mirror of
https://github.com/hwchase17/langchain.git
synced 2026-02-05 16:50:03 +00:00
Compare commits
30 Commits
langchain=
...
erick/retr
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
df4e0e6d81 | ||
|
|
0ab8e5cfe0 | ||
|
|
3fe135f242 | ||
|
|
01045580f9 | ||
|
|
fcbca18342 | ||
|
|
ff214eb503 | ||
|
|
ab831ce05c | ||
|
|
50ddf13692 | ||
|
|
a220ee56cd | ||
|
|
c74f34cb41 | ||
|
|
926e452f44 | ||
|
|
7315360907 | ||
|
|
ff675c11f6 | ||
|
|
6b7e93d4c7 | ||
|
|
000be1f32c | ||
|
|
42d40d694b | ||
|
|
9f04416768 | ||
|
|
027f49c661 | ||
|
|
ecee41ab72 | ||
|
|
60021e54b5 | ||
|
|
28487597b2 | ||
|
|
88d6d02b59 | ||
|
|
c953f93c54 | ||
|
|
e5b4f9ad75 | ||
|
|
58d2bfe310 | ||
|
|
e294e7159a | ||
|
|
47433485e7 | ||
|
|
49914e959a | ||
|
|
ce6e4bb645 | ||
|
|
c2f1d022a2 |
@@ -13,7 +13,7 @@ on:
|
||||
description: "Python version to use"
|
||||
|
||||
env:
|
||||
POETRY_VERSION: "1.7.1"
|
||||
POETRY_VERSION: "1.8.4"
|
||||
|
||||
jobs:
|
||||
build:
|
||||
@@ -21,6 +21,7 @@ jobs:
|
||||
run:
|
||||
working-directory: ${{ inputs.working-directory }}
|
||||
runs-on: ubuntu-latest
|
||||
timeout-minutes: 20
|
||||
name: "poetry run pytest -m compile tests/integration_tests #${{ inputs.python-version }}"
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
|
||||
2
.github/workflows/_integration_test.yml
vendored
2
.github/workflows/_integration_test.yml
vendored
@@ -12,7 +12,7 @@ on:
|
||||
description: "Python version to use"
|
||||
|
||||
env:
|
||||
POETRY_VERSION: "1.7.1"
|
||||
POETRY_VERSION: "1.8.4"
|
||||
|
||||
jobs:
|
||||
build:
|
||||
|
||||
3
.github/workflows/_lint.yml
vendored
3
.github/workflows/_lint.yml
vendored
@@ -13,7 +13,7 @@ on:
|
||||
description: "Python version to use"
|
||||
|
||||
env:
|
||||
POETRY_VERSION: "1.7.1"
|
||||
POETRY_VERSION: "1.8.4"
|
||||
WORKDIR: ${{ inputs.working-directory == '' && '.' || inputs.working-directory }}
|
||||
|
||||
# This env var allows us to get inline annotations when ruff has complaints.
|
||||
@@ -23,6 +23,7 @@ jobs:
|
||||
build:
|
||||
name: "make lint #${{ inputs.python-version }}"
|
||||
runs-on: ubuntu-latest
|
||||
timeout-minutes: 20
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
|
||||
|
||||
3
.github/workflows/_release.yml
vendored
3
.github/workflows/_release.yml
vendored
@@ -21,7 +21,7 @@ on:
|
||||
|
||||
env:
|
||||
PYTHON_VERSION: "3.11"
|
||||
POETRY_VERSION: "1.7.1"
|
||||
POETRY_VERSION: "1.8.4"
|
||||
|
||||
jobs:
|
||||
build:
|
||||
@@ -167,6 +167,7 @@ jobs:
|
||||
- release-notes
|
||||
- test-pypi-publish
|
||||
runs-on: ubuntu-latest
|
||||
timeout-minutes: 20
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
|
||||
|
||||
3
.github/workflows/_test.yml
vendored
3
.github/workflows/_test.yml
vendored
@@ -13,7 +13,7 @@ on:
|
||||
description: "Python version to use"
|
||||
|
||||
env:
|
||||
POETRY_VERSION: "1.7.1"
|
||||
POETRY_VERSION: "1.8.4"
|
||||
|
||||
jobs:
|
||||
build:
|
||||
@@ -21,6 +21,7 @@ jobs:
|
||||
run:
|
||||
working-directory: ${{ inputs.working-directory }}
|
||||
runs-on: ubuntu-latest
|
||||
timeout-minutes: 20
|
||||
name: "make test #${{ inputs.python-version }}"
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
|
||||
3
.github/workflows/_test_doc_imports.yml
vendored
3
.github/workflows/_test_doc_imports.yml
vendored
@@ -9,11 +9,12 @@ on:
|
||||
description: "Python version to use"
|
||||
|
||||
env:
|
||||
POETRY_VERSION: "1.7.1"
|
||||
POETRY_VERSION: "1.8.4"
|
||||
|
||||
jobs:
|
||||
build:
|
||||
runs-on: ubuntu-latest
|
||||
timeout-minutes: 20
|
||||
name: "check doc imports #${{ inputs.python-version }}"
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
|
||||
3
.github/workflows/_test_pydantic.yml
vendored
3
.github/workflows/_test_pydantic.yml
vendored
@@ -18,7 +18,7 @@ on:
|
||||
description: "Pydantic version to test."
|
||||
|
||||
env:
|
||||
POETRY_VERSION: "1.7.1"
|
||||
POETRY_VERSION: "1.8.4"
|
||||
|
||||
jobs:
|
||||
build:
|
||||
@@ -26,6 +26,7 @@ jobs:
|
||||
run:
|
||||
working-directory: ${{ inputs.working-directory }}
|
||||
runs-on: ubuntu-latest
|
||||
timeout-minutes: 20
|
||||
name: "make test # pydantic: ~=${{ inputs.pydantic-version }}, python: ${{ inputs.python-version }}, "
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
|
||||
2
.github/workflows/_test_release.yml
vendored
2
.github/workflows/_test_release.yml
vendored
@@ -14,7 +14,7 @@ on:
|
||||
description: "Release from a non-master branch (danger!)"
|
||||
|
||||
env:
|
||||
POETRY_VERSION: "1.7.1"
|
||||
POETRY_VERSION: "1.8.4"
|
||||
PYTHON_VERSION: "3.10"
|
||||
|
||||
jobs:
|
||||
|
||||
2
.github/workflows/api_doc_build.yml
vendored
2
.github/workflows/api_doc_build.yml
vendored
@@ -5,7 +5,7 @@ on:
|
||||
schedule:
|
||||
- cron: '0 13 * * *'
|
||||
env:
|
||||
POETRY_VERSION: "1.8.1"
|
||||
POETRY_VERSION: "1.8.4"
|
||||
PYTHON_VERSION: "3.11"
|
||||
|
||||
jobs:
|
||||
|
||||
3
.github/workflows/check_diffs.yml
vendored
3
.github/workflows/check_diffs.yml
vendored
@@ -17,7 +17,7 @@ concurrency:
|
||||
cancel-in-progress: true
|
||||
|
||||
env:
|
||||
POETRY_VERSION: "1.7.1"
|
||||
POETRY_VERSION: "1.8.4"
|
||||
|
||||
jobs:
|
||||
build:
|
||||
@@ -119,6 +119,7 @@ jobs:
|
||||
job-configs: ${{ fromJson(needs.build.outputs.extended-tests) }}
|
||||
fail-fast: false
|
||||
runs-on: ubuntu-latest
|
||||
timeout-minutes: 20
|
||||
defaults:
|
||||
run:
|
||||
working-directory: ${{ matrix.job-configs.working-directory }}
|
||||
|
||||
2
.github/workflows/run_notebooks.yml
vendored
2
.github/workflows/run_notebooks.yml
vendored
@@ -15,7 +15,7 @@ on:
|
||||
- cron: '0 13 * * *'
|
||||
|
||||
env:
|
||||
POETRY_VERSION: "1.7.1"
|
||||
POETRY_VERSION: "1.8.4"
|
||||
|
||||
jobs:
|
||||
build:
|
||||
|
||||
64
.github/workflows/scheduled_test.yml
vendored
64
.github/workflows/scheduled_test.yml
vendored
@@ -2,32 +2,70 @@ name: Scheduled tests
|
||||
|
||||
on:
|
||||
workflow_dispatch: # Allows to trigger the workflow manually in GitHub UI
|
||||
inputs:
|
||||
working-directory-force:
|
||||
type: string
|
||||
description: "From which folder this pipeline executes - defaults to all in matrix - example value: libs/partners/anthropic"
|
||||
python-version-force:
|
||||
type: string
|
||||
description: "Python version to use - defaults to 3.9 and 3.11 in matrix - example value: 3.9"
|
||||
schedule:
|
||||
- cron: '0 13 * * *'
|
||||
|
||||
env:
|
||||
POETRY_VERSION: "1.7.1"
|
||||
POETRY_VERSION: "1.8.4"
|
||||
DEFAULT_LIBS: >
|
||||
[
|
||||
"libs/partners/openai",
|
||||
"libs/partners/anthropic",
|
||||
"libs/partners/fireworks",
|
||||
"libs/partners/groq",
|
||||
"libs/partners/mistralai",
|
||||
"libs/partners/google-vertexai",
|
||||
"libs/partners/google-genai",
|
||||
"libs/partners/aws"
|
||||
]
|
||||
|
||||
jobs:
|
||||
compute-matrix:
|
||||
if: github.repository_owner == 'langchain-ai' || github.event_name != 'schedule'
|
||||
runs-on: ubuntu-latest
|
||||
name: Compute matrix
|
||||
outputs:
|
||||
matrix: ${{ steps.set-matrix.outputs.matrix }}
|
||||
steps:
|
||||
- name: Set matrix
|
||||
id: set-matrix
|
||||
env:
|
||||
DEFAULT_LIBS: ${{ env.DEFAULT_LIBS }}
|
||||
WORKING_DIRECTORY_FORCE: ${{ github.event.inputs.working-directory-force || '' }}
|
||||
PYTHON_VERSION_FORCE: ${{ github.event.inputs.python-version-force || '' }}
|
||||
run: |
|
||||
# echo "matrix=..." where matrix is a json formatted str with keys python-version and working-directory
|
||||
# python-version should default to 3.9 and 3.11, but is overridden to [PYTHON_VERSION_FORCE] if set
|
||||
# working-directory should default to DEFAULT_LIBS, but is overridden to [WORKING_DIRECTORY_FORCE] if set
|
||||
python_version='["3.9", "3.11"]'
|
||||
working_directory="$DEFAULT_LIBS"
|
||||
if [ -n "$PYTHON_VERSION_FORCE" ]; then
|
||||
python_version="[\"$PYTHON_VERSION_FORCE\"]"
|
||||
fi
|
||||
if [ -n "$WORKING_DIRECTORY_FORCE" ]; then
|
||||
working_directory="[\"$WORKING_DIRECTORY_FORCE\"]"
|
||||
fi
|
||||
matrix="{\"python-version\": $python_version, \"working-directory\": $working_directory}"
|
||||
echo $matrix
|
||||
echo "matrix=$matrix" >> $GITHUB_OUTPUT
|
||||
build:
|
||||
if: github.repository_owner == 'langchain-ai' || github.event_name != 'schedule'
|
||||
name: Python ${{ matrix.python-version }} - ${{ matrix.working-directory }}
|
||||
runs-on: ubuntu-latest
|
||||
needs: [compute-matrix]
|
||||
timeout-minutes: 20
|
||||
strategy:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
python-version:
|
||||
- "3.9"
|
||||
- "3.11"
|
||||
working-directory:
|
||||
- "libs/partners/openai"
|
||||
- "libs/partners/anthropic"
|
||||
- "libs/partners/fireworks"
|
||||
- "libs/partners/groq"
|
||||
- "libs/partners/mistralai"
|
||||
- "libs/partners/google-vertexai"
|
||||
- "libs/partners/google-genai"
|
||||
- "libs/partners/aws"
|
||||
python-version: ${{ fromJSON(needs.compute-matrix.outputs.matrix).python-version }}
|
||||
working-directory: ${{ fromJSON(needs.compute-matrix.outputs.matrix).working-directory }}
|
||||
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
|
||||
@@ -78,4 +78,4 @@ class TestParrotMultiplyToolUnit(ToolsUnitTests):
|
||||
return {"a": 2, "b": 3}
|
||||
```
|
||||
|
||||
To learn more, check out our guide on [how to add standard tests to an integration](../../contributing/how_to/integrations/standard_tests).
|
||||
To learn more, check out our guide guides on [contributing an integration](/docs/contributing/how_to/integrations/#standard-tests).
|
||||
|
||||
@@ -7,4 +7,3 @@
|
||||
|
||||
- [**Start Here**](integrations/index.mdx): Help us integrate with your favorite vendors and tools.
|
||||
- [**Package**](integrations/package): Publish an integration package to PyPi
|
||||
- [**Standard Tests**](integrations/standard_tests): Ensure your integration passes an expected set of tests.
|
||||
|
||||
355
docs/docs/contributing/how_to/integrations/chat_models.md
Normal file
355
docs/docs/contributing/how_to/integrations/chat_models.md
Normal file
@@ -0,0 +1,355 @@
|
||||
---
|
||||
pagination_next: contributing/how_to/integrations/publish
|
||||
pagination_prev: contributing/how_to/integrations/index
|
||||
---
|
||||
# How to implement and test a chat model integration
|
||||
|
||||
This guide walks through how to implement and test a custom [chat model](/docs/concepts/chat_models) that you have developed.
|
||||
|
||||
For testing, we will rely on the `langchain-tests` dependency we added in the previous [bootstrapping guide](/docs/contributing/how_to/integrations/package).
|
||||
|
||||
## Implementation
|
||||
|
||||
Let's say you're building a simple integration package that provides a `ChatParrotLink`
|
||||
chat model integration for LangChain. Here's a simple example of what your project
|
||||
structure might look like:
|
||||
|
||||
```plaintext
|
||||
langchain-parrot-link/
|
||||
├── langchain_parrot_link/
|
||||
│ ├── __init__.py
|
||||
│ └── chat_models.py
|
||||
├── tests/
|
||||
│ ├── __init__.py
|
||||
│ └── test_chat_models.py
|
||||
├── pyproject.toml
|
||||
└── README.md
|
||||
```
|
||||
|
||||
Following the [bootstrapping guide](/docs/contributing/how_to/integrations/package),
|
||||
all of these files should already exist, except for
|
||||
`chat_models.py` and `test_chat_models.py`. We will implement these files in this guide.
|
||||
|
||||
To implement `chat_models.py`, we copy the [implementation](/docs/how_to/custom_chat_model/#implementation) from our
|
||||
[Custom Chat Model Guide](/docs/how_to/custom_chat_model). Refer to that guide for more detail.
|
||||
|
||||
<details>
|
||||
<summary>chat_models.py</summary>
|
||||
```python title="langchain_parrot_link/chat_models.py"
|
||||
from typing import Any, Dict, Iterator, List, Optional
|
||||
|
||||
from langchain_core.callbacks import (
|
||||
CallbackManagerForLLMRun,
|
||||
)
|
||||
from langchain_core.language_models import BaseChatModel
|
||||
from langchain_core.messages import (
|
||||
AIMessage,
|
||||
AIMessageChunk,
|
||||
BaseMessage,
|
||||
)
|
||||
from langchain_core.messages.ai import UsageMetadata
|
||||
from langchain_core.outputs import ChatGeneration, ChatGenerationChunk, ChatResult
|
||||
from pydantic import Field
|
||||
|
||||
|
||||
class ChatParrotLink(BaseChatModel):
|
||||
"""A custom chat model that echoes the first `parrot_buffer_length` characters
|
||||
of the input.
|
||||
|
||||
When contributing an implementation to LangChain, carefully document
|
||||
the model including the initialization parameters, include
|
||||
an example of how to initialize the model and include any relevant
|
||||
links to the underlying models documentation or API.
|
||||
|
||||
Example:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
model = ChatParrotLink(parrot_buffer_length=2, model="bird-brain-001")
|
||||
result = model.invoke([HumanMessage(content="hello")])
|
||||
result = model.batch([[HumanMessage(content="hello")],
|
||||
[HumanMessage(content="world")]])
|
||||
"""
|
||||
|
||||
model_name: str = Field(alias="model")
|
||||
"""The name of the model"""
|
||||
parrot_buffer_length: int
|
||||
"""The number of characters from the last message of the prompt to be echoed."""
|
||||
temperature: Optional[float] = None
|
||||
max_tokens: Optional[int] = None
|
||||
timeout: Optional[int] = None
|
||||
stop: Optional[List[str]] = None
|
||||
max_retries: int = 2
|
||||
|
||||
def _generate(
|
||||
self,
|
||||
messages: List[BaseMessage],
|
||||
stop: Optional[List[str]] = None,
|
||||
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
||||
**kwargs: Any,
|
||||
) -> ChatResult:
|
||||
"""Override the _generate method to implement the chat model logic.
|
||||
|
||||
This can be a call to an API, a call to a local model, or any other
|
||||
implementation that generates a response to the input prompt.
|
||||
|
||||
Args:
|
||||
messages: the prompt composed of a list of messages.
|
||||
stop: a list of strings on which the model should stop generating.
|
||||
If generation stops due to a stop token, the stop token itself
|
||||
SHOULD BE INCLUDED as part of the output. This is not enforced
|
||||
across models right now, but it's a good practice to follow since
|
||||
it makes it much easier to parse the output of the model
|
||||
downstream and understand why generation stopped.
|
||||
run_manager: A run manager with callbacks for the LLM.
|
||||
"""
|
||||
# Replace this with actual logic to generate a response from a list
|
||||
# of messages.
|
||||
last_message = messages[-1]
|
||||
tokens = last_message.content[: self.parrot_buffer_length]
|
||||
ct_input_tokens = sum(len(message.content) for message in messages)
|
||||
ct_output_tokens = len(tokens)
|
||||
message = AIMessage(
|
||||
content=tokens,
|
||||
additional_kwargs={}, # Used to add additional payload to the message
|
||||
response_metadata={ # Use for response metadata
|
||||
"time_in_seconds": 3,
|
||||
},
|
||||
usage_metadata={
|
||||
"input_tokens": ct_input_tokens,
|
||||
"output_tokens": ct_output_tokens,
|
||||
"total_tokens": ct_input_tokens + ct_output_tokens,
|
||||
},
|
||||
)
|
||||
##
|
||||
|
||||
generation = ChatGeneration(message=message)
|
||||
return ChatResult(generations=[generation])
|
||||
|
||||
def _stream(
|
||||
self,
|
||||
messages: List[BaseMessage],
|
||||
stop: Optional[List[str]] = None,
|
||||
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
||||
**kwargs: Any,
|
||||
) -> Iterator[ChatGenerationChunk]:
|
||||
"""Stream the output of the model.
|
||||
|
||||
This method should be implemented if the model can generate output
|
||||
in a streaming fashion. If the model does not support streaming,
|
||||
do not implement it. In that case streaming requests will be automatically
|
||||
handled by the _generate method.
|
||||
|
||||
Args:
|
||||
messages: the prompt composed of a list of messages.
|
||||
stop: a list of strings on which the model should stop generating.
|
||||
If generation stops due to a stop token, the stop token itself
|
||||
SHOULD BE INCLUDED as part of the output. This is not enforced
|
||||
across models right now, but it's a good practice to follow since
|
||||
it makes it much easier to parse the output of the model
|
||||
downstream and understand why generation stopped.
|
||||
run_manager: A run manager with callbacks for the LLM.
|
||||
"""
|
||||
last_message = messages[-1]
|
||||
tokens = str(last_message.content[: self.parrot_buffer_length])
|
||||
ct_input_tokens = sum(len(message.content) for message in messages)
|
||||
|
||||
for token in tokens:
|
||||
usage_metadata = UsageMetadata(
|
||||
{
|
||||
"input_tokens": ct_input_tokens,
|
||||
"output_tokens": 1,
|
||||
"total_tokens": ct_input_tokens + 1,
|
||||
}
|
||||
)
|
||||
ct_input_tokens = 0
|
||||
chunk = ChatGenerationChunk(
|
||||
message=AIMessageChunk(content=token, usage_metadata=usage_metadata)
|
||||
)
|
||||
|
||||
if run_manager:
|
||||
# This is optional in newer versions of LangChain
|
||||
# The on_llm_new_token will be called automatically
|
||||
run_manager.on_llm_new_token(token, chunk=chunk)
|
||||
|
||||
yield chunk
|
||||
|
||||
# Let's add some other information (e.g., response metadata)
|
||||
chunk = ChatGenerationChunk(
|
||||
message=AIMessageChunk(content="", response_metadata={"time_in_sec": 3})
|
||||
)
|
||||
if run_manager:
|
||||
# This is optional in newer versions of LangChain
|
||||
# The on_llm_new_token will be called automatically
|
||||
run_manager.on_llm_new_token(token, chunk=chunk)
|
||||
yield chunk
|
||||
|
||||
@property
|
||||
def _llm_type(self) -> str:
|
||||
"""Get the type of language model used by this chat model."""
|
||||
return "echoing-chat-model-advanced"
|
||||
|
||||
@property
|
||||
def _identifying_params(self) -> Dict[str, Any]:
|
||||
"""Return a dictionary of identifying parameters.
|
||||
|
||||
This information is used by the LangChain callback system, which
|
||||
is used for tracing purposes make it possible to monitor LLMs.
|
||||
"""
|
||||
return {
|
||||
# The model name allows users to specify custom token counting
|
||||
# rules in LLM monitoring applications (e.g., in LangSmith users
|
||||
# can provide per token pricing for their model and monitor
|
||||
# costs for the given LLM.)
|
||||
"model_name": self.model_name,
|
||||
}
|
||||
```
|
||||
</details>
|
||||
|
||||
:::tip
|
||||
|
||||
The model from the [Custom Chat Model Guide](/docs/how_to/custom_chat_model) is tested
|
||||
against the standard unit and integration tests in the LangChain Github repository.
|
||||
You can always use this as a starting point.
|
||||
|
||||
- [Model implementation](https://github.com/langchain-ai/langchain/blob/master/libs/standard-tests/tests/unit_tests/custom_chat_model.py)
|
||||
- [Tests](https://github.com/langchain-ai/langchain/blob/master/libs/standard-tests/tests/unit_tests/test_custom_chat_model.py)
|
||||
|
||||
:::
|
||||
|
||||
## Testing
|
||||
|
||||
To implement our test files, we will subclass test classes from the `langchain_tests` package. These test classes contain the tests that will be run. We will just need to configure what model is tested, what parameters it is tested with, and specify any tests that should be skipped.
|
||||
|
||||
### Setup
|
||||
|
||||
First we need to install certain dependencies. These include:
|
||||
|
||||
- `pytest`: For running tests
|
||||
- `pytest-socket`: For running unit tests
|
||||
- `pytest-asyncio`: For testing async functionality
|
||||
- `langchain-tests`: For importing standard tests
|
||||
- `langchain-core`: This should already be installed, but is needed to define our integration.
|
||||
|
||||
If you followed the previous [bootstrapping guide](/docs/contributing/how_to/integrations/package/), these should already be installed.
|
||||
|
||||
### Add and configure standard tests
|
||||
There are two namespaces in the langchain-tests package:
|
||||
|
||||
- [Unit tests](../../../concepts/testing.mdx#unit-tests) (`langchain_tests.unit_tests`): designed to be used to test the component in isolation and without access to external services
|
||||
- [Integration tests](../../../concepts/testing.mdx#integration-tests) (`langchain_tests.integration_tests`): designed to be used to test the component with access to external services (in particular, the external service that the component is designed to interact with).
|
||||
|
||||
Both types of tests are implemented as [pytest class-based test suites](https://docs.pytest.org/en/7.1.x/getting-started.html#group-multiple-tests-in-a-class).
|
||||
|
||||
By subclassing the base classes for each type of standard test (see below), you get all of the standard tests for that type, and you can override the properties that the test suite uses to configure the tests.
|
||||
|
||||
Here's how you would configure the standard unit tests for the custom chat model:
|
||||
|
||||
```python
|
||||
# title="tests/unit_tests/test_chat_models.py"
|
||||
from typing import Type
|
||||
|
||||
from my_package.chat_models import MyChatModel
|
||||
from langchain_tests.unit_tests import ChatModelUnitTests
|
||||
|
||||
|
||||
class TestChatParrotLinkUnit(ChatModelUnitTests):
|
||||
@property
|
||||
def chat_model_class(self) -> Type[MyChatModel]:
|
||||
return MyChatModel
|
||||
|
||||
@property
|
||||
def chat_model_params(self) -> dict:
|
||||
# These should be parameters used to initialize your integration for testing
|
||||
return {
|
||||
"model": "bird-brain-001",
|
||||
"temperature": 0,
|
||||
"parrot_buffer_length": 50,
|
||||
}
|
||||
```
|
||||
|
||||
And here is the corresponding snippet for integration tests:
|
||||
|
||||
```python
|
||||
# title="tests/integration_tests/test_chat_models.py"
|
||||
from typing import Type
|
||||
|
||||
from my_package.chat_models import MyChatModel
|
||||
from langchain_tests.integration_tests import ChatModelIntegrationTests
|
||||
|
||||
|
||||
class TestChatParrotLinkIntegration(ChatModelIntegrationTests):
|
||||
@property
|
||||
def chat_model_class(self) -> Type[MyChatModel]:
|
||||
return MyChatModel
|
||||
|
||||
@property
|
||||
def chat_model_params(self) -> dict:
|
||||
# These should be parameters used to initialize your integration for testing
|
||||
return {
|
||||
"model": "bird-brain-001",
|
||||
"temperature": 0,
|
||||
"parrot_buffer_length": 50,
|
||||
}
|
||||
```
|
||||
|
||||
These two snippets should be written into `tests/unit_tests/test_chat_models.py` and `tests/integration_tests/test_chat_models.py`, respectively.
|
||||
|
||||
:::note
|
||||
|
||||
LangChain standard tests test a range of behaviors, from the most basic requirements to optional capabilities like multi-modal support. The above implementation will likely need to be updated to specify any tests that should be ignored. See [below](#skipping-tests) for detail.
|
||||
|
||||
:::
|
||||
|
||||
### Run standard tests
|
||||
|
||||
After setting tests up, you would run these with the following commands from your project root:
|
||||
|
||||
```shell
|
||||
# run unit tests without network access
|
||||
pytest --disable-socket --allow-unix-socket --asyncio-mode=auto tests/unit_tests
|
||||
|
||||
# run integration tests
|
||||
pytest --asyncio-mode=auto tests/integration_tests
|
||||
```
|
||||
|
||||
Our objective is for the pytest run to be successful. That is,
|
||||
|
||||
1. If a feature is intended to be supported by the model, it passes;
|
||||
2. If a feature is not intended to be supported by the model, it is skipped.
|
||||
|
||||
### Skipping tests
|
||||
|
||||
LangChain standard tests test a range of behaviors, from the most basic requirements (generating a response to a query) to optional capabilities like multi-modal support and tool-calling. Tests for "optional" capabilities are controlled via a set of properties that can be overridden on the test model subclass.
|
||||
|
||||
You can see the entire list of properties in the API reference [here](https://python.langchain.com/api_reference/standard_tests/unit_tests/langchain_tests.unit_tests.chat_models.ChatModelTests.html). These properties are shared by both unit and integration tests.
|
||||
|
||||
For example, to enable integration tests for image inputs, we can implement
|
||||
|
||||
```python
|
||||
@property
|
||||
def supports_image_inputs(self) -> bool:
|
||||
return True
|
||||
```
|
||||
|
||||
on the integration test class.
|
||||
|
||||
The API references for individual test methods include instructions on whether and how
|
||||
they can be skipped. See details:
|
||||
|
||||
- [Unit tests API reference](https://python.langchain.com/api_reference/standard_tests/unit_tests/langchain_tests.unit_tests.chat_models.ChatModelUnitTests.html)
|
||||
- [Integration tests API reference](https://python.langchain.com/api_reference/standard_tests/integration_tests/langchain_tests.integration_tests.chat_models.ChatModelIntegrationTests.html)
|
||||
|
||||
|
||||
### Test suite information and troubleshooting
|
||||
|
||||
Each test method documents:
|
||||
|
||||
1. Troubleshooting tips;
|
||||
2. (If applicable) how test can be skipped.
|
||||
|
||||
This information along with the full set of tests that run can be found in the API
|
||||
reference. See details:
|
||||
|
||||
- [Unit tests API reference](https://python.langchain.com/api_reference/standard_tests/unit_tests/langchain_tests.unit_tests.chat_models.ChatModelUnitTests.html)
|
||||
- [Integration tests API reference](https://python.langchain.com/api_reference/standard_tests/integration_tests/langchain_tests.integration_tests.chat_models.ChatModelIntegrationTests.html)
|
||||
@@ -4,14 +4,16 @@ pagination_next: contributing/how_to/integrations/package
|
||||
|
||||
# Contribute Integrations
|
||||
|
||||
LangChain integrations are packages that provide access to language models, vector stores, and other components that can be used in LangChain.
|
||||
Integrations are a core component of LangChain.
|
||||
LangChain provides standard interfaces for several different components (language models, vector stores, etc) that are crucial when building LLM applications.
|
||||
|
||||
This guide will walk you through how to contribute new integrations to LangChain, by
|
||||
publishing an integration package to PyPi, and adding documentation for it
|
||||
to the LangChain Monorepo.
|
||||
|
||||
These instructions will evolve over the next few months as we improve our integration
|
||||
processes.
|
||||
## Why contribute an integration to LangChain?
|
||||
|
||||
- **Discoverability:** LangChain is the most used framework for building LLM applications, with over 20 million monthly downloads. LangChain integrations are discoverable by a large community of GenAI builders.
|
||||
- **Interoptability:** LangChain components expose a standard interface, allowing developers to easily swap them for each other. If you implement a LangChain integration, any developer using a different component will easily be able to swap yours in.
|
||||
- **Best Practices:** Through their standard interface, LangChain components encourage and facilitate best practices (streaming, async, etc)
|
||||
|
||||
|
||||
## Components to Integrate
|
||||
|
||||
@@ -22,8 +24,7 @@ supported in LangChain
|
||||
|
||||
:::
|
||||
|
||||
While any component can be integrated into LangChain, at this time we are only accepting
|
||||
new integrations in the docs of the following kinds:
|
||||
While any component can be integrated into LangChain, there are specific types of integrations we encourage more:
|
||||
|
||||
<table>
|
||||
<tr>
|
||||
@@ -60,18 +61,53 @@ new integrations in the docs of the following kinds:
|
||||
|
||||
## How to contribute an integration
|
||||
|
||||
The only step necessary to "be" a LangChain integration is to add documentation
|
||||
that will render on this site (https://python.langchain.com/).
|
||||
In order to contribute an integration, you should follow these steps:
|
||||
|
||||
As a prerequisite to adding your integration to our documentation, you must:
|
||||
1. Confirm that your integration is in the [list of components](#components-to-integrate) we are currently encouraging.
|
||||
2. Create a package with the required dependencies (see example [here](/docs/contributing/how_to/integrations/package/)).
|
||||
3. Implement and test your integration following the [component-specific guides](#component-specific-guides).
|
||||
4. [Publish your integration](/docs/contributing/how_to/integrations/publish/) in a Python package to PyPi.
|
||||
5. [Optional] Open and merge a PR to add documentation for your integration to the official LangChain docs.
|
||||
6. [Optional] Engage with the LangChain team for joint co-marketing ([see below](#co-marketing)).
|
||||
|
||||
1. Confirm that your integration is in the [list of components](#components-to-integrate) we are currently accepting.
|
||||
2. [Implement your package](./package.mdx) and publish it to a public github repository.
|
||||
3. [Implement the standard tests](./standard_tests) for your integration and successfully run them.
|
||||
4. [Publish your integration](./publish.mdx) by publishing the package to PyPi and add docs in the `docs/docs/integrations` directory of the LangChain monorepo.
|
||||
## Component-specific guides
|
||||
|
||||
Once you have completed these steps, you can submit a PR to the LangChain monorepo to add your integration to the documentation.
|
||||
The guides below walk you through both implementing and testing specific components:
|
||||
|
||||
## Further Reading
|
||||
- [Chat Models](/docs/contributing/how_to/integrations/chat_models)
|
||||
- [Tools]
|
||||
- [Toolkits]
|
||||
- [Retrievers]
|
||||
- [Document Loaders]
|
||||
- [Vector Stores](/docs/contributing/how_to/integrations/vector_stores)
|
||||
- [Embedding Models]
|
||||
|
||||
To get started, let's learn [how to bootstrap a new integration package](./package.mdx) for LangChain.
|
||||
## Standard Tests
|
||||
|
||||
Testing is a critical part of the development process that ensures your code works as expected and meets the desired quality standards.
|
||||
In the LangChain ecosystem, we have 2 main types of tests: **unit tests** and **integration tests**.
|
||||
These standard tests help maintain compatibility between different components and ensure reliability.
|
||||
|
||||
**Unit Tests**: Unit tests are designed to validate the smallest parts of your code—individual functions or methods—ensuring they work as expected in isolation. They do not rely on external systems or integrations.
|
||||
|
||||
**Integration Tests**: Integration tests validate that multiple components or systems work together as expected. For tools or integrations relying on external services, these tests often ensure end-to-end functionality.
|
||||
|
||||
Each type of integration has its own set of standard tests. Please see the relevant [component-specific guide](#component-specific-guides) for details on testing your integration.
|
||||
|
||||
## Co-Marketing
|
||||
|
||||
With over 20 million monthly downloads, LangChain has a large audience of developers building LLM applications.
|
||||
Besides just adding integrations, we also like to show them examples of cool tools or APIs they can use.
|
||||
|
||||
While traditionally called "co-marketing", we like to think of this more as "co-education".
|
||||
For that reason, while we are happy to highlight your integration through our social media channels, we prefer to highlight examples that also serve some educational purpose.
|
||||
Our main social media channels are Twitter and LinkedIn.
|
||||
|
||||
Here are some heuristics for types of content we are excited to promote:
|
||||
|
||||
- **Integration announcement:** If you announce the integration with a link to the LangChain documentation page, we are happy to re-tweet/re-share on Twitter/LinkedIn.
|
||||
- **Educational content:** We highlight good educational content on the weekends - if you write a good blog or make a good YouTube video, we are happy to share there! Note that we prefer content that is NOT framed as "here's how to use integration XYZ", but rather "here's how to do ABC", as we find that is more educational and helpful for developers.
|
||||
- **End-to-end applications:** End-to-end applications are great resources for developers looking to build. We prefer to highlight applications that are more complex/agentic in nature, and that use [LangGraph](https://github.com/langchain-ai/langgraph) as the orchestration framework. We get particularly excited about anything involving long-term memory, human-in-the-loop interaction patterns, or multi-agent architectures.
|
||||
- **Research:** We love highlighting novel research! Whether it is research built on top of LangChain or that integrates with it.
|
||||
|
||||
// TODO: set up some form to gather these requests.
|
||||
@@ -1,6 +1,6 @@
|
||||
---
|
||||
pagination_next: contributing/how_to/integrations/standard_tests
|
||||
pagination_prev: contributing/how_to/integrations/index
|
||||
pagination_next: contributing/how_to/integrations/index
|
||||
pagination_prev: null
|
||||
---
|
||||
# How to bootstrap a new integration package
|
||||
|
||||
@@ -46,7 +46,7 @@ We will also add some `test` dependencies in a separate poetry dependency group.
|
||||
you are not using Poetry, we recommend adding these in a way that won't package them
|
||||
with your published package, or just installing them separately when you run tests.
|
||||
|
||||
`langchain-tests` will provide the [standard tests](../standard_tests) we will use later.
|
||||
`langchain-tests` will provide the [standard tests](/docs/contributing/how_to/integrations/#standard-tests) we will use later.
|
||||
We recommended pinning these to the latest version: <img src="https://img.shields.io/pypi/v/langchain-tests" style={{position:"relative",top:4,left:3}} />
|
||||
|
||||
Note: Replace `<latest_version>` with the latest version of `langchain-tests` below.
|
||||
@@ -64,203 +64,7 @@ poetry install --with test
|
||||
|
||||
You're now ready to start writing your integration package!
|
||||
|
||||
## Writing your integration
|
||||
|
||||
Let's say you're building a simple integration package that provides a `ChatParrotLink`
|
||||
chat model integration for LangChain. Here's a simple example of what your project
|
||||
structure might look like:
|
||||
|
||||
```plaintext
|
||||
langchain-parrot-link/
|
||||
├── langchain_parrot_link/
|
||||
│ ├── __init__.py
|
||||
│ └── chat_models.py
|
||||
├── tests/
|
||||
│ ├── __init__.py
|
||||
│ └── test_chat_models.py
|
||||
├── pyproject.toml
|
||||
└── README.md
|
||||
```
|
||||
|
||||
All of these files should already exist from step 1, except for
|
||||
`chat_models.py` and `test_chat_models.py`! We will implement `test_chat_models.py`
|
||||
later, following the [standard tests](../standard_tests) guide.
|
||||
|
||||
To implement `chat_models.py`, let's copy the implementation from our
|
||||
[Custom Chat Model Guide](../../../../how_to/custom_chat_model).
