Compare commits

...

90 Commits

Author SHA1 Message Date
Sydney Runkle
89d10ca1a9 new typing 2025-10-11 07:34:42 -04:00
Sydney Runkle
760fc3bc12 chore(langchain_v1): use args for HITL (#33442) 2025-10-11 07:12:46 -04:00
Eugene Yurtsev
e3fc7d8aa6 chore(langchain_v1): bump release version (#33440)
bump v1 for release
2025-10-10 21:51:00 -04:00
Eugene Yurtsev
2b3b209e40 chore(langchain_v1): improve error message (#33433)
Make error messages actionable for sync / async decorators
2025-10-10 17:18:20 -04:00
ccurme
78903ac285 fix(openai): conditionally skip test (#33431) 2025-10-10 21:04:18 +00:00
ccurme
f361acc11c chore(anthropic): speed up integration tests (#33430) 2025-10-10 20:57:44 +00:00
Eugene Yurtsev
ed185c0026 chore(langchain_v1): remove langchain_text_splitters from test group (#33425)
Remove langchain_text_splitters from test group in langchain_v1
2025-10-10 16:56:14 -04:00
Eugene Yurtsev
6dc34beb71 chore(langchain_v1): stricter handling of sync vs. async for wrap_model_call and wrap_tool_call (#33429)
Wrap model call and wrap tool call
2025-10-10 16:54:42 -04:00
Eugene Yurtsev
c2205f88e6 chore(langchain_v1): further namespace clean up (#33428)
Reduce exposed namespace for now
2025-10-10 20:48:24 +00:00
ccurme
abdbe185c5 release(anthropic): 1.0.0a4 (#33427) 2025-10-10 16:39:58 -04:00
ccurme
c1b816cb7e fix(fireworks): parse standard blocks in input (#33426) 2025-10-10 16:18:37 -04:00
Eugene Yurtsev
0559558715 feat(langchain_v1): add async implementation for wrap_tool_call (#33420)
Add async implementation. No automatic delegation to sync at the moment.
2025-10-10 15:07:19 -04:00
Eugene Yurtsev
75965474fc chore(langchain_v1): tool error exceptions (#33424)
Tool error exceptions
2025-10-10 15:06:40 -04:00
Mason Daugherty
5dc014fdf4 chore(core): delete get_relevant_documents (#33378)
Co-authored-by: Chester Curme <chester.curme@gmail.com>
2025-10-10 14:51:54 -04:00
Mason Daugherty
291a9fcea1 style: llm -> model (#33423) 2025-10-10 13:19:13 -04:00
Christophe Bornet
dd994b9d7f chore(langchain): remove arg types from docstrings (#33413)
Co-authored-by: Mason Daugherty <mason@langchain.dev>
2025-10-10 11:51:00 -04:00
Christophe Bornet
83901b30e3 chore(text-splitters): remove arg types from docstrings (#33406)
Co-authored-by: Mason Daugherty <mason@langchain.dev>
2025-10-10 11:37:53 -04:00
Mason Daugherty
bcfa21a6e7 chore(infra): remove Poetry setup and dependencies (#33418)
AWS now uses UV
2025-10-10 11:29:52 -04:00
ccurme
af1da28459 feat(langchain_v1): expand message exports (#33419) 2025-10-10 15:14:51 +00:00
Mason Daugherty
ed2ee4e8cc style: fix tables, capitalization (#33417) 2025-10-10 11:09:59 -04:00
Sydney Runkle
f293c8ffd6 chore(langchain_v1): add RemoveMessage (#33416) 2025-10-10 10:49:18 -04:00
Sydney Runkle
714c370191 release(langchain_v1): v1.0.0a13 (#33415) 2025-10-10 10:42:35 -04:00
Sydney Runkle
a29d4e9c3a fix(langchain_v1): out of date docstring (#33414) 2025-10-10 14:12:07 +00:00
Eugene Yurtsev
74983f8a96 chore(langchain_v1): update on_tool_call to wrap_tool (#33410)
Improve naming on ToolNode for on_tool_call interceptor
2025-10-10 03:19:45 +00:00
Eugene Yurtsev
11c5b86981 chore(langchain_v1): update wrap_on_model return (#33408)
Update wrap on model return to capture the full return type of the model
so we can accommodate dynamic structured outputs.
2025-10-09 23:01:21 -04:00
Mason Daugherty
383f4c0ee9 chore: update docs links in README.md (#33409) 2025-10-10 02:54:48 +00:00
Eugene Yurtsev
045e7ad4a1 feat(langchain_v1): tool emulator (#33357)
This is tool emulation middleware. The idea is to help test out an agent
that may have some tools that either take a long time to run or are
expensive to set up. This could allow simulating the behavior a bit.
2025-10-10 01:39:40 +00:00
Anika
0e80291804 fix(core): handle parent/child mustache vars (#33345)
**Description:**

currently `mustache_schema("{{x.y}} {{x}}")` will error. pr fixes

**Issue:** na
**Dependencies:**na

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2025-10-09 18:45:32 -04:00
Sydney Runkle
c99773b652 feat(langchain_v1): refactoring HITL API (#33397)
Easiest to review side by side (not inline)

* Adding `dict` type requests + responses so that we can ship config w/
interrupts. Also more extensible.
* Keeping things generic in terms of `interrupt_on` rather than
`tool_config`
* Renaming allowed decisions -- approve, edit, reject
* Draws differentiation between actions (requested + performed by the
agent), in this case tool calls, though we generalize beyond that and
decisions - human feedback for said actions

New request structure

```py
class Action(TypedDict):
    """Represents an action with a name and arguments."""

    name: str
    """The type or name of action being requested (e.g., "add_numbers")."""

    arguments: dict[str, Any]
    """Key-value pairs of arguments needed for the action (e.g., {"a": 1, "b": 2})."""


DecisionType = Literal["approve", "edit", "reject"]


class ReviewConfig(TypedDict):
    """Policy for reviewing a HITL request."""

    action_name: str
    """Name of the action associated with this review configuration."""

    allowed_decisions: list[DecisionType]
    """The decisions that are allowed for this request."""

    description: NotRequired[str]
    """The description of the action to be reviewed."""

    arguments_schema: NotRequired[dict[str, Any]]
    """JSON schema for the arguments associated with the action, if edits are allowed."""

class HITLRequest(TypedDict):
    """Request for human feedback on a sequence of actions requested by a model."""

    action_requests: list[Action]
    """A list of agent actions for human review."""

    review_configs: list[ReviewConfig]
    """Review configuration for all possible actions."""
```

New response structure

```py
class ApproveDecision(TypedDict):
    """Response when a human approves the action."""

    type: Literal["approve"]
    """The type of response when a human approves the action."""


class EditDecision(TypedDict):
    """Response when a human edits the action."""

    type: Literal["edit"]
    """The type of response when a human edits the action."""

    edited_action: Action
    """Edited action for the agent to perform.

    Ex: for a tool call, a human reviewer can edit the tool name and args.
    """


class RejectDecision(TypedDict):
    """Response when a human rejects the action."""

    type: Literal["reject"]
    """The type of response when a human rejects the action."""

    message: NotRequired[str]
    """The message sent to the model explaining why the action was rejected."""


Decision = ApproveDecision | EditDecision | RejectDecision


class HITLResponse(TypedDict):
    """Response payload for a HITLRequest."""

    decisions: list[Decision]
    """The decisions made by the human."""
```

User facing API:

NEW

```py
HumanInTheLoopMiddleware(interrupt_on={
    'send_email': True,
    # can also use a callable for description that takes tool call, state, and runtime
    'execute_sql': {
        'allowed_decisions': ['approve', 'edit', 'reject'], 
        'description': 'please review sensitive tool execution'},
    }
})

Command(resume={"decisions": [{"type": "approve"}, {"type": "reject": "message": "db down"}]})
```

OLD

```py
HumanInTheLoopMiddleware(interrupt_on={
    'send_email': True,
    'execute_sql': {
        'allow_accept': True, 
        'allow_edit': True, 
        'allow_respond': True, 
        description='please review sensitive tool execution'
    },
})

Command(resume=[{"type": "approve"}, {"type": "reject": "message": "db down"}])
```
2025-10-09 17:51:28 -04:00
Mason Daugherty
5f9e3e33cd style: remove Defaults to None (#33404) 2025-10-09 17:27:35 -04:00
Mason Daugherty
6fc21afbc9 style: .. code-block:: admonition translations (#33400)
biiiiiiiiiiiiiiiigggggggg pass
2025-10-09 16:52:58 -04:00
ccurme
50445d4a27 fix(standard-tests): update Anthropic inputs test (#33391)
Since 10/7 Anthropic will raise BadRequestError if given an invalid
thinking signature.
2025-10-09 14:13:26 -04:00
ccurme
11a2efe49b fix(anthropic): handle empty AIMessage (#33390) 2025-10-09 13:57:42 -04:00
Mason Daugherty
d8a680ee57 style: address Sphinx double-backtick snippet syntax (#33389) 2025-10-09 13:35:51 -04:00
Christophe Bornet
f405a2c57d chore(core): remove arg types from docstrings (#33388)
* Remove types args
* Remove types from Returns
* Remove types from Yield
* Replace `kwargs` by `**kwargs` when needed
2025-10-09 13:13:23 -04:00
Mason Daugherty
3576e690fa chore: update Sphinx links to markdown (#33386) 2025-10-09 11:54:14 -04:00
Mason Daugherty
057ac361ef chore: delete .claude/settings.local.json (#33387) 2025-10-09 11:44:57 -04:00
Christophe Bornet
d9675a4a20 fix(langchain): improve and fix typing (#32383) 2025-10-09 10:55:31 -04:00
ccurme
c27271f3ae fix(openai): update file index key name (#33350) 2025-10-09 13:15:27 +00:00
ccurme
a3e4f4c2e3 fix(core): override streaming callback if streaming attribute is set (#33351) 2025-10-09 09:04:27 -04:00
Mason Daugherty
b5030badbe refactor(core): clean up sys_info.py (#33372) 2025-10-09 03:31:26 +00:00
Mason Daugherty
b6132fc23e style: remove more Optional syntax (#33371) 2025-10-08 23:28:43 -04:00
Eugene Yurtsev
f33b1b3d77 chore(langchain_v1): rename on_model_call to wrap_model_call (#33370)
rename on_model_call to wrap_model_call
2025-10-08 23:28:14 -04:00
Eugene Yurtsev
c382788342 chore(langchain_v1): update the uv lock file (#33369)
Update the uv lock file.
2025-10-08 23:03:25 -04:00
Eugene Yurtsev
e193a1f273 chore(langchain_v1): replace modify model request with on model call (#33368)
* Replace modify model request with on model call
* Remove modify model request
2025-10-09 02:46:48 +00:00
Eugene Yurtsev
eb70672f4a chore(langchain): add unit tests for wrap_tool_call decorator (#33367)
Add unit tests for wrap_tool_call decorator
2025-10-09 02:30:07 +00:00
Eugene Yurtsev
87df179ca9 chore(langchain_v1): rename on_tool_call to wrap_tool_call (#33366)
Replace on tool call with wrap tool call
2025-10-08 22:10:36 -04:00
Eugene Yurtsev
982a950ccf chore(langchain_v1): add runtime and context to model request (#33365)
Add runtime and context to ModelRequest to make the API more convenient
2025-10-08 21:59:56 -04:00
Eugene Yurtsev
c2435eeca5 chore(langchain_v1): update on_tool_call to regular callbacks (#33364)
Refactor tool call middleware from generator-based to handler-based
pattern

Simplifies on_tool_call middleware by replacing the complex generator
protocol with a straightforward handler pattern. Instead of yielding
requests and receiving results via .send(),
handlers now receive an execute callable that can be invoked multiple
times for retry logic.


Before vs. After

Before (Generator):
```python
class RetryMiddleware(AgentMiddleware):
    def on_tool_call(self, request, state, runtime):
        for attempt in range(3):
            response = yield request  # Yield request, receive result via .send()
            if is_valid(response) or attempt == 2:
                return  # Final result is last value sent to generator
```

After (Handler):

```python
class RetryMiddleware(AgentMiddleware):
    def on_tool_call(self, request, handler):
        for attempt in range(3):
            result = handler(request)  # Direct function call
            if is_valid(result):
                return result
        return result
```


Follow up after this PR:

* Rename the interceptor to wrap_tool_call
* Fix the async path for the ToolNode
2025-10-08 21:46:03 -04:00
Mason Daugherty
68c56440cf fix(groq): handle content correctly (#33363)
(look at most recent commit; ignore prior)
2025-10-08 21:23:30 -04:00
Mason Daugherty
31eeb50ce0 chore: drop UP045 (#33362)
Python 3.9 EOL
2025-10-08 21:17:53 -04:00
Mason Daugherty
0039b3b046 refactor(core): remove keep-runtime-typing from pyproject.toml following dropping 3.9 (#33360)
https://docs.astral.sh/ruff/rules/non-pep604-annotation-optional/#why-is-this-bad
2025-10-08 21:09:53 -04:00
Mason Daugherty
ffb1a08871 style(infra): use modern Optional typing in script (#33361) 2025-10-08 21:09:43 -04:00
Mason Daugherty
d13823043d style: monorepo pass for refs (#33359)
* Delete some double backticks previously used by Sphinx (not done
everywhere yet)
* Fix some code blocks / dropdowns

Ignoring CLI CI for now
2025-10-08 18:41:39 -04:00
Eugene Yurtsev
b665b81a0e chore(langchain_v1): simplify on model call logic (#33358)
Moving from the generator pattern to the slightly less verbose (but explicit) handler pattern.

This will be more familiar to users

**Before (Generator Pattern):**
```python
def on_model_call(self, request, state, runtime):
    try:
        result = yield request
    except Exception:
        result = yield request  # Retry
```

**After (Handler Pattern):**
```python
def on_model_call(self, request, state, runtime, handler):
    try:
        return handler(request)
    except Exception:
        return handler(request)  # Retry
```
2025-10-08 17:23:11 -04:00
Mason Daugherty
6b9b177b89 chore(openai): base.py ref pass (#33355) 2025-10-08 16:08:52 -04:00
Mason Daugherty
b1acf8d931 chore: fix dropdown default open admonition in refs (#33354) 2025-10-08 18:50:44 +00:00
Eugene Yurtsev
97f731da7e chore(langchain_v1): remove unused internal namespace (#33352)
Remove unused internal namespace. We'll likely restore a part of it for
lazy loading optimizations later.
2025-10-08 14:08:07 -04:00
Eugene Yurtsev
1bf29da0d6 feat(langchain_v1): add on_tool_call middleware hook (#33329)
Adds generator-based middleware for intercepting tool execution in
agents. Middleware can retry on errors, cache results, modify requests,
or short-circuit execution.

### Implementation

**Middleware Protocol**
```python
class AgentMiddleware:
    def on_tool_call(
        self,
        request: ToolCallRequest,
        state: StateT,
        runtime: Runtime[ContextT],
    ) -> Generator[ToolCallRequest | ToolMessage | Command, ToolMessage | Command, None]:
        """
        Yields: ToolCallRequest (execute), ToolMessage (cached result), or Command (control flow)
        Receives: ToolMessage or Command via .send()
        Returns: None (final result is last value sent to handler)
        """
        yield request  # passthrough
```

**Composition**
Multiple middleware compose automatically (first = outermost), with
`_chain_tool_call_handlers()` stacking them like nested function calls.

### Examples

**Retry on error:**
```python
class RetryMiddleware(AgentMiddleware):
    def on_tool_call(self, request, state, runtime):
        for attempt in range(3):
            response = yield request
            if not isinstance(response, ToolMessage) or response.status != "error":
                return
            if attempt == 2:
                return  # Give up
```

**Cache results:**
```python
class CacheMiddleware(AgentMiddleware):
    def on_tool_call(self, request, state, runtime):
        cache_key = (request.tool_call["name"], tuple(request.tool_call["args"].items()))
        if cached := self.cache.get(cache_key):
            yield ToolMessage(content=cached, tool_call_id=request.tool_call["id"])
        else:
            response = yield request
            self.cache[cache_key] = response.content
```

**Emulate tools with LLM**
```python
class ToolEmulator(AgentMiddleware):
    def on_tool_call(self, request, state, runtime):
        prompt = f"""Emulate: {request.tool_call["name"]}
Description: {request.tool.description}
Args: {request.tool_call["args"]}
Return ONLY the tool's output."""

        response = emulator_model.invoke([HumanMessage(prompt)])
        yield ToolMessage(
            content=response.content,
            tool_call_id=request.tool_call["id"],
            name=request.tool_call["name"],
        )
```

**Modify requests:**
```python
class ScalingMiddleware(AgentMiddleware):
    def on_tool_call(self, request, state, runtime):
        if "value" in request.tool_call["args"]:
            request.tool_call["args"]["value"] *= 2
        yield request
```
2025-10-08 16:43:32 +00:00
Eugene Yurtsev
2c3fec014f feat(langchain_v1): on_model_call middleware (#33328)
Introduces a generator-based `on_model_call` hook that allows middleware
to intercept model calls with support for retry logic, error handling,
response transformation, and request modification.

## Overview

Middleware can now implement `on_model_call()` using a generator
protocol that:
- **Yields** `ModelRequest` to execute the model
- **Receives** `AIMessage` via `.send()` on success, or exception via
`.throw()` on error
- **Yields again** to retry or transform responses
- Uses **implicit last-yield semantics** (no return values from
generators)

## Usage Examples

### Basic Retry on Error

```python
from langchain.agents.middleware.types import AgentMiddleware

class RetryMiddleware(AgentMiddleware):
    def on_model_call(self, request, state, runtime):
        for attempt in range(3):
            try:
                yield request  # Execute model
                break  # Success
            except Exception:
                if attempt == 2:
                    raise  # Max retries exceeded
```

### Response Transformation

```python
class UppercaseMiddleware(AgentMiddleware):
    def on_model_call(self, request, state, runtime):
        result = yield request
        modified = AIMessage(content=result.content.upper())
        yield modified  # Return transformed response
```

### Error Recovery

```python
class FallbackMiddleware(AgentMiddleware):
    def on_model_call(self, request, state, runtime):
        try:
            yield request
        except Exception:
            fallback = AIMessage(content="Service unavailable")
            yield fallback  # Convert error to fallback response
```

### Caching / Short-Circuit

```python
class CacheMiddleware(AgentMiddleware):
    def on_model_call(self, request, state, runtime):
        if cached := get_cache(request):
            yield cached  # Skip model execution
        else:
            result = yield request
            save_cache(request, result)
```

### Request Modification

```python
class SystemPromptMiddleware(AgentMiddleware):
    def on_model_call(self, request, state, runtime):
        modified_request = ModelRequest(
            model=request.model,
            system_prompt="You are a helpful assistant.",
            messages=request.messages,
            tools=request.tools,
        )
        yield modified_request
```

### Function Decorator

```python
from langchain.agents.middleware.types import on_model_call

@on_model_call
def retry_three_times(request, state, runtime):
    for attempt in range(3):
        try:
            yield request
            break
        except Exception:
            if attempt == 2:
                raise

agent = create_agent(model="openai:gpt-4o", middleware=[retry_three_times])
```

## Middleware Composition

Middleware compose with first in list as outermost layer:

```python
agent = create_agent(
    model="openai:gpt-4o",
    middleware=[
        RetryMiddleware(),      # Outer - wraps others
        LoggingMiddleware(),    # Middle
        UppercaseMiddleware(),  # Inner - closest to model
    ]
)
```
2025-10-08 12:34:04 -04:00
Mason Daugherty
4c38157ee0 fix(core): don't print package if no version found (#33347)
This is polluting issues making it hard to find issues that apply to a
query
2025-10-07 23:14:17 -04:00
Sydney Runkle
b5f8e87e2f remove runtime where not needed 2025-10-07 21:33:52 -04:00
Eugene Yurtsev
6a2efd060e fix(langchain_v1): injection logic in tool node (#33344)
Fix injection logic in tool node
2025-10-07 21:31:10 -04:00
Mason Daugherty
cda336295f chore: enrich pyproject.toml files with links to new references, others (#33343) 2025-10-07 16:17:14 -04:00
Mason Daugherty
02f4256cb6 chore: remove CLI note in migrations (#33342)
unsure of functionality/we don't plan to spend time on it at the moment
2025-10-07 19:18:33 +00:00
ccurme
492ba3d127 release(core): 1.0.0a8 (#33341) 2025-10-07 14:18:44 -04:00
ccurme
cbf8d46d3e fix(core): add back add_user_message and add_ai_message (#33340) 2025-10-07 13:56:34 -04:00
Mason Daugherty
58598f01b0 chore: add more informative README for libs/ (#33339) 2025-10-07 17:13:45 +00:00
ccurme
89fe7e1ac1 release(langchain): 1.0.0a1 (#33337) 2025-10-07 12:52:32 -04:00
ccurme
a24712f7f7 revert: chore(infra): temporarily skip tests of previous alpha versions on core release (#33333)
Reverts langchain-ai/langchain#33312
2025-10-07 10:51:17 -04:00
Mason Daugherty
8446fef00d fix(infra): v0.3 ref dep (#33336) 2025-10-07 10:49:20 -04:00
Mason Daugherty
8bcdfbb24e chore: clean up pyproject.toml files, use core a7 (#33334) 2025-10-07 10:49:04 -04:00
Mason Daugherty
b8ebc14a23 chore(langchain): clean Makefile (#33335) 2025-10-07 10:48:47 -04:00
ccurme
aa442bc52f release(openai): 1.0.0a4 (#33316) 2025-10-07 09:25:05 -04:00
ccurme
2e024b7ede release(anthropic): 1.0.0a3 (#33317) 2025-10-07 09:24:54 -04:00
Sydney Runkle
c8205ff511 fix(langchain_v1): fix edges when there's no middleware (#33321)
1. Main fix: when we don't have a response format or middleware, don't
draw a conditional edge back to the loop entrypoint (self loop on model)
2. Supplementary fix: when we jump to `end` and there is an
`after_agent` hook, jump there instead of `__end__`

Other improvements -- I can remove these if they're more harmful than
helpful
1. Use keyword only arguments for edge generator functions for clarity
2. Rename args to `model_destination` and `end_destination` for clarity
2025-10-06 18:08:08 -04:00
Mason Daugherty
ea0a25d7fe fix(infra): v0.3 ref build; allow prerelease installations for partner packages (#33326) 2025-10-06 18:06:40 -04:00
Mason Daugherty
29b5df3881 fix(infra): handle special case for langchain-tavily repository checkout during ref build (#33324) 2025-10-06 18:00:24 -04:00
Mason Daugherty
690b620b7f docs(infra): add note about check_diff.py running on seemingly unrelated PRs (#33323) 2025-10-06 17:56:57 -04:00
Mason Daugherty
c55c9785be chore(infra): only build 0.3 ref docs from v0.3 branches (#33322)
Using the `api_doc_build.yml` workflow will now only pull from the
`v0.3` branch for each `langchain-ai` repo used during the build
process. This ensures that upcoming updates to the `master`/`main`
branch for each repo won't affect the v0.3 reference docs if/when they
are re-built or updated.
2025-10-06 21:45:49 +00:00
Christophe Bornet
20e04fc3dd chore(text-splitters): cleanup ruff config (#33247)
Co-authored-by: Mason Daugherty <mason@langchain.dev>
2025-10-06 17:02:31 -04:00
Mason Daugherty
078137f0ba chore(infra): use different pr title labeler (#33318)
The previous (from Grafana) is archived and doesn't work for community
PRs.
2025-10-06 16:58:52 -04:00
ccurme
d0f5a1cc96 fix(standard-tests,openai): minor fix for Responses API tests (#33315)
Following https://github.com/langchain-ai/langchain/pull/33301
2025-10-06 16:46:41 -04:00
ccurme
e8e41bd7a6 chore(infra): temporarily skip tests of previous alpha versions on core release (#33312)
To accommodate breaking changes (e.g., removal of deprecated params like
`callback_manager`).

Will revert once we have updated releases of anthropic and openai.
2025-10-06 16:31:36 -04:00
Sydney Runkle
7326966566 release(langchain_v1): 1.0.0a12 (#33314) 2025-10-06 16:24:30 -04:00
Mason Daugherty
6eb1c34ba1 fix(infra): pr-title-labeler (#33313)
Wasn't working on `pull_request_target`
2025-10-06 16:20:15 -04:00
Mason Daugherty
d390d2f28f chore: add .claude to .gitignore (#33311) 2025-10-06 16:20:02 -04:00
Sydney Runkle
2fa9741f99 chore(langchain_v1): rename model_request node -> model (#33310) 2025-10-06 16:18:18 -04:00
ccurme
ba35387c9e release(core): 1.0.0a7 (#33309) 2025-10-06 16:03:34 -04:00
ccurme
de48e102c4 fix(core,openai,anthropic): delegate to core implementation on invoke when streaming=True (#33308) 2025-10-06 15:54:55 -04:00
537 changed files with 26578 additions and 21627 deletions

View File

@@ -1,18 +0,0 @@
{
"permissions": {
"allow": [
"Bash(uv run:*)",
"Bash(make:*)",
"WebSearch",
"WebFetch(domain:ai.pydantic.dev)",
"WebFetch(domain:openai.github.io)",
"Bash(uv run:*)",
"Bash(python3:*)",
"WebFetch(domain:github.com)",
"Bash(gh pr view:*)",
"Bash(gh pr diff:*)"
],
"deny": [],
"ask": []
}
}

View File

@@ -257,7 +257,15 @@ if __name__ == "__main__":
".github/scripts/check_diff.py",
)
):
# add all LANGCHAIN_DIRS for infra changes
# Infrastructure changes (workflows, actions, CI scripts) trigger tests on
# all core packages as a safety measure. This ensures that changes to CI/CD
# infrastructure don't inadvertently break package testing, even if the change
# appears unrelated (e.g., documentation build workflows). This is intentionally
# conservative to catch unexpected side effects from workflow modifications.
#
# Example: A PR modifying .github/workflows/api_doc_build.yml will trigger
# lint/test jobs for libs/core, libs/text-splitters, libs/langchain, and
# libs/langchain_v1, even though the workflow may only affect documentation.
dirs_to_run["extended-test"].update(LANGCHAIN_DIRS)
if file.startswith("libs/core"):

View File

@@ -2,7 +2,6 @@
import sys
from collections import defaultdict
from typing import Optional
if sys.version_info >= (3, 11):
import tomllib
@@ -54,7 +53,7 @@ def get_pypi_versions(package_name: str) -> List[str]:
return list(response.json()["releases"].keys())
def get_minimum_version(package_name: str, spec_string: str) -> Optional[str]:
def get_minimum_version(package_name: str, spec_string: str) -> str | None:
"""Find the minimum published version that satisfies the given constraints.
Args:
@@ -114,7 +113,7 @@ def get_min_version_from_toml(
versions_for: str,
python_version: str,
*,
include: Optional[list] = None,
include: list | None = None,
):
# Parse the TOML file
with open(toml_path, "rb") as file:

View File

@@ -6,7 +6,7 @@
#
# Runs pytest with compile marker to check syntax/imports.
name: '🔗 Compile Integration Tests'
name: "🔗 Compile Integration Tests"
on:
workflow_call:
@@ -33,26 +33,26 @@ jobs:
working-directory: ${{ inputs.working-directory }}
runs-on: ubuntu-latest
timeout-minutes: 20
name: 'Python ${{ inputs.python-version }}'
name: "Python ${{ inputs.python-version }}"
steps:
- uses: actions/checkout@v5
- name: '🐍 Set up Python ${{ inputs.python-version }} + UV'
- name: "🐍 Set up Python ${{ inputs.python-version }} + UV"
uses: "./.github/actions/uv_setup"
with:
python-version: ${{ inputs.python-version }}
cache-suffix: compile-integration-tests-${{ inputs.working-directory }}
working-directory: ${{ inputs.working-directory }}
- name: '📦 Install Integration Dependencies'
- name: "📦 Install Integration Dependencies"
shell: bash
run: uv sync --group test --group test_integration
- name: '🔗 Check Integration Tests Compile'
- name: "🔗 Check Integration Tests Compile"
shell: bash
run: uv run pytest -m compile tests/integration_tests
- name: '🧹 Verify Clean Working Directory'
- name: "🧹 Verify Clean Working Directory"
shell: bash
run: |
set -eu

View File

@@ -5,7 +5,7 @@
#
# Called as part of check_diffs.yml workflow.
name: '🧹 Linting'
name: "🧹 Linting"
on:
workflow_call:
@@ -33,43 +33,43 @@ env:
jobs:
# Linting job - runs quality checks on package and test code
build:
name: 'Python ${{ inputs.python-version }}'
name: "Python ${{ inputs.python-version }}"
runs-on: ubuntu-latest
timeout-minutes: 20
steps:
- name: '📋 Checkout Code'
- name: "📋 Checkout Code"
uses: actions/checkout@v5
- name: '🐍 Set up Python ${{ inputs.python-version }} + UV'
- name: "🐍 Set up Python ${{ inputs.python-version }} + UV"
uses: "./.github/actions/uv_setup"
with:
python-version: ${{ inputs.python-version }}
cache-suffix: lint-${{ inputs.working-directory }}
working-directory: ${{ inputs.working-directory }}
- name: '📦 Install Lint & Typing Dependencies'
- name: "📦 Install Lint & Typing Dependencies"
working-directory: ${{ inputs.working-directory }}
run: |
uv sync --group lint --group typing
- name: '🔍 Analyze Package Code with Linters'
- name: "🔍 Analyze Package Code with Linters"
working-directory: ${{ inputs.working-directory }}
run: |
make lint_package
- name: '📦 Install Test Dependencies (non-partners)'
- name: "📦 Install Test Dependencies (non-partners)"
# (For directories NOT starting with libs/partners/)
if: ${{ ! startsWith(inputs.working-directory, 'libs/partners/') }}
working-directory: ${{ inputs.working-directory }}
run: |
uv sync --inexact --group test
- name: '📦 Install Test Dependencies'
- name: "📦 Install Test Dependencies"
if: ${{ startsWith(inputs.working-directory, 'libs/partners/') }}
working-directory: ${{ inputs.working-directory }}
run: |
uv sync --inexact --group test --group test_integration
- name: '🔍 Analyze Test Code with Linters'
- name: "🔍 Analyze Test Code with Linters"
working-directory: ${{ inputs.working-directory }}
run: |
make lint_tests

View File

@@ -1,7 +1,7 @@
# Runs unit tests with both current and minimum supported dependency versions
# to ensure compatibility across the supported range.
name: '🧪 Unit Testing'
name: "🧪 Unit Testing"
on:
workflow_call:
@@ -30,12 +30,12 @@ jobs:
working-directory: ${{ inputs.working-directory }}
runs-on: ubuntu-latest
timeout-minutes: 20
name: 'Python ${{ inputs.python-version }}'
name: "Python ${{ inputs.python-version }}"
steps:
- name: '📋 Checkout Code'
- name: "📋 Checkout Code"
uses: actions/checkout@v5
- name: '🐍 Set up Python ${{ inputs.python-version }} + UV'
- name: "🐍 Set up Python ${{ inputs.python-version }} + UV"
uses: "./.github/actions/uv_setup"
id: setup-python
with:
@@ -43,16 +43,16 @@ jobs:
cache-suffix: test-${{ inputs.working-directory }}
working-directory: ${{ inputs.working-directory }}
- name: '📦 Install Test Dependencies'
- name: "📦 Install Test Dependencies"
shell: bash
run: uv sync --group test --dev
- name: '🧪 Run Core Unit Tests'
- name: "🧪 Run Core Unit Tests"
shell: bash
run: |
make test
- name: '🔍 Calculate Minimum Dependency Versions'
- name: "🔍 Calculate Minimum Dependency Versions"
working-directory: ${{ inputs.working-directory }}
id: min-version
shell: bash
@@ -63,7 +63,7 @@ jobs:
echo "min-versions=$min_versions" >> "$GITHUB_OUTPUT"
echo "min-versions=$min_versions"
- name: '🧪 Run Tests with Minimum Dependencies'
- name: "🧪 Run Tests with Minimum Dependencies"
if: ${{ steps.min-version.outputs.min-versions != '' }}
env:
MIN_VERSIONS: ${{ steps.min-version.outputs.min-versions }}
@@ -72,7 +72,7 @@ jobs:
make tests
working-directory: ${{ inputs.working-directory }}
- name: '🧹 Verify Clean Working Directory'
- name: "🧹 Verify Clean Working Directory"
shell: bash
run: |
set -eu
@@ -83,4 +83,3 @@ jobs:
# grep will exit non-zero if the target message isn't found,
# and `set -e` above will cause the step to fail.
echo "$STATUS" | grep 'nothing to commit, working tree clean'

View File

@@ -1,6 +1,6 @@
# Facilitate unit testing against different Pydantic versions for a provided package.
name: '🐍 Pydantic Version Testing'
name: "🐍 Pydantic Version Testing"
on:
workflow_call:
@@ -33,32 +33,32 @@ jobs:
working-directory: ${{ inputs.working-directory }}
runs-on: ubuntu-latest
timeout-minutes: 20
name: 'Pydantic ~=${{ inputs.pydantic-version }}'
name: "Pydantic ~=${{ inputs.pydantic-version }}"
steps:
- name: '📋 Checkout Code'
- name: "📋 Checkout Code"
uses: actions/checkout@v5
- name: '🐍 Set up Python ${{ inputs.python-version }} + UV'
- name: "🐍 Set up Python ${{ inputs.python-version }} + UV"
uses: "./.github/actions/uv_setup"
with:
python-version: ${{ inputs.python-version }}
cache-suffix: test-pydantic-${{ inputs.working-directory }}
working-directory: ${{ inputs.working-directory }}
- name: '📦 Install Test Dependencies'
- name: "📦 Install Test Dependencies"
shell: bash
run: uv sync --group test
- name: '🔄 Install Specific Pydantic Version'
- name: "🔄 Install Specific Pydantic Version"
shell: bash
run: VIRTUAL_ENV=.venv uv pip install pydantic~=${{ inputs.pydantic-version }}
- name: '🧪 Run Core Tests'
- name: "🧪 Run Core Tests"
shell: bash
run: |
make test
- name: '🧹 Verify Clean Working Directory'
- name: "🧹 Verify Clean Working Directory"
shell: bash
run: |
set -eu

View File

@@ -2,13 +2,13 @@
#
# (Prevents releases with mismatched version numbers)
name: '🔍 Check Version Equality'
name: "🔍 Check Version Equality"
on:
pull_request:
paths:
- 'libs/core/pyproject.toml'
- 'libs/core/langchain_core/version.py'
- "libs/core/pyproject.toml"
- "libs/core/langchain_core/version.py"
permissions:
contents: read
@@ -20,7 +20,7 @@ jobs:
steps:
- uses: actions/checkout@v5
- name: '✅ Verify pyproject.toml & version.py Match'
- name: "✅ Verify pyproject.toml & version.py Match"
run: |
# Check core versions
CORE_PYPROJECT_VERSION=$(grep -Po '(?<=^version = ")[^"]*' libs/core/pyproject.toml)

View File

@@ -23,10 +23,8 @@ permissions:
contents: read
env:
POETRY_VERSION: "1.8.4"
UV_FROZEN: "true"
DEFAULT_LIBS: '["libs/partners/openai", "libs/partners/anthropic", "libs/partners/fireworks", "libs/partners/groq", "libs/partners/mistralai", "libs/partners/xai", "libs/partners/google-vertexai", "libs/partners/google-genai", "libs/partners/aws"]'
POETRY_LIBS: ("libs/partners/aws")
jobs:
# Generate dynamic test matrix based on input parameters or defaults
@@ -60,7 +58,6 @@ jobs:
echo $matrix
echo "matrix=$matrix" >> $GITHUB_OUTPUT
# Run integration tests against partner libraries with live API credentials
# Tests are run with Poetry or UV depending on the library's setup
build:
if: github.repository_owner == 'langchain-ai' || github.event_name != 'schedule'
name: "🐍 Python ${{ matrix.python-version }}: ${{ matrix.working-directory }}"
@@ -95,17 +92,7 @@ jobs:
mv langchain-google/libs/vertexai langchain/libs/partners/google-vertexai
mv langchain-aws/libs/aws langchain/libs/partners/aws
- name: "🐍 Set up Python ${{ matrix.python-version }} + Poetry"
if: contains(env.POETRY_LIBS, matrix.working-directory)
uses: "./langchain/.github/actions/poetry_setup"
with:
python-version: ${{ matrix.python-version }}
poetry-version: ${{ env.POETRY_VERSION }}
working-directory: langchain/${{ matrix.working-directory }}
cache-key: scheduled
- name: "🐍 Set up Python ${{ matrix.python-version }} + UV"
if: "!contains(env.POETRY_LIBS, matrix.working-directory)"
uses: "./langchain/.github/actions/uv_setup"
with:
python-version: ${{ matrix.python-version }}
@@ -123,15 +110,7 @@ jobs:
aws-secret-access-key: ${{ secrets.AWS_SECRET_ACCESS_KEY }}
aws-region: ${{ secrets.AWS_REGION }}
- name: "📦 Install Dependencies (Poetry)"
if: contains(env.POETRY_LIBS, matrix.working-directory)
run: |
echo "Running scheduled tests, installing dependencies with poetry..."
cd langchain/${{ matrix.working-directory }}
poetry install --with=test_integration,test
- name: "📦 Install Dependencies (UV)"
if: "!contains(env.POETRY_LIBS, matrix.working-directory)"
- name: "📦 Install Dependencies"
run: |
echo "Running scheduled tests, installing dependencies with uv..."
cd langchain/${{ matrix.working-directory }}

View File

@@ -12,7 +12,7 @@ on:
jobs:
labeler:
name: 'label'
name: "label"
permissions:
contents: read
pull-requests: write
@@ -20,9 +20,9 @@ jobs:
runs-on: ubuntu-latest
steps:
- name: Label Pull Request
uses: actions/labeler@v6
with:
repo-token: "${{ secrets.GITHUB_TOKEN }}"
configuration-path: .github/pr-file-labeler.yml
sync-labels: false
- name: Label Pull Request
uses: actions/labeler@v6
with:
repo-token: "${{ secrets.GITHUB_TOKEN }}"
configuration-path: .github/pr-file-labeler.yml
sync-labels: false

View File

@@ -1,6 +1,7 @@
# Label PRs based on their titles.
#
# See `.github/pr-title-labeler.yml` to see rules for each label/title pattern.
# Uses conventional commit types from PR titles to apply labels.
# Note: Scope-based labeling (e.g., integration labels) is handled by pr_labeler_file.yml
name: "🏷️ PR Title Labeler"
@@ -8,11 +9,11 @@ on:
# Safe since we're not checking out or running the PR's code
# Never check out the PR's head in a pull_request_target job
pull_request_target:
types: [opened, synchronize, reopened, edited]
types: [opened, edited]
jobs:
pr-title-labeler:
name: 'label'
name: "label"
permissions:
contents: read
pull-requests: write
@@ -20,9 +21,24 @@ jobs:
runs-on: ubuntu-latest
steps:
- name: Label PR based on title
# Archived repo; latest commit (v0.1.0)
uses: grafana/pr-labeler-action@f19222d3ef883d2ca5f04420fdfe8148003763f0
with:
token: ${{ secrets.GITHUB_TOKEN }}
configuration-path: .github/pr-title-labeler.yml
- name: Label PR based on title
uses: bcoe/conventional-release-labels@v1
with:
token: ${{ secrets.GITHUB_TOKEN }}
type_labels: >-
{
"feat": "feature",
"fix": "fix",
"docs": "documentation",
"style": "linting",
"refactor": "refactor",
"perf": "performance",
"test": "tests",
"build": "infra",
"ci": "infra",
"chore": "infra",
"revert": "revert",
"release": "release",
"breaking": "breaking"
}
ignored_types: '[]'

View File

@@ -78,7 +78,16 @@ jobs:
exit 1
fi
echo "Checking out $repo to $REPO_NAME"
git clone --depth 1 https://github.com/$repo.git $REPO_NAME
# Special handling for langchain-tavily: checkout by commit hash
if [[ "$REPO_NAME" == "langchain-tavily" ]]; then
git clone https://github.com/$repo.git $REPO_NAME
cd $REPO_NAME
git checkout f3515654724a9e87bdfe2c2f509d6cdde646e563
cd ..
else
git clone --depth 1 --branch v0.3 https://github.com/$repo.git $REPO_NAME
fi
done
- name: "🐍 Setup Python ${{ env.PYTHON_VERSION }}"
@@ -106,7 +115,10 @@ jobs:
working-directory: langchain
run: |
# Install all partner packages in editable mode with overrides
python -m uv pip install $(ls ./libs/partners | xargs -I {} echo "./libs/partners/{}") --overrides ./docs/vercel_overrides.txt
python -m uv pip install $(ls ./libs/partners | grep -v azure-ai | xargs -I {} echo "./libs/partners/{}") --overrides ./docs/vercel_overrides.txt --prerelease=allow
# Install langchain-azure-ai with tools extra
python -m uv pip install "./libs/partners/azure-ai[tools]" --overrides ./docs/vercel_overrides.txt --prerelease=allow
# Install core langchain and other main packages
python -m uv pip install libs/core libs/langchain libs/text-splitters libs/community libs/experimental libs/standard-tests

1
.gitignore vendored
View File

@@ -1,4 +1,5 @@
.vs/
.claude/
.idea/
# Byte-compiled / optimized / DLL files
__pycache__/

View File

@@ -149,14 +149,14 @@ def send_email(to: str, msg: str, *, priority: str = "normal") -> bool:
Args:
to: The email address of the recipient.
msg: The message body to send.
priority: Email priority level (``'low'``, ``'normal'``, ``'high'``).
priority: Email priority level (`'low'`, `'normal'`, `'high'`).
Returns:
True if email was sent successfully, False otherwise.
`True` if email was sent successfully, `False` otherwise.
Raises:
InvalidEmailError: If the email address format is invalid.
SMTPConnectionError: If unable to connect to email server.
`InvalidEmailError`: If the email address format is invalid.
`SMTPConnectionError`: If unable to connect to email server.
"""
```

View File

@@ -149,14 +149,14 @@ def send_email(to: str, msg: str, *, priority: str = "normal") -> bool:
Args:
to: The email address of the recipient.
msg: The message body to send.
priority: Email priority level (``'low'``, ``'normal'``, ``'high'``).
priority: Email priority level (`'low'`, `'normal'`, `'high'`).
Returns:
True if email was sent successfully, False otherwise.
`True` if email was sent successfully, `False` otherwise.
Raises:
InvalidEmailError: If the email address format is invalid.
SMTPConnectionError: If unable to connect to email server.
`InvalidEmailError`: If the email address format is invalid.
`SMTPConnectionError`: If unable to connect to email server.
"""
```

View File

@@ -6,6 +6,3 @@ Please see the following guides for migrating LangChain code:
* Migrate to [LangChain v0.2](https://python.langchain.com/docs/versions/v0_2/)
* Migrating from [LangChain 0.0.x Chains](https://python.langchain.com/docs/versions/migrating_chains/)
* Upgrade to [LangGraph Memory](https://python.langchain.com/docs/versions/migrating_memory/)
The [LangChain CLI](https://python.langchain.com/docs/versions/v0_3/#migrate-using-langchain-cli) can help you automatically upgrade your code to use non-deprecated imports.
This will be especially helpful if you're still on either version 0.0.x or 0.1.x of LangChain.

