mypy-1.14.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:d64169ec3b8461311f8ce2fd2eb5d33e2d0f2c7b49116259c51d0d96edee48d1", size = 10279515 },
{ url = "https://files.pythonhosted.org/packages/01/b5/6c8d33bd0f851a7692a8bfe4ee75eb82b6983a3cf39e5e32a5d2a723f0c1/mypy-1.14.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:ba24549de7b89b6381b91fbc068d798192b1b5201987070319889e93038967a8", size = 12025791 },
{ url = "https://files.pythonhosted.org/packages/f0/4c/e10e2c46ea37cab5c471d0ddaaa9a434dc1d28650078ac1b56c2d7b9b2e4/mypy-1.14.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:183cf0a45457d28ff9d758730cd0210419ac27d4d3f285beda038c9083363b1f", size = 12749203 },
{ url = "https://files.pythonhosted.org/packages/88/55/beacb0c69beab2153a0f57671ec07861d27d735a0faff135a494cd4f5020/mypy-1.14.1-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:f2a0ecc86378f45347f586e4163d1769dd81c5a223d577fe351f26b179e148b1", size = 12885900 },
{ url = "https://files.pythonhosted.org/packages/a2/75/8c93ff7f315c4d086a2dfcde02f713004357d70a163eddb6c56a6a5eff40/mypy-1.14.1-cp311-cp311-win_amd64.whl", hash = "sha256:ad3301ebebec9e8ee7135d8e3109ca76c23752bac1e717bc84cd3836b4bf3eae", size = 9777869 },
{ url = "https://files.pythonhosted.org/packages/43/1b/b38c079609bb4627905b74fc6a49849835acf68547ac33d8ceb707de5f52/mypy-1.14.1-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:30ff5ef8519bbc2e18b3b54521ec319513a26f1bba19a7582e7b1f58a6e69f14", size = 11266668 },
{ url = "https://files.pythonhosted.org/packages/6b/75/2ed0d2964c1ffc9971c729f7a544e9cd34b2cdabbe2d11afd148d7838aa2/mypy-1.14.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:cb9f255c18052343c70234907e2e532bc7e55a62565d64536dbc7706a20b78b9", size = 10254060 },
{ url = "https://files.pythonhosted.org/packages/a1/5f/7b8051552d4da3c51bbe8fcafffd76a6823779101a2b198d80886cd8f08e/mypy-1.14.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:8b4e3413e0bddea671012b063e27591b953d653209e7a4fa5e48759cda77ca11", size = 11933167 },
{ url = "https://files.pythonhosted.org/packages/04/90/f53971d3ac39d8b68bbaab9a4c6c58c8caa4d5fd3d587d16f5927eeeabe1/mypy-1.14.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:553c293b1fbdebb6c3c4030589dab9fafb6dfa768995a453d8a5d3b23784af2e", size = 12864341 },
{ url = "https://files.pythonhosted.org/packages/03/d2/8bc0aeaaf2e88c977db41583559319f1821c069e943ada2701e86d0430b7/mypy-1.14.1-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:fad79bfe3b65fe6a1efaed97b445c3d37f7be9fdc348bdb2d7cac75579607c89", size = 12972991 },
{ url = "https://files.pythonhosted.org/packages/6f/17/07815114b903b49b0f2cf7499f1c130e5aa459411596668267535fe9243c/mypy-1.14.1-cp312-cp312-win_amd64.whl", hash = "sha256:8fa2220e54d2946e94ab6dbb3ba0a992795bd68b16dc852db33028df2b00191b", size = 9879016 },
{ url = "https://files.pythonhosted.org/packages/9e/15/bb6a686901f59222275ab228453de741185f9d54fecbaacec041679496c6/mypy-1.14.1-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:92c3ed5afb06c3a8e188cb5da4984cab9ec9a77ba956ee419c68a388b4595255", size = 11252097 },
{ url = "https://files.pythonhosted.org/packages/f8/b3/8b0f74dfd072c802b7fa368829defdf3ee1566ba74c32a2cb2403f68024c/mypy-1.14.1-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:dbec574648b3e25f43d23577309b16534431db4ddc09fda50841f1e34e64ed34", size = 10239728 },
{ url = "https://files.pythonhosted.org/packages/c5/9b/4fd95ab20c52bb5b8c03cc49169be5905d931de17edfe4d9d2986800b52e/mypy-1.14.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:8c6d94b16d62eb3e947281aa7347d78236688e21081f11de976376cf010eb31a", size = 11924965 },