|
||||
|
||||
<details>
|
||||
<summary>chat_models.py</summary>
|
||||
```python title="langchain_parrot_link/chat_models.py"
|
||||
from typing import Any, Dict, Iterator, List, Optional
|
||||
|
||||
from langchain_core.callbacks import (
|
||||
CallbackManagerForLLMRun,
|
||||
)
|
||||
from langchain_core.language_models import BaseChatModel
|
||||
from langchain_core.messages import (
|
||||
AIMessage,
|
||||
AIMessageChunk,
|
||||
BaseMessage,
|
||||
)
|
||||
from langchain_core.messages.ai import UsageMetadata
|
||||
from langchain_core.outputs import ChatGeneration, ChatGenerationChunk, ChatResult
|
||||
from pydantic import Field
|
||||
|
||||
|
||||
class ChatParrotLink(BaseChatModel):
|
||||
"""A custom chat model that echoes the first `parrot_buffer_length` characters
|
||||
of the input.
|
||||
|
||||
When contributing an implementation to LangChain, carefully document
|
||||
the model including the initialization parameters, include
|
||||
an example of how to initialize the model and include any relevant
|
||||
links to the underlying models documentation or API.
|
||||
|
||||
Example:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
model = ChatParrotLink(parrot_buffer_length=2, model="bird-brain-001")
|
||||
result = model.invoke([HumanMessage(content="hello")])
|
||||
result = model.batch([[HumanMessage(content="hello")],
|
||||
[HumanMessage(content="world")]])
|
||||
"""
|
||||
|
||||
model_name: str = Field(alias="model")
|
||||
"""The name of the model"""
|
||||
parrot_buffer_length: int
|
||||
"""The number of characters from the last message of the prompt to be echoed."""
|
||||
temperature: Optional[float] = None
|
||||
max_tokens: Optional[int] = None
|
||||
timeout: Optional[int] = None
|
||||
stop: Optional[List[str]] = None
|
||||
max_retries: int = 2
|
||||
|
||||
def _generate(
|
||||
self,
|
||||
messages: List[BaseMessage],
|
||||
stop: Optional[List[str]] = None,
|
||||
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
||||
**kwargs: Any,
|
||||
) -> ChatResult:
|
||||
"""Override the _generate method to implement the chat model logic.
|
||||
|
||||
This can be a call to an API, a call to a local model, or any other
|
||||
implementation that generates a response to the input prompt.
|
||||
|
||||
Args:
|
||||
messages: the prompt composed of a list of messages.
|
||||
stop: a list of strings on which the model should stop generating.
|
||||
If generation stops due to a stop token, the stop token itself
|
||||
SHOULD BE INCLUDED as part of the output. This is not enforced
|
||||
across models right now, but it's a good practice to follow since
|
||||
it makes it much easier to parse the output of the model
|
||||
downstream and understand why generation stopped.
|
||||
run_manager: A run manager with callbacks for the LLM.
|
||||
"""
|
||||
# Replace this with actual logic to generate a response from a list
|
||||
# of messages.
|
||||
last_message = messages[-1]
|
||||
tokens = last_message.content[: self.parrot_buffer_length]
|
||||
ct_input_tokens = sum(len(message.content) for message in messages)
|
||||
ct_output_tokens = len(tokens)
|
||||
message = AIMessage(
|
||||
content=tokens,
|
||||
additional_kwargs={}, # Used to add additional payload to the message
|
||||
response_metadata={ # Use for response metadata
|
||||
"time_in_seconds": 3,
|
||||
},
|
||||
usage_metadata={
|
||||
"input_tokens": ct_input_tokens,
|
||||
"output_tokens": ct_output_tokens,
|
||||
"total_tokens": ct_input_tokens + ct_output_tokens,
|
||||
},
|
||||
)
|
||||
##
|
||||
|
||||
generation = ChatGeneration(message=message)
|
||||
return ChatResult(generations=[generation])
|
||||
|
||||
def _stream(
|
||||
self,
|
||||
messages: List[BaseMessage],
|
||||
stop: Optional[List[str]] = None,
|
||||
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
||||
**kwargs: Any,
|
||||
) -> Iterator[ChatGenerationChunk]:
|
||||
"""Stream the output of the model.
|
||||
|
||||
This method should be implemented if the model can generate output
|
||||
in a streaming fashion. If the model does not support streaming,
|
||||
do not implement it. In that case streaming requests will be automatically
|
||||
handled by the _generate method.
|
||||
|
||||
Args:
|
||||
messages: the prompt composed of a list of messages.
|
||||
stop: a list of strings on which the model should stop generating.
|
||||
If generation stops due to a stop token, the stop token itself
|
||||
SHOULD BE INCLUDED as part of the output. This is not enforced
|
||||
across models right now, but it's a good practice to follow since
|
||||
it makes it much easier to parse the output of the model
|
||||
downstream and understand why generation stopped.
|
||||
run_manager: A run manager with callbacks for the LLM.
|
||||
"""
|
||||
last_message = messages[-1]
|
||||
tokens = str(last_message.content[: self.parrot_buffer_length])
|
||||
ct_input_tokens = sum(len(message.content) for message in messages)
|
||||
|
||||
for token in tokens:
|
||||
usage_metadata = UsageMetadata(
|
||||
{
|
||||
"input_tokens": ct_input_tokens,
|
||||
"output_tokens": 1,
|
||||
"total_tokens": ct_input_tokens + 1,
|
||||
}
|
||||
)
|
||||
ct_input_tokens = 0
|
||||
chunk = ChatGenerationChunk(
|
||||
message=AIMessageChunk(content=token, usage_metadata=usage_metadata)
|
||||
)
|
||||
|
||||
if run_manager:
|
||||
# This is optional in newer versions of LangChain
|
||||
# The on_llm_new_token will be called automatically
|
||||
run_manager.on_llm_new_token(token, chunk=chunk)
|
||||
|
||||
yield chunk
|
||||
|
||||
# Let's add some other information (e.g., response metadata)
|
||||
chunk = ChatGenerationChunk(
|
||||
message=AIMessageChunk(content="", response_metadata={"time_in_sec": 3})
|
||||
)
|
||||
if run_manager:
|
||||
# This is optional in newer versions of LangChain
|
||||
# The on_llm_new_token will be called automatically
|
||||
run_manager.on_llm_new_token(token, chunk=chunk)
|
||||
yield chunk
|
||||
|
||||
@property
|
||||
def _llm_type(self) -> str:
|
||||
"""Get the type of language model used by this chat model."""
|
||||
return "echoing-chat-model-advanced"
|
||||
|
||||
@property
|
||||
def _identifying_params(self) -> Dict[str, Any]:
|
||||
"""Return a dictionary of identifying parameters.
|
||||
|
||||
This information is used by the LangChain callback system, which
|
||||
is used for tracing purposes make it possible to monitor LLMs.
|
||||
"""
|
||||
return {
|
||||
# The model name allows users to specify custom token counting
|
||||
# rules in LLM monitoring applications (e.g., in LangSmith users
|
||||
# can provide per token pricing for their model and monitor
|
||||
# costs for the given LLM.)
|
||||
"model_name": self.model_name,
|
||||
}
|
||||
```
|
||||
</details>
|
||||
See our [component-specific guides](/docs/contributing/how_to/integrations/#component-specific-guides) for detail on implementing and testing each component.
|
||||
|
||||
## Push your package to a public Github repository
|
||||
|
||||
@@ -272,4 +76,4 @@ This is only required if you want to publish your integration in the LangChain d
|
||||
|
||||
## Next Steps
|
||||
|
||||
Now that you've implemented your package, you can move on to [testing your integration](../standard_tests) for your integration and successfully run them.
|
||||
Now that you've bootstrapped your package, you can move on to [implementing and testing](/docs/contributing/how_to/integrations/#component-specific-guides) your integration.
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
---
|
||||
pagination_prev: contributing/how_to/integrations/standard_tests
|
||||
pagination_prev: contributing/how_to/integrations/index
|
||||
pagination_next: null
|
||||
---
|
||||
|
||||
@@ -12,7 +12,7 @@ Now that your package is implemented and tested, you can:
|
||||
|
||||
## Publishing your package to PyPi
|
||||
|
||||
This guide assumes you have already implemented your package and written tests for it. If you haven't done that yet, please refer to the [implementation guide](../package) and the [testing guide](../standard_tests).
|
||||
This guide assumes you have already implemented your package and written tests for it. If you haven't done that yet, please refer to the [component-specific guides](/docs/contributing/how_to/integrations/#component-specific-guides).
|
||||
|
||||
Note that Poetry is not required to publish a package to PyPi, and we're using it in this guide end-to-end for convenience.
|
||||
You are welcome to publish your package using any other method you prefer.
|
||||
|
||||
206
docs/docs/contributing/how_to/integrations/retriever_guide.md
Normal file
206
docs/docs/contributing/how_to/integrations/retriever_guide.md
Normal file
@@ -0,0 +1,206 @@
|
||||
---
|
||||
pagination_prev: contributing/how_to/integrations/index
|
||||
pagination_next: contributing/how_to/integrations/publish
|
||||
---
|
||||
# How to implement and test a retriever integration
|
||||
|
||||
In this guide, we'll implement and test a custom [retriever](/docs/concepts/retrievers) that you have integrated with LangChain.
|
||||
|
||||
For testing, we will rely on the `langchain-tests` dependency we added in the previous [package creation guide](/docs/contributing/how_to/integrations/package).
|
||||
|
||||
## Implementation
|
||||
|
||||
Let's say you're building a simple integration package that provides a `ToyRetriever`
|
||||
retriever integration for LangChain. Here's a simple example of what your project
|
||||
structure might look like:
|
||||
|
||||
```plaintext
|
||||
langchain-parrot-link/
|
||||
├── langchain_parrot_link/
|
||||
│ ├── __init__.py
|
||||
│ └── retrievers.py
|
||||
├── tests/
|
||||
│ └── integration_tests
|
||||
| ├── __init__.py
|
||||
| └── test_retrievers.py
|
||||
├── pyproject.toml
|
||||
└── README.md
|
||||
```
|
||||
|
||||
In this first step, we will implement the `retrievers.py` file
|
||||
|
||||
import CustomRetrieverIntro from '/docs/how_to/_custom_retriever_intro.mdx';
|
||||
|
||||
<CustomRetrieverIntro />
|
||||
|
||||
<details>
|
||||
<summary>retrievers.py</summary>
|
||||
```python title="langchain_parrot_link/retrievers.py"
|
||||
from typing import Any
|
||||
|
||||
from langchain_core.callbacks import CallbackManagerForRetrieverRun
|
||||
from langchain_core.documents import Document
|
||||
from langchain_core.retrievers import BaseRetriever
|
||||
|
||||
class ParrotRetriever(BaseRetriever):
|
||||
parrot_name: str
|
||||
k: int = 3
|
||||
|
||||
def _get_relevant_documents(
|
||||
self, query: str, *, run_manager: CallbackManagerForRetrieverRun, **kwargs: Any
|
||||
) -> list[Document]:
|
||||
k = kwargs.get("k", self.k)
|
||||
return [Document(page_content=f"{self.parrot_name} says: {query}")] * k
|
||||
```
|
||||
</details>
|
||||
|
||||
:::tip
|
||||
|
||||
The `ParrotRetriever` from this guide is tested
|
||||
against the standard unit and integration tests in the LangChain Github repository.
|
||||
You can always use this as a starting point [here](https://github.com/langchain-ai/langchain/blob/master/libs/standard-tests/tests/unit_tests/test_basic_retriever.py).
|
||||
|
||||
:::
|
||||
|
||||
## Testing
|
||||
|
||||
|
||||
|
||||
### 1. Create Your Retriever Class
|
||||
|
||||
```python
|
||||
from langchain.schema import BaseRetriever, Document
|
||||
from langchain.callbacks.manager import CallbackManagerForRetrieverRun
|
||||
|
||||
class MyCustomRetriever(BaseRetriever):
|
||||
"""Custom retriever implementation."""
|
||||
|
||||
def _get_relevant_documents(
|
||||
self, query: str, *, run_manager: CallbackManagerForRetrieverRun
|
||||
) -> List[Document]:
|
||||
"""Core implementation of retrieving relevant documents."""
|
||||
# Your implementation here
|
||||
pass
|
||||
|
||||
async def _aget_relevant_documents(
|
||||
self, query: str, *, run_manager: CallbackManagerForRetrieverRun
|
||||
) -> List[Document]:
|
||||
"""Async implementation of retrieving relevant documents."""
|
||||
# Your async implementation here
|
||||
pass
|
||||
```
|
||||
|
||||
### 2. Required Testing
|
||||
|
||||
All retrievers must include the following tests:
|
||||
|
||||
#### Basic Functionality Tests
|
||||
```python
|
||||
def test_get_relevant_documents():
|
||||
retriever = MyCustomRetriever()
|
||||
docs = retriever.get_relevant_documents("test query")
|
||||
assert isinstance(docs, list)
|
||||
assert all(isinstance(doc, Document) for doc in docs)
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_aget_relevant_documents():
|
||||
retriever = MyCustomRetriever()
|
||||
docs = await retriever.aget_relevant_documents("test query")
|
||||
assert isinstance(docs, list)
|
||||
assert all(isinstance(doc, Document) for doc in docs)
|
||||
```
|
||||
|
||||
#### Edge Cases
|
||||
- Empty query handling
|
||||
- Special character handling
|
||||
- Long query handling
|
||||
- Rate limiting (if applicable)
|
||||
- Error handling
|
||||
|
||||
### 3. Documentation Requirements
|
||||
|
||||
Your retriever should include:
|
||||
|
||||
1. Class docstring with:
|
||||
- General description
|
||||
- Required dependencies
|
||||
- Example usage
|
||||
- Parameters explanation
|
||||
|
||||
2. Integration documentation file:
|
||||
- Installation instructions
|
||||
- Basic usage example
|
||||
- Advanced configuration
|
||||
- Common issues and solutions
|
||||
|
||||
### 4. Best Practices
|
||||
|
||||
1. **Error Handling**
|
||||
- Implement proper error handling for API calls
|
||||
- Provide meaningful error messages
|
||||
- Handle rate limits gracefully
|
||||
|
||||
2. **Performance**
|
||||
- Implement caching when appropriate
|
||||
- Use batch operations where possible
|
||||
- Consider implementing both sync and async methods
|
||||
|
||||
3. **Configuration**
|
||||
- Use environment variables for sensitive data
|
||||
- Provide sensible defaults
|
||||
- Allow for customization of key parameters
|
||||
|
||||
4. **Type Hints**
|
||||
- Use proper type hints throughout your code
|
||||
- Document expected types in docstrings
|
||||
|
||||
## Example Implementation
|
||||
|
||||
Here's a minimal example of a custom retriever:
|
||||
|
||||
```python
|
||||
from typing import List
|
||||
from langchain.schema import BaseRetriever, Document
|
||||
from langchain.callbacks.manager import CallbackManagerForRetrieverRun
|
||||
|
||||
class SimpleKeywordRetriever(BaseRetriever):
|
||||
"""A simple retriever that matches documents based on keywords."""
|
||||
|
||||
documents: List[Document] # Store your documents here
|
||||
|
||||
def _get_relevant_documents(
|
||||
self, query: str, *, run_manager: CallbackManagerForRetrieverRun
|
||||
) -> List[Document]:
|
||||
"""Return documents that contain the query string."""
|
||||
return [
|
||||
doc for doc in self.documents
|
||||
if query.lower() in doc.page_content.lower()
|
||||
]
|
||||
|
||||
async def _aget_relevant_documents(
|
||||
self, query: str, *, run_manager: CallbackManagerForRetrieverRun
|
||||
) -> List[Document]:
|
||||
"""Async version of get_relevant_documents."""
|
||||
return self._get_relevant_documents(query, run_manager=run_manager)
|
||||
```
|
||||
|
||||
## Submission Checklist
|
||||
|
||||
- [ ] Implemented base retriever interface
|
||||
- [ ] Added comprehensive tests
|
||||
- [ ] Included proper documentation
|
||||
- [ ] Added type hints
|
||||
- [ ] Handled error cases
|
||||
- [ ] Implemented both sync and async methods
|
||||
- [ ] Added example usage
|
||||
- [ ] Followed code style guidelines
|
||||
- [ ] Added requirements.txt or setup.py updates
|
||||
|
||||
## Getting Help
|
||||
|
||||
If you need help while implementing your retriever:
|
||||
1. Check existing retriever implementations for reference
|
||||
2. Open a discussion in the GitHub repository
|
||||
3. Ask in the LangChain Discord community
|
||||
|
||||
Remember to follow the existing patterns in the codebase and maintain consistency with other retrievers.
|
||||
207
docs/docs/contributing/how_to/integrations/retriever_tests.md
Normal file
207
docs/docs/contributing/how_to/integrations/retriever_tests.md
Normal file
@@ -0,0 +1,207 @@
|
||||
# Standard Tests for LangChain Retrievers
|
||||
|
||||
This guide outlines the standard tests that should be implemented for all LangChain retrievers.
|
||||
|
||||
## Test Structure
|
||||
|
||||
### 1. Basic Functionality Tests
|
||||
|
||||
```python
|
||||
import pytest
|
||||
from langchain.schema import Document
|
||||
from your_retriever import YourRetriever
|
||||
|
||||
def test_basic_retrieval():
|
||||
"""Test basic document retrieval functionality."""
|
||||
retriever = YourRetriever()
|
||||
query = "test query"
|
||||
docs = retriever.get_relevant_documents(query)
|
||||
|
||||
assert isinstance(docs, list)
|
||||
assert all(isinstance(doc, Document) for doc in docs)
|
||||
assert len(docs) > 0 # Adjust if your retriever might return empty results
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_async_retrieval():
|
||||
"""Test async document retrieval functionality."""
|
||||
retriever = YourRetriever()
|
||||
query = "test query"
|
||||
docs = await retriever.aget_relevant_documents(query)
|
||||
|
||||
assert isinstance(docs, list)
|
||||
assert all(isinstance(doc, Document) for doc in docs)
|
||||
```
|
||||
|
||||
### 2. Edge Cases
|
||||
|
||||
```python
|
||||
def test_empty_query():
|
||||
"""Test behavior with empty query."""
|
||||
retriever = YourRetriever()
|
||||
docs = retriever.get_relevant_documents("")
|
||||
assert isinstance(docs, list)
|
||||
|
||||
def test_special_characters():
|
||||
"""Test handling of special characters."""
|
||||
retriever = YourRetriever()
|
||||
special_queries = [
|
||||
"test!@#$%^&*()",
|
||||
"múltiple áccents",
|
||||
"中文测试",
|
||||
"test\nwith\nnewlines",
|
||||
]
|
||||
for query in special_queries:
|
||||
docs = retriever.get_relevant_documents(query)
|
||||
assert isinstance(docs, list)
|
||||
|
||||
def test_long_query():
|
||||
"""Test handling of very long queries."""
|
||||
retriever = YourRetriever()
|
||||
long_query = "test " * 1000
|
||||
docs = retriever.get_relevant_documents(long_query)
|
||||
assert isinstance(docs, list)
|
||||
```
|
||||
|
||||
### 3. Error Handling
|
||||
|
||||
```python
|
||||
def test_invalid_configuration():
|
||||
"""Test behavior with invalid configuration."""
|
||||
with pytest.raises(ValueError):
|
||||
YourRetriever(invalid_param="invalid")
|
||||
|
||||
def test_connection_error():
|
||||
"""Test behavior when connection fails (if applicable)."""
|
||||
retriever = YourRetriever()
|
||||
# Mock connection failure
|
||||
with pytest.raises(ConnectionError):
|
||||
retriever.get_relevant_documents("test")
|
||||
```
|
||||
|
||||
### 4. Performance Tests (Optional)
|
||||
|
||||
```python
|
||||
@pytest.mark.slow
|
||||
def test_large_scale_retrieval():
|
||||
"""Test retrieval with a large number of documents."""
|
||||
retriever = YourRetriever()
|
||||
# Test with a significant number of documents
|
||||
docs = retriever.get_relevant_documents("test")
|
||||
assert len(docs) <= YOUR_MAX_LIMIT # If applicable
|
||||
|
||||
@pytest.mark.slow
|
||||
def test_concurrent_requests():
|
||||
"""Test handling of concurrent requests."""
|
||||
import asyncio
|
||||
|
||||
async def run_concurrent_requests():
|
||||
retriever = YourRetriever()
|
||||
tasks = [
|
||||
retriever.aget_relevant_documents("test")
|
||||
for _ in range(5)
|
||||
]
|
||||
results = await asyncio.gather(*tasks)
|
||||
return results
|
||||
|
||||
results = asyncio.run(run_concurrent_requests())
|
||||
assert len(results) == 5
|
||||
```
|
||||
|
||||
### 5. Integration Tests
|
||||
|
||||
```python
|
||||
def test_chain_integration():
|
||||
"""Test integration with LangChain chains."""
|
||||
from langchain.chains import RetrievalQA
|
||||
from langchain.llms import FakeLLM
|
||||
|
||||
retriever = YourRetriever()
|
||||
llm = FakeLLM()
|
||||
qa_chain = RetrievalQA.from_chain_type(
|
||||
llm=llm,
|
||||
retriever=retriever,
|
||||
chain_type="stuff"
|
||||
)
|
||||
result = qa_chain.run("test query")
|
||||
assert isinstance(result, str)
|
||||
```
|
||||
|
||||
## Test Configuration
|
||||
|
||||
```python
|
||||
# conftest.py
|
||||
import pytest
|
||||
|
||||
def pytest_configure(config):
|
||||
config.addinivalue_line(
|
||||
"markers", "slow: marks tests as slow (deselect with '-m \"not slow\"')"
|
||||
)
|
||||
|
||||
@pytest.fixture
|
||||
def sample_documents():
|
||||
"""Fixture providing sample documents for testing."""
|
||||
return [
|
||||
Document(page_content="test document 1", metadata={"source": "test1"}),
|
||||
Document(page_content="test document 2", metadata={"source": "test2"}),
|
||||
]
|
||||
|
||||
@pytest.fixture
|
||||
def mock_retriever(sample_documents):
|
||||
"""Fixture providing a retriever with sample documents."""
|
||||
retriever = YourRetriever()
|
||||
# Set up retriever with sample documents
|
||||
return retriever
|
||||
```
|
||||
|
||||
## Running Tests
|
||||
|
||||
To run the tests:
|
||||
|
||||
```bash
|
||||
# Run all tests
|
||||
pytest tests/retrievers/test_your_retriever.py
|
||||
|
||||
# Run only fast tests
|
||||
pytest tests/retrievers/test_your_retriever.py -m "not slow"
|
||||
|
||||
# Run with coverage
|
||||
pytest tests/retrievers/test_your_retriever.py --cov=your_retriever
|
||||
```
|
||||
|
||||
## Best Practices
|
||||
|
||||
1. **Isolation**: Each test should be independent and not rely on the state from other tests.
|
||||
|
||||
2. **Mocking**: Use mocks for external services to avoid actual API calls during testing:
|
||||
```python
|
||||
@pytest.fixture
|
||||
def mock_api(mocker):
|
||||
return mocker.patch("your_retriever.api_client")
|
||||
```
|
||||
|
||||
3. **Parametrization**: Use pytest.mark.parametrize for testing multiple scenarios:
|
||||
```python
|
||||
@pytest.mark.parametrize("query,expected_count", [
|
||||
("test", 1),
|
||||
("invalid", 0),
|
||||
("multiple words", 2),
|
||||
])
|
||||
def test_retrieval_counts(query, expected_count):
|
||||
retriever = YourRetriever()
|
||||
docs = retriever.get_relevant_documents(query)
|
||||
assert len(docs) == expected_count
|
||||
```
|
||||
|
||||
4. **Documentation**: Include docstrings in test functions explaining what they test.
|
||||
|
||||
5. **Coverage**: Aim for high test coverage, especially for core functionality.
|
||||
|
||||
## Common Pitfalls
|
||||
|
||||
1. Not testing error cases
|
||||
2. Not testing async functionality
|
||||
3. Not handling rate limits in tests
|
||||
4. Missing edge cases
|
||||
5. Relying on external services in unit tests
|
||||
|
||||
Remember to adapt these tests based on your retriever's specific functionality and requirements.
|
||||
@@ -1,497 +0,0 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "raw",
|
||||
"metadata": {
|
||||
"vscode": {
|
||||
"languageId": "raw"
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
"---\n",
|
||||
"pagination_next: contributing/how_to/integrations/publish\n",
|
||||
"pagination_prev: contributing/how_to/integrations/package\n",
|
||||
"---"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# How to add standard tests to an integration\n",
|
||||
"\n",
|
||||
"When creating either a custom class for yourself or to publish in a LangChain integration, it is important to add standard tests to ensure it works as expected. This guide will show you how to add standard tests to a custom chat model, and you can **[Skip to the test templates](#standard-test-templates-per-component)** for implementing tests for each integration type.\n",
|
||||
"\n",
|
||||
"## Setup\n",
|
||||
"\n",
|
||||
"If you're coming from the [previous guide](../package), you have already installed these dependencies, and you can skip this section.\n",
|
||||
"\n",
|
||||
"First, let's install 2 dependencies:\n",
|
||||
"\n",
|
||||
"- `langchain-core` will define the interfaces we want to import to define our custom tool.\n",
|
||||
"- `langchain-tests` will provide the standard tests we want to use. Recommended to pin to the latest version: <img src=\"https://img.shields.io/pypi/v/langchain-tests\" style={{position:\"relative\",top:4,left:3}} />\n",
|
||||
"\n",
|
||||
":::note\n",
|
||||
"\n",
|
||||
"Because added tests in new versions of `langchain-tests` can break your CI/CD pipelines, we recommend pinning the \n",
|
||||
"version of `langchain-tests` to avoid unexpected changes.\n",
|
||||
"\n",
|
||||
":::\n",
|
||||
"\n",
|
||||
"import Tabs from '@theme/Tabs';\n",
|
||||
"import TabItem from '@theme/TabItem';\n",
|
||||
"\n",
|
||||
"<Tabs>\n",
|
||||
" <TabItem value=\"poetry\" label=\"Poetry\" default>\n",
|
||||
"If you followed the [previous guide](../package), you should already have these dependencies installed!\n",
|
||||
"\n",
|
||||
"```bash\n",
|
||||
"poetry add langchain-core\n",
|
||||
"poetry add --group test pytest pytest-socket pytest-asyncio langchain-tests==<latest_version>\n",
|
||||
"poetry install --with test\n",
|
||||
"```\n",
|
||||
" </TabItem>\n",
|
||||
" <TabItem value=\"pip\" label=\"Pip\">\n",
|
||||
"```bash\n",
|
||||
"pip install -U langchain-core pytest pytest-socket pytest-asyncio langchain-tests\n",
|
||||
"\n",
|
||||
"# install current package in editable mode\n",
|
||||
"pip install --editable .\n",
|
||||
"```\n",
|
||||
" </TabItem>\n",
|
||||
"</Tabs>"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Let's say we're publishing a package, `langchain_parrot_link`, that exposes the chat model from the [guide on implementing the package](../package). We can add the standard tests to the package by following the steps below."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"And we'll assume you've structured your package the same way as the main LangChain\n",
|
||||
"packages:\n",
|
||||
"\n",
|
||||
"```plaintext\n",
|
||||
"langchain-parrot-link/\n",
|
||||
"├── langchain_parrot_link/\n",
|
||||
"│ ├── __init__.py\n",
|
||||
"│ └── chat_models.py\n",
|
||||
"├── tests/\n",
|
||||
"│ ├── __init__.py\n",
|
||||
"│ └── test_chat_models.py\n",
|
||||
"├── pyproject.toml\n",
|
||||
"└── README.md\n",
|
||||
"```\n",
|
||||
"\n",
|
||||
"## Add and configure standard tests\n",
|
||||
"\n",
|
||||
"There are 2 namespaces in the `langchain-tests` package: \n",
|
||||
"\n",
|
||||
"- [unit tests](../../../concepts/testing.mdx#unit-tests) (`langchain_tests.unit_tests`): designed to be used to test the component in isolation and without access to external services\n",
|
||||
"- [integration tests](../../../concepts/testing.mdx#unit-tests) (`langchain_tests.integration_tests`): designed to be used to test the component with access to external services (in particular, the external service that the component is designed to interact with).\n",
|
||||
"\n",
|
||||
"Both types of tests are implemented as [`pytest` class-based test suites](https://docs.pytest.org/en/7.1.x/getting-started.html#group-multiple-tests-in-a-class).\n",
|
||||
"\n",
|
||||
"By subclassing the base classes for each type of standard test (see below), you get all of the standard tests for that type, and you\n",
|
||||
"can override the properties that the test suite uses to configure the tests.\n",
|
||||
"\n",
|
||||
"### Standard chat model tests\n",
|
||||
"\n",
|
||||
"Here's how you would configure the standard unit tests for the custom chat model:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# title=\"tests/unit_tests/test_chat_models.py\"\n",
|
||||
"from typing import Tuple, Type\n",
|
||||
"\n",
|
||||
"from langchain_parrot_link.chat_models import ChatParrotLink\n",
|
||||
"from langchain_tests.unit_tests import ChatModelUnitTests\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"class TestChatParrotLinkUnit(ChatModelUnitTests):\n",
|
||||
" @property\n",
|
||||
" def chat_model_class(self) -> Type[ChatParrotLink]:\n",
|
||||
" return ChatParrotLink\n",
|
||||
"\n",
|
||||
" @property\n",
|
||||
" def chat_model_params(self) -> dict:\n",
|
||||
" return {\n",
|
||||
" \"model\": \"bird-brain-001\",\n",
|
||||
" \"temperature\": 0,\n",
|
||||
" \"parrot_buffer_length\": 50,\n",
|
||||
" }"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# title=\"tests/integration_tests/test_chat_models.py\"\n",
|
||||
"from typing import Type\n",
|
||||
"\n",
|
||||
"from langchain_parrot_link.chat_models import ChatParrotLink\n",
|
||||
"from langchain_tests.integration_tests import ChatModelIntegrationTests\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"class TestChatParrotLinkIntegration(ChatModelIntegrationTests):\n",
|
||||
" @property\n",
|
||||
" def chat_model_class(self) -> Type[ChatParrotLink]:\n",
|
||||
" return ChatParrotLink\n",
|
||||
"\n",
|
||||
" @property\n",
|
||||
" def chat_model_params(self) -> dict:\n",
|
||||
" return {\n",
|
||||
" \"model\": \"bird-brain-001\",\n",
|
||||
" \"temperature\": 0,\n",
|
||||
" \"parrot_buffer_length\": 50,\n",
|
||||
" }"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"and you would run these with the following commands from your project root\n",
|
||||
"\n",
|
||||
"<Tabs>\n",
|
||||
" <TabItem value=\"poetry\" label=\"Poetry\" default>\n",
|
||||
"\n",
|
||||
"```bash\n",
|
||||
"# run unit tests without network access\n",
|
||||
"poetry run pytest --disable-socket --allow-unix-socket --asyncio-mode=auto tests/unit_tests\n",
|
||||
"\n",
|
||||
"# run integration tests\n",
|
||||
"poetry run pytest --asyncio-mode=auto tests/integration_tests\n",
|
||||
"```\n",
|
||||
"\n",
|
||||
" </TabItem>\n",
|
||||
" <TabItem value=\"pip\" label=\"Pip\">\n",
|
||||
"\n",
|
||||
"```bash\n",
|
||||
"# run unit tests without network access\n",
|
||||
"pytest --disable-socket --allow-unix-socket --asyncio-mode=auto tests/unit_tests\n",
|
||||
"\n",
|
||||
"# run integration tests\n",
|
||||
"pytest --asyncio-mode=auto tests/integration_tests\n",
|
||||
"```\n",
|
||||
"\n",
|
||||
" </TabItem>\n",
|
||||
"</Tabs>"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Test suite information and troubleshooting\n",
|
||||
"\n",
|
||||
"For a full list of the standard test suites that are available, as well as\n",
|
||||
"information on which tests are included and how to troubleshoot common issues,\n",
|
||||
"see the [Standard Tests API Reference](https://python.langchain.com/api_reference/standard_tests/index.html).\n",
|
||||
"\n",
|
||||
"An increasing number of troubleshooting guides are being added to this documentation,\n",
|
||||
"and if you're interested in contributing, feel free to add docstrings to tests in \n",
|
||||
"[Github](https://github.com/langchain-ai/langchain/tree/master/libs/standard-tests/langchain_tests)!"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Standard test templates per component:\n",
|
||||
"\n",
|
||||
"Above, we implement the **unit** and **integration** standard tests for a tool. Below are the templates for implementing the standard tests for each component:\n",
|
||||
"\n",
|
||||
"<details>\n",
|
||||
" <summary>Chat Models</summary>\n",
|
||||
" <p>Note: The standard tests for chat models are implemented in the example in the main body of this guide too.</p>"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# title=\"tests/unit_tests/test_chat_models.py\"\n",
|
||||
"from typing import Type\n",
|
||||
"\n",
|
||||
"from langchain_parrot_link.chat_models import ChatParrotLink\n",
|
||||
"from langchain_tests.unit_tests import ChatModelUnitTests\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"class TestChatParrotLinkUnit(ChatModelUnitTests):\n",
|
||||
" @property\n",
|
||||
" def chat_model_class(self) -> Type[ChatParrotLink]:\n",
|
||||
" return ChatParrotLink\n",
|
||||
"\n",
|
||||
" @property\n",
|
||||
" def chat_model_params(self) -> dict:\n",
|
||||
" return {\n",
|
||||
" \"model\": \"bird-brain-001\",\n",
|
||||
" \"temperature\": 0,\n",
|
||||
" \"parrot_buffer_length\": 50,\n",
|
||||
" }"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# title=\"tests/integration_tests/test_chat_models.py\"\n",
|
||||
"from typing import Type\n",
|
||||
"\n",
|
||||
"from langchain_parrot_link.chat_models import ChatParrotLink\n",
|
||||
"from langchain_tests.integration_tests import ChatModelIntegrationTests\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"class TestChatParrotLinkIntegration(ChatModelIntegrationTests):\n",
|
||||
" @property\n",
|
||||
" def chat_model_class(self) -> Type[ChatParrotLink]:\n",
|
||||
" return ChatParrotLink\n",
|
||||
"\n",
|
||||
" @property\n",
|
||||
" def chat_model_params(self) -> dict:\n",
|
||||
" return {\n",
|
||||
" \"model\": \"bird-brain-001\",\n",
|
||||
" \"temperature\": 0,\n",
|
||||
" \"parrot_buffer_length\": 50,\n",
|
||||
" }"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"</details>\n",
|
||||
"<details>\n",
|
||||
" <summary>Embedding Models</summary>"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# title=\"tests/unit_tests/test_embeddings.py\"\n",
|
||||
"from typing import Tuple, Type\n",
|
||||
"\n",
|
||||
"from langchain_parrot_link.embeddings import ParrotLinkEmbeddings\n",
|
||||
"from langchain_tests.unit_tests import EmbeddingsUnitTests\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"class TestParrotLinkEmbeddingsUnit(EmbeddingsUnitTests):\n",
|
||||
" @property\n",
|
||||
" def embeddings_class(self) -> Type[ParrotLinkEmbeddings]:\n",
|
||||
" return ParrotLinkEmbeddings\n",
|
||||
"\n",
|
||||
" @property\n",
|
||||
" def embedding_model_params(self) -> dict:\n",
|
||||
" return {\"model\": \"nest-embed-001\", \"temperature\": 0}"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# title=\"tests/integration_tests/test_embeddings.py\"\n",
|
||||
"from typing import Type\n",
|
||||
"\n",
|
||||
"from langchain_parrot_link.embeddings import ParrotLinkEmbeddings\n",
|
||||
"from langchain_tests.integration_tests import EmbeddingsIntegrationTests\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"class TestParrotLinkEmbeddingsIntegration(EmbeddingsIntegrationTests):\n",
|
||||
" @property\n",
|
||||
" def embeddings_class(self) -> Type[ParrotLinkEmbeddings]:\n",
|
||||
" return ParrotLinkEmbeddings\n",
|
||||
"\n",
|
||||
" @property\n",
|
||||
" def embedding_model_params(self) -> dict:\n",
|
||||
" return {\"model\": \"nest-embed-001\"}"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"</details>\n",
|
||||
"<details>\n",
|
||||
" <summary>Tools/Toolkits</summary>"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# title=\"tests/unit_tests/test_tools.py\"\n",
|
||||
"from typing import Type\n",
|
||||
"\n",
|
||||
"from langchain_parrot_link.tools import ParrotMultiplyTool\n",
|
||||
"from langchain_tests.unit_tests import ToolsUnitTests\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"class TestParrotMultiplyToolUnit(ToolsUnitTests):\n",
|
||||
" @property\n",
|
||||
" def tool_constructor(self) -> Type[ParrotMultiplyTool]:\n",
|
||||
" return ParrotMultiplyTool\n",
|
||||
"\n",
|
||||
" @property\n",
|
||||
" def tool_constructor_params(self) -> dict:\n",
|
||||
" # if your tool constructor instead required initialization arguments like\n",
|
||||
" # `def __init__(self, some_arg: int):`, you would return those here\n",
|
||||
" # as a dictionary, e.g.: `return {'some_arg': 42}`\n",
|
||||
" return {}\n",
|
||||
"\n",
|
||||
" @property\n",
|
||||
" def tool_invoke_params_example(self) -> dict:\n",
|
||||
" \"\"\"\n",
|
||||
" Returns a dictionary representing the \"args\" of an example tool call.\n",
|
||||
"\n",
|
||||
" This should NOT be a ToolCall dict - i.e. it should not\n",
|
||||
" have {\"name\", \"id\", \"args\"} keys.\n",
|
||||
" \"\"\"\n",
|
||||
" return {\"a\": 2, \"b\": 3}"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# title=\"tests/integration_tests/test_tools.py\"\n",
|
||||
"from typing import Type\n",
|
||||
"\n",
|
||||
"from langchain_parrot_link.tools import ParrotMultiplyTool\n",
|
||||
"from langchain_tests.integration_tests import ToolsIntegrationTests\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"class TestParrotMultiplyToolIntegration(ToolsIntegrationTests):\n",
|
||||
" @property\n",
|
||||
" def tool_constructor(self) -> Type[ParrotMultiplyTool]:\n",
|
||||
" return ParrotMultiplyTool\n",
|
||||
"\n",
|
||||
" @property\n",
|
||||
" def tool_constructor_params(self) -> dict:\n",
|
||||
" # if your tool constructor instead required initialization arguments like\n",
|
||||
" # `def __init__(self, some_arg: int):`, you would return those here\n",
|
||||
" # as a dictionary, e.g.: `return {'some_arg': 42}`\n",
|
||||
" return {}\n",
|
||||
"\n",
|
||||
" @property\n",
|
||||
" def tool_invoke_params_example(self) -> dict:\n",
|
||||
" \"\"\"\n",
|
||||
" Returns a dictionary representing the \"args\" of an example tool call.\n",
|
||||
"\n",
|
||||
" This should NOT be a ToolCall dict - i.e. it should not\n",
|
||||
" have {\"name\", \"id\", \"args\"} keys.\n",
|
||||
" \"\"\"\n",
|
||||
" return {\"a\": 2, \"b\": 3}"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"</details>\n",
|
||||
"<details>\n",
|
||||
" <summary>Vector Stores</summary>"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# title=\"tests/integration_tests/test_vectorstores_sync.py\"\n",
|
||||
"\n",
|
||||
"from typing import AsyncGenerator, Generator\n",
|
||||
"\n",
|
||||
"import pytest\n",
|
||||
"from langchain_core.vectorstores import VectorStore\n",
|
||||
"from langchain_parrot_link.vectorstores import ParrotVectorStore\n",
|
||||
"from langchain_standard_tests.integration_tests.vectorstores import (\n",
|
||||
" AsyncReadWriteTestSuite,\n",
|
||||
" ReadWriteTestSuite,\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"class TestSync(ReadWriteTestSuite):\n",
|
||||
" @pytest.fixture()\n",
|
||||
" def vectorstore(self) -> Generator[VectorStore, None, None]: # type: ignore\n",
|
||||
" \"\"\"Get an empty vectorstore for unit tests.\"\"\"\n",
|
||||
" store = ParrotVectorStore()\n",
|
||||
" # note: store should be EMPTY at this point\n",
|
||||
" # if you need to delete data, you may do so here\n",
|
||||
" try:\n",
|
||||
" yield store\n",
|
||||
" finally:\n",
|
||||
" # cleanup operations, or deleting data\n",
|
||||
" pass\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"class TestAsync(AsyncReadWriteTestSuite):\n",
|
||||
" @pytest.fixture()\n",
|
||||
" async def vectorstore(self) -> AsyncGenerator[VectorStore, None]: # type: ignore\n",
|
||||
" \"\"\"Get an empty vectorstore for unit tests.\"\"\"\n",
|
||||
" store = ParrotVectorStore()\n",
|
||||
" # note: store should be EMPTY at this point\n",
|
||||
" # if you need to delete data, you may do so here\n",
|
||||
" try:\n",
|
||||
" yield store\n",
|
||||
" finally:\n",
|
||||
" # cleanup operations, or deleting data\n",
|
||||
" pass"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"</details>"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": ".venv",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.11.4"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 2
|
||||
}
|
||||
593
docs/docs/contributing/how_to/integrations/vector_stores.mdx
Normal file
593
docs/docs/contributing/how_to/integrations/vector_stores.mdx
Normal file
@@ -0,0 +1,593 @@
|
||||
---
|
||||
pagination_next: contributing/how_to/integrations/publish
|
||||
pagination_prev: contributing/how_to/integrations/index
|
||||
---
|
||||
# How to implement and test a vector store integration
|
||||
|
||||
This guide walks through how to implement and test a custom [vector store](/docs/concepts/vectorstores) that you have developed.