View File

@@ -34,14 +34,14 @@
LangChain is a framework for building LLM-powered applications. It helps you chain together interoperable components and third-party integrations to simplify AI application development — all while future-proofing decisions as the underlying technology evolves.
```bash
pip install -U langchain
pip install langchain
```
---
**Documentation**: To learn more about LangChain, check out [the docs](https://docs.langchain.com/).
**Documentation**: To learn more about LangChain, check out [the docs](https://docs.langchain.com/oss/python/langchain/overview).
If you're looking for more advanced customization or agent orchestration, check out [LangGraph](https://langchain-ai.github.io/langgraph/), our framework for building controllable agent workflows.
If you're looking for more advanced customization or agent orchestration, check out [LangGraph](https://docs.langchain.com/oss/python/langgraph/overview), our framework for building controllable agent workflows.
> [!NOTE]
> Looking for the JS/TS library? Check out [LangChain.js](https://github.com/langchain-ai/langchainjs).
@@ -62,16 +62,13 @@ While the LangChain framework can be used standalone, it also integrates seamles
To improve your LLM application development, pair LangChain with:
- [LangSmith](https://www.langchain.com/langsmith) - Helpful for agent evals and observability. Debug poor-performing LLM app runs, evaluate agent trajectories, gain visibility in production, and improve performance over time.
- [LangGraph](https://langchain-ai.github.io/langgraph/) - Build agents that can reliably handle complex tasks with LangGraph, our low-level agent orchestration framework. LangGraph offers customizable architecture, long-term memory, and human-in-the-loop workflows — and is trusted in production by companies like LinkedIn, Uber, Klarna, and GitLab.
- [LangGraph Platform](https://docs.langchain.com/langgraph-platform) - Deploy and scale agents effortlessly with a purpose-built deployment platform for long-running, stateful workflows. Discover, reuse, configure, and share agents across teams — and iterate quickly with visual prototyping in [LangGraph Studio](https://langchain-ai.github.io/langgraph/concepts/langgraph_studio/).
- [LangGraph](https://docs.langchain.com/oss/python/langgraph/overview) - Build agents that can reliably handle complex tasks with LangGraph, our low-level agent orchestration framework. LangGraph offers customizable architecture, long-term memory, and human-in-the-loop workflows — and is trusted in production by companies like LinkedIn, Uber, Klarna, and GitLab.
- [LangGraph Platform](https://docs.langchain.com/langgraph-platform) - Deploy and scale agents effortlessly with a purpose-built deployment platform for long-running, stateful workflows. Discover, reuse, configure, and share agents across teams — and iterate quickly with visual prototyping in [LangGraph Studio](https://langchain-ai.github.io/langgraph/concepts/langgraph_studio).
## Additional resources
- [Conceptual Guides](https://docs.langchain.com/oss/python/langchain/overview): Explanations of key
concepts behind the LangChain framework.
- [Tutorials](https://docs.langchain.com/oss/python/learn): Simple walkthroughs with
guided examples on getting started with LangChain.
- [API Reference](https://reference.langchain.com/python/): Detailed reference on
- [Learn](https://docs.langchain.com/oss/python/learn): Use cases, conceptual overviews, and more.
- [API Reference](https://reference.langchain.com/python): Detailed reference on
navigating base packages and integrations for LangChain.
- [LangChain Forum](https://forum.langchain.com/): Connect with the community and share all of your technical questions, ideas, and feedback.
- [Chat LangChain](https://chat.langchain.com/): Ask questions & chat with our documentation.
- [LangChain Forum](https://forum.langchain.com): Connect with the community and share all of your technical questions, ideas, and feedback.
- [Chat LangChain](https://chat.langchain.com): Ask questions & chat with our documentation.

View File

@@ -1,2 +1,32 @@
# Packages
> [!IMPORTANT]
> [**View all LangChain integrations packages**](https://docs.langchain.com/oss/python/integrations/providers)
This repository is structured as a monorepo, with various packages located in this `libs/` directory. Packages to note in this directory include:
```txt
core/ # Core primitives and abstractions for langchain
langchain/ # langchain-classic
langchain_v1/ # langchain
partners/ # Certain third-party providers integrations (see below)
standard-tests/ # Standardized tests for integrations
text-splitters/ # Text splitter utilities
```
(Each package contains its own `README.md` file with specific details about that package.)
## Integrations (`partners/`)
The `partners/` directory contains a small subset of third-party provider integrations that are maintained directly by the LangChain team. These include, but are not limited to:
* [OpenAI](https://pypi.org/project/langchain-openai/)
* [Anthropic](https://pypi.org/project/langchain-anthropic/)
* [Ollama](https://pypi.org/project/langchain-ollama/)
* [DeepSeek](https://pypi.org/project/langchain-deepseek/)
* [xAI](https://pypi.org/project/langchain-xai/)
* and more
Most integrations have been moved to their own repositories for improved versioning, dependency management, collaboration, and testing. This includes packages from popular providers such as [Google](https://github.com/langchain-ai/langchain-google) and [AWS](https://github.com/langchain-ai/langchain-aws). Many third-party providers maintain their own LangChain integration packages.
For a full list of all LangChain integrations, please refer to the [LangChain Integrations documentation](https://docs.langchain.com/oss/python/integrations/providers).

View File

@@ -19,8 +19,8 @@ And you should configure credentials by setting the following environment variab
```python
from __module_name__ import Chat__ModuleName__
llm = Chat__ModuleName__()
llm.invoke("Sing a ballad of LangChain.")
model = Chat__ModuleName__()
model.invoke("Sing a ballad of LangChain.")
```
## Embeddings
@@ -41,6 +41,6 @@ embeddings.embed_query("What is the meaning of life?")
```python
from __module_name__ import __ModuleName__LLM
llm = __ModuleName__LLM()
llm.invoke("The meaning of life is")
model = __ModuleName__LLM()
model.invoke("The meaning of life is")
```

View File

@@ -72,7 +72,9 @@
"cell_type": "markdown",
"id": "72ee0c4b-9764-423a-9dbf-95129e185210",
"metadata": {},
"source": "To enable automated tracing of your model calls, set your [LangSmith](https://docs.smith.langchain.com/) API key:"
"source": [
"To enable automated tracing of your model calls, set your [LangSmith](https://docs.smith.langchain.com/) API key:"
]
},
{
"cell_type": "code",
@@ -126,7 +128,7 @@
"source": [
"from __module_name__ import Chat__ModuleName__\n",
"\n",
"llm = Chat__ModuleName__(\n",
"model = Chat__ModuleName__(\n",
" model=\"model-name\",\n",
" temperature=0,\n",
" max_tokens=None,\n",
@@ -162,7 +164,7 @@
" ),\n",
" (\"human\", \"I love programming.\"),\n",
"]\n",
"ai_msg = llm.invoke(messages)\n",
"ai_msg = model.invoke(messages)\n",
"ai_msg"
]
},
@@ -207,7 +209,7 @@
" ]\n",
")\n",
"\n",
"chain = prompt | llm\n",
"chain = prompt | model\n",
"chain.invoke(\n",
" {\n",
" \"input_language\": \"English\",\n",

View File

@@ -65,7 +65,9 @@
"cell_type": "markdown",
"id": "4b6e1ca6",
"metadata": {},
"source": "To enable automated tracing of your model calls, set your [LangSmith](https://docs.smith.langchain.com/) API key:"
"source": [
"To enable automated tracing of your model calls, set your [LangSmith](https://docs.smith.langchain.com/) API key:"
]
},
{
"cell_type": "code",
@@ -119,7 +121,7 @@
"source": [
"from __module_name__ import __ModuleName__LLM\n",
"\n",
"llm = __ModuleName__LLM(\n",
"model = __ModuleName__LLM(\n",
" model=\"model-name\",\n",
" temperature=0,\n",
" max_tokens=None,\n",
@@ -141,7 +143,7 @@
},
{
"cell_type": "code",
"execution_count": 4,
"execution_count": null,
"id": "035dea0f",
"metadata": {
"tags": []
@@ -150,7 +152,7 @@
"source": [
"input_text = \"__ModuleName__ is an AI company that \"\n",
"\n",
"completion = llm.invoke(input_text)\n",
"completion = model.invoke(input_text)\n",
"completion"
]
},
@@ -177,7 +179,7 @@
"\n",
"prompt = PromptTemplate(\"How to say {input} in {output_language}:\\n\")\n",
"\n",
"chain = prompt | llm\n",
"chain = prompt | model\n",
"chain.invoke(\n",
" {\n",
" \"output_language\": \"German\",\n",

View File

@@ -155,7 +155,7 @@
"\n",
"from langchain_openai import ChatOpenAI\n",
"\n",
"llm = ChatOpenAI(model=\"gpt-3.5-turbo-0125\", temperature=0)"
"model = ChatOpenAI(model=\"gpt-3.5-turbo-0125\", temperature=0)"
]
},
{
@@ -185,7 +185,7 @@
"chain = (\n",
" {\"context\": retriever | format_docs, \"question\": RunnablePassthrough()}\n",
" | prompt\n",
" | llm\n",
" | model\n",
" | StrOutputParser()\n",
")"
]

View File

@@ -192,7 +192,7 @@
},
{
"cell_type": "code",
"execution_count": 16,
"execution_count": null,
"id": "af3123ad-7a02-40e5-b58e-7d56e23e5830",
"metadata": {},
"outputs": [],
@@ -203,7 +203,7 @@
"# !pip install -qU langchain langchain-openai\n",
"from langchain.chat_models import init_chat_model\n",
"\n",
"llm = init_chat_model(model=\"gpt-4o\", model_provider=\"openai\")"
"model = init_chat_model(model=\"gpt-4o\", model_provider=\"openai\")"
]
},
{
@@ -216,7 +216,7 @@
"from langgraph.prebuilt import create_react_agent\n",
"\n",
"tools = [tool]\n",
"agent = create_react_agent(llm, tools)"
"agent = create_react_agent(model, tools)"
]
},
{

View File

@@ -1,6 +1,6 @@
"""__ModuleName__ chat models."""
from typing import Any, Dict, Iterator, List, Optional
from typing import Any, Dict, Iterator, List
from langchain_core.callbacks import (
CallbackManagerForLLMRun,
@@ -26,13 +26,13 @@ class Chat__ModuleName__(BaseChatModel):
# TODO: Replace with relevant packages, env vars.
Setup:
Install ``__package_name__`` and set environment variable
``__MODULE_NAME___API_KEY``.
Install `__package_name__` and set environment variable
`__MODULE_NAME___API_KEY`.
.. code-block:: bash
pip install -U __package_name__
export __MODULE_NAME___API_KEY="your-api-key"
```bash
pip install -U __package_name__
export __MODULE_NAME___API_KEY="your-api-key"
```
# TODO: Populate with relevant params.
Key init args — completion params:
@@ -40,16 +40,16 @@ class Chat__ModuleName__(BaseChatModel):
Name of __ModuleName__ model to use.
temperature: float
Sampling temperature.
max_tokens: Optional[int]
max_tokens: int | None
Max number of tokens to generate.
# TODO: Populate with relevant params.
Key init args — client params:
timeout: Optional[float]
timeout: float | None
Timeout for requests.
max_retries: int
Max number of retries.
api_key: Optional[str]
api_key: str | None
__ModuleName__ API key. If not passed in will be read from env var
__MODULE_NAME___API_KEY.
@@ -57,226 +57,224 @@ class Chat__ModuleName__(BaseChatModel):
# TODO: Replace with relevant init params.
Instantiate:
.. code-block:: python
```python
from __module_name__ import Chat__ModuleName__
from __module_name__ import Chat__ModuleName__
llm = Chat__ModuleName__(
model="...",
temperature=0,
max_tokens=None,
timeout=None,
max_retries=2,
# api_key="...",
# other params...
)
model = Chat__ModuleName__(
model="...",
temperature=0,
max_tokens=None,
timeout=None,
max_retries=2,
# api_key="...",
# other params...
)
```
Invoke:
.. code-block:: python
```python
messages = [
("system", "You are a helpful translator. Translate the user sentence to French."),
("human", "I love programming."),
]
model.invoke(messages)
```
messages = [
("system", "You are a helpful translator. Translate the user sentence to French."),
("human", "I love programming."),
]
llm.invoke(messages)
.. code-block:: python
# TODO: Example output.
```python
# TODO: Example output.
```
# TODO: Delete if token-level streaming isn't supported.
Stream:
.. code-block:: python
```python
for chunk in model.stream(messages):
print(chunk.text, end="")
```
for chunk in llm.stream(messages):
print(chunk.text, end="")
```python
# TODO: Example output.
```
.. code-block:: python
```python
stream = model.stream(messages)
full = next(stream)
for chunk in stream:
full += chunk
full
```
# TODO: Example output.
.. code-block:: python
stream = llm.stream(messages)
full = next(stream)
for chunk in stream:
full += chunk
full
.. code-block:: python
# TODO: Example output.
```python
# TODO: Example output.
```
# TODO: Delete if native async isn't supported.
Async:
.. code-block:: python
```python
await model.ainvoke(messages)
await llm.ainvoke(messages)
# stream:
# async for chunk in (await model.astream(messages))
# stream:
# async for chunk in (await llm.astream(messages))
# batch:
# await llm.abatch([messages])
.. code-block:: python
# TODO: Example output.
# batch:
# await model.abatch([messages])
```
```python
# TODO: Example output.
```
# TODO: Delete if .bind_tools() isn't supported.
Tool calling:
.. code-block:: python
```python
from pydantic import BaseModel, Field
from pydantic import BaseModel, Field
class GetWeather(BaseModel):
'''Get the current weather in a given location'''
class GetWeather(BaseModel):
'''Get the current weather in a given location'''
location: str = Field(..., description="The city and state, e.g. San Francisco, CA")
location: str = Field(..., description="The city and state, e.g. San Francisco, CA")
class GetPopulation(BaseModel):
'''Get the current population in a given location'''
class GetPopulation(BaseModel):
'''Get the current population in a given location'''
location: str = Field(..., description="The city and state, e.g. San Francisco, CA")
location: str = Field(..., description="The city and state, e.g. San Francisco, CA")
model_with_tools = model.bind_tools([GetWeather, GetPopulation])
ai_msg = model_with_tools.invoke("Which city is hotter today and which is bigger: LA or NY?")
ai_msg.tool_calls
```
llm_with_tools = llm.bind_tools([GetWeather, GetPopulation])
ai_msg = llm_with_tools.invoke("Which city is hotter today and which is bigger: LA or NY?")
ai_msg.tool_calls
```python
# TODO: Example output.
```
.. code-block:: python
# TODO: Example output.
See ``Chat__ModuleName__.bind_tools()`` method for more.
See `Chat__ModuleName__.bind_tools()` method for more.
# TODO: Delete if .with_structured_output() isn't supported.
Structured output:
.. code-block:: python
```python
from typing import Optional
from typing import Optional
from pydantic import BaseModel, Field
from pydantic import BaseModel, Field
class Joke(BaseModel):
'''Joke to tell user.'''
class Joke(BaseModel):
'''Joke to tell user.'''
setup: str = Field(description="The setup of the joke")
punchline: str = Field(description="The punchline to the joke")
rating: int | None = Field(description="How funny the joke is, from 1 to 10")
setup: str = Field(description="The setup of the joke")
punchline: str = Field(description="The punchline to the joke")
rating: Optional[int] = Field(description="How funny the joke is, from 1 to 10")
structured_model = model.with_structured_output(Joke)
structured_model.invoke("Tell me a joke about cats")
```
structured_llm = llm.with_structured_output(Joke)
structured_llm.invoke("Tell me a joke about cats")
```python
# TODO: Example output.
```
.. code-block:: python
# TODO: Example output.
See ``Chat__ModuleName__.with_structured_output()`` for more.
See `Chat__ModuleName__.with_structured_output()` for more.
# TODO: Delete if JSON mode response format isn't supported.
JSON mode:
.. code-block:: python
```python
# TODO: Replace with appropriate bind arg.
json_model = model.bind(response_format={"type": "json_object"})
ai_msg = json_model.invoke("Return a JSON object with key 'random_ints' and a value of 10 random ints in [0-99]")
ai_msg.content
```
# TODO: Replace with appropriate bind arg.
json_llm = llm.bind(response_format={"type": "json_object"})
ai_msg = json_llm.invoke("Return a JSON object with key 'random_ints' and a value of 10 random ints in [0-99]")
ai_msg.content
.. code-block:: python
# TODO: Example output.
```python
# TODO: Example output.
```
# TODO: Delete if image inputs aren't supported.
Image input:
.. code-block:: python
```python
import base64
import httpx
from langchain_core.messages import HumanMessage
import base64
import httpx
from langchain_core.messages import HumanMessage
image_url = "https://upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Gfp-wisconsin-madison-the-nature-boardwalk.jpg/2560px-Gfp-wisconsin-madison-the-nature-boardwalk.jpg"
image_data = base64.b64encode(httpx.get(image_url).content).decode("utf-8")
# TODO: Replace with appropriate message content format.
message = HumanMessage(
content=[
{"type": "text", "text": "describe the weather in this image"},
{
"type": "image_url",
"image_url": {"url": f"data:image/jpeg;base64,{image_data}"},
},
],
)
ai_msg = model.invoke([message])
ai_msg.content
```
image_url = "https://upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Gfp-wisconsin-madison-the-nature-boardwalk.jpg/2560px-Gfp-wisconsin-madison-the-nature-boardwalk.jpg"
image_data = base64.b64encode(httpx.get(image_url).content).decode("utf-8")
# TODO: Replace with appropriate message content format.
message = HumanMessage(
content=[
{"type": "text", "text": "describe the weather in this image"},
{
"type": "image_url",
"image_url": {"url": f"data:image/jpeg;base64,{image_data}"},
},
],
)
ai_msg = llm.invoke([message])
ai_msg.content
.. code-block:: python
# TODO: Example output.
```python
# TODO: Example output.
```
# TODO: Delete if audio inputs aren't supported.
Audio input:
.. code-block:: python
```python
# TODO: Example input
```
# TODO: Example input
.. code-block:: python
# TODO: Example output
```python
# TODO: Example output
```
# TODO: Delete if video inputs aren't supported.
Video input:
.. code-block:: python
```python
# TODO: Example input
```
# TODO: Example input
.. code-block:: python
# TODO: Example output
```python
# TODO: Example output
```
# TODO: Delete if token usage metadata isn't supported.
Token usage:
.. code-block:: python
```python
ai_msg = model.invoke(messages)
ai_msg.usage_metadata
```
ai_msg = llm.invoke(messages)
ai_msg.usage_metadata
.. code-block:: python
{'input_tokens': 28, 'output_tokens': 5, 'total_tokens': 33}
```python
{'input_tokens': 28, 'output_tokens': 5, 'total_tokens': 33}
```
# TODO: Delete if logprobs aren't supported.
Logprobs:
.. code-block:: python
# TODO: Replace with appropriate bind arg.
logprobs_llm = llm.bind(logprobs=True)
ai_msg = logprobs_llm.invoke(messages)
ai_msg.response_metadata["logprobs"]
.. code-block:: python
# TODO: Example output.
```python
# TODO: Replace with appropriate bind arg.
logprobs_model = model.bind(logprobs=True)
ai_msg = logprobs_model.invoke(messages)
ai_msg.response_metadata["logprobs"]
```
```python
# TODO: Example output.
```
Response metadata
.. code-block:: python
```python
ai_msg = model.invoke(messages)
ai_msg.response_metadata
```
ai_msg = llm.invoke(messages)
ai_msg.response_metadata
.. code-block:: python
# TODO: Example output.
```python
# TODO: Example output.
```
""" # noqa: E501
model_name: str = Field(alias="model")
"""The name of the model"""
parrot_buffer_length: int
"""The number of characters from the last message of the prompt to be echoed."""
temperature: Optional[float] = None
max_tokens: Optional[int] = None
timeout: Optional[int] = None
stop: Optional[List[str]] = None
temperature: float | None = None
max_tokens: int | None = None
timeout: int | None = None
stop: list[str] | None = None
max_retries: int = 2
@property
@@ -302,8 +300,8 @@ class Chat__ModuleName__(BaseChatModel):
def _generate(
self,
messages: List[BaseMessage],
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
stop: list[str] | None = None,
run_manager: CallbackManagerForLLMRun | None = None,
**kwargs: Any,
) -> ChatResult:
"""Override the _generate method to implement the chat model logic.
@@ -314,11 +312,11 @@ class Chat__ModuleName__(BaseChatModel):
Args:
messages: the prompt composed of a list of messages.
stop: a list of strings on which the model should stop generating.
If generation stops due to a stop token, the stop token itself
SHOULD BE INCLUDED as part of the output. This is not enforced
across models right now, but it's a good practice to follow since
it makes it much easier to parse the output of the model
downstream and understand why generation stopped.
If generation stops due to a stop token, the stop token itself
SHOULD BE INCLUDED as part of the output. This is not enforced
across models right now, but it's a good practice to follow since
it makes it much easier to parse the output of the model
downstream and understand why generation stopped.
run_manager: A run manager with callbacks for the LLM.
"""
# Replace this with actual logic to generate a response from a list
@@ -348,8 +346,8 @@ class Chat__ModuleName__(BaseChatModel):
def _stream(
self,
messages: List[BaseMessage],
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
stop: list[str] | None = None,
run_manager: CallbackManagerForLLMRun | None = None,
**kwargs: Any,
) -> Iterator[ChatGenerationChunk]:
"""Stream the output of the model.
@@ -362,11 +360,11 @@ class Chat__ModuleName__(BaseChatModel):
Args:
messages: the prompt composed of a list of messages.
stop: a list of strings on which the model should stop generating.
If generation stops due to a stop token, the stop token itself
SHOULD BE INCLUDED as part of the output. This is not enforced
across models right now, but it's a good practice to follow since
it makes it much easier to parse the output of the model
downstream and understand why generation stopped.
If generation stops due to a stop token, the stop token itself
SHOULD BE INCLUDED as part of the output. This is not enforced
across models right now, but it's a good practice to follow since
it makes it much easier to parse the output of the model
downstream and understand why generation stopped.
run_manager: A run manager with callbacks for the LLM.
"""
last_message = messages[-1]
@@ -410,8 +408,8 @@ class Chat__ModuleName__(BaseChatModel):
# async def _astream(
# self,
# messages: List[BaseMessage],
# stop: Optional[List[str]] = None,
# run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
# stop: list[str] | None = None,
# run_manager: AsyncCallbackManagerForLLMRun | None = None,
# **kwargs: Any,
# ) -> AsyncIterator[ChatGenerationChunk]:
@@ -419,7 +417,7 @@ class Chat__ModuleName__(BaseChatModel):
# async def _agenerate(
# self,
# messages: List[BaseMessage],
# stop: Optional[List[str]] = None,
# run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
# stop: list[str] | None = None,
# run_manager: AsyncCallbackManagerForLLMRun | None = None,
# **kwargs: Any,
# ) -> ChatResult:

View File

@@ -14,55 +14,55 @@ class __ModuleName__Loader(BaseLoader):
# TODO: Replace with relevant packages, env vars.
Setup:
Install ``__package_name__`` and set environment variable
``__MODULE_NAME___API_KEY``.
Install `__package_name__` and set environment variable
`__MODULE_NAME___API_KEY`.
.. code-block:: bash
pip install -U __package_name__
export __MODULE_NAME___API_KEY="your-api-key"
```bash
pip install -U __package_name__
export __MODULE_NAME___API_KEY="your-api-key"
```
# TODO: Replace with relevant init params.
Instantiate:
.. code-block:: python
```python
from langchain_community.document_loaders import __ModuleName__Loader
from langchain_community.document_loaders import __ModuleName__Loader
loader = __ModuleName__Loader(
# required params = ...
# other params = ...
)
loader = __ModuleName__Loader(
# required params = ...
# other params = ...
)
```
Lazy load:
.. code-block:: python
```python
docs = []
docs_lazy = loader.lazy_load()
docs = []
docs_lazy = loader.lazy_load()
# async variant:
# docs_lazy = await loader.alazy_load()
# async variant:
# docs_lazy = await loader.alazy_load()
for doc in docs_lazy:
docs.append(doc)
print(docs[0].page_content[:100])
print(docs[0].metadata)
```
for doc in docs_lazy:
docs.append(doc)
print(docs[0].page_content[:100])
print(docs[0].metadata)
.. code-block:: python
TODO: Example output
```python
TODO: Example output
```
# TODO: Delete if async load is not implemented
Async load:
.. code-block:: python
```python
docs = await loader.aload()
print(docs[0].page_content[:100])
print(docs[0].metadata)
```
docs = await loader.aload()
print(docs[0].page_content[:100])
print(docs[0].metadata)
.. code-block:: python
TODO: Example output
```python
TODO: Example output
```
"""
# TODO: This method must be implemented to load documents.

View File

@@ -8,13 +8,13 @@ class __ModuleName__Embeddings(Embeddings):
# TODO: Replace with relevant packages, env vars.
Setup:
Install ``__package_name__`` and set environment variable
``__MODULE_NAME___API_KEY``.
Install `__package_name__` and set environment variable
`__MODULE_NAME___API_KEY`.
.. code-block:: bash
pip install -U __package_name__
export __MODULE_NAME___API_KEY="your-api-key"
```bash
pip install -U __package_name__
export __MODULE_NAME___API_KEY="your-api-key"
```
# TODO: Populate with relevant params.
Key init args — completion params:
@@ -25,50 +25,50 @@ class __ModuleName__Embeddings(Embeddings):
# TODO: Replace with relevant init params.
Instantiate:
.. code-block:: python
```python
from __module_name__ import __ModuleName__Embeddings
from __module_name__ import __ModuleName__Embeddings
embed = __ModuleName__Embeddings(
model="...",
# api_key="...",
# other params...
)
embed = __ModuleName__Embeddings(
model="...",
# api_key="...",
# other params...
)
```
Embed single text:
.. code-block:: python
```python
input_text = "The meaning of life is 42"
embed.embed_query(input_text)
```
input_text = "The meaning of life is 42"
embed.embed_query(input_text)
.. code-block:: python
# TODO: Example output.
```python
# TODO: Example output.
```
# TODO: Delete if token-level streaming isn't supported.
Embed multiple text:
.. code-block:: python
```python
input_texts = ["Document 1...", "Document 2..."]
embed.embed_documents(input_texts)
```
input_texts = ["Document 1...", "Document 2..."]
embed.embed_documents(input_texts)
.. code-block:: python
# TODO: Example output.
```python
# TODO: Example output.
```
# TODO: Delete if native async isn't supported.
Async:
.. code-block:: python
```python
await embed.aembed_query(input_text)
await embed.aembed_query(input_text)
# multiple:
# await embed.aembed_documents(input_texts)
```
# multiple:
# await embed.aembed_documents(input_texts)
.. code-block:: python
# TODO: Example output.
```python
# TODO: Example output.
```
"""
def __init__(self, model: str):

View File

@@ -14,13 +14,13 @@ class __ModuleName__Retriever(BaseRetriever):
# TODO: Replace with relevant packages, env vars, etc.
Setup:
Install ``__package_name__`` and set environment variable
``__MODULE_NAME___API_KEY``.
Install `__package_name__` and set environment variable
`__MODULE_NAME___API_KEY`.
.. code-block:: bash
pip install -U __package_name__
export __MODULE_NAME___API_KEY="your-api-key"
```bash
pip install -U __package_name__
export __MODULE_NAME___API_KEY="your-api-key"
```
# TODO: Populate with relevant params.
Key init args:
@@ -31,58 +31,58 @@ class __ModuleName__Retriever(BaseRetriever):
# TODO: Replace with relevant init params.
Instantiate:
.. code-block:: python
```python
from __package_name__ import __ModuleName__Retriever
from __package_name__ import __ModuleName__Retriever
retriever = __ModuleName__Retriever(
# ...
)
retriever = __ModuleName__Retriever(
# ...
)
```
Usage:
.. code-block:: python
```python
query = "..."
query = "..."
retriever.invoke(query)
```
retriever.invoke(query)
.. code-block::
# TODO: Example output.
```txt
# TODO: Example output.
```
Use within a chain:
.. code-block:: python
```python
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.runnables import RunnablePassthrough
from langchain_openai import ChatOpenAI
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.runnables import RunnablePassthrough
from langchain_openai import ChatOpenAI
prompt = ChatPromptTemplate.from_template(
\"\"\"Answer the question based only on the context provided.
prompt = ChatPromptTemplate.from_template(
\"\"\"Answer the question based only on the context provided.
Context: {context}
Context: {context}
Question: {question}\"\"\"
)
Question: {question}\"\"\"
)
model = ChatOpenAI(model="gpt-3.5-turbo-0125")
llm = ChatOpenAI(model="gpt-3.5-turbo-0125")
def format_docs(docs):
return "\\n\\n".join(doc.page_content for doc in docs)
def format_docs(docs):
return "\\n\\n".join(doc.page_content for doc in docs)
chain = (
{"context": retriever | format_docs, "question": RunnablePassthrough()}
| prompt
| model
| StrOutputParser()
)
chain = (
{"context": retriever | format_docs, "question": RunnablePassthrough()}
| prompt
| llm
| StrOutputParser()
)
chain.invoke("...")
```
chain.invoke("...")
.. code-block::
# TODO: Example output.
```
# TODO: Example output.
```
"""

View File

@@ -12,13 +12,13 @@ class __ModuleName__Toolkit(BaseToolkit):
# TODO: Replace with relevant packages, env vars, etc.
Setup:
Install ``__package_name__`` and set environment variable
``__MODULE_NAME___API_KEY``.
Install `__package_name__` and set environment variable
`__MODULE_NAME___API_KEY`.
.. code-block:: bash
pip install -U __package_name__
export __MODULE_NAME___API_KEY="your-api-key"
```bash
pip install -U __package_name__
export __MODULE_NAME___API_KEY="your-api-key"
```
# TODO: Populate with relevant params.
Key init args:
@@ -29,42 +29,42 @@ class __ModuleName__Toolkit(BaseToolkit):
# TODO: Replace with relevant init params.
Instantiate:
.. code-block:: python
```python
from __package_name__ import __ModuleName__Toolkit
from __package_name__ import __ModuleName__Toolkit
toolkit = __ModuleName__Toolkit(
# ...
)
toolkit = __ModuleName__Toolkit(
# ...
)
```
Tools:
.. code-block:: python
```python
toolkit.get_tools()
```
toolkit.get_tools()
.. code-block::
# TODO: Example output.
```txt
# TODO: Example output.
```
Use within an agent:
.. code-block:: python
```python
from langgraph.prebuilt import create_react_agent
from langgraph.prebuilt import create_react_agent
agent_executor = create_react_agent(llm, tools)
agent_executor = create_react_agent(llm, tools)
example_query = "..."
example_query = "..."
events = agent_executor.stream(
{"messages": [("user", example_query)]},
stream_mode="values",
)
for event in events:
event["messages"][-1].pretty_print()
```
events = agent_executor.stream(
{"messages": [("user", example_query)]},
stream_mode="values",
)
for event in events:
event["messages"][-1].pretty_print()
.. code-block::
# TODO: Example output.
```txt
# TODO: Example output.
```
"""

View File

@@ -1,6 +1,6 @@
"""__ModuleName__ tools."""
from typing import Optional, Type
from typing import Type
from langchain_core.callbacks import (
CallbackManagerForToolRun,
@@ -27,42 +27,42 @@ class __ModuleName__Tool(BaseTool): # type: ignore[override]
Setup:
# TODO: Replace with relevant packages, env vars.
Install ``__package_name__`` and set environment variable
``__MODULE_NAME___API_KEY``.
Install `__package_name__` and set environment variable
`__MODULE_NAME___API_KEY`.
.. code-block:: bash
pip install -U __package_name__
export __MODULE_NAME___API_KEY="your-api-key"
```bash
pip install -U __package_name__
export __MODULE_NAME___API_KEY="your-api-key"
```
Instantiation:
.. code-block:: python
tool = __ModuleName__Tool(
# TODO: init params
)
```python
tool = __ModuleName__Tool(
# TODO: init params
)
```
Invocation with args:
.. code-block:: python
```python
# TODO: invoke args
tool.invoke({...})
```
# TODO: invoke args
tool.invoke({...})
.. code-block:: python
# TODO: output of invocation
```python
# TODO: output of invocation
```
Invocation with ToolCall:
.. code-block:: python
```python
# TODO: invoke args
tool.invoke({"args": {...}, "id": "1", "name": tool.name, "type": "tool_call"})
```
# TODO: invoke args
tool.invoke({"args": {...}, "id": "1", "name": tool.name, "type": "tool_call"})
.. code-block:: python
# TODO: output of invocation
```python
# TODO: output of invocation
```
""" # noqa: E501
# TODO: Set tool name and description
@@ -74,12 +74,12 @@ class __ModuleName__Tool(BaseTool): # type: ignore[override]
"""The schema that is passed to the model when performing tool calling."""
# TODO: Add any other init params for the tool.
# param1: Optional[str]
# param1: str | None
# """param1 determines foobar"""
# TODO: Replaced (a, b) with real tool arguments.
def _run(
self, a: int, b: int, *, run_manager: Optional[CallbackManagerForToolRun] = None
self, a: int, b: int, *, run_manager: CallbackManagerForToolRun | None = None
) -> str:
return str(a + b + 80)
@@ -90,6 +90,6 @@ class __ModuleName__Tool(BaseTool): # type: ignore[override]
# a: int,
# b: int,
# *,
# run_manager: Optional[AsyncCallbackManagerForToolRun] = None,
# run_manager: AsyncCallbackManagerForToolRun | None = None,
# ) -> str:
# ...