{ url = "https://files.pythonhosted.org/packages/56/9d/4a236b9c57f5d8f08ed346914b3f091a62dd7e19336b2b2a0d85485f82ff/mypy-1.14.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:d4b19b03fdf54f3c5b2fa474c56b4c13c9dbfb9a2db4370ede7ec11a2c5927d9", size = 12867660 },
{ url = "https://files.pythonhosted.org/packages/40/88/a61a5497e2f68d9027de2bb139c7bb9abaeb1be1584649fa9d807f80a338/mypy-1.14.1-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:0c911fde686394753fff899c409fd4e16e9b294c24bfd5e1ea4675deae1ac6fd", size = 12969198 },
{ url = "https://files.pythonhosted.org/packages/54/da/3d6fc5d92d324701b0c23fb413c853892bfe0e1dbe06c9138037d459756b/mypy-1.14.1-cp313-cp313-win_amd64.whl", hash = "sha256:8b21525cb51671219f5307be85f7e646a153e5acc656e5cebf64bfa076c50107", size = 9885276 },
{ url = "https://files.pythonhosted.org/packages/ca/1f/186d133ae2514633f8558e78cd658070ba686c0e9275c5a5c24a1e1f0d67/mypy-1.14.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:3888a1816d69f7ab92092f785a462944b3ca16d7c470d564165fe703b0970c35", size = 11200493 },
{ url = "https://files.pythonhosted.org/packages/af/fc/4842485d034e38a4646cccd1369f6b1ccd7bc86989c52770d75d719a9941/mypy-1.14.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:46c756a444117c43ee984bd055db99e498bc613a70bbbc120272bd13ca579fbc", size = 10357702 },
{ url = "https://files.pythonhosted.org/packages/b4/e6/457b83f2d701e23869cfec013a48a12638f75b9d37612a9ddf99072c1051/mypy-1.14.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:27fc248022907e72abfd8e22ab1f10e903915ff69961174784a3900a8cba9ad9", size = 12091104 },
{ url = "https://files.pythonhosted.org/packages/f1/bf/76a569158db678fee59f4fd30b8e7a0d75bcbaeef49edd882a0d63af6d66/mypy-1.14.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:499d6a72fb7e5de92218db961f1a66d5f11783f9ae549d214617edab5d4dbdbb", size = 12830167 },
{ url = "https://files.pythonhosted.org/packages/43/bc/0bc6b694b3103de9fed61867f1c8bd33336b913d16831431e7cb48ef1c92/mypy-1.14.1-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:57961db9795eb566dc1d1b4e9139ebc4c6b0cb6e7254ecde69d1552bf7613f60", size = 13013834 },
{ url = "https://files.pythonhosted.org/packages/b0/79/5f5ec47849b6df1e6943d5fd8e6632fbfc04b4fd4acfa5a5a9535d11b4e2/mypy-1.14.1-cp39-cp39-win_amd64.whl", hash = "sha256:07ba89fdcc9451f2ebb02853deb6aaaa3d2239a236669a63ab3801bbf923ef5c", size = 9781231 },
{ url = "https://files.pythonhosted.org/packages/a0/b5/32dd67b69a16d088e533962e5044e51004176a9952419de0370cdaead0f8/mypy-1.14.1-py3-none-any.whl", hash = "sha256:b66a60cc4073aeb8ae00057f9c1f64d49e90f918fbcef9a977eb121da8b8f1d1", size = 2752905 },
{ url = "https://files.pythonhosted.org/packages/68/f8/65a7ce8d0e09b6329ad0c8d40330d100ea343bd4dd04c4f8ae26462d0a17/mypy-1.15.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:979e4e1a006511dacf628e36fadfecbcc0160a8af6ca7dad2f5025529e082c13", size = 10738433 },
{ url = "https://files.pythonhosted.org/packages/b4/95/9c0ecb8eacfe048583706249439ff52105b3f552ea9c4024166c03224270/mypy-1.15.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:c4bb0e1bd29f7d34efcccd71cf733580191e9a264a2202b0239da95984c5b559", size = 9861472 },
{ url = "https://files.pythonhosted.org/packages/84/09/9ec95e982e282e20c0d5407bc65031dfd0f0f8ecc66b69538296e06fcbee/mypy-1.15.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:be68172e9fd9ad8fb876c6389f16d1c1b5f100ffa779f77b1fb2176fcc9ab95b", size = 11611424 },
{ url = "https://files.pythonhosted.org/packages/78/13/f7d14e55865036a1e6a0a69580c240f43bc1f37407fe9235c0d4ef25ffb0/mypy-1.15.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:c7be1e46525adfa0d97681432ee9fcd61a3964c2446795714699a998d193f1a3", size = 12365450 },