|
||||
|
||||
For testing, we will rely on the `langchain-tests` dependency we added in the previous [bootstrapping guide](/docs/contributing/how_to/integrations/package).
|
||||
|
||||
## Implementation
|
||||
|
||||
Let's say you're building a simple integration package that provides a `ParrotVectorStore`
|
||||
vector store integration for LangChain. Here's a simple example of what your project
|
||||
structure might look like:
|
||||
|
||||
```plaintext
|
||||
langchain-parrot-link/
|
||||
├── langchain_parrot_link/
|
||||
│ ├── __init__.py
|
||||
│ └── vectorstores.py
|
||||
├── tests/
|
||||
│ ├── __init__.py
|
||||
│ └── test_vectorstores.py
|
||||
├── pyproject.toml
|
||||
└── README.md
|
||||
```
|
||||
|
||||
Following the [bootstrapping guide](/docs/contributing/how_to/integrations/package),
|
||||
all of these files should already exist, except for
|
||||
`vectorstores.py` and `test_vectorstores.py`. We will implement these files in this guide.
|
||||
|
||||
First we need an implementation for our vector store. This implementation will depend
|
||||
on your chosen database technology. `langchain-core` includes a minimal
|
||||
[in-memory vector store](https://python.langchain.com/api_reference/core/vectorstores/langchain_core.vectorstores.in_memory.InMemoryVectorStore.html)
|
||||
that we can use as a guide. You can access the code [here](https://github.com/langchain-ai/langchain/blob/master/libs/core/langchain_core/vectorstores/in_memory.py).
|
||||
For convenience, we also provide it below.
|
||||
|
||||
<details>
|
||||
<summary>vectorstores.py</summary>
|
||||
```python title="langchain_parrot_link/vectorstores.py"
|
||||
from __future__ import annotations
|
||||
|
||||
import json
|
||||
import uuid
|
||||
from collections.abc import Iterator, Sequence
|
||||
from pathlib import Path
|
||||
from typing import Any, Callable, Optional
|
||||
|
||||
from langchain_core.documents import Document
|
||||
from langchain_core.embeddings import Embeddings
|
||||
from langchain_core.load import dumpd, load
|
||||
from langchain_core.vectorstores import VectorStore
|
||||
from langchain_core.vectorstores.utils import _cosine_similarity as cosine_similarity
|
||||
from langchain_core.vectorstores.utils import maximal_marginal_relevance
|
||||
|
||||
|
||||
class InMemoryVectorStore(VectorStore):
|
||||
"""In-memory vector store implementation.
|
||||
|
||||
Uses a dictionary, and computes cosine similarity for search using numpy.
|
||||
"""
|
||||
|
||||
def __init__(self, embedding: Embeddings) -> None:
|
||||
"""Initialize with the given embedding function.
|
||||
|
||||
Args:
|
||||
embedding: embedding function to use.
|
||||
"""
|
||||
self.store: dict[str, dict[str, Any]] = {}
|
||||
self.embedding = embedding
|
||||
|
||||
@property
|
||||
def embeddings(self) -> Embeddings:
|
||||
return self.embedding
|
||||
|
||||
def delete(self, ids: Optional[Sequence[str]] = None, **kwargs: Any) -> None:
|
||||
if ids:
|
||||
for _id in ids:
|
||||
self.store.pop(_id, None)
|
||||
|
||||
async def adelete(self, ids: Optional[Sequence[str]] = None, **kwargs: Any) -> None:
|
||||
self.delete(ids)
|
||||
|
||||
def add_documents(
|
||||
self,
|
||||
documents: list[Document],
|
||||
ids: Optional[list[str]] = None,
|
||||
**kwargs: Any,
|
||||
) -> list[str]:
|
||||
"""Add documents to the store."""
|
||||
texts = [doc.page_content for doc in documents]
|
||||
vectors = self.embedding.embed_documents(texts)
|
||||
|
||||
if ids and len(ids) != len(texts):
|
||||
msg = (
|
||||
f"ids must be the same length as texts. "
|
||||
f"Got {len(ids)} ids and {len(texts)} texts."
|
||||
)
|
||||
raise ValueError(msg)
|
||||
|
||||
id_iterator: Iterator[Optional[str]] = (
|
||||
iter(ids) if ids else iter(doc.id for doc in documents)
|
||||
)
|
||||
|
||||
ids_ = []
|
||||
|
||||
for doc, vector in zip(documents, vectors):
|
||||
doc_id = next(id_iterator)
|
||||
doc_id_ = doc_id if doc_id else str(uuid.uuid4())
|
||||
ids_.append(doc_id_)
|
||||
self.store[doc_id_] = {
|
||||
"id": doc_id_,
|
||||
"vector": vector,
|
||||
"text": doc.page_content,
|
||||
"metadata": doc.metadata,
|
||||
}
|
||||
|
||||
return ids_
|
||||
|
||||
async def aadd_documents(
|
||||
self, documents: list[Document], ids: Optional[list[str]] = None, **kwargs: Any
|
||||
) -> list[str]:
|
||||
"""Add documents to the store."""
|
||||
texts = [doc.page_content for doc in documents]
|
||||
vectors = await self.embedding.aembed_documents(texts)
|
||||
|
||||
if ids and len(ids) != len(texts):
|
||||
msg = (
|
||||
f"ids must be the same length as texts. "
|
||||
f"Got {len(ids)} ids and {len(texts)} texts."
|
||||
)
|
||||
raise ValueError(msg)
|
||||
|
||||
id_iterator: Iterator[Optional[str]] = (
|
||||
iter(ids) if ids else iter(doc.id for doc in documents)
|
||||
)
|
||||
ids_: list[str] = []
|
||||
|
||||
for doc, vector in zip(documents, vectors):
|
||||
doc_id = next(id_iterator)
|
||||
doc_id_ = doc_id if doc_id else str(uuid.uuid4())
|
||||
ids_.append(doc_id_)
|
||||
self.store[doc_id_] = {
|
||||
"id": doc_id_,
|
||||
"vector": vector,
|
||||
"text": doc.page_content,
|
||||
"metadata": doc.metadata,
|
||||
}
|
||||
|
||||
return ids_
|
||||
|
||||
def get_by_ids(self, ids: Sequence[str], /) -> list[Document]:
|
||||
"""Get documents by their ids.
|
||||
|
||||
Args:
|
||||
ids: The ids of the documents to get.
|
||||
|
||||
Returns:
|
||||
A list of Document objects.
|
||||
"""
|
||||
documents = []
|
||||
|
||||
for doc_id in ids:
|
||||
doc = self.store.get(doc_id)
|
||||
if doc:
|
||||
documents.append(
|
||||
Document(
|
||||
id=doc["id"],
|
||||
page_content=doc["text"],
|
||||
metadata=doc["metadata"],
|
||||
)
|
||||
)
|
||||
return documents
|
||||
|
||||
async def aget_by_ids(self, ids: Sequence[str], /) -> list[Document]:
|
||||
"""Async get documents by their ids.
|
||||
|
||||
Args:
|
||||
ids: The ids of the documents to get.
|
||||
|
||||
Returns:
|
||||
A list of Document objects.
|
||||
"""
|
||||
return self.get_by_ids(ids)
|
||||
|
||||
def _similarity_search_with_score_by_vector(
|
||||
self,
|
||||
embedding: list[float],
|
||||
k: int = 4,
|
||||
filter: Optional[Callable[[Document], bool]] = None,
|
||||
**kwargs: Any,
|
||||
) -> list[tuple[Document, float, list[float]]]:
|
||||
# get all docs with fixed order in list
|
||||
docs = list(self.store.values())
|
||||
|
||||
if filter is not None:
|
||||
docs = [
|
||||
doc
|
||||
for doc in docs
|
||||
if filter(Document(page_content=doc["text"], metadata=doc["metadata"]))
|
||||
]
|
||||
|
||||
if not docs:
|
||||
return []
|
||||
|
||||
similarity = cosine_similarity([embedding], [doc["vector"] for doc in docs])[0]
|
||||
|
||||
# get the indices ordered by similarity score
|
||||
top_k_idx = similarity.argsort()[::-1][:k]
|
||||
|
||||
return [
|
||||
(
|
||||
Document(
|
||||
id=doc_dict["id"],
|
||||
page_content=doc_dict["text"],
|
||||
metadata=doc_dict["metadata"],
|
||||
),
|
||||
float(similarity[idx].item()),
|
||||
doc_dict["vector"],
|
||||
)
|
||||
for idx in top_k_idx
|
||||
# Assign using walrus operator to avoid multiple lookups
|
||||
if (doc_dict := docs[idx])
|
||||
]
|
||||
|
||||
def similarity_search_with_score_by_vector(
|
||||
self,
|
||||
embedding: list[float],
|
||||
k: int = 4,
|
||||
filter: Optional[Callable[[Document], bool]] = None,
|
||||
**kwargs: Any,
|
||||
) -> list[tuple[Document, float]]:
|
||||
return [
|
||||
(doc, similarity)
|
||||
for doc, similarity, _ in self._similarity_search_with_score_by_vector(
|
||||
embedding=embedding, k=k, filter=filter, **kwargs
|
||||
)
|
||||
]
|
||||
|
||||
def similarity_search_with_score(
|
||||
self,
|
||||
query: str,
|
||||
k: int = 4,
|
||||
**kwargs: Any,
|
||||
) -> list[tuple[Document, float]]:
|
||||
embedding = self.embedding.embed_query(query)
|
||||
docs = self.similarity_search_with_score_by_vector(
|
||||
embedding,
|
||||
k,
|
||||
**kwargs,
|
||||
)
|
||||
return docs
|
||||
|
||||
async def asimilarity_search_with_score(
|
||||
self, query: str, k: int = 4, **kwargs: Any
|
||||
) -> list[tuple[Document, float]]:
|
||||
embedding = await self.embedding.aembed_query(query)
|
||||
docs = self.similarity_search_with_score_by_vector(
|
||||
embedding,
|
||||
k,
|
||||
**kwargs,
|
||||
)
|
||||
return docs
|
||||
|
||||
def similarity_search_by_vector(
|
||||
self,
|
||||
embedding: list[float],
|
||||
k: int = 4,
|
||||
**kwargs: Any,
|
||||
) -> list[Document]:
|
||||
docs_and_scores = self.similarity_search_with_score_by_vector(
|
||||
embedding,
|
||||
k,
|
||||
**kwargs,
|
||||
)
|
||||
return [doc for doc, _ in docs_and_scores]
|
||||
|
||||
async def asimilarity_search_by_vector(
|
||||
self, embedding: list[float], k: int = 4, **kwargs: Any
|
||||
) -> list[Document]:
|
||||
return self.similarity_search_by_vector(embedding, k, **kwargs)
|
||||
|
||||
def similarity_search(
|
||||
self, query: str, k: int = 4, **kwargs: Any
|
||||
) -> list[Document]:
|
||||
return [doc for doc, _ in self.similarity_search_with_score(query, k, **kwargs)]
|
||||
|
||||
async def asimilarity_search(
|
||||
self, query: str, k: int = 4, **kwargs: Any
|
||||
) -> list[Document]:
|
||||
return [
|
||||
doc
|
||||
for doc, _ in await self.asimilarity_search_with_score(query, k, **kwargs)
|
||||
]
|
||||
|
||||
def max_marginal_relevance_search_by_vector(
|
||||
self,
|
||||
embedding: list[float],
|
||||
k: int = 4,
|
||||
fetch_k: int = 20,
|
||||
lambda_mult: float = 0.5,
|
||||
**kwargs: Any,
|
||||
) -> list[Document]:
|
||||
prefetch_hits = self._similarity_search_with_score_by_vector(
|
||||
embedding=embedding,
|
||||
k=fetch_k,
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
try:
|
||||
import numpy as np
|
||||
except ImportError as e:
|
||||
msg = (
|
||||
"numpy must be installed to use max_marginal_relevance_search "
|
||||
"pip install numpy"
|
||||
)
|
||||
raise ImportError(msg) from e
|
||||
|
||||
mmr_chosen_indices = maximal_marginal_relevance(
|
||||
np.array(embedding, dtype=np.float32),
|
||||
[vector for _, _, vector in prefetch_hits],
|
||||
k=k,
|
||||
lambda_mult=lambda_mult,
|
||||
)
|
||||
return [prefetch_hits[idx][0] for idx in mmr_chosen_indices]
|
||||
|
||||
def max_marginal_relevance_search(
|
||||
self,
|
||||
query: str,
|
||||
k: int = 4,
|
||||
fetch_k: int = 20,
|
||||
lambda_mult: float = 0.5,
|
||||
**kwargs: Any,
|
||||
) -> list[Document]:
|
||||
embedding_vector = self.embedding.embed_query(query)
|
||||
return self.max_marginal_relevance_search_by_vector(
|
||||
embedding_vector,
|
||||
k,
|
||||
fetch_k,
|
||||
lambda_mult=lambda_mult,
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
async def amax_marginal_relevance_search(
|
||||
self,
|
||||
query: str,
|
||||
k: int = 4,
|
||||
fetch_k: int = 20,
|
||||
lambda_mult: float = 0.5,
|
||||
**kwargs: Any,
|
||||
) -> list[Document]:
|
||||
embedding_vector = await self.embedding.aembed_query(query)
|
||||
return self.max_marginal_relevance_search_by_vector(
|
||||
embedding_vector,
|
||||
k,
|
||||
fetch_k,
|
||||
lambda_mult=lambda_mult,
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def from_texts(
|
||||
cls,
|
||||
texts: list[str],
|
||||
embedding: Embeddings,
|
||||
metadatas: Optional[list[dict]] = None,
|
||||
**kwargs: Any,
|
||||
) -> InMemoryVectorStore:
|
||||
store = cls(
|
||||
embedding=embedding,
|
||||
)
|
||||
store.add_texts(texts=texts, metadatas=metadatas, **kwargs)
|
||||
return store
|
||||
|
||||
@classmethod
|
||||
async def afrom_texts(
|
||||
cls,
|
||||
texts: list[str],
|
||||
embedding: Embeddings,
|
||||
metadatas: Optional[list[dict]] = None,
|
||||
**kwargs: Any,
|
||||
) -> InMemoryVectorStore:
|
||||
store = cls(
|
||||
embedding=embedding,
|
||||
)
|
||||
await store.aadd_texts(texts=texts, metadatas=metadatas, **kwargs)
|
||||
return store
|
||||
|
||||
@classmethod
|
||||
def load(
|
||||
cls, path: str, embedding: Embeddings, **kwargs: Any
|
||||
) -> InMemoryVectorStore:
|
||||
"""Load a vector store from a file.
|
||||
|
||||
Args:
|
||||
path: The path to load the vector store from.
|
||||
embedding: The embedding to use.
|
||||
kwargs: Additional arguments to pass to the constructor.
|
||||
|
||||
Returns:
|
||||
A VectorStore object.
|
||||
"""
|
||||
_path: Path = Path(path)
|
||||
with _path.open("r") as f:
|
||||
store = load(json.load(f))
|
||||
vectorstore = cls(embedding=embedding, **kwargs)
|
||||
vectorstore.store = store
|
||||
return vectorstore
|
||||
|
||||
def dump(self, path: str) -> None:
|
||||
"""Dump the vector store to a file.
|
||||
|
||||
Args:
|
||||
path: The path to dump the vector store to.
|
||||
"""
|
||||
_path: Path = Path(path)
|
||||
_path.parent.mkdir(exist_ok=True, parents=True)
|
||||
with _path.open("w") as f:
|
||||
json.dump(dumpd(self.store), f, indent=2)
|
||||
|
||||
```
|
||||
</details>
|
||||
|
||||
All vector stores must inherit from the [VectorStore](https://python.langchain.com/api_reference/core/vectorstores/langchain_core.vectorstores.base.VectorStore.html)
|
||||
base class. This interface consists of methods for writing, deleting and searching
|
||||
for documents in the vector store.
|
||||
|
||||
`VectorStore` supports a variety of synchronous and asynchronous search types (e.g.,
|
||||
nearest-neighbor or maximum marginal relevance), as well as interfaces for adding
|
||||
documents to the store. See the [API Reference](https://python.langchain.com/api_reference/core/vectorstores/langchain_core.vectorstores.base.VectorStore.html)
|
||||
for all supported methods. The required methods are tabulated below:
|
||||
|
||||
| Method/Property | Description |
|
||||
|------------------------ |------------------------------------------------------|
|
||||
| `add_documents` | Add documents to the vector store. |
|
||||
| `delete` | Delete selected documents from vector store (by IDs) |
|
||||
| `get_by_ids` | Get selected documents from vector store (by IDs) |
|
||||
| `similarity_search` | Get documents most similar to a query. |
|
||||
| `embeddings` (property) | Embeddings object for vector store. |
|
||||
| `from_texts` | Instantiate vector store via adding texts. |
|
||||
|
||||
Note that `InMemoryVectorStore` implements some optional search types, as well as
|
||||
convenience methods for loading and dumping the object to a file, but this is not
|
||||
necessary for all implementations.
|
||||
|
||||
:::tip
|
||||
|
||||
The in-memory vector store is tested against the standard tests in the LangChain
|
||||
Github repository. You can always use this as a starting point.
|
||||
|
||||
- [Model implementation](https://github.com/langchain-ai/langchain/blob/master/libs/core/langchain_core/vectorstores/in_memory.py)
|
||||
- [Tests](https://github.com/langchain-ai/langchain/blob/master/libs/standard-tests/tests/unit_tests/test_in_memory_vectorstore.py)
|
||||
|
||||
:::
|
||||
|
||||
## Testing
|
||||
|
||||
To implement our test files, we will subclass test classes from the `langchain_tests`
|
||||
package. These test classes contain the tests that will be run. We will just need to
|
||||
configure what vector store implementation is tested.
|
||||
|
||||
### Setup
|
||||
|
||||
First we need to install certain dependencies. These include:
|
||||
|
||||
- `pytest`: For running tests
|
||||
- `pytest-asyncio`: For testing async functionality
|
||||
- `langchain-tests`: For importing standard tests
|
||||
- `langchain-core`: This should already be installed, but is needed to define our integration.
|
||||
|
||||
If you followed the previous [bootstrapping guide](/docs/contributing/how_to/integrations/package/),
|
||||
these should already be installed.
|
||||
|
||||
### Add and configure standard tests
|
||||
|
||||
The `langchain-test` package implements suites of tests for testing vector store
|
||||
integrations. By subclassing the base classes for each standard test, you
|
||||
get all of the standard tests for that type.
|
||||
|
||||
:::note
|
||||
|
||||
The full set of tests that run can be found in the API reference. See details:
|
||||
|
||||
- [Sync tests API reference](https://python.langchain.com/api_reference/standard_tests/integration_tests/langchain_tests.integration_tests.vectorstores.ReadWriteTestSuite.html)
|
||||
- [Async tests API reference](https://python.langchain.com/api_reference/standard_tests/integration_tests/langchain_tests.integration_tests.vectorstores.AsyncReadWriteTestSuite.html)
|
||||
|
||||
:::
|
||||
|
||||
Here's how you would configure the standard tests for a typical vector store (using
|
||||
`ParrotVectorStore` as a placeholder):
|
||||
|
||||
```python
|
||||
# title="tests/integration_tests/test_vectorstores.py"
|
||||
|
||||
from typing import AsyncGenerator, Generator
|
||||
|
||||
import pytest
|
||||
from langchain_core.vectorstores import VectorStore
|
||||
from langchain_parrot_link.vectorstores import ParrotVectorStore
|
||||
from langchain_tests.integration_tests.vectorstores import (
|
||||
AsyncReadWriteTestSuite,
|
||||
ReadWriteTestSuite,
|
||||
)
|
||||
|
||||
|
||||
class TestSync(ReadWriteTestSuite):
|
||||
@pytest.fixture()
|
||||
def vectorstore(self) -> Generator[VectorStore, None, None]: # type: ignore
|
||||
"""Get an empty vectorstore."""
|
||||
store = ParrotVectorStore(self.get_embeddings())
|
||||
# note: store should be EMPTY at this point
|
||||
# if you need to delete data, you may do so here
|
||||
try:
|
||||
yield store
|
||||
finally:
|
||||
# cleanup operations, or deleting data
|
||||
pass
|
||||
|
||||
|
||||
class TestAsync(AsyncReadWriteTestSuite):
|
||||
@pytest.fixture()
|
||||
async def vectorstore(self) -> AsyncGenerator[VectorStore, None]: # type: ignore
|
||||
"""Get an empty vectorstore."""
|
||||
store = ParrotVectorStore(self.get_embeddings())
|
||||
# note: store should be EMPTY at this point
|
||||
# if you need to delete data, you may do so here
|
||||
try:
|
||||
yield store
|
||||
finally:
|
||||
# cleanup operations, or deleting data
|
||||
pass
|
||||
```
|
||||
|
||||
There are separate suites for testing synchronous and asynchronous methods.
|
||||
Configuring the tests consists of implementing pytest fixtures for setting up an
|
||||
empty vector store and tearing down the vector store after the test run ends.
|
||||
|
||||
For example, below is the `ReadWriteTestSuite` for the [Chroma](https://python.langchain.com/docs/integrations/vectorstores/chroma/)
|
||||
integration:
|
||||
|
||||
```python
|
||||
from typing import Generator
|
||||
|
||||
import pytest
|
||||
from langchain_core.vectorstores import VectorStore
|
||||
from langchain_tests.integration_tests.vectorstores import ReadWriteTestSuite
|
||||
|
||||
from langchain_chroma import Chroma
|
||||
|
||||
|
||||
class TestSync(ReadWriteTestSuite):
|
||||
@pytest.fixture()
|
||||
def vectorstore(self) -> Generator[VectorStore, None, None]: # type: ignore
|
||||
"""Get an empty vectorstore."""
|
||||
store = Chroma(embedding_function=self.get_embeddings())
|
||||
try:
|
||||
yield store
|
||||
finally:
|
||||
store.delete_collection()
|
||||
pass
|
||||
```
|
||||
|
||||
Note that before the initial `yield`, we instantiate the vector store with an
|
||||
[embeddings](/docs/concepts/embedding_models/) object. This is a pre-defined
|
||||
["fake" embeddings model](https://python.langchain.com/api_reference/standard_tests/integration_tests/langchain_tests.integration_tests.vectorstores.ReadWriteTestSuite.html#langchain_tests.integration_tests.vectorstores.ReadWriteTestSuite.get_embeddings)
|
||||
that will generate short, arbitrary vectors for documents. You can use a different
|
||||
embeddings object if desired.
|
||||
|
||||
In the `finally` block, we call whatever integration-specific logic is needed to
|
||||
bring the vector store to a clean state. This logic is executed in between each test
|
||||
(e.g., even if tests fail).
|
||||
|
||||
### Run standard tests
|
||||
|
||||
After setting tests up, you would run them with the following command from your project root:
|
||||
|
||||
```shell
|
||||
pytest --asyncio-mode=auto tests/integration_tests
|
||||
```
|
||||
|
||||
### Test suite information and troubleshooting
|
||||
|
||||
Each test method documents:
|
||||
|
||||
1. Troubleshooting tips;
|
||||
2. (If applicable) how test can be skipped.
|
||||
|
||||
This information along with the full set of tests that run can be found in the API
|
||||
reference. See details:
|
||||
|
||||
- [Sync tests API reference](https://python.langchain.com/api_reference/standard_tests/integration_tests/langchain_tests.integration_tests.vectorstores.ReadWriteTestSuite.html)
|
||||
- [Async tests API reference](https://python.langchain.com/api_reference/standard_tests/integration_tests/langchain_tests.integration_tests.vectorstores.AsyncReadWriteTestSuite.html)
|
||||
@@ -17,7 +17,6 @@ More coming soon! We are working on tutorials to help you make your first contri
|
||||
- [**Documentation**](how_to/documentation/index.mdx): Help improve our docs, including this one!
|
||||
- [**Code**](how_to/code/index.mdx): Help us write code, fix bugs, or improve our infrastructure.
|
||||
- [**Integrations**](how_to/integrations/index.mdx): Help us integrate with your favorite vendors and tools.
|
||||
- [**Standard Tests**](how_to/integrations/standard_tests): Ensure your integration passes an expected set of tests.
|
||||
|
||||
## Reference
|
||||
|
||||
|
||||
23
docs/docs/how_to/_custom_retriever_intro.mdx
Normal file
23
docs/docs/how_to/_custom_retriever_intro.mdx
Normal file
@@ -0,0 +1,23 @@
|
||||
To create your own retriever, you need to extend the `BaseRetriever` class and implement the following methods:
|
||||
|
||||
| Method | Description | Required/Optional |
|
||||
|--------------------------------|--------------------------------------------------|-------------------|
|
||||
| `_get_relevant_documents` | Get documents relevant to a query. | Required |
|
||||
| `_aget_relevant_documents` | Implement to provide async native support. | Optional |
|
||||
|
||||
|
||||
The logic inside of `_get_relevant_documents` can involve arbitrary calls to a database or to the web using requests.
|
||||
|
||||
:::tip
|
||||
By inherting from `BaseRetriever`, your retriever automatically becomes a LangChain [Runnable](/docs/concepts/runnables) and will gain the standard `Runnable` functionality out of the box!
|
||||
:::
|
||||
|
||||
|
||||
:::info
|
||||
You can use a `RunnableLambda` or `RunnableGenerator` to implement a retriever.
|
||||
|
||||
The main benefit of implementing a retriever as a `BaseRetriever` vs. a `RunnableLambda` (a custom [runnable function](/docs/how_to/functions)) is that a `BaseRetriever` is a well
|
||||
known LangChain entity so some tooling for monitoring may implement specialized behavior for retrievers. Another difference
|
||||
is that a `BaseRetriever` will behave slightly differently from `RunnableLambda` in some APIs; e.g., the `start` event
|
||||
in `astream_events` API will be `on_retriever_start` instead of `on_chain_start`.
|
||||
:::
|
||||
@@ -27,29 +27,9 @@
|
||||
"\n",
|
||||
"## Interface\n",
|
||||
"\n",
|
||||
"To create your own retriever, you need to extend the `BaseRetriever` class and implement the following methods:\n",
|
||||
"import CustomRetrieverIntro from './_custom_retriever_intro.mdx';\n",
|
||||
"\n",
|
||||
"| Method | Description | Required/Optional |\n",
|
||||
"|--------------------------------|--------------------------------------------------|-------------------|\n",
|
||||
"| `_get_relevant_documents` | Get documents relevant to a query. | Required |\n",
|
||||
"| `_aget_relevant_documents` | Implement to provide async native support. | Optional |\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"The logic inside of `_get_relevant_documents` can involve arbitrary calls to a database or to the web using requests.\n",
|
||||
"\n",
|
||||
":::tip\n",
|
||||
"By inherting from `BaseRetriever`, your retriever automatically becomes a LangChain [Runnable](/docs/concepts/runnables) and will gain the standard `Runnable` functionality out of the box!\n",
|
||||
":::\n",
|
||||
"\n",
|
||||
"\n",
|
||||
":::info\n",
|
||||
"You can use a `RunnableLambda` or `RunnableGenerator` to implement a retriever.\n",
|
||||
"\n",
|
||||
"The main benefit of implementing a retriever as a `BaseRetriever` vs. a `RunnableLambda` (a custom [runnable function](/docs/how_to/functions)) is that a `BaseRetriever` is a well\n",
|
||||
"known LangChain entity so some tooling for monitoring may implement specialized behavior for retrievers. Another difference\n",
|
||||
"is that a `BaseRetriever` will behave slightly differently from `RunnableLambda` in some APIs; e.g., the `start` event\n",
|
||||
"in `astream_events` API will be `on_retriever_start` instead of `on_chain_start`.\n",
|
||||
":::\n"
|
||||
"<CustomRetrieverIntro />"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
||||
@@ -39,7 +39,7 @@
|
||||
"### Credentials\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"A valid [API key](https://console.mistral.ai/users/api-keys/) is needed to communicate with the API. Once you've done this set the MISTRAL_API_KEY environment variable:"
|
||||
"A valid [API key](https://console.mistral.ai/api-keys/) is needed to communicate with the API. Once you've done this set the MISTRAL_API_KEY environment variable:"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
||||
@@ -32,7 +32,7 @@ For a more detailed walkthrough of the Pinecone vectorstore, see [this notebook]
|
||||
### Pinecone Hybrid Search
|
||||
|
||||
```bash
|
||||
pip install pinecone-client pinecone-text
|
||||
pip install pinecone pinecone-text
|
||||
```
|
||||
|
||||
```python
|
||||
|
||||
@@ -24,7 +24,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"%pip install --upgrade --quiet pinecone-client pinecone-text pinecone-notebooks"
|
||||
"%pip install --upgrade --quiet pinecone pinecone-text pinecone-notebooks"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
||||
@@ -245,7 +245,7 @@
|
||||
"\n",
|
||||
"import EmbeddingTabs from \"@theme/EmbeddingTabs\";\n",
|
||||
"\n",
|
||||
"<EmbeddingTabs customVarName=\"embeddings_model\" />"
|
||||
"<EmbeddingTabs customVarName=\"embeddings\" />"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
||||
@@ -15,6 +15,7 @@ import CodeBlock from "@theme-original/CodeBlock";
|
||||
* @property {string} [googleParams] - Parameters for Google chat model. Defaults to `model="gemini-pro"`
|
||||
* @property {string} [togetherParams] - Parameters for Together chat model. Defaults to `model="mistralai/Mixtral-8x7B-Instruct-v0.1"`
|
||||
* @property {string} [nvidiaParams] - Parameters for Nvidia NIM model. Defaults to `model="meta/llama3-70b-instruct"`
|
||||
* @property {string} [databricksParams] - Parameters for Databricks model. Defaults to `endpoint="databricks-meta-llama-3-1-70b-instruct"`
|
||||
* @property {string} [awsBedrockParams] - Parameters for AWS Bedrock chat model.
|
||||
* @property {boolean} [hideOpenai] - Whether or not to hide OpenAI chat model.
|
||||
* @property {boolean} [hideAnthropic] - Whether or not to hide Anthropic chat model.
|
||||
@@ -27,6 +28,7 @@ import CodeBlock from "@theme-original/CodeBlock";
|
||||
* @property {boolean} [hideAzure] - Whether or not to hide Microsoft Azure OpenAI chat model.
|
||||
* @property {boolean} [hideNvidia] - Whether or not to hide NVIDIA NIM model.
|
||||
* @property {boolean} [hideAWS] - Whether or not to hide AWS models.
|
||||
* @property {boolean} [hideDatabricks] - Whether or not to hide Databricks models.
|
||||
* @property {string} [customVarName] - Custom variable name for the model. Defaults to `model`.
|
||||
*/
|
||||
|
||||
@@ -46,6 +48,7 @@ export default function ChatModelTabs(props) {
|
||||
azureParams,
|
||||
nvidiaParams,
|
||||
awsBedrockParams,
|
||||
databricksParams,
|
||||
hideOpenai,
|
||||
hideAnthropic,
|
||||
hideCohere,
|
||||
@@ -57,6 +60,7 @@ export default function ChatModelTabs(props) {
|
||||
hideAzure,
|
||||
hideNvidia,
|
||||
hideAWS,
|
||||
hideDatabricks,
|
||||
customVarName,
|
||||
} = props;
|
||||
|
||||
@@ -79,6 +83,7 @@ export default function ChatModelTabs(props) {
|
||||
`\n azure_endpoint=os.environ["AZURE_OPENAI_ENDPOINT"],\n azure_deployment=os.environ["AZURE_OPENAI_DEPLOYMENT_NAME"],\n openai_api_version=os.environ["AZURE_OPENAI_API_VERSION"],\n`;
|
||||
const nvidiaParamsOrDefault = nvidiaParams ?? `model="meta/llama3-70b-instruct"`
|
||||
const awsBedrockParamsOrDefault = awsBedrockParams ?? `model="anthropic.claude-3-5-sonnet-20240620-v1:0",\n beta_use_converse_api=True`;
|
||||
const databricksParamsOrDefault = databricksParams ?? `endpoint="databricks-meta-llama-3-1-70b-instruct"`
|
||||
|
||||
const llmVarName = customVarName ?? "model";
|
||||
|
||||
@@ -182,6 +187,15 @@ export default function ChatModelTabs(props) {
|
||||
default: false,
|
||||
shouldHide: hideTogether,
|
||||
},
|
||||
{
|
||||
value: "Databricks",
|
||||
label: "Databricks",
|
||||
text: `from databricks_langchain import ChatDatabricks\n\nos.environ["DATABRICKS_HOST"] = "https://example.staging.cloud.databricks.com/serving-endpoints"\n\n${llmVarName} = ChatDatabricks(${databricksParamsOrDefault})`,
|
||||
apiKeyName: "DATABRICKS_TOKEN",
|
||||
packageName: "databricks-langchain",
|
||||
default: false,
|
||||
shouldHide: hideDatabricks,
|
||||
},
|
||||
];
|
||||
|
||||
return (
|
||||
|
||||
@@ -113,6 +113,10 @@
|
||||
{
|
||||
"source": "/docs/contributing/:path((?:faq|repo_structure|review_process)/?)",
|
||||
"destination": "/docs/contributing/reference/:path"
|
||||
},
|
||||
{
|
||||
"source": "/docs/contributing/how_to/integrations/standard_tests(/?)",
|
||||
"destination": "/docs/contributing/how_to/integrations/#standard-tests"
|
||||
}
|
||||
]
|
||||
}
|
||||
|
||||
@@ -91,6 +91,8 @@ def convert_dict_to_message(_dict: Mapping[str, Any]) -> BaseMessage:
|
||||
additional_kwargs["function_call"] = dict(function_call)
|
||||
if tool_calls := _dict.get("tool_calls"):
|
||||
additional_kwargs["tool_calls"] = tool_calls
|
||||
if context := _dict.get("context"):
|
||||
additional_kwargs["context"] = context
|
||||
return AIMessage(content=content, additional_kwargs=additional_kwargs)
|
||||
elif role == "system":
|
||||
return SystemMessage(content=_dict.get("content", ""))
|
||||
@@ -135,6 +137,11 @@ def convert_message_to_dict(message: BaseMessage) -> dict:
|
||||
# If tool calls only, content is None not empty string
|
||||
if message_dict["content"] == "":
|
||||
message_dict["content"] = None
|
||||
if "context" in message.additional_kwargs:
|
||||
message_dict["context"] = message.additional_kwargs["context"]
|
||||
# If context only, content is None not empty string
|
||||
if message_dict["content"] == "":
|
||||
message_dict["content"] = None
|
||||
elif isinstance(message, SystemMessage):
|
||||
message_dict = {"role": "system", "content": message.content}
|
||||
elif isinstance(message, FunctionMessage):
|
||||
|
||||
@@ -31,7 +31,7 @@ def _import_pinecone() -> Any:
|
||||
except ImportError as e:
|
||||
raise ImportError(
|
||||
"Could not import pinecone python package. "
|
||||
"Please install it with `pip install pinecone-client`."