View File

@@ -8,7 +8,6 @@ from typing import (
Callable,
Iterator,
List,
Optional,
Sequence,
Tuple,
Type,
@@ -29,12 +28,12 @@ class __ModuleName__VectorStore(VectorStore):
# TODO: Replace with relevant packages, env vars.
Setup:
Install ``__package_name__`` and set environment variable ``__MODULE_NAME___API_KEY``.
Install `__package_name__` and set environment variable `__MODULE_NAME___API_KEY`.
.. code-block:: bash
pip install -U __package_name__
export __MODULE_NAME___API_KEY="your-api-key"
```bash
pip install -U __package_name__
export __MODULE_NAME___API_KEY="your-api-key"
```
# TODO: Populate with relevant params.
Key init args — indexing params:
@@ -45,117 +44,117 @@ class __ModuleName__VectorStore(VectorStore):
# TODO: Populate with relevant params.
Key init args — client params:
client: Optional[Client]
client: Client | None
Client to use.
connection_args: Optional[dict]
connection_args: dict | None
Connection arguments.
# TODO: Replace with relevant init params.
Instantiate:
.. code-block:: python
```python
from __module_name__.vectorstores import __ModuleName__VectorStore
from langchain_openai import OpenAIEmbeddings
from __module_name__.vectorstores import __ModuleName__VectorStore
from langchain_openai import OpenAIEmbeddings
vector_store = __ModuleName__VectorStore(
collection_name="foo",
embedding_function=OpenAIEmbeddings(),
connection_args={"uri": "./foo.db"},
# other params...
)
vector_store = __ModuleName__VectorStore(
collection_name="foo",
embedding_function=OpenAIEmbeddings(),
connection_args={"uri": "./foo.db"},
# other params...
)
```
# TODO: Populate with relevant variables.
Add Documents:
.. code-block:: python
```python
from langchain_core.documents import Document
from langchain_core.documents import Document
document_1 = Document(page_content="foo", metadata={"baz": "bar"})
document_2 = Document(page_content="thud", metadata={"bar": "baz"})
document_3 = Document(page_content="i will be deleted :(")
document_1 = Document(page_content="foo", metadata={"baz": "bar"})
document_2 = Document(page_content="thud", metadata={"bar": "baz"})
document_3 = Document(page_content="i will be deleted :(")
documents = [document_1, document_2, document_3]
ids = ["1", "2", "3"]
vector_store.add_documents(documents=documents, ids=ids)
documents = [document_1, document_2, document_3]
ids = ["1", "2", "3"]
vector_store.add_documents(documents=documents, ids=ids)
```
# TODO: Populate with relevant variables.
Delete Documents:
.. code-block:: python
vector_store.delete(ids=["3"])
```python
vector_store.delete(ids=["3"])
```
# TODO: Fill out with relevant variables and example output.
Search:
.. code-block:: python
```python
results = vector_store.similarity_search(query="thud",k=1)
for doc in results:
print(f"* {doc.page_content} [{doc.metadata}]")
```
results = vector_store.similarity_search(query="thud",k=1)
for doc in results:
print(f"* {doc.page_content} [{doc.metadata}]")
.. code-block:: python
# TODO: Example output
```python
# TODO: Example output
```
# TODO: Fill out with relevant variables and example output.
Search with filter:
.. code-block:: python
```python
results = vector_store.similarity_search(query="thud",k=1,filter={"bar": "baz"})
for doc in results:
print(f"* {doc.page_content} [{doc.metadata}]")
```
results = vector_store.similarity_search(query="thud",k=1,filter={"bar": "baz"})
for doc in results:
print(f"* {doc.page_content} [{doc.metadata}]")
.. code-block:: python
# TODO: Example output
```python
# TODO: Example output
```
# TODO: Fill out with relevant variables and example output.
Search with score:
.. code-block:: python
```python
results = vector_store.similarity_search_with_score(query="qux",k=1)
for doc, score in results:
print(f"* [SIM={score:3f}] {doc.page_content} [{doc.metadata}]")
```
results = vector_store.similarity_search_with_score(query="qux",k=1)
for doc, score in results:
print(f"* [SIM={score:3f}] {doc.page_content} [{doc.metadata}]")
.. code-block:: python
# TODO: Example output
```python
# TODO: Example output
```
# TODO: Fill out with relevant variables and example output.
Async:
.. code-block:: python
```python
# add documents
# await vector_store.aadd_documents(documents=documents, ids=ids)
# add documents
# await vector_store.aadd_documents(documents=documents, ids=ids)
# delete documents
# await vector_store.adelete(ids=["3"])
# delete documents
# await vector_store.adelete(ids=["3"])
# search
# results = vector_store.asimilarity_search(query="thud",k=1)
# search
# results = vector_store.asimilarity_search(query="thud",k=1)
# search with score
results = await vector_store.asimilarity_search_with_score(query="qux",k=1)
for doc,score in results:
print(f"* [SIM={score:3f}] {doc.page_content} [{doc.metadata}]")
```
# search with score
results = await vector_store.asimilarity_search_with_score(query="qux",k=1)
for doc,score in results:
print(f"* [SIM={score:3f}] {doc.page_content} [{doc.metadata}]")
.. code-block:: python
# TODO: Example output
```python
# TODO: Example output
```
# TODO: Fill out with relevant variables and example output.
Use as Retriever:
.. code-block:: python
```python
retriever = vector_store.as_retriever(
search_type="mmr",
search_kwargs={"k": 1, "fetch_k": 2, "lambda_mult": 0.5},
)
retriever.invoke("thud")
```
retriever = vector_store.as_retriever(
search_type="mmr",
search_kwargs={"k": 1, "fetch_k": 2, "lambda_mult": 0.5},
)
retriever.invoke("thud")
.. code-block:: python
# TODO: Example output
```python
# TODO: Example output
```
""" # noqa: E501
def __init__(self, embedding: Embeddings) -> None:
@@ -172,7 +171,7 @@ class __ModuleName__VectorStore(VectorStore):
cls: Type[__ModuleName__VectorStore],
texts: List[str],
embedding: Embeddings,
metadatas: Optional[List[dict]] = None,
metadatas: list[dict] | None = None,
**kwargs: Any,
) -> __ModuleName__VectorStore:
store = cls(
@@ -187,7 +186,7 @@ class __ModuleName__VectorStore(VectorStore):
# cls: Type[VST],
# texts: List[str],
# embedding: Embeddings,
# metadatas: Optional[List[dict]] = None,
# metadatas: list[dict] | None = None,
# **kwargs: Any,
# ) -> VST:
# return await asyncio.get_running_loop().run_in_executor(
@@ -201,7 +200,7 @@ class __ModuleName__VectorStore(VectorStore):
def add_documents(
self,
documents: List[Document],
ids: Optional[List[str]] = None,
ids: list[str] | None = None,
**kwargs: Any,
) -> List[str]:
"""Add documents to the store."""
@@ -215,7 +214,7 @@ class __ModuleName__VectorStore(VectorStore):
)
raise ValueError(msg)
id_iterator: Iterator[Optional[str]] = (
id_iterator: Iterator[str | None] = (
iter(ids) if ids else iter(doc.id for doc in documents)
)
@@ -238,19 +237,19 @@ class __ModuleName__VectorStore(VectorStore):
# async def aadd_documents(
# self,
# documents: List[Document],
# ids: Optional[List[str]] = None,
# ids: list[str] | None = None,
# **kwargs: Any,
# ) -> List[str]:
# raise NotImplementedError
def delete(self, ids: Optional[List[str]] = None, **kwargs: Any) -> None:
def delete(self, ids: list[str] | None = None, **kwargs: Any) -> None:
if ids:
for _id in ids:
self._database.pop(_id, None)
# optional: add custom async implementations
# async def adelete(
# self, ids: Optional[List[str]] = None, **kwargs: Any
# self, ids: list[str] | None = None, **kwargs: Any
# ) -> None:
# raise NotImplementedError
@@ -287,7 +286,7 @@ class __ModuleName__VectorStore(VectorStore):
self,
embedding: List[float],
k: int = 4,
filter: Optional[Callable[[Document], bool]] = None,
filter: Callable[[Document], bool] | None = None,
**kwargs: Any,
) -> List[tuple[Document, float, List[float]]]:
# get all docs with fixed order in list

View File

@@ -24,7 +24,7 @@ def get_migrations_for_partner_package(pkg_name: str) -> list[tuple[str, str]]:
This code works
Args:
pkg_name (str): The name of the partner package.
pkg_name: The name of the partner package.
Returns:
List of 2-tuples containing old and new import paths.

View File

@@ -65,7 +65,7 @@ def is_subclass(class_obj: type, classes_: list[type]) -> bool:
classes_: A list of classes to check against.
Returns:
True if `class_obj` is a subclass of any class in `classes_`, False otherwise.
True if `class_obj` is a subclass of any class in `classes_`, `False` otherwise.
"""
return any(
issubclass(class_obj, kls)

View File

@@ -13,7 +13,7 @@ def get_package_root(cwd: Path | None = None) -> Path:
Args:
cwd: The current working directory to start the search from.
If None, uses the current working directory of the process.
If `None`, uses the current working directory of the process.
Returns:
The path to the package root directory.

View File

@@ -20,18 +20,30 @@ description = "CLI for interacting with LangChain"
readme = "README.md"
[project.urls]
"Source Code" = "https://github.com/langchain-ai/langchain/tree/master/libs/cli"
"Release Notes" = "https://github.com/langchain-ai/langchain/releases?q=tag%3A%22langchain-cli%3D%3D0%22&expanded=true"
repository = "https://github.com/langchain-ai/langchain"
homepage = "https://docs.langchain.com/"
repository = "https://github.com/langchain-ai/langchain/tree/master/libs/cli"
changelog = "https://github.com/langchain-ai/langchain/releases?q=%22langchain-cli%3D%3D1%22"
twitter = "https://x.com/LangChainAI"
slack = "https://www.langchain.com/join-community"
reddit = "https://www.reddit.com/r/LangChain/"
[project.scripts]
langchain = "langchain_cli.cli:app"
langchain-cli = "langchain_cli.cli:app"
[dependency-groups]
dev = ["pytest>=7.4.2,<9.0.0", "pytest-watcher>=0.3.4,<1.0.0"]
lint = ["ruff>=0.13.1,<0.14", "mypy>=1.18.1,<1.19"]
test = ["langchain-core", "langchain"]
dev = [
"pytest>=7.4.2,<9.0.0",
"pytest-watcher>=0.3.4,<1.0.0"
]
lint = [
"ruff>=0.13.1,<0.14",
"mypy>=1.18.1,<1.19"
]
test = [
"langchain-core",
"langchain"
]
typing = ["langchain"]
test_integration = []

View File

@@ -1,4 +1,4 @@
"""``langchain-core`` defines the base abstractions for the LangChain ecosystem.
"""`langchain-core` defines the base abstractions for the LangChain ecosystem.
The interfaces for core components like chat models, LLMs, vector stores, retrievers,
and more are defined here. The universal invocation protocol (Runnables) along with

View File

@@ -6,7 +6,6 @@ This module is only relevant for LangChain developers, not for users.
This module and its submodules are for internal use only. Do not use them in your
own code. We may change the API at any time with no warning.
"""
from typing import TYPE_CHECKING

View File

@@ -40,40 +40,37 @@ def beta(
"""Decorator to mark a function, a class, or a property as beta.
When marking a classmethod, a staticmethod, or a property, the
``@beta`` decorator should go *under* ``@classmethod`` and
``@staticmethod`` (i.e., `beta` should directly decorate the
underlying callable), but *over* ``@property``.
`@beta` decorator should go *under* `@classmethod` and
`@staticmethod` (i.e., `beta` should directly decorate the
underlying callable), but *over* `@property`.
When marking a class ``C`` intended to be used as a base class in a
multiple inheritance hierarchy, ``C`` *must* define an ``__init__`` method
(if ``C`` instead inherited its ``__init__`` from its own base class, then
``@beta`` would mess up ``__init__`` inheritance when installing its
own (annotation-emitting) ``C.__init__``).
When marking a class `C` intended to be used as a base class in a
multiple inheritance hierarchy, `C` *must* define an `__init__` method
(if `C` instead inherited its `__init__` from its own base class, then
`@beta` would mess up `__init__` inheritance when installing its
own (annotation-emitting) `C.__init__`).
Args:
message : str, optional
message:
Override the default beta message. The %(since)s,
%(name)s, %(alternative)s, %(obj_type)s, %(addendum)s,
and %(removal)s format specifiers will be replaced by the
values of the respective arguments passed to this function.
name : str, optional
name:
The name of the beta object.
obj_type : str, optional
obj_type:
The object type being beta.
addendum : str, optional
addendum:
Additional text appended directly to the final message.
Returns:
A decorator which can be used to mark functions or classes as beta.
Examples:
.. code-block:: python
@beta
def the_function_to_annotate():
pass
```python
@beta
def the_function_to_annotate():
pass
```
"""
def beta(

View File

@@ -82,62 +82,59 @@ def deprecated(
"""Decorator to mark a function, a class, or a property as deprecated.
When deprecating a classmethod, a staticmethod, or a property, the
``@deprecated`` decorator should go *under* ``@classmethod`` and
``@staticmethod`` (i.e., `deprecated` should directly decorate the
underlying callable), but *over* ``@property``.
`@deprecated` decorator should go *under* `@classmethod` and
`@staticmethod` (i.e., `deprecated` should directly decorate the
underlying callable), but *over* `@property`.
When deprecating a class ``C`` intended to be used as a base class in a
multiple inheritance hierarchy, ``C`` *must* define an ``__init__`` method
(if ``C`` instead inherited its ``__init__`` from its own base class, then
``@deprecated`` would mess up ``__init__`` inheritance when installing its
own (deprecation-emitting) ``C.__init__``).
When deprecating a class `C` intended to be used as a base class in a
multiple inheritance hierarchy, `C` *must* define an `__init__` method
(if `C` instead inherited its `__init__` from its own base class, then
`@deprecated` would mess up `__init__` inheritance when installing its
own (deprecation-emitting) `C.__init__`).
Parameters are the same as for `warn_deprecated`, except that *obj_type*
defaults to 'class' if decorating a class, 'attribute' if decorating a
property, and 'function' otherwise.
Args:
since : str
since:
The release at which this API became deprecated.
message : str, optional
message:
Override the default deprecation message. The %(since)s,
%(name)s, %(alternative)s, %(obj_type)s, %(addendum)s,
and %(removal)s format specifiers will be replaced by the
values of the respective arguments passed to this function.
name : str, optional
name:
The name of the deprecated object.
alternative : str, optional
alternative:
An alternative API that the user may use in place of the
deprecated API. The deprecation warning will tell the user
about this alternative if provided.
alternative_import: str, optional
alternative_import:
An alternative import that the user may use instead.
pending : bool, optional
If True, uses a PendingDeprecationWarning instead of a
pending:
If `True`, uses a `PendingDeprecationWarning` instead of a
DeprecationWarning. Cannot be used together with removal.
obj_type : str, optional
obj_type:
The object type being deprecated.
addendum : str, optional
addendum:
Additional text appended directly to the final message.
removal : str, optional
removal:
The expected removal version. With the default (an empty
string), a removal version is automatically computed from
since. Set to other Falsy values to not schedule a removal
date. Cannot be used together with pending.
package: str, optional
package:
The package of the deprecated object.
Returns:
A decorator to mark a function or class as deprecated.
Examples:
.. code-block:: python
@deprecated("1.4.0")
def the_function_to_deprecate():
pass
```python
@deprecated("1.4.0")
def the_function_to_deprecate():
pass
```
"""
_validate_deprecation_params(
removal, alternative, alternative_import, pending=pending
@@ -372,7 +369,7 @@ def deprecated(
components = [
_message,
f"Use {_alternative} instead." if _alternative else "",
f"Use ``{_alternative_import}`` instead." if _alternative_import else "",
f"Use `{_alternative_import}` instead." if _alternative_import else "",
_addendum,
]
details = " ".join([component.strip() for component in components if component])
@@ -440,7 +437,7 @@ def warn_deprecated(
alternative_import:
An alternative import that the user may use instead.
pending:
If True, uses a PendingDeprecationWarning instead of a
If `True`, uses a `PendingDeprecationWarning` instead of a
DeprecationWarning. Cannot be used together with removal.
obj_type:
The object type being deprecated.
@@ -550,12 +547,10 @@ def rename_parameter(
A decorator indicating that a parameter was renamed.
Example:
.. code-block:: python
@_api.rename_parameter("3.1", "bad_name", "good_name")
def func(good_name): ...
```python
@_api.rename_parameter("3.1", "bad_name", "good_name")
def func(good_name): ...
```
"""
def decorator(f: Callable[_P, _R]) -> Callable[_P, _R]:

View File

@@ -13,7 +13,7 @@ def import_attr(
Args:
attr_name: The name of the attribute to import.
module_name: The name of the module to import from. If None, the attribute
module_name: The name of the module to import from. If `None`, the attribute
is imported from the package itself.
package: The name of the package where the module is located.

View File

@@ -1,8 +1,9 @@
"""Schema definitions for representing agent actions, observations, and return values.
**ATTENTION** The schema definitions are provided for backwards compatibility.
!!! warning
The schema definitions are provided for backwards compatibility.
!!! important
!!! warning
New agents should be built using the
[langgraph library](https://github.com/langchain-ai/langgraph), which provides a
simpler and more flexible way to define agents.
@@ -16,10 +17,10 @@ Agents use language models to choose a sequence of actions to take.
A basic agent works in the following manner:
1. Given a prompt an agent uses an LLM to request an action to take
(e.g., a tool to run).
(e.g., a tool to run).
2. The agent executes the action (e.g., runs the tool), and receives an observation.
3. The agent returns the observation to the LLM, which can then be used to generate
the next action.
the next action.
4. When the agent reaches a stopping condition, it returns a final return value.
The schemas for the agents themselves are defined in langchain.agents.agent.
@@ -86,7 +87,7 @@ class AgentAction(Serializable):
"""Get the namespace of the langchain object.
Returns:
``["langchain", "schema", "agent"]``
`["langchain", "schema", "agent"]`
"""
return ["langchain", "schema", "agent"]
@@ -163,7 +164,7 @@ class AgentFinish(Serializable):
"""Get the namespace of the langchain object.
Returns:
``["langchain", "schema", "agent"]``
`["langchain", "schema", "agent"]`
"""
return ["langchain", "schema", "agent"]

View File

@@ -1,24 +1,18 @@
"""Cache classes.
!!! warning
Beta Feature!
Beta Feature!
**Cache** provides an optional caching layer for LLMs.
Cache is useful for two reasons:
- It can save you money by reducing the number of API calls you make to the LLM
provider if you're often requesting the same completion multiple times.
provider if you're often requesting the same completion multiple times.
- It can speed up your application by reducing the number of API calls you make
to the LLM provider.
to the LLM provider.
Cache directly competes with Memory. See documentation for Pros and Cons.
**Class hierarchy:**
.. code-block::
BaseCache --> <name>Cache # Examples: InMemoryCache, RedisCache, GPTCache
"""
from __future__ import annotations
@@ -154,7 +148,7 @@ class InMemoryCache(BaseCache):
Args:
maxsize: The maximum number of items to store in the cache.
If None, the cache has no maximum size.
If `None`, the cache has no maximum size.
If the cache exceeds the maximum size, the oldest items are removed.
Default is None.

View File

@@ -1,11 +1,4 @@
"""**Callback handlers** allow listening to events in LangChain.
**Class hierarchy:**
.. code-block::
BaseCallbackHandler --> <name>CallbackHandler # Example: AimCallbackHandler
"""
"""**Callback handlers** allow listening to events in LangChain."""
from typing import TYPE_CHECKING

View File

@@ -35,10 +35,10 @@ class RetrieverManagerMixin:
"""Run when Retriever errors.
Args:
error (BaseException): The error that occurred.
run_id (UUID): The run ID. This is the ID of the current run.
parent_run_id (UUID): The parent run ID. This is the ID of the parent run.
kwargs (Any): Additional keyword arguments.
error: The error that occurred.
run_id: The run ID. This is the ID of the current run.
parent_run_id: The parent run ID. This is the ID of the parent run.
**kwargs: Additional keyword arguments.
"""
def on_retriever_end(
@@ -52,10 +52,10 @@ class RetrieverManagerMixin:
"""Run when Retriever ends running.
Args:
documents (Sequence[Document]): The documents retrieved.
run_id (UUID): The run ID. This is the ID of the current run.
parent_run_id (UUID): The parent run ID. This is the ID of the parent run.
kwargs (Any): Additional keyword arguments.
documents: The documents retrieved.
run_id: The run ID. This is the ID of the current run.
parent_run_id: The parent run ID. This is the ID of the parent run.
**kwargs: Additional keyword arguments.
"""
@@ -76,12 +76,11 @@ class LLMManagerMixin:
For both chat models and non-chat models (legacy LLMs).
Args:
token (str): The new token.
chunk (GenerationChunk | ChatGenerationChunk): The new generated chunk,
containing content and other information.
run_id (UUID): The run ID. This is the ID of the current run.
parent_run_id (UUID): The parent run ID. This is the ID of the parent run.
kwargs (Any): Additional keyword arguments.
token: The new token.
chunk: The new generated chunk, containing content and other information.
run_id: The run ID. This is the ID of the current run.
parent_run_id: The parent run ID. This is the ID of the parent run.
**kwargs: Additional keyword arguments.
"""
def on_llm_end(
@@ -95,10 +94,10 @@ class LLMManagerMixin:
"""Run when LLM ends running.
Args:
response (LLMResult): The response which was generated.
run_id (UUID): The run ID. This is the ID of the current run.
parent_run_id (UUID): The parent run ID. This is the ID of the parent run.
kwargs (Any): Additional keyword arguments.
response: The response which was generated.
run_id: The run ID. This is the ID of the current run.
parent_run_id: The parent run ID. This is the ID of the parent run.
**kwargs: Additional keyword arguments.
"""
def on_llm_error(
@@ -112,10 +111,10 @@ class LLMManagerMixin:
"""Run when LLM errors.
Args:
error (BaseException): The error that occurred.
run_id (UUID): The run ID. This is the ID of the current run.
parent_run_id (UUID): The parent run ID. This is the ID of the parent run.
kwargs (Any): Additional keyword arguments.
error: The error that occurred.
run_id: The run ID. This is the ID of the current run.
parent_run_id: The parent run ID. This is the ID of the parent run.
**kwargs: Additional keyword arguments.
"""
@@ -133,10 +132,10 @@ class ChainManagerMixin:
"""Run when chain ends running.
Args:
outputs (dict[str, Any]): The outputs of the chain.
run_id (UUID): The run ID. This is the ID of the current run.
parent_run_id (UUID): The parent run ID. This is the ID of the parent run.
kwargs (Any): Additional keyword arguments.
outputs: The outputs of the chain.
run_id: The run ID. This is the ID of the current run.
parent_run_id: The parent run ID. This is the ID of the parent run.
**kwargs: Additional keyword arguments.
"""
def on_chain_error(
@@ -150,10 +149,10 @@ class ChainManagerMixin:
"""Run when chain errors.
Args:
error (BaseException): The error that occurred.
run_id (UUID): The run ID. This is the ID of the current run.
parent_run_id (UUID): The parent run ID. This is the ID of the parent run.
kwargs (Any): Additional keyword arguments.
error: The error that occurred.
run_id: The run ID. This is the ID of the current run.
parent_run_id: The parent run ID. This is the ID of the parent run.
**kwargs: Additional keyword arguments.
"""
def on_agent_action(
@@ -167,10 +166,10 @@ class ChainManagerMixin:
"""Run on agent action.
Args:
action (AgentAction): The agent action.
run_id (UUID): The run ID. This is the ID of the current run.
parent_run_id (UUID): The parent run ID. This is the ID of the parent run.
kwargs (Any): Additional keyword arguments.
action: The agent action.
run_id: The run ID. This is the ID of the current run.
parent_run_id: The parent run ID. This is the ID of the parent run.
**kwargs: Additional keyword arguments.
"""
def on_agent_finish(
@@ -184,10 +183,10 @@ class ChainManagerMixin:
"""Run on the agent end.
Args:
finish (AgentFinish): The agent finish.
run_id (UUID): The run ID. This is the ID of the current run.
parent_run_id (UUID): The parent run ID. This is the ID of the parent run.
kwargs (Any): Additional keyword arguments.
finish: The agent finish.
run_id: The run ID. This is the ID of the current run.
parent_run_id: The parent run ID. This is the ID of the parent run.
**kwargs: Additional keyword arguments.
"""
@@ -205,10 +204,10 @@ class ToolManagerMixin:
"""Run when the tool ends running.
Args:
output (Any): The output of the tool.
run_id (UUID): The run ID. This is the ID of the current run.
parent_run_id (UUID): The parent run ID. This is the ID of the parent run.
kwargs (Any): Additional keyword arguments.
output: The output of the tool.
run_id: The run ID. This is the ID of the current run.
parent_run_id: The parent run ID. This is the ID of the parent run.
**kwargs: Additional keyword arguments.
"""
def on_tool_error(
@@ -222,10 +221,10 @@ class ToolManagerMixin:
"""Run when tool errors.
Args:
error (BaseException): The error that occurred.
run_id (UUID): The run ID. This is the ID of the current run.
parent_run_id (UUID): The parent run ID. This is the ID of the parent run.
kwargs (Any): Additional keyword arguments.
error: The error that occurred.
run_id: The run ID. This is the ID of the current run.
parent_run_id: The parent run ID. This is the ID of the parent run.
**kwargs: Additional keyword arguments.
"""
@@ -248,16 +247,16 @@ class CallbackManagerMixin:
!!! warning
This method is called for non-chat models (regular LLMs). If you're
implementing a handler for a chat model, you should use
``on_chat_model_start`` instead.
`on_chat_model_start` instead.
Args:
serialized (dict[str, Any]): The serialized LLM.
prompts (list[str]): The prompts.
run_id (UUID): The run ID. This is the ID of the current run.
parent_run_id (UUID): The parent run ID. This is the ID of the parent run.
tags (Optional[list[str]]): The tags.
metadata (Optional[dict[str, Any]]): The metadata.
kwargs (Any): Additional keyword arguments.
serialized: The serialized LLM.
prompts: The prompts.
run_id: The run ID. This is the ID of the current run.
parent_run_id: The parent run ID. This is the ID of the parent run.
tags: The tags.
metadata: The metadata.
**kwargs: Additional keyword arguments.
"""
def on_chat_model_start(
@@ -275,16 +274,16 @@ class CallbackManagerMixin:
!!! warning
This method is called for chat models. If you're implementing a handler for
a non-chat model, you should use ``on_llm_start`` instead.
a non-chat model, you should use `on_llm_start` instead.
Args:
serialized (dict[str, Any]): The serialized chat model.
messages (list[list[BaseMessage]]): The messages.
run_id (UUID): The run ID. This is the ID of the current run.
parent_run_id (UUID): The parent run ID. This is the ID of the parent run.
tags (Optional[list[str]]): The tags.
metadata (Optional[dict[str, Any]]): The metadata.
kwargs (Any): Additional keyword arguments.
serialized: The serialized chat model.
messages: The messages.
run_id: The run ID. This is the ID of the current run.
parent_run_id: The parent run ID. This is the ID of the parent run.
tags: The tags.
metadata: The metadata.
**kwargs: Additional keyword arguments.
"""
# NotImplementedError is thrown intentionally
# Callback handler will fall back to on_llm_start if this is exception is thrown
@@ -305,13 +304,13 @@ class CallbackManagerMixin:
"""Run when the Retriever starts running.
Args:
serialized (dict[str, Any]): The serialized Retriever.
query (str): The query.
run_id (UUID): The run ID. This is the ID of the current run.
parent_run_id (UUID): The parent run ID. This is the ID of the parent run.
tags (Optional[list[str]]): The tags.
metadata (Optional[dict[str, Any]]): The metadata.
kwargs (Any): Additional keyword arguments.
serialized: The serialized Retriever.
query: The query.
run_id: The run ID. This is the ID of the current run.
parent_run_id: The parent run ID. This is the ID of the parent run.
tags: The tags.
metadata: The metadata.
**kwargs: Additional keyword arguments.
"""
def on_chain_start(
@@ -328,13 +327,13 @@ class CallbackManagerMixin:
"""Run when a chain starts running.
Args:
serialized (dict[str, Any]): The serialized chain.
inputs (dict[str, Any]): The inputs.
run_id (UUID): The run ID. This is the ID of the current run.
parent_run_id (UUID): The parent run ID. This is the ID of the parent run.
tags (Optional[list[str]]): The tags.
metadata (Optional[dict[str, Any]]): The metadata.
kwargs (Any): Additional keyword arguments.
serialized: The serialized chain.
inputs: The inputs.
run_id: The run ID. This is the ID of the current run.
parent_run_id: The parent run ID. This is the ID of the parent run.
tags: The tags.
metadata: The metadata.
**kwargs: Additional keyword arguments.
"""
def on_tool_start(
@@ -352,14 +351,14 @@ class CallbackManagerMixin:
"""Run when the tool starts running.
Args:
serialized (dict[str, Any]): The serialized tool.
input_str (str): The input string.
run_id (UUID): The run ID. This is the ID of the current run.
parent_run_id (UUID): The parent run ID. This is the ID of the parent run.
tags (Optional[list[str]]): The tags.
metadata (Optional[dict[str, Any]]): The metadata.
inputs (Optional[dict[str, Any]]): The inputs.
kwargs (Any): Additional keyword arguments.
serialized: The serialized chain.
input_str: The input string.
run_id: The run ID. This is the ID of the current run.
parent_run_id: The parent run ID. This is the ID of the parent run.
tags: The tags.
metadata: The metadata.
inputs: The inputs.
**kwargs: Additional keyword arguments.
"""
@@ -377,10 +376,10 @@ class RunManagerMixin:
"""Run on an arbitrary text.
Args:
text (str): The text.
run_id (UUID): The run ID. This is the ID of the current run.
parent_run_id (UUID): The parent run ID. This is the ID of the parent run.
kwargs (Any): Additional keyword arguments.
text: The text.
run_id: The run ID. This is the ID of the current run.
parent_run_id: The parent run ID. This is the ID of the parent run.
**kwargs: Additional keyword arguments.
"""
def on_retry(
@@ -394,10 +393,10 @@ class RunManagerMixin:
"""Run on a retry event.
Args:
retry_state (RetryCallState): The retry state.
run_id (UUID): The run ID. This is the ID of the current run.
parent_run_id (UUID): The parent run ID. This is the ID of the parent run.
kwargs (Any): Additional keyword arguments.
retry_state: The retry state.
run_id: The run ID. This is the ID of the current run.
parent_run_id: The parent run ID. This is the ID of the parent run.
**kwargs: Additional keyword arguments.
"""
def on_custom_event(
@@ -415,7 +414,7 @@ class RunManagerMixin:
Args:
name: The name of the custom event.
data: The data for the custom event. Format will match
the format specified by the user.
the format specified by the user.
run_id: The ID of the run.
tags: The tags associated with the custom event
(includes inherited tags).
@@ -497,16 +496,16 @@ class AsyncCallbackHandler(BaseCallbackHandler):
!!! warning
This method is called for non-chat models (regular LLMs). If you're
implementing a handler for a chat model, you should use
``on_chat_model_start`` instead.
`on_chat_model_start` instead.
Args:
serialized (dict[str, Any]): The serialized LLM.
prompts (list[str]): The prompts.
run_id (UUID): The run ID. This is the ID of the current run.
parent_run_id (UUID): The parent run ID. This is the ID of the parent run.
tags (Optional[list[str]]): The tags.
metadata (Optional[dict[str, Any]]): The metadata.
kwargs (Any): Additional keyword arguments.
serialized: The serialized LLM.
prompts: The prompts.
run_id: The run ID. This is the ID of the current run.
parent_run_id: The parent run ID. This is the ID of the parent run.
tags: The tags.
metadata: The metadata.
**kwargs: Additional keyword arguments.
"""
async def on_chat_model_start(
@@ -524,16 +523,16 @@ class AsyncCallbackHandler(BaseCallbackHandler):
!!! warning
This method is called for chat models. If you're implementing a handler for
a non-chat model, you should use ``on_llm_start`` instead.
a non-chat model, you should use `on_llm_start` instead.
Args:
serialized (dict[str, Any]): The serialized chat model.
messages (list[list[BaseMessage]]): The messages.
run_id (UUID): The run ID. This is the ID of the current run.
parent_run_id (UUID): The parent run ID. This is the ID of the parent run.
tags (Optional[list[str]]): The tags.
metadata (Optional[dict[str, Any]]): The metadata.
kwargs (Any): Additional keyword arguments.
serialized: The serialized chat model.
messages: The messages.
run_id: The run ID. This is the ID of the current run.
parent_run_id: The parent run ID. This is the ID of the parent run.
tags: The tags.
metadata: The metadata.
**kwargs: Additional keyword arguments.
"""
# NotImplementedError is thrown intentionally
# Callback handler will fall back to on_llm_start if this is exception is thrown
@@ -555,13 +554,12 @@ class AsyncCallbackHandler(BaseCallbackHandler):
For both chat models and non-chat models (legacy LLMs).
Args:
token (str): The new token.
chunk (GenerationChunk | ChatGenerationChunk): The new generated chunk,
containing content and other information.
run_id (UUID): The run ID. This is the ID of the current run.
parent_run_id (UUID): The parent run ID. This is the ID of the parent run.
tags (Optional[list[str]]): The tags.
kwargs (Any): Additional keyword arguments.
token: The new token.
chunk: The new generated chunk, containing content and other information.
run_id: The run ID. This is the ID of the current run.
parent_run_id: The parent run ID. This is the ID of the parent run.
tags: The tags.
**kwargs: Additional keyword arguments.
"""
async def on_llm_end(
@@ -576,11 +574,11 @@ class AsyncCallbackHandler(BaseCallbackHandler):
"""Run when the model ends running.
Args:
response (LLMResult): The response which was generated.
run_id (UUID): The run ID. This is the ID of the current run.
parent_run_id (UUID): The parent run ID. This is the ID of the parent run.
tags (Optional[list[str]]): The tags.
kwargs (Any): Additional keyword arguments.
response: The response which was generated.
run_id: The run ID. This is the ID of the current run.
parent_run_id: The parent run ID. This is the ID of the parent run.
tags: The tags.
**kwargs: Additional keyword arguments.
"""
async def on_llm_error(
@@ -599,7 +597,7 @@ class AsyncCallbackHandler(BaseCallbackHandler):
run_id: The run ID. This is the ID of the current run.
parent_run_id: The parent run ID. This is the ID of the parent run.
tags: The tags.
kwargs (Any): Additional keyword arguments.
**kwargs: Additional keyword arguments.
- response (LLMResult): The response which was generated before
the error occurred.
"""
@@ -618,13 +616,13 @@ class AsyncCallbackHandler(BaseCallbackHandler):
"""Run when a chain starts running.
Args:
serialized (dict[str, Any]): The serialized chain.
inputs (dict[str, Any]): The inputs.
run_id (UUID): The run ID. This is the ID of the current run.
parent_run_id (UUID): The parent run ID. This is the ID of the parent run.
tags (Optional[list[str]]): The tags.
metadata (Optional[dict[str, Any]]): The metadata.
kwargs (Any): Additional keyword arguments.
serialized: The serialized chain.
inputs: The inputs.
run_id: The run ID. This is the ID of the current run.
parent_run_id: The parent run ID. This is the ID of the parent run.
tags: The tags.
metadata: The metadata.
**kwargs: Additional keyword arguments.
"""
async def on_chain_end(
@@ -639,11 +637,11 @@ class AsyncCallbackHandler(BaseCallbackHandler):
"""Run when a chain ends running.
Args:
outputs (dict[str, Any]): The outputs of the chain.
run_id (UUID): The run ID. This is the ID of the current run.
parent_run_id (UUID): The parent run ID. This is the ID of the parent run.
tags (Optional[list[str]]): The tags.
kwargs (Any): Additional keyword arguments.
outputs: The outputs of the chain.
run_id: The run ID. This is the ID of the current run.
parent_run_id: The parent run ID. This is the ID of the parent run.
tags: The tags.
**kwargs: Additional keyword arguments.
"""
async def on_chain_error(
@@ -658,11 +656,11 @@ class AsyncCallbackHandler(BaseCallbackHandler):
"""Run when chain errors.
Args:
error (BaseException): The error that occurred.
run_id (UUID): The run ID. This is the ID of the current run.
parent_run_id (UUID): The parent run ID. This is the ID of the parent run.
tags (Optional[list[str]]): The tags.
kwargs (Any): Additional keyword arguments.
error: The error that occurred.
run_id: The run ID. This is the ID of the current run.
parent_run_id: The parent run ID. This is the ID of the parent run.
tags: The tags.
**kwargs: Additional keyword arguments.
"""
async def on_tool_start(
@@ -680,14 +678,14 @@ class AsyncCallbackHandler(BaseCallbackHandler):
"""Run when the tool starts running.
Args:
serialized (dict[str, Any]): The serialized tool.
input_str (str): The input string.
run_id (UUID): The run ID. This is the ID of the current run.
parent_run_id (UUID): The parent run ID. This is the ID of the parent run.
tags (Optional[list[str]]): The tags.
metadata (Optional[dict[str, Any]]): The metadata.
inputs (Optional[dict[str, Any]]): The inputs.
kwargs (Any): Additional keyword arguments.
serialized: The serialized tool.
input_str: The input string.
run_id: The run ID. This is the ID of the current run.
parent_run_id: The parent run ID. This is the ID of the parent run.
tags: The tags.
metadata: The metadata.
inputs: The inputs.
**kwargs: Additional keyword arguments.
"""
async def on_tool_end(
@@ -702,11 +700,11 @@ class AsyncCallbackHandler(BaseCallbackHandler):
"""Run when the tool ends running.
Args:
output (Any): The output of the tool.
run_id (UUID): The run ID. This is the ID of the current run.
parent_run_id (UUID): The parent run ID. This is the ID of the parent run.
tags (Optional[list[str]]): The tags.
kwargs (Any): Additional keyword arguments.
output: The output of the tool.
run_id: The run ID. This is the ID of the current run.
parent_run_id: The parent run ID. This is the ID of the parent run.
tags: The tags.
**kwargs: Additional keyword arguments.
"""
async def on_tool_error(
@@ -721,11 +719,11 @@ class AsyncCallbackHandler(BaseCallbackHandler):
"""Run when tool errors.
Args:
error (BaseException): The error that occurred.
run_id (UUID): The run ID. This is the ID of the current run.
parent_run_id (UUID): The parent run ID. This is the ID of the parent run.
tags (Optional[list[str]]): The tags.
kwargs (Any): Additional keyword arguments.
error: The error that occurred.
run_id: The run ID. This is the ID of the current run.
parent_run_id: The parent run ID. This is the ID of the parent run.
tags: The tags.
**kwargs: Additional keyword arguments.
"""
async def on_text(
@@ -740,11 +738,11 @@ class AsyncCallbackHandler(BaseCallbackHandler):
"""Run on an arbitrary text.
Args:
text (str): The text.
run_id (UUID): The run ID. This is the ID of the current run.
parent_run_id (UUID): The parent run ID. This is the ID of the parent run.
tags (Optional[list[str]]): The tags.
kwargs (Any): Additional keyword arguments.
text: The text.
run_id: The run ID. This is the ID of the current run.
parent_run_id: The parent run ID. This is the ID of the parent run.
tags: The tags.
**kwargs: Additional keyword arguments.
"""
async def on_retry(
@@ -758,10 +756,10 @@ class AsyncCallbackHandler(BaseCallbackHandler):
"""Run on a retry event.
Args:
retry_state (RetryCallState): The retry state.
run_id (UUID): The run ID. This is the ID of the current run.
parent_run_id (UUID): The parent run ID. This is the ID of the parent run.
kwargs (Any): Additional keyword arguments.
retry_state: The retry state.
run_id: The run ID. This is the ID of the current run.
parent_run_id: The parent run ID. This is the ID of the parent run.
**kwargs: Additional keyword arguments.
"""
async def on_agent_action(
@@ -776,11 +774,11 @@ class AsyncCallbackHandler(BaseCallbackHandler):
"""Run on agent action.
Args:
action (AgentAction): The agent action.
run_id (UUID): The run ID. This is the ID of the current run.
parent_run_id (UUID): The parent run ID. This is the ID of the parent run.
tags (Optional[list[str]]): The tags.
kwargs (Any): Additional keyword arguments.
action: The agent action.
run_id: The run ID. This is the ID of the current run.
parent_run_id: The parent run ID. This is the ID of the parent run.
tags: The tags.
**kwargs: Additional keyword arguments.
"""
async def on_agent_finish(
@@ -795,11 +793,11 @@ class AsyncCallbackHandler(BaseCallbackHandler):
"""Run on the agent end.
Args:
finish (AgentFinish): The agent finish.
run_id (UUID): The run ID. This is the ID of the current run.
parent_run_id (UUID): The parent run ID. This is the ID of the parent run.
tags (Optional[list[str]]): The tags.
kwargs (Any): Additional keyword arguments.
finish: The agent finish.
run_id: The run ID. This is the ID of the current run.
parent_run_id: The parent run ID. This is the ID of the parent run.
tags: The tags.
**kwargs: Additional keyword arguments.
"""
async def on_retriever_start(
@@ -816,13 +814,13 @@ class AsyncCallbackHandler(BaseCallbackHandler):
"""Run on the retriever start.
Args:
serialized (dict[str, Any]): The serialized retriever.
query (str): The query.
run_id (UUID): The run ID. This is the ID of the current run.
parent_run_id (UUID): The parent run ID. This is the ID of the parent run.
tags (Optional[list[str]]): The tags.
metadata (Optional[dict[str, Any]]): The metadata.
kwargs (Any): Additional keyword arguments.
serialized: The serialized retriever.
query: The query.
run_id: The run ID. This is the ID of the current run.
parent_run_id: The parent run ID. This is the ID of the parent run.
tags: The tags.
metadata: The metadata.
**kwargs: Additional keyword arguments.
"""
async def on_retriever_end(
@@ -837,11 +835,11 @@ class AsyncCallbackHandler(BaseCallbackHandler):
"""Run on the retriever end.
Args:
documents (Sequence[Document]): The documents retrieved.
run_id (UUID): The run ID. This is the ID of the current run.
parent_run_id (UUID): The parent run ID. This is the ID of the parent run.
tags (Optional[list[str]]): The tags.
kwargs (Any): Additional keyword arguments.
documents: The documents retrieved.
run_id: The run ID. This is the ID of the current run.
parent_run_id: The parent run ID. This is the ID of the parent run.
tags: The tags.
**kwargs: Additional keyword arguments.
"""
async def on_retriever_error(
@@ -856,11 +854,11 @@ class AsyncCallbackHandler(BaseCallbackHandler):
"""Run on retriever error.
Args:
error (BaseException): The error that occurred.
run_id (UUID): The run ID. This is the ID of the current run.
parent_run_id (UUID): The parent run ID. This is the ID of the parent run.
tags (Optional[list[str]]): The tags.
kwargs (Any): Additional keyword arguments.
error: The error that occurred.
run_id: The run ID. This is the ID of the current run.
parent_run_id: The parent run ID. This is the ID of the parent run.
tags: The tags.
**kwargs: Additional keyword arguments.
"""
async def on_custom_event(
@@ -878,7 +876,7 @@ class AsyncCallbackHandler(BaseCallbackHandler):
Args:
name: The name of the custom event.
data: The data for the custom event. Format will match
the format specified by the user.
the format specified by the user.
run_id: The ID of the run.
tags: The tags associated with the custom event
(includes inherited tags).
@@ -906,16 +904,13 @@ class BaseCallbackManager(CallbackManagerMixin):
"""Initialize callback manager.
Args:
handlers (list[BaseCallbackHandler]): The handlers.
inheritable_handlers (Optional[list[BaseCallbackHandler]]):
The inheritable handlers. Default is None.
parent_run_id (Optional[UUID]): The parent run ID. Default is None.
tags (Optional[list[str]]): The tags. Default is None.
inheritable_tags (Optional[list[str]]): The inheritable tags.
Default is None.
metadata (Optional[dict[str, Any]]): The metadata. Default is None.
inheritable_metadata (Optional[dict[str, Any]]): The inheritable metadata.
Default is None.
handlers: The handlers.
inheritable_handlers: The inheritable handlers.
parent_run_id: The parent run ID.
tags: The tags.
inheritable_tags: The inheritable tags.
metadata: The metadata.
inheritable_metadata: The inheritable metadata.
"""
self.handlers: list[BaseCallbackHandler] = handlers
self.inheritable_handlers: list[BaseCallbackHandler] = (
@@ -946,35 +941,29 @@ class BaseCallbackManager(CallbackManagerMixin):
within merge_configs.
Returns:
BaseCallbackManager: The merged callback manager of the same type
as the current object.
The merged callback manager of the same type as the current object.
Example: Merging two callback managers.
.. code-block:: python
```python
from langchain_core.callbacks.manager import (
CallbackManager,
trace_as_chain_group,
)
from langchain_core.callbacks.stdout import StdOutCallbackHandler
from langchain_core.callbacks.manager import (
CallbackManager,
trace_as_chain_group,
)
from langchain_core.callbacks.stdout import StdOutCallbackHandler
manager = CallbackManager(
handlers=[StdOutCallbackHandler()], tags=["tag2"]
)
with trace_as_chain_group(
"My Group Name", tags=["tag1"]
) as group_manager:
merged_manager = group_manager.merge(manager)
print(merged_manager.handlers)
# [
# <langchain_core.callbacks.stdout.StdOutCallbackHandler object at ...>,
# <langchain_core.callbacks.streaming_stdout.StreamingStdOutCallbackHandler object at ...>,
# ]
print(merged_manager.tags)
# ['tag2', 'tag1']
manager = CallbackManager(handlers=[StdOutCallbackHandler()], tags=["tag2"])
with trace_as_chain_group("My Group Name", tags=["tag1"]) as group_manager:
merged_manager = group_manager.merge(manager)
print(merged_manager.handlers)
# [
# <langchain_core.callbacks.stdout.StdOutCallbackHandler object at ...>,
# <langchain_core.callbacks.streaming_stdout.StreamingStdOutCallbackHandler object at ...>,
# ]
print(merged_manager.tags)
# ['tag2', 'tag1']
```
""" # noqa: E501
manager = self.__class__(
parent_run_id=self.parent_run_id or other.parent_run_id,
@@ -1011,8 +1000,8 @@ class BaseCallbackManager(CallbackManagerMixin):
"""Add a handler to the callback manager.
Args:
handler (BaseCallbackHandler): The handler to add.
inherit (bool): Whether to inherit the handler. Default is True.
handler: The handler to add.
inherit: Whether to inherit the handler. Default is True.
"""
if handler not in self.handlers:
self.handlers.append(handler)
@@ -1023,7 +1012,7 @@ class BaseCallbackManager(CallbackManagerMixin):
"""Remove a handler from the callback manager.
Args:
handler (BaseCallbackHandler): The handler to remove.
handler: The handler to remove.
"""
if handler in self.handlers:
self.handlers.remove(handler)
@@ -1038,8 +1027,8 @@ class BaseCallbackManager(CallbackManagerMixin):
"""Set handlers as the only handlers on the callback manager.
Args:
handlers (list[BaseCallbackHandler]): The handlers to set.
inherit (bool): Whether to inherit the handlers. Default is True.
handlers: The handlers to set.
inherit: Whether to inherit the handlers. Default is True.
"""
self.handlers = []
self.inheritable_handlers = []
@@ -1054,8 +1043,8 @@ class BaseCallbackManager(CallbackManagerMixin):
"""Set handler as the only handler on the callback manager.
Args:
handler (BaseCallbackHandler): The handler to set.
inherit (bool): Whether to inherit the handler. Default is True.
handler: The handler to set.
inherit: Whether to inherit the handler. Default is True.
"""
self.set_handlers([handler], inherit=inherit)
@@ -1067,8 +1056,8 @@ class BaseCallbackManager(CallbackManagerMixin):
"""Add tags to the callback manager.
Args:
tags (list[str]): The tags to add.
inherit (bool): Whether to inherit the tags. Default is True.
tags: The tags to add.
inherit: Whether to inherit the tags. Default is True.
"""
for tag in tags:
if tag in self.tags:
@@ -1081,7 +1070,7 @@ class BaseCallbackManager(CallbackManagerMixin):
"""Remove tags from the callback manager.
Args:
tags (list[str]): The tags to remove.
tags: The tags to remove.
"""
for tag in tags:
if tag in self.tags:
@@ -1097,8 +1086,8 @@ class BaseCallbackManager(CallbackManagerMixin):
"""Add metadata to the callback manager.
Args:
metadata (dict[str, Any]): The metadata to add.
inherit (bool): Whether to inherit the metadata. Default is True.
metadata: The metadata to add.
inherit: Whether to inherit the metadata. Default is True.
"""
self.metadata.update(metadata)
if inherit:
@@ -1108,7 +1097,7 @@ class BaseCallbackManager(CallbackManagerMixin):
"""Remove metadata from the callback manager.
Args:
keys (list[str]): The keys to remove.
keys: The keys to remove.
"""
for key in keys:
self.metadata.pop(key, None)