{ url = "https://files.pythonhosted.org/packages/48/e1/301a73852d40c241e915ac6d7bcd7fedd47d519246db2d7b86b9d7e7a0cb/mypy-1.15.0-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:2e2c2e6d3593f6451b18588848e66260ff62ccca522dd231cd4dd59b0160668b", size = 12551765 },
{ url = "https://files.pythonhosted.org/packages/77/ba/c37bc323ae5fe7f3f15a28e06ab012cd0b7552886118943e90b15af31195/mypy-1.15.0-cp310-cp310-win_amd64.whl", hash = "sha256:6983aae8b2f653e098edb77f893f7b6aca69f6cffb19b2cc7443f23cce5f4828", size = 9274701 },
{ url = "https://files.pythonhosted.org/packages/03/bc/f6339726c627bd7ca1ce0fa56c9ae2d0144604a319e0e339bdadafbbb599/mypy-1.15.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:2922d42e16d6de288022e5ca321cd0618b238cfc5570e0263e5ba0a77dbef56f", size = 10662338 },
{ url = "https://files.pythonhosted.org/packages/e2/90/8dcf506ca1a09b0d17555cc00cd69aee402c203911410136cd716559efe7/mypy-1.15.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:2ee2d57e01a7c35de00f4634ba1bbf015185b219e4dc5909e281016df43f5ee5", size = 9787540 },
{ url = "https://files.pythonhosted.org/packages/05/05/a10f9479681e5da09ef2f9426f650d7b550d4bafbef683b69aad1ba87457/mypy-1.15.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:973500e0774b85d9689715feeffcc980193086551110fd678ebe1f4342fb7c5e", size = 11538051 },
{ url = "https://files.pythonhosted.org/packages/e9/9a/1f7d18b30edd57441a6411fcbc0c6869448d1a4bacbaee60656ac0fc29c8/mypy-1.15.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:5a95fb17c13e29d2d5195869262f8125dfdb5c134dc8d9a9d0aecf7525b10c2c", size = 12286751 },
{ url = "https://files.pythonhosted.org/packages/72/af/19ff499b6f1dafcaf56f9881f7a965ac2f474f69f6f618b5175b044299f5/mypy-1.15.0-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:1905f494bfd7d85a23a88c5d97840888a7bd516545fc5aaedff0267e0bb54e2f", size = 12421783 },
{ url = "https://files.pythonhosted.org/packages/96/39/11b57431a1f686c1aed54bf794870efe0f6aeca11aca281a0bd87a5ad42c/mypy-1.15.0-cp311-cp311-win_amd64.whl", hash = "sha256:c9817fa23833ff189db061e6d2eff49b2f3b6ed9856b4a0a73046e41932d744f", size = 9265618 },
{ url = "https://files.pythonhosted.org/packages/98/3a/03c74331c5eb8bd025734e04c9840532226775c47a2c39b56a0c8d4f128d/mypy-1.15.0-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:aea39e0583d05124836ea645f412e88a5c7d0fd77a6d694b60d9b6b2d9f184fd", size = 10793981 },
{ url = "https://files.pythonhosted.org/packages/f0/1a/41759b18f2cfd568848a37c89030aeb03534411eef981df621d8fad08a1d/mypy-1.15.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:2f2147ab812b75e5b5499b01ade1f4a81489a147c01585cda36019102538615f", size = 9749175 },
{ url = "https://files.pythonhosted.org/packages/12/7e/873481abf1ef112c582db832740f4c11b2bfa510e829d6da29b0ab8c3f9c/mypy-1.15.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:ce436f4c6d218a070048ed6a44c0bbb10cd2cc5e272b29e7845f6a2f57ee4464", size = 11455675 },
{ url = "https://files.pythonhosted.org/packages/b3/d0/92ae4cde706923a2d3f2d6c39629134063ff64b9dedca9c1388363da072d/mypy-1.15.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:8023ff13985661b50a5928fc7a5ca15f3d1affb41e5f0a9952cb68ef090b31ee", size = 12410020 },
{ url = "https://files.pythonhosted.org/packages/46/8b/df49974b337cce35f828ba6fda228152d6db45fed4c86ba56ffe442434fd/mypy-1.15.0-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:1124a18bc11a6a62887e3e137f37f53fbae476dc36c185d549d4f837a2a6a14e", size = 12498582 },