|
||||
"Please install it with `pip3 install pinecone`."
|
||||
) from e
|
||||
return pinecone
|
||||
|
||||
@@ -48,7 +48,7 @@ def _is_pinecone_v3() -> bool:
|
||||
class Pinecone(VectorStore):
|
||||
"""`Pinecone` vector store.
|
||||
|
||||
To use, you should have the ``pinecone-client`` python package installed.
|
||||
To use, you should have the ``pinecone`` python package installed.
|
||||
|
||||
This version of Pinecone is deprecated. Please use `langchain_pinecone.Pinecone`
|
||||
instead.
|
||||
|
||||
@@ -1,10 +1,10 @@
|
||||
[build-system]
|
||||
requires = ["poetry-core>=1.0.0"]
|
||||
requires = [ "poetry-core>=1.0.0",]
|
||||
build-backend = "poetry.core.masonry.api"
|
||||
|
||||
[tool.poetry]
|
||||
name = "langchain-community"
|
||||
version = "0.3.8"
|
||||
version = "0.3.9"
|
||||
description = "Community contributed LangChain integrations."
|
||||
authors = []
|
||||
license = "MIT"
|
||||
@@ -12,15 +12,12 @@ readme = "README.md"
|
||||
repository = "https://github.com/langchain-ai/langchain"
|
||||
|
||||
[tool.ruff]
|
||||
exclude = [
|
||||
"tests/examples/non-utf8-encoding.py",
|
||||
"tests/integration_tests/examples/non-utf8-encoding.py",
|
||||
]
|
||||
exclude = [ "tests/examples/non-utf8-encoding.py", "tests/integration_tests/examples/non-utf8-encoding.py",]
|
||||
|
||||
[tool.mypy]
|
||||
ignore_missing_imports = "True"
|
||||
disallow_untyped_defs = "True"
|
||||
exclude = ["notebooks", "examples", "example_data"]
|
||||
exclude = [ "notebooks", "examples", "example_data",]
|
||||
|
||||
[tool.codespell]
|
||||
skip = ".git,*.pdf,*.svg,*.pdf,*.yaml,*.ipynb,poetry.lock,*.min.js,*.css,package-lock.json,example_data,_dist,examples,*.trig"
|
||||
@@ -53,24 +50,16 @@ version = ">=1.26.2,<3"
|
||||
python = ">=3.12"
|
||||
|
||||
[tool.ruff.lint]
|
||||
select = ["E", "F", "I", "T201"]
|
||||
select = [ "E", "F", "I", "T201",]
|
||||
|
||||
[tool.coverage.run]
|
||||
omit = ["tests/*"]
|
||||
omit = [ "tests/*",]
|
||||
|
||||
[tool.pytest.ini_options]
|
||||
addopts = "--strict-markers --strict-config --durations=5 --snapshot-warn-unused -vv"
|
||||
markers = [
|
||||
"requires: mark tests as requiring a specific library",
|
||||
"scheduled: mark tests to run in scheduled testing",
|
||||
"compile: mark placeholder test used to compile integration tests without running them",
|
||||
]
|
||||
markers = [ "requires: mark tests as requiring a specific library", "scheduled: mark tests to run in scheduled testing", "compile: mark placeholder test used to compile integration tests without running them",]
|
||||
asyncio_mode = "auto"
|
||||
filterwarnings = [
|
||||
"ignore::langchain_core._api.beta_decorator.LangChainBetaWarning",
|
||||
"ignore::langchain_core._api.deprecation.LangChainDeprecationWarning:test",
|
||||
"ignore::langchain_core._api.deprecation.LangChainPendingDeprecationWarning:test",
|
||||
]
|
||||
filterwarnings = [ "ignore::langchain_core._api.beta_decorator.LangChainBetaWarning", "ignore::langchain_core._api.deprecation.LangChainDeprecationWarning:test", "ignore::langchain_core._api.deprecation.LangChainPendingDeprecationWarning:test",]
|
||||
|
||||
[tool.poetry.group.test]
|
||||
optional = true
|
||||
|
||||
@@ -556,6 +556,8 @@ def merge_message_runs(
|
||||
else:
|
||||
last_chunk = _msg_to_chunk(last)
|
||||
curr_chunk = _msg_to_chunk(curr)
|
||||
if curr_chunk.response_metadata:
|
||||
curr_chunk.response_metadata.clear()
|
||||
if (
|
||||
isinstance(last_chunk.content, str)
|
||||
and isinstance(curr_chunk.content, str)
|
||||
|
||||
@@ -59,6 +59,24 @@ def test_merge_message_runs_str_without_separator(
|
||||
assert messages == messages_model_copy
|
||||
|
||||
|
||||
def test_merge_message_runs_response_metadata() -> None:
|
||||
messages = [
|
||||
AIMessage("foo", id="1", response_metadata={"input_tokens": 1}),
|
||||
AIMessage("bar", id="2", response_metadata={"input_tokens": 2}),
|
||||
]
|
||||
expected = [
|
||||
AIMessage(
|
||||
"foo\nbar",
|
||||
id="1",
|
||||
response_metadata={"input_tokens": 1},
|
||||
)
|
||||
]
|
||||
actual = merge_message_runs(messages)
|
||||
assert actual == expected
|
||||
# Check it's not mutated
|
||||
assert messages[1].response_metadata == {"input_tokens": 2}
|
||||
|
||||
|
||||
def test_merge_message_runs_content() -> None:
|
||||
messages = [
|
||||
AIMessage("foo", id="1"),
|
||||
|
||||
@@ -353,7 +353,9 @@ def _convert_message_to_mistral_chat_message(
|
||||
"role": "tool",
|
||||
"content": message.content,
|
||||
"name": message.name,
|
||||
"tool_call_id": message.tool_call_id,
|
||||
"tool_call_id": _convert_tool_call_id_to_mistral_compatible(
|
||||
message.tool_call_id
|
||||
),
|
||||
}
|
||||
else:
|
||||
raise ValueError(f"Got unknown type {message}")
|
||||
|
||||
420
libs/partners/mistralai/poetry.lock
generated
420
libs/partners/mistralai/poetry.lock
generated
@@ -325,13 +325,13 @@ files = [
|
||||
|
||||
[[package]]
|
||||
name = "huggingface-hub"
|
||||
version = "0.26.2"
|
||||
version = "0.26.3"
|
||||
description = "Client library to download and publish models, datasets and other repos on the huggingface.co hub"
|
||||
optional = false
|
||||
python-versions = ">=3.8.0"
|
||||
files = [
|
||||
{file = "huggingface_hub-0.26.2-py3-none-any.whl", hash = "sha256:98c2a5a8e786c7b2cb6fdeb2740893cba4d53e312572ed3d8afafda65b128c46"},
|
||||
{file = "huggingface_hub-0.26.2.tar.gz", hash = "sha256:b100d853465d965733964d123939ba287da60a547087783ddff8a323f340332b"},
|
||||
{file = "huggingface_hub-0.26.3-py3-none-any.whl", hash = "sha256:e66aa99e569c2d5419240a9e553ad07245a5b1300350bfbc5a4945cf7432991b"},
|
||||
{file = "huggingface_hub-0.26.3.tar.gz", hash = "sha256:90e1fe62ffc26757a073aaad618422b899ccf9447c2bba8c902a90bef5b42e1d"},
|
||||
]
|
||||
|
||||
[package.dependencies]
|
||||
@@ -409,7 +409,7 @@ files = [
|
||||
|
||||
[[package]]
|
||||
name = "langchain-core"
|
||||
version = "0.3.19"
|
||||
version = "0.3.21"
|
||||
description = "Building applications with LLMs through composability"
|
||||
optional = false
|
||||
python-versions = ">=3.9,<4.0"
|
||||
@@ -434,7 +434,7 @@ url = "../../core"
|
||||
|
||||
[[package]]
|
||||
name = "langchain-tests"
|
||||
version = "0.3.2"
|
||||
version = "0.3.4"
|
||||
description = "Standard tests for LangChain implementations"
|
||||
optional = false
|
||||
python-versions = ">=3.9,<4.0"
|
||||
@@ -443,7 +443,7 @@ develop = true
|
||||
|
||||
[package.dependencies]
|
||||
httpx = "^0.27.0"
|
||||
langchain-core = "^0.3.15"
|
||||
langchain-core = "^0.3.19"
|
||||
pytest = ">=7,<9"
|
||||
syrupy = "^4"
|
||||
|
||||
@@ -453,18 +453,18 @@ url = "../../standard-tests"
|
||||
|
||||
[[package]]
|
||||
name = "langsmith"
|
||||
version = "0.1.143"
|
||||
version = "0.1.147"
|
||||
description = "Client library to connect to the LangSmith LLM Tracing and Evaluation Platform."
|
||||
optional = false
|
||||
python-versions = "<4.0,>=3.8.1"
|
||||
files = [
|
||||
{file = "langsmith-0.1.143-py3-none-any.whl", hash = "sha256:ba0d827269e9b03a90fababe41fa3e4e3f833300b95add10184f7e67167dde6f"},
|
||||
{file = "langsmith-0.1.143.tar.gz", hash = "sha256:4c5159e5cd84b3f8499433009e72d2076dd2daf6c044ac8a3611b30d0d0161c5"},
|
||||
{file = "langsmith-0.1.147-py3-none-any.whl", hash = "sha256:7166fc23b965ccf839d64945a78e9f1157757add228b086141eb03a60d699a15"},
|
||||
{file = "langsmith-0.1.147.tar.gz", hash = "sha256:2e933220318a4e73034657103b3b1a3a6109cc5db3566a7e8e03be8d6d7def7a"},
|
||||
]
|
||||
|
||||
[package.dependencies]
|
||||
httpx = ">=0.23.0,<1"
|
||||
orjson = ">=3.9.14,<4.0.0"
|
||||
orjson = {version = ">=3.9.14,<4.0.0", markers = "platform_python_implementation != \"PyPy\""}
|
||||
pydantic = [
|
||||
{version = ">=1,<3", markers = "python_full_version < \"3.12.4\""},
|
||||
{version = ">=2.7.4,<3.0.0", markers = "python_full_version >= \"3.12.4\""},
|
||||
@@ -472,6 +472,9 @@ pydantic = [
|
||||
requests = ">=2,<3"
|
||||
requests-toolbelt = ">=1.0.0,<2.0.0"
|
||||
|
||||
[package.extras]
|
||||
langsmith-pyo3 = ["langsmith-pyo3 (>=0.1.0rc2,<0.2.0)"]
|
||||
|
||||
[[package]]
|
||||
name = "mypy"
|
||||
version = "1.13.0"
|
||||
@@ -538,69 +541,86 @@ files = [
|
||||
|
||||
[[package]]
|
||||
name = "orjson"
|
||||
version = "3.10.11"
|
||||
version = "3.10.12"
|
||||
description = "Fast, correct Python JSON library supporting dataclasses, datetimes, and numpy"
|
||||
optional = false
|
||||
python-versions = ">=3.8"
|
||||
files = [
|
||||
{file = "orjson-3.10.11-cp310-cp310-macosx_10_15_x86_64.macosx_11_0_arm64.macosx_10_15_universal2.whl", hash = "sha256:6dade64687f2bd7c090281652fe18f1151292d567a9302b34c2dbb92a3872f1f"},
|
||||
{file = "orjson-3.10.11-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:82f07c550a6ccd2b9290849b22316a609023ed851a87ea888c0456485a7d196a"},
|
||||
{file = "orjson-3.10.11-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:bd9a187742d3ead9df2e49240234d728c67c356516cf4db018833a86f20ec18c"},
|
||||
{file = "orjson-3.10.11-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:77b0fed6f209d76c1c39f032a70df2d7acf24b1812ca3e6078fd04e8972685a3"},
|
||||
{file = "orjson-3.10.11-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:63fc9d5fe1d4e8868f6aae547a7b8ba0a2e592929245fff61d633f4caccdcdd6"},
|
||||
{file = "orjson-3.10.11-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:65cd3e3bb4fbb4eddc3c1e8dce10dc0b73e808fcb875f9fab40c81903dd9323e"},
|
||||
{file = "orjson-3.10.11-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:6f67c570602300c4befbda12d153113b8974a3340fdcf3d6de095ede86c06d92"},
|
||||
{file = "orjson-3.10.11-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:1f39728c7f7d766f1f5a769ce4d54b5aaa4c3f92d5b84817053cc9995b977acc"},
|
||||
{file = "orjson-3.10.11-cp310-none-win32.whl", hash = "sha256:1789d9db7968d805f3d94aae2c25d04014aae3a2fa65b1443117cd462c6da647"},
|
||||
{file = "orjson-3.10.11-cp310-none-win_amd64.whl", hash = "sha256:5576b1e5a53a5ba8f8df81872bb0878a112b3ebb1d392155f00f54dd86c83ff6"},
|
||||
{file = "orjson-3.10.11-cp311-cp311-macosx_10_15_x86_64.macosx_11_0_arm64.macosx_10_15_universal2.whl", hash = "sha256:1444f9cb7c14055d595de1036f74ecd6ce15f04a715e73f33bb6326c9cef01b6"},
|
||||
{file = "orjson-3.10.11-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:cdec57fe3b4bdebcc08a946db3365630332dbe575125ff3d80a3272ebd0ddafe"},
|
||||
{file = "orjson-3.10.11-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:4eed32f33a0ea6ef36ccc1d37f8d17f28a1d6e8eefae5928f76aff8f1df85e67"},
|
||||
{file = "orjson-3.10.11-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:80df27dd8697242b904f4ea54820e2d98d3f51f91e97e358fc13359721233e4b"},
|
||||
{file = "orjson-3.10.11-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:705f03cee0cb797256d54de6695ef219e5bc8c8120b6654dd460848d57a9af3d"},
|
||||
{file = "orjson-3.10.11-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:03246774131701de8e7059b2e382597da43144a9a7400f178b2a32feafc54bd5"},
|
||||
{file = "orjson-3.10.11-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:8b5759063a6c940a69c728ea70d7c33583991c6982915a839c8da5f957e0103a"},
|
||||
{file = "orjson-3.10.11-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:677f23e32491520eebb19c99bb34675daf5410c449c13416f7f0d93e2cf5f981"},
|
||||
{file = "orjson-3.10.11-cp311-none-win32.whl", hash = "sha256:a11225d7b30468dcb099498296ffac36b4673a8398ca30fdaec1e6c20df6aa55"},
|
||||
{file = "orjson-3.10.11-cp311-none-win_amd64.whl", hash = "sha256:df8c677df2f9f385fcc85ab859704045fa88d4668bc9991a527c86e710392bec"},
|
||||
{file = "orjson-3.10.11-cp312-cp312-macosx_10_15_x86_64.macosx_11_0_arm64.macosx_10_15_universal2.whl", hash = "sha256:360a4e2c0943da7c21505e47cf6bd725588962ff1d739b99b14e2f7f3545ba51"},
|
||||
{file = "orjson-3.10.11-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:496e2cb45de21c369079ef2d662670a4892c81573bcc143c4205cae98282ba97"},
|
||||
{file = "orjson-3.10.11-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:7dfa8db55c9792d53c5952900c6a919cfa377b4f4534c7a786484a6a4a350c19"},
|
||||
{file = "orjson-3.10.11-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:51f3382415747e0dbda9dade6f1e1a01a9d37f630d8c9049a8ed0e385b7a90c0"},
|
||||
{file = "orjson-3.10.11-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:f35a1b9f50a219f470e0e497ca30b285c9f34948d3c8160d5ad3a755d9299433"},
|
||||
{file = "orjson-3.10.11-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e2f3b7c5803138e67028dde33450e054c87e0703afbe730c105f1fcd873496d5"},
|
||||
{file = "orjson-3.10.11-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:f91d9eb554310472bd09f5347950b24442600594c2edc1421403d7610a0998fd"},
|
||||
{file = "orjson-3.10.11-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:dfbb2d460a855c9744bbc8e36f9c3a997c4b27d842f3d5559ed54326e6911f9b"},
|
||||
{file = "orjson-3.10.11-cp312-none-win32.whl", hash = "sha256:d4a62c49c506d4d73f59514986cadebb7e8d186ad510c518f439176cf8d5359d"},
|
||||
{file = "orjson-3.10.11-cp312-none-win_amd64.whl", hash = "sha256:f1eec3421a558ff7a9b010a6c7effcfa0ade65327a71bb9b02a1c3b77a247284"},
|
||||
{file = "orjson-3.10.11-cp313-cp313-macosx_10_15_x86_64.macosx_11_0_arm64.macosx_10_15_universal2.whl", hash = "sha256:c46294faa4e4d0eb73ab68f1a794d2cbf7bab33b1dda2ac2959ffb7c61591899"},
|
||||
{file = "orjson-3.10.11-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:52e5834d7d6e58a36846e059d00559cb9ed20410664f3ad156cd2cc239a11230"},
|
||||
{file = "orjson-3.10.11-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a2fc947e5350fdce548bfc94f434e8760d5cafa97fb9c495d2fef6757aa02ec0"},
|
||||
{file = "orjson-3.10.11-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:0efabbf839388a1dab5b72b5d3baedbd6039ac83f3b55736eb9934ea5494d258"},
|
||||
{file = "orjson-3.10.11-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:a3f29634260708c200c4fe148e42b4aae97d7b9fee417fbdd74f8cfc265f15b0"},
|
||||
{file = "orjson-3.10.11-cp313-none-win32.whl", hash = "sha256:1a1222ffcee8a09476bbdd5d4f6f33d06d0d6642df2a3d78b7a195ca880d669b"},
|
||||
{file = "orjson-3.10.11-cp313-none-win_amd64.whl", hash = "sha256:bc274ac261cc69260913b2d1610760e55d3c0801bb3457ba7b9004420b6b4270"},
|
||||
{file = "orjson-3.10.11-cp38-cp38-macosx_10_15_x86_64.macosx_11_0_arm64.macosx_10_15_universal2.whl", hash = "sha256:19b3763e8bbf8ad797df6b6b5e0fc7c843ec2e2fc0621398534e0c6400098f87"},
|
||||
{file = "orjson-3.10.11-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1be83a13312e5e58d633580c5eb8d0495ae61f180da2722f20562974188af205"},
|
||||
{file = "orjson-3.10.11-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:afacfd1ab81f46dedd7f6001b6d4e8de23396e4884cd3c3436bd05defb1a6446"},
|
||||
{file = "orjson-3.10.11-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:cb4d0bea56bba596723d73f074c420aec3b2e5d7d30698bc56e6048066bd560c"},
|
||||
{file = "orjson-3.10.11-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:96ed1de70fcb15d5fed529a656df29f768187628727ee2788344e8a51e1c1350"},
|
||||
{file = "orjson-3.10.11-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4bfb30c891b530f3f80e801e3ad82ef150b964e5c38e1fb8482441c69c35c61c"},
|
||||
{file = "orjson-3.10.11-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:d496c74fc2b61341e3cefda7eec21b7854c5f672ee350bc55d9a4997a8a95204"},
|
||||
{file = "orjson-3.10.11-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:655a493bac606655db9a47fe94d3d84fc7f3ad766d894197c94ccf0c5408e7d3"},
|
||||
{file = "orjson-3.10.11-cp38-none-win32.whl", hash = "sha256:b9546b278c9fb5d45380f4809e11b4dd9844ca7aaf1134024503e134ed226161"},
|
||||
{file = "orjson-3.10.11-cp38-none-win_amd64.whl", hash = "sha256:b592597fe551d518f42c5a2eb07422eb475aa8cfdc8c51e6da7054b836b26782"},
|
||||
{file = "orjson-3.10.11-cp39-cp39-macosx_10_15_x86_64.macosx_11_0_arm64.macosx_10_15_universal2.whl", hash = "sha256:c95f2ecafe709b4e5c733b5e2768ac569bed308623c85806c395d9cca00e08af"},
|
||||
{file = "orjson-3.10.11-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:80c00d4acded0c51c98754fe8218cb49cb854f0f7eb39ea4641b7f71732d2cb7"},
|
||||
{file = "orjson-3.10.11-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:461311b693d3d0a060439aa669c74f3603264d4e7a08faa68c47ae5a863f352d"},
|
||||
{file = "orjson-3.10.11-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:52ca832f17d86a78cbab86cdc25f8c13756ebe182b6fc1a97d534051c18a08de"},
|
||||
{file = "orjson-3.10.11-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:f4c57ea78a753812f528178aa2f1c57da633754c91d2124cb28991dab4c79a54"},
|
||||
{file = "orjson-3.10.11-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b7fcfc6f7ca046383fb954ba528587e0f9336828b568282b27579c49f8e16aad"},
|
||||
{file = "orjson-3.10.11-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:86b9dd983857970c29e4c71bb3e95ff085c07d3e83e7c46ebe959bac07ebd80b"},
|
||||
{file = "orjson-3.10.11-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:4d83f87582d223e54efb2242a79547611ba4ebae3af8bae1e80fa9a0af83bb7f"},
|
||||
{file = "orjson-3.10.11-cp39-none-win32.whl", hash = "sha256:9fd0ad1c129bc9beb1154c2655f177620b5beaf9a11e0d10bac63ef3fce96950"},
|
||||
{file = "orjson-3.10.11-cp39-none-win_amd64.whl", hash = "sha256:10f416b2a017c8bd17f325fb9dee1fb5cdd7a54e814284896b7c3f2763faa017"},
|
||||
{file = "orjson-3.10.11.tar.gz", hash = "sha256:e35b6d730de6384d5b2dab5fd23f0d76fae8bbc8c353c2f78210aa5fa4beb3ef"},
|
||||
{file = "orjson-3.10.12-cp310-cp310-macosx_10_15_x86_64.macosx_11_0_arm64.macosx_10_15_universal2.whl", hash = "sha256:ece01a7ec71d9940cc654c482907a6b65df27251255097629d0dea781f255c6d"},
|
||||
{file = "orjson-3.10.12-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c34ec9aebc04f11f4b978dd6caf697a2df2dd9b47d35aa4cc606cabcb9df69d7"},
|
||||
{file = "orjson-3.10.12-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:fd6ec8658da3480939c79b9e9e27e0db31dffcd4ba69c334e98c9976ac29140e"},
|
||||
{file = "orjson-3.10.12-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:f17e6baf4cf01534c9de8a16c0c611f3d94925d1701bf5f4aff17003677d8ced"},
|
||||
{file = "orjson-3.10.12-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:6402ebb74a14ef96f94a868569f5dccf70d791de49feb73180eb3c6fda2ade56"},
|
||||
{file = "orjson-3.10.12-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0000758ae7c7853e0a4a6063f534c61656ebff644391e1f81698c1b2d2fc8cd2"},
|
||||
{file = "orjson-3.10.12-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:888442dcee99fd1e5bd37a4abb94930915ca6af4db50e23e746cdf4d1e63db13"},
|
||||
{file = "orjson-3.10.12-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:c1f7a3ce79246aa0e92f5458d86c54f257fb5dfdc14a192651ba7ec2c00f8a05"},
|
||||
{file = "orjson-3.10.12-cp310-cp310-musllinux_1_2_armv7l.whl", hash = "sha256:802a3935f45605c66fb4a586488a38af63cb37aaad1c1d94c982c40dcc452e85"},
|
||||
{file = "orjson-3.10.12-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:1da1ef0113a2be19bb6c557fb0ec2d79c92ebd2fed4cfb1b26bab93f021fb885"},
|
||||
{file = "orjson-3.10.12-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:7a3273e99f367f137d5b3fecb5e9f45bcdbfac2a8b2f32fbc72129bbd48789c2"},
|
||||
{file = "orjson-3.10.12-cp310-none-win32.whl", hash = "sha256:475661bf249fd7907d9b0a2a2421b4e684355a77ceef85b8352439a9163418c3"},
|
||||
{file = "orjson-3.10.12-cp310-none-win_amd64.whl", hash = "sha256:87251dc1fb2b9e5ab91ce65d8f4caf21910d99ba8fb24b49fd0c118b2362d509"},
|
||||
{file = "orjson-3.10.12-cp311-cp311-macosx_10_15_x86_64.macosx_11_0_arm64.macosx_10_15_universal2.whl", hash = "sha256:a734c62efa42e7df94926d70fe7d37621c783dea9f707a98cdea796964d4cf74"},
|
||||
{file = "orjson-3.10.12-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:750f8b27259d3409eda8350c2919a58b0cfcd2054ddc1bd317a643afc646ef23"},
|
||||
{file = "orjson-3.10.12-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:bb52c22bfffe2857e7aa13b4622afd0dd9d16ea7cc65fd2bf318d3223b1b6252"},
|
||||
{file = "orjson-3.10.12-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:440d9a337ac8c199ff8251e100c62e9488924c92852362cd27af0e67308c16ef"},
|
||||
{file = "orjson-3.10.12-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:a9e15c06491c69997dfa067369baab3bf094ecb74be9912bdc4339972323f252"},
|
||||
{file = "orjson-3.10.12-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:362d204ad4b0b8724cf370d0cd917bb2dc913c394030da748a3bb632445ce7c4"},
|
||||
{file = "orjson-3.10.12-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:2b57cbb4031153db37b41622eac67329c7810e5f480fda4cfd30542186f006ae"},
|
||||
{file = "orjson-3.10.12-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:165c89b53ef03ce0d7c59ca5c82fa65fe13ddf52eeb22e859e58c237d4e33b9b"},
|
||||
{file = "orjson-3.10.12-cp311-cp311-musllinux_1_2_armv7l.whl", hash = "sha256:5dee91b8dfd54557c1a1596eb90bcd47dbcd26b0baaed919e6861f076583e9da"},
|
||||
{file = "orjson-3.10.12-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:77a4e1cfb72de6f905bdff061172adfb3caf7a4578ebf481d8f0530879476c07"},
|
||||
{file = "orjson-3.10.12-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:038d42c7bc0606443459b8fe2d1f121db474c49067d8d14c6a075bbea8bf14dd"},
|
||||
{file = "orjson-3.10.12-cp311-none-win32.whl", hash = "sha256:03b553c02ab39bed249bedd4abe37b2118324d1674e639b33fab3d1dafdf4d79"},
|
||||
{file = "orjson-3.10.12-cp311-none-win_amd64.whl", hash = "sha256:8b8713b9e46a45b2af6b96f559bfb13b1e02006f4242c156cbadef27800a55a8"},
|
||||
{file = "orjson-3.10.12-cp312-cp312-macosx_10_15_x86_64.macosx_11_0_arm64.macosx_10_15_universal2.whl", hash = "sha256:53206d72eb656ca5ac7d3a7141e83c5bbd3ac30d5eccfe019409177a57634b0d"},
|
||||
{file = "orjson-3.10.12-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ac8010afc2150d417ebda810e8df08dd3f544e0dd2acab5370cfa6bcc0662f8f"},
|
||||
{file = "orjson-3.10.12-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:ed459b46012ae950dd2e17150e838ab08215421487371fa79d0eced8d1461d70"},
|
||||
{file = "orjson-3.10.12-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:8dcb9673f108a93c1b52bfc51b0af422c2d08d4fc710ce9c839faad25020bb69"},
|
||||
{file = "orjson-3.10.12-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:22a51ae77680c5c4652ebc63a83d5255ac7d65582891d9424b566fb3b5375ee9"},
|
||||
{file = "orjson-3.10.12-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:910fdf2ac0637b9a77d1aad65f803bac414f0b06f720073438a7bd8906298192"},
|
||||
{file = "orjson-3.10.12-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:24ce85f7100160936bc2116c09d1a8492639418633119a2224114f67f63a4559"},
|
||||
{file = "orjson-3.10.12-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:8a76ba5fc8dd9c913640292df27bff80a685bed3a3c990d59aa6ce24c352f8fc"},
|
||||
{file = "orjson-3.10.12-cp312-cp312-musllinux_1_2_armv7l.whl", hash = "sha256:ff70ef093895fd53f4055ca75f93f047e088d1430888ca1229393a7c0521100f"},
|
||||
{file = "orjson-3.10.12-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:f4244b7018b5753ecd10a6d324ec1f347da130c953a9c88432c7fbc8875d13be"},
|
||||
{file = "orjson-3.10.12-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:16135ccca03445f37921fa4b585cff9a58aa8d81ebcb27622e69bfadd220b32c"},
|
||||
{file = "orjson-3.10.12-cp312-none-win32.whl", hash = "sha256:2d879c81172d583e34153d524fcba5d4adafbab8349a7b9f16ae511c2cee8708"},
|
||||
{file = "orjson-3.10.12-cp312-none-win_amd64.whl", hash = "sha256:fc23f691fa0f5c140576b8c365bc942d577d861a9ee1142e4db468e4e17094fb"},
|
||||
{file = "orjson-3.10.12-cp313-cp313-macosx_10_15_x86_64.macosx_11_0_arm64.macosx_10_15_universal2.whl", hash = "sha256:47962841b2a8aa9a258b377f5188db31ba49af47d4003a32f55d6f8b19006543"},
|
||||
{file = "orjson-3.10.12-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6334730e2532e77b6054e87ca84f3072bee308a45a452ea0bffbbbc40a67e296"},
|
||||
{file = "orjson-3.10.12-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:accfe93f42713c899fdac2747e8d0d5c659592df2792888c6c5f829472e4f85e"},
|
||||
{file = "orjson-3.10.12-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:a7974c490c014c48810d1dede6c754c3cc46598da758c25ca3b4001ac45b703f"},
|
||||
{file = "orjson-3.10.12-cp313-cp313-musllinux_1_2_armv7l.whl", hash = "sha256:3f250ce7727b0b2682f834a3facff88e310f52f07a5dcfd852d99637d386e79e"},
|
||||
{file = "orjson-3.10.12-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:f31422ff9486ae484f10ffc51b5ab2a60359e92d0716fcce1b3593d7bb8a9af6"},
|
||||
{file = "orjson-3.10.12-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:5f29c5d282bb2d577c2a6bbde88d8fdcc4919c593f806aac50133f01b733846e"},
|
||||
{file = "orjson-3.10.12-cp313-none-win32.whl", hash = "sha256:f45653775f38f63dc0e6cd4f14323984c3149c05d6007b58cb154dd080ddc0dc"},
|
||||
{file = "orjson-3.10.12-cp313-none-win_amd64.whl", hash = "sha256:229994d0c376d5bdc91d92b3c9e6be2f1fbabd4cc1b59daae1443a46ee5e9825"},
|
||||
{file = "orjson-3.10.12-cp38-cp38-macosx_10_15_x86_64.macosx_11_0_arm64.macosx_10_15_universal2.whl", hash = "sha256:7d69af5b54617a5fac5c8e5ed0859eb798e2ce8913262eb522590239db6c6763"},
|
||||
{file = "orjson-3.10.12-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7ed119ea7d2953365724a7059231a44830eb6bbb0cfead33fcbc562f5fd8f935"},
|
||||
{file = "orjson-3.10.12-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:9c5fc1238ef197e7cad5c91415f524aaa51e004be5a9b35a1b8a84ade196f73f"},
|
||||
{file = "orjson-3.10.12-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:43509843990439b05f848539d6f6198d4ac86ff01dd024b2f9a795c0daeeab60"},
|
||||
{file = "orjson-3.10.12-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:f72e27a62041cfb37a3de512247ece9f240a561e6c8662276beaf4d53d406db4"},
|
||||
{file = "orjson-3.10.12-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9a904f9572092bb6742ab7c16c623f0cdccbad9eeb2d14d4aa06284867bddd31"},
|
||||
{file = "orjson-3.10.12-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:855c0833999ed5dc62f64552db26f9be767434917d8348d77bacaab84f787d7b"},
|
||||
{file = "orjson-3.10.12-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:897830244e2320f6184699f598df7fb9db9f5087d6f3f03666ae89d607e4f8ed"},
|
||||
{file = "orjson-3.10.12-cp38-cp38-musllinux_1_2_armv7l.whl", hash = "sha256:0b32652eaa4a7539f6f04abc6243619c56f8530c53bf9b023e1269df5f7816dd"},
|
||||
{file = "orjson-3.10.12-cp38-cp38-musllinux_1_2_i686.whl", hash = "sha256:36b4aa31e0f6a1aeeb6f8377769ca5d125db000f05c20e54163aef1d3fe8e833"},
|
||||
{file = "orjson-3.10.12-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:5535163054d6cbf2796f93e4f0dbc800f61914c0e3c4ed8499cf6ece22b4a3da"},
|
||||
{file = "orjson-3.10.12-cp38-none-win32.whl", hash = "sha256:90a5551f6f5a5fa07010bf3d0b4ca2de21adafbbc0af6cb700b63cd767266cb9"},
|
||||
{file = "orjson-3.10.12-cp38-none-win_amd64.whl", hash = "sha256:703a2fb35a06cdd45adf5d733cf613cbc0cb3ae57643472b16bc22d325b5fb6c"},
|
||||
{file = "orjson-3.10.12-cp39-cp39-macosx_10_15_x86_64.macosx_11_0_arm64.macosx_10_15_universal2.whl", hash = "sha256:f29de3ef71a42a5822765def1febfb36e0859d33abf5c2ad240acad5c6a1b78d"},
|
||||
{file = "orjson-3.10.12-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:de365a42acc65d74953f05e4772c974dad6c51cfc13c3240899f534d611be967"},
|
||||
{file = "orjson-3.10.12-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:91a5a0158648a67ff0004cb0df5df7dcc55bfc9ca154d9c01597a23ad54c8d0c"},
|
||||
{file = "orjson-3.10.12-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:c47ce6b8d90fe9646a25b6fb52284a14ff215c9595914af63a5933a49972ce36"},
|
||||
{file = "orjson-3.10.12-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:0eee4c2c5bfb5c1b47a5db80d2ac7aaa7e938956ae88089f098aff2c0f35d5d8"},
|
||||
{file = "orjson-3.10.12-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:35d3081bbe8b86587eb5c98a73b97f13d8f9fea685cf91a579beddacc0d10566"},
|
||||
{file = "orjson-3.10.12-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:73c23a6e90383884068bc2dba83d5222c9fcc3b99a0ed2411d38150734236755"},
|
||||
{file = "orjson-3.10.12-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:5472be7dc3269b4b52acba1433dac239215366f89dc1d8d0e64029abac4e714e"},
|
||||
{file = "orjson-3.10.12-cp39-cp39-musllinux_1_2_armv7l.whl", hash = "sha256:7319cda750fca96ae5973efb31b17d97a5c5225ae0bc79bf5bf84df9e1ec2ab6"},
|
||||
{file = "orjson-3.10.12-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:74d5ca5a255bf20b8def6a2b96b1e18ad37b4a122d59b154c458ee9494377f80"},
|
||||
{file = "orjson-3.10.12-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:ff31d22ecc5fb85ef62c7d4afe8301d10c558d00dd24274d4bbe464380d3cd69"},
|
||||
{file = "orjson-3.10.12-cp39-none-win32.whl", hash = "sha256:c22c3ea6fba91d84fcb4cda30e64aff548fcf0c44c876e681f47d61d24b12e6b"},
|
||||
{file = "orjson-3.10.12-cp39-none-win_amd64.whl", hash = "sha256:be604f60d45ace6b0b33dd990a66b4526f1a7a186ac411c942674625456ca548"},
|
||||
{file = "orjson-3.10.12.tar.gz", hash = "sha256:0a78bbda3aea0f9f079057ee1ee8a1ecf790d4f1af88dd67493c6b8ee52506ff"},
|
||||
]
|
||||
|
||||
[[package]]
|
||||
@@ -631,18 +651,18 @@ testing = ["pytest", "pytest-benchmark"]
|
||||
|
||||
[[package]]
|
||||
name = "pydantic"
|
||||
version = "2.10.0"
|
||||
version = "2.10.2"
|
||||
description = "Data validation using Python type hints"
|
||||
optional = false
|
||||
python-versions = ">=3.8"
|
||||
files = [
|
||||
{file = "pydantic-2.10.0-py3-none-any.whl", hash = "sha256:5e7807ba9201bdf61b1b58aa6eb690916c40a47acfb114b1b4fef3e7fd5b30fc"},
|
||||
{file = "pydantic-2.10.0.tar.gz", hash = "sha256:0aca0f045ff6e2f097f1fe89521115335f15049eeb8a7bef3dafe4b19a74e289"},
|
||||
{file = "pydantic-2.10.2-py3-none-any.whl", hash = "sha256:cfb96e45951117c3024e6b67b25cdc33a3cb7b2fa62e239f7af1378358a1d99e"},
|
||||
{file = "pydantic-2.10.2.tar.gz", hash = "sha256:2bc2d7f17232e0841cbba4641e65ba1eb6fafb3a08de3a091ff3ce14a197c4fa"},
|
||||
]
|
||||
|
||||
[package.dependencies]
|
||||
annotated-types = ">=0.6.0"
|
||||
pydantic-core = "2.27.0"
|
||||
pydantic-core = "2.27.1"
|
||||
typing-extensions = ">=4.12.2"
|
||||
|
||||
[package.extras]
|
||||
@@ -651,111 +671,111 @@ timezone = ["tzdata"]
|
||||
|
||||
[[package]]
|
||||
name = "pydantic-core"
|
||||
version = "2.27.0"
|
||||
version = "2.27.1"
|
||||
description = "Core functionality for Pydantic validation and serialization"
|
||||
optional = false
|
||||
python-versions = ">=3.8"
|
||||
files = [
|
||||
{file = "pydantic_core-2.27.0-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:cd2ac6b919f7fed71b17fe0b4603c092a4c9b5bae414817c9c81d3c22d1e1bcc"},
|
||||
{file = "pydantic_core-2.27.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:e015833384ca3e1a0565a79f5d953b0629d9138021c27ad37c92a9fa1af7623c"},
|
||||
{file = "pydantic_core-2.27.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:db72e40628967f6dc572020d04b5f800d71264e0531c6da35097e73bdf38b003"},
|
||||
{file = "pydantic_core-2.27.0-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:df45c4073bed486ea2f18757057953afed8dd77add7276ff01bccb79982cf46c"},
|
||||
{file = "pydantic_core-2.27.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:836a4bfe0cc6d36dc9a9cc1a7b391265bf6ce9d1eb1eac62ac5139f5d8d9a6fa"},
|
||||
{file = "pydantic_core-2.27.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:4bf1340ae507f6da6360b24179c2083857c8ca7644aab65807023cf35404ea8d"},
|
||||
{file = "pydantic_core-2.27.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5ab325fc86fbc077284c8d7f996d904d30e97904a87d6fb303dce6b3de7ebba9"},
|
||||
{file = "pydantic_core-2.27.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:1da0c98a85a6c6ed702d5556db3b09c91f9b0b78de37b7593e2de8d03238807a"},
|
||||
{file = "pydantic_core-2.27.0-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:7b0202ebf2268954090209a84f9897345719e46a57c5f2c9b7b250ca0a9d3e63"},