View File

@@ -27,32 +27,32 @@ class FileCallbackHandler(BaseCallbackHandler):
Examples:
Using as a context manager (recommended):
.. code-block:: python
with FileCallbackHandler("output.txt") as handler:
# Use handler with your chain/agent
chain.invoke(inputs, config={"callbacks": [handler]})
```python
with FileCallbackHandler("output.txt") as handler:
# Use handler with your chain/agent
chain.invoke(inputs, config={"callbacks": [handler]})
```
Direct instantiation (deprecated):
.. code-block:: python
handler = FileCallbackHandler("output.txt")
# File remains open until handler is garbage collected
try:
chain.invoke(inputs, config={"callbacks": [handler]})
finally:
handler.close() # Explicit cleanup recommended
```python
handler = FileCallbackHandler("output.txt")
# File remains open until handler is garbage collected
try:
chain.invoke(inputs, config={"callbacks": [handler]})
finally:
handler.close() # Explicit cleanup recommended
```
Args:
filename: The file path to write to.
mode: The file open mode. Defaults to ``'a'`` (append).
color: Default color for text output. Defaults to ``None``.
mode: The file open mode. Defaults to `'a'` (append).
color: Default color for text output.
!!! note
When not used as a context manager, a deprecation warning will be issued
on first use. The file will be opened immediately in ``__init__`` and closed
in ``__del__`` or when ``close()`` is called explicitly.
on first use. The file will be opened immediately in `__init__` and closed
in `__del__` or when `close()` is called explicitly.
"""
@@ -63,8 +63,8 @@ class FileCallbackHandler(BaseCallbackHandler):
Args:
filename: Path to the output file.
mode: File open mode (e.g., ``'w'``, ``'a'``, ``'x'``). Defaults to ``'a'``.
color: Default text color for output. Defaults to ``None``.
mode: File open mode (e.g., `'w'`, `'a'`, `'x'`). Defaults to `'a'`.
color: Default text color for output.
"""
self.filename = filename
@@ -84,7 +84,7 @@ class FileCallbackHandler(BaseCallbackHandler):
The FileCallbackHandler instance.
!!! note
The file is already opened in ``__init__``, so this just marks that
The file is already opened in `__init__`, so this just marks that
the handler is being used as a context manager.
"""
@@ -131,9 +131,9 @@ class FileCallbackHandler(BaseCallbackHandler):
Args:
text: The text to write to the file.
color: Optional color for the text. Defaults to ``self.color``.
end: String appended after the text. Defaults to ``""``.
file: Optional file to write to. Defaults to ``self.file``.
color: Optional color for the text. Defaults to `self.color`.
end: String appended after the text. Defaults to `""`.
file: Optional file to write to. Defaults to `self.file`.
Raises:
RuntimeError: If the file is closed or not available.
@@ -167,7 +167,7 @@ class FileCallbackHandler(BaseCallbackHandler):
Args:
serialized: The serialized chain information.
inputs: The inputs to the chain.
**kwargs: Additional keyword arguments that may contain ``'name'``.
**kwargs: Additional keyword arguments that may contain `'name'`.
"""
name = (
@@ -196,8 +196,8 @@ class FileCallbackHandler(BaseCallbackHandler):
Args:
action: The agent action containing the log to write.
color: Color override for this specific output. If ``None``, uses
``self.color``.
color: Color override for this specific output. If `None`, uses
`self.color`.
**kwargs: Additional keyword arguments.
"""
@@ -216,8 +216,8 @@ class FileCallbackHandler(BaseCallbackHandler):
Args:
output: The tool output to write.
color: Color override for this specific output. If ``None``, uses
``self.color``.
color: Color override for this specific output. If `None`, uses
`self.color`.
observation_prefix: Optional prefix to write before the output.
llm_prefix: Optional prefix to write after the output.
**kwargs: Additional keyword arguments.
@@ -237,9 +237,9 @@ class FileCallbackHandler(BaseCallbackHandler):
Args:
text: The text to write.
color: Color override for this specific output. If ``None``, uses
``self.color``.
end: String appended after the text. Defaults to ``""``.
color: Color override for this specific output. If `None`, uses
`self.color`.
end: String appended after the text. Defaults to `""`.
**kwargs: Additional keyword arguments.
"""
@@ -253,8 +253,8 @@ class FileCallbackHandler(BaseCallbackHandler):
Args:
finish: The agent finish object containing the log to write.
color: Color override for this specific output. If ``None``, uses
``self.color``.
color: Color override for this specific output. If `None`, uses
`self.color`.
**kwargs: Additional keyword arguments.
"""

File diff suppressed because it is too large Load Diff

View File

@@ -20,7 +20,7 @@ class StdOutCallbackHandler(BaseCallbackHandler):
"""Initialize callback handler.
Args:
color: The color to use for the text. Defaults to None.
color: The color to use for the text.
"""
self.color = color
@@ -31,9 +31,9 @@ class StdOutCallbackHandler(BaseCallbackHandler):
"""Print out that we are entering a chain.
Args:
serialized (dict[str, Any]): The serialized chain.
inputs (dict[str, Any]): The inputs to the chain.
**kwargs (Any): Additional keyword arguments.
serialized: The serialized chain.
inputs: The inputs to the chain.
**kwargs: Additional keyword arguments.
"""
if "name" in kwargs:
name = kwargs["name"]
@@ -48,8 +48,8 @@ class StdOutCallbackHandler(BaseCallbackHandler):
"""Print out that we finished a chain.
Args:
outputs (dict[str, Any]): The outputs of the chain.
**kwargs (Any): Additional keyword arguments.
outputs: The outputs of the chain.
**kwargs: Additional keyword arguments.
"""
print("\n\033[1m> Finished chain.\033[0m") # noqa: T201
@@ -60,9 +60,9 @@ class StdOutCallbackHandler(BaseCallbackHandler):
"""Run on agent action.
Args:
action (AgentAction): The agent action.
color (Optional[str]): The color to use for the text. Defaults to None.
**kwargs (Any): Additional keyword arguments.
action: The agent action.
color: The color to use for the text.
**kwargs: Additional keyword arguments.
"""
print_text(action.log, color=color or self.color)
@@ -78,12 +78,11 @@ class StdOutCallbackHandler(BaseCallbackHandler):
"""If not the final action, print out observation.
Args:
output (Any): The output to print.
color (Optional[str]): The color to use for the text. Defaults to None.
observation_prefix (Optional[str]): The observation prefix.
Defaults to None.
llm_prefix (Optional[str]): The LLM prefix. Defaults to None.
**kwargs (Any): Additional keyword arguments.
output: The output to print.
color: The color to use for the text.
observation_prefix: The observation prefix.
llm_prefix: The LLM prefix.
**kwargs: Additional keyword arguments.
"""
output = str(output)
if observation_prefix is not None:
@@ -103,10 +102,10 @@ class StdOutCallbackHandler(BaseCallbackHandler):
"""Run when the agent ends.
Args:
text (str): The text to print.
color (Optional[str]): The color to use for the text. Defaults to None.
end (str): The end character to use. Defaults to "".
**kwargs (Any): Additional keyword arguments.
text: The text to print.
color: The color to use for the text.
end: The end character to use. Defaults to "".
**kwargs: Additional keyword arguments.
"""
print_text(text, color=color or self.color, end=end)
@@ -117,8 +116,8 @@ class StdOutCallbackHandler(BaseCallbackHandler):
"""Run on the agent end.
Args:
finish (AgentFinish): The agent finish.
color (Optional[str]): The color to use for the text. Defaults to None.
**kwargs (Any): Additional keyword arguments.
finish: The agent finish.
color: The color to use for the text.
**kwargs: Additional keyword arguments.
"""
print_text(finish.log, color=color or self.color, end="\n")

View File

@@ -24,9 +24,9 @@ class StreamingStdOutCallbackHandler(BaseCallbackHandler):
"""Run when LLM starts running.
Args:
serialized (dict[str, Any]): The serialized LLM.
prompts (list[str]): The prompts to run.
**kwargs (Any): Additional keyword arguments.
serialized: The serialized LLM.
prompts: The prompts to run.
**kwargs: Additional keyword arguments.
"""
def on_chat_model_start(
@@ -38,9 +38,9 @@ class StreamingStdOutCallbackHandler(BaseCallbackHandler):
"""Run when LLM starts running.
Args:
serialized (dict[str, Any]): The serialized LLM.
messages (list[list[BaseMessage]]): The messages to run.
**kwargs (Any): Additional keyword arguments.
serialized: The serialized LLM.
messages: The messages to run.
**kwargs: Additional keyword arguments.
"""
@override
@@ -48,8 +48,8 @@ class StreamingStdOutCallbackHandler(BaseCallbackHandler):
"""Run on new LLM token. Only available when streaming is enabled.
Args:
token (str): The new token.
**kwargs (Any): Additional keyword arguments.
token: The new token.
**kwargs: Additional keyword arguments.
"""
sys.stdout.write(token)
sys.stdout.flush()
@@ -58,16 +58,16 @@ class StreamingStdOutCallbackHandler(BaseCallbackHandler):
"""Run when LLM ends running.
Args:
response (LLMResult): The response from the LLM.
**kwargs (Any): Additional keyword arguments.
response: The response from the LLM.
**kwargs: Additional keyword arguments.
"""
def on_llm_error(self, error: BaseException, **kwargs: Any) -> None:
"""Run when LLM errors.
Args:
error (BaseException): The error that occurred.
**kwargs (Any): Additional keyword arguments.
error: The error that occurred.
**kwargs: Additional keyword arguments.
"""
def on_chain_start(
@@ -76,25 +76,25 @@ class StreamingStdOutCallbackHandler(BaseCallbackHandler):
"""Run when a chain starts running.
Args:
serialized (dict[str, Any]): The serialized chain.
inputs (dict[str, Any]): The inputs to the chain.
**kwargs (Any): Additional keyword arguments.
serialized: The serialized chain.
inputs: The inputs to the chain.
**kwargs: Additional keyword arguments.
"""
def on_chain_end(self, outputs: dict[str, Any], **kwargs: Any) -> None:
"""Run when a chain ends running.
Args:
outputs (dict[str, Any]): The outputs of the chain.
**kwargs (Any): Additional keyword arguments.
outputs: The outputs of the chain.
**kwargs: Additional keyword arguments.
"""
def on_chain_error(self, error: BaseException, **kwargs: Any) -> None:
"""Run when chain errors.
Args:
error (BaseException): The error that occurred.
**kwargs (Any): Additional keyword arguments.
error: The error that occurred.
**kwargs: Additional keyword arguments.
"""
def on_tool_start(
@@ -103,47 +103,47 @@ class StreamingStdOutCallbackHandler(BaseCallbackHandler):
"""Run when the tool starts running.
Args:
serialized (dict[str, Any]): The serialized tool.
input_str (str): The input string.
**kwargs (Any): Additional keyword arguments.
serialized: The serialized tool.
input_str: The input string.
**kwargs: Additional keyword arguments.
"""
def on_agent_action(self, action: AgentAction, **kwargs: Any) -> Any:
"""Run on agent action.
Args:
action (AgentAction): The agent action.
**kwargs (Any): Additional keyword arguments.
action: The agent action.
**kwargs: Additional keyword arguments.
"""
def on_tool_end(self, output: Any, **kwargs: Any) -> None:
"""Run when tool ends running.
Args:
output (Any): The output of the tool.
**kwargs (Any): Additional keyword arguments.
output: The output of the tool.
**kwargs: Additional keyword arguments.
"""
def on_tool_error(self, error: BaseException, **kwargs: Any) -> None:
"""Run when tool errors.
Args:
error (BaseException): The error that occurred.
**kwargs (Any): Additional keyword arguments.
error: The error that occurred.
**kwargs: Additional keyword arguments.
"""
def on_text(self, text: str, **kwargs: Any) -> None:
"""Run on an arbitrary text.
Args:
text (str): The text to print.
**kwargs (Any): Additional keyword arguments.
text: The text to print.
**kwargs: Additional keyword arguments.
"""
def on_agent_finish(self, finish: AgentFinish, **kwargs: Any) -> None:
"""Run on the agent end.
Args:
finish (AgentFinish): The agent finish.
**kwargs (Any): Additional keyword arguments.
finish: The agent finish.
**kwargs: Additional keyword arguments.
"""

View File

@@ -19,30 +19,29 @@ class UsageMetadataCallbackHandler(BaseCallbackHandler):
"""Callback Handler that tracks AIMessage.usage_metadata.
Example:
.. code-block:: python
```python
from langchain.chat_models import init_chat_model
from langchain_core.callbacks import UsageMetadataCallbackHandler
from langchain.chat_models import init_chat_model
from langchain_core.callbacks import UsageMetadataCallbackHandler
llm_1 = init_chat_model(model="openai:gpt-4o-mini")
llm_2 = init_chat_model(model="anthropic:claude-3-5-haiku-latest")
llm_1 = init_chat_model(model="openai:gpt-4o-mini")
llm_2 = init_chat_model(model="anthropic:claude-3-5-haiku-latest")
callback = UsageMetadataCallbackHandler()
result_1 = llm_1.invoke("Hello", config={"callbacks": [callback]})
result_2 = llm_2.invoke("Hello", config={"callbacks": [callback]})
callback.usage_metadata
.. code-block::
{'gpt-4o-mini-2024-07-18': {'input_tokens': 8,
'output_tokens': 10,
'total_tokens': 18,
'input_token_details': {'audio': 0, 'cache_read': 0},
'output_token_details': {'audio': 0, 'reasoning': 0}},
'claude-3-5-haiku-20241022': {'input_tokens': 8,
'output_tokens': 21,
'total_tokens': 29,
'input_token_details': {'cache_read': 0, 'cache_creation': 0}}}
callback = UsageMetadataCallbackHandler()
result_1 = llm_1.invoke("Hello", config={"callbacks": [callback]})
result_2 = llm_2.invoke("Hello", config={"callbacks": [callback]})
callback.usage_metadata
```
```txt
{'gpt-4o-mini-2024-07-18': {'input_tokens': 8,
'output_tokens': 10,
'total_tokens': 18,
'input_token_details': {'audio': 0, 'cache_read': 0},
'output_token_details': {'audio': 0, 'reasoning': 0}},
'claude-3-5-haiku-20241022': {'input_tokens': 8,
'output_tokens': 21,
'total_tokens': 29,
'input_token_details': {'cache_read': 0, 'cache_creation': 0}}}
```
!!! version-added "Added in version 0.3.49"
@@ -96,40 +95,44 @@ def get_usage_metadata_callback(
"""Get usage metadata callback.
Get context manager for tracking usage metadata across chat model calls using
``AIMessage.usage_metadata``.
`AIMessage.usage_metadata`.
Args:
name (str): The name of the context variable. Defaults to
``'usage_metadata_callback'``.
name: The name of the context variable.
Yields:
The usage metadata callback.
Example:
.. code-block:: python
```python
from langchain.chat_models import init_chat_model
from langchain_core.callbacks import get_usage_metadata_callback
from langchain.chat_models import init_chat_model
from langchain_core.callbacks import get_usage_metadata_callback
llm_1 = init_chat_model(model="openai:gpt-4o-mini")
llm_2 = init_chat_model(model="anthropic:claude-3-5-haiku-latest")
llm_1 = init_chat_model(model="openai:gpt-4o-mini")
llm_2 = init_chat_model(model="anthropic:claude-3-5-haiku-latest")
with get_usage_metadata_callback() as cb:
llm_1.invoke("Hello")
llm_2.invoke("Hello")
print(cb.usage_metadata)
.. code-block::
{'gpt-4o-mini-2024-07-18': {'input_tokens': 8,
'output_tokens': 10,
'total_tokens': 18,
'input_token_details': {'audio': 0, 'cache_read': 0},
'output_token_details': {'audio': 0, 'reasoning': 0}},
'claude-3-5-haiku-20241022': {'input_tokens': 8,
'output_tokens': 21,
'total_tokens': 29,
'input_token_details': {'cache_read': 0, 'cache_creation': 0}}}
with get_usage_metadata_callback() as cb:
llm_1.invoke("Hello")
llm_2.invoke("Hello")
print(cb.usage_metadata)
```
```txt
{
"gpt-4o-mini-2024-07-18": {
"input_tokens": 8,
"output_tokens": 10,
"total_tokens": 18,
"input_token_details": {"audio": 0, "cache_read": 0},
"output_token_details": {"audio": 0, "reasoning": 0},
},
"claude-3-5-haiku-20241022": {
"input_tokens": 8,
"output_tokens": 21,
"total_tokens": 29,
"input_token_details": {"cache_read": 0, "cache_creation": 0},
},
}
```
!!! version-added "Added in version 0.3.49"

View File

@@ -1,18 +1,4 @@
"""**Chat message history** stores a history of the message interactions in a chat.
**Class hierarchy:**
.. code-block::
BaseChatMessageHistory --> <name>ChatMessageHistory # Examples: FileChatMessageHistory, PostgresChatMessageHistory
**Main helpers:**
.. code-block::
AIMessage, HumanMessage, BaseMessage
""" # noqa: E501
"""**Chat message history** stores a history of the message interactions in a chat."""
from __future__ import annotations
@@ -22,7 +8,9 @@ from typing import TYPE_CHECKING
from pydantic import BaseModel, Field
from langchain_core.messages import (
AIMessage,
BaseMessage,
HumanMessage,
get_buffer_string,
)
from langchain_core.runnables.config import run_in_executor
@@ -61,46 +49,45 @@ class BaseChatMessageHistory(ABC):
Example: Shows a default implementation.
.. code-block:: python
import json
import os
from langchain_core.messages import messages_from_dict, message_to_dict
```python
import json
import os
from langchain_core.messages import messages_from_dict, message_to_dict
class FileChatMessageHistory(BaseChatMessageHistory):
storage_path: str
session_id: str
class FileChatMessageHistory(BaseChatMessageHistory):
storage_path: str
session_id: str
@property
def messages(self) -> list[BaseMessage]:
try:
with open(
os.path.join(self.storage_path, self.session_id),
"r",
encoding="utf-8",
) as f:
messages_data = json.load(f)
return messages_from_dict(messages_data)
except FileNotFoundError:
return []
@property
def messages(self) -> list[BaseMessage]:
try:
with open(
os.path.join(self.storage_path, self.session_id),
"r",
encoding="utf-8",
) as f:
messages_data = json.load(f)
return messages_from_dict(messages_data)
except FileNotFoundError:
return []
def add_messages(self, messages: Sequence[BaseMessage]) -> None:
all_messages = list(self.messages) # Existing messages
all_messages.extend(messages) # Add new messages
def add_messages(self, messages: Sequence[BaseMessage]) -> None:
all_messages = list(self.messages) # Existing messages
all_messages.extend(messages) # Add new messages
serialized = [message_to_dict(message) for message in all_messages]
file_path = os.path.join(self.storage_path, self.session_id)
os.makedirs(os.path.dirname(file_path), exist_ok=True)
with open(file_path, "w", encoding="utf-8") as f:
json.dump(serialized, f)
def clear(self) -> None:
file_path = os.path.join(self.storage_path, self.session_id)
os.makedirs(os.path.dirname(file_path), exist_ok=True)
with open(file_path, "w", encoding="utf-8") as f:
json.dump([], f)
serialized = [message_to_dict(message) for message in all_messages]
file_path = os.path.join(self.storage_path, self.session_id)
os.makedirs(os.path.dirname(file_path), exist_ok=True)
with open(file_path, "w", encoding="utf-8") as f:
json.dump(serialized, f)
def clear(self) -> None:
file_path = os.path.join(self.storage_path, self.session_id)
os.makedirs(os.path.dirname(file_path), exist_ok=True)
with open(file_path, "w", encoding="utf-8") as f:
json.dump([], f)
```
"""
messages: list[BaseMessage]
@@ -124,6 +111,40 @@ class BaseChatMessageHistory(ABC):
"""
return await run_in_executor(None, lambda: self.messages)
def add_user_message(self, message: HumanMessage | str) -> None:
"""Convenience method for adding a human message string to the store.
!!! note
This is a convenience method. Code should favor the bulk `add_messages`
interface instead to save on round-trips to the persistence layer.
This method may be deprecated in a future release.
Args:
message: The human message to add to the store.
"""
if isinstance(message, HumanMessage):
self.add_message(message)
else:
self.add_message(HumanMessage(content=message))
def add_ai_message(self, message: AIMessage | str) -> None:
"""Convenience method for adding an AI message string to the store.
!!! note
This is a convenience method. Code should favor the bulk `add_messages`
interface instead to save on round-trips to the persistence layer.
This method may be deprecated in a future release.
Args:
message: The AI message to add.
"""
if isinstance(message, AIMessage):
self.add_message(message)
else:
self.add_message(AIMessage(content=message))
def add_message(self, message: BaseMessage) -> None:
"""Add a Message object to the store.

View File

@@ -22,22 +22,22 @@ class LangSmithLoader(BaseLoader):
??? note "Lazy load"
.. code-block:: python
```python
from langchain_core.document_loaders import LangSmithLoader
from langchain_core.document_loaders import LangSmithLoader
loader = LangSmithLoader(dataset_id="...", limit=100)
docs = []
for doc in loader.lazy_load():
docs.append(doc)
```
loader = LangSmithLoader(dataset_id="...", limit=100)
docs = []
for doc in loader.lazy_load():
docs.append(doc)
.. code-block:: python
# -> [Document("...", metadata={"inputs": {...}, "outputs": {...}, ...}), ...]
```python
# -> [Document("...", metadata={"inputs": {...}, "outputs": {...}, ...}), ...]
```
!!! version-added "Added in version 0.2.34"
""" # noqa: E501
"""
def __init__(
self,
@@ -60,15 +60,15 @@ class LangSmithLoader(BaseLoader):
"""Create a LangSmith loader.
Args:
dataset_id: The ID of the dataset to filter by. Defaults to None.
dataset_name: The name of the dataset to filter by. Defaults to None.
content_key: The inputs key to set as Document page content. ``'.'`` characters
are interpreted as nested keys. E.g. ``content_key="first.second"`` will
dataset_id: The ID of the dataset to filter by.
dataset_name: The name of the dataset to filter by.
content_key: The inputs key to set as Document page content. `'.'` characters
are interpreted as nested keys. E.g. `content_key="first.second"` will
result in
``Document(page_content=format_content(example.inputs["first"]["second"]))``
`Document(page_content=format_content(example.inputs["first"]["second"]))`
format_content: Function for converting the content extracted from the example
inputs into a string. Defaults to JSON-encoding the contents.
example_ids: The IDs of the examples to filter by. Defaults to None.
example_ids: The IDs of the examples to filter by.
as_of: The dataset version tag OR
timestamp to retrieve the examples as of.
Response examples will only be those that were present at the time
@@ -76,17 +76,17 @@ class LangSmithLoader(BaseLoader):
splits: A list of dataset splits, which are
divisions of your dataset such as 'train', 'test', or 'validation'.
Returns examples only from the specified splits.
inline_s3_urls: Whether to inline S3 URLs. Defaults to True.
inline_s3_urls: Whether to inline S3 URLs. Defaults to `True`.
offset: The offset to start from. Defaults to 0.
limit: The maximum number of examples to return.
metadata: Metadata to filter by. Defaults to None.
metadata: Metadata to filter by.
filter: A structured filter string to apply to the examples.
client: LangSmith Client. If not provided will be initialized from below args.
client_kwargs: Keyword args to pass to LangSmith client init. Should only be
specified if ``client`` isn't.
specified if `client` isn't.
Raises:
ValueError: If both ``client`` and ``client_kwargs`` are provided.
ValueError: If both `client` and `client_kwargs` are provided.
""" # noqa: E501
if client and client_kwargs:
raise ValueError

View File

@@ -2,7 +2,6 @@
**Document** module is a collection of classes that handle documents
and their transformations.
"""
from typing import TYPE_CHECKING

View File

@@ -57,52 +57,51 @@ class Blob(BaseMedia):
Example: Initialize a blob from in-memory data
.. code-block:: python
```python
from langchain_core.documents import Blob
from langchain_core.documents import Blob
blob = Blob.from_data("Hello, world!")
blob = Blob.from_data("Hello, world!")
# Read the blob as a string
print(blob.as_string())
# Read the blob as a string
print(blob.as_string())
# Read the blob as bytes
print(blob.as_bytes())
# Read the blob as bytes
print(blob.as_bytes())
# Read the blob as a byte stream
with blob.as_bytes_io() as f:
print(f.read())
# Read the blob as a byte stream
with blob.as_bytes_io() as f:
print(f.read())
```
Example: Load from memory and specify mime-type and metadata
.. code-block:: python
```python
from langchain_core.documents import Blob
from langchain_core.documents import Blob
blob = Blob.from_data(
data="Hello, world!",
mime_type="text/plain",
metadata={"source": "https://example.com"},
)
blob = Blob.from_data(
data="Hello, world!",
mime_type="text/plain",
metadata={"source": "https://example.com"},
)
```
Example: Load the blob from a file
.. code-block:: python
```python
from langchain_core.documents import Blob
from langchain_core.documents import Blob
blob = Blob.from_path("path/to/file.txt")
blob = Blob.from_path("path/to/file.txt")
# Read the blob as a string
print(blob.as_string())
# Read the blob as a string
print(blob.as_string())
# Read the blob as bytes
print(blob.as_bytes())
# Read the blob as a byte stream
with blob.as_bytes_io() as f:
print(f.read())
# Read the blob as bytes
print(blob.as_bytes())
# Read the blob as a byte stream
with blob.as_bytes_io() as f:
print(f.read())
```
"""
data: bytes | str | None = None
@@ -215,7 +214,7 @@ class Blob(BaseMedia):
path: path like object to file to be read
encoding: Encoding to use if decoding the bytes into a string
mime_type: if provided, will be set as the mime-type of the data
guess_type: If True, the mimetype will be guessed from the file extension,
guess_type: If `True`, the mimetype will be guessed from the file extension,
if a mime-type was not provided
metadata: Metadata to associate with the blob
@@ -278,15 +277,13 @@ class Document(BaseMedia):
"""Class for storing a piece of text and associated metadata.
Example:
```python
from langchain_core.documents import Document
.. code-block:: python
from langchain_core.documents import Document
document = Document(
page_content="Hello, world!", metadata={"source": "https://example.com"}
)
document = Document(
page_content="Hello, world!", metadata={"source": "https://example.com"}
)
```
"""
page_content: str

View File

@@ -20,35 +20,34 @@ class BaseDocumentTransformer(ABC):
sequence of transformed Documents.
Example:
.. code-block:: python
```python
class EmbeddingsRedundantFilter(BaseDocumentTransformer, BaseModel):
embeddings: Embeddings
similarity_fn: Callable = cosine_similarity
similarity_threshold: float = 0.95
class EmbeddingsRedundantFilter(BaseDocumentTransformer, BaseModel):
embeddings: Embeddings
similarity_fn: Callable = cosine_similarity
similarity_threshold: float = 0.95
class Config:
arbitrary_types_allowed = True
class Config:
arbitrary_types_allowed = True
def transform_documents(
self, documents: Sequence[Document], **kwargs: Any
) -> Sequence[Document]:
stateful_documents = get_stateful_documents(documents)
embedded_documents = _get_embeddings_from_stateful_docs(
self.embeddings, stateful_documents
)
included_idxs = _filter_similar_embeddings(
embedded_documents,
self.similarity_fn,
self.similarity_threshold,
)
return [stateful_documents[i] for i in sorted(included_idxs)]
async def atransform_documents(
self, documents: Sequence[Document], **kwargs: Any
) -> Sequence[Document]:
raise NotImplementedError
def transform_documents(
self, documents: Sequence[Document], **kwargs: Any
) -> Sequence[Document]:
stateful_documents = get_stateful_documents(documents)
embedded_documents = _get_embeddings_from_stateful_docs(
self.embeddings, stateful_documents
)
included_idxs = _filter_similar_embeddings(
embedded_documents,
self.similarity_fn,
self.similarity_threshold,
)
return [stateful_documents[i] for i in sorted(included_idxs)]
async def atransform_documents(
self, documents: Sequence[Document], **kwargs: Any
) -> Sequence[Document]:
raise NotImplementedError
```
"""
@abstractmethod

View File

@@ -21,37 +21,34 @@ class FakeEmbeddings(Embeddings, BaseModel):
Do not use this outside of testing, as it is not a real embedding model.
Instantiate:
.. code-block:: python
```python
from langchain_core.embeddings import FakeEmbeddings
from langchain_core.embeddings import FakeEmbeddings
embed = FakeEmbeddings(size=100)
embed = FakeEmbeddings(size=100)
```
Embed single text:
.. code-block:: python
input_text = "The meaning of life is 42"
vector = embed.embed_query(input_text)
print(vector[:3])
.. code-block:: python
[-0.700234640213188, -0.581266257710429, -1.1328482266445354]
```python
input_text = "The meaning of life is 42"
vector = embed.embed_query(input_text)
print(vector[:3])
```
```python
[-0.700234640213188, -0.581266257710429, -1.1328482266445354]
```
Embed multiple texts:
.. code-block:: python
input_texts = ["Document 1...", "Document 2..."]
vectors = embed.embed_documents(input_texts)
print(len(vectors))
# The first 3 coordinates for the first vector
print(vectors[0][:3])
.. code-block:: python
2
[-0.5670477847544458, -0.31403828652395727, -0.5840547508955257]
```python
input_texts = ["Document 1...", "Document 2..."]
vectors = embed.embed_documents(input_texts)
print(len(vectors))
# The first 3 coordinates for the first vector
print(vectors[0][:3])
```
```python
2
[-0.5670477847544458, -0.31403828652395727, -0.5840547508955257]
```
"""
size: int
@@ -78,37 +75,34 @@ class DeterministicFakeEmbedding(Embeddings, BaseModel):
Do not use this outside of testing, as it is not a real embedding model.
Instantiate:
.. code-block:: python
```python
from langchain_core.embeddings import DeterministicFakeEmbedding
from langchain_core.embeddings import DeterministicFakeEmbedding
embed = DeterministicFakeEmbedding(size=100)
embed = DeterministicFakeEmbedding(size=100)
```
Embed single text:
.. code-block:: python
input_text = "The meaning of life is 42"
vector = embed.embed_query(input_text)
print(vector[:3])
.. code-block:: python
[-0.700234640213188, -0.581266257710429, -1.1328482266445354]
```python
input_text = "The meaning of life is 42"
vector = embed.embed_query(input_text)
print(vector[:3])
```
```python
[-0.700234640213188, -0.581266257710429, -1.1328482266445354]
```
Embed multiple texts:
.. code-block:: python
input_texts = ["Document 1...", "Document 2..."]
vectors = embed.embed_documents(input_texts)
print(len(vectors))
# The first 3 coordinates for the first vector
print(vectors[0][:3])
.. code-block:: python
2
[-0.5670477847544458, -0.31403828652395727, -0.5840547508955257]
```python
input_texts = ["Document 1...", "Document 2..."]
vectors = embed.embed_documents(input_texts)
print(len(vectors))
# The first 3 coordinates for the first vector
print(vectors[0][:3])
```
```python
2
[-0.5670477847544458, -0.31403828652395727, -0.5840547508955257]
```
"""
size: int

View File

@@ -33,19 +33,19 @@ class OutputParserException(ValueError, LangChainException): # noqa: N818
Args:
error: The error that's being re-raised or an error message.
observation: String explanation of error which can be passed to a
model to try and remediate the issue. Defaults to None.
model to try and remediate the issue.
llm_output: String model output which is error-ing.
Defaults to None.
send_to_llm: Whether to send the observation and llm_output back to an Agent
after an OutputParserException has been raised.
This gives the underlying model driving the agent the context that the
previous output was improperly structured, in the hopes that it will
update the output to the correct format.
Defaults to False.
Defaults to `False`.
Raises:
ValueError: If ``send_to_llm`` is True but either observation or
``llm_output`` are not provided.
ValueError: If `send_to_llm` is True but either observation or
`llm_output` are not provided.
"""
if isinstance(error, str):
error = create_message(

View File

@@ -299,9 +299,9 @@ def index(
are not able to specify the uid of the document.
!!! warning "Behavior changed in 0.3.25"
Added ``scoped_full`` cleanup mode.
Added `scoped_full` cleanup mode.
!!! important
!!! warning
* In full mode, the loader should be returning
the entire dataset, and not just a subset of the dataset.
@@ -315,7 +315,7 @@ def index(
chunks, and we index them using a batch size of 5, we'll have 3 batches
all with the same source id. In general, to avoid doing too much
redundant work select as big a batch size as possible.
* The ``scoped_full`` mode is suitable if determining an appropriate batch size
* The `scoped_full` mode is suitable if determining an appropriate batch size
is challenging or if your data loader cannot return the entire dataset at
once. This mode keeps track of source IDs in memory, which should be fine
for most use cases. If your dataset is large (10M+ docs), you will likely
@@ -381,8 +381,8 @@ def index(
ValueError: If vectorstore does not have
"delete" and "add_documents" required methods.
ValueError: If source_id_key is not None, but is not a string or callable.
TypeError: If ``vectorstore`` is not a VectorStore or a DocumentIndex.
AssertionError: If ``source_id`` is None when cleanup mode is incremental.
TypeError: If `vectorstore` is not a VectorStore or a DocumentIndex.
AssertionError: If `source_id` is None when cleanup mode is incremental.
(should be unreachable code).
"""
# Behavior is deprecated, but we keep it for backwards compatibility.
@@ -640,9 +640,9 @@ async def aindex(
are not able to specify the uid of the document.
!!! warning "Behavior changed in 0.3.25"
Added ``scoped_full`` cleanup mode.
Added `scoped_full` cleanup mode.
!!! important
!!! warning
* In full mode, the loader should be returning
the entire dataset, and not just a subset of the dataset.
@@ -656,7 +656,7 @@ async def aindex(
chunks, and we index them using a batch size of 5, we'll have 3 batches
all with the same source id. In general, to avoid doing too much
redundant work select as big a batch size as possible.
* The ``scoped_full`` mode is suitable if determining an appropriate batch size
* The `scoped_full` mode is suitable if determining an appropriate batch size
is challenging or if your data loader cannot return the entire dataset at
once. This mode keeps track of source IDs in memory, which should be fine
for most use cases. If your dataset is large (10M+ docs), you will likely
@@ -722,9 +722,9 @@ async def aindex(
ValueError: If vectorstore does not have
"adelete" and "aadd_documents" required methods.
ValueError: If source_id_key is not None, but is not a string or callable.
TypeError: If ``vector_store`` is not a VectorStore or DocumentIndex.
AssertionError: If ``source_id_key`` is None when cleanup mode is
incremental or ``scoped_full`` (should be unreachable).
TypeError: If `vector_store` is not a VectorStore or DocumentIndex.
AssertionError: If `source_id_key` is None when cleanup mode is
incremental or `scoped_full` (should be unreachable).
"""
# Behavior is deprecated, but we keep it for backwards compatibility.
# # Warn only once per process.