{ url = "https://files.pythonhosted.org/packages/13/50/da5203fcf6c53044a0b699939f31075c45ae8a4cadf538a9069b165c1050/mypy-1.15.0-cp312-cp312-win_amd64.whl", hash = "sha256:171a9ca9a40cd1843abeca0e405bc1940cd9b305eaeea2dda769ba096932bb22", size = 9366614 },
{ url = "https://files.pythonhosted.org/packages/6a/9b/fd2e05d6ffff24d912f150b87db9e364fa8282045c875654ce7e32fffa66/mypy-1.15.0-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:93faf3fdb04768d44bf28693293f3904bbb555d076b781ad2530214ee53e3445", size = 10788592 },
{ url = "https://files.pythonhosted.org/packages/74/37/b246d711c28a03ead1fd906bbc7106659aed7c089d55fe40dd58db812628/mypy-1.15.0-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:811aeccadfb730024c5d3e326b2fbe9249bb7413553f15499a4050f7c30e801d", size = 9753611 },
{ url = "https://files.pythonhosted.org/packages/a6/ac/395808a92e10cfdac8003c3de9a2ab6dc7cde6c0d2a4df3df1b815ffd067/mypy-1.15.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:98b7b9b9aedb65fe628c62a6dc57f6d5088ef2dfca37903a7d9ee374d03acca5", size = 11438443 },
{ url = "https://files.pythonhosted.org/packages/d2/8b/801aa06445d2de3895f59e476f38f3f8d610ef5d6908245f07d002676cbf/mypy-1.15.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:c43a7682e24b4f576d93072216bf56eeff70d9140241f9edec0c104d0c515036", size = 12402541 },
{ url = "https://files.pythonhosted.org/packages/c7/67/5a4268782eb77344cc613a4cf23540928e41f018a9a1ec4c6882baf20ab8/mypy-1.15.0-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:baefc32840a9f00babd83251560e0ae1573e2f9d1b067719479bfb0e987c6357", size = 12494348 },
{ url = "https://files.pythonhosted.org/packages/83/3e/57bb447f7bbbfaabf1712d96f9df142624a386d98fb026a761532526057e/mypy-1.15.0-cp313-cp313-win_amd64.whl", hash = "sha256:b9378e2c00146c44793c98b8d5a61039a048e31f429fb0eb546d93f4b000bedf", size = 9373648 },
{ url = "https://files.pythonhosted.org/packages/5a/fa/79cf41a55b682794abe71372151dbbf856e3008f6767057229e6649d294a/mypy-1.15.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:e601a7fa172c2131bff456bb3ee08a88360760d0d2f8cbd7a75a65497e2df078", size = 10737129 },
{ url = "https://files.pythonhosted.org/packages/d3/33/dd8feb2597d648de29e3da0a8bf4e1afbda472964d2a4a0052203a6f3594/mypy-1.15.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:712e962a6357634fef20412699a3655c610110e01cdaa6180acec7fc9f8513ba", size = 9856335 },
{ url = "https://files.pythonhosted.org/packages/e4/b5/74508959c1b06b96674b364ffeb7ae5802646b32929b7701fc6b18447592/mypy-1.15.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:f95579473af29ab73a10bada2f9722856792a36ec5af5399b653aa28360290a5", size = 11611935 },
{ url = "https://files.pythonhosted.org/packages/6c/53/da61b9d9973efcd6507183fdad96606996191657fe79701b2c818714d573/mypy-1.15.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:8f8722560a14cde92fdb1e31597760dc35f9f5524cce17836c0d22841830fd5b", size = 12365827 },
{ url = "https://files.pythonhosted.org/packages/c1/72/965bd9ee89540c79a25778cc080c7e6ef40aa1eeac4d52cec7eae6eb5228/mypy-1.15.0-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:1fbb8da62dc352133d7d7ca90ed2fb0e9d42bb1a32724c287d3c76c58cbaa9c2", size = 12541924 },
{ url = "https://files.pythonhosted.org/packages/46/d0/f41645c2eb263e6c77ada7d76f894c580c9ddb20d77f0c24d34273a4dab2/mypy-1.15.0-cp39-cp39-win_amd64.whl", hash = "sha256:d10d994b41fb3497719bbf866f227b3489048ea4bbbb5015357db306249f7980", size = 9271176 },
{ url = "https://files.pythonhosted.org/packages/09/4e/a7d65c7322c510de2c409ff3828b03354a7c43f5a8ed458a7a131b41c7b9/mypy-1.15.0-py3-none-any.whl", hash = "sha256:5469affef548bd1895d86d3bf10ce2b44e33d86923c29e4d675b3e323437ea3e", size = 2221777 },
]
[[package]]