|
||||
{file = "pydantic_core-2.27.0-cp310-cp310-musllinux_1_1_armv7l.whl", hash = "sha256:35380671c3c921fe8adf31ad349dc6f7588b7e928dbe44e1093789734f607399"},
|
||||
{file = "pydantic_core-2.27.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:6b4c19525c3538fbc0bbda6229f9682fb8199ce9ac37395880e6952798e00373"},
|
||||
{file = "pydantic_core-2.27.0-cp310-none-win32.whl", hash = "sha256:333c840a1303d1474f491e7be0b718226c730a39ead0f7dab2c7e6a2f3855555"},
|
||||
{file = "pydantic_core-2.27.0-cp310-none-win_amd64.whl", hash = "sha256:99b2863c1365f43f74199c980a3d40f18a218fbe683dd64e470199db426c4d6a"},
|
||||
{file = "pydantic_core-2.27.0-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:4523c4009c3f39d948e01962223c9f5538602e7087a628479b723c939fab262d"},
|
||||
{file = "pydantic_core-2.27.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:84af1cf7bfdcbc6fcf5a5f70cc9896205e0350306e4dd73d54b6a18894f79386"},
|
||||
{file = "pydantic_core-2.27.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e65466b31be1070b4a5b7dbfbd14b247884cb8e8b79c64fb0f36b472912dbaea"},
|
||||
{file = "pydantic_core-2.27.0-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:a5c022bb0d453192426221605efc865373dde43b17822a264671c53b068ac20c"},
|
||||
{file = "pydantic_core-2.27.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:6bb69bf3b6500f195c3deb69c1205ba8fc3cb21d1915f1f158a10d6b1ef29b6a"},
|
||||
{file = "pydantic_core-2.27.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:0aa4d1b2eba9a325897308b3124014a142cdccb9f3e016f31d3ebee6b5ea5e75"},
|
||||
{file = "pydantic_core-2.27.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8e96ca781e0c01e32115912ebdf7b3fb0780ce748b80d7d28a0802fa9fbaf44e"},
|
||||
{file = "pydantic_core-2.27.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:b872c86d8d71827235c7077461c502feb2db3f87d9d6d5a9daa64287d75e4fa0"},
|
||||
{file = "pydantic_core-2.27.0-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:82e1ad4ca170e8af4c928b67cff731b6296e6a0a0981b97b2eb7c275cc4e15bd"},
|
||||
{file = "pydantic_core-2.27.0-cp311-cp311-musllinux_1_1_armv7l.whl", hash = "sha256:eb40f828bc2f73f777d1eb8fee2e86cd9692a4518b63b6b5aa8af915dfd3207b"},
|
||||
{file = "pydantic_core-2.27.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:9a8fbf506fde1529a1e3698198fe64bfbe2e0c09557bc6a7dcf872e7c01fec40"},
|
||||
{file = "pydantic_core-2.27.0-cp311-none-win32.whl", hash = "sha256:24f984fc7762ed5f806d9e8c4c77ea69fdb2afd987b4fd319ef06c87595a8c55"},
|
||||
{file = "pydantic_core-2.27.0-cp311-none-win_amd64.whl", hash = "sha256:68950bc08f9735306322bfc16a18391fcaac99ded2509e1cc41d03ccb6013cfe"},
|
||||
{file = "pydantic_core-2.27.0-cp311-none-win_arm64.whl", hash = "sha256:3eb8849445c26b41c5a474061032c53e14fe92a11a5db969f722a2716cd12206"},
|
||||
{file = "pydantic_core-2.27.0-cp312-cp312-macosx_10_12_x86_64.whl", hash = "sha256:8117839a9bdbba86e7f9df57018fe3b96cec934c3940b591b0fd3fbfb485864a"},
|
||||
{file = "pydantic_core-2.27.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:a291d0b4243a259c8ea7e2b84eb9ccb76370e569298875a7c5e3e71baf49057a"},
|
||||
{file = "pydantic_core-2.27.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:84e35afd9e10b2698e6f2f32256678cb23ca6c1568d02628033a837638b3ed12"},
|
||||
{file = "pydantic_core-2.27.0-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:58ab0d979c969983cdb97374698d847a4acffb217d543e172838864636ef10d9"},
|
||||
{file = "pydantic_core-2.27.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:0d06b667e53320332be2bf6f9461f4a9b78092a079b8ce8634c9afaa7e10cd9f"},
|
||||
{file = "pydantic_core-2.27.0-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:78f841523729e43e3928a364ec46e2e3f80e6625a4f62aca5c345f3f626c6e8a"},
|
||||
{file = "pydantic_core-2.27.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:400bf470e4327e920883b51e255617dfe4496d4e80c3fea0b5a5d0bf2c404dd4"},
|
||||
{file = "pydantic_core-2.27.0-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:951e71da6c89d354572098bada5ba5b5dc3a9390c933af8a614e37755d3d1840"},
|
||||
{file = "pydantic_core-2.27.0-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:2a51ce96224eadd1845150b204389623c8e129fde5a67a84b972bd83a85c6c40"},
|
||||
{file = "pydantic_core-2.27.0-cp312-cp312-musllinux_1_1_armv7l.whl", hash = "sha256:483c2213a609e7db2c592bbc015da58b6c75af7360ca3c981f178110d9787bcf"},
|
||||
{file = "pydantic_core-2.27.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:359e7951f04ad35111b5ddce184db3391442345d0ab073aa63a95eb8af25a5ef"},
|
||||
{file = "pydantic_core-2.27.0-cp312-none-win32.whl", hash = "sha256:ee7d9d5537daf6d5c74a83b38a638cc001b648096c1cae8ef695b0c919d9d379"},
|
||||
{file = "pydantic_core-2.27.0-cp312-none-win_amd64.whl", hash = "sha256:2be0ad541bb9f059954ccf8877a49ed73877f862529575ff3d54bf4223e4dd61"},
|
||||
{file = "pydantic_core-2.27.0-cp312-none-win_arm64.whl", hash = "sha256:6e19401742ed7b69e51d8e4df3c03ad5ec65a83b36244479fd70edde2828a5d9"},
|
||||
{file = "pydantic_core-2.27.0-cp313-cp313-macosx_10_12_x86_64.whl", hash = "sha256:5f2b19b8d6fca432cb3acf48cf5243a7bf512988029b6e6fd27e9e8c0a204d85"},
|
||||
{file = "pydantic_core-2.27.0-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:c86679f443e7085ea55a7376462553996c688395d18ef3f0d3dbad7838f857a2"},
|
||||
{file = "pydantic_core-2.27.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:510b11e9c3b1a852876d1ccd8d5903684336d635214148637ceb27366c75a467"},
|
||||
{file = "pydantic_core-2.27.0-cp313-cp313-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:eb704155e73b833801c247f39d562229c0303f54770ca14fb1c053acb376cf10"},
|
||||
{file = "pydantic_core-2.27.0-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:9ce048deb1e033e7a865ca384770bccc11d44179cf09e5193a535c4c2f497bdc"},
|
||||
{file = "pydantic_core-2.27.0-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:58560828ee0951bb125c6f2862fbc37f039996d19ceb6d8ff1905abf7da0bf3d"},
|
||||
{file = "pydantic_core-2.27.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:abb4785894936d7682635726613c44578c420a096729f1978cd061a7e72d5275"},
|
||||
{file = "pydantic_core-2.27.0-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:2883b260f7a93235488699d39cbbd94fa7b175d3a8063fbfddd3e81ad9988cb2"},
|
||||
{file = "pydantic_core-2.27.0-cp313-cp313-musllinux_1_1_aarch64.whl", hash = "sha256:c6fcb3fa3855d583aa57b94cf146f7781d5d5bc06cb95cb3afece33d31aac39b"},
|
||||
{file = "pydantic_core-2.27.0-cp313-cp313-musllinux_1_1_armv7l.whl", hash = "sha256:e851a051f7260e6d688267eb039c81f05f23a19431bd7dfa4bf5e3cb34c108cd"},
|
||||
{file = "pydantic_core-2.27.0-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:edb1bfd45227dec8d50bc7c7d86463cd8728bcc574f9b07de7369880de4626a3"},
|
||||
{file = "pydantic_core-2.27.0-cp313-none-win32.whl", hash = "sha256:678f66462058dd978702db17eb6a3633d634f7aa0deaea61e0a674152766d3fc"},
|
||||
{file = "pydantic_core-2.27.0-cp313-none-win_amd64.whl", hash = "sha256:d28ca7066d6cdd347a50d8b725dc10d9a1d6a1cce09836cf071ea6a2d4908be0"},
|
||||
{file = "pydantic_core-2.27.0-cp313-none-win_arm64.whl", hash = "sha256:6f4a53af9e81d757756508b57cae1cf28293f0f31b9fa2bfcb416cc7fb230f9d"},
|
||||
{file = "pydantic_core-2.27.0-cp38-cp38-macosx_10_12_x86_64.whl", hash = "sha256:e9f9feee7f334b72ceae46313333d002b56f325b5f04271b4ae2aadd9e993ae4"},
|
||||
{file = "pydantic_core-2.27.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:225bfff5d425c34e1fd562cef52d673579d59b967d9de06178850c4802af9039"},
|
||||
{file = "pydantic_core-2.27.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c921ad596ff1a82f9c692b0758c944355abc9f0de97a4c13ca60ffc6d8dc15d4"},
|
||||
{file = "pydantic_core-2.27.0-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:6354e18a9be37bfa124d6b288a87fb30c673745806c92956f1a25e3ae6e76b96"},
|
||||
{file = "pydantic_core-2.27.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:8ee4c2a75af9fe21269a4a0898c5425afb01af1f5d276063f57e2ae1bc64e191"},
|
||||
{file = "pydantic_core-2.27.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c91e3c04f5191fd3fb68764bddeaf02025492d5d9f23343b283870f6ace69708"},
|
||||
{file = "pydantic_core-2.27.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7a6ebfac28fd51890a61df36ef202adbd77d00ee5aca4a3dadb3d9ed49cfb929"},
|
||||
{file = "pydantic_core-2.27.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:36aa167f69d8807ba7e341d67ea93e50fcaaf6bc433bb04939430fa3dab06f31"},
|
||||
{file = "pydantic_core-2.27.0-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:3e8d89c276234579cd3d095d5fa2a44eb10db9a218664a17b56363cddf226ff3"},
|
||||
{file = "pydantic_core-2.27.0-cp38-cp38-musllinux_1_1_armv7l.whl", hash = "sha256:5cc822ab90a70ea3a91e6aed3afac570b276b1278c6909b1d384f745bd09c714"},
|
||||
{file = "pydantic_core-2.27.0-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:e15315691fe2253eb447503153acef4d7223dfe7e7702f9ed66539fcd0c43801"},
|
||||
{file = "pydantic_core-2.27.0-cp38-none-win32.whl", hash = "sha256:dfa5f5c0a4c8fced1422dc2ca7eefd872d5d13eb33cf324361dbf1dbfba0a9fe"},
|
||||
{file = "pydantic_core-2.27.0-cp38-none-win_amd64.whl", hash = "sha256:513cb14c0cc31a4dfd849a4674b20c46d87b364f997bbcb02282306f5e187abf"},
|
||||
{file = "pydantic_core-2.27.0-cp39-cp39-macosx_10_12_x86_64.whl", hash = "sha256:4148dc9184ab79e356dc00a4199dc0ee8647973332cb385fc29a7cced49b9f9c"},
|
||||
{file = "pydantic_core-2.27.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:5fc72fbfebbf42c0856a824b8b0dc2b5cd2e4a896050281a21cfa6fed8879cb1"},
|
||||
{file = "pydantic_core-2.27.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:185ef205256cd8b38431205698531026979db89a79587725c1e55c59101d64e9"},
|
||||
{file = "pydantic_core-2.27.0-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:395e3e1148fa7809016231f8065f30bb0dc285a97b4dc4360cd86e17bab58af7"},
|
||||
{file = "pydantic_core-2.27.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:33d14369739c5d07e2e7102cdb0081a1fa46ed03215e07f097b34e020b83b1ae"},
|
||||
{file = "pydantic_core-2.27.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:e7820bb0d65e3ce1e3e70b6708c2f66143f55912fa02f4b618d0f08b61575f12"},
|
||||
{file = "pydantic_core-2.27.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:43b61989068de9ce62296cde02beffabcadb65672207fc51e7af76dca75e6636"},
|
||||
{file = "pydantic_core-2.27.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:15e350efb67b855cd014c218716feea4986a149ed1f42a539edd271ee074a196"},
|
||||
{file = "pydantic_core-2.27.0-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:433689845288f9a1ee5714444e65957be26d30915f7745091ede4a83cfb2d7bb"},
|
||||
{file = "pydantic_core-2.27.0-cp39-cp39-musllinux_1_1_armv7l.whl", hash = "sha256:3fd8bc2690e7c39eecdf9071b6a889ce7b22b72073863940edc2a0a23750ca90"},
|
||||
{file = "pydantic_core-2.27.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:884f1806609c2c66564082540cffc96868c5571c7c3cf3a783f63f2fb49bd3cd"},
|
||||
{file = "pydantic_core-2.27.0-cp39-none-win32.whl", hash = "sha256:bf37b72834e7239cf84d4a0b2c050e7f9e48bced97bad9bdf98d26b8eb72e846"},
|
||||
{file = "pydantic_core-2.27.0-cp39-none-win_amd64.whl", hash = "sha256:31a2cae5f059329f9cfe3d8d266d3da1543b60b60130d186d9b6a3c20a346361"},
|
||||
{file = "pydantic_core-2.27.0-pp310-pypy310_pp73-macosx_10_12_x86_64.whl", hash = "sha256:4fb49cfdb53af5041aba909be00cccfb2c0d0a2e09281bf542371c5fd36ad04c"},
|
||||
{file = "pydantic_core-2.27.0-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:49633583eb7dc5cba61aaf7cdb2e9e662323ad394e543ee77af265736bcd3eaa"},
|
||||
{file = "pydantic_core-2.27.0-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:153017e3d6cd3ce979de06d84343ca424bb6092727375eba1968c8b4693c6ecb"},
|
||||
{file = "pydantic_core-2.27.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ff63a92f6e249514ef35bc795de10745be0226eaea06eb48b4bbeaa0c8850a4a"},
|
||||
{file = "pydantic_core-2.27.0-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:5982048129f40b082c2654de10c0f37c67a14f5ff9d37cf35be028ae982f26df"},
|
||||
{file = "pydantic_core-2.27.0-pp310-pypy310_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:91bc66f878557313c2a6bcf396e7befcffe5ab4354cfe4427318968af31143c3"},
|
||||
{file = "pydantic_core-2.27.0-pp310-pypy310_pp73-musllinux_1_1_armv7l.whl", hash = "sha256:68ef5377eb582fa4343c9d0b57a5b094046d447b4c73dd9fbd9ffb216f829e7d"},
|
||||
{file = "pydantic_core-2.27.0-pp310-pypy310_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:c5726eec789ee38f2c53b10b1821457b82274f81f4f746bb1e666d8741fcfadb"},
|
||||
{file = "pydantic_core-2.27.0-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:c0c431e4be5c1a0c6654e0c31c661cd89e0ca956ef65305c3c3fd96f4e72ca39"},
|
||||
{file = "pydantic_core-2.27.0-pp39-pypy39_pp73-macosx_10_12_x86_64.whl", hash = "sha256:8e21d927469d04b39386255bf00d0feedead16f6253dcc85e9e10ddebc334084"},
|
||||
{file = "pydantic_core-2.27.0-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:4b51f964fcbb02949fc546022e56cdb16cda457af485e9a3e8b78ac2ecf5d77e"},
|
||||
{file = "pydantic_core-2.27.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:25a7fd4de38f7ff99a37e18fa0098c3140286451bc823d1746ba80cec5b433a1"},
|
||||
{file = "pydantic_core-2.27.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6fda87808429c520a002a85d6e7cdadbf58231d60e96260976c5b8f9a12a8e13"},
|
||||
{file = "pydantic_core-2.27.0-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:8a150392102c402c538190730fda06f3bce654fc498865579a9f2c1d2b425833"},
|
||||
{file = "pydantic_core-2.27.0-pp39-pypy39_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:c9ed88b398ba7e3bad7bd64d66cc01dcde9cfcb7ec629a6fd78a82fa0b559d78"},
|
||||
{file = "pydantic_core-2.27.0-pp39-pypy39_pp73-musllinux_1_1_armv7l.whl", hash = "sha256:9fe94d9d2a2b4edd7a4b22adcd45814b1b59b03feb00e56deb2e89747aec7bfe"},
|
||||
{file = "pydantic_core-2.27.0-pp39-pypy39_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:d8b5ee4ae9170e2775d495b81f414cc20268041c42571530513496ba61e94ba3"},
|
||||
{file = "pydantic_core-2.27.0-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:d29e235ce13c91902ef3efc3d883a677655b3908b1cbc73dee816e5e1f8f7739"},
|
||||
{file = "pydantic_core-2.27.0.tar.gz", hash = "sha256:f57783fbaf648205ac50ae7d646f27582fc706be3977e87c3c124e7a92407b10"},
|
||||
{file = "pydantic_core-2.27.1-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:71a5e35c75c021aaf400ac048dacc855f000bdfed91614b4a726f7432f1f3d6a"},
|
||||
{file = "pydantic_core-2.27.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:f82d068a2d6ecfc6e054726080af69a6764a10015467d7d7b9f66d6ed5afa23b"},
|
||||
{file = "pydantic_core-2.27.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:121ceb0e822f79163dd4699e4c54f5ad38b157084d97b34de8b232bcaad70278"},
|
||||
{file = "pydantic_core-2.27.1-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:4603137322c18eaf2e06a4495f426aa8d8388940f3c457e7548145011bb68e05"},
|
||||
{file = "pydantic_core-2.27.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:a33cd6ad9017bbeaa9ed78a2e0752c5e250eafb9534f308e7a5f7849b0b1bfb4"},
|
||||
{file = "pydantic_core-2.27.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:15cc53a3179ba0fcefe1e3ae50beb2784dede4003ad2dfd24f81bba4b23a454f"},
|
||||
{file = "pydantic_core-2.27.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:45d9c5eb9273aa50999ad6adc6be5e0ecea7e09dbd0d31bd0c65a55a2592ca08"},
|
||||
{file = "pydantic_core-2.27.1-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:8bf7b66ce12a2ac52d16f776b31d16d91033150266eb796967a7e4621707e4f6"},
|
||||
{file = "pydantic_core-2.27.1-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:655d7dd86f26cb15ce8a431036f66ce0318648f8853d709b4167786ec2fa4807"},
|
||||
{file = "pydantic_core-2.27.1-cp310-cp310-musllinux_1_1_armv7l.whl", hash = "sha256:5556470f1a2157031e676f776c2bc20acd34c1990ca5f7e56f1ebf938b9ab57c"},
|
||||
{file = "pydantic_core-2.27.1-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:f69ed81ab24d5a3bd93861c8c4436f54afdf8e8cc421562b0c7504cf3be58206"},
|
||||
{file = "pydantic_core-2.27.1-cp310-none-win32.whl", hash = "sha256:f5a823165e6d04ccea61a9f0576f345f8ce40ed533013580e087bd4d7442b52c"},
|
||||
{file = "pydantic_core-2.27.1-cp310-none-win_amd64.whl", hash = "sha256:57866a76e0b3823e0b56692d1a0bf722bffb324839bb5b7226a7dbd6c9a40b17"},
|
||||
{file = "pydantic_core-2.27.1-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:ac3b20653bdbe160febbea8aa6c079d3df19310d50ac314911ed8cc4eb7f8cb8"},
|
||||
{file = "pydantic_core-2.27.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:a5a8e19d7c707c4cadb8c18f5f60c843052ae83c20fa7d44f41594c644a1d330"},
|
||||
{file = "pydantic_core-2.27.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7f7059ca8d64fea7f238994c97d91f75965216bcbe5f695bb44f354893f11d52"},
|
||||
{file = "pydantic_core-2.27.1-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:bed0f8a0eeea9fb72937ba118f9db0cb7e90773462af7962d382445f3005e5a4"},
|
||||
{file = "pydantic_core-2.27.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:a3cb37038123447cf0f3ea4c74751f6a9d7afef0eb71aa07bf5f652b5e6a132c"},
|
||||
{file = "pydantic_core-2.27.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:84286494f6c5d05243456e04223d5a9417d7f443c3b76065e75001beb26f88de"},
|
||||
{file = "pydantic_core-2.27.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:acc07b2cfc5b835444b44a9956846b578d27beeacd4b52e45489e93276241025"},
|
||||
{file = "pydantic_core-2.27.1-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:4fefee876e07a6e9aad7a8c8c9f85b0cdbe7df52b8a9552307b09050f7512c7e"},
|
||||
{file = "pydantic_core-2.27.1-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:258c57abf1188926c774a4c94dd29237e77eda19462e5bb901d88adcab6af919"},
|
||||
{file = "pydantic_core-2.27.1-cp311-cp311-musllinux_1_1_armv7l.whl", hash = "sha256:35c14ac45fcfdf7167ca76cc80b2001205a8d5d16d80524e13508371fb8cdd9c"},
|
||||
{file = "pydantic_core-2.27.1-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:d1b26e1dff225c31897696cab7d4f0a315d4c0d9e8666dbffdb28216f3b17fdc"},
|
||||
{file = "pydantic_core-2.27.1-cp311-none-win32.whl", hash = "sha256:2cdf7d86886bc6982354862204ae3b2f7f96f21a3eb0ba5ca0ac42c7b38598b9"},
|
||||
{file = "pydantic_core-2.27.1-cp311-none-win_amd64.whl", hash = "sha256:3af385b0cee8df3746c3f406f38bcbfdc9041b5c2d5ce3e5fc6637256e60bbc5"},
|
||||
{file = "pydantic_core-2.27.1-cp311-none-win_arm64.whl", hash = "sha256:81f2ec23ddc1b476ff96563f2e8d723830b06dceae348ce02914a37cb4e74b89"},
|
||||
{file = "pydantic_core-2.27.1-cp312-cp312-macosx_10_12_x86_64.whl", hash = "sha256:9cbd94fc661d2bab2bc702cddd2d3370bbdcc4cd0f8f57488a81bcce90c7a54f"},
|
||||
{file = "pydantic_core-2.27.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:5f8c4718cd44ec1580e180cb739713ecda2bdee1341084c1467802a417fe0f02"},
|
||||
{file = "pydantic_core-2.27.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:15aae984e46de8d376df515f00450d1522077254ef6b7ce189b38ecee7c9677c"},
|
||||
{file = "pydantic_core-2.27.1-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:1ba5e3963344ff25fc8c40da90f44b0afca8cfd89d12964feb79ac1411a260ac"},
|
||||
{file = "pydantic_core-2.27.1-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:992cea5f4f3b29d6b4f7f1726ed8ee46c8331c6b4eed6db5b40134c6fe1768bb"},
|
||||
{file = "pydantic_core-2.27.1-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:0325336f348dbee6550d129b1627cb8f5351a9dc91aad141ffb96d4937bd9529"},
|
||||
{file = "pydantic_core-2.27.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7597c07fbd11515f654d6ece3d0e4e5093edc30a436c63142d9a4b8e22f19c35"},
|
||||
{file = "pydantic_core-2.27.1-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:3bbd5d8cc692616d5ef6fbbbd50dbec142c7e6ad9beb66b78a96e9c16729b089"},
|
||||
{file = "pydantic_core-2.27.1-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:dc61505e73298a84a2f317255fcc72b710b72980f3a1f670447a21efc88f8381"},
|
||||
{file = "pydantic_core-2.27.1-cp312-cp312-musllinux_1_1_armv7l.whl", hash = "sha256:e1f735dc43da318cad19b4173dd1ffce1d84aafd6c9b782b3abc04a0d5a6f5bb"},
|
||||
{file = "pydantic_core-2.27.1-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:f4e5658dbffe8843a0f12366a4c2d1c316dbe09bb4dfbdc9d2d9cd6031de8aae"},
|
||||
{file = "pydantic_core-2.27.1-cp312-none-win32.whl", hash = "sha256:672ebbe820bb37988c4d136eca2652ee114992d5d41c7e4858cdd90ea94ffe5c"},
|
||||
{file = "pydantic_core-2.27.1-cp312-none-win_amd64.whl", hash = "sha256:66ff044fd0bb1768688aecbe28b6190f6e799349221fb0de0e6f4048eca14c16"},
|
||||
{file = "pydantic_core-2.27.1-cp312-none-win_arm64.whl", hash = "sha256:9a3b0793b1bbfd4146304e23d90045f2a9b5fd5823aa682665fbdaf2a6c28f3e"},
|
||||
{file = "pydantic_core-2.27.1-cp313-cp313-macosx_10_12_x86_64.whl", hash = "sha256:f216dbce0e60e4d03e0c4353c7023b202d95cbaeff12e5fd2e82ea0a66905073"},
|
||||
{file = "pydantic_core-2.27.1-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:a2e02889071850bbfd36b56fd6bc98945e23670773bc7a76657e90e6b6603c08"},
|
||||
{file = "pydantic_core-2.27.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:42b0e23f119b2b456d07ca91b307ae167cc3f6c846a7b169fca5326e32fdc6cf"},
|
||||
{file = "pydantic_core-2.27.1-cp313-cp313-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:764be71193f87d460a03f1f7385a82e226639732214b402f9aa61f0d025f0737"},
|
||||
{file = "pydantic_core-2.27.1-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:1c00666a3bd2f84920a4e94434f5974d7bbc57e461318d6bb34ce9cdbbc1f6b2"},
|
||||
{file = "pydantic_core-2.27.1-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:3ccaa88b24eebc0f849ce0a4d09e8a408ec5a94afff395eb69baf868f5183107"},
|
||||
{file = "pydantic_core-2.27.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c65af9088ac534313e1963443d0ec360bb2b9cba6c2909478d22c2e363d98a51"},
|
||||
{file = "pydantic_core-2.27.1-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:206b5cf6f0c513baffaeae7bd817717140770c74528f3e4c3e1cec7871ddd61a"},
|
||||
{file = "pydantic_core-2.27.1-cp313-cp313-musllinux_1_1_aarch64.whl", hash = "sha256:062f60e512fc7fff8b8a9d680ff0ddaaef0193dba9fa83e679c0c5f5fbd018bc"},
|
||||
{file = "pydantic_core-2.27.1-cp313-cp313-musllinux_1_1_armv7l.whl", hash = "sha256:a0697803ed7d4af5e4c1adf1670af078f8fcab7a86350e969f454daf598c4960"},
|
||||
{file = "pydantic_core-2.27.1-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:58ca98a950171f3151c603aeea9303ef6c235f692fe555e883591103da709b23"},
|
||||
{file = "pydantic_core-2.27.1-cp313-none-win32.whl", hash = "sha256:8065914ff79f7eab1599bd80406681f0ad08f8e47c880f17b416c9f8f7a26d05"},
|
||||
{file = "pydantic_core-2.27.1-cp313-none-win_amd64.whl", hash = "sha256:ba630d5e3db74c79300d9a5bdaaf6200172b107f263c98a0539eeecb857b2337"},
|
||||
{file = "pydantic_core-2.27.1-cp313-none-win_arm64.whl", hash = "sha256:45cf8588c066860b623cd11c4ba687f8d7175d5f7ef65f7129df8a394c502de5"},
|
||||
{file = "pydantic_core-2.27.1-cp38-cp38-macosx_10_12_x86_64.whl", hash = "sha256:5897bec80a09b4084aee23f9b73a9477a46c3304ad1d2d07acca19723fb1de62"},
|
||||
{file = "pydantic_core-2.27.1-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:d0165ab2914379bd56908c02294ed8405c252250668ebcb438a55494c69f44ab"},
|
||||
{file = "pydantic_core-2.27.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6b9af86e1d8e4cfc82c2022bfaa6f459381a50b94a29e95dcdda8442d6d83864"},
|
||||
{file = "pydantic_core-2.27.1-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:5f6c8a66741c5f5447e047ab0ba7a1c61d1e95580d64bce852e3df1f895c4067"},
|
||||
{file = "pydantic_core-2.27.1-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:9a42d6a8156ff78981f8aa56eb6394114e0dedb217cf8b729f438f643608cbcd"},
|
||||
{file = "pydantic_core-2.27.1-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:64c65f40b4cd8b0e049a8edde07e38b476da7e3aaebe63287c899d2cff253fa5"},
|
||||
{file = "pydantic_core-2.27.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9fdcf339322a3fae5cbd504edcefddd5a50d9ee00d968696846f089b4432cf78"},
|
||||
{file = "pydantic_core-2.27.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:bf99c8404f008750c846cb4ac4667b798a9f7de673ff719d705d9b2d6de49c5f"},
|
||||
{file = "pydantic_core-2.27.1-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:8f1edcea27918d748c7e5e4d917297b2a0ab80cad10f86631e488b7cddf76a36"},
|
||||
{file = "pydantic_core-2.27.1-cp38-cp38-musllinux_1_1_armv7l.whl", hash = "sha256:159cac0a3d096f79ab6a44d77a961917219707e2a130739c64d4dd46281f5c2a"},
|
||||
{file = "pydantic_core-2.27.1-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:029d9757eb621cc6e1848fa0b0310310de7301057f623985698ed7ebb014391b"},
|
||||
{file = "pydantic_core-2.27.1-cp38-none-win32.whl", hash = "sha256:a28af0695a45f7060e6f9b7092558a928a28553366519f64083c63a44f70e618"},
|
||||
{file = "pydantic_core-2.27.1-cp38-none-win_amd64.whl", hash = "sha256:2d4567c850905d5eaaed2f7a404e61012a51caf288292e016360aa2b96ff38d4"},
|
||||
{file = "pydantic_core-2.27.1-cp39-cp39-macosx_10_12_x86_64.whl", hash = "sha256:e9386266798d64eeb19dd3677051f5705bf873e98e15897ddb7d76f477131967"},
|
||||
{file = "pydantic_core-2.27.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:4228b5b646caa73f119b1ae756216b59cc6e2267201c27d3912b592c5e323b60"},
|
||||
{file = "pydantic_core-2.27.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0b3dfe500de26c52abe0477dde16192ac39c98f05bf2d80e76102d394bd13854"},
|
||||
{file = "pydantic_core-2.27.1-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:aee66be87825cdf72ac64cb03ad4c15ffef4143dbf5c113f64a5ff4f81477bf9"},
|
||||
{file = "pydantic_core-2.27.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:3b748c44bb9f53031c8cbc99a8a061bc181c1000c60a30f55393b6e9c45cc5bd"},
|
||||
{file = "pydantic_core-2.27.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5ca038c7f6a0afd0b2448941b6ef9d5e1949e999f9e5517692eb6da58e9d44be"},
|
||||
{file = "pydantic_core-2.27.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6e0bd57539da59a3e4671b90a502da9a28c72322a4f17866ba3ac63a82c4498e"},
|
||||
{file = "pydantic_core-2.27.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:ac6c2c45c847bbf8f91930d88716a0fb924b51e0c6dad329b793d670ec5db792"},
|
||||
{file = "pydantic_core-2.27.1-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:b94d4ba43739bbe8b0ce4262bcc3b7b9f31459ad120fb595627eaeb7f9b9ca01"},
|
||||
{file = "pydantic_core-2.27.1-cp39-cp39-musllinux_1_1_armv7l.whl", hash = "sha256:00e6424f4b26fe82d44577b4c842d7df97c20be6439e8e685d0d715feceb9fb9"},
|
||||
{file = "pydantic_core-2.27.1-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:38de0a70160dd97540335b7ad3a74571b24f1dc3ed33f815f0880682e6880131"},
|
||||
{file = "pydantic_core-2.27.1-cp39-none-win32.whl", hash = "sha256:7ccebf51efc61634f6c2344da73e366c75e735960b5654b63d7e6f69a5885fa3"},
|
||||
{file = "pydantic_core-2.27.1-cp39-none-win_amd64.whl", hash = "sha256:a57847b090d7892f123726202b7daa20df6694cbd583b67a592e856bff603d6c"},
|
||||
{file = "pydantic_core-2.27.1-pp310-pypy310_pp73-macosx_10_12_x86_64.whl", hash = "sha256:3fa80ac2bd5856580e242dbc202db873c60a01b20309c8319b5c5986fbe53ce6"},
|
||||
{file = "pydantic_core-2.27.1-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:d950caa237bb1954f1b8c9227b5065ba6875ac9771bb8ec790d956a699b78676"},
|
||||
{file = "pydantic_core-2.27.1-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0e4216e64d203e39c62df627aa882f02a2438d18a5f21d7f721621f7a5d3611d"},
|
||||
{file = "pydantic_core-2.27.1-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:02a3d637bd387c41d46b002f0e49c52642281edacd2740e5a42f7017feea3f2c"},
|
||||
{file = "pydantic_core-2.27.1-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:161c27ccce13b6b0c8689418da3885d3220ed2eae2ea5e9b2f7f3d48f1d52c27"},
|
||||
{file = "pydantic_core-2.27.1-pp310-pypy310_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:19910754e4cc9c63bc1c7f6d73aa1cfee82f42007e407c0f413695c2f7ed777f"},
|
||||
{file = "pydantic_core-2.27.1-pp310-pypy310_pp73-musllinux_1_1_armv7l.whl", hash = "sha256:e173486019cc283dc9778315fa29a363579372fe67045e971e89b6365cc035ed"},
|
||||
{file = "pydantic_core-2.27.1-pp310-pypy310_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:af52d26579b308921b73b956153066481f064875140ccd1dfd4e77db89dbb12f"},
|
||||
{file = "pydantic_core-2.27.1-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:981fb88516bd1ae8b0cbbd2034678a39dedc98752f264ac9bc5839d3923fa04c"},
|
||||
{file = "pydantic_core-2.27.1-pp39-pypy39_pp73-macosx_10_12_x86_64.whl", hash = "sha256:5fde892e6c697ce3e30c61b239330fc5d569a71fefd4eb6512fc6caec9dd9e2f"},
|
||||
{file = "pydantic_core-2.27.1-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:816f5aa087094099fff7edabb5e01cc370eb21aa1a1d44fe2d2aefdfb5599b31"},
|
||||
{file = "pydantic_core-2.27.1-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9c10c309e18e443ddb108f0ef64e8729363adbfd92d6d57beec680f6261556f3"},
|
||||
{file = "pydantic_core-2.27.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:98476c98b02c8e9b2eec76ac4156fd006628b1b2d0ef27e548ffa978393fd154"},
|
||||
{file = "pydantic_core-2.27.1-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:c3027001c28434e7ca5a6e1e527487051136aa81803ac812be51802150d880dd"},
|
||||
{file = "pydantic_core-2.27.1-pp39-pypy39_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:7699b1df36a48169cdebda7ab5a2bac265204003f153b4bd17276153d997670a"},
|
||||
{file = "pydantic_core-2.27.1-pp39-pypy39_pp73-musllinux_1_1_armv7l.whl", hash = "sha256:1c39b07d90be6b48968ddc8c19e7585052088fd7ec8d568bb31ff64c70ae3c97"},
|
||||
{file = "pydantic_core-2.27.1-pp39-pypy39_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:46ccfe3032b3915586e469d4972973f893c0a2bb65669194a5bdea9bacc088c2"},
|
||||
{file = "pydantic_core-2.27.1-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:62ba45e21cf6571d7f716d903b5b7b6d2617e2d5d67c0923dc47b9d41369f840"},
|
||||
{file = "pydantic_core-2.27.1.tar.gz", hash = "sha256:62a763352879b84aa31058fc931884055fd75089cccbd9d58bb6afd01141b235"},
|
||||
]
|
||||
|
||||
[package.dependencies]
|
||||
@@ -953,13 +973,13 @@ files = [
|
||||
|
||||
[[package]]
|
||||
name = "syrupy"
|
||||
version = "4.7.2"
|
||||
version = "4.8.0"
|
||||
description = "Pytest Snapshot Test Utility"
|
||||
optional = false
|
||||
python-versions = ">=3.8.1"
|
||||
files = [
|
||||
{file = "syrupy-4.7.2-py3-none-any.whl", hash = "sha256:eae7ba6be5aed190237caa93be288e97ca1eec5ca58760e4818972a10c4acc64"},
|
||||
{file = "syrupy-4.7.2.tar.gz", hash = "sha256:ea45e099f242de1bb53018c238f408a5bb6c82007bc687aefcbeaa0e1c2e935a"},
|
||||
{file = "syrupy-4.8.0-py3-none-any.whl", hash = "sha256:544f4ec6306f4b1c460fdab48fd60b2c7fe54a6c0a8243aeea15f9ad9c638c3f"},
|
||||
{file = "syrupy-4.8.0.tar.gz", hash = "sha256:648f0e9303aaa8387c8365d7314784c09a6bab0a407455c6a01d6a4f5c6a8ede"},
|
||||
]
|
||||
|
||||
[package.dependencies]
|
||||
@@ -1014,31 +1034,61 @@ testing = ["black (==22.3)", "datasets", "numpy", "pytest", "requests", "ruff"]
|
||||
|
||||
[[package]]
|
||||
name = "tomli"
|
||||
version = "2.1.0"
|
||||
version = "2.2.1"
|
||||
description = "A lil' TOML parser"
|
||||
optional = false
|
||||
python-versions = ">=3.8"
|
||||
files = [
|
||||
{file = "tomli-2.1.0-py3-none-any.whl", hash = "sha256:a5c57c3d1c56f5ccdf89f6523458f60ef716e210fc47c4cfb188c5ba473e0391"},
|
||||
{file = "tomli-2.1.0.tar.gz", hash = "sha256:3f646cae2aec94e17d04973e4249548320197cfabdf130015d023de4b74d8ab8"},
|
||||
{file = "tomli-2.2.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:678e4fa69e4575eb77d103de3df8a895e1591b48e740211bd1067378c69e8249"},
|
||||
{file = "tomli-2.2.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:023aa114dd824ade0100497eb2318602af309e5a55595f76b626d6d9f3b7b0a6"},