View File

@@ -61,7 +61,7 @@ class RecordManager(ABC):
"""Initialize the record manager.
Args:
namespace (str): The namespace for the record manager.
namespace: The namespace for the record manager.
"""
self.namespace = namespace
@@ -244,7 +244,7 @@ class InMemoryRecordManager(RecordManager):
"""Initialize the in-memory record manager.
Args:
namespace (str): The namespace for the record manager.
namespace: The namespace for the record manager.
"""
super().__init__(namespace)
# Each key points to a dictionary
@@ -278,10 +278,10 @@ class InMemoryRecordManager(RecordManager):
Args:
keys: A list of record keys to upsert.
group_ids: A list of group IDs corresponding to the keys.
Defaults to None.
time_at_least: Optional timestamp. Implementation can use this
to optionally verify that the timestamp IS at least this time
in the system that stores. Defaults to None.
in the system that stores.
E.g., use to validate that the time in the postgres database
is equal to or larger than the given timestamp, if not
raise an error.
@@ -315,10 +315,10 @@ class InMemoryRecordManager(RecordManager):
Args:
keys: A list of record keys to upsert.
group_ids: A list of group IDs corresponding to the keys.
Defaults to None.
time_at_least: Optional timestamp. Implementation can use this
to optionally verify that the timestamp IS at least this time
in the system that stores. Defaults to None.
in the system that stores.
E.g., use to validate that the time in the postgres database
is equal to or larger than the given timestamp, if not
raise an error.
@@ -361,13 +361,13 @@ class InMemoryRecordManager(RecordManager):
Args:
before: Filter to list records updated before this time.
Defaults to None.
after: Filter to list records updated after this time.
Defaults to None.
group_ids: Filter to list records with specific group IDs.
Defaults to None.
limit: optional limit on the number of records to return.
Defaults to None.
Returns:
A list of keys for the matching records.
@@ -397,13 +397,13 @@ class InMemoryRecordManager(RecordManager):
Args:
before: Filter to list records updated before this time.
Defaults to None.
after: Filter to list records updated after this time.
Defaults to None.
group_ids: Filter to list records with specific group IDs.
Defaults to None.
limit: optional limit on the number of records to return.
Defaults to None.
Returns:
A list of keys for the matching records.
@@ -529,7 +529,7 @@ class DocumentIndex(BaseRetriever):
**kwargs: Additional keyword arguments.
Returns:
UpsertResponse: A response object that contains the list of IDs that were
A response object that contains the list of IDs that were
successfully added or updated in the vectorstore and the list of IDs that
failed to be added or updated.
"""
@@ -552,7 +552,7 @@ class DocumentIndex(BaseRetriever):
**kwargs: Additional keyword arguments.
Returns:
UpsertResponse: A response object that contains the list of IDs that were
A response object that contains the list of IDs that were
successfully added or updated in the vectorstore and the list of IDs that
failed to be added or updated.
"""
@@ -571,12 +571,12 @@ class DocumentIndex(BaseRetriever):
Args:
ids: List of ids to delete.
kwargs: Additional keyword arguments. This is up to the implementation.
**kwargs: Additional keyword arguments. This is up to the implementation.
For example, can include an option to delete the entire index,
or else issue a non-blocking delete etc.
Returns:
DeleteResponse: A response object that contains the list of IDs that were
A response object that contains the list of IDs that were
successfully deleted and the list of IDs that failed to be deleted.
"""
@@ -589,11 +589,11 @@ class DocumentIndex(BaseRetriever):
Args:
ids: List of ids to delete.
kwargs: Additional keyword arguments. This is up to the implementation.
**kwargs: Additional keyword arguments. This is up to the implementation.
For example, can include an option to delete the entire index.
Returns:
DeleteResponse: A response object that contains the list of IDs that were
A response object that contains the list of IDs that were
successfully deleted and the list of IDs that failed to be deleted.
"""
return await run_in_executor(
@@ -624,10 +624,10 @@ class DocumentIndex(BaseRetriever):
Args:
ids: List of IDs to get.
kwargs: Additional keyword arguments. These are up to the implementation.
**kwargs: Additional keyword arguments. These are up to the implementation.
Returns:
list[Document]: List of documents that were found.
List of documents that were found.
"""
async def aget(
@@ -650,10 +650,10 @@ class DocumentIndex(BaseRetriever):
Args:
ids: List of IDs to get.
kwargs: Additional keyword arguments. These are up to the implementation.
**kwargs: Additional keyword arguments. These are up to the implementation.
Returns:
list[Document]: List of documents that were found.
List of documents that were found.
"""
return await run_in_executor(
None,

View File

@@ -38,8 +38,6 @@ To implement a custom LLM, inherit from `BaseLLM` or `LLM`.
Please see the following guide for more information on how to implement a custom LLM:
https://python.langchain.com/docs/how_to/custom_llm/
"""
from typing import TYPE_CHECKING

View File

@@ -19,7 +19,7 @@ def is_openai_data_block(
) -> bool:
"""Check whether a block contains multimodal data in OpenAI Chat Completions format.
Supports both data and ID-style blocks (e.g. ``'file_data'`` and ``'file_id'``)
Supports both data and ID-style blocks (e.g. `'file_data'` and `'file_id'`)
If additional keys are present, they are ignored / will not affect outcome as long
as the required keys are present and valid.
@@ -30,12 +30,12 @@ def is_openai_data_block(
- "image": Only match image_url blocks
- "audio": Only match input_audio blocks
- "file": Only match file blocks
If None, match any valid OpenAI data block type. Note that this means that
If `None`, match any valid OpenAI data block type. Note that this means that
if the block has a valid OpenAI data type but the filter_ is set to a
different type, this function will return False.
Returns:
True if the block is a valid OpenAI data block and matches the filter_
`True` if the block is a valid OpenAI data block and matches the filter_
(if provided).
"""
@@ -92,18 +92,16 @@ def _parse_data_uri(uri: str) -> ParsedDataUri | None:
If parsing fails, return None. If either MIME type or data is missing, return None.
Example:
```python
data_uri = "..."
parsed = _parse_data_uri(data_uri)
.. code-block:: python
data_uri = "..."
parsed = _parse_data_uri(data_uri)
assert parsed == {
"source_type": "base64",
"mime_type": "image/jpeg",
"data": "/9j/4AAQSkZJRg...",
}
assert parsed == {
"source_type": "base64",
"mime_type": "image/jpeg",
"data": "/9j/4AAQSkZJRg...",
}
```
"""
regex = r"^data:(?P<mime_type>[^;]+);base64,(?P<data>.+)$"
match = re.match(regex, uri)
@@ -133,8 +131,8 @@ def _normalize_messages(
- LangChain v1 standard content blocks
This function extends support to:
- `Audio <https://platform.openai.com/docs/api-reference/chat/create>`__ and
`file <https://platform.openai.com/docs/api-reference/files>`__ data in OpenAI
- `[Audio](https://platform.openai.com/docs/api-reference/chat/create) and
`[file](https://platform.openai.com/docs/api-reference/files) data in OpenAI
Chat Completions format
- Images are technically supported but we expect chat models to handle them
directly; this may change in the future
@@ -148,50 +146,50 @@ def _normalize_messages(
??? note "v0 Content Block Schemas"
``URLContentBlock``:
`URLContentBlock`:
.. codeblock::
```python
{
mime_type: NotRequired[str]
type: Literal['image', 'audio', 'file'],
source_type: Literal['url'],
url: str,
}
```
{
mime_type: NotRequired[str]
type: Literal['image', 'audio', 'file'],
source_type: Literal['url'],
url: str,
}
`Base64ContentBlock`:
``Base64ContentBlock``:
```python
{
mime_type: NotRequired[str]
type: Literal['image', 'audio', 'file'],
source_type: Literal['base64'],
data: str,
}
```
.. codeblock::
{
mime_type: NotRequired[str]
type: Literal['image', 'audio', 'file'],
source_type: Literal['base64'],
data: str,
}
``IDContentBlock``:
`IDContentBlock`:
(In practice, this was never used)
.. codeblock::
```python
{
type: Literal["image", "audio", "file"],
source_type: Literal["id"],
id: str,
}
```
{
type: Literal['image', 'audio', 'file'],
source_type: Literal['id'],
id: str,
}
`PlainTextContentBlock`:
``PlainTextContentBlock``:
.. codeblock::
{
mime_type: NotRequired[str]
type: Literal['file'],
source_type: Literal['text'],
url: str,
}
```python
{
mime_type: NotRequired[str]
type: Literal['file'],
source_type: Literal['text'],
url: str,
}
```
If a v1 message is passed in, it will be returned as-is, meaning it is safe to
always pass in v1 messages to this function for assurance.
@@ -222,7 +220,7 @@ def _normalize_messages(
"type": Literal['file'],
"file": Union[
{
"filename": Optional[str] = "$FILENAME",
"filename": str | None = "$FILENAME",
"file_data": str = "$BASE64_ENCODED_FILE",
},
{

View File

@@ -110,20 +110,19 @@ class BaseLanguageModel(
):
"""Abstract base class for interfacing with language models.
All language model wrappers inherited from ``BaseLanguageModel``.
All language model wrappers inherited from `BaseLanguageModel`.
"""
cache: BaseCache | bool | None = Field(default=None, exclude=True)
"""Whether to cache the response.
* If true, will use the global cache.
* If false, will not use a cache
* If None, will use the global cache if it's set, otherwise no cache.
* If instance of ``BaseCache``, will use the provided cache.
* If `True`, will use the global cache.
* If `False`, will not use a cache
* If `None`, will use the global cache if it's set, otherwise no cache.
* If instance of `BaseCache`, will use the provided cache.
Caching is not currently supported for streaming methods of models.
"""
verbose: bool = Field(default_factory=_get_verbosity, exclude=True, repr=False)
"""Whether to print out response text."""
@@ -144,9 +143,9 @@ class BaseLanguageModel(
@field_validator("verbose", mode="before")
def set_verbose(cls, verbose: bool | None) -> bool: # noqa: FBT001
"""If verbose is None, set it.
"""If verbose is `None`, set it.
This allows users to pass in None as verbose to access the global setting.
This allows users to pass in `None` as verbose to access the global setting.
Args:
verbose: The verbosity setting to use.
@@ -162,7 +161,7 @@ class BaseLanguageModel(
@property
@override
def InputType(self) -> TypeAlias:
"""Get the input type for this runnable."""
"""Get the input type for this `Runnable`."""
# This is a version of LanguageModelInput which replaces the abstract
# base class BaseMessage with a union of its subclasses, which makes
# for a much better schema.
@@ -186,12 +185,12 @@ class BaseLanguageModel(
1. Take advantage of batched calls,
2. Need more output from the model than just the top generated value,
3. Are building chains that are agnostic to the underlying language model
type (e.g., pure text completion models vs chat models).
type (e.g., pure text completion models vs chat models).
Args:
prompts: List of PromptValues. A PromptValue is an object that can be
converted to match the format of any language model (string for pure
text generation models and BaseMessages for chat models).
prompts: List of `PromptValue` objects. A `PromptValue` is an object that
can be converted to match the format of any language model (string for
pure text generation models and `BaseMessage` objects for chat models).
stop: Stop words to use when generating. Model output is cut off at the
first occurrence of any of these substrings.
callbacks: Callbacks to pass through. Used for executing additional
@@ -200,8 +199,8 @@ class BaseLanguageModel(
to the model provider API call.
Returns:
An LLMResult, which contains a list of candidate Generations for each input
prompt and additional model provider-specific output.
An `LLMResult`, which contains a list of candidate `Generation` objects for
each input prompt and additional model provider-specific output.
"""
@@ -223,12 +222,12 @@ class BaseLanguageModel(
1. Take advantage of batched calls,
2. Need more output from the model than just the top generated value,
3. Are building chains that are agnostic to the underlying language model
type (e.g., pure text completion models vs chat models).
type (e.g., pure text completion models vs chat models).
Args:
prompts: List of PromptValues. A PromptValue is an object that can be
converted to match the format of any language model (string for pure
text generation models and BaseMessages for chat models).
prompts: List of `PromptValue` objects. A `PromptValue` is an object that
can be converted to match the format of any language model (string for
pure text generation models and `BaseMessage` objects for chat models).
stop: Stop words to use when generating. Model output is cut off at the
first occurrence of any of these substrings.
callbacks: Callbacks to pass through. Used for executing additional
@@ -237,8 +236,8 @@ class BaseLanguageModel(
to the model provider API call.
Returns:
An ``LLMResult``, which contains a list of candidate Generations for each
input prompt and additional model provider-specific output.
An `LLMResult`, which contains a list of candidate `Generation` objects for
each input prompt and additional model provider-specific output.
"""
@@ -294,13 +293,13 @@ class BaseLanguageModel(
Useful for checking if an input fits in a model's context window.
!!! note
The base implementation of ``get_num_tokens_from_messages`` ignores tool
The base implementation of `get_num_tokens_from_messages` ignores tool
schemas.
Args:
messages: The message inputs to tokenize.
tools: If provided, sequence of dict, ``BaseModel``, function, or
``BaseTools`` to be converted to tool schemas.
tools: If provided, sequence of dict, `BaseModel`, function, or
`BaseTool` objects to be converted to tool schemas.
Returns:
The sum of the number of tokens across the messages.

View File

@@ -108,11 +108,11 @@ def _generate_response_from_error(error: BaseException) -> list[ChatGeneration]:
def _format_for_tracing(messages: list[BaseMessage]) -> list[BaseMessage]:
"""Format messages for tracing in ``on_chat_model_start``.
"""Format messages for tracing in `on_chat_model_start`.
- Update image content blocks to OpenAI Chat Completions format (backward
compatibility).
- Add ``type`` key to content blocks that have a single key.
- Add `type` key to content blocks that have a single key.
Args:
messages: List of messages to format.
@@ -179,13 +179,13 @@ def generate_from_stream(stream: Iterator[ChatGenerationChunk]) -> ChatResult:
"""Generate from a stream.
Args:
stream: Iterator of ``ChatGenerationChunk``.
stream: Iterator of `ChatGenerationChunk`.
Raises:
ValueError: If no generations are found in the stream.
Returns:
ChatResult: Chat result.
Chat result.
"""
generation = next(stream, None)
@@ -210,10 +210,10 @@ async def agenerate_from_stream(
"""Async generate from a stream.
Args:
stream: Iterator of ``ChatGenerationChunk``.
stream: Iterator of `ChatGenerationChunk`.
Returns:
ChatResult: Chat result.
Chat result.
"""
chunks = [chunk async for chunk in stream]
@@ -240,78 +240,54 @@ def _format_ls_structured_output(ls_structured_output_format: dict | None) -> di
class BaseChatModel(BaseLanguageModel[AIMessage], ABC):
"""Base class for chat models.
r"""Base class for chat models.
Key imperative methods:
Methods that actually call the underlying model.
+---------------------------+----------------------------------------------------------------+---------------------------------------------------------------------+--------------------------------------------------------------------------------------------------+
| Method | Input | Output | Description |
+===========================+================================================================+=====================================================================+==================================================================================================+
| `invoke` | str | list[dict | tuple | BaseMessage] | PromptValue | BaseMessage | A single chat model call. |
+---------------------------+----------------------------------------------------------------+---------------------------------------------------------------------+--------------------------------------------------------------------------------------------------+
| `ainvoke` | ''' | BaseMessage | Defaults to running invoke in an async executor. |
+---------------------------+----------------------------------------------------------------+---------------------------------------------------------------------+--------------------------------------------------------------------------------------------------+
| `stream` | ''' | Iterator[BaseMessageChunk] | Defaults to yielding output of invoke. |
+---------------------------+----------------------------------------------------------------+---------------------------------------------------------------------+--------------------------------------------------------------------------------------------------+
| `astream` | ''' | AsyncIterator[BaseMessageChunk] | Defaults to yielding output of ainvoke. |
+---------------------------+----------------------------------------------------------------+---------------------------------------------------------------------+--------------------------------------------------------------------------------------------------+
| `astream_events` | ''' | AsyncIterator[StreamEvent] | Event types: 'on_chat_model_start', 'on_chat_model_stream', 'on_chat_model_end'. |
+---------------------------+----------------------------------------------------------------+---------------------------------------------------------------------+--------------------------------------------------------------------------------------------------+
| `batch` | list['''] | list[BaseMessage] | Defaults to running invoke in concurrent threads. |
+---------------------------+----------------------------------------------------------------+---------------------------------------------------------------------+--------------------------------------------------------------------------------------------------+
| `abatch` | list['''] | list[BaseMessage] | Defaults to running ainvoke in concurrent threads. |
+---------------------------+----------------------------------------------------------------+---------------------------------------------------------------------+--------------------------------------------------------------------------------------------------+
| `batch_as_completed` | list['''] | Iterator[tuple[int, Union[BaseMessage, Exception]]] | Defaults to running invoke in concurrent threads. |
+---------------------------+----------------------------------------------------------------+---------------------------------------------------------------------+--------------------------------------------------------------------------------------------------+
| `abatch_as_completed` | list['''] | AsyncIterator[tuple[int, Union[BaseMessage, Exception]]] | Defaults to running ainvoke in concurrent threads. |
+---------------------------+----------------------------------------------------------------+---------------------------------------------------------------------+--------------------------------------------------------------------------------------------------+
This table provides a brief overview of the main imperative methods. Please see the base `Runnable` reference for full documentation.
This table provides a brief overview of the main imperative methods. Please see the base Runnable reference for full documentation.
| Method | Input | Output | Description |
| ---------------------- | ------------------------------------------------------------ | ---------------------------------------------------------- | -------------------------------------------------------------------------------- |
| `invoke` | `str` \| `list[dict | tuple | BaseMessage]` \| `PromptValue` | `BaseMessage` | A single chat model call. |
| `ainvoke` | `'''` | `BaseMessage` | Defaults to running `invoke` in an async executor. |
| `stream` | `'''` | `Iterator[BaseMessageChunk]` | Defaults to yielding output of `invoke`. |
| `astream` | `'''` | `AsyncIterator[BaseMessageChunk]` | Defaults to yielding output of `ainvoke`. |
| `astream_events` | `'''` | `AsyncIterator[StreamEvent]` | Event types: `on_chat_model_start`, `on_chat_model_stream`, `on_chat_model_end`. |
| `batch` | `list[''']` | `list[BaseMessage]` | Defaults to running `invoke` in concurrent threads. |
| `abatch` | `list[''']` | `list[BaseMessage]` | Defaults to running `ainvoke` in concurrent threads. |
| `batch_as_completed` | `list[''']` | `Iterator[tuple[int, Union[BaseMessage, Exception]]]` | Defaults to running `invoke` in concurrent threads. |
| `abatch_as_completed` | `list[''']` | `AsyncIterator[tuple[int, Union[BaseMessage, Exception]]]` | Defaults to running `ainvoke` in concurrent threads. |
Key declarative methods:
Methods for creating another Runnable using the ChatModel.
+----------------------------------+-----------------------------------------------------------------------------------------------------------+
| Method | Description |
+==================================+===========================================================================================================+
| `bind_tools` | Create ChatModel that can call tools. |
+----------------------------------+-----------------------------------------------------------------------------------------------------------+
| `with_structured_output` | Create wrapper that structures model output using schema. |
+----------------------------------+-----------------------------------------------------------------------------------------------------------+
| `with_retry` | Create wrapper that retries model calls on failure. |
+----------------------------------+-----------------------------------------------------------------------------------------------------------+
| `with_fallbacks` | Create wrapper that falls back to other models on failure. |
+----------------------------------+-----------------------------------------------------------------------------------------------------------+
| `configurable_fields` | Specify init args of the model that can be configured at runtime via the RunnableConfig. |
+----------------------------------+-----------------------------------------------------------------------------------------------------------+
| `configurable_alternatives` | Specify alternative models which can be swapped in at runtime via the RunnableConfig. |
+----------------------------------+-----------------------------------------------------------------------------------------------------------+
Methods for creating another `Runnable` using the chat model.
This table provides a brief overview of the main declarative methods. Please see the reference for each method for full documentation.
| Method | Description |
| ---------------------------- | -------------------------------------------------------------------------------------------- |
| `bind_tools` | Create chat model that can call tools. |
| `with_structured_output` | Create wrapper that structures model output using schema. |
| `with_retry` | Create wrapper that retries model calls on failure. |
| `with_fallbacks` | Create wrapper that falls back to other models on failure. |
| `configurable_fields` | Specify init args of the model that can be configured at runtime via the `RunnableConfig`. |
| `configurable_alternatives` | Specify alternative models which can be swapped in at runtime via the `RunnableConfig`. |
Creating custom chat model:
Custom chat model implementations should inherit from this class.
Please reference the table below for information about which
methods and properties are required or optional for implementations.
+----------------------------------+--------------------------------------------------------------------+-------------------+
| Method/Property | Description | Required/Optional |
+==================================+====================================================================+===================+
| -------------------------------- | ------------------------------------------------------------------ | ----------------- |
| `_generate` | Use to generate a chat result from a prompt | Required |
+----------------------------------+--------------------------------------------------------------------+-------------------+
| `_llm_type` (property) | Used to uniquely identify the type of the model. Used for logging. | Required |
+----------------------------------+--------------------------------------------------------------------+-------------------+
| `_identifying_params` (property) | Represent model parameterization for tracing purposes. | Optional |
+----------------------------------+--------------------------------------------------------------------+-------------------+
| `_stream` | Use to implement streaming | Optional |
+----------------------------------+--------------------------------------------------------------------+-------------------+
| `_agenerate` | Use to implement a native async method | Optional |
+----------------------------------+--------------------------------------------------------------------+-------------------+
| `_astream` | Use to implement async version of `_stream` | Optional |
+----------------------------------+--------------------------------------------------------------------+-------------------+
Follow the guide for more information on how to implement a custom Chat Model:
Follow the guide for more information on how to implement a custom chat model:
[Guide](https://python.langchain.com/docs/how_to/custom_chat_model/).
""" # noqa: E501
@@ -322,38 +298,37 @@ class BaseChatModel(BaseLanguageModel[AIMessage], ABC):
disable_streaming: bool | Literal["tool_calling"] = False
"""Whether to disable streaming for this model.
If streaming is bypassed, then ``stream()``/``astream()``/``astream_events()`` will
defer to ``invoke()``/``ainvoke()``.
If streaming is bypassed, then `stream`/`astream`/`astream_events` will
defer to `invoke`/`ainvoke`.
- If True, will always bypass streaming case.
- If ``'tool_calling'``, will bypass streaming case only when the model is called
with a ``tools`` keyword argument. In other words, LangChain will automatically
switch to non-streaming behavior (``invoke()``) only when the tools argument is
provided. This offers the best of both worlds.
- If False (default), will always use streaming case if available.
- If `True`, will always bypass streaming case.
- If `'tool_calling'`, will bypass streaming case only when the model is called
with a `tools` keyword argument. In other words, LangChain will automatically
switch to non-streaming behavior (`invoke`) only when the tools argument is
provided. This offers the best of both worlds.
- If `False` (Default), will always use streaming case if available.
The main reason for this flag is that code might be written using ``stream()`` and
The main reason for this flag is that code might be written using `stream` and
a user may want to swap out a given model for another model whose the implementation
does not properly support streaming.
"""
output_version: str | None = Field(
default_factory=from_env("LC_OUTPUT_VERSION", default=None)
)
"""Version of ``AIMessage`` output format to store in message content.
"""Version of `AIMessage` output format to store in message content.
``AIMessage.content_blocks`` will lazily parse the contents of ``content`` into a
`AIMessage.content_blocks` will lazily parse the contents of `content` into a
standard format. This flag can be used to additionally store the standard format
in message content, e.g., for serialization purposes.
Supported values:
- ``"v0"``: provider-specific format in content (can lazily-parse with
``.content_blocks``)
- ``"v1"``: standardized format in content (consistent with ``.content_blocks``)
- `'v0'`: provider-specific format in content (can lazily-parse with
`.content_blocks`)
- `'v1'`: standardized format in content (consistent with `.content_blocks`)
Partner packages (e.g., ``langchain-openai``) can also use this field to roll out
Partner packages (e.g., `langchain-openai`) can also use this field to roll out
new content formats in a backward-compatible way.
!!! version-added "Added in version 1.0"
@@ -373,7 +348,7 @@ class BaseChatModel(BaseLanguageModel[AIMessage], ABC):
@property
@override
def OutputType(self) -> Any:
"""Get the output type for this runnable."""
"""Get the output type for this `Runnable`."""
return AnyMessage
def _convert_input(self, model_input: LanguageModelInput) -> PromptValue:
@@ -471,6 +446,11 @@ class BaseChatModel(BaseLanguageModel[AIMessage], ABC):
if "stream" in kwargs:
return kwargs["stream"]
if "streaming" in self.model_fields_set:
streaming_value = getattr(self, "streaming", None)
if isinstance(streaming_value, bool):
return streaming_value
# Check if any streaming callback handlers have been passed in.
handlers = run_manager.handlers if run_manager else []
return any(isinstance(h, _StreamingCallbackHandler) for h in handlers)
@@ -1526,120 +1506,120 @@ class BaseChatModel(BaseLanguageModel[AIMessage], ABC):
- an OpenAI function/tool schema,
- a JSON Schema,
- a TypedDict class,
- a `TypedDict` class,
- or a Pydantic class.
If ``schema`` is a Pydantic class then the model output will be a
If `schema` is a Pydantic class then the model output will be a
Pydantic instance of that class, and the model-generated fields will be
validated by the Pydantic class. Otherwise the model output will be a
dict and will not be validated. See `langchain_core.utils.function_calling.convert_to_openai_tool`
for more on how to properly specify types and descriptions of
schema fields when specifying a Pydantic or TypedDict class.
schema fields when specifying a Pydantic or `TypedDict` class.
include_raw:
If False then only the parsed structured output is returned. If
an error occurs during model output parsing it will be raised. If True
If `False` then only the parsed structured output is returned. If
an error occurs during model output parsing it will be raised. If `True`
then both the raw model response (a BaseMessage) and the parsed model
response will be returned. If an error occurs during output parsing it
will be caught and returned as well. The final output is always a dict
with keys ``'raw'``, ``'parsed'``, and ``'parsing_error'``.
with keys `'raw'`, `'parsed'`, and `'parsing_error'`.
Raises:
ValueError: If there are any unsupported ``kwargs``.
ValueError: If there are any unsupported `kwargs`.
NotImplementedError: If the model does not implement
``with_structured_output()``.
`with_structured_output()`.
Returns:
A Runnable that takes same inputs as a `langchain_core.language_models.chat.BaseChatModel`.
If ``include_raw`` is False and ``schema`` is a Pydantic class, Runnable outputs
an instance of ``schema`` (i.e., a Pydantic object).
If `include_raw` is False and `schema` is a Pydantic class, Runnable outputs
an instance of `schema` (i.e., a Pydantic object).
Otherwise, if ``include_raw`` is False then Runnable outputs a dict.
Otherwise, if `include_raw` is False then Runnable outputs a dict.
If ``include_raw`` is True, then Runnable outputs a dict with keys:
If `include_raw` is True, then Runnable outputs a dict with keys:
- ``'raw'``: BaseMessage
- ``'parsed'``: None if there was a parsing error, otherwise the type depends on the ``schema`` as described above.
- ``'parsing_error'``: Optional[BaseException]
- `'raw'`: BaseMessage
- `'parsed'`: None if there was a parsing error, otherwise the type depends on the `schema` as described above.
- `'parsing_error'`: BaseException | None
Example: Pydantic schema (include_raw=False):
.. code-block:: python
from pydantic import BaseModel
```python
from pydantic import BaseModel
class AnswerWithJustification(BaseModel):
'''An answer to the user question along with justification for the answer.'''
class AnswerWithJustification(BaseModel):
'''An answer to the user question along with justification for the answer.'''
answer: str
justification: str
answer: str
justification: str
llm = ChatModel(model="model-name", temperature=0)
structured_llm = llm.with_structured_output(AnswerWithJustification)
model = ChatModel(model="model-name", temperature=0)
structured_model = model.with_structured_output(AnswerWithJustification)
structured_llm.invoke(
"What weighs more a pound of bricks or a pound of feathers"
)
structured_model.invoke(
"What weighs more a pound of bricks or a pound of feathers"
)
# -> AnswerWithJustification(
# answer='They weigh the same',
# justification='Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume or density of the objects may differ.'
# )
# -> AnswerWithJustification(
# answer='They weigh the same',
# justification='Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume or density of the objects may differ.'
# )
```
Example: Pydantic schema (include_raw=True):
.. code-block:: python
from pydantic import BaseModel
```python
from pydantic import BaseModel
class AnswerWithJustification(BaseModel):
'''An answer to the user question along with justification for the answer.'''
class AnswerWithJustification(BaseModel):
'''An answer to the user question along with justification for the answer.'''
answer: str
justification: str
answer: str
justification: str
llm = ChatModel(model="model-name", temperature=0)
structured_llm = llm.with_structured_output(
AnswerWithJustification, include_raw=True
)
model = ChatModel(model="model-name", temperature=0)
structured_model = model.with_structured_output(
AnswerWithJustification, include_raw=True
)
structured_llm.invoke(
"What weighs more a pound of bricks or a pound of feathers"
)
# -> {
# 'raw': AIMessage(content='', additional_kwargs={'tool_calls': [{'id': 'call_Ao02pnFYXD6GN1yzc0uXPsvF', 'function': {'arguments': '{"answer":"They weigh the same.","justification":"Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume or density of the objects may differ."}', 'name': 'AnswerWithJustification'}, 'type': 'function'}]}),
# 'parsed': AnswerWithJustification(answer='They weigh the same.', justification='Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume or density of the objects may differ.'),
# 'parsing_error': None
# }
structured_model.invoke(
"What weighs more a pound of bricks or a pound of feathers"
)
# -> {
# 'raw': AIMessage(content='', additional_kwargs={'tool_calls': [{'id': 'call_Ao02pnFYXD6GN1yzc0uXPsvF', 'function': {'arguments': '{"answer":"They weigh the same.","justification":"Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume or density of the objects may differ."}', 'name': 'AnswerWithJustification'}, 'type': 'function'}]}),
# 'parsed': AnswerWithJustification(answer='They weigh the same.', justification='Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume or density of the objects may differ.'),
# 'parsing_error': None
# }
```
Example: Dict schema (include_raw=False):
.. code-block:: python
from pydantic import BaseModel
from langchain_core.utils.function_calling import convert_to_openai_tool
```python
from pydantic import BaseModel
from langchain_core.utils.function_calling import convert_to_openai_tool
class AnswerWithJustification(BaseModel):
'''An answer to the user question along with justification for the answer.'''
class AnswerWithJustification(BaseModel):
'''An answer to the user question along with justification for the answer.'''
answer: str
justification: str
answer: str
justification: str
dict_schema = convert_to_openai_tool(AnswerWithJustification)
llm = ChatModel(model="model-name", temperature=0)
structured_llm = llm.with_structured_output(dict_schema)
dict_schema = convert_to_openai_tool(AnswerWithJustification)
model = ChatModel(model="model-name", temperature=0)
structured_model = model.with_structured_output(dict_schema)
structured_llm.invoke(
"What weighs more a pound of bricks or a pound of feathers"
)
# -> {
# 'answer': 'They weigh the same',
# 'justification': 'Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume and density of the two substances differ.'
# }
structured_model.invoke(
"What weighs more a pound of bricks or a pound of feathers"
)
# -> {
# 'answer': 'They weigh the same',
# 'justification': 'Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume and density of the two substances differ.'
# }
```
!!! warning "Behavior changed in 0.2.26"
Added support for TypedDict class.
@@ -1689,7 +1669,7 @@ class SimpleChatModel(BaseChatModel):
!!! note
This implementation is primarily here for backwards compatibility. For new
implementations, please use ``BaseChatModel`` directly.
implementations, please use `BaseChatModel` directly.
"""

View File

@@ -19,7 +19,7 @@ from langchain_core.runnables import RunnableConfig
class FakeMessagesListChatModel(BaseChatModel):
"""Fake ``ChatModel`` for testing purposes."""
"""Fake `ChatModel` for testing purposes."""
responses: list[BaseMessage]
"""List of responses to **cycle** through in order."""
@@ -228,10 +228,10 @@ class GenericFakeChatModel(BaseChatModel):
"""Generic fake chat model that can be used to test the chat model interface.
* Chat model should be usable in both sync and async tests
* Invokes ``on_llm_new_token`` to allow for testing of callback related code for new
tokens.
* Invokes `on_llm_new_token` to allow for testing of callback related code for new
tokens.
* Includes logic to break messages into message chunk to facilitate testing of
streaming.
streaming.
"""
@@ -242,7 +242,7 @@ class GenericFakeChatModel(BaseChatModel):
to make the interface more generic if needed.
!!! note
if you want to pass a list, you can use ``iter`` to convert it to an iterator.
if you want to pass a list, you can use `iter` to convert it to an iterator.
!!! warning
Streaming is not implemented yet. We should try to implement it in the future by

View File

@@ -299,7 +299,7 @@ class BaseLLM(BaseLanguageModel[str], ABC):
@property
@override
def OutputType(self) -> type[str]:
"""Get the input type for this runnable."""
"""Get the input type for this `Runnable`."""
return str
def _convert_input(self, model_input: LanguageModelInput) -> PromptValue:
@@ -835,7 +835,7 @@ class BaseLLM(BaseLanguageModel[str], ABC):
1. Take advantage of batched calls,
2. Need more output from the model than just the top generated value,
3. Are building chains that are agnostic to the underlying language model
type (e.g., pure text completion models vs chat models).
type (e.g., pure text completion models vs chat models).
Args:
prompts: List of string prompts.
@@ -857,8 +857,8 @@ class BaseLLM(BaseLanguageModel[str], ABC):
Raises:
ValueError: If prompts is not a list.
ValueError: If the length of ``callbacks``, ``tags``, ``metadata``, or
``run_name`` (if provided) does not match the length of prompts.
ValueError: If the length of `callbacks`, `tags`, `metadata`, or
`run_name` (if provided) does not match the length of prompts.
Returns:
An LLMResult, which contains a list of candidate Generations for each input
@@ -1105,7 +1105,7 @@ class BaseLLM(BaseLanguageModel[str], ABC):
1. Take advantage of batched calls,
2. Need more output from the model than just the top generated value,
3. Are building chains that are agnostic to the underlying language model
type (e.g., pure text completion models vs chat models).
type (e.g., pure text completion models vs chat models).
Args:
prompts: List of string prompts.
@@ -1126,8 +1126,8 @@ class BaseLLM(BaseLanguageModel[str], ABC):
to the model provider API call.
Raises:
ValueError: If the length of ``callbacks``, ``tags``, ``metadata``, or
``run_name`` (if provided) does not match the length of prompts.
ValueError: If the length of `callbacks`, `tags`, `metadata`, or
`run_name` (if provided) does not match the length of prompts.
Returns:
An LLMResult, which contains a list of candidate Generations for each input
@@ -1340,11 +1340,9 @@ class BaseLLM(BaseLanguageModel[str], ABC):
ValueError: If the file path is not a string or Path object.
Example:
.. code-block:: python
llm.save(file_path="path/llm.yaml")
```python
llm.save(file_path="path/llm.yaml")
```
"""
# Convert file to Path object.
save_path = Path(file_path)

View File

@@ -45,7 +45,7 @@ def dumps(obj: Any, *, pretty: bool = False, **kwargs: Any) -> str:
pretty: Whether to pretty print the json. If true, the json will be
indented with 2 spaces (if no indent is provided as part of kwargs).
Default is False.
kwargs: Additional arguments to pass to json.dumps
**kwargs: Additional arguments to pass to json.dumps
Returns:
A json string representation of the object.

View File

@@ -63,16 +63,16 @@ class Reviver:
Args:
secrets_map: A map of secrets to load. If a secret is not found in
the map, it will be loaded from the environment if `secrets_from_env`
is True. Defaults to None.
is True.
valid_namespaces: A list of additional namespaces (modules)
to allow to be deserialized. Defaults to None.
to allow to be deserialized.
secrets_from_env: Whether to load secrets from the environment.
Defaults to True.
Defaults to `True`.
additional_import_mappings: A dictionary of additional namespace mappings
You can use this to override default mappings or add new mappings.
Defaults to None.
ignore_unserializable_fields: Whether to ignore unserializable fields.
Defaults to False.
Defaults to `False`.
"""
self.secrets_from_env = secrets_from_env
self.secrets_map = secrets_map or {}
@@ -107,7 +107,7 @@ class Reviver:
ValueError: If trying to deserialize something that cannot
be deserialized in the current version of langchain-core.
NotImplementedError: If the object is not implemented and
``ignore_unserializable_fields`` is False.
`ignore_unserializable_fields` is False.
"""
if (
value.get("lc") == 1
@@ -200,16 +200,16 @@ def loads(
text: The string to load.
secrets_map: A map of secrets to load. If a secret is not found in
the map, it will be loaded from the environment if `secrets_from_env`
is True. Defaults to None.
is True.
valid_namespaces: A list of additional namespaces (modules)
to allow to be deserialized. Defaults to None.
to allow to be deserialized.
secrets_from_env: Whether to load secrets from the environment.
Defaults to True.
Defaults to `True`.
additional_import_mappings: A dictionary of additional namespace mappings
You can use this to override default mappings or add new mappings.
Defaults to None.
ignore_unserializable_fields: Whether to ignore unserializable fields.
Defaults to False.
Defaults to `False`.
Returns:
Revived LangChain objects.
@@ -245,16 +245,16 @@ def load(
obj: The object to load.
secrets_map: A map of secrets to load. If a secret is not found in
the map, it will be loaded from the environment if `secrets_from_env`
is True. Defaults to None.
is True.
valid_namespaces: A list of additional namespaces (modules)
to allow to be deserialized. Defaults to None.
to allow to be deserialized.
secrets_from_env: Whether to load secrets from the environment.
Defaults to True.
Defaults to `True`.
additional_import_mappings: A dictionary of additional namespace mappings
You can use this to override default mappings or add new mappings.
Defaults to None.
ignore_unserializable_fields: Whether to ignore unserializable fields.
Defaults to False.
Defaults to `False`.
Returns:
Revived LangChain objects.