|
||||
{file = "tomli-2.2.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ece47d672db52ac607a3d9599a9d48dcb2f2f735c6c2d1f34130085bb12b112a"},
|
||||
{file = "tomli-2.2.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6972ca9c9cc9f0acaa56a8ca1ff51e7af152a9f87fb64623e31d5c83700080ee"},
|
||||
{file = "tomli-2.2.1-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:c954d2250168d28797dd4e3ac5cf812a406cd5a92674ee4c8f123c889786aa8e"},
|
||||
{file = "tomli-2.2.1-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:8dd28b3e155b80f4d54beb40a441d366adcfe740969820caf156c019fb5c7ec4"},
|
||||
{file = "tomli-2.2.1-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:e59e304978767a54663af13c07b3d1af22ddee3bb2fb0618ca1593e4f593a106"},
|
||||
{file = "tomli-2.2.1-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:33580bccab0338d00994d7f16f4c4ec25b776af3ffaac1ed74e0b3fc95e885a8"},
|
||||
{file = "tomli-2.2.1-cp311-cp311-win32.whl", hash = "sha256:465af0e0875402f1d226519c9904f37254b3045fc5084697cefb9bdde1ff99ff"},
|
||||
{file = "tomli-2.2.1-cp311-cp311-win_amd64.whl", hash = "sha256:2d0f2fdd22b02c6d81637a3c95f8cd77f995846af7414c5c4b8d0545afa1bc4b"},
|
||||
{file = "tomli-2.2.1-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:4a8f6e44de52d5e6c657c9fe83b562f5f4256d8ebbfe4ff922c495620a7f6cea"},
|
||||
{file = "tomli-2.2.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:8d57ca8095a641b8237d5b079147646153d22552f1c637fd3ba7f4b0b29167a8"},
|
||||
{file = "tomli-2.2.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4e340144ad7ae1533cb897d406382b4b6fede8890a03738ff1683af800d54192"},
|
||||
{file = "tomli-2.2.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:db2b95f9de79181805df90bedc5a5ab4c165e6ec3fe99f970d0e302f384ad222"},
|
||||
{file = "tomli-2.2.1-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:40741994320b232529c802f8bc86da4e1aa9f413db394617b9a256ae0f9a7f77"},
|
||||
{file = "tomli-2.2.1-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:400e720fe168c0f8521520190686ef8ef033fb19fc493da09779e592861b78c6"},
|
||||
{file = "tomli-2.2.1-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:02abe224de6ae62c19f090f68da4e27b10af2b93213d36cf44e6e1c5abd19fdd"},
|
||||
{file = "tomli-2.2.1-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:b82ebccc8c8a36f2094e969560a1b836758481f3dc360ce9a3277c65f374285e"},
|
||||
{file = "tomli-2.2.1-cp312-cp312-win32.whl", hash = "sha256:889f80ef92701b9dbb224e49ec87c645ce5df3fa2cc548664eb8a25e03127a98"},
|
||||
{file = "tomli-2.2.1-cp312-cp312-win_amd64.whl", hash = "sha256:7fc04e92e1d624a4a63c76474610238576942d6b8950a2d7f908a340494e67e4"},
|
||||
{file = "tomli-2.2.1-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:f4039b9cbc3048b2416cc57ab3bda989a6fcf9b36cf8937f01a6e731b64f80d7"},
|
||||
{file = "tomli-2.2.1-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:286f0ca2ffeeb5b9bd4fcc8d6c330534323ec51b2f52da063b11c502da16f30c"},
|
||||
{file = "tomli-2.2.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a92ef1a44547e894e2a17d24e7557a5e85a9e1d0048b0b5e7541f76c5032cb13"},
|
||||
{file = "tomli-2.2.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9316dc65bed1684c9a98ee68759ceaed29d229e985297003e494aa825ebb0281"},
|
||||
{file = "tomli-2.2.1-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:e85e99945e688e32d5a35c1ff38ed0b3f41f43fad8df0bdf79f72b2ba7bc5272"},
|
||||
{file = "tomli-2.2.1-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:ac065718db92ca818f8d6141b5f66369833d4a80a9d74435a268c52bdfa73140"},
|
||||
{file = "tomli-2.2.1-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:d920f33822747519673ee656a4b6ac33e382eca9d331c87770faa3eef562aeb2"},
|
||||
{file = "tomli-2.2.1-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:a198f10c4d1b1375d7687bc25294306e551bf1abfa4eace6650070a5c1ae2744"},
|
||||
{file = "tomli-2.2.1-cp313-cp313-win32.whl", hash = "sha256:d3f5614314d758649ab2ab3a62d4f2004c825922f9e370b29416484086b264ec"},
|
||||
{file = "tomli-2.2.1-cp313-cp313-win_amd64.whl", hash = "sha256:a38aa0308e754b0e3c67e344754dff64999ff9b513e691d0e786265c93583c69"},
|
||||
{file = "tomli-2.2.1-py3-none-any.whl", hash = "sha256:cb55c73c5f4408779d0cf3eef9f762b9c9f147a77de7b258bef0a5628adc85cc"},
|
||||
{file = "tomli-2.2.1.tar.gz", hash = "sha256:cd45e1dc79c835ce60f7404ec8119f2eb06d38b1deba146f07ced3bbc44505ff"},
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "tqdm"
|
||||
version = "4.67.0"
|
||||
version = "4.67.1"
|
||||
description = "Fast, Extensible Progress Meter"
|
||||
optional = false
|
||||
python-versions = ">=3.7"
|
||||
files = [
|
||||
{file = "tqdm-4.67.0-py3-none-any.whl", hash = "sha256:0cd8af9d56911acab92182e88d763100d4788bdf421d251616040cc4d44863be"},
|
||||
{file = "tqdm-4.67.0.tar.gz", hash = "sha256:fe5a6f95e6fe0b9755e9469b77b9c3cf850048224ecaa8293d7d2d31f97d869a"},
|
||||
{file = "tqdm-4.67.1-py3-none-any.whl", hash = "sha256:26445eca388f82e72884e0d580d5464cd801a3ea01e63e5601bdff9ba6a48de2"},
|
||||
{file = "tqdm-4.67.1.tar.gz", hash = "sha256:f8aef9c52c08c13a65f30ea34f4e5aac3fd1a34959879d7e59e63027286627f2"},
|
||||
]
|
||||
|
||||
[package.dependencies]
|
||||
colorama = {version = "*", markers = "platform_system == \"Windows\""}
|
||||
|
||||
[package.extras]
|
||||
dev = ["pytest (>=6)", "pytest-cov", "pytest-timeout", "pytest-xdist"]
|
||||
dev = ["nbval", "pytest (>=6)", "pytest-asyncio (>=0.24)", "pytest-cov", "pytest-timeout"]
|
||||
discord = ["requests"]
|
||||
notebook = ["ipywidgets (>=6)"]
|
||||
slack = ["slack-sdk"]
|
||||
@@ -1117,4 +1167,4 @@ watchmedo = ["PyYAML (>=3.10)"]
|
||||
[metadata]
|
||||
lock-version = "2.0"
|
||||
python-versions = ">=3.9,<4.0"
|
||||
content-hash = "4a86b5a8d678aa583d949272e47d16b9a1ecde22ce590d903bcb1a386dc4ecdf"
|
||||
content-hash = "a89781c86a72349bba46de58ba88102bf2ae1f58a9b0fe79d952caecb656a585"
|
||||
|
||||
@@ -1,10 +1,10 @@
|
||||
[build-system]
|
||||
requires = ["poetry-core>=1.0.0"]
|
||||
requires = [ "poetry-core>=1.0.0",]
|
||||
build-backend = "poetry.core.masonry.api"
|
||||
|
||||
[tool.poetry]
|
||||
name = "langchain-mistralai"
|
||||
version = "0.2.2"
|
||||
version = "0.2.3"
|
||||
description = "An integration package connecting Mistral and LangChain"
|
||||
authors = []
|
||||
readme = "README.md"
|
||||
@@ -20,24 +20,21 @@ disallow_untyped_defs = "True"
|
||||
|
||||
[tool.poetry.dependencies]
|
||||
python = ">=3.9,<4.0"
|
||||
langchain-core = "^0.3.15"
|
||||
langchain-core = "^0.3.21"
|
||||
tokenizers = ">=0.15.1,<1"
|
||||
httpx = ">=0.25.2,<1"
|
||||
httpx-sse = ">=0.3.1,<1"
|
||||
pydantic = ">=2,<3"
|
||||
|
||||
[tool.ruff.lint]
|
||||
select = ["E", "F", "I", "T201"]
|
||||
select = [ "E", "F", "I", "T201",]
|
||||
|
||||
[tool.coverage.run]
|
||||
omit = ["tests/*"]
|
||||
omit = [ "tests/*",]
|
||||
|
||||
[tool.pytest.ini_options]
|
||||
addopts = "--strict-markers --strict-config --durations=5"
|
||||
markers = [
|
||||
"requires: mark tests as requiring a specific library",
|
||||
"compile: mark placeholder test used to compile integration tests without running them",
|
||||
]
|
||||
markers = [ "requires: mark tests as requiring a specific library", "compile: mark placeholder test used to compile integration tests without running them",]
|
||||
asyncio_mode = "auto"
|
||||
|
||||
[tool.poetry.group.test]
|
||||
|
||||
2
libs/partners/ollama/poetry.lock
generated
2
libs/partners/ollama/poetry.lock
generated
@@ -309,7 +309,7 @@ files = [
|
||||
|
||||
[[package]]
|
||||
name = "langchain-core"
|
||||
version = "0.3.20"
|
||||
version = "0.3.21"
|
||||
description = "Building applications with LLMs through composability"
|
||||
optional = false
|
||||
python-versions = ">=3.9,<4.0"
|
||||
|
||||
@@ -4,7 +4,7 @@ build-backend = "poetry.core.masonry.api"
|
||||
|
||||
[tool.poetry]
|
||||
name = "langchain-ollama"
|
||||
version = "0.2.2rc1"
|
||||
version = "0.2.1"
|
||||
description = "An integration package connecting Ollama and LangChain"
|
||||
authors = []
|
||||
readme = "README.md"
|
||||
|
||||
@@ -113,7 +113,7 @@ class BaseOpenAI(BaseLLM):
|
||||
)
|
||||
"""Timeout for requests to OpenAI completion API. Can be float, httpx.Timeout or
|
||||
None."""
|
||||
logit_bias: Optional[Dict[str, float]] = Field(default_factory=dict)
|
||||
logit_bias: Optional[Dict[str, float]] = None
|
||||
"""Adjust the probability of specific tokens being generated."""
|
||||
max_retries: int = 2
|
||||
"""Maximum number of retries to make when generating."""
|
||||
@@ -205,11 +205,13 @@ class BaseOpenAI(BaseLLM):
|
||||
"frequency_penalty": self.frequency_penalty,
|
||||
"presence_penalty": self.presence_penalty,
|
||||
"n": self.n,
|
||||
"logit_bias": self.logit_bias,
|
||||
"seed": self.seed,
|
||||
"logprobs": self.logprobs,
|
||||
}
|
||||
|
||||
if self.logit_bias is not None:
|
||||
normal_params["logit_bias"] = self.logit_bias
|
||||
|
||||
if self.max_tokens is not None:
|
||||
normal_params["max_tokens"] = self.max_tokens
|
||||
|
||||
|
||||
203
libs/partners/openai/poetry.lock
generated
203
libs/partners/openai/poetry.lock
generated
@@ -1,4 +1,4 @@
|
||||
# This file is automatically @generated by Poetry 1.8.2 and should not be changed by hand.
|
||||
# This file is automatically @generated by Poetry 1.8.3 and should not be changed by hand.
|
||||
|
||||
[[package]]
|
||||
name = "annotated-types"
|
||||
@@ -386,84 +386,86 @@ files = [
|
||||
|
||||
[[package]]
|
||||
name = "jiter"
|
||||
version = "0.7.1"
|
||||
version = "0.8.0"
|
||||
description = "Fast iterable JSON parser."
|
||||
optional = false
|
||||
python-versions = ">=3.8"
|
||||
files = [
|
||||
{file = "jiter-0.7.1-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:262e96d06696b673fad6f257e6a0abb6e873dc22818ca0e0600f4a1189eb334f"},
|
||||
{file = "jiter-0.7.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:be6de02939aac5be97eb437f45cfd279b1dc9de358b13ea6e040e63a3221c40d"},
|
||||
{file = "jiter-0.7.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:935f10b802bc1ce2b2f61843e498c7720aa7f4e4bb7797aa8121eab017293c3d"},
|
||||
{file = "jiter-0.7.1-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:9cd3cccccabf5064e4bb3099c87bf67db94f805c1e62d1aefd2b7476e90e0ee2"},
|
||||
{file = "jiter-0.7.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:4aa919ebfc5f7b027cc368fe3964c0015e1963b92e1db382419dadb098a05192"},
|
||||
{file = "jiter-0.7.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5ae2d01e82c94491ce4d6f461a837f63b6c4e6dd5bb082553a70c509034ff3d4"},
|
||||
{file = "jiter-0.7.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9f9568cd66dbbdab67ae1b4c99f3f7da1228c5682d65913e3f5f95586b3cb9a9"},
|
||||
{file = "jiter-0.7.1-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:9ecbf4e20ec2c26512736284dc1a3f8ed79b6ca7188e3b99032757ad48db97dc"},
|
||||
{file = "jiter-0.7.1-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:b1a0508fddc70ce00b872e463b387d49308ef02b0787992ca471c8d4ba1c0fa1"},
|
||||
{file = "jiter-0.7.1-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:f84c9996664c460f24213ff1e5881530abd8fafd82058d39af3682d5fd2d6316"},
|
||||
{file = "jiter-0.7.1-cp310-none-win32.whl", hash = "sha256:c915e1a1960976ba4dfe06551ea87063b2d5b4d30759012210099e712a414d9f"},
|
||||
{file = "jiter-0.7.1-cp310-none-win_amd64.whl", hash = "sha256:75bf3b7fdc5c0faa6ffffcf8028a1f974d126bac86d96490d1b51b3210aa0f3f"},
|
||||
{file = "jiter-0.7.1-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:ad04a23a91f3d10d69d6c87a5f4471b61c2c5cd6e112e85136594a02043f462c"},
|
||||
{file = "jiter-0.7.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:1e47a554de88dff701226bb5722b7f1b6bccd0b98f1748459b7e56acac2707a5"},
|
||||
{file = "jiter-0.7.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1e44fff69c814a2e96a20b4ecee3e2365e9b15cf5fe4e00869d18396daa91dab"},
|
||||
{file = "jiter-0.7.1-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:df0a1d05081541b45743c965436f8b5a1048d6fd726e4a030113a2699a6046ea"},
|
||||
{file = "jiter-0.7.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:f22cf8f236a645cb6d8ffe2a64edb5d2b66fb148bf7c75eea0cb36d17014a7bc"},
|
||||
{file = "jiter-0.7.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:da8589f50b728ea4bf22e0632eefa125c8aa9c38ed202a5ee6ca371f05eeb3ff"},
|
||||
{file = "jiter-0.7.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f20de711224f2ca2dbb166a8d512f6ff48c9c38cc06b51f796520eb4722cc2ce"},
|
||||
{file = "jiter-0.7.1-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:8a9803396032117b85ec8cbf008a54590644a062fedd0425cbdb95e4b2b60479"},
|
||||
{file = "jiter-0.7.1-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:3d8bae77c82741032e9d89a4026479061aba6e646de3bf5f2fc1ae2bbd9d06e0"},
|
||||
{file = "jiter-0.7.1-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:3dc9939e576bbc68c813fc82f6620353ed68c194c7bcf3d58dc822591ec12490"},
|
||||
{file = "jiter-0.7.1-cp311-none-win32.whl", hash = "sha256:f7605d24cd6fab156ec89e7924578e21604feee9c4f1e9da34d8b67f63e54892"},
|
||||
{file = "jiter-0.7.1-cp311-none-win_amd64.whl", hash = "sha256:f3ea649e7751a1a29ea5ecc03c4ada0a833846c59c6da75d747899f9b48b7282"},
|
||||
{file = "jiter-0.7.1-cp312-cp312-macosx_10_12_x86_64.whl", hash = "sha256:ad36a1155cbd92e7a084a568f7dc6023497df781adf2390c345dd77a120905ca"},
|
||||
{file = "jiter-0.7.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:7ba52e6aaed2dc5c81a3d9b5e4ab95b039c4592c66ac973879ba57c3506492bb"},
|
||||
{file = "jiter-0.7.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2b7de0b6f6728b678540c7927587e23f715284596724be203af952418acb8a2d"},
|
||||
{file = "jiter-0.7.1-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:9463b62bd53c2fb85529c700c6a3beb2ee54fde8bef714b150601616dcb184a6"},
|
||||
{file = "jiter-0.7.1-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:627164ec01d28af56e1f549da84caf0fe06da3880ebc7b7ee1ca15df106ae172"},
|
||||
{file = "jiter-0.7.1-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:25d0e5bf64e368b0aa9e0a559c3ab2f9b67e35fe7269e8a0d81f48bbd10e8963"},
|
||||
{file = "jiter-0.7.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c244261306f08f8008b3087059601997016549cb8bb23cf4317a4827f07b7d74"},
|
||||
{file = "jiter-0.7.1-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:7ded4e4b75b68b843b7cea5cd7c55f738c20e1394c68c2cb10adb655526c5f1b"},
|
||||
{file = "jiter-0.7.1-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:80dae4f1889b9d09e5f4de6b58c490d9c8ce7730e35e0b8643ab62b1538f095c"},
|
||||
{file = "jiter-0.7.1-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:5970cf8ec943b51bce7f4b98d2e1ed3ada170c2a789e2db3cb484486591a176a"},
|
||||
{file = "jiter-0.7.1-cp312-none-win32.whl", hash = "sha256:701d90220d6ecb3125d46853c8ca8a5bc158de8c49af60fd706475a49fee157e"},
|
||||
{file = "jiter-0.7.1-cp312-none-win_amd64.whl", hash = "sha256:7824c3ecf9ecf3321c37f4e4d4411aad49c666ee5bc2a937071bdd80917e4533"},
|
||||
{file = "jiter-0.7.1-cp313-cp313-macosx_10_12_x86_64.whl", hash = "sha256:097676a37778ba3c80cb53f34abd6943ceb0848263c21bf423ae98b090f6c6ba"},
|
||||
{file = "jiter-0.7.1-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:3298af506d4271257c0a8f48668b0f47048d69351675dd8500f22420d4eec378"},
|
||||
{file = "jiter-0.7.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:12fd88cfe6067e2199964839c19bd2b422ca3fd792949b8f44bb8a4e7d21946a"},
|
||||
{file = "jiter-0.7.1-cp313-cp313-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:dacca921efcd21939123c8ea8883a54b9fa7f6545c8019ffcf4f762985b6d0c8"},
|
||||
{file = "jiter-0.7.1-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:de3674a5fe1f6713a746d25ad9c32cd32fadc824e64b9d6159b3b34fd9134143"},
|
||||
{file = "jiter-0.7.1-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:65df9dbae6d67e0788a05b4bad5706ad40f6f911e0137eb416b9eead6ba6f044"},
|
||||
{file = "jiter-0.7.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7ba9a358d59a0a55cccaa4957e6ae10b1a25ffdabda863c0343c51817610501d"},
|
||||
{file = "jiter-0.7.1-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:576eb0f0c6207e9ede2b11ec01d9c2182973986514f9c60bc3b3b5d5798c8f50"},
|
||||
{file = "jiter-0.7.1-cp313-cp313-musllinux_1_1_aarch64.whl", hash = "sha256:e550e29cdf3577d2c970a18f3959e6b8646fd60ef1b0507e5947dc73703b5627"},
|
||||
{file = "jiter-0.7.1-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:81d968dbf3ce0db2e0e4dec6b0a0d5d94f846ee84caf779b07cab49f5325ae43"},
|
||||
{file = "jiter-0.7.1-cp313-none-win32.whl", hash = "sha256:f892e547e6e79a1506eb571a676cf2f480a4533675f834e9ae98de84f9b941ac"},
|
||||
{file = "jiter-0.7.1-cp313-none-win_amd64.whl", hash = "sha256:0302f0940b1455b2a7fb0409b8d5b31183db70d2b07fd177906d83bf941385d1"},
|
||||
{file = "jiter-0.7.1-cp38-cp38-macosx_10_12_x86_64.whl", hash = "sha256:c65a3ce72b679958b79d556473f192a4dfc5895e8cc1030c9f4e434690906076"},
|
||||
{file = "jiter-0.7.1-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:e80052d3db39f9bb8eb86d207a1be3d9ecee5e05fdec31380817f9609ad38e60"},
|
||||
{file = "jiter-0.7.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:70a497859c4f3f7acd71c8bd89a6f9cf753ebacacf5e3e799138b8e1843084e3"},
|
||||
{file = "jiter-0.7.1-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:c1288bc22b9e36854a0536ba83666c3b1fb066b811019d7b682c9cf0269cdf9f"},
|
||||
{file = "jiter-0.7.1-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:b096ca72dd38ef35675e1d3b01785874315182243ef7aea9752cb62266ad516f"},
|
||||
{file = "jiter-0.7.1-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:8dbbd52c50b605af13dbee1a08373c520e6fcc6b5d32f17738875847fea4e2cd"},
|
||||
{file = "jiter-0.7.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:af29c5c6eb2517e71ffa15c7ae9509fa5e833ec2a99319ac88cc271eca865519"},
|
||||
{file = "jiter-0.7.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:f114a4df1e40c03c0efbf974b376ed57756a1141eb27d04baee0680c5af3d424"},
|
||||
{file = "jiter-0.7.1-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:191fbaee7cf46a9dd9b817547bf556facde50f83199d07fc48ebeff4082f9df4"},
|
||||
{file = "jiter-0.7.1-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:0e2b445e5ee627fb4ee6bbceeb486251e60a0c881a8e12398dfdff47c56f0723"},
|
||||
{file = "jiter-0.7.1-cp38-none-win32.whl", hash = "sha256:47ac4c3cf8135c83e64755b7276339b26cd3c7ddadf9e67306ace4832b283edf"},
|
||||
{file = "jiter-0.7.1-cp38-none-win_amd64.whl", hash = "sha256:60b49c245cd90cde4794f5c30f123ee06ccf42fb8730a019a2870cd005653ebd"},
|
||||
{file = "jiter-0.7.1-cp39-cp39-macosx_10_12_x86_64.whl", hash = "sha256:8f212eeacc7203256f526f550d105d8efa24605828382cd7d296b703181ff11d"},
|
||||
{file = "jiter-0.7.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:d9e247079d88c00e75e297e6cb3a18a039ebcd79fefc43be9ba4eb7fb43eb726"},
|
||||
{file = "jiter-0.7.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f0aacaa56360139c53dcf352992b0331f4057a0373bbffd43f64ba0c32d2d155"},
|
||||
{file = "jiter-0.7.1-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:bc1b55314ca97dbb6c48d9144323896e9c1a25d41c65bcb9550b3e0c270ca560"},
|
||||
{file = "jiter-0.7.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:f281aae41b47e90deb70e7386558e877a8e62e1693e0086f37d015fa1c102289"},
|
||||
{file = "jiter-0.7.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:93c20d2730a84d43f7c0b6fb2579dc54335db742a59cf9776d0b80e99d587382"},
|
||||
{file = "jiter-0.7.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e81ccccd8069110e150613496deafa10da2f6ff322a707cbec2b0d52a87b9671"},
|
||||
{file = "jiter-0.7.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:0a7d5e85766eff4c9be481d77e2226b4c259999cb6862ccac5ef6621d3c8dcce"},
|
||||
{file = "jiter-0.7.1-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:f52ce5799df5b6975439ecb16b1e879d7655e1685b6e3758c9b1b97696313bfb"},
|
||||
{file = "jiter-0.7.1-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:e0c91a0304373fdf97d56f88356a010bba442e6d995eb7773cbe32885b71cdd8"},
|
||||
{file = "jiter-0.7.1-cp39-none-win32.whl", hash = "sha256:5c08adf93e41ce2755970e8aa95262298afe2bf58897fb9653c47cd93c3c6cdc"},
|
||||
{file = "jiter-0.7.1-cp39-none-win_amd64.whl", hash = "sha256:6592f4067c74176e5f369228fb2995ed01400c9e8e1225fb73417183a5e635f0"},
|
||||
{file = "jiter-0.7.1.tar.gz", hash = "sha256:448cf4f74f7363c34cdef26214da527e8eeffd88ba06d0b80b485ad0667baf5d"},
|
||||
{file = "jiter-0.8.0-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:dee4eeb293ffcd2c3b31ebab684dbf7f7b71fe198f8eddcdf3a042cc6e10205a"},
|
||||
{file = "jiter-0.8.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:aad1e6e9b01cf0304dcee14db03e92e0073287a6297caf5caf2e9dbfea16a924"},
|
||||
{file = "jiter-0.8.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:504099fb7acdbe763e10690d560a25d4aee03d918d6a063f3a761d8a09fb833f"},
|
||||
{file = "jiter-0.8.0-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:2373487caad7fe39581f588ab5c9262fc1ade078d448626fec93f4ffba528858"},
|
||||
{file = "jiter-0.8.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:c341ecc3f9bccde952898b0c97c24f75b84b56a7e2f8bbc7c8e38cab0875a027"},
|
||||
{file = "jiter-0.8.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:0e48e7a336529b9419d299b70c358d4ebf99b8f4b847ed3f1000ec9f320e8c0c"},
|
||||
{file = "jiter-0.8.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f5ee157a8afd2943be690db679f82fafb8d347a8342e8b9c34863de30c538d55"},
|
||||
{file = "jiter-0.8.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:d7dceae3549b80087f913aad4acc2a7c1e0ab7cb983effd78bdc9c41cabdcf18"},
|
||||
{file = "jiter-0.8.0-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:e29e9ecce53d396772590438214cac4ab89776f5e60bd30601f1050b34464019"},
|
||||
{file = "jiter-0.8.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:fa1782f22d5f92c620153133f35a9a395d3f3823374bceddd3e7032e2fdfa0b1"},
|
||||
{file = "jiter-0.8.0-cp310-none-win32.whl", hash = "sha256:f754ef13b4e4f67a3bf59fe974ef4342523801c48bf422f720bd37a02a360584"},
|
||||
{file = "jiter-0.8.0-cp310-none-win_amd64.whl", hash = "sha256:796f750b65f5d605f5e7acaccc6b051675e60c41d7ac3eab40dbd7b5b81a290f"},
|
||||
{file = "jiter-0.8.0-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:f6f4e645efd96b4690b9b6091dbd4e0fa2885ba5c57a0305c1916b75b4f30ff6"},
|
||||
{file = "jiter-0.8.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:f61cf6d93c1ade9b8245c9f14b7900feadb0b7899dbe4aa8de268b705647df81"},
|
||||
{file = "jiter-0.8.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0396bc5cb1309c6dab085e70bb3913cdd92218315e47b44afe9eace68ee8adaa"},
|
||||
{file = "jiter-0.8.0-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:62d0e42ec5dc772bd8554a304358220be5d97d721c4648b23f3a9c01ccc2cb26"},
|
||||
{file = "jiter-0.8.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:ec4b711989860705733fc59fb8c41b2def97041cea656b37cf6c8ea8dee1c3f4"},
|
||||
{file = "jiter-0.8.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:859cc35bf304ab066d88f10a44a3251a9cd057fb11ec23e00be22206db878f4f"},
|
||||
{file = "jiter-0.8.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5000195921aa293b39b9b5bc959d7fa658e7f18f938c0e52732da8e3cc70a278"},
|
||||
{file = "jiter-0.8.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:36050284c0abde57aba34964d3920f3d6228211b65df7187059bb7c7f143759a"},
|
||||
{file = "jiter-0.8.0-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:a88f608e050cfe45c48d771e86ecdbf5258314c883c986d4217cc79e1fb5f689"},
|
||||
{file = "jiter-0.8.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:646cf4237665b2e13b4159d8f26d53f59bc9f2e6e135e3a508a2e5dd26d978c6"},
|
||||
{file = "jiter-0.8.0-cp311-none-win32.whl", hash = "sha256:21fe5b8345db1b3023052b2ade9bb4d369417827242892051244af8fae8ba231"},
|
||||
{file = "jiter-0.8.0-cp311-none-win_amd64.whl", hash = "sha256:30c2161c5493acf6b6c3c909973fb64ae863747def01cc7574f3954e0a15042c"},
|
||||
{file = "jiter-0.8.0-cp312-cp312-macosx_10_12_x86_64.whl", hash = "sha256:d91a52d8f49ada2672a4b808a0c5c25d28f320a2c9ca690e30ebd561eb5a1002"},
|
||||
{file = "jiter-0.8.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:c38cf25cf7862f61410b7a49684d34eb3b5bcbd7ddaf4773eea40e0bd43de706"},
|
||||
{file = "jiter-0.8.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c6189beb5c4b3117624be6b2e84545cff7611f5855d02de2d06ff68e316182be"},
|
||||
{file = "jiter-0.8.0-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:e13fa849c0e30643554add089983caa82f027d69fad8f50acadcb21c462244ab"},
|
||||
{file = "jiter-0.8.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d7765ca159d0a58e8e0f8ca972cd6d26a33bc97b4480d0d2309856763807cd28"},
|
||||
{file = "jiter-0.8.0-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:1b0befe7c6e9fc867d5bed21bab0131dfe27d1fa5cd52ba2bced67da33730b7d"},
|
||||
{file = "jiter-0.8.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e7d6363d4c6f1052b1d8b494eb9a72667c3ef5f80ebacfe18712728e85327000"},
|
||||
{file = "jiter-0.8.0-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:a873e57009863eeac3e3969e4653f07031d6270d037d6224415074ac17e5505c"},
|
||||
{file = "jiter-0.8.0-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:2582912473c0d9940791479fe1bf2976a34f212eb8e0a82ee9e645ac275c5d16"},
|
||||
{file = "jiter-0.8.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:646163201af42f55393ee6e8f6136b8df488253a6533f4230a64242ecbfe6048"},
|
||||
{file = "jiter-0.8.0-cp312-none-win32.whl", hash = "sha256:96e75c9abfbf7387cba89a324d2356d86d8897ac58c956017d062ad510832dae"},
|
||||
{file = "jiter-0.8.0-cp312-none-win_amd64.whl", hash = "sha256:ed6074552b4a32e047b52dad5ab497223721efbd0e9efe68c67749f094a092f7"},
|
||||
{file = "jiter-0.8.0-cp313-cp313-macosx_10_12_x86_64.whl", hash = "sha256:dd5e351cb9b3e676ec3360a85ea96def515ad2b83c8ae3a251ce84985a2c9a6f"},
|
||||
{file = "jiter-0.8.0-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:ba9f12b0f801ecd5ed0cec29041dc425d1050922b434314c592fc30d51022467"},
|
||||
{file = "jiter-0.8.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a7ba461c3681728d556392e8ae56fb44a550155a24905f01982317b367c21dd4"},
|
||||
{file = "jiter-0.8.0-cp313-cp313-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:3a15ed47ab09576db560dbc5c2c5a64477535beb056cd7d997d5dd0f2798770e"},
|
||||
{file = "jiter-0.8.0-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:cef55042816d0737142b0ec056c0356a5f681fb8d6aa8499b158e87098f4c6f8"},
|
||||
{file = "jiter-0.8.0-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:549f170215adeb5e866f10617c3d019d8eb4e6d4e3c6b724b3b8c056514a3487"},
|
||||
{file = "jiter-0.8.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f867edeb279d22020877640d2ea728de5817378c60a51be8af731a8a8f525306"},
|
||||
{file = "jiter-0.8.0-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:aef8845f463093799db4464cee2aa59d61aa8edcb3762aaa4aacbec3f478c929"},
|
||||
{file = "jiter-0.8.0-cp313-cp313-musllinux_1_1_aarch64.whl", hash = "sha256:d0d6e22e4062c3d3c1bf3594baa2f67fc9dcdda8275abad99e468e0c6540bc54"},
|
||||
{file = "jiter-0.8.0-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:079e62e64696241ac3f408e337aaac09137ed760ccf2b72b1094b48745c13641"},
|
||||
{file = "jiter-0.8.0-cp313-cp313t-macosx_11_0_arm64.whl", hash = "sha256:74d2b56ed3da5760544df53b5f5c39782e68efb64dc3aa0bba4cc08815e6fae8"},
|
||||
{file = "jiter-0.8.0-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:798dafe108cba58a7bb0a50d4d5971f98bb7f3c974e1373e750de6eb21c1a329"},
|
||||
{file = "jiter-0.8.0-cp313-none-win32.whl", hash = "sha256:ca6d3064dfc743eb0d3d7539d89d4ba886957c717567adc72744341c1e3573c9"},
|
||||
{file = "jiter-0.8.0-cp313-none-win_amd64.whl", hash = "sha256:38caedda64fe1f04b06d7011fc15e86b3b837ed5088657bf778656551e3cd8f9"},
|
||||
{file = "jiter-0.8.0-cp38-cp38-macosx_10_12_x86_64.whl", hash = "sha256:bb5c8a0a8d081c338db22e5b8d53a89a121790569cbb85f7d3cfb1fe0fbe9836"},
|
||||
{file = "jiter-0.8.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:202dbe8970bfb166fab950eaab8f829c505730a0b33cc5e1cfb0a1c9dd56b2f9"},
|
||||
{file = "jiter-0.8.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9046812e5671fdcfb9ae02881fff1f6a14d484b7e8b3316179a372cdfa1e8026"},
|
||||
{file = "jiter-0.8.0-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:e6ac56425023e52d65150918ae25480d0a1ce2a6bf5ea2097f66a2cc50f6d692"},
|
||||
{file = "jiter-0.8.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:7dfcf97210c6eab9d2a1c6af15dd39e1d5154b96a7145d0a97fa1df865b7b834"},
|
||||
{file = "jiter-0.8.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:d4e3c8444d418686f78c9a547b9b90031faf72a0a1a46bfec7fb31edbd889c0d"},
|
||||
{file = "jiter-0.8.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6507011a299b7f578559084256405a8428875540d8d13530e00b688e41b09493"},
|
||||
{file = "jiter-0.8.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:0aae4738eafdd34f0f25c2d3668ce9e8fa0d7cb75a2efae543c9a69aebc37323"},
|
||||
{file = "jiter-0.8.0-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:7f5d782e790396b13f2a7b36bdcaa3736a33293bdda80a4bf1a3ce0cd5ef9f15"},
|
||||
{file = "jiter-0.8.0-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:cc7f993bc2c4e03015445adbb16790c303282fce2e8d9dc3a3905b1d40e50564"},
|
||||
{file = "jiter-0.8.0-cp38-none-win32.whl", hash = "sha256:d4a8a6eda018a991fa58ef707dd51524055d11f5acb2f516d70b1be1d15ab39c"},
|
||||
{file = "jiter-0.8.0-cp38-none-win_amd64.whl", hash = "sha256:4cca948a3eda8ea24ed98acb0ee19dc755b6ad2e570ec85e1527d5167f91ff67"},
|
||||
{file = "jiter-0.8.0-cp39-cp39-macosx_10_12_x86_64.whl", hash = "sha256:ef89663678d8257063ce7c00d94638e05bd72f662c5e1eb0e07a172e6c1a9a9f"},
|
||||
{file = "jiter-0.8.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:c402ddcba90b4cc71db3216e8330f4db36e0da2c78cf1d8a9c3ed8f272602a94"},
|
||||
{file = "jiter-0.8.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1a6dfe795b7a173a9f8ba7421cdd92193d60c1c973bbc50dc3758a9ad0fa5eb6"},
|
||||
{file = "jiter-0.8.0-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:8ec29a31b9abd6be39453a2c45da067138a3005d65d2c0507c530e0f1fdcd9a4"},
|
||||
{file = "jiter-0.8.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:2a488f8c54bddc3ddefaf3bfd6de4a52c97fc265d77bc2dcc6ee540c17e8c342"},
|
||||
{file = "jiter-0.8.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:aeb5561adf4d26ca0d01b5811b4d7b56a8986699a473d700757b4758ef787883"},
|
||||
{file = "jiter-0.8.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4ab961858d7ad13132328517d29f121ae1b2d94502191d6bcf96bddcc8bb5d1c"},
|
||||
{file = "jiter-0.8.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:a207e718d114d23acf0850a2174d290f42763d955030d9924ffa4227dbd0018f"},
|
||||
{file = "jiter-0.8.0-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:733bc9dc8ff718a0ae4695239e9268eb93e88b73b367dfac3ec227d8ce2f1e77"},
|
||||
{file = "jiter-0.8.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:d1ec27299e22d05e13a06e460bf7f75f26f9aaa0e0fb7d060f40e88df1d81faa"},
|
||||
{file = "jiter-0.8.0-cp39-none-win32.whl", hash = "sha256:e8dbfcb46553e6661d3fc1f33831598fcddf73d0f67834bce9fc3e9ebfe5c439"},
|
||||
{file = "jiter-0.8.0-cp39-none-win_amd64.whl", hash = "sha256:af2ce2487b3a93747e2cb5150081d4ae1e5874fce5924fc1a12e9e768e489ad8"},
|
||||
{file = "jiter-0.8.0.tar.gz", hash = "sha256:86fee98b569d4cc511ff2e3ec131354fafebd9348a487549c31ad371ae730310"},
|
||||
]
|
||||
|
||||
[[package]]
|
||||
@@ -537,13 +539,13 @@ url = "../../standard-tests"
|
||||
|
||||
[[package]]
|
||||
name = "langsmith"
|
||||
version = "0.1.146"
|
||||
version = "0.1.147"
|
||||
description = "Client library to connect to the LangSmith LLM Tracing and Evaluation Platform."