View File

@@ -25,16 +25,16 @@ class BaseSerialized(TypedDict):
id: list[str]
"""The unique identifier of the object."""
name: NotRequired[str]
"""The name of the object. Optional."""
"""The name of the object."""
graph: NotRequired[dict[str, Any]]
"""The graph of the object. Optional."""
"""The graph of the object."""
class SerializedConstructor(BaseSerialized):
"""Serialized constructor."""
type: Literal["constructor"]
"""The type of the object. Must be ``'constructor'``."""
"""The type of the object. Must be `'constructor'`."""
kwargs: dict[str, Any]
"""The constructor arguments."""
@@ -43,16 +43,16 @@ class SerializedSecret(BaseSerialized):
"""Serialized secret."""
type: Literal["secret"]
"""The type of the object. Must be ``'secret'``."""
"""The type of the object. Must be `'secret'`."""
class SerializedNotImplemented(BaseSerialized):
"""Serialized not implemented."""
type: Literal["not_implemented"]
"""The type of the object. Must be ``'not_implemented'``."""
"""The type of the object. Must be `'not_implemented'`."""
repr: str | None
"""The representation of the object. Optional."""
"""The representation of the object."""
def try_neq_default(value: Any, key: str, model: BaseModel) -> bool:
@@ -61,7 +61,7 @@ def try_neq_default(value: Any, key: str, model: BaseModel) -> bool:
Args:
value: The value.
key: The key.
model: The pydantic model.
model: The Pydantic model.
Returns:
Whether the value is different from the default.
@@ -92,19 +92,19 @@ class Serializable(BaseModel, ABC):
It relies on the following methods and properties:
- ``is_lc_serializable``: Is this class serializable?
By design, even if a class inherits from Serializable, it is not serializable by
default. This is to prevent accidental serialization of objects that should not
be serialized.
- ``get_lc_namespace``: Get the namespace of the langchain object.
During deserialization, this namespace is used to identify
the correct class to instantiate.
Please see the ``Reviver`` class in ``langchain_core.load.load`` for more details.
During deserialization an additional mapping is handle
classes that have moved or been renamed across package versions.
- ``lc_secrets``: A map of constructor argument names to secret ids.
- ``lc_attributes``: List of additional attribute names that should be included
as part of the serialized representation.
- `is_lc_serializable`: Is this class serializable?
By design, even if a class inherits from `Serializable`, it is not serializable
by default. This is to prevent accidental serialization of objects that should
not be serialized.
- `get_lc_namespace`: Get the namespace of the langchain object.
During deserialization, this namespace is used to identify
the correct class to instantiate.
Please see the `Reviver` class in `langchain_core.load.load` for more details.
During deserialization an additional mapping is handle classes that have moved
or been renamed across package versions.
- `lc_secrets`: A map of constructor argument names to secret ids.
- `lc_attributes`: List of additional attribute names that should be included
as part of the serialized representation.
"""
# Remove default BaseModel init docstring.
@@ -116,12 +116,12 @@ class Serializable(BaseModel, ABC):
def is_lc_serializable(cls) -> bool:
"""Is this class serializable?
By design, even if a class inherits from Serializable, it is not serializable by
default. This is to prevent accidental serialization of objects that should not
be serialized.
By design, even if a class inherits from `Serializable`, it is not serializable
by default. This is to prevent accidental serialization of objects that should
not be serialized.
Returns:
Whether the class is serializable. Default is False.
Whether the class is serializable. Default is `False`.
"""
return False
@@ -133,7 +133,7 @@ class Serializable(BaseModel, ABC):
namespace is ["langchain", "llms", "openai"]
Returns:
The namespace as a list of strings.
The namespace.
"""
return cls.__module__.split(".")
@@ -141,8 +141,7 @@ class Serializable(BaseModel, ABC):
def lc_secrets(self) -> dict[str, str]:
"""A map of constructor argument names to secret ids.
For example,
{"openai_api_key": "OPENAI_API_KEY"}
For example, `{"openai_api_key": "OPENAI_API_KEY"}`
"""
return {}
@@ -151,6 +150,7 @@ class Serializable(BaseModel, ABC):
"""List of attribute names that should be included in the serialized kwargs.
These attributes must be accepted by the constructor.
Default is an empty dictionary.
"""
return {}
@@ -161,8 +161,9 @@ class Serializable(BaseModel, ABC):
The unique identifier is a list of strings that describes the path
to the object.
For example, for the class `langchain.llms.openai.OpenAI`, the id is
["langchain", "llms", "openai", "OpenAI"].
`["langchain", "llms", "openai", "OpenAI"]`.
"""
# Pydantic generics change the class name. So we need to do the following
if (
@@ -193,7 +194,7 @@ class Serializable(BaseModel, ABC):
ValueError: If the class has deprecated attributes.
Returns:
A json serializable object or a SerializedNotImplemented object.
A json serializable object or a `SerializedNotImplemented` object.
"""
if not self.is_lc_serializable():
return self.to_json_not_implemented()
@@ -268,7 +269,7 @@ class Serializable(BaseModel, ABC):
"""Serialize a "not implemented" object.
Returns:
SerializedNotImplemented.
`SerializedNotImplemented`.
"""
return to_json_not_implemented(self)
@@ -283,8 +284,8 @@ def _is_field_useful(inst: Serializable, key: str, value: Any) -> bool:
Returns:
Whether the field is useful. If the field is required, it is useful.
If the field is not required, it is useful if the value is not None.
If the field is not required and the value is None, it is useful if the
If the field is not required, it is useful if the value is not `None`.
If the field is not required and the value is `None`, it is useful if the
default value is different from the value.
"""
field = type(inst).model_fields.get(key)
@@ -343,10 +344,10 @@ def to_json_not_implemented(obj: object) -> SerializedNotImplemented:
"""Serialize a "not implemented" object.
Args:
obj: object to serialize.
obj: Object to serialize.
Returns:
SerializedNotImplemented
`SerializedNotImplemented`
"""
id_: list[str] = []
try:

View File

@@ -36,28 +36,25 @@ class BaseMemory(Serializable, ABC):
the latest input.
Example:
.. code-block:: python
```python
class SimpleMemory(BaseMemory):
memories: dict[str, Any] = dict()
class SimpleMemory(BaseMemory):
memories: dict[str, Any] = dict()
@property
def memory_variables(self) -> list[str]:
return list(self.memories.keys())
@property
def memory_variables(self) -> list[str]:
return list(self.memories.keys())
def load_memory_variables(self, inputs: dict[str, Any]) -> dict[str, str]:
return self.memories
def load_memory_variables(
self, inputs: dict[str, Any]
) -> dict[str, str]:
return self.memories
def save_context(
self, inputs: dict[str, Any], outputs: dict[str, str]
) -> None:
pass
def clear(self) -> None:
pass
def save_context(
self, inputs: dict[str, Any], outputs: dict[str, str]
) -> None:
pass
def clear(self) -> None:
pass
```
"""
model_config = ConfigDict(

View File

@@ -1,19 +1,4 @@
"""**Messages** are objects used in prompts and chat conversations.
**Class hierarchy:**
.. code-block::
BaseMessage --> SystemMessage, AIMessage, HumanMessage, ChatMessage, FunctionMessage, ToolMessage
--> BaseMessageChunk --> SystemMessageChunk, AIMessageChunk, HumanMessageChunk, ChatMessageChunk, FunctionMessageChunk, ToolMessageChunk
**Main helpers:**
.. code-block::
ChatPromptTemplate
""" # noqa: E501
"""**Messages** are objects used in prompts and chat conversations."""
from typing import TYPE_CHECKING

View File

@@ -40,13 +40,13 @@ class InputTokenDetails(TypedDict, total=False):
Does *not* need to sum to full input token count. Does *not* need to have all keys.
Example:
.. code-block:: python
{
"audio": 10,
"cache_creation": 200,
"cache_read": 100,
}
```python
{
"audio": 10,
"cache_creation": 200,
"cache_read": 100,
}
```
!!! version-added "Added in version 0.3.9"
@@ -76,12 +76,12 @@ class OutputTokenDetails(TypedDict, total=False):
Does *not* need to sum to full output token count. Does *not* need to have all keys.
Example:
.. code-block:: python
{
"audio": 10,
"reasoning": 200,
}
```python
{
"audio": 10,
"reasoning": 200,
}
```
!!! version-added "Added in version 0.3.9"
@@ -104,25 +104,25 @@ class UsageMetadata(TypedDict):
This is a standard representation of token usage that is consistent across models.
Example:
.. code-block:: python
{
"input_tokens": 350,
"output_tokens": 240,
"total_tokens": 590,
"input_token_details": {
"audio": 10,
"cache_creation": 200,
"cache_read": 100,
},
"output_token_details": {
"audio": 10,
"reasoning": 200,
},
}
```python
{
"input_tokens": 350,
"output_tokens": 240,
"total_tokens": 590,
"input_token_details": {
"audio": 10,
"cache_creation": 200,
"cache_read": 100,
},
"output_token_details": {
"audio": 10,
"reasoning": 200,
},
}
```
!!! warning "Behavior changed in 0.3.9"
Added ``input_token_details`` and ``output_token_details``.
Added `input_token_details` and `output_token_details`.
"""
@@ -191,14 +191,14 @@ class AIMessage(BaseMessage):
content_blocks: list[types.ContentBlock] | None = None,
**kwargs: Any,
) -> None:
"""Initialize ``AIMessage``.
"""Initialize `AIMessage`.
Specify ``content`` as positional arg or ``content_blocks`` for typing.
Specify `content` as positional arg or `content_blocks` for typing.
Args:
content: The content of the message.
content_blocks: Typed standard content.
kwargs: Additional arguments to pass to the parent class.
**kwargs: Additional arguments to pass to the parent class.
"""
if content_blocks is not None:
# If there are tool calls in content_blocks, but not in tool_calls, add them
@@ -229,7 +229,7 @@ class AIMessage(BaseMessage):
If the message has a known model provider, use the provider-specific translator
first before falling back to best-effort parsing. For details, see the property
on ``BaseMessage``.
on `BaseMessage`.
"""
if self.response_metadata.get("output_version") == "v1":
return cast("list[types.ContentBlock]", self.content)
@@ -335,7 +335,7 @@ class AIMessage(BaseMessage):
Args:
html: Whether to return an HTML-formatted string.
Defaults to False.
Defaults to `False`.
Returns:
A pretty representation of the message.
@@ -380,7 +380,7 @@ class AIMessageChunk(AIMessage, BaseMessageChunk):
type: Literal["AIMessageChunk"] = "AIMessageChunk" # type: ignore[assignment]
"""The type of the message (used for deserialization).
Defaults to ``AIMessageChunk``.
Defaults to `AIMessageChunk`.
"""
@@ -390,8 +390,8 @@ class AIMessageChunk(AIMessage, BaseMessageChunk):
chunk_position: Literal["last"] | None = None
"""Optional span represented by an aggregated AIMessageChunk.
If a chunk with ``chunk_position="last"`` is aggregated into a stream,
``tool_call_chunks`` in message content will be parsed into ``tool_calls``.
If a chunk with `chunk_position="last"` is aggregated into a stream,
`tool_call_chunks` in message content will be parsed into `tool_calls`.
"""
@property
@@ -596,14 +596,14 @@ class AIMessageChunk(AIMessage, BaseMessageChunk):
def add_ai_message_chunks(
left: AIMessageChunk, *others: AIMessageChunk
) -> AIMessageChunk:
"""Add multiple ``AIMessageChunk``s together.
"""Add multiple `AIMessageChunk`s together.
Args:
left: The first ``AIMessageChunk``.
*others: Other ``AIMessageChunk``s to add.
left: The first `AIMessageChunk`.
*others: Other `AIMessageChunk`s to add.
Returns:
The resulting ``AIMessageChunk``.
The resulting `AIMessageChunk`.
"""
content = merge_content(left.content, *(o.content for o in others))
@@ -681,43 +681,42 @@ def add_usage(left: UsageMetadata | None, right: UsageMetadata | None) -> UsageM
"""Recursively add two UsageMetadata objects.
Example:
.. code-block:: python
```python
from langchain_core.messages.ai import add_usage
from langchain_core.messages.ai import add_usage
left = UsageMetadata(
input_tokens=5,
output_tokens=0,
total_tokens=5,
input_token_details=InputTokenDetails(cache_read=3),
)
right = UsageMetadata(
input_tokens=0,
output_tokens=10,
total_tokens=10,
output_token_details=OutputTokenDetails(reasoning=4),
)
left = UsageMetadata(
input_tokens=5,
output_tokens=0,
total_tokens=5,
input_token_details=InputTokenDetails(cache_read=3),
)
right = UsageMetadata(
input_tokens=0,
output_tokens=10,
total_tokens=10,
output_token_details=OutputTokenDetails(reasoning=4),
)
add_usage(left, right)
add_usage(left, right)
```
results in
.. code-block:: python
UsageMetadata(
input_tokens=5,
output_tokens=10,
total_tokens=15,
input_token_details=InputTokenDetails(cache_read=3),
output_token_details=OutputTokenDetails(reasoning=4),
)
```python
UsageMetadata(
input_tokens=5,
output_tokens=10,
total_tokens=15,
input_token_details=InputTokenDetails(cache_read=3),
output_token_details=OutputTokenDetails(reasoning=4),
)
```
Args:
left: The first ``UsageMetadata`` object.
right: The second ``UsageMetadata`` object.
left: The first `UsageMetadata` object.
right: The second `UsageMetadata` object.
Returns:
The sum of the two ``UsageMetadata`` objects.
The sum of the two `UsageMetadata` objects.
"""
if not (left or right):
@@ -740,48 +739,47 @@ def add_usage(left: UsageMetadata | None, right: UsageMetadata | None) -> UsageM
def subtract_usage(
left: UsageMetadata | None, right: UsageMetadata | None
) -> UsageMetadata:
"""Recursively subtract two ``UsageMetadata`` objects.
"""Recursively subtract two `UsageMetadata` objects.
Token counts cannot be negative so the actual operation is ``max(left - right, 0)``.
Token counts cannot be negative so the actual operation is `max(left - right, 0)`.
Example:
.. code-block:: python
```python
from langchain_core.messages.ai import subtract_usage
from langchain_core.messages.ai import subtract_usage
left = UsageMetadata(
input_tokens=5,
output_tokens=10,
total_tokens=15,
input_token_details=InputTokenDetails(cache_read=4),
)
right = UsageMetadata(
input_tokens=3,
output_tokens=8,
total_tokens=11,
output_token_details=OutputTokenDetails(reasoning=4),
)
left = UsageMetadata(
input_tokens=5,
output_tokens=10,
total_tokens=15,
input_token_details=InputTokenDetails(cache_read=4),
)
right = UsageMetadata(
input_tokens=3,
output_tokens=8,
total_tokens=11,
output_token_details=OutputTokenDetails(reasoning=4),
)
subtract_usage(left, right)
subtract_usage(left, right)
```
results in
.. code-block:: python
UsageMetadata(
input_tokens=2,
output_tokens=2,
total_tokens=4,
input_token_details=InputTokenDetails(cache_read=4),
output_token_details=OutputTokenDetails(reasoning=0),
)
```python
UsageMetadata(
input_tokens=2,
output_tokens=2,
total_tokens=4,
input_token_details=InputTokenDetails(cache_read=4),
output_token_details=OutputTokenDetails(reasoning=0),
)
```
Args:
left: The first ``UsageMetadata`` object.
right: The second ``UsageMetadata`` object.
left: The first `UsageMetadata` object.
right: The second `UsageMetadata` object.
Returns:
The resulting ``UsageMetadata`` after subtraction.
The resulting `UsageMetadata` after subtraction.
"""
if not (left or right):

View File

@@ -48,13 +48,13 @@ class TextAccessor(str):
Exists to maintain backward compatibility while transitioning from method-based to
property-based text access in message objects. In LangChain <v1.0, message text was
accessed via ``.text()`` method calls. In v1.0=<, the preferred pattern is property
access via ``.text``.
accessed via `.text()` method calls. In v1.0=<, the preferred pattern is property
access via `.text`.
Rather than breaking existing code immediately, ``TextAccessor`` allows both
Rather than breaking existing code immediately, `TextAccessor` allows both
patterns:
- Modern property access: ``message.text`` (returns string directly)
- Legacy method access: ``message.text()`` (callable, emits deprecation warning)
- Modern property access: `message.text` (returns string directly)
- Legacy method access: `message.text()` (callable, emits deprecation warning)
"""
@@ -67,12 +67,12 @@ class TextAccessor(str):
def __call__(self) -> str:
"""Enable method-style text access for backward compatibility.
This method exists solely to support legacy code that calls ``.text()``
as a method. New code should use property access (``.text``) instead.
This method exists solely to support legacy code that calls `.text()`
as a method. New code should use property access (`.text`) instead.
!!! deprecated
As of `langchain-core` 1.0.0, calling ``.text()`` as a method is deprecated.
Use ``.text`` as a property instead. This method will be removed in 2.0.0.
As of `langchain-core` 1.0.0, calling `.text()` as a method is deprecated.
Use `.text` as a property instead. This method will be removed in 2.0.0.
Returns:
The string content, identical to property access.
@@ -92,7 +92,7 @@ class TextAccessor(str):
class BaseMessage(Serializable):
"""Base abstract message class.
Messages are the inputs and outputs of a ``ChatModel``.
Messages are the inputs and outputs of a `ChatModel`.
"""
content: str | list[str | dict]
@@ -159,14 +159,14 @@ class BaseMessage(Serializable):
content_blocks: list[types.ContentBlock] | None = None,
**kwargs: Any,
) -> None:
"""Initialize ``BaseMessage``.
"""Initialize `BaseMessage`.
Specify ``content`` as positional arg or ``content_blocks`` for typing.
Specify `content` as positional arg or `content_blocks` for typing.
Args:
content: The string contents of the message.
content_blocks: Typed standard content.
kwargs: Additional arguments to pass to the parent class.
**kwargs: Additional arguments to pass to the parent class.
"""
if content_blocks is not None:
super().__init__(content=content_blocks, **kwargs)
@@ -175,7 +175,7 @@ class BaseMessage(Serializable):
@classmethod
def is_lc_serializable(cls) -> bool:
"""``BaseMessage`` is serializable.
"""`BaseMessage` is serializable.
Returns:
True
@@ -187,7 +187,7 @@ class BaseMessage(Serializable):
"""Get the namespace of the langchain object.
Returns:
``["langchain", "schema", "messages"]``
`["langchain", "schema", "messages"]`
"""
return ["langchain", "schema", "messages"]
@@ -259,11 +259,11 @@ class BaseMessage(Serializable):
def text(self) -> TextAccessor:
"""Get the text content of the message as a string.
Can be used as both property (``message.text``) and method (``message.text()``).
Can be used as both property (`message.text`) and method (`message.text()`).
!!! deprecated
As of langchain-core 1.0.0, calling ``.text()`` as a method is deprecated.
Use ``.text`` as a property instead. This method will be removed in 2.0.0.
As of langchain-core 1.0.0, calling `.text()` as a method is deprecated.
Use `.text` as a property instead. This method will be removed in 2.0.0.
Returns:
The text content of the message.
@@ -306,7 +306,7 @@ class BaseMessage(Serializable):
"""Get a pretty representation of the message.
Args:
html: Whether to format the message as HTML. If True, the message will be
html: Whether to format the message as HTML. If `True`, the message will be
formatted with HTML tags. Default is False.
Returns:
@@ -331,8 +331,8 @@ def merge_content(
"""Merge multiple message contents.
Args:
first_content: The first ``content``. Can be a string or a list.
contents: The other ``content``s. Can be a string or a list.
first_content: The first `content`. Can be a string or a list.
contents: The other `content`s. Can be a string or a list.
Returns:
The merged content.
@@ -388,9 +388,9 @@ class BaseMessageChunk(BaseMessage):
For example,
``AIMessageChunk(content="Hello") + AIMessageChunk(content=" World")``
`AIMessageChunk(content="Hello") + AIMessageChunk(content=" World")`
will give ``AIMessageChunk(content="Hello World")``
will give `AIMessageChunk(content="Hello World")`
"""
if isinstance(other, BaseMessageChunk):
@@ -439,8 +439,8 @@ def message_to_dict(message: BaseMessage) -> dict:
message: Message to convert.
Returns:
Message as a dict. The dict will have a ``type`` key with the message type
and a ``data`` key with the message data as a dict.
Message as a dict. The dict will have a `type` key with the message type
and a `data` key with the message data as a dict.
"""
return {"type": message.type, "data": message.model_dump()}
@@ -450,7 +450,7 @@ def messages_to_dict(messages: Sequence[BaseMessage]) -> list[dict]:
"""Convert a sequence of Messages to a list of dictionaries.
Args:
messages: Sequence of messages (as ``BaseMessage``s) to convert.
messages: Sequence of messages (as `BaseMessage`s) to convert.
Returns:
List of messages as dicts.

View File

@@ -1,13 +1,13 @@
"""Derivations of standard content blocks from provider content.
``AIMessage`` will first attempt to use a provider-specific translator if
``model_provider`` is set in ``response_metadata`` on the message. Consequently, each
`AIMessage` will first attempt to use a provider-specific translator if
`model_provider` is set in `response_metadata` on the message. Consequently, each
provider translator must handle all possible content response types from the provider,
including text.
If no provider is set, or if the provider does not have a registered translator,
``AIMessage`` will fall back to best-effort parsing of the content into blocks using
the implementation in ``BaseMessage``.
`AIMessage` will fall back to best-effort parsing of the content into blocks using
the implementation in `BaseMessage`.
"""
from __future__ import annotations
@@ -23,15 +23,15 @@ if TYPE_CHECKING:
PROVIDER_TRANSLATORS: dict[str, dict[str, Callable[..., list[types.ContentBlock]]]] = {}
"""Map model provider names to translator functions.
The dictionary maps provider names (e.g. ``'openai'``, ``'anthropic'``) to another
The dictionary maps provider names (e.g. `'openai'`, `'anthropic'`) to another
dictionary with two keys:
- ``'translate_content'``: Function to translate ``AIMessage`` content.
- ``'translate_content_chunk'``: Function to translate ``AIMessageChunk`` content.
- `'translate_content'`: Function to translate `AIMessage` content.
- `'translate_content_chunk'`: Function to translate `AIMessageChunk` content.
When calling `.content_blocks` on an ``AIMessage`` or ``AIMessageChunk``, if
``model_provider`` is set in ``response_metadata``, the corresponding translator
When calling `.content_blocks` on an `AIMessage` or `AIMessageChunk`, if
`model_provider` is set in `response_metadata`, the corresponding translator
functions will be used to parse the content into blocks. Otherwise, best-effort parsing
in ``BaseMessage`` will be used.
in `BaseMessage` will be used.
"""
@@ -43,9 +43,9 @@ def register_translator(
"""Register content translators for a provider in `PROVIDER_TRANSLATORS`.
Args:
provider: The model provider name (e.g. ``'openai'``, ``'anthropic'``).
translate_content: Function to translate ``AIMessage`` content.
translate_content_chunk: Function to translate ``AIMessageChunk`` content.
provider: The model provider name (e.g. `'openai'`, `'anthropic'`).
translate_content: Function to translate `AIMessage` content.
translate_content_chunk: Function to translate `AIMessageChunk` content.
"""
PROVIDER_TRANSLATORS[provider] = {
"translate_content": translate_content,
@@ -62,9 +62,9 @@ def get_translator(
provider: The model provider name.
Returns:
Dictionary with ``'translate_content'`` and ``'translate_content_chunk'``
Dictionary with `'translate_content'` and `'translate_content_chunk'`
functions, or None if no translator is registered for the provider. In such
case, best-effort parsing in ``BaseMessage`` will be used.
case, best-effort parsing in `BaseMessage` will be used.
"""
return PROVIDER_TRANSLATORS.get(provider)
@@ -72,10 +72,10 @@ def get_translator(
def _register_translators() -> None:
"""Register all translators in langchain-core.
A unit test ensures all modules in ``block_translators`` are represented here.
A unit test ensures all modules in `block_translators` are represented here.
For translators implemented outside langchain-core, they can be registered by
calling ``register_translator`` from within the integration package.
calling `register_translator` from within the integration package.
"""
from langchain_core.messages.block_translators.anthropic import ( # noqa: PLC0415
_register_anthropic_translator,

View File

@@ -32,11 +32,11 @@ def _convert_to_v1_from_anthropic_input(
"""Convert Anthropic format blocks to v1 format.
During the `.content_blocks` parsing process, we wrap blocks not recognized as a v1
block as a ``'non_standard'`` block with the original block stored in the ``value``
block as a `'non_standard'` block with the original block stored in the `value`
field. This function attempts to unpack those blocks and convert any blocks that
might be Anthropic format to v1 ContentBlocks.
If conversion fails, the block is left as a ``'non_standard'`` block.
If conversion fails, the block is left as a `'non_standard'` block.
Args:
content: List of content blocks to process.

View File

@@ -36,11 +36,11 @@ def _convert_to_v1_from_converse_input(
"""Convert Bedrock Converse format blocks to v1 format.
During the `.content_blocks` parsing process, we wrap blocks not recognized as a v1
block as a ``'non_standard'`` block with the original block stored in the ``value``
block as a `'non_standard'` block with the original block stored in the `value`
field. This function attempts to unpack those blocks and convert any blocks that
might be Converse format to v1 ContentBlocks.
If conversion fails, the block is left as a ``'non_standard'`` block.
If conversion fails, the block is left as a `'non_standard'` block.
Args:
content: List of content blocks to process.

View File

@@ -106,11 +106,11 @@ def _convert_to_v1_from_genai_input(
`response_metadata`.
During the `.content_blocks` parsing process, we wrap blocks not recognized as a v1
block as a ``'non_standard'`` block with the original block stored in the ``value``
block as a `'non_standard'` block with the original block stored in the `value`
field. This function attempts to unpack those blocks and convert any blocks that
might be GenAI format to v1 ContentBlocks.
If conversion fails, the block is left as a ``'non_standard'`` block.
If conversion fails, the block is left as a `'non_standard'` block.
Args:
content: List of content blocks to process.

View File

@@ -11,11 +11,11 @@ def _convert_v0_multimodal_input_to_v1(
"""Convert v0 multimodal blocks to v1 format.
During the `.content_blocks` parsing process, we wrap blocks not recognized as a v1
block as a ``'non_standard'`` block with the original block stored in the ``value``
block as a `'non_standard'` block with the original block stored in the `value`
field. This function attempts to unpack those blocks and convert any v0 format
blocks to v1 format.
If conversion fails, the block is left as a ``'non_standard'`` block.
If conversion fails, the block is left as a `'non_standard'` block.
Args:
content: List of content blocks to process.

View File

@@ -18,7 +18,7 @@ if TYPE_CHECKING:
def convert_to_openai_image_block(block: dict[str, Any]) -> dict:
"""Convert ``ImageContentBlock`` to format expected by OpenAI Chat Completions."""
"""Convert `ImageContentBlock` to format expected by OpenAI Chat Completions."""
if "url" in block:
return {
"type": "image_url",
@@ -156,11 +156,11 @@ def _convert_to_v1_from_chat_completions_input(
"""Convert OpenAI Chat Completions format blocks to v1 format.
During the `.content_blocks` parsing process, we wrap blocks not recognized as a v1
block as a ``'non_standard'`` block with the original block stored in the ``value``
block as a `'non_standard'` block with the original block stored in the `value`
field. This function attempts to unpack those blocks and convert any blocks that
might be OpenAI format to v1 ContentBlocks.
If conversion fails, the block is left as a ``'non_standard'`` block.
If conversion fails, the block is left as a `'non_standard'` block.
Args:
content: List of content blocks to process.
@@ -263,7 +263,7 @@ _FUNCTION_CALL_IDS_MAP_KEY = "__openai_function_call_ids__"
def _convert_from_v03_ai_message(message: AIMessage) -> AIMessage:
"""Convert v0 AIMessage into ``output_version="responses/v1"`` format."""
"""Convert v0 AIMessage into `output_version="responses/v1"` format."""
from langchain_core.messages import AIMessageChunk # noqa: PLC0415
# Only update ChatOpenAI v0.3 AIMessages

View File

@@ -31,7 +31,7 @@ class ChatMessageChunk(ChatMessage, BaseMessageChunk):
type: Literal["ChatMessageChunk"] = "ChatMessageChunk" # type: ignore[assignment]
"""The type of the message (used during serialization).
Defaults to ``'ChatMessageChunk'``.
Defaults to `'ChatMessageChunk'`.
"""

View File

@@ -5,7 +5,7 @@
change in future releases.
This module provides standardized data structures for representing inputs to and
outputs from LLMs. The core abstraction is the **Content Block**, a ``TypedDict``.
outputs from LLMs. The core abstraction is the **Content Block**, a `TypedDict`.
**Rationale**
@@ -20,59 +20,59 @@ blocks into the format required by its API.
**Extensibility**
Data **not yet mapped** to a standard block may be represented using the
``NonStandardContentBlock``, which allows for provider-specific data to be included
`NonStandardContentBlock`, which allows for provider-specific data to be included
without losing the benefits of type checking and validation.
Furthermore, provider-specific fields **within** a standard block are fully supported
by default in the ``extras`` field of each block. This allows for additional metadata
by default in the `extras` field of each block. This allows for additional metadata
to be included without breaking the standard structure.
!!! warning
Do not heavily rely on the ``extras`` field for provider-specific data! This field
Do not heavily rely on the `extras` field for provider-specific data! This field
is subject to deprecation in future releases as we move towards PEP 728.
!!! note
Following widespread adoption of `PEP 728 <https://peps.python.org/pep-0728/>`__, we
will add ``extra_items=Any`` as a param to Content Blocks. This will signify to type
Following widespread adoption of [PEP 728](https://peps.python.org/pep-0728/), we
will add `extra_items=Any` as a param to Content Blocks. This will signify to type
checkers that additional provider-specific fields are allowed outside of the
``extras`` field, and that will become the new standard approach to adding
`extras` field, and that will become the new standard approach to adding
provider-specific metadata.
??? note
**Example with PEP 728 provider-specific fields:**
.. code-block:: python
```python
# Content block definition
# NOTE: `extra_items=Any`
class TextContentBlock(TypedDict, extra_items=Any):
type: Literal["text"]
id: NotRequired[str]
text: str
annotations: NotRequired[list[Annotation]]
index: NotRequired[int]
```
# Content block definition
# NOTE: `extra_items=Any`
class TextContentBlock(TypedDict, extra_items=Any):
type: Literal["text"]
id: NotRequired[str]
text: str
annotations: NotRequired[list[Annotation]]
index: NotRequired[int]
```python
from langchain_core.messages.content import TextContentBlock
.. code-block:: python
# Create a text content block with provider-specific fields
my_block: TextContentBlock = {
# Add required fields
"type": "text",
"text": "Hello, world!",
# Additional fields not specified in the TypedDict
# These are valid with PEP 728 and are typed as Any
"openai_metadata": {"model": "gpt-4", "temperature": 0.7},
"anthropic_usage": {"input_tokens": 10, "output_tokens": 20},
"custom_field": "any value",
}
from langchain_core.messages.content import TextContentBlock
# Mutating an existing block to add provider-specific fields
openai_data = my_block["openai_metadata"] # Type: Any
```
# Create a text content block with provider-specific fields
my_block: TextContentBlock = {
# Add required fields
"type": "text",
"text": "Hello, world!",
# Additional fields not specified in the TypedDict
# These are valid with PEP 728 and are typed as Any
"openai_metadata": {"model": "gpt-4", "temperature": 0.7},
"anthropic_usage": {"input_tokens": 10, "output_tokens": 20},
"custom_field": "any value",
}
# Mutating an existing block to add provider-specific fields
openai_data = my_block["openai_metadata"] # Type: Any
PEP 728 is enabled with ``# type: ignore[call-arg]`` comments to suppress
PEP 728 is enabled with `# type: ignore[call-arg]` comments to suppress
warnings from type checkers that don't yet support it. The functionality works
correctly in Python 3.13+ and will be fully supported as the ecosystem catches
up.
@@ -81,52 +81,51 @@ to be included without breaking the standard structure.
The module defines several types of content blocks, including:
- ``TextContentBlock``: Standard text output.
- ``Citation``: For annotations that link text output to a source document.
- ``ToolCall``: For function calling.
- ``ReasoningContentBlock``: To capture a model's thought process.
- `TextContentBlock`: Standard text output.
- `Citation`: For annotations that link text output to a source document.
- `ToolCall`: For function calling.
- `ReasoningContentBlock`: To capture a model's thought process.
- Multimodal data:
- ``ImageContentBlock``
- ``AudioContentBlock``
- ``VideoContentBlock``
- ``PlainTextContentBlock`` (e.g. .txt or .md files)
- ``FileContentBlock`` (e.g. PDFs, etc.)
- `ImageContentBlock`
- `AudioContentBlock`
- `VideoContentBlock`
- `PlainTextContentBlock` (e.g. .txt or .md files)
- `FileContentBlock` (e.g. PDFs, etc.)
**Example Usage**
.. code-block:: python
```python
# Direct construction:
from langchain_core.messages.content import TextContentBlock, ImageContentBlock
# Direct construction:
from langchain_core.messages.content import TextContentBlock, ImageContentBlock
multimodal_message: AIMessage(
content_blocks=[
TextContentBlock(type="text", text="What is shown in this image?"),
ImageContentBlock(
type="image",
url="https://www.langchain.com/images/brand/langchain_logo_text_w_white.png",
mime_type="image/png",
),
]
)
multimodal_message: AIMessage(
content_blocks=[
TextContentBlock(type="text", text="What is shown in this image?"),
ImageContentBlock(
type="image",
url="https://www.langchain.com/images/brand/langchain_logo_text_w_white.png",
mime_type="image/png",
),
]
)
# Using factories:
from langchain_core.messages.content import create_text_block, create_image_block
# Using factories:
from langchain_core.messages.content import create_text_block, create_image_block
multimodal_message: AIMessage(
content=[
create_text_block("What is shown in this image?"),
create_image_block(
url="https://www.langchain.com/images/brand/langchain_logo_text_w_white.png",
mime_type="image/png",
),
]
)
multimodal_message: AIMessage(
content=[
create_text_block("What is shown in this image?"),
create_image_block(
url="https://www.langchain.com/images/brand/langchain_logo_text_w_white.png",
mime_type="image/png",
),
]
)
```
Factory functions offer benefits such as:
- Automatic ID generation (when not provided)
- No need to manually specify the ``type`` field
- No need to manually specify the `type` field
"""
from typing import Any, Literal, get_args, get_type_hints
@@ -140,12 +139,12 @@ class Citation(TypedDict):
"""Annotation for citing data from a document.
!!! note
``start``/``end`` indices refer to the **response text**,
`start`/`end` indices refer to the **response text**,
not the source text. This means that the indices are relative to the model's
response, not the original document (as specified in the ``url``).
response, not the original document (as specified in the `url`).
!!! note
``create_citation`` may also be used as a factory to create a ``Citation``.
`create_citation` may also be used as a factory to create a `Citation`.
Benefits include:
* Automatic ID generation (when not provided)
@@ -160,7 +159,7 @@ class Citation(TypedDict):
"""Content block identifier. Either:
- Generated by the provider (e.g., OpenAI's file ID)
- Generated by LangChain upon creation (``UUID4`` prefixed with ``'lc_'``))
- Generated by LangChain upon creation (`UUID4` prefixed with `'lc_'`))
"""
@@ -174,10 +173,10 @@ class Citation(TypedDict):
"""
start_index: NotRequired[int]
"""Start index of the **response text** (``TextContentBlock.text``)."""
"""Start index of the **response text** (`TextContentBlock.text`)."""
end_index: NotRequired[int]
"""End index of the **response text** (``TextContentBlock.text``)"""
"""End index of the **response text** (`TextContentBlock.text`)"""
cited_text: NotRequired[str]
"""Excerpt of source text being cited."""
@@ -203,7 +202,7 @@ class NonStandardAnnotation(TypedDict):
Either:
- Generated by the provider (e.g., OpenAI's file ID)
- Generated by LangChain upon creation (``UUID4`` prefixed with ``'lc_'``))
- Generated by LangChain upon creation (`UUID4` prefixed with `'lc_'`))
"""
@@ -221,8 +220,8 @@ class TextContentBlock(TypedDict):
from a language model or the text of a user message.
!!! note
``create_text_block`` may also be used as a factory to create a
``TextContentBlock``. Benefits include:
`create_text_block` may also be used as a factory to create a
`TextContentBlock`. Benefits include:
* Automatic ID generation (when not provided)
* Required arguments strictly validated at creation time
@@ -237,7 +236,7 @@ class TextContentBlock(TypedDict):
Either:
- Generated by the provider (e.g., OpenAI's file ID)
- Generated by LangChain upon creation (``UUID4`` prefixed with ``'lc_'``))
- Generated by LangChain upon creation (`UUID4` prefixed with `'lc_'`))
"""
@@ -245,7 +244,7 @@ class TextContentBlock(TypedDict):
"""Block text."""
annotations: NotRequired[list[Annotation]]
"""``Citation``s and other annotations."""
"""`Citation`s and other annotations."""
index: NotRequired[int | str]
"""Index of block in aggregate response. Used during streaming."""
@@ -258,17 +257,16 @@ class ToolCall(TypedDict):
"""Represents a request to call a tool.
Example:
.. code-block:: python
{"name": "foo", "args": {"a": 1}, "id": "123"}
```python
{"name": "foo", "args": {"a": 1}, "id": "123"}
```
This represents a request to call the tool named "foo" with arguments {"a": 1}
and an identifier of "123".
!!! note
``create_tool_call`` may also be used as a factory to create a
``ToolCall``. Benefits include:
`create_tool_call` may also be used as a factory to create a
`ToolCall`. Benefits include:
* Automatic ID generation (when not provided)
* Required arguments strictly validated at creation time
@@ -303,22 +301,20 @@ class ToolCall(TypedDict):
class ToolCallChunk(TypedDict):
"""A chunk of a tool call (e.g., as part of a stream).
When merging ``ToolCallChunks`` (e.g., via ``AIMessageChunk.__add__``),
When merging `ToolCallChunks` (e.g., via `AIMessageChunk.__add__`),
all string attributes are concatenated. Chunks are only merged if their
values of ``index`` are equal and not ``None``.
values of `index` are equal and not `None`.
Example:
```python
left_chunks = [ToolCallChunk(name="foo", args='{"a":', index=0)]
right_chunks = [ToolCallChunk(name=None, args="1}", index=0)]
.. code-block:: python
left_chunks = [ToolCallChunk(name="foo", args='{"a":', index=0)]
right_chunks = [ToolCallChunk(name=None, args="1}", index=0)]
(
AIMessageChunk(content="", tool_call_chunks=left_chunks)
+ AIMessageChunk(content="", tool_call_chunks=right_chunks)
).tool_call_chunks == [ToolCallChunk(name="foo", args='{"a":1}', index=0)]
(
AIMessageChunk(content="", tool_call_chunks=left_chunks)
+ AIMessageChunk(content="", tool_call_chunks=right_chunks)
).tool_call_chunks == [ToolCallChunk(name="foo", args='{"a":1}', index=0)]
```
"""
# TODO: Consider making fields NotRequired[str] in the future.
@@ -350,7 +346,7 @@ class ToolCallChunk(TypedDict):
class InvalidToolCall(TypedDict):
"""Allowance for errors made by LLM.
Here we add an ``error`` key to surface errors made during generation
Here we add an `error` key to surface errors made during generation
(e.g., invalid JSON arguments.)
"""
@@ -457,8 +453,8 @@ class ReasoningContentBlock(TypedDict):
"""Reasoning output from a LLM.
!!! note
``create_reasoning_block`` may also be used as a factory to create a
``ReasoningContentBlock``. Benefits include:
`create_reasoning_block` may also be used as a factory to create a
`ReasoningContentBlock`. Benefits include:
* Automatic ID generation (when not provided)
* Required arguments strictly validated at creation time
@@ -473,7 +469,7 @@ class ReasoningContentBlock(TypedDict):
Either:
- Generated by the provider (e.g., OpenAI's file ID)
- Generated by LangChain upon creation (``UUID4`` prefixed with ``'lc_'``))
- Generated by LangChain upon creation (`UUID4` prefixed with `'lc_'`))
"""
@@ -481,7 +477,7 @@ class ReasoningContentBlock(TypedDict):
"""Reasoning text.
Either the thought summary or the raw reasoning text itself. This is often parsed
from ``<think>`` tags in the model's response.
from `<think>` tags in the model's response.
"""
@@ -499,8 +495,8 @@ class ImageContentBlock(TypedDict):
"""Image data.
!!! note
``create_image_block`` may also be used as a factory to create a
``ImageContentBlock``. Benefits include:
`create_image_block` may also be used as a factory to create a
`ImageContentBlock`. Benefits include:
* Automatic ID generation (when not provided)
* Required arguments strictly validated at creation time
@@ -515,7 +511,7 @@ class ImageContentBlock(TypedDict):
Either:
- Generated by the provider (e.g., OpenAI's file ID)
- Generated by LangChain upon creation (``UUID4`` prefixed with ``'lc_'``))
- Generated by LangChain upon creation (`UUID4` prefixed with `'lc_'`))
"""
@@ -525,7 +521,7 @@ class ImageContentBlock(TypedDict):
mime_type: NotRequired[str]
"""MIME type of the image. Required for base64.
`Examples from IANA <https://www.iana.org/assignments/media-types/media-types.xhtml#image>`__
[Examples from IANA](https://www.iana.org/assignments/media-types/media-types.xhtml#image)
"""
@@ -546,8 +542,8 @@ class VideoContentBlock(TypedDict):
"""Video data.
!!! note
``create_video_block`` may also be used as a factory to create a
``VideoContentBlock``. Benefits include:
`create_video_block` may also be used as a factory to create a
`VideoContentBlock`. Benefits include:
* Automatic ID generation (when not provided)
* Required arguments strictly validated at creation time
@@ -562,7 +558,7 @@ class VideoContentBlock(TypedDict):
Either:
- Generated by the provider (e.g., OpenAI's file ID)
- Generated by LangChain upon creation (``UUID4`` prefixed with ``'lc_'``))
- Generated by LangChain upon creation (`UUID4` prefixed with `'lc_'`))
"""
@@ -572,7 +568,7 @@ class VideoContentBlock(TypedDict):
mime_type: NotRequired[str]
"""MIME type of the video. Required for base64.
`Examples from IANA <https://www.iana.org/assignments/media-types/media-types.xhtml#video>`__
[Examples from IANA](https://www.iana.org/assignments/media-types/media-types.xhtml#video)
"""
@@ -593,8 +589,8 @@ class AudioContentBlock(TypedDict):
"""Audio data.
!!! note
``create_audio_block`` may also be used as a factory to create an
``AudioContentBlock``. Benefits include:
`create_audio_block` may also be used as a factory to create an
`AudioContentBlock`. Benefits include:
* Automatic ID generation (when not provided)
* Required arguments strictly validated at creation time
@@ -608,7 +604,7 @@ class AudioContentBlock(TypedDict):
Either:
- Generated by the provider (e.g., OpenAI's file ID)
- Generated by LangChain upon creation (``UUID4`` prefixed with ``'lc_'``))
- Generated by LangChain upon creation (`UUID4` prefixed with `'lc_'`))
"""
@@ -618,7 +614,7 @@ class AudioContentBlock(TypedDict):
mime_type: NotRequired[str]
"""MIME type of the audio. Required for base64.
`Examples from IANA <https://www.iana.org/assignments/media-types/media-types.xhtml#audio>`__
[Examples from IANA](https://www.iana.org/assignments/media-types/media-types.xhtml#audio)
"""
@@ -639,18 +635,18 @@ class PlainTextContentBlock(TypedDict):
"""Plaintext data (e.g., from a document).
!!! note
A ``PlainTextContentBlock`` existed in ``langchain-core<1.0.0``. Although the
A `PlainTextContentBlock` existed in `langchain-core<1.0.0`. Although the
name has carried over, the structure has changed significantly. The only shared
keys between the old and new versions are ``type`` and ``text``, though the
``type`` value has changed from ``'text'`` to ``'text-plain'``.
keys between the old and new versions are `type` and `text`, though the
`type` value has changed from `'text'` to `'text-plain'`.
!!! note
Title and context are optional fields that may be passed to the model. See
Anthropic `example <https://docs.anthropic.com/en/docs/build-with-claude/citations#citable-vs-non-citable-content>`__.
Anthropic [example](https://docs.anthropic.com/en/docs/build-with-claude/citations#citable-vs-non-citable-content).
!!! note
``create_plaintext_block`` may also be used as a factory to create a
``PlainTextContentBlock``. Benefits include:
`create_plaintext_block` may also be used as a factory to create a
`PlainTextContentBlock`. Benefits include:
* Automatic ID generation (when not provided)
* Required arguments strictly validated at creation time
@@ -665,7 +661,7 @@ class PlainTextContentBlock(TypedDict):
Either:
- Generated by the provider (e.g., OpenAI's file ID)
- Generated by LangChain upon creation (``UUID4`` prefixed with ``'lc_'``))
- Generated by LangChain upon creation (`UUID4` prefixed with `'lc_'`))
"""
@@ -704,12 +700,12 @@ class FileContentBlock(TypedDict):
example, it can be used for PDFs, Word documents, etc.
If the file is an image, audio, or plaintext, you should use the corresponding
content block type (e.g., ``ImageContentBlock``, ``AudioContentBlock``,
``PlainTextContentBlock``).
content block type (e.g., `ImageContentBlock`, `AudioContentBlock`,
`PlainTextContentBlock`).
!!! note
``create_file_block`` may also be used as a factory to create a
``FileContentBlock``. Benefits include:
`create_file_block` may also be used as a factory to create a
`FileContentBlock`. Benefits include:
* Automatic ID generation (when not provided)
* Required arguments strictly validated at creation time
@@ -724,7 +720,7 @@ class FileContentBlock(TypedDict):
Either:
- Generated by the provider (e.g., OpenAI's file ID)
- Generated by LangChain upon creation (``UUID4`` prefixed with ``'lc_'``))
- Generated by LangChain upon creation (`UUID4` prefixed with `'lc_'`))
"""
@@ -734,7 +730,7 @@ class FileContentBlock(TypedDict):
mime_type: NotRequired[str]
"""MIME type of the file. Required for base64.
`Examples from IANA <https://www.iana.org/assignments/media-types/media-types.xhtml>`__
[Examples from IANA](https://www.iana.org/assignments/media-types/media-types.xhtml)
"""
@@ -764,14 +760,14 @@ class NonStandardContentBlock(TypedDict):
The purpose of this block should be to simply hold a provider-specific payload.
If a provider's non-standard output includes reasoning and tool calls, it should be
the adapter's job to parse that payload and emit the corresponding standard
``ReasoningContentBlock`` and ``ToolCalls``.
`ReasoningContentBlock` and `ToolCalls`.
Has no ``extras`` field, as provider-specific data should be included in the
``value`` field.
Has no `extras` field, as provider-specific data should be included in the
`value` field.
!!! note
``create_non_standard_block`` may also be used as a factory to create a
``NonStandardContentBlock``. Benefits include:
`create_non_standard_block` may also be used as a factory to create a
`NonStandardContentBlock`. Benefits include:
* Automatic ID generation (when not provided)
* Required arguments strictly validated at creation time
@@ -786,7 +782,7 @@ class NonStandardContentBlock(TypedDict):
Either:
- Generated by the provider (e.g., OpenAI's file ID)
- Generated by LangChain upon creation (``UUID4`` prefixed with ``'lc_'``))
- Generated by LangChain upon creation (`UUID4` prefixed with `'lc_'`))
"""
@@ -842,7 +838,7 @@ KNOWN_BLOCK_TYPES = {
"non_standard",
# citation and non_standard_annotation intentionally omitted
}
"""These are block types known to ``langchain-core>=1.0.0``.
"""These are block types known to `langchain-core>=1.0.0`.
If a block has a type not in this set, it is considered to be provider-specific.
"""
@@ -881,7 +877,7 @@ def is_data_content_block(block: dict) -> bool:
block: The content block to check.
Returns:
True if the content block is a data content block, False otherwise.
`True` if the content block is a data content block, `False` otherwise.
"""
if block.get("type") not in _get_data_content_block_types():
@@ -923,20 +919,20 @@ def create_text_block(
index: int | str | None = None,
**kwargs: Any,
) -> TextContentBlock:
"""Create a ``TextContentBlock``.
"""Create a `TextContentBlock`.
Args:
text: The text content of the block.
id: Content block identifier. Generated automatically if not provided.
annotations: ``Citation``s and other annotations for the text.
annotations: `Citation`s and other annotations for the text.
index: Index of block in aggregate response. Used during streaming.
Returns:
A properly formatted ``TextContentBlock``.
A properly formatted `TextContentBlock`.
!!! note
The ``id`` is generated automatically if not provided, using a UUID4 format
prefixed with ``'lc_'`` to indicate it is a LangChain-generated ID.
The `id` is generated automatically if not provided, using a UUID4 format
prefixed with `'lc_'` to indicate it is a LangChain-generated ID.
"""
block = TextContentBlock(
@@ -966,7 +962,7 @@ def create_image_block(
index: int | str | None = None,
**kwargs: Any,
) -> ImageContentBlock:
"""Create an ``ImageContentBlock``.
"""Create an `ImageContentBlock`.
Args:
url: URL of the image.
@@ -977,15 +973,15 @@ def create_image_block(
index: Index of block in aggregate response. Used during streaming.
Returns:
A properly formatted ``ImageContentBlock``.
A properly formatted `ImageContentBlock`.
Raises:
ValueError: If no image source is provided or if ``base64`` is used without
``mime_type``.
ValueError: If no image source is provided or if `base64` is used without
`mime_type`.
!!! note
The ``id`` is generated automatically if not provided, using a UUID4 format
prefixed with ``'lc_'`` to indicate it is a LangChain-generated ID.
The `id` is generated automatically if not provided, using a UUID4 format
prefixed with `'lc_'` to indicate it is a LangChain-generated ID.
"""
if not any([url, base64, file_id]):
@@ -1022,7 +1018,7 @@ def create_video_block(
index: int | str | None = None,
**kwargs: Any,
) -> VideoContentBlock:
"""Create a ``VideoContentBlock``.
"""Create a `VideoContentBlock`.
Args:
url: URL of the video.
@@ -1033,15 +1029,15 @@ def create_video_block(
index: Index of block in aggregate response. Used during streaming.
Returns:
A properly formatted ``VideoContentBlock``.
A properly formatted `VideoContentBlock`.
Raises:
ValueError: If no video source is provided or if ``base64`` is used without
``mime_type``.
ValueError: If no video source is provided or if `base64` is used without
`mime_type`.
!!! note
The ``id`` is generated automatically if not provided, using a UUID4 format
prefixed with ``'lc_'`` to indicate it is a LangChain-generated ID.
The `id` is generated automatically if not provided, using a UUID4 format
prefixed with `'lc_'` to indicate it is a LangChain-generated ID.
"""
if not any([url, base64, file_id]):
@@ -1082,7 +1078,7 @@ def create_audio_block(
index: int | str | None = None,
**kwargs: Any,
) -> AudioContentBlock:
"""Create an ``AudioContentBlock``.
"""Create an `AudioContentBlock`.
Args:
url: URL of the audio.
@@ -1093,15 +1089,15 @@ def create_audio_block(
index: Index of block in aggregate response. Used during streaming.
Returns:
A properly formatted ``AudioContentBlock``.
A properly formatted `AudioContentBlock`.
Raises:
ValueError: If no audio source is provided or if ``base64`` is used without
``mime_type``.
ValueError: If no audio source is provided or if `base64` is used without
`mime_type`.
!!! note
The ``id`` is generated automatically if not provided, using a UUID4 format
prefixed with ``'lc_'`` to indicate it is a LangChain-generated ID.
The `id` is generated automatically if not provided, using a UUID4 format
prefixed with `'lc_'` to indicate it is a LangChain-generated ID.
"""
if not any([url, base64, file_id]):
@@ -1142,7 +1138,7 @@ def create_file_block(
index: int | str | None = None,
**kwargs: Any,
) -> FileContentBlock:
"""Create a ``FileContentBlock``.
"""Create a `FileContentBlock`.
Args:
url: URL of the file.
@@ -1153,15 +1149,15 @@ def create_file_block(
index: Index of block in aggregate response. Used during streaming.
Returns:
A properly formatted ``FileContentBlock``.
A properly formatted `FileContentBlock`.
Raises:
ValueError: If no file source is provided or if ``base64`` is used without
``mime_type``.
ValueError: If no file source is provided or if `base64` is used without
`mime_type`.
!!! note
The ``id`` is generated automatically if not provided, using a UUID4 format
prefixed with ``'lc_'`` to indicate it is a LangChain-generated ID.
The `id` is generated automatically if not provided, using a UUID4 format
prefixed with `'lc_'` to indicate it is a LangChain-generated ID.
"""
if not any([url, base64, file_id]):
@@ -1203,7 +1199,7 @@ def create_plaintext_block(
index: int | str | None = None,
**kwargs: Any,
) -> PlainTextContentBlock:
"""Create a ``PlainTextContentBlock``.
"""Create a `PlainTextContentBlock`.
Args:
text: The plaintext content.
@@ -1216,11 +1212,11 @@ def create_plaintext_block(
index: Index of block in aggregate response. Used during streaming.
Returns:
A properly formatted ``PlainTextContentBlock``.
A properly formatted `PlainTextContentBlock`.
!!! note
The ``id`` is generated automatically if not provided, using a UUID4 format
prefixed with ``'lc_'`` to indicate it is a LangChain-generated ID.
The `id` is generated automatically if not provided, using a UUID4 format
prefixed with `'lc_'` to indicate it is a LangChain-generated ID.
"""
block = PlainTextContentBlock(
@@ -1259,7 +1255,7 @@ def create_tool_call(
index: int | str | None = None,
**kwargs: Any,
) -> ToolCall:
"""Create a ``ToolCall``.
"""Create a `ToolCall`.
Args:
name: The name of the tool to be called.
@@ -1268,11 +1264,11 @@ def create_tool_call(
index: Index of block in aggregate response. Used during streaming.
Returns:
A properly formatted ``ToolCall``.
A properly formatted `ToolCall`.
!!! note
The ``id`` is generated automatically if not provided, using a UUID4 format
prefixed with ``'lc_'`` to indicate it is a LangChain-generated ID.
The `id` is generated automatically if not provided, using a UUID4 format
prefixed with `'lc_'` to indicate it is a LangChain-generated ID.
"""
block = ToolCall(
@@ -1298,7 +1294,7 @@ def create_reasoning_block(
index: int | str | None = None,
**kwargs: Any,
) -> ReasoningContentBlock:
"""Create a ``ReasoningContentBlock``.
"""Create a `ReasoningContentBlock`.
Args:
reasoning: The reasoning text or thought summary.
@@ -1306,11 +1302,11 @@ def create_reasoning_block(
index: Index of block in aggregate response. Used during streaming.
Returns:
A properly formatted ``ReasoningContentBlock``.
A properly formatted `ReasoningContentBlock`.
!!! note
The ``id`` is generated automatically if not provided, using a UUID4 format
prefixed with ``'lc_'`` to indicate it is a LangChain-generated ID.
The `id` is generated automatically if not provided, using a UUID4 format
prefixed with `'lc_'` to indicate it is a LangChain-generated ID.
"""
block = ReasoningContentBlock(
@@ -1339,7 +1335,7 @@ def create_citation(
id: str | None = None,
**kwargs: Any,
) -> Citation:
"""Create a ``Citation``.
"""Create a `Citation`.
Args:
url: URL of the document source.
@@ -1350,11 +1346,11 @@ def create_citation(
id: Content block identifier. Generated automatically if not provided.
Returns:
A properly formatted ``Citation``.
A properly formatted `Citation`.
!!! note
The ``id`` is generated automatically if not provided, using a UUID4 format
prefixed with ``'lc_'`` to indicate it is a LangChain-generated ID.
The `id` is generated automatically if not provided, using a UUID4 format
prefixed with `'lc_'` to indicate it is a LangChain-generated ID.
"""
block = Citation(type="citation", id=ensure_id(id))
@@ -1383,7 +1379,7 @@ def create_non_standard_block(
id: str | None = None,
index: int | str | None = None,
) -> NonStandardContentBlock:
"""Create a ``NonStandardContentBlock``.
"""Create a `NonStandardContentBlock`.
Args:
value: Provider-specific data.
@@ -1391,11 +1387,11 @@ def create_non_standard_block(
index: Index of block in aggregate response. Used during streaming.
Returns:
A properly formatted ``NonStandardContentBlock``.
A properly formatted `NonStandardContentBlock`.
!!! note
The ``id`` is generated automatically if not provided, using a UUID4 format
prefixed with ``'lc_'`` to indicate it is a LangChain-generated ID.
The `id` is generated automatically if not provided, using a UUID4 format
prefixed with `'lc_'` to indicate it is a LangChain-generated ID.
"""
block = NonStandardContentBlock(

View File

@@ -15,10 +15,10 @@ from langchain_core.utils._merge import merge_dicts
class FunctionMessage(BaseMessage):
"""Message for passing the result of executing a tool back to a model.
``FunctionMessage`` are an older version of the ``ToolMessage`` schema, and
do not contain the ``tool_call_id`` field.
`FunctionMessage` are an older version of the `ToolMessage` schema, and
do not contain the `tool_call_id` field.
The ``tool_call_id`` field is used to associate the tool call request with the
The `tool_call_id` field is used to associate the tool call request with the
tool call response. This is useful in situations where a chat model is able
to request multiple tool calls in parallel.
@@ -28,7 +28,7 @@ class FunctionMessage(BaseMessage):
"""The name of the function that was executed."""
type: Literal["function"] = "function"
"""The type of the message (used for serialization). Defaults to ``'function'``."""
"""The type of the message (used for serialization). Defaults to `'function'`."""
class FunctionMessageChunk(FunctionMessage, BaseMessageChunk):
@@ -40,7 +40,7 @@ class FunctionMessageChunk(FunctionMessage, BaseMessageChunk):
type: Literal["FunctionMessageChunk"] = "FunctionMessageChunk" # type: ignore[assignment]
"""The type of the message (used for serialization).
Defaults to ``'FunctionMessageChunk'``.
Defaults to `'FunctionMessageChunk'`.
"""

View File

@@ -9,29 +9,27 @@ from langchain_core.messages.base import BaseMessage, BaseMessageChunk
class HumanMessage(BaseMessage):
"""Message from a human.
``HumanMessage``s are messages that are passed in from a human to the model.
`HumanMessage`s are messages that are passed in from a human to the model.
Example:
```python
from langchain_core.messages import HumanMessage, SystemMessage
.. code-block:: python
from langchain_core.messages import HumanMessage, SystemMessage
messages = [
SystemMessage(content="You are a helpful assistant! Your name is Bob."),
HumanMessage(content="What is your name?"),
]
# Instantiate a chat model and invoke it with the messages
model = ...
print(model.invoke(messages))
messages = [
SystemMessage(content="You are a helpful assistant! Your name is Bob."),
HumanMessage(content="What is your name?"),
]
# Instantiate a chat model and invoke it with the messages
model = ...
print(model.invoke(messages))
```
"""
type: Literal["human"] = "human"
"""The type of the message (used for serialization).
Defaults to ``'human'``.
Defaults to `'human'`.
"""
@@ -56,7 +54,7 @@ class HumanMessage(BaseMessage):
content_blocks: list[types.ContentBlock] | None = None,
**kwargs: Any,
) -> None:
"""Specify ``content`` as positional arg or ``content_blocks`` for typing."""
"""Specify `content` as positional arg or `content_blocks` for typing."""
if content_blocks is not None:
super().__init__(
content=cast("str | list[str | dict]", content_blocks),

View File

@@ -20,7 +20,7 @@ class RemoveMessage(BaseMessage):
Args:
id: The ID of the message to remove.
kwargs: Additional fields to pass to the message.
**kwargs: Additional fields to pass to the message.
Raises:
ValueError: If the 'content' field is passed in kwargs.

View File

@@ -13,25 +13,23 @@ class SystemMessage(BaseMessage):
of input messages.
Example:
```python
from langchain_core.messages import HumanMessage, SystemMessage
.. code-block:: python
from langchain_core.messages import HumanMessage, SystemMessage
messages = [
SystemMessage(content="You are a helpful assistant! Your name is Bob."),
HumanMessage(content="What is your name?"),
]
# Define a chat model and invoke it with the messages
print(model.invoke(messages))
messages = [
SystemMessage(content="You are a helpful assistant! Your name is Bob."),
HumanMessage(content="What is your name?"),
]
# Define a chat model and invoke it with the messages
print(model.invoke(messages))
```
"""
type: Literal["system"] = "system"
"""The type of the message (used for serialization).
Defaults to ``'system'``.
Defaults to `'system'`.
"""
@@ -56,7 +54,7 @@ class SystemMessage(BaseMessage):
content_blocks: list[types.ContentBlock] | None = None,
**kwargs: Any,
) -> None:
"""Specify ``content`` as positional arg or ``content_blocks`` for typing."""
"""Specify `content` as positional arg or `content_blocks` for typing."""
if content_blocks is not None:
super().__init__(
content=cast("str | list[str | dict]", content_blocks),
@@ -75,6 +73,6 @@ class SystemMessageChunk(SystemMessage, BaseMessageChunk):
type: Literal["SystemMessageChunk"] = "SystemMessageChunk" # type: ignore[assignment]
"""The type of the message (used for serialization).
Defaults to ``'SystemMessageChunk'``.
Defaults to `'SystemMessageChunk'`.
"""

View File

@@ -16,9 +16,9 @@ from langchain_core.utils._merge import merge_dicts, merge_obj
class ToolOutputMixin:
"""Mixin for objects that tools can return directly.
If a custom BaseTool is invoked with a ``ToolCall`` and the output of custom code is
not an instance of ``ToolOutputMixin``, the output will automatically be coerced to
a string and wrapped in a ``ToolMessage``.
If a custom BaseTool is invoked with a `ToolCall` and the output of custom code is
not an instance of `ToolOutputMixin`, the output will automatically be coerced to
a string and wrapped in a `ToolMessage`.
"""
@@ -26,41 +26,40 @@ class ToolOutputMixin:
class ToolMessage(BaseMessage, ToolOutputMixin):
"""Message for passing the result of executing a tool back to a model.
``ToolMessage``s contain the result of a tool invocation. Typically, the result
is encoded inside the ``content`` field.
`ToolMessage` objects contain the result of a tool invocation. Typically, the result
is encoded inside the `content` field.
Example: A ``ToolMessage`` representing a result of ``42`` from a tool call with id
Example: A `ToolMessage` representing a result of `42` from a tool call with id
.. code-block:: python
```python
from langchain_core.messages import ToolMessage
from langchain_core.messages import ToolMessage
ToolMessage(content="42", tool_call_id="call_Jja7J89XsjrOLA5r!MEOW!SL")
```
ToolMessage(content="42", tool_call_id="call_Jja7J89XsjrOLA5r!MEOW!SL")
Example: A ``ToolMessage`` where only part of the tool output is sent to the model
Example: A `ToolMessage` where only part of the tool output is sent to the model
and the full output is passed in to artifact.
!!! version-added "Added in version 0.2.17"
.. code-block:: python
```python
from langchain_core.messages import ToolMessage
from langchain_core.messages import ToolMessage
tool_output = {
"stdout": "From the graph we can see that the correlation between "
"x and y is ...",
"stderr": None,
"artifacts": {"type": "image", "base64_data": "/9j/4gIcSU..."},
}
tool_output = {
"stdout": "From the graph we can see that the correlation between "
"x and y is ...",
"stderr": None,
"artifacts": {"type": "image", "base64_data": "/9j/4gIcSU..."},
}
ToolMessage(
content=tool_output["stdout"],
artifact=tool_output,
tool_call_id="call_Jja7J89XsjrOLA5r!MEOW!SL",
)
```
ToolMessage(
content=tool_output["stdout"],
artifact=tool_output,
tool_call_id="call_Jja7J89XsjrOLA5r!MEOW!SL",
)
The ``tool_call_id`` field is used to associate the tool call request with the
The `tool_call_id` field is used to associate the tool call request with the
tool call response. This is useful in situations where a chat model is able
to request multiple tool calls in parallel.
@@ -72,7 +71,7 @@ class ToolMessage(BaseMessage, ToolOutputMixin):
type: Literal["tool"] = "tool"
"""The type of the message (used for serialization).
Defaults to ``'tool'``.
Defaults to `'tool'`.
"""
@@ -165,9 +164,9 @@ class ToolMessage(BaseMessage, ToolOutputMixin):
content_blocks: list[types.ContentBlock] | None = None,
**kwargs: Any,
) -> None:
"""Initialize ``ToolMessage``.
"""Initialize `ToolMessage`.
Specify ``content`` as positional arg or ``content_blocks`` for typing.
Specify `content` as positional arg or `content_blocks` for typing.
Args:
content: The string contents of the message.
@@ -219,13 +218,12 @@ class ToolCall(TypedDict):
"""Represents a request to call a tool.
Example:
```python
{"name": "foo", "args": {"a": 1}, "id": "123"}
```
.. code-block:: python
{"name": "foo", "args": {"a": 1}, "id": "123"}
This represents a request to call the tool named ``'foo'`` with arguments
``{"a": 1}`` and an identifier of ``'123'``.
This represents a request to call the tool named `'foo'` with arguments
`{"a": 1}` and an identifier of `'123'`.
"""
@@ -265,22 +263,20 @@ def tool_call(
class ToolCallChunk(TypedDict):
"""A chunk of a tool call (e.g., as part of a stream).
When merging ``ToolCallChunk``s (e.g., via ``AIMessageChunk.__add__``),
When merging `ToolCallChunk`s (e.g., via `AIMessageChunk.__add__`),
all string attributes are concatenated. Chunks are only merged if their
values of ``index`` are equal and not None.
values of `index` are equal and not None.
Example:
```python
left_chunks = [ToolCallChunk(name="foo", args='{"a":', index=0)]
right_chunks = [ToolCallChunk(name=None, args="1}", index=0)]
.. code-block:: python
left_chunks = [ToolCallChunk(name="foo", args='{"a":', index=0)]
right_chunks = [ToolCallChunk(name=None, args="1}", index=0)]
(
AIMessageChunk(content="", tool_call_chunks=left_chunks)
+ AIMessageChunk(content="", tool_call_chunks=right_chunks)
).tool_call_chunks == [ToolCallChunk(name="foo", args='{"a":1}', index=0)]
(
AIMessageChunk(content="", tool_call_chunks=left_chunks)
+ AIMessageChunk(content="", tool_call_chunks=right_chunks)
).tool_call_chunks == [ToolCallChunk(name="foo", args='{"a":1}', index=0)]
```
"""
name: str | None