|
||||
optional = false
|
||||
python-versions = "<4.0,>=3.8.1"
|
||||
files = [
|
||||
{file = "langsmith-0.1.146-py3-none-any.whl", hash = "sha256:9d062222f1a32c9b047dab0149b24958f988989cd8d4a5f9139ff959a51e59d8"},
|
||||
{file = "langsmith-0.1.146.tar.gz", hash = "sha256:ead8b0b9d5b6cd3ac42937ec48bdf09d4afe7ca1bba22dc05eb65591a18106f8"},
|
||||
{file = "langsmith-0.1.147-py3-none-any.whl", hash = "sha256:7166fc23b965ccf839d64945a78e9f1157757add228b086141eb03a60d699a15"},
|
||||
{file = "langsmith-0.1.147.tar.gz", hash = "sha256:2e933220318a4e73034657103b3b1a3a6109cc5db3566a7e8e03be8d6d7def7a"},
|
||||
]
|
||||
|
||||
[package.dependencies]
|
||||
@@ -556,6 +558,9 @@ pydantic = [
|
||||
requests = ">=2,<3"
|
||||
requests-toolbelt = ">=1.0.0,<2.0.0"
|
||||
|
||||
[package.extras]
|
||||
langsmith-pyo3 = ["langsmith-pyo3 (>=0.1.0rc2,<0.2.0)"]
|
||||
|
||||
[[package]]
|
||||
name = "mypy"
|
||||
version = "1.13.0"
|
||||
@@ -667,13 +672,13 @@ files = [
|
||||
|
||||
[[package]]
|
||||
name = "openai"
|
||||
version = "1.55.1"
|
||||
version = "1.56.0"
|
||||
description = "The official Python library for the openai API"
|
||||
optional = false
|
||||
python-versions = ">=3.8"
|
||||
files = [
|
||||
{file = "openai-1.55.1-py3-none-any.whl", hash = "sha256:d10d96a4f9dc5f05d38dea389119ec8dcd24bc9698293c8357253c601b4a77a5"},
|
||||
{file = "openai-1.55.1.tar.gz", hash = "sha256:471324321e7739214f16a544e801947a046d3c5d516fae8719a317234e4968d3"},
|
||||
{file = "openai-1.56.0-py3-none-any.whl", hash = "sha256:0751a6e139a09fca2e9cbbe8a62bfdab901b5865249d2555d005decf966ef9c3"},
|
||||
{file = "openai-1.56.0.tar.gz", hash = "sha256:f7fa159c8e18e7f9a8d71ff4b8052452ae70a4edc6b76a6e97eda00d5364923f"},
|
||||
]
|
||||
|
||||
[package.dependencies]
|
||||
@@ -1473,13 +1478,43 @@ blobfile = ["blobfile (>=2)"]
|
||||
|
||||
[[package]]
|
||||
name = "tomli"
|
||||
version = "2.1.0"
|
||||
version = "2.2.1"
|
||||
description = "A lil' TOML parser"
|
||||
optional = false
|
||||
python-versions = ">=3.8"
|
||||
files = [
|
||||
{file = "tomli-2.1.0-py3-none-any.whl", hash = "sha256:a5c57c3d1c56f5ccdf89f6523458f60ef716e210fc47c4cfb188c5ba473e0391"},
|
||||
{file = "tomli-2.1.0.tar.gz", hash = "sha256:3f646cae2aec94e17d04973e4249548320197cfabdf130015d023de4b74d8ab8"},
|
||||
{file = "tomli-2.2.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:678e4fa69e4575eb77d103de3df8a895e1591b48e740211bd1067378c69e8249"},
|
||||
{file = "tomli-2.2.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:023aa114dd824ade0100497eb2318602af309e5a55595f76b626d6d9f3b7b0a6"},
|
||||
{file = "tomli-2.2.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ece47d672db52ac607a3d9599a9d48dcb2f2f735c6c2d1f34130085bb12b112a"},
|
||||
{file = "tomli-2.2.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6972ca9c9cc9f0acaa56a8ca1ff51e7af152a9f87fb64623e31d5c83700080ee"},
|
||||
{file = "tomli-2.2.1-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:c954d2250168d28797dd4e3ac5cf812a406cd5a92674ee4c8f123c889786aa8e"},
|
||||
{file = "tomli-2.2.1-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:8dd28b3e155b80f4d54beb40a441d366adcfe740969820caf156c019fb5c7ec4"},
|
||||
{file = "tomli-2.2.1-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:e59e304978767a54663af13c07b3d1af22ddee3bb2fb0618ca1593e4f593a106"},
|
||||
{file = "tomli-2.2.1-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:33580bccab0338d00994d7f16f4c4ec25b776af3ffaac1ed74e0b3fc95e885a8"},
|
||||
{file = "tomli-2.2.1-cp311-cp311-win32.whl", hash = "sha256:465af0e0875402f1d226519c9904f37254b3045fc5084697cefb9bdde1ff99ff"},
|
||||
{file = "tomli-2.2.1-cp311-cp311-win_amd64.whl", hash = "sha256:2d0f2fdd22b02c6d81637a3c95f8cd77f995846af7414c5c4b8d0545afa1bc4b"},
|
||||
{file = "tomli-2.2.1-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:4a8f6e44de52d5e6c657c9fe83b562f5f4256d8ebbfe4ff922c495620a7f6cea"},
|
||||
{file = "tomli-2.2.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:8d57ca8095a641b8237d5b079147646153d22552f1c637fd3ba7f4b0b29167a8"},
|
||||
{file = "tomli-2.2.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4e340144ad7ae1533cb897d406382b4b6fede8890a03738ff1683af800d54192"},
|
||||
{file = "tomli-2.2.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:db2b95f9de79181805df90bedc5a5ab4c165e6ec3fe99f970d0e302f384ad222"},
|
||||
{file = "tomli-2.2.1-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:40741994320b232529c802f8bc86da4e1aa9f413db394617b9a256ae0f9a7f77"},
|
||||
{file = "tomli-2.2.1-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:400e720fe168c0f8521520190686ef8ef033fb19fc493da09779e592861b78c6"},
|
||||
{file = "tomli-2.2.1-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:02abe224de6ae62c19f090f68da4e27b10af2b93213d36cf44e6e1c5abd19fdd"},
|
||||
{file = "tomli-2.2.1-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:b82ebccc8c8a36f2094e969560a1b836758481f3dc360ce9a3277c65f374285e"},
|
||||
{file = "tomli-2.2.1-cp312-cp312-win32.whl", hash = "sha256:889f80ef92701b9dbb224e49ec87c645ce5df3fa2cc548664eb8a25e03127a98"},
|
||||
{file = "tomli-2.2.1-cp312-cp312-win_amd64.whl", hash = "sha256:7fc04e92e1d624a4a63c76474610238576942d6b8950a2d7f908a340494e67e4"},
|
||||
{file = "tomli-2.2.1-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:f4039b9cbc3048b2416cc57ab3bda989a6fcf9b36cf8937f01a6e731b64f80d7"},
|
||||
{file = "tomli-2.2.1-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:286f0ca2ffeeb5b9bd4fcc8d6c330534323ec51b2f52da063b11c502da16f30c"},
|
||||
{file = "tomli-2.2.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a92ef1a44547e894e2a17d24e7557a5e85a9e1d0048b0b5e7541f76c5032cb13"},
|
||||
{file = "tomli-2.2.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9316dc65bed1684c9a98ee68759ceaed29d229e985297003e494aa825ebb0281"},
|
||||
{file = "tomli-2.2.1-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:e85e99945e688e32d5a35c1ff38ed0b3f41f43fad8df0bdf79f72b2ba7bc5272"},
|
||||
{file = "tomli-2.2.1-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:ac065718db92ca818f8d6141b5f66369833d4a80a9d74435a268c52bdfa73140"},
|
||||
{file = "tomli-2.2.1-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:d920f33822747519673ee656a4b6ac33e382eca9d331c87770faa3eef562aeb2"},
|
||||
{file = "tomli-2.2.1-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:a198f10c4d1b1375d7687bc25294306e551bf1abfa4eace6650070a5c1ae2744"},
|
||||
{file = "tomli-2.2.1-cp313-cp313-win32.whl", hash = "sha256:d3f5614314d758649ab2ab3a62d4f2004c825922f9e370b29416484086b264ec"},
|
||||
{file = "tomli-2.2.1-cp313-cp313-win_amd64.whl", hash = "sha256:a38aa0308e754b0e3c67e344754dff64999ff9b513e691d0e786265c93583c69"},
|
||||
{file = "tomli-2.2.1-py3-none-any.whl", hash = "sha256:cb55c73c5f4408779d0cf3eef9f762b9c9f147a77de7b258bef0a5628adc85cc"},
|
||||
{file = "tomli-2.2.1.tar.gz", hash = "sha256:cd45e1dc79c835ce60f7404ec8119f2eb06d38b1deba146f07ced3bbc44505ff"},
|
||||
]
|
||||
|
||||
[[package]]
|
||||
|
||||
@@ -4,7 +4,7 @@ build-backend = "poetry.core.masonry.api"
|
||||
|
||||
[tool.poetry]
|
||||
name = "langchain-openai"
|
||||
version = "0.2.10"
|
||||
version = "0.2.11"
|
||||
description = "An integration package connecting OpenAI and LangChain"
|
||||
authors = []
|
||||
readme = "README.md"
|
||||
|
||||
@@ -33,7 +33,7 @@ class PineconeEmbeddings(BaseModel, Embeddings):
|
||||
|
||||
# Clients
|
||||
_client: PineconeClient = PrivateAttr(default=None)
|
||||
_async_client: aiohttp.ClientSession = PrivateAttr(default=None)
|
||||
_async_client: Optional[aiohttp.ClientSession] = PrivateAttr(default=None)
|
||||
model: str
|
||||
"""Model to use for example 'multilingual-e5-large'."""
|
||||
# Config
|
||||
@@ -65,6 +65,19 @@ class PineconeEmbeddings(BaseModel, Embeddings):
|
||||
protected_namespaces=(),
|
||||
)
|
||||
|
||||
@property
|
||||
def async_client(self) -> aiohttp.ClientSession:
|
||||
"""Lazily initialize the async client."""
|
||||
if self._async_client is None:
|
||||
self._async_client = aiohttp.ClientSession(
|
||||
headers={
|
||||
"Api-Key": self.pinecone_api_key.get_secret_value(),
|
||||
"Content-Type": "application/json",
|
||||
"X-Pinecone-API-Version": "2024-10",
|
||||
}
|
||||
)
|
||||
return self._async_client
|
||||
|
||||
@model_validator(mode="before")
|
||||
@classmethod
|
||||
def set_default_config(cls, values: dict) -> Any:
|
||||
@@ -92,15 +105,8 @@ class PineconeEmbeddings(BaseModel, Embeddings):
|
||||
client = PineconeClient(api_key=api_key_str, source_tag="langchain")
|
||||
self._client = client
|
||||
|
||||
# initialize async client
|
||||
if not self._async_client:
|
||||
self._async_client = aiohttp.ClientSession(
|
||||
headers={
|
||||
"Api-Key": api_key_str,
|
||||
"Content-Type": "application/json",
|
||||
"X-Pinecone-API-Version": "2024-07",
|
||||
}
|
||||
)
|
||||
# Ensure async_client is lazily initialized
|
||||
_ = self.async_client
|
||||
return self
|
||||
|
||||
def _get_batch_iterator(self, texts: List[str]) -> Iterable:
|
||||
@@ -174,7 +180,7 @@ class PineconeEmbeddings(BaseModel, Embeddings):
|
||||
"inputs": [{"text": text} for text in texts],
|
||||
"parameters": parameters,
|
||||
}
|
||||
async with self._async_client.post(
|
||||
async with self.async_client.post(
|
||||
"https://api.pinecone.io/embed", json=data
|
||||
) as response:
|
||||
response_data = await response.json(content_type=None)
|
||||
|
||||
@@ -74,6 +74,7 @@ class PineconeVectorStore(VectorStore):
|
||||
dimension=1536,
|
||||
metric="cosine",
|
||||
spec=ServerlessSpec(cloud="aws", region="us-east-1"),
|
||||
deletion_protection="enabled", # Defaults to "disabled"
|
||||
)
|
||||
while not pc.describe_index(index_name).status["ready"]:
|
||||
time.sleep(1)
|
||||
|
||||
1843
libs/partners/pinecone/poetry.lock
generated
1843
libs/partners/pinecone/poetry.lock
generated
File diff suppressed because it is too large
Load Diff
@@ -20,16 +20,10 @@ disallow_untyped_defs = "True"
|
||||
|
||||
[tool.poetry.dependencies]
|
||||
python = ">=3.9,<3.13"
|
||||
langchain-core = "^0.3.15"
|
||||
pinecone-client = "^5.0.0"
|
||||
langchain-core = "^0.3.21"
|
||||
pinecone = "^5.4.0"
|
||||
aiohttp = ">=3.9.5,<3.10"
|
||||
[[tool.poetry.dependencies.numpy]]
|
||||
version = "^1"
|
||||
python = "<3.12"
|
||||
|
||||
[[tool.poetry.dependencies.numpy]]
|
||||
version = "^1.26.0"
|
||||
python = ">=3.12"
|
||||
numpy = ">=1.26.0,<2.0.0"
|
||||
|
||||
[tool.ruff.lint]
|
||||
select = [ "E", "F", "I", "T201",]
|
||||
|
||||
@@ -20,6 +20,7 @@ from .base_store import BaseStoreAsyncTests, BaseStoreSyncTests
|
||||
from .cache import AsyncCacheTestSuite, SyncCacheTestSuite
|
||||
from .chat_models import ChatModelIntegrationTests
|
||||
from .embeddings import EmbeddingsIntegrationTests
|
||||
from .retrievers import RetrieversIntegrationTests
|
||||
from .tools import ToolsIntegrationTests
|
||||
from .vectorstores import AsyncReadWriteTestSuite, ReadWriteTestSuite
|
||||
|
||||
@@ -33,4 +34,5 @@ __all__ = [
|
||||
"SyncCacheTestSuite",
|
||||
"AsyncReadWriteTestSuite",
|
||||
"ReadWriteTestSuite",
|
||||
"RetrieversIntegrationTests",
|
||||
]
|
||||
|
||||
@@ -73,8 +73,46 @@ def _validate_tool_call_message_no_args(message: BaseMessage) -> None:
|
||||
|
||||
|
||||
class ChatModelIntegrationTests(ChatModelTests):
|
||||
"""Base class for chat model integration tests.
|
||||
|
||||
Test subclasses must implement the following two properties:
|
||||
|
||||
chat_model_class
|
||||
The chat model class to test, e.g., ``ChatParrotLink``.
|
||||
|
||||
Example:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
@property
|
||||
def chat_model_class(self) -> Type[ChatParrotLink]:
|
||||
return ChatParrotLink
|
||||
|
||||
chat_model_params
|
||||
Initialization parameters for the chat model.
|
||||
|
||||
Example:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
@property
|
||||
def chat_model_params(self) -> dict:
|
||||
return {"model": "bird-brain-001", "temperature": 0}
|
||||
|
||||
.. note::
|
||||
API references for individual test methods include troubleshooting tips.
|
||||
|
||||
.. note::
|
||||
Test subclasses can control what features are tested (such as tool
|
||||
calling or multi-modality) by selectively overriding the properties on the
|
||||
class. Relevant properties are mentioned in the references for each method.
|
||||
See this page for detail on all properties:
|
||||
https://python.langchain.com/api_reference/standard_tests/unit_tests/langchain_tests.unit_tests.chat_models.ChatModelTests.html
|
||||
"""
|
||||
|
||||
@property
|
||||
def standard_chat_model_params(self) -> dict:
|
||||
""":meta private:"""
|
||||
return {}
|
||||
|
||||
def test_invoke(self, model: BaseChatModel) -> None:
|
||||
@@ -295,8 +333,8 @@ class ChatModelIntegrationTests(ChatModelTests):
|
||||
.. dropdown:: Configuration
|
||||
|
||||
By default, this test is run.
|
||||
To disable this feature, set `returns_usage_metadata` to False in your test
|
||||
class:
|
||||
To disable this feature, set `returns_usage_metadata` to False in your
|
||||
test class:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
@@ -435,8 +473,8 @@ class ChatModelIntegrationTests(ChatModelTests):
|
||||
.. dropdown:: Configuration
|
||||
|
||||
By default, this test is run.
|
||||
To disable this feature, set `returns_usage_metadata` to False in your test
|
||||
class:
|
||||
To disable this feature, set `returns_usage_metadata` to False in your
|
||||
test class:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
@@ -564,6 +602,28 @@ class ChatModelIntegrationTests(ChatModelTests):
|
||||
)
|
||||
|
||||
def test_stop_sequence(self, model: BaseChatModel) -> None:
|
||||
"""Test that model does not fail when invoked with the ``stop`` parameter,
|
||||
which is a standard parameter for stopping generation at a certain token.
|
||||
|
||||
More on standard parameters here: https://python.langchain.com/docs/concepts/chat_models/#standard-parameters
|
||||
|
||||
This should pass for all integrations.
|
||||
|
||||
.. dropdown:: Troubleshooting
|
||||
|
||||
If this test fails, check that the function signature for ``_generate``
|
||||
(as well as ``_stream`` and async variants) accepts the ``stop`` parameter:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
def _generate(
|
||||
self,
|
||||
messages: List[BaseMessage],
|
||||
stop: Optional[List[str]] = None,
|
||||
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
||||
**kwargs: Any,
|
||||
) -> ChatResult:
|
||||
""" # noqa: E501
|
||||
result = model.invoke("hi", stop=["you"])
|
||||
assert isinstance(result, AIMessage)
|
||||
|
||||
@@ -574,6 +634,44 @@ class ChatModelIntegrationTests(ChatModelTests):
|
||||
assert isinstance(result, AIMessage)
|
||||
|
||||
def test_tool_calling(self, model: BaseChatModel) -> None:
|
||||
"""Test that the model generates tool calls. This test is skipped if the
|
||||
``has_tool_calling`` property on the test class is set to False.
|
||||
|
||||
This test is optional and should be skipped if the model does not support
|
||||
tool calling (see Configuration below).
|
||||
|
||||
.. dropdown:: Configuration
|
||||
|
||||
To disable tool calling tests, set ``has_tool_calling`` to False in your
|
||||
test class:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
class TestMyChatModelIntegration(ChatModelIntegrationTests):
|
||||
@property
|
||||
def has_tool_calling(self) -> bool:
|
||||
return False
|
||||
|
||||
.. dropdown:: Troubleshooting
|
||||
|
||||
If this test fails, check that ``bind_tools`` is implemented to correctly
|
||||
translate LangChain tool objects into the appropriate schema for your
|
||||
chat model.
|
||||
|
||||
This test may fail if the chat model does not support a ``tool_choice``
|
||||
parameter. This parameter can be used to force a tool call. If
|
||||
``tool_choice`` is not supported and the model consistently fails this
|
||||
test, you can ``xfail`` the test:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
@pytest.mark.xfail(reason=("Does not support tool_choice."))
|
||||
def test_tool_calling(self, model: BaseChatModel) -> None:
|
||||
super().test_tool_calling(model)
|
||||
|
||||
Otherwise, ensure that the ``tool_choice_value`` property is correctly
|
||||
specified on the test class.
|
||||
"""
|
||||
if not self.has_tool_calling:
|
||||
pytest.skip("Test requires tool calling.")
|
||||
if self.tool_choice_value == "tool_name":
|
||||
@@ -595,6 +693,44 @@ class ChatModelIntegrationTests(ChatModelTests):
|
||||
_validate_tool_call_message(full)
|
||||
|
||||
async def test_tool_calling_async(self, model: BaseChatModel) -> None:
|
||||
"""Test that the model generates tool calls. This test is skipped if the
|
||||
``has_tool_calling`` property on the test class is set to False.
|
||||
|
||||
This test is optional and should be skipped if the model does not support
|
||||
tool calling (see Configuration below).
|
||||
|
||||
.. dropdown:: Configuration
|
||||
|
||||
To disable tool calling tests, set ``has_tool_calling`` to False in your
|
||||
test class:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
class TestMyChatModelIntegration(ChatModelIntegrationTests):
|
||||
@property
|
||||
def has_tool_calling(self) -> bool:
|
||||
return False
|
||||
|
||||
.. dropdown:: Troubleshooting
|
||||
|
||||
If this test fails, check that ``bind_tools`` is implemented to correctly
|
||||
translate LangChain tool objects into the appropriate schema for your
|
||||
chat model.
|
||||
|
||||
This test may fail if the chat model does not support a ``tool_choice``
|
||||
parameter. This parameter can be used to force a tool call. If
|
||||
``tool_choice`` is not supported and the model consistently fails this
|
||||
test, you can ``xfail`` the test:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
@pytest.mark.xfail(reason=("Does not support tool_choice."))
|
||||
async def test_tool_calling_async(self, model: BaseChatModel) -> None:
|
||||
await super().test_tool_calling_async(model)
|
||||
|
||||
Otherwise, ensure that the ``tool_choice_value`` property is correctly
|
||||
specified on the test class.
|
||||
"""
|
||||
if not self.has_tool_calling:
|
||||
pytest.skip("Test requires tool calling.")
|
||||
if self.tool_choice_value == "tool_name":
|
||||
@@ -616,6 +752,46 @@ class ChatModelIntegrationTests(ChatModelTests):
|
||||
_validate_tool_call_message(full)
|
||||
|
||||
def test_tool_calling_with_no_arguments(self, model: BaseChatModel) -> None:
|
||||
"""Test that the model generates tool calls for tools with no arguments.
|
||||
This test is skipped if the ``has_tool_calling`` property on the test class
|
||||
is set to False.
|
||||
|
||||
This test is optional and should be skipped if the model does not support
|
||||
tool calling (see Configuration below).
|
||||
|
||||
.. dropdown:: Configuration
|
||||
|
||||
To disable tool calling tests, set ``has_tool_calling`` to False in your
|
||||
test class:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
class TestMyChatModelIntegration(ChatModelIntegrationTests):
|
||||
@property
|
||||
def has_tool_calling(self) -> bool:
|
||||
return False
|
||||
|
||||
.. dropdown:: Troubleshooting
|
||||
|
||||
If this test fails, check that ``bind_tools`` is implemented to correctly
|
||||
translate LangChain tool objects into the appropriate schema for your
|
||||
chat model. It should correctly handle the case where a tool has no
|
||||
arguments.
|
||||
|
||||
This test may fail if the chat model does not support a ``tool_choice``
|
||||
parameter. This parameter can be used to force a tool call. It may also
|
||||
fail if a provider does not support this form of tool. In these cases,
|
||||
you can ``xfail`` the test:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
@pytest.mark.xfail(reason=("Does not support tool_choice."))
|
||||
def test_tool_calling_with_no_arguments(self, model: BaseChatModel) -> None:
|
||||
super().test_tool_calling_with_no_arguments(model)
|
||||
|
||||
Otherwise, ensure that the ``tool_choice_value`` property is correctly
|
||||
specified on the test class.
|
||||
""" # noqa: E501
|
||||
if not self.has_tool_calling:
|
||||
pytest.skip("Test requires tool calling.")
|
||||
|
||||
@@ -637,6 +813,45 @@ class ChatModelIntegrationTests(ChatModelTests):
|
||||
_validate_tool_call_message_no_args(full)
|
||||
|
||||
def test_bind_runnables_as_tools(self, model: BaseChatModel) -> None:
|
||||
"""Test that the model generates tool calls for tools that are derived from
|
||||
LangChain runnables. This test is skipped if the ``has_tool_calling`` property
|
||||
on the test class is set to False.
|
||||
|
||||
This test is optional and should be skipped if the model does not support
|
||||
tool calling (see Configuration below).
|
||||
|
||||
.. dropdown:: Configuration
|
||||
|
||||
To disable tool calling tests, set ``has_tool_calling`` to False in your
|
||||
test class:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
class TestMyChatModelIntegration(ChatModelIntegrationTests):
|
||||
@property
|
||||
def has_tool_calling(self) -> bool:
|
||||
return False
|
||||
|
||||
.. dropdown:: Troubleshooting
|
||||
|
||||
If this test fails, check that ``bind_tools`` is implemented to correctly
|
||||
translate LangChain tool objects into the appropriate schema for your
|
||||
chat model.
|
||||
|
||||
This test may fail if the chat model does not support a ``tool_choice``
|
||||
parameter. This parameter can be used to force a tool call. If
|
||||
``tool_choice`` is not supported and the model consistently fails this
|
||||
test, you can ``xfail`` the test:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
@pytest.mark.xfail(reason=("Does not support tool_choice."))
|
||||
def test_bind_runnables_as_tools(self, model: BaseChatModel) -> None:
|
||||
super().test_bind_runnables_as_tools(model)
|
||||
|
||||
Otherwise, ensure that the ``tool_choice_value`` property is correctly
|
||||
specified on the test class.
|
||||
"""
|
||||
if not self.has_tool_calling:
|
||||
pytest.skip("Test requires tool calling.")
|
||||
|
||||
@@ -663,7 +878,32 @@ class ChatModelIntegrationTests(ChatModelTests):
|
||||
assert tool_call["type"] == "tool_call"
|
||||
|
||||
def test_structured_output(self, model: BaseChatModel) -> None:
|
||||
"""Test to verify structured output with a Pydantic model."""
|
||||
"""Test to verify structured output is generated both on invoke and stream.
|
||||
|
||||
This test is optional and should be skipped if the model does not support
|
||||
tool calling (see Configuration below).
|
||||
|
||||
.. dropdown:: Configuration
|
||||
|
||||
To disable tool calling tests, set ``has_tool_calling`` to False in your
|
||||
test class:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
class TestMyChatModelIntegration(ChatModelIntegrationTests):
|
||||
@property
|
||||
def has_tool_calling(self) -> bool:
|
||||
return False
|
||||
|
||||
.. dropdown:: Troubleshooting
|
||||
|
||||
If this test fails, ensure that the model's ``bind_tools`` method
|
||||
properly handles both JSON Schema and Pydantic V2 models.
|
||||
``langchain_core`` implements a utility function that will accommodate
|
||||
most formats: https://python.langchain.com/api_reference/core/utils/langchain_core.utils.function_calling.convert_to_openai_tool.html
|
||||
|
||||
See example implementation of ``with_structured_output`` here: https://python.langchain.com/api_reference/_modules/langchain_openai/chat_models/base.html#BaseChatOpenAI.with_structured_output
|
||||
""" # noqa: E501
|
||||
if not self.has_tool_calling:
|
||||
pytest.skip("Test requires tool calling.")
|
||||
|
||||
@@ -690,7 +930,32 @@ class ChatModelIntegrationTests(ChatModelTests):
|
||||
assert set(chunk.keys()) == {"setup", "punchline"}
|
||||
|
||||
async def test_structured_output_async(self, model: BaseChatModel) -> None:
|
||||
"""Test to verify structured output with a Pydantic model."""
|
||||
"""Test to verify structured output is generated both on invoke and stream.
|
||||
|
||||
This test is optional and should be skipped if the model does not support
|
||||
tool calling (see Configuration below).
|
||||
|
||||
.. dropdown:: Configuration
|
||||
|
||||
To disable tool calling tests, set ``has_tool_calling`` to False in your
|
||||
test class:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
class TestMyChatModelIntegration(ChatModelIntegrationTests):
|
||||
@property
|
||||
def has_tool_calling(self) -> bool:
|
||||
return False
|
||||
|
||||
.. dropdown:: Troubleshooting
|
||||
|
||||
If this test fails, ensure that the model's ``bind_tools`` method
|
||||
properly handles both JSON Schema and Pydantic V2 models.
|
||||
``langchain_core`` implements a utility function that will accommodate
|
||||
most formats: https://python.langchain.com/api_reference/core/utils/langchain_core.utils.function_calling.convert_to_openai_tool.html
|
||||
|
||||
See example implementation of ``with_structured_output`` here: https://python.langchain.com/api_reference/_modules/langchain_openai/chat_models/base.html#BaseChatOpenAI.with_structured_output
|
||||
""" # noqa: E501
|
||||
if not self.has_tool_calling:
|
||||
pytest.skip("Test requires tool calling.")
|
||||
|
||||
@@ -718,9 +983,34 @@ class ChatModelIntegrationTests(ChatModelTests):
|
||||
|
||||
@pytest.mark.skipif(PYDANTIC_MAJOR_VERSION != 2, reason="Test requires pydantic 2.")
|
||||
def test_structured_output_pydantic_2_v1(self, model: BaseChatModel) -> None:
|
||||
"""Test to verify compatibility with pydantic.v1.BaseModel.
|
||||
"""Test to verify we can generate structured output using
|
||||
pydantic.v1.BaseModel.
|
||||
|
||||
pydantic.v1.BaseModel is available in the pydantic 2 package.
|
||||
|
||||
This test is optional and should be skipped if the model does not support
|
||||
tool calling (see Configuration below).
|
||||
|
||||
.. dropdown:: Configuration
|
||||
|
||||
To disable tool calling tests, set ``has_tool_calling`` to False in your
|
||||
test class:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
class TestMyChatModelIntegration(ChatModelIntegrationTests):
|
||||
@property
|
||||
def has_tool_calling(self) -> bool:
|
||||
return False
|
||||
|
||||
.. dropdown:: Troubleshooting
|
||||
|
||||
If this test fails, ensure that the model's ``bind_tools`` method
|
||||
properly handles both JSON Schema and Pydantic V1 models.
|
||||
``langchain_core`` implements a utility function that will accommodate
|
||||
most formats: https://python.langchain.com/api_reference/core/utils/langchain_core.utils.function_calling.convert_to_openai_tool.html
|
||||
|
||||
See example implementation of ``with_structured_output`` here: https://python.langchain.com/api_reference/_modules/langchain_openai/chat_models/base.html#BaseChatOpenAI.with_structured_output
|
||||
"""
|
||||
if not self.has_tool_calling:
|
||||
pytest.skip("Test requires tool calling.")
|
||||
@@ -751,7 +1041,33 @@ class ChatModelIntegrationTests(ChatModelTests):
|
||||
assert set(chunk.keys()) == {"setup", "punchline"}
|
||||
|
||||
def test_structured_output_optional_param(self, model: BaseChatModel) -> None:
|
||||
"""Test to verify structured output with an optional param."""
|
||||
"""Test to verify we can generate structured output that includes optional
|
||||
parameters.
|
||||
|
||||
This test is optional and should be skipped if the model does not support
|
||||
tool calling (see Configuration below).
|
||||
|
||||
.. dropdown:: Configuration
|
||||
|
||||
To disable tool calling tests, set ``has_tool_calling`` to False in your
|
||||
test class:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
class TestMyChatModelIntegration(ChatModelIntegrationTests):
|
||||
@property
|
||||
def has_tool_calling(self) -> bool:
|
||||
return False
|
||||
|
||||
.. dropdown:: Troubleshooting
|
||||
|
||||
If this test fails, ensure that the model's ``bind_tools`` method
|
||||
properly handles Pydantic V2 models with optional parameters.
|
||||
``langchain_core`` implements a utility function that will accommodate
|
||||
most formats: https://python.langchain.com/api_reference/core/utils/langchain_core.utils.function_calling.convert_to_openai_tool.html
|
||||
|
||||
See example implementation of ``with_structured_output`` here: https://python.langchain.com/api_reference/_modules/langchain_openai/chat_models/base.html#BaseChatOpenAI.with_structured_output
|
||||
"""
|
||||
if not self.has_tool_calling:
|
||||
pytest.skip("Test requires tool calling.")
|
||||
|
||||
@@ -773,10 +1089,42 @@ class ChatModelIntegrationTests(ChatModelTests):
|
||||
assert isinstance(joke_result, Joke)
|
||||
|
||||
def test_tool_message_histories_string_content(self, model: BaseChatModel) -> None:
|
||||
"""
|
||||
Test that message histories are compatible with string tool contents
|
||||
(e.g. OpenAI).
|
||||
"""
|
||||
"""Test that message histories are compatible with string tool contents
|
||||
(e.g. OpenAI format). If a model passes this test, it should be compatible
|
||||
with messages generated from providers following OpenAI format.
|
||||
|
||||
This test should be skipped if the model does not support tool calling
|
||||
(see Configuration below).
|
||||
|
||||
.. dropdown:: Configuration
|
||||
|
||||
To disable tool calling tests, set ``has_tool_calling`` to False in your
|
||||
test class:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
class TestMyChatModelIntegration(ChatModelIntegrationTests):
|
||||
@property
|
||||
def has_tool_calling(self) -> bool:
|
||||
return False
|
||||
|
||||
.. dropdown:: Troubleshooting
|
||||
|
||||
If this test fails, check that:
|
||||
|
||||
1. The model can correctly handle message histories that include AIMessage objects with ``""`` content.
|
||||
2. The ``tool_calls`` attribute on AIMessage objects is correctly handled and passed to the model in an appropriate format.
|
||||
3. The model can correctly handle ToolMessage objects with string content and arbitrary string values for ``tool_call_id``.
|
||||
|
||||
You can ``xfail`` the test if tool calling is implemented but this format
|
||||
is not supported.