View File

@@ -5,7 +5,6 @@ Some examples of what you can do with these functions include:
* Convert messages to strings (serialization)
* Convert messages from dicts to Message objects (deserialization)
* Filter messages from a list of messages based on name, type or id etc.
"""
from __future__ import annotations
@@ -96,10 +95,10 @@ def get_buffer_string(
Args:
messages: Messages to be converted to strings.
human_prefix: The prefix to prepend to contents of ``HumanMessage``s.
Default is ``'Human'``.
ai_prefix: The prefix to prepend to contents of ``AIMessage``. Default is
``'AI'``.
human_prefix: The prefix to prepend to contents of `HumanMessage`s.
Default is `'Human'`.
ai_prefix: The prefix to prepend to contents of `AIMessage`. Default is
`'AI'`.
Returns:
A single string concatenation of all input messages.
@@ -108,17 +107,16 @@ def get_buffer_string(
ValueError: If an unsupported message type is encountered.
Example:
.. code-block:: python
from langchain_core import AIMessage, HumanMessage
messages = [
HumanMessage(content="Hi, how are you?"),
AIMessage(content="Good, how are you?"),
]
get_buffer_string(messages)
# -> "Human: Hi, how are you?\nAI: Good, how are you?"
```python
from langchain_core import AIMessage, HumanMessage
messages = [
HumanMessage(content="Hi, how are you?"),
AIMessage(content="Good, how are you?"),
]
get_buffer_string(messages)
# -> "Human: Hi, how are you?\nAI: Good, how are you?"
```
"""
string_messages = []
for m in messages:
@@ -178,7 +176,7 @@ def _message_from_dict(message: dict) -> BaseMessage:
def messages_from_dict(messages: Sequence[dict]) -> list[BaseMessage]:
"""Convert a sequence of messages from dicts to ``Message`` objects.
"""Convert a sequence of messages from dicts to `Message` objects.
Args:
messages: Sequence of messages (as dicts) to convert.
@@ -191,7 +189,7 @@ def messages_from_dict(messages: Sequence[dict]) -> list[BaseMessage]:
def message_chunk_to_message(chunk: BaseMessage) -> BaseMessage:
"""Convert a message chunk to a ``Message``.
"""Convert a message chunk to a `Message`.
Args:
chunk: Message chunk to convert.
@@ -224,10 +222,10 @@ def _create_message_from_message_type(
id: str | None = None,
**additional_kwargs: Any,
) -> BaseMessage:
"""Create a message from a ``Message`` type and content string.
"""Create a message from a `Message` type and content string.
Args:
message_type: (str) the type of the message (e.g., ``'human'``, ``'ai'``, etc.).
message_type: (str) the type of the message (e.g., `'human'`, `'ai'`, etc.).
content: (str) the content string.
name: (str) the name of the message. Default is None.
tool_call_id: (str) the tool call id. Default is None.
@@ -239,9 +237,9 @@ def _create_message_from_message_type(
a message of the appropriate type.
Raises:
ValueError: if the message type is not one of ``'human'``, ``'user'``, ``'ai'``,
``'assistant'``, ``'function'``, ``'tool'``, ``'system'``, or
``'developer'``.
ValueError: if the message type is not one of `'human'`, `'user'`, `'ai'`,
`'assistant'`, `'function'`, `'tool'`, `'system'`, or
`'developer'`.
"""
kwargs: dict[str, Any] = {}
if name is not None:
@@ -307,15 +305,15 @@ def _create_message_from_message_type(
def _convert_to_message(message: MessageLikeRepresentation) -> BaseMessage:
"""Instantiate a ``Message`` from a variety of message formats.
"""Instantiate a `Message` from a variety of message formats.
The message format can be one of the following:
- ``BaseMessagePromptTemplate``
- ``BaseMessage``
- 2-tuple of (role string, template); e.g., (``'human'``, ``'{user_input}'``)
- `BaseMessagePromptTemplate`
- `BaseMessage`
- 2-tuple of (role string, template); e.g., (`'human'`, `'{user_input}'`)
- dict: a message dict with role and content keys
- string: shorthand for (``'human'``, template); e.g., ``'{user_input}'``
- string: shorthand for (`'human'`, template); e.g., `'{user_input}'`
Args:
message: a representation of a message in one of the supported formats.
@@ -423,79 +421,78 @@ def filter_messages(
exclude_ids: Sequence[str] | None = None,
exclude_tool_calls: Sequence[str] | bool | None = None,
) -> list[BaseMessage]:
"""Filter messages based on ``name``, ``type`` or ``id``.
"""Filter messages based on `name`, `type` or `id`.
Args:
messages: Sequence Message-like objects to filter.
include_names: Message names to include. Default is None.
exclude_names: Messages names to exclude. Default is None.
include_types: Message types to include. Can be specified as string names
(e.g. ``'system'``, ``'human'``, ``'ai'``, ...) or as ``BaseMessage``
classes (e.g. ``SystemMessage``, ``HumanMessage``, ``AIMessage``, ...).
(e.g. `'system'`, `'human'`, `'ai'`, ...) or as `BaseMessage`
classes (e.g. `SystemMessage`, `HumanMessage`, `AIMessage`, ...).
Default is None.
exclude_types: Message types to exclude. Can be specified as string names
(e.g. ``'system'``, ``'human'``, ``'ai'``, ...) or as ``BaseMessage``
classes (e.g. ``SystemMessage``, ``HumanMessage``, ``AIMessage``, ...).
(e.g. `'system'`, `'human'`, `'ai'`, ...) or as `BaseMessage`
classes (e.g. `SystemMessage`, `HumanMessage`, `AIMessage`, ...).
Default is None.
include_ids: Message IDs to include. Default is None.
exclude_ids: Message IDs to exclude. Default is None.
exclude_tool_calls: Tool call IDs to exclude. Default is None.
Can be one of the following:
- ``True``: all ``AIMessage``s with tool calls and all
``ToolMessage``s will be excluded.
- `True`: all `AIMessage`s with tool calls and all
`ToolMessage` objects will be excluded.
- a sequence of tool call IDs to exclude:
- ``ToolMessage``s with the corresponding tool call ID will be
excluded.
- The ``tool_calls`` in the AIMessage will be updated to exclude
matching tool calls. If all ``tool_calls`` are filtered from an
AIMessage, the whole message is excluded.
- `ToolMessage` objects with the corresponding tool call ID will be
excluded.
- The `tool_calls` in the AIMessage will be updated to exclude
matching tool calls. If all `tool_calls` are filtered from an
AIMessage, the whole message is excluded.
Returns:
A list of Messages that meets at least one of the ``incl_*`` conditions and none
of the ``excl_*`` conditions. If not ``incl_*`` conditions are specified then
A list of Messages that meets at least one of the `incl_*` conditions and none
of the `excl_*` conditions. If not `incl_*` conditions are specified then
anything that is not explicitly excluded will be included.
Raises:
ValueError: If two incompatible arguments are provided.
Example:
.. code-block:: python
```python
from langchain_core.messages import (
filter_messages,
AIMessage,
HumanMessage,
SystemMessage,
)
from langchain_core.messages import (
filter_messages,
AIMessage,
HumanMessage,
SystemMessage,
)
messages = [
SystemMessage("you're a good assistant."),
HumanMessage("what's your name", id="foo", name="example_user"),
AIMessage("steve-o", id="bar", name="example_assistant"),
HumanMessage(
"what's your favorite color",
id="baz",
),
AIMessage(
"silicon blue",
id="blah",
),
]
messages = [
SystemMessage("you're a good assistant."),
HumanMessage("what's your name", id="foo", name="example_user"),
AIMessage("steve-o", id="bar", name="example_assistant"),
HumanMessage(
"what's your favorite color",
id="baz",
),
AIMessage(
"silicon blue",
id="blah",
),
]
filter_messages(
messages,
incl_names=("example_user", "example_assistant"),
incl_types=("system",),
excl_ids=("bar",),
)
.. code-block:: python
[
SystemMessage("you're a good assistant."),
HumanMessage("what's your name", id="foo", name="example_user"),
]
filter_messages(
messages,
incl_names=("example_user", "example_assistant"),
incl_types=("system",),
excl_ids=("bar",),
)
```
```python
[
SystemMessage("you're a good assistant."),
HumanMessage("what's your name", id="foo", name="example_user"),
]
```
"""
messages = convert_to_messages(messages)
filtered: list[BaseMessage] = []
@@ -565,13 +562,13 @@ def merge_message_runs(
r"""Merge consecutive Messages of the same type.
!!! note
ToolMessages are not merged, as each has a distinct tool call id that can't be
merged.
`ToolMessage` objects are not merged, as each has a distinct tool call id that
can't be merged.
Args:
messages: Sequence Message-like objects to merge.
chunk_separator: Specify the string to be inserted between message chunks.
Defaults to ``'\n'``.
Defaults to `'\n'`.
Returns:
list of BaseMessages with consecutive runs of message types merged into single
@@ -579,87 +576,86 @@ def merge_message_runs(
the merged content is a concatenation of the two strings with a new-line
separator.
The separator inserted between message chunks can be controlled by specifying
any string with ``chunk_separator``. If at least one of the messages has a list
any string with `chunk_separator`. If at least one of the messages has a list
of content blocks, the merged content is a list of content blocks.
Example:
```python
from langchain_core.messages import (
merge_message_runs,
AIMessage,
HumanMessage,
SystemMessage,
ToolCall,
)
.. code-block:: python
messages = [
SystemMessage("you're a good assistant."),
HumanMessage(
"what's your favorite color",
id="foo",
),
HumanMessage(
"wait your favorite food",
id="bar",
),
AIMessage(
"my favorite colo",
tool_calls=[
ToolCall(
name="blah_tool", args={"x": 2}, id="123", type="tool_call"
)
],
id="baz",
),
AIMessage(
[{"type": "text", "text": "my favorite dish is lasagna"}],
tool_calls=[
ToolCall(
name="blah_tool",
args={"x": -10},
id="456",
type="tool_call",
)
],
id="blur",
),
]
from langchain_core.messages import (
merge_message_runs,
AIMessage,
HumanMessage,
SystemMessage,
ToolCall,
)
merge_message_runs(messages)
```
messages = [
SystemMessage("you're a good assistant."),
HumanMessage(
"what's your favorite color",
id="foo",
),
HumanMessage(
"wait your favorite food",
id="bar",
),
AIMessage(
```python
[
SystemMessage("you're a good assistant."),
HumanMessage(
"what's your favorite color\\n"
"wait your favorite food", id="foo",
),
AIMessage(
[
"my favorite colo",
tool_calls=[
ToolCall(
name="blah_tool", args={"x": 2}, id="123", type="tool_call"
)
],
id="baz",
),
AIMessage(
[{"type": "text", "text": "my favorite dish is lasagna"}],
tool_calls=[
ToolCall(
name="blah_tool",
args={"x": -10},
id="456",
type="tool_call",
)
],
id="blur",
),
]
merge_message_runs(messages)
.. code-block:: python
[
SystemMessage("you're a good assistant."),
HumanMessage(
"what's your favorite color\\n"
"wait your favorite food", id="foo",
),
AIMessage(
[
"my favorite colo",
{"type": "text", "text": "my favorite dish is lasagna"}
],
tool_calls=[
ToolCall({
"name": "blah_tool",
"args": {"x": 2},
"id": "123",
"type": "tool_call"
}),
ToolCall({
"name": "blah_tool",
"args": {"x": -10},
"id": "456",
"type": "tool_call"
})
]
id="baz"
),
]
{"type": "text", "text": "my favorite dish is lasagna"}
],
tool_calls=[
ToolCall({
"name": "blah_tool",
"args": {"x": 2},
"id": "123",
"type": "tool_call"
}),
ToolCall({
"name": "blah_tool",
"args": {"x": -10},
"id": "456",
"type": "tool_call"
})
]
id="baz"
),
]
```
"""
if not messages:
return []
@@ -706,7 +702,7 @@ def trim_messages(
) -> list[BaseMessage]:
r"""Trim messages to be below a token count.
``trim_messages`` can be used to reduce the size of a chat history to a specified
`trim_messages` can be used to reduce the size of a chat history to a specified
token count or specified message count.
In either case, if passing the trimmed chat history back into a chat model
@@ -714,145 +710,143 @@ def trim_messages(
properties:
1. The resulting chat history should be valid. Most chat models expect that chat
history starts with either (1) a ``HumanMessage`` or (2) a ``SystemMessage``
followed by a ``HumanMessage``. To achieve this, set ``start_on='human'``.
In addition, generally a ``ToolMessage`` can only appear after an ``AIMessage``
that involved a tool call.
Please see the following link for more information about messages:
https://python.langchain.com/docs/concepts/#messages
history starts with either (1) a `HumanMessage` or (2) a `SystemMessage`
followed by a `HumanMessage`. To achieve this, set `start_on='human'`.
In addition, generally a `ToolMessage` can only appear after an `AIMessage`
that involved a tool call.
Please see the following link for more information about messages:
https://python.langchain.com/docs/concepts/#messages
2. It includes recent messages and drops old messages in the chat history.
To achieve this set the ``strategy='last'``.
3. Usually, the new chat history should include the ``SystemMessage`` if it
was present in the original chat history since the ``SystemMessage`` includes
special instructions to the chat model. The ``SystemMessage`` is almost always
the first message in the history if present. To achieve this set the
``include_system=True``.
To achieve this set the `strategy='last'`.
3. Usually, the new chat history should include the `SystemMessage` if it
was present in the original chat history since the `SystemMessage` includes
special instructions to the chat model. The `SystemMessage` is almost always
the first message in the history if present. To achieve this set the
`include_system=True`.
!!! note
The examples below show how to configure ``trim_messages`` to achieve a behavior
The examples below show how to configure `trim_messages` to achieve a behavior
consistent with the above properties.
Args:
messages: Sequence of Message-like objects to trim.
max_tokens: Max token count of trimmed messages.
token_counter: Function or llm for counting tokens in a ``BaseMessage`` or a
list of ``BaseMessage``. If a ``BaseLanguageModel`` is passed in then
``BaseLanguageModel.get_num_tokens_from_messages()`` will be used.
Set to ``len`` to count the number of **messages** in the chat history.
token_counter: Function or llm for counting tokens in a `BaseMessage` or a
list of `BaseMessage`. If a `BaseLanguageModel` is passed in then
`BaseLanguageModel.get_num_tokens_from_messages()` will be used.
Set to `len` to count the number of **messages** in the chat history.
!!! note
Use ``count_tokens_approximately`` to get fast, approximate token
Use `count_tokens_approximately` to get fast, approximate token
counts.
This is recommended for using ``trim_messages`` on the hot path, where
This is recommended for using `trim_messages` on the hot path, where
exact token counting is not necessary.
strategy: Strategy for trimming.
- ``'first'``: Keep the first ``<= n_count`` tokens of the messages.
- ``'last'``: Keep the last ``<= n_count`` tokens of the messages.
Default is ``'last'``.
- `'first'`: Keep the first `<= n_count` tokens of the messages.
- `'last'`: Keep the last `<= n_count` tokens of the messages.
Default is `'last'`.
allow_partial: Whether to split a message if only part of the message can be
included. If ``strategy='last'`` then the last partial contents of a message
are included. If ``strategy='first'`` then the first partial contents of a
included. If `strategy='last'` then the last partial contents of a message
are included. If `strategy='first'` then the first partial contents of a
message are included.
Default is False.
end_on: The message type to end on. If specified then every message after the
last occurrence of this type is ignored. If ``strategy='last'`` then this
is done before we attempt to get the last ``max_tokens``. If
``strategy='first'`` then this is done after we get the first
``max_tokens``. Can be specified as string names (e.g. ``'system'``,
``'human'``, ``'ai'``, ...) or as ``BaseMessage`` classes (e.g.
``SystemMessage``, ``HumanMessage``, ``AIMessage``, ...). Can be a single
last occurrence of this type is ignored. If `strategy='last'` then this
is done before we attempt to get the last `max_tokens`. If
`strategy='first'` then this is done after we get the first
`max_tokens`. Can be specified as string names (e.g. `'system'`,
`'human'`, `'ai'`, ...) or as `BaseMessage` classes (e.g.
`SystemMessage`, `HumanMessage`, `AIMessage`, ...). Can be a single
type or a list of types.
Default is None.
start_on: The message type to start on. Should only be specified if
``strategy='last'``. If specified then every message before
`strategy='last'`. If specified then every message before
the first occurrence of this type is ignored. This is done after we trim
the initial messages to the last ``max_tokens``. Does not
apply to a ``SystemMessage`` at index 0 if ``include_system=True``. Can be
specified as string names (e.g. ``'system'``, ``'human'``, ``'ai'``, ...) or
as ``BaseMessage`` classes (e.g. ``SystemMessage``, ``HumanMessage``,
``AIMessage``, ...). Can be a single type or a list of types.
the initial messages to the last `max_tokens`. Does not
apply to a `SystemMessage` at index 0 if `include_system=True`. Can be
specified as string names (e.g. `'system'`, `'human'`, `'ai'`, ...) or
as `BaseMessage` classes (e.g. `SystemMessage`, `HumanMessage`,
`AIMessage`, ...). Can be a single type or a list of types.
Default is None.
include_system: Whether to keep the SystemMessage if there is one at index 0.
Should only be specified if ``strategy="last"``.
Should only be specified if `strategy="last"`.
Default is False.
text_splitter: Function or ``langchain_text_splitters.TextSplitter`` for
text_splitter: Function or `langchain_text_splitters.TextSplitter` for
splitting the string contents of a message. Only used if
``allow_partial=True``. If ``strategy='last'`` then the last split tokens
from a partial message will be included. if ``strategy='first'`` then the
`allow_partial=True`. If `strategy='last'` then the last split tokens
from a partial message will be included. if `strategy='first'` then the
first split tokens from a partial message will be included. Token splitter
assumes that separators are kept, so that split contents can be directly
concatenated to recreate the original text. Defaults to splitting on
newlines.
Returns:
list of trimmed ``BaseMessage``.
list of trimmed `BaseMessage`.
Raises:
ValueError: if two incompatible arguments are specified or an unrecognized
``strategy`` is specified.
`strategy` is specified.
Example:
Trim chat history based on token count, keeping the ``SystemMessage`` if
present, and ensuring that the chat history starts with a ``HumanMessage`` (
or a ``SystemMessage`` followed by a ``HumanMessage``).
Trim chat history based on token count, keeping the `SystemMessage` if
present, and ensuring that the chat history starts with a `HumanMessage` (
or a `SystemMessage` followed by a `HumanMessage`).
.. code-block:: python
```python
from langchain_core.messages import (
AIMessage,
HumanMessage,
BaseMessage,
SystemMessage,
trim_messages,
)
from langchain_core.messages import (
AIMessage,
HumanMessage,
BaseMessage,
SystemMessage,
trim_messages,
)
messages = [
SystemMessage(
"you're a good assistant, you always respond with a joke."
),
HumanMessage("i wonder why it's called langchain"),
AIMessage(
'Well, I guess they thought "WordRope" and "SentenceString" just '
"didn't have the same ring to it!"
),
HumanMessage("and who is harrison chasing anyways"),
AIMessage(
"Hmmm let me think.\n\nWhy, he's probably chasing after the last "
"cup of coffee in the office!"
),
HumanMessage("what do you call a speechless parrot"),
]
messages = [
SystemMessage("you're a good assistant, you always respond with a joke."),
HumanMessage("i wonder why it's called langchain"),
AIMessage(
'Well, I guess they thought "WordRope" and "SentenceString" just '
"didn't have the same ring to it!"
),
HumanMessage("and who is harrison chasing anyways"),
AIMessage(
"Hmmm let me think.\n\nWhy, he's probably chasing after the last "
"cup of coffee in the office!"
),
HumanMessage("what do you call a speechless parrot"),
]
trim_messages(
messages,
max_tokens=45,
strategy="last",
token_counter=ChatOpenAI(model="gpt-4o"),
# Most chat models expect that chat history starts with either:
# (1) a HumanMessage or
# (2) a SystemMessage followed by a HumanMessage
start_on="human",
# Usually, we want to keep the SystemMessage
# if it's present in the original history.
# The SystemMessage has special instructions for the model.
include_system=True,
allow_partial=False,
)
trim_messages(
messages,
max_tokens=45,
strategy="last",
token_counter=ChatOpenAI(model="gpt-4o"),
# Most chat models expect that chat history starts with either:
# (1) a HumanMessage or
# (2) a SystemMessage followed by a HumanMessage
start_on="human",
# Usually, we want to keep the SystemMessage
# if it's present in the original history.
# The SystemMessage has special instructions for the model.
include_system=True,
allow_partial=False,
)
```
.. code-block:: python
```python
[
SystemMessage(
content="you're a good assistant, you always respond with a joke."
),
HumanMessage(content="what do you call a speechless parrot"),
]
```
[
SystemMessage(
content="you're a good assistant, you always respond with a joke."
),
HumanMessage(content="what do you call a speechless parrot"),
]
Trim chat history based on the message count, keeping the ``SystemMessage`` if
present, and ensuring that the chat history starts with a ``HumanMessage`` (
or a ``SystemMessage`` followed by a ``HumanMessage``).
Trim chat history based on the message count, keeping the `SystemMessage` if
present, and ensuring that the chat history starts with a `HumanMessage` (
or a `SystemMessage` followed by a `HumanMessage`).
trim_messages(
messages,
@@ -874,100 +868,95 @@ def trim_messages(
allow_partial=False,
)
.. code-block:: python
[
SystemMessage(
content="you're a good assistant, you always respond with a joke."
),
HumanMessage(content="and who is harrison chasing anyways"),
AIMessage(
content="Hmmm let me think.\n\nWhy, he's probably chasing after "
"the last cup of coffee in the office!"
),
HumanMessage(content="what do you call a speechless parrot"),
]
```python
[
SystemMessage(
content="you're a good assistant, you always respond with a joke."
),
HumanMessage(content="and who is harrison chasing anyways"),
AIMessage(
content="Hmmm let me think.\n\nWhy, he's probably chasing after "
"the last cup of coffee in the office!"
),
HumanMessage(content="what do you call a speechless parrot"),
]
```
Trim chat history using a custom token counter function that counts the
number of tokens in each message.
.. code-block:: python
messages = [
SystemMessage("This is a 4 token text. The full message is 10 tokens."),
HumanMessage(
"This is a 4 token text. The full message is 10 tokens.", id="first"
),
AIMessage(
[
{"type": "text", "text": "This is the FIRST 4 token block."},
{"type": "text", "text": "This is the SECOND 4 token block."},
],
id="second",
),
HumanMessage(
"This is a 4 token text. The full message is 10 tokens.", id="third"
),
AIMessage(
"This is a 4 token text. The full message is 10 tokens.",
id="fourth",
),
]
```python
messages = [
SystemMessage("This is a 4 token text. The full message is 10 tokens."),
HumanMessage(
"This is a 4 token text. The full message is 10 tokens.", id="first"
),
AIMessage(
[
{"type": "text", "text": "This is the FIRST 4 token block."},
{"type": "text", "text": "This is the SECOND 4 token block."},
],
id="second",
),
HumanMessage(
"This is a 4 token text. The full message is 10 tokens.", id="third"
),
AIMessage(
"This is a 4 token text. The full message is 10 tokens.",
id="fourth",
),
]
def dummy_token_counter(messages: list[BaseMessage]) -> int:
# treat each message like it adds 3 default tokens at the beginning
# of the message and at the end of the message. 3 + 4 + 3 = 10 tokens
# per message.
def dummy_token_counter(messages: list[BaseMessage]) -> int:
# treat each message like it adds 3 default tokens at the beginning
# of the message and at the end of the message. 3 + 4 + 3 = 10 tokens
# per message.
default_content_len = 4
default_msg_prefix_len = 3
default_msg_suffix_len = 3
default_content_len = 4
default_msg_prefix_len = 3
default_msg_suffix_len = 3
count = 0
for msg in messages:
if isinstance(msg.content, str):
count += (
default_msg_prefix_len
+ default_content_len
+ default_msg_suffix_len
)
if isinstance(msg.content, list):
count += (
default_msg_prefix_len
+ len(msg.content) * default_content_len
+ default_msg_suffix_len
)
return count
count = 0
for msg in messages:
if isinstance(msg.content, str):
count += (
default_msg_prefix_len
+ default_content_len
+ default_msg_suffix_len
)
if isinstance(msg.content, list):
count += (
default_msg_prefix_len
+ len(msg.content) * default_content_len
+ default_msg_suffix_len
)
return count
```
First 30 tokens, allowing partial messages:
.. code-block:: python
trim_messages(
messages,
max_tokens=30,
token_counter=dummy_token_counter,
strategy="first",
allow_partial=True,
)
.. code-block:: python
[
SystemMessage(
"This is a 4 token text. The full message is 10 tokens."
),
HumanMessage(
"This is a 4 token text. The full message is 10 tokens.",
id="first",
),
AIMessage(
[{"type": "text", "text": "This is the FIRST 4 token block."}],
id="second",
),
]
```python
trim_messages(
messages,
max_tokens=30,
token_counter=dummy_token_counter,
strategy="first",
allow_partial=True,
)
```
```python
[
SystemMessage("This is a 4 token text. The full message is 10 tokens."),
HumanMessage(
"This is a 4 token text. The full message is 10 tokens.",
id="first",
),
AIMessage(
[{"type": "text", "text": "This is the FIRST 4 token block."}],
id="second",
),
]
```
"""
# Validate arguments
if start_on and strategy == "first":
@@ -1042,21 +1031,21 @@ def convert_to_openai_messages(
messages: Message-like object or iterable of objects whose contents are
in OpenAI, Anthropic, Bedrock Converse, or VertexAI formats.
text_format: How to format string or text block contents:
- ``'string'``:
- `'string'`:
If a message has a string content, this is left as a string. If
a message has content blocks that are all of type ``'text'``, these
a message has content blocks that are all of type `'text'`, these
are joined with a newline to make a single string. If a message has
content blocks and at least one isn't of type ``'text'``, then
content blocks and at least one isn't of type `'text'`, then
all blocks are left as dicts.
- ``'block'``:
- `'block'`:
If a message has a string content, this is turned into a list
with a single content block of type ``'text'``. If a message has
with a single content block of type `'text'`. If a message has
content blocks these are left as is.
include_id: Whether to include message ids in the openai messages, if they
are present in the source messages.
Raises:
ValueError: if an unrecognized ``text_format`` is specified, or if a message
ValueError: if an unrecognized `text_format` is specified, or if a message
content block is missing expected keys.
Returns:
@@ -1070,50 +1059,49 @@ def convert_to_openai_messages(
message dicts is returned.
Example:
```python
from langchain_core.messages import (
convert_to_openai_messages,
AIMessage,
SystemMessage,
ToolMessage,
)
.. code-block:: python
from langchain_core.messages import (
convert_to_openai_messages,
AIMessage,
SystemMessage,
ToolMessage,
)
messages = [
SystemMessage([{"type": "text", "text": "foo"}]),
{
"role": "user",
"content": [
{"type": "text", "text": "whats in this"},
{
"type": "image_url",
"image_url": {"url": "data:image/png;base64,'/9j/4AAQSk'"},
},
],
},
AIMessage(
"",
tool_calls=[
{
"name": "analyze",
"args": {"baz": "buz"},
"id": "1",
"type": "tool_call",
}
],
),
ToolMessage("foobar", tool_call_id="1", name="bar"),
{"role": "assistant", "content": "thats nice"},
]
oai_messages = convert_to_openai_messages(messages)
# -> [
# {'role': 'system', 'content': 'foo'},
# {'role': 'user', 'content': [{'type': 'text', 'text': 'whats in this'}, {'type': 'image_url', 'image_url': {'url': "data:image/png;base64,'/9j/4AAQSk'"}}]},
# {'role': 'assistant', 'tool_calls': [{'type': 'function', 'id': '1','function': {'name': 'analyze', 'arguments': '{"baz": "buz"}'}}], 'content': ''},
# {'role': 'tool', 'name': 'bar', 'content': 'foobar'},
# {'role': 'assistant', 'content': 'thats nice'}
# ]
messages = [
SystemMessage([{"type": "text", "text": "foo"}]),
{
"role": "user",
"content": [
{"type": "text", "text": "whats in this"},
{
"type": "image_url",
"image_url": {"url": "data:image/png;base64,'/9j/4AAQSk'"},
},
],
},
AIMessage(
"",
tool_calls=[
{
"name": "analyze",
"args": {"baz": "buz"},
"id": "1",
"type": "tool_call",
}
],
),
ToolMessage("foobar", tool_call_id="1", name="bar"),
{"role": "assistant", "content": "thats nice"},
]
oai_messages = convert_to_openai_messages(messages)
# -> [
# {'role': 'system', 'content': 'foo'},
# {'role': 'user', 'content': [{'type': 'text', 'text': 'whats in this'}, {'type': 'image_url', 'image_url': {'url': "data:image/png;base64,'/9j/4AAQSk'"}}]},
# {'role': 'assistant', 'tool_calls': [{'type': 'function', 'id': '1','function': {'name': 'analyze', 'arguments': '{"baz": "buz"}'}}], 'content': ''},
# {'role': 'tool', 'name': 'bar', 'content': 'foobar'},
# {'role': 'assistant', 'content': 'thats nice'}
# ]
```
!!! version-added "Added in version 0.3.11"
@@ -1697,11 +1685,11 @@ def count_tokens_approximately(
chars_per_token: Number of characters per token to use for the approximation.
Default is 4 (one token corresponds to ~4 chars for common English text).
You can also specify float values for more fine-grained control.
`See more here. <https://platform.openai.com/tokenizer>`__
[See more here](https://platform.openai.com/tokenizer).
extra_tokens_per_message: Number of extra tokens to add per message.
Default is 3 (special tokens, including beginning/end of message).
You can also specify float values for more fine-grained control.
`See more here. <https://github.com/openai/openai-cookbook/blob/main/examples/How_to_count_tokens_with_tiktoken.ipynb>`__
[See more here](https://github.com/openai/openai-cookbook/blob/main/examples/How_to_count_tokens_with_tiktoken.ipynb).
count_name: Whether to include message names in the count.
Enabled by default.

View File

@@ -1,17 +1,4 @@
"""**OutputParser** classes parse the output of an LLM call.
**Class hierarchy:**
.. code-block::
BaseLLMOutputParser --> BaseOutputParser --> <name>OutputParser # ListOutputParser, PydanticOutputParser
**Main helpers:**
.. code-block::
Serializable, Generation, PromptValue
""" # noqa: E501
"""**OutputParser** classes parse the output of an LLM call."""
from typing import TYPE_CHECKING

View File

@@ -134,29 +134,28 @@ class BaseOutputParser(
Output parsers help structure language model responses.
Example:
.. code-block:: python
```python
class BooleanOutputParser(BaseOutputParser[bool]):
true_val: str = "YES"
false_val: str = "NO"
class BooleanOutputParser(BaseOutputParser[bool]):
true_val: str = "YES"
false_val: str = "NO"
def parse(self, text: str) -> bool:
cleaned_text = text.strip().upper()
if cleaned_text not in (
self.true_val.upper(),
self.false_val.upper(),
):
raise OutputParserException(
f"BooleanOutputParser expected output value to either be "
f"{self.true_val} or {self.false_val} (case-insensitive). "
f"Received {cleaned_text}."
)
return cleaned_text == self.true_val.upper()
@property
def _type(self) -> str:
return "boolean_output_parser"
def parse(self, text: str) -> bool:
cleaned_text = text.strip().upper()
if cleaned_text not in (
self.true_val.upper(),
self.false_val.upper(),
):
raise OutputParserException(
f"BooleanOutputParser expected output value to either be "
f"{self.true_val} or {self.false_val} (case-insensitive). "
f"Received {cleaned_text}."
)
return cleaned_text == self.true_val.upper()
@property
def _type(self) -> str:
return "boolean_output_parser"
```
"""
@property

View File

@@ -40,7 +40,7 @@ class JsonOutputParser(BaseCumulativeTransformOutputParser[Any]):
pydantic_object: Annotated[type[TBaseModel] | None, SkipValidation()] = None # type: ignore[valid-type]
"""The Pydantic object to use for validation.
If None, no validation is performed."""
If `None`, no validation is performed."""
@override
def _diff(self, prev: Any | None, next: Any) -> Any:
@@ -59,9 +59,9 @@ class JsonOutputParser(BaseCumulativeTransformOutputParser[Any]):
Args:
result: The result of the LLM call.
partial: Whether to parse partial JSON objects.
If True, the output will be a JSON object containing
If `True`, the output will be a JSON object containing
all the keys that have been returned so far.
If False, the output will be the full JSON object.
If `False`, the output will be the full JSON object.
Default is False.
Returns:

View File

@@ -149,7 +149,7 @@ class CommaSeparatedListOutputParser(ListOutputParser):
"""Get the namespace of the langchain object.
Returns:
``["langchain", "output_parsers", "list"]``
`["langchain", "output_parsers", "list"]`
"""
return ["langchain", "output_parsers", "list"]

View File

@@ -31,13 +31,13 @@ class OutputFunctionsParser(BaseGenerationOutputParser[Any]):
Args:
result: The result of the LLM call.
partial: Whether to parse partial JSON objects. Default is False.
partial: Whether to parse partial JSON objects.
Returns:
The parsed JSON object.
Raises:
OutputParserException: If the output is not valid JSON.
`OutputParserException`: If the output is not valid JSON.
"""
generation = result[0]
if not isinstance(generation, ChatGeneration):
@@ -56,7 +56,7 @@ class OutputFunctionsParser(BaseGenerationOutputParser[Any]):
class JsonOutputFunctionsParser(BaseCumulativeTransformOutputParser[Any]):
"""Parse an output as the Json object."""
"""Parse an output as the JSON object."""
strict: bool = False
"""Whether to allow non-JSON-compliant strings.
@@ -82,13 +82,13 @@ class JsonOutputFunctionsParser(BaseCumulativeTransformOutputParser[Any]):
Args:
result: The result of the LLM call.
partial: Whether to parse partial JSON objects. Default is False.
partial: Whether to parse partial JSON objects.
Returns:
The parsed JSON object.
Raises:
OutputParserException: If the output is not valid JSON.
OutputParserExcept`ion: If the output is not valid JSON.
"""
if len(result) != 1:
msg = f"Expected exactly one result, but got {len(result)}"
@@ -155,7 +155,7 @@ class JsonOutputFunctionsParser(BaseCumulativeTransformOutputParser[Any]):
class JsonKeyOutputFunctionsParser(JsonOutputFunctionsParser):
"""Parse an output as the element of the Json object."""
"""Parse an output as the element of the JSON object."""
key_name: str
"""The name of the key to return."""
@@ -165,7 +165,7 @@ class JsonKeyOutputFunctionsParser(JsonOutputFunctionsParser):
Args:
result: The result of the LLM call.
partial: Whether to parse partial JSON objects. Default is False.
partial: Whether to parse partial JSON objects.
Returns:
The parsed JSON object.
@@ -177,48 +177,50 @@ class JsonKeyOutputFunctionsParser(JsonOutputFunctionsParser):
class PydanticOutputFunctionsParser(OutputFunctionsParser):
"""Parse an output as a pydantic object.
"""Parse an output as a Pydantic object.
This parser is used to parse the output of a ChatModel that uses
OpenAI function format to invoke functions.
This parser is used to parse the output of a chat model that uses OpenAI function
format to invoke functions.
The parser extracts the function call invocation and matches
them to the pydantic schema provided.
The parser extracts the function call invocation and matches them to the Pydantic
schema provided.
An exception will be raised if the function call does not match
the provided schema.
An exception will be raised if the function call does not match the provided schema.
Example:
... code-block:: python
```python
message = AIMessage(
content="This is a test message",
additional_kwargs={
"function_call": {
"name": "cookie",
"arguments": json.dumps({"name": "value", "age": 10}),
}
},
)
chat_generation = ChatGeneration(message=message)
message = AIMessage(
content="This is a test message",
additional_kwargs={
"function_call": {
"name": "cookie",
"arguments": json.dumps({"name": "value", "age": 10}),
}
},
)
chat_generation = ChatGeneration(message=message)
class Cookie(BaseModel):
name: str
age: int
class Cookie(BaseModel):
name: str
age: int
class Dog(BaseModel):
species: str
# Full output
parser = PydanticOutputFunctionsParser(
pydantic_schema={"cookie": Cookie, "dog": Dog}
)
result = parser.parse_result([chat_generation])
class Dog(BaseModel):
species: str
# Full output
parser = PydanticOutputFunctionsParser(
pydantic_schema={"cookie": Cookie, "dog": Dog}
)
result = parser.parse_result([chat_generation])
```
"""
pydantic_schema: type[BaseModel] | dict[str, type[BaseModel]]
"""The pydantic schema to parse the output with.
"""The Pydantic schema to parse the output with.
If multiple schemas are provided, then the function name will be used to
determine which schema to use.
@@ -227,7 +229,7 @@ class PydanticOutputFunctionsParser(OutputFunctionsParser):
@model_validator(mode="before")
@classmethod
def validate_schema(cls, values: dict) -> Any:
"""Validate the pydantic schema.
"""Validate the Pydantic schema.
Args:
values: The values to validate.
@@ -236,7 +238,7 @@ class PydanticOutputFunctionsParser(OutputFunctionsParser):
The validated values.
Raises:
ValueError: If the schema is not a pydantic schema.
`ValueError`: If the schema is not a Pydantic schema.
"""
schema = values["pydantic_schema"]
if "args_only" not in values:
@@ -259,10 +261,10 @@ class PydanticOutputFunctionsParser(OutputFunctionsParser):
Args:
result: The result of the LLM call.
partial: Whether to parse partial JSON objects. Default is False.
partial: Whether to parse partial JSON objects.
Raises:
ValueError: If the pydantic schema is not valid.
`ValueError`: If the Pydantic schema is not valid.
Returns:
The parsed JSON object.
@@ -285,13 +287,13 @@ class PydanticOutputFunctionsParser(OutputFunctionsParser):
elif issubclass(pydantic_schema, BaseModelV1):
pydantic_args = pydantic_schema.parse_raw(args)
else:
msg = f"Unsupported pydantic schema: {pydantic_schema}"
msg = f"Unsupported Pydantic schema: {pydantic_schema}"
raise ValueError(msg)
return pydantic_args
class PydanticAttrOutputFunctionsParser(PydanticOutputFunctionsParser):
"""Parse an output as an attribute of a pydantic object."""
"""Parse an output as an attribute of a Pydantic object."""
attr_name: str
"""The name of the attribute to return."""
@@ -302,7 +304,7 @@ class PydanticAttrOutputFunctionsParser(PydanticOutputFunctionsParser):
Args:
result: The result of the LLM call.
partial: Whether to parse partial JSON objects. Default is False.
partial: Whether to parse partial JSON objects.
Returns:
The parsed JSON object.

View File

@@ -148,7 +148,7 @@ class JsonOutputToolsParser(BaseCumulativeTransformOutputParser[Any]):
first_tool_only: bool = False
"""Whether to return only the first tool call.
If False, the result will be a list of tool calls, or an empty list
If `False`, the result will be a list of tool calls, or an empty list
if no tool calls are found.
If true, and multiple tool calls are found, only the first one will be returned,
@@ -162,9 +162,9 @@ class JsonOutputToolsParser(BaseCumulativeTransformOutputParser[Any]):
Args:
result: The result of the LLM call.
partial: Whether to parse partial JSON.
If True, the output will be a JSON object containing
If `True`, the output will be a JSON object containing
all the keys that have been returned so far.
If False, the output will be the full JSON object.
If `False`, the output will be the full JSON object.
Default is False.
Returns:
@@ -226,9 +226,9 @@ class JsonOutputKeyToolsParser(JsonOutputToolsParser):
Args:
result: The result of the LLM call.
partial: Whether to parse partial JSON.
If True, the output will be a JSON object containing
If `True`, the output will be a JSON object containing
all the keys that have been returned so far.
If False, the output will be the full JSON object.
If `False`, the output will be the full JSON object.
Default is False.
Raises:
@@ -310,9 +310,9 @@ class PydanticToolsParser(JsonOutputToolsParser):
Args:
result: The result of the LLM call.
partial: Whether to parse partial JSON.
If True, the output will be a JSON object containing
If `True`, the output will be a JSON object containing
all the keys that have been returned so far.
If False, the output will be the full JSON object.
If `False`, the output will be the full JSON object.
Default is False.
Returns:

View File

@@ -17,10 +17,10 @@ from langchain_core.utils.pydantic import (
class PydanticOutputParser(JsonOutputParser, Generic[TBaseModel]):
"""Parse an output using a pydantic model."""
"""Parse an output using a Pydantic model."""
pydantic_object: Annotated[type[TBaseModel], SkipValidation()]
"""The pydantic model to parse."""
"""The Pydantic model to parse."""
def _parse_obj(self, obj: dict) -> TBaseModel:
try:
@@ -45,21 +45,20 @@ class PydanticOutputParser(JsonOutputParser, Generic[TBaseModel]):
def parse_result(
self, result: list[Generation], *, partial: bool = False
) -> TBaseModel | None:
"""Parse the result of an LLM call to a pydantic object.
"""Parse the result of an LLM call to a Pydantic object.
Args:
result: The result of the LLM call.
partial: Whether to parse partial JSON objects.
If True, the output will be a JSON object containing
If `True`, the output will be a JSON object containing
all the keys that have been returned so far.
Defaults to False.
Raises:
OutputParserException: If the result is not valid JSON
or does not conform to the pydantic model.
`OutputParserException`: If the result is not valid JSON
or does not conform to the Pydantic model.
Returns:
The parsed pydantic object.
The parsed Pydantic object.
"""
try:
json_object = super().parse_result(result)
@@ -70,13 +69,13 @@ class PydanticOutputParser(JsonOutputParser, Generic[TBaseModel]):
raise
def parse(self, text: str) -> TBaseModel:
"""Parse the output of an LLM call to a pydantic object.
"""Parse the output of an LLM call to a Pydantic object.
Args:
text: The output of the LLM call.
Returns:
The parsed pydantic object.
The parsed Pydantic object.
"""
return super().parse(text)
@@ -107,7 +106,7 @@ class PydanticOutputParser(JsonOutputParser, Generic[TBaseModel]):
@property
@override
def OutputType(self) -> type[TBaseModel]:
"""Return the pydantic model."""
"""Return the Pydantic model."""
return self.pydantic_object

View File

@@ -22,7 +22,7 @@ class StrOutputParser(BaseTransformOutputParser[str]):
"""Get the namespace of the langchain object.
Returns:
``["langchain", "schema", "output_parser"]``
`["langchain", "schema", "output_parser"]`
"""
return ["langchain", "schema", "output_parser"]

View File

@@ -64,7 +64,7 @@ class BaseTransformOutputParser(BaseOutputParser[T]):
Args:
input: The input to transform.
config: The configuration to use for the transformation.
kwargs: Additional keyword arguments.
**kwargs: Additional keyword arguments.
Yields:
The transformed output.
@@ -85,7 +85,7 @@ class BaseTransformOutputParser(BaseOutputParser[T]):
Args:
input: The input to transform.
config: The configuration to use for the transformation.
kwargs: Additional keyword arguments.
**kwargs: Additional keyword arguments.
Yields:
The transformed output.

View File

@@ -82,7 +82,7 @@ class _StreamingParser:
chunk: A chunk of text to parse. This can be a string or a BaseMessage.
Yields:
AddableDict: A dictionary representing the parsed XML element.
A dictionary representing the parsed XML element.
Raises:
xml.etree.ElementTree.ParseError: If the XML is not well-formed.

View File

@@ -12,7 +12,7 @@ When invoking models via the standard runnable methods (e.g. invoke, batch, etc.
- LLMs will return regular text strings.
In addition, users can access the raw output of either LLMs or chat models via
callbacks. The ``on_chat_model_end`` and ``on_llm_end`` callbacks will return an
callbacks. The `on_chat_model_end` and `on_llm_end` callbacks will return an
LLMResult object containing the generated outputs and any additional information
returned by the model provider.

View File

@@ -15,14 +15,14 @@ from langchain_core.utils._merge import merge_dicts
class ChatGeneration(Generation):
"""A single chat generation output.
A subclass of ``Generation`` that represents the response from a chat model
A subclass of `Generation` that represents the response from a chat model
that generates chat messages.
The ``message`` attribute is a structured representation of the chat message.
Most of the time, the message will be of type ``AIMessage``.
The `message` attribute is a structured representation of the chat message.
Most of the time, the message will be of type `AIMessage`.
Users working with chat models will usually access information via either
``AIMessage`` (returned from runnable interfaces) or ``LLMResult`` (available
`AIMessage` (returned from runnable interfaces) or `LLMResult` (available
via callbacks).
"""
@@ -70,9 +70,9 @@ class ChatGeneration(Generation):
class ChatGenerationChunk(ChatGeneration):
"""``ChatGeneration`` chunk.
"""`ChatGeneration` chunk.
``ChatGeneration`` chunks can be concatenated with other ``ChatGeneration`` chunks.
`ChatGeneration` chunks can be concatenated with other `ChatGeneration` chunks.
"""
message: BaseMessageChunk
@@ -84,18 +84,18 @@ class ChatGenerationChunk(ChatGeneration):
def __add__(
self, other: ChatGenerationChunk | list[ChatGenerationChunk]
) -> ChatGenerationChunk:
"""Concatenate two ``ChatGenerationChunk``s.
"""Concatenate two `ChatGenerationChunk`s.
Args:
other: The other ``ChatGenerationChunk`` or list of ``ChatGenerationChunk``
other: The other `ChatGenerationChunk` or list of `ChatGenerationChunk`
to concatenate.
Raises:
TypeError: If other is not a ``ChatGenerationChunk`` or list of
``ChatGenerationChunk``.
TypeError: If other is not a `ChatGenerationChunk` or list of
`ChatGenerationChunk`.
Returns:
A new ``ChatGenerationChunk`` concatenated from self and other.
A new `ChatGenerationChunk` concatenated from self and other.
"""
if isinstance(other, ChatGenerationChunk):
generation_info = merge_dicts(
@@ -124,13 +124,13 @@ class ChatGenerationChunk(ChatGeneration):
def merge_chat_generation_chunks(
chunks: list[ChatGenerationChunk],
) -> ChatGenerationChunk | None:
"""Merge a list of ``ChatGenerationChunk``s into a single ``ChatGenerationChunk``.
"""Merge a list of `ChatGenerationChunk`s into a single `ChatGenerationChunk`.
Args:
chunks: A list of ``ChatGenerationChunk`` to merge.
chunks: A list of `ChatGenerationChunk` to merge.
Returns:
A merged ``ChatGenerationChunk``, or None if the input list is empty.
A merged `ChatGenerationChunk`, or None if the input list is empty.
"""
if not chunks:
return None

View File

@@ -47,7 +47,7 @@ class Generation(Serializable):
"""Get the namespace of the langchain object.
Returns:
``["langchain", "schema", "output"]``
`["langchain", "schema", "output"]`
"""
return ["langchain", "schema", "output"]
@@ -56,16 +56,16 @@ class GenerationChunk(Generation):
"""Generation chunk, which can be concatenated with other Generation chunks."""
def __add__(self, other: GenerationChunk) -> GenerationChunk:
"""Concatenate two ``GenerationChunk``s.
"""Concatenate two `GenerationChunk`s.
Args:
other: Another ``GenerationChunk`` to concatenate with.
other: Another `GenerationChunk` to concatenate with.
Raises:
TypeError: If other is not a ``GenerationChunk``.
TypeError: If other is not a `GenerationChunk`.
Returns:
A new ``GenerationChunk`` concatenated from self and other.
A new `GenerationChunk` concatenated from self and other.
"""
if isinstance(other, GenerationChunk):
generation_info = merge_dicts(

View File

@@ -30,8 +30,8 @@ class LLMResult(BaseModel):
The second dimension of the list represents different candidate generations for a
given prompt.
- When returned from **an LLM**, the type is ``list[list[Generation]]``.
- When returned from a **chat model**, the type is ``list[list[ChatGeneration]]``.
- When returned from **an LLM**, the type is `list[list[Generation]]`.
- When returned from a **chat model**, the type is `list[list[ChatGeneration]]`.
ChatGeneration is a subclass of Generation that has a field for a structured chat
message.
@@ -91,13 +91,13 @@ class LLMResult(BaseModel):
return llm_results
def __eq__(self, other: object) -> bool:
"""Check for ``LLMResult`` equality by ignoring any metadata related to runs.
"""Check for `LLMResult` equality by ignoring any metadata related to runs.
Args:
other: Another ``LLMResult`` object to compare against.
other: Another `LLMResult` object to compare against.
Returns:
True if the generations and ``llm_output`` are equal, False otherwise.
`True` if the generations and `llm_output` are equal, `False` otherwise.
"""
if not isinstance(other, LLMResult):
return NotImplemented

View File

@@ -40,7 +40,7 @@ class PromptValue(Serializable, ABC):
This is used to determine the namespace of the object when serializing.
Returns:
``["langchain", "schema", "prompt"]``
`["langchain", "schema", "prompt"]`
"""
return ["langchain", "schema", "prompt"]
@@ -67,7 +67,7 @@ class StringPromptValue(PromptValue):
This is used to determine the namespace of the object when serializing.
Returns:
``["langchain", "prompts", "base"]``
`["langchain", "prompts", "base"]`
"""
return ["langchain", "prompts", "base"]
@@ -104,7 +104,7 @@ class ChatPromptValue(PromptValue):
This is used to determine the namespace of the object when serializing.
Returns:
``["langchain", "prompts", "chat"]``
`["langchain", "prompts", "chat"]`
"""
return ["langchain", "prompts", "chat"]
@@ -113,8 +113,8 @@ class ImageURL(TypedDict, total=False):
"""Image URL."""
detail: Literal["auto", "low", "high"]
"""Specifies the detail level of the image. Defaults to ``'auto'``.
Can be ``'auto'``, ``'low'``, or ``'high'``.
"""Specifies the detail level of the image. Defaults to `'auto'`.
Can be `'auto'`, `'low'`, or `'high'`.
This follows OpenAI's Chat Completion API's image URL format.

View File

@@ -1,28 +1,8 @@
"""**Prompt** is the input to the model.
Prompt is often constructed
from multiple components and prompt values. Prompt classes and functions make constructing
and working with prompts easy.
**Class hierarchy:**
.. code-block::
BasePromptTemplate --> StringPromptTemplate --> PromptTemplate
FewShotPromptTemplate
FewShotPromptWithTemplates
BaseChatPromptTemplate --> AutoGPTPrompt
ChatPromptTemplate --> AgentScratchPadChatPromptTemplate
BaseMessagePromptTemplate --> MessagesPlaceholder
BaseStringMessagePromptTemplate --> ChatMessagePromptTemplate
HumanMessagePromptTemplate
AIMessagePromptTemplate
SystemMessagePromptTemplate
""" # noqa: E501
Prompt is often constructed from multiple components and prompt values. Prompt classes
and functions make constructing and working with prompts easy.
"""
from typing import TYPE_CHECKING

Some files were not shown because too many files have changed in this diff Show More