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
@pytest.mark.xfail(reason=("Not implemented."))
|
||||
def test_tool_message_histories_string_content(self, model: BaseChatModel) -> None:
|
||||
super().test_tool_message_histories_string_content(model)
|
||||
""" # noqa: E501
|
||||
if not self.has_tool_calling:
|
||||
pytest.skip("Test requires tool calling.")
|
||||
model_with_tools = model.bind_tools([my_adder_tool])
|
||||
@@ -810,10 +1158,56 @@ class ChatModelIntegrationTests(ChatModelTests):
|
||||
self,
|
||||
model: BaseChatModel,
|
||||
) -> None:
|
||||
"""
|
||||
Test that message histories are compatible with list tool contents
|
||||
(e.g. Anthropic).
|
||||
"""
|
||||
"""Test that message histories are compatible with list tool contents
|
||||
(e.g. Anthropic format).
|
||||
|
||||
These message histories will include AIMessage objects with "tool use" and
|
||||
content blocks, e.g.,
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
[
|
||||
{"type": "text", "text": "Hmm let me think about that"},
|
||||
{
|
||||
"type": "tool_use",
|
||||
"input": {"fav_color": "green"},
|
||||
"id": "foo",
|
||||
"name": "color_picker",
|
||||
},
|
||||
]
|
||||
|
||||
This test should be skipped if the model does not support tool calling
|
||||
(see Configuration below).
|
||||
|
||||
.. dropdown:: Configuration
|
||||
|
||||
To disable tool calling tests, set ``has_tool_calling`` to False in your
|
||||
test class:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
class TestMyChatModelIntegration(ChatModelIntegrationTests):
|
||||
@property
|
||||
def has_tool_calling(self) -> bool:
|
||||
return False
|
||||
|
||||
.. dropdown:: Troubleshooting
|
||||
|
||||
If this test fails, check that:
|
||||
|
||||
1. The model can correctly handle message histories that include AIMessage objects with list content.
|
||||
2. The ``tool_calls`` attribute on AIMessage objects is correctly handled and passed to the model in an appropriate format.
|
||||
3. The model can correctly handle ToolMessage objects with string content and arbitrary string values for ``tool_call_id``.
|
||||
|
||||
You can ``xfail`` the test if tool calling is implemented but this format
|
||||
is not supported.
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
@pytest.mark.xfail(reason=("Not implemented."))
|
||||
def test_tool_message_histories_list_content(self, model: BaseChatModel) -> None:
|
||||
super().test_tool_message_histories_list_content(model)
|
||||
""" # noqa: E501
|
||||
if not self.has_tool_calling:
|
||||
pytest.skip("Test requires tool calling.")
|
||||
model_with_tools = model.bind_tools([my_adder_tool])
|
||||
@@ -852,9 +1246,48 @@ class ChatModelIntegrationTests(ChatModelTests):
|
||||
assert isinstance(result_list_content, AIMessage)
|
||||
|
||||
def test_structured_few_shot_examples(self, model: BaseChatModel) -> None:
|
||||
"""
|
||||
Test that model can process few-shot examples with tool calls.
|
||||
"""
|
||||
"""Test that the model can process few-shot examples with tool calls.
|
||||
|
||||
These are represented as a sequence of messages of the following form:
|
||||
|
||||
- ``HumanMessage`` with string content;
|
||||
- ``AIMessage`` with the ``tool_calls`` attribute populated;
|
||||
- ``ToolMessage`` with string content;
|
||||
- ``AIMessage`` with string content (an answer);
|
||||
- ``HuamnMessage`` with string content (a follow-up question).
|
||||
|
||||
This test should be skipped if the model does not support tool calling
|
||||
(see Configuration below).
|
||||
|
||||
.. dropdown:: Configuration
|
||||
|
||||
To disable tool calling tests, set ``has_tool_calling`` to False in your
|
||||
test class:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
class TestMyChatModelIntegration(ChatModelIntegrationTests):
|
||||
@property
|
||||
def has_tool_calling(self) -> bool:
|
||||
return False
|
||||
|
||||
.. dropdown:: Troubleshooting
|
||||
|
||||
This test uses a utility function in ``langchain_core`` to generate a
|
||||
sequence of messages representing "few-shot" examples: https://python.langchain.com/api_reference/core/utils/langchain_core.utils.function_calling.tool_example_to_messages.html
|
||||
|
||||
If this test fails, check that the model can correctly handle this
|
||||
sequence of messages.
|
||||
|
||||
You can ``xfail`` the test if tool calling is implemented but this format
|
||||
is not supported.
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
@pytest.mark.xfail(reason=("Not implemented."))
|
||||
def test_structured_few_shot_examples(self, model: BaseChatModel) -> None:
|
||||
super().test_structured_few_shot_examples(model)
|
||||
""" # noqa: E501
|
||||
if not self.has_tool_calling:
|
||||
pytest.skip("Test requires tool calling.")
|
||||
model_with_tools = model.bind_tools([my_adder_tool], tool_choice="any")
|
||||
@@ -874,6 +1307,42 @@ class ChatModelIntegrationTests(ChatModelTests):
|
||||
assert isinstance(result, AIMessage)
|
||||
|
||||
def test_image_inputs(self, model: BaseChatModel) -> None:
|
||||
"""Test that the model can process image inputs.
|
||||
|
||||
This test should be skipped (see Configuration below) if the model does not
|
||||
support image inputs These will take the form of messages with OpenAI-style
|
||||
image content blocks:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
[
|
||||
{"type": "text", "text": "describe the weather in this image"},
|
||||
{
|
||||
"type": "image_url",
|
||||
"image_url": {"url": f"data:image/jpeg;base64,{image_data}"},
|
||||
},
|
||||
]
|
||||
|
||||
See https://python.langchain.com/docs/concepts/multimodality/
|
||||
|
||||
.. dropdown:: Configuration
|
||||
|
||||
To disable this test, set ``supports_image_inputs`` to False in your
|
||||
test class:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
class TestMyChatModelIntegration(ChatModelIntegrationTests):
|
||||
@property
|
||||
def supports_image_inputs(self) -> bool:
|
||||
return False
|
||||
|
||||
.. dropdown:: Troubleshooting
|
||||
|
||||
If this test fails, check that the model can correctly handle messages
|
||||
with image content blocks in OpenAI format, including base64-encoded
|
||||
images. Otherwise, set the ``supports_image_inputs`` property to False.
|
||||
"""
|
||||
if not self.supports_image_inputs:
|
||||
return
|
||||
image_url = "https://upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Gfp-wisconsin-madison-the-nature-boardwalk.jpg/2560px-Gfp-wisconsin-madison-the-nature-boardwalk.jpg"
|
||||
@@ -890,6 +1359,46 @@ class ChatModelIntegrationTests(ChatModelTests):
|
||||
model.invoke([message])
|
||||
|
||||
def test_image_tool_message(self, model: BaseChatModel) -> None:
|
||||
"""Test that the model can process ToolMessages with image inputs.
|
||||
|
||||
This test should be skipped if the model does not support messages of the
|
||||
form:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
ToolMessage(
|
||||
content=[
|
||||
{
|
||||
"type": "image_url",
|
||||
"image_url": {"url": f"data:image/jpeg;base64,{image_data}"},
|
||||
},
|
||||
],
|
||||
tool_call_id="1",
|
||||
name="random_image",
|
||||
)
|
||||
|
||||
This test can be skipped by setting the ``supports_image_tool_message`` property
|
||||
to False (see Configuration below).
|
||||
|
||||
.. dropdown:: Configuration
|
||||
|
||||
To disable this test, set ``supports_image_tool_message`` to False in your
|
||||
test class:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
class TestMyChatModelIntegration(ChatModelIntegrationTests):
|
||||
@property
|
||||
def supports_image_tool_message(self) -> bool:
|
||||
return False
|
||||
|
||||
.. dropdown:: Troubleshooting
|
||||
|
||||
If this test fails, check that the model can correctly handle messages
|
||||
with image content blocks in ToolMessages, including base64-encoded
|
||||
images. Otherwise, set the ``supports_image_tool_message`` property to
|
||||
False.
|
||||
"""
|
||||
if not self.supports_image_tool_message:
|
||||
return
|
||||
image_url = "https://upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Gfp-wisconsin-madison-the-nature-boardwalk.jpg/2560px-Gfp-wisconsin-madison-the-nature-boardwalk.jpg"
|
||||
@@ -921,6 +1430,72 @@ class ChatModelIntegrationTests(ChatModelTests):
|
||||
model.bind_tools([random_image]).invoke(messages)
|
||||
|
||||
def test_anthropic_inputs(self, model: BaseChatModel) -> None:
|
||||
"""Test that model can process Anthropic-style message histories.
|
||||
|
||||
These message histories will include ``AIMessage`` objects with ``tool_use``
|
||||
content blocks, e.g.,
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
AIMessage(
|
||||
[
|
||||
{"type": "text", "text": "Hmm let me think about that"},
|
||||
{
|
||||
"type": "tool_use",
|
||||
"input": {"fav_color": "green"},
|
||||
"id": "foo",
|
||||
"name": "color_picker",
|
||||
},
|
||||
]
|
||||
)
|
||||
|
||||
as well as ``HumanMessage`` objects containing ``tool_result`` content blocks:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
HumanMessage(
|
||||
[
|
||||
{
|
||||
"type": "tool_result",
|
||||
"tool_use_id": "foo",
|
||||
"content": [
|
||||
{
|
||||
"type": "text",
|
||||
"text": "green is a great pick! that's my sister's favorite color", # noqa: E501
|
||||
}
|
||||
],
|
||||
"is_error": False,
|
||||
},
|
||||
{"type": "text", "text": "what's my sister's favorite color"},
|
||||
]
|
||||
)
|
||||
|
||||
This test should be skipped if the model does not support messages of this
|
||||
form (or doesn't support tool calling generally). See Configuration below.
|
||||
|
||||
.. dropdown:: Configuration
|
||||
|
||||
To disable this test, set ``supports_anthropic_inputs`` to False in your
|
||||
test class:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
class TestMyChatModelIntegration(ChatModelIntegrationTests):
|
||||
@property
|
||||
def supports_anthropic_inputs(self) -> bool:
|
||||
return False
|
||||
|
||||
.. dropdown:: Troubleshooting
|
||||
|
||||
If this test fails, check that:
|
||||
|
||||
1. The model can correctly handle message histories that include message objects with list content.
|
||||
2. The ``tool_calls`` attribute on AIMessage objects is correctly handled and passed to the model in an appropriate format.
|
||||
3. HumanMessages with "tool_result" content blocks are correctly handled.
|
||||
|
||||
Otherwise, if Anthropic tool call and result formats are not supported,
|
||||
set the ``supports_anthropic_inputs`` property to False.
|
||||
""" # noqa: E501
|
||||
if not self.supports_anthropic_inputs:
|
||||
return
|
||||
|
||||
@@ -982,7 +1557,45 @@ class ChatModelIntegrationTests(ChatModelTests):
|
||||
model.bind_tools([color_picker]).invoke(messages)
|
||||
|
||||
def test_tool_message_error_status(self, model: BaseChatModel) -> None:
|
||||
"""Test that ToolMessage with status='error' can be handled."""
|
||||
"""Test that ToolMessage with ``status="error"`` can be handled.
|
||||
|
||||
These messages may take the form:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
ToolMessage(
|
||||
"Error: Missing required argument 'b'.",
|
||||
name="my_adder_tool",
|
||||
tool_call_id="abc123",
|
||||
status="error",
|
||||
)
|
||||
|
||||
If possible, the ``status`` field should be parsed and passed appropriately
|
||||
to the model.
|
||||
|
||||
This test is optional and should be skipped if the model does not support
|
||||
tool calling (see Configuration below).
|
||||
|
||||
.. dropdown:: Configuration
|
||||
|
||||
To disable tool calling tests, set ``has_tool_calling`` to False in your
|
||||
test class:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
class TestMyChatModelIntegration(ChatModelIntegrationTests):
|
||||
@property
|
||||
def has_tool_calling(self) -> bool:
|
||||
return False
|
||||
|
||||
.. dropdown:: Troubleshooting
|
||||
|
||||
If this test fails, check that the ``status`` field on ``ToolMessage``
|
||||
objects is either ignored or passed to the model appropriately.
|
||||
|
||||
Otherwise, ensure that the ``tool_choice_value`` property is correctly
|
||||
specified on the test class.
|
||||
"""
|
||||
if not self.has_tool_calling:
|
||||
pytest.skip("Test requires tool calling.")
|
||||
model_with_tools = model.bind_tools([my_adder_tool])
|
||||
@@ -1010,6 +1623,22 @@ class ChatModelIntegrationTests(ChatModelTests):
|
||||
assert isinstance(result, AIMessage)
|
||||
|
||||
def test_message_with_name(self, model: BaseChatModel) -> None:
|
||||
"""Test that HumanMessage with values for the ``name`` field can be handled.
|
||||
|
||||
These messages may take the form:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
HumanMessage("hello", name="example_user")
|
||||
|
||||
If possible, the ``name`` field should be parsed and passed appropriately
|
||||
to the model. Otherwise, it should be ignored.
|
||||
|
||||
.. dropdown:: Troubleshooting
|
||||
|
||||
If this test fails, check that the ``name`` field on ``HumanMessage``
|
||||
objects is either ignored or passed to the model appropriately.
|
||||
"""
|
||||
result = model.invoke([HumanMessage("hello", name="example_user")])
|
||||
assert result is not None
|
||||
assert isinstance(result, AIMessage)
|
||||
|
||||
@@ -0,0 +1,78 @@
|
||||
from abc import abstractmethod
|
||||
from typing import Type
|
||||
|
||||
import pytest
|
||||
from langchain_core.documents import Document
|
||||
from langchain_core.retrievers import BaseRetriever
|
||||
|
||||
from langchain_tests.base import BaseStandardTests
|
||||
|
||||
|
||||
class RetrieversIntegrationTests(BaseStandardTests):
|
||||
@property
|
||||
@abstractmethod
|
||||
def retriever_constructor(self) -> Type[BaseRetriever]: ...
|
||||
|
||||
@property
|
||||
def retriever_constructor_params(self) -> dict:
|
||||
return {}
|
||||
|
||||
@property
|
||||
@abstractmethod
|
||||
def retriever_query_example(self) -> str:
|
||||
"""
|
||||
Returns a dictionary representing the "args" of an example retriever call.
|
||||
"""
|
||||
...
|
||||
|
||||
@pytest.fixture
|
||||
def retriever(self) -> BaseRetriever:
|
||||
return self.retriever_constructor(**self.retriever_constructor_params)
|
||||
|
||||
def test_k_constructor_param(self) -> None:
|
||||
"""
|
||||
Test that the retriever constructor accepts a k parameter.
|
||||
"""
|
||||
params = {
|
||||
k: v for k, v in self.retriever_constructor_params.items() if k != "k"
|
||||
}
|
||||
params_3 = {**params, "k": 3}
|
||||
retriever_3 = self.retriever_constructor(**params_3)
|
||||
result_3 = retriever_3.invoke(self.retriever_query_example)
|
||||
assert len(result_3) == 3
|
||||
assert all(isinstance(doc, Document) for doc in result_3)
|
||||
|
||||
params_1 = {**params, "k": 1}
|
||||
retriever_1 = self.retriever_constructor(**params_1)
|
||||
result_1 = retriever_1.invoke(self.retriever_query_example)
|
||||
assert len(result_1) == 1
|
||||
assert all(isinstance(doc, Document) for doc in result_1)
|
||||
|
||||
def test_invoke_with_k_kwarg(self, retriever: BaseRetriever) -> None:
|
||||
result_1 = retriever.invoke(self.retriever_query_example, k=1)
|
||||
assert len(result_1) == 1
|
||||
assert all(isinstance(doc, Document) for doc in result_1)
|
||||
|
||||
result_3 = retriever.invoke(self.retriever_query_example, k=3)
|
||||
assert len(result_3) == 3
|
||||
assert all(isinstance(doc, Document) for doc in result_3)
|
||||
|
||||
def test_invoke_returns_documents(self, retriever: BaseRetriever) -> None:
|
||||
"""
|
||||
If invoked with the example params, the retriever should return a list of
|
||||
Documents.
|
||||
"""
|
||||
result = retriever.invoke(self.retriever_query_example)
|
||||
|
||||
assert isinstance(result, list)
|
||||
assert all(isinstance(doc, Document) for doc in result)
|
||||
|
||||
async def test_ainvoke_returns_documents(self, retriever: BaseRetriever) -> None:
|
||||
"""
|
||||
If ainvoked with the example params, the retriever should return a list of
|
||||
Documents.
|
||||
"""
|
||||
result = await retriever.ainvoke(self.retriever_query_example)
|
||||
|
||||
assert isinstance(result, list)
|
||||
assert all(isinstance(doc, Document) for doc in result)
|
||||
@@ -1,4 +1,6 @@
|
||||
"""Unit tests for chat models."""
|
||||
"""
|
||||
:autodoc-options: autoproperty
|
||||
"""
|
||||
|
||||
import os
|
||||
from abc import abstractmethod
|
||||
@@ -77,16 +79,218 @@ def my_adder(a: int, b: int) -> int:
|
||||
|
||||
|
||||
class ChatModelTests(BaseStandardTests):
|
||||
"""Base class for chat model tests.
|
||||
|
||||
Test subclasses must implement the following two properties:
|
||||
|
||||
chat_model_class
|
||||
The chat model class to test, e.g., ``ChatParrotLink``.
|
||||
|
||||
Example:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
@property
|
||||
def chat_model_class(self) -> Type[ChatParrotLink]:
|
||||
return ChatParrotLink
|
||||
|
||||
chat_model_params
|
||||
Initialization parameters for the chat model.
|
||||
|
||||
Example:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
@property
|
||||
def chat_model_params(self) -> dict:
|
||||
return {"model": "bird-brain-001", "temperature": 0}
|
||||
|
||||
In addition, test subclasses can control what features are tested (such as tool
|
||||
calling or multi-modality) by selectively overriding the following properties.
|
||||
Expand to see details:
|
||||
|
||||
.. dropdown:: has_tool_calling
|
||||
|
||||
Boolean property indicating whether the chat model supports tool calling.
|
||||
|
||||
By default, this is determined by whether the chat model's `bind_tools` method
|
||||
is overridden. It typically does not need to be overridden on the test class.
|
||||
|
||||
.. dropdown:: tool_choice_value
|
||||
|
||||
Value to use for tool choice when used in tests.
|
||||
|
||||
Some tests for tool calling features attempt to force tool calling via a
|
||||
`tool_choice` parameter. A common value for this parameter is "any". Defaults
|
||||
to `None`.
|
||||
|
||||
Note: if the value is set to "tool_name", the name of the tool used in each
|
||||
test will be set as the value for `tool_choice`.
|
||||
|
||||
Example:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
@property
|
||||
def tool_choice_value(self) -> Optional[str]:
|
||||
return "any"
|
||||
|
||||
.. dropdown:: has_structured_output
|
||||
|
||||
Boolean property indicating whether the chat model supports structured
|
||||
output.
|
||||
|
||||
By default, this is determined by whether the chat model's
|
||||
`with_structured_output` method is overridden. If the base implementation is
|
||||
intended to be used, this method should be overridden.
|
||||
|
||||
See: https://python.langchain.com/docs/concepts/structured_outputs/
|
||||
|
||||
Example:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
@property
|
||||
def has_structured_output(self) -> bool:
|
||||
return True
|
||||
|
||||
.. dropdown:: supports_image_inputs
|
||||
|
||||
Boolean property indicating whether the chat model supports image inputs.
|
||||
Defaults to ``False``.
|
||||
|
||||
If set to ``True``, the chat model will be tested using content blocks of the
|
||||
form
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
[
|
||||
{"type": "text", "text": "describe the weather in this image"},
|
||||
{
|
||||
"type": "image_url",
|
||||
"image_url": {"url": f"data:image/jpeg;base64,{image_data}"},
|
||||
},
|
||||
]
|
||||
|
||||
See https://python.langchain.com/docs/concepts/multimodality/
|
||||
|
||||
Example:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
@property
|
||||
def supports_image_inputs(self) -> bool:
|
||||
return True
|
||||
|
||||
.. dropdown:: supports_video_inputs
|
||||
|
||||
Boolean property indicating whether the chat model supports image inputs.
|
||||
Defaults to ``False``. No current tests are written for this feature.
|
||||
|
||||
.. dropdown:: returns_usage_metadata
|
||||
|
||||
Boolean property indicating whether the chat model returns usage metadata
|
||||
on invoke and streaming responses.
|
||||
|
||||
``usage_metadata`` is an optional dict attribute on AIMessages that track input
|
||||
and output tokens: https://python.langchain.com/api_reference/core/messages/langchain_core.messages.ai.UsageMetadata.html
|
||||
|
||||
Example:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
@property
|
||||
def returns_usage_metadata(self) -> bool:
|
||||
return False
|
||||
|
||||
.. dropdown:: supports_anthropic_inputs
|
||||
|
||||
Boolean property indicating whether the chat model supports Anthropic-style
|
||||
inputs.
|
||||
|
||||
These inputs might feature "tool use" and "tool result" content blocks, e.g.,
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
[
|
||||
{"type": "text", "text": "Hmm let me think about that"},
|
||||
{
|
||||
"type": "tool_use",
|
||||
"input": {"fav_color": "green"},
|
||||
"id": "foo",
|
||||
"name": "color_picker",
|
||||
},
|
||||
]
|
||||
|
||||
If set to ``True``, the chat model will be tested using content blocks of this
|
||||
form.
|
||||
|
||||
Example:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
@property
|
||||
def supports_anthropic_inputs(self) -> bool:
|
||||
return False
|
||||
|
||||
.. dropdown:: supports_image_tool_message
|
||||
|
||||
Boolean property indicating whether the chat model supports ToolMessages
|
||||
that include image content, e.g.,
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
ToolMessage(
|
||||
content=[
|
||||
{
|
||||
"type": "image_url",
|
||||
"image_url": {"url": f"data:image/jpeg;base64,{image_data}"},
|
||||
},
|
||||
],
|
||||
tool_call_id="1",
|
||||
name="random_image",
|
||||
)
|
||||
|
||||
If set to ``True``, the chat model will be tested with message sequences that
|
||||
include ToolMessages of this form.
|
||||
|
||||
Example:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
@property
|
||||
def supports_image_tool_message(self) -> bool:
|
||||
return False
|
||||
|
||||
.. dropdown:: supported_usage_metadata_details
|
||||
|
||||
Property controlling what usage metadata details are emitted in both invoke
|
||||
and stream.
|
||||
|
||||
``usage_metadata`` is an optional dict attribute on AIMessages that track input
|
||||
and output tokens: https://python.langchain.com/api_reference/core/messages/langchain_core.messages.ai.UsageMetadata.html
|
||||
|
||||
It includes optional keys ``input_token_details`` and ``output_token_details``
|
||||
that can track usage details associated with special types of tokens, such as
|
||||
cached, audio, or reasoning.
|
||||
|
||||
Only needs to be overridden if these details are supplied.
|
||||
""" # noqa: E501
|
||||
|
||||
@property
|
||||
@abstractmethod
|
||||
def chat_model_class(self) -> Type[BaseChatModel]: ...
|
||||
def chat_model_class(self) -> Type[BaseChatModel]:
|
||||
"""The chat model class to test, e.g., `ChatParrotLink`."""
|
||||
...
|
||||
|
||||
@property
|
||||
def chat_model_params(self) -> dict:
|
||||
"""Initialization parameters for the chat mobdel."""
|
||||
return {}
|
||||
|
||||
@property
|
||||
def standard_chat_model_params(self) -> dict:
|
||||
""":meta private:"""
|
||||
return {
|
||||
"temperature": 0,
|
||||
"max_tokens": 100,
|
||||
@@ -97,12 +301,15 @@ class ChatModelTests(BaseStandardTests):
|
||||
|
||||
@pytest.fixture
|
||||
def model(self) -> BaseChatModel:
|
||||
"""Fixture that returns an instance of the chat model. Should not be
|
||||
overridden."""
|
||||
return self.chat_model_class(
|
||||
**{**self.standard_chat_model_params, **self.chat_model_params}
|
||||
)
|
||||
|
||||
@property
|
||||
def has_tool_calling(self) -> bool:
|
||||
"""Boolean property indicating whether the model supports tool calling."""
|
||||
return self.chat_model_class.bind_tools is not BaseChatModel.bind_tools
|
||||
|
||||
@property
|
||||
@@ -112,6 +319,8 @@ class ChatModelTests(BaseStandardTests):
|
||||
|
||||
@property
|
||||
def has_structured_output(self) -> bool:
|
||||
"""Boolean property indicating whether the chat model supports structured
|
||||
output."""
|
||||
return (
|
||||
self.chat_model_class.with_structured_output
|
||||
is not BaseChatModel.with_structured_output
|
||||
@@ -119,22 +328,32 @@ class ChatModelTests(BaseStandardTests):
|
||||
|
||||
@property
|
||||
def supports_image_inputs(self) -> bool:
|
||||
"""Boolean property indicating whether the chat model supports image inputs.
|
||||
Defaults to ``False``."""
|
||||
return False
|
||||
|
||||
@property
|
||||
def supports_video_inputs(self) -> bool:
|
||||
"""Boolean property indicating whether the chat model supports image inputs.
|
||||
Defaults to ``False``. No current tests are written for this feature."""
|
||||
return False
|
||||
|
||||
@property
|
||||
def returns_usage_metadata(self) -> bool:
|
||||
"""Boolean property indicating whether the chat model returns usage metadata
|
||||
on invoke and streaming responses."""
|
||||
return True
|
||||
|
||||
@property
|
||||
def supports_anthropic_inputs(self) -> bool:
|
||||
"""Boolean property indicating whether the chat model supports Anthropic-style
|
||||
inputs."""
|
||||
return False
|
||||
|
||||
@property
|
||||
def supports_image_tool_message(self) -> bool:
|
||||
"""Boolean property indicating whether the chat model supports ToolMessages
|
||||
that include image content."""
|
||||
return False
|
||||
|
||||
@property
|
||||
@@ -152,31 +371,127 @@ class ChatModelTests(BaseStandardTests):
|
||||
]
|
||||
],
|
||||
]:
|
||||
"""Property controlling what usage metadata details are emitted in both invoke
|
||||
and stream. Only needs to be overridden if these details are returned by the
|
||||
model."""
|
||||
return {"invoke": [], "stream": []}
|
||||
|
||||
|
||||
class ChatModelUnitTests(ChatModelTests):
|
||||
"""Base class for chat model unit tests.
|
||||
|
||||
Test subclasses must implement the following two properties:
|
||||
|
||||
chat_model_class
|
||||
The chat model class to test, e.g., ``ChatParrotLink``.
|
||||
|
||||
Example:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
@property
|
||||
def chat_model_class(self) -> Type[ChatParrotLink]:
|
||||
return ChatParrotLink
|
||||
|
||||
chat_model_params
|
||||
Initialization parameters for the chat model.
|
||||
|
||||
Example:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
@property
|
||||
def chat_model_params(self) -> dict:
|
||||
return {"model": "bird-brain-001", "temperature": 0}
|
||||
|
||||
.. note::
|
||||
API references for individual test methods include troubleshooting tips.
|
||||
|
||||
.. note::
|
||||
Test subclasses can control what features are tested (such as tool
|
||||
calling or multi-modality) by selectively overriding the properties on the
|
||||
class. Relevant properties are mentioned in the references for each method.
|
||||
See this page for detail on all properties:
|
||||
https://python.langchain.com/api_reference/standard_tests/unit_tests/langchain_tests.unit_tests.chat_models.ChatModelTests.html
|
||||
|
||||
|
||||
Testing initialization from environment variables
|
||||
Some unit tests may require testing initialization from environment variables.
|
||||
These tests can be enabled by overriding the ``init_from_env_params``
|
||||
property (see below):
|
||||
|
||||
.. dropdown:: init_from_env_params
|
||||
|
||||
This property is used in unit tests to test initialization from
|
||||
environment variables. It should return a tuple of three dictionaries
|
||||
that specify the environment variables, additional initialization args,
|
||||
and expected instance attributes to check.
|
||||
|
||||
Defaults to empty dicts. If not overridden, the test is skipped.
|
||||
|
||||
Example:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
@property
|
||||
def init_from_env_params(self) -> Tuple[dict, dict, dict]:
|
||||
return (
|
||||
{
|
||||
"MY_API_KEY": "api_key",
|
||||
},
|
||||
{
|
||||
"model": "bird-brain-001",
|
||||
},
|
||||
{
|
||||
"my_api_key": "api_key",
|
||||
},
|
||||
)
|
||||
""" # noqa: E501
|
||||
|
||||
@property
|
||||
def standard_chat_model_params(self) -> dict:
|
||||
""":meta private:"""
|
||||
params = super().standard_chat_model_params
|
||||
params["api_key"] = "test"
|
||||
return params
|
||||
|
||||
@property
|
||||
def init_from_env_params(self) -> Tuple[dict, dict, dict]:
|
||||
"""Return env vars, init args, and expected instance attrs for initializing
|
||||
from env vars."""
|
||||
"""This property is used in unit tests to test initialization from environment
|
||||
variables. It should return a tuple of three dictionaries that specify the
|
||||
environment variables, additional initialization args, and expected instance
|
||||
attributes to check."""
|
||||
return {}, {}, {}
|
||||
|
||||
def test_init(self) -> None:
|
||||
"""Test model initialization. This should pass for all integrations.
|
||||
|
||||
.. dropdown:: Troubleshooting
|
||||
|
||||
If this test fails, ensure that:
|
||||
|
||||
1. ``chat_model_params`` is specified and the model can be initialized from those params;
|
||||
2. The model accommodates standard parameters: https://python.langchain.com/docs/concepts/chat_models/#standard-parameters
|
||||
""" # noqa: E501
|
||||
model = self.chat_model_class(
|
||||
**{**self.standard_chat_model_params, **self.chat_model_params}
|
||||
)
|
||||
assert model is not None
|
||||
|
||||
def test_init_from_env(self) -> None:
|
||||
"""Test initialization from environment variables. Relies on the
|
||||
``init_from_env_params`` property. Test is skipped if that property is not
|
||||
set.
|
||||
|
||||
.. dropdown:: Troubleshooting
|
||||
|
||||
If this test fails, ensure that ``init_from_env_params`` is specified
|
||||
correctly.
|
||||
"""
|
||||
env_params, model_params, expected_attrs = self.init_from_env_params
|
||||
if env_params:
|
||||
if not env_params:
|
||||
pytest.skip("init_from_env_params not specified.")
|
||||
else:
|
||||
with mock.patch.dict(os.environ, env_params):
|
||||
model = self.chat_model_class(**model_params)
|
||||
assert model is not None
|
||||
@@ -189,6 +504,14 @@ class ChatModelUnitTests(ChatModelTests):
|
||||
def test_init_streaming(
|
||||
self,
|
||||
) -> None:
|
||||
"""Test that model can be initialized with ``streaming=True``. This is for
|
||||
backward-compatibility purposes.
|
||||
|
||||
.. dropdown:: Troubleshooting
|
||||
|
||||
If this test fails, ensure that the model can be initialized with a
|
||||
boolean ``streaming`` parameter.
|
||||
"""
|
||||
model = self.chat_model_class(
|
||||
**{
|
||||
**self.standard_chat_model_params,
|
||||
@@ -202,6 +525,18 @@ class ChatModelUnitTests(ChatModelTests):
|
||||
self,
|
||||
model: BaseChatModel,
|
||||
) -> None:
|
||||
"""Test that chat model correctly handles Pydantic models that are passed
|
||||
into ``bind_tools``. Test is skipped if the ``has_tool_calling`` property
|
||||
on the test class is False.
|
||||
|
||||
.. dropdown:: Troubleshooting
|
||||
|
||||
If this test fails, ensure that the model's ``bind_tools`` method
|
||||
properly handles Pydantic V2 models. ``langchain_core`` implements
|
||||
a utility function that will accommodate most formats: https://python.langchain.com/api_reference/core/utils/langchain_core.utils.function_calling.convert_to_openai_tool.html
|
||||
|
||||
See example implementation of ``bind_tools`` here: https://python.langchain.com/api_reference/_modules/langchain_openai/chat_models/base.html#BaseChatOpenAI.bind_tools
|
||||
""" # noqa: E501
|
||||
if not self.has_tool_calling:
|
||||
return
|
||||
|
||||
@@ -227,12 +562,35 @@ class ChatModelUnitTests(ChatModelTests):
|
||||
model: BaseChatModel,
|
||||
schema: Any,
|
||||
) -> None:
|
||||
"""Test ``with_structured_output`` method. Test is skipped if the
|
||||
``has_structured_output`` property on the test class is False.
|
||||
|
||||
.. dropdown:: Troubleshooting
|
||||
|
||||
If this test fails, ensure that the model's ``bind_tools`` method
|
||||
properly handles Pydantic V2 models. ``langchain_core`` implements
|
||||
a utility function that will accommodate most formats: https://python.langchain.com/api_reference/core/utils/langchain_core.utils.function_calling.convert_to_openai_tool.html
|
||||
|
||||
See example implementation of ``with_structured_output`` here: https://python.langchain.com/api_reference/_modules/langchain_openai/chat_models/base.html#BaseChatOpenAI.with_structured_output
|
||||
""" # noqa: E501
|
||||
if not self.has_structured_output:
|
||||
return
|
||||
|
||||
assert model.with_structured_output(schema) is not None
|
||||
|
||||
def test_standard_params(self, model: BaseChatModel) -> None:
|
||||
"""Test that model properly generates standard parameters. These are used
|
||||
for tracing purposes.
|
||||
|
||||
.. dropdown:: Troubleshooting
|
||||
|
||||
If this test fails, check that the model accommodates standard parameters:
|
||||
https://python.langchain.com/docs/concepts/chat_models/#standard-parameters
|
||||
|
||||
Check also that the model class is named according to convention
|
||||
(e.g., ``ChatProviderName``).
|
||||
"""
|
||||
|
||||
class ExpectedParams(BaseModelV1):
|
||||
ls_provider: str
|
||||
ls_model_name: str
|
||||
@@ -260,10 +618,20 @@ class ChatModelUnitTests(ChatModelTests):
|
||||
pytest.fail(f"Validation error: {e}")
|
||||
|
||||
def test_serdes(self, model: BaseChatModel, snapshot: SnapshotAssertion) -> None:
|
||||
"""Test serialization and deserialization of the model. Test is skipped if the
|
||||
``is_lc_serializable`` property on the chat model class is not overwritten
|
||||
to return ``True``.
|
||||
|
||||
.. dropdown:: Troubleshooting
|
||||
|
||||
If this test fails, check that the ``init_from_env_params`` property is
|
||||
correctly set on the test class.
|
||||
"""
|
||||
if not self.chat_model_class.is_lc_serializable():
|
||||
return
|
||||
env_params, model_params, expected_attrs = self.init_from_env_params
|
||||
with mock.patch.dict(os.environ, env_params):
|
||||
ser = dumpd(model)
|
||||
assert ser == snapshot(name="serialized")
|
||||
assert model.dict() == load(dumpd(model)).dict()
|
||||
pytest.skip("Model is not serializable.")
|
||||
else:
|
||||
env_params, model_params, expected_attrs = self.init_from_env_params
|
||||
with mock.patch.dict(os.environ, env_params):
|
||||
ser = dumpd(model)
|
||||
assert ser == snapshot(name="serialized")
|
||||
assert model.dict() == load(dumpd(model)).dict()
|
||||
|
||||
32
libs/standard-tests/tests/unit_tests/test_basic_retriever.py
Normal file
32
libs/standard-tests/tests/unit_tests/test_basic_retriever.py
Normal file
@@ -0,0 +1,32 @@
|
||||
from typing import Any, Type
|
||||
|
||||
from langchain_core.callbacks import CallbackManagerForRetrieverRun
|
||||
from langchain_core.documents import Document
|
||||
from langchain_core.retrievers import BaseRetriever
|
||||
|
||||
from langchain_tests.integration_tests import RetrieversIntegrationTests
|
||||
|
||||
|
||||
class ParrotRetriever(BaseRetriever):
|
||||
parrot_name: str
|
||||
k: int = 3
|
||||
|
||||
def _get_relevant_documents(
|
||||
self, query: str, *, run_manager: CallbackManagerForRetrieverRun, **kwargs: Any
|
||||
) -> list[Document]:
|
||||
k = kwargs.get("k", self.k)
|
||||
return [Document(page_content=f"{self.parrot_name} says: {query}")] * k
|
||||
|
||||
|
||||
class TestParrotRetrieverIntegration(RetrieversIntegrationTests):
|
||||
@property
|
||||
def retriever_constructor(self) -> Type[ParrotRetriever]:
|
||||
return ParrotRetriever
|
||||
|
||||
@property
|
||||
def retriever_constructor_params(self) -> dict:
|
||||
return {"parrot_name": "Polly"}
|
||||
|
||||
@property
|
||||
def retriever_query_example(self) -> str:
|
||||
return "parrot"
|
||||
Reference in New Issue
Block a user