mirror of
https://github.com/hwchase17/langchain.git
synced 2026-02-05 08:40:36 +00:00
Compare commits
7 Commits
langchain=
...
dev2049/pe
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
dfad58c29e | ||
|
|
658cee5670 | ||
|
|
de0bf1a3a4 | ||
|
|
d7658f6f01 | ||
|
|
0c8be8fe23 | ||
|
|
c7c99d7cfd | ||
|
|
f06b2ac495 |
@@ -1,49 +0,0 @@
|
||||
# Dev container
|
||||
|
||||
This project includes a [dev container](https://containers.dev/), which lets you use a container as a full-featured dev environment.
|
||||
|
||||
You can use the dev container configuration in this folder to build and run the app without needing to install any of its tools locally! You can use it in [GitHub Codespaces](https://github.com/features/codespaces) or the [VS Code Dev Containers extension](https://marketplace.visualstudio.com/items?itemName=ms-vscode-remote.remote-containers).
|
||||
|
||||
## GitHub Codespaces
|
||||
|
||||
[](https://codespaces.new/langchain-ai/langchain)
|
||||
|
||||
You may use the button above, or follow these steps to open this repo in a Codespace:
|
||||
|
||||
1. Click the **Code** drop-down menu at the top of <https://github.com/langchain-ai/langchain>.
|
||||
1. Click on the **Codespaces** tab.
|
||||
1. Click **Create codespace on master**.
|
||||
|
||||
For more info, check out the [GitHub documentation](https://docs.github.com/en/free-pro-team@latest/github/developing-online-with-codespaces/creating-a-codespace#creating-a-codespace).
|
||||
|
||||
## VS Code Dev Containers
|
||||
|
||||
[](https://vscode.dev/redirect?url=vscode://ms-vscode-remote.remote-containers/cloneInVolume?url=https://github.com/langchain-ai/langchain)
|
||||
|
||||
> [!NOTE]
|
||||
> If you click the link above you will open the main repo (`langchain-ai/langchain`) and *not* your local cloned repo. This is fine if you only want to run and test the library, but if you want to contribute you can use the link below and replace with your username and cloned repo name:
|
||||
|
||||
```txt
|
||||
https://vscode.dev/redirect?url=vscode://ms-vscode-remote.remote-containers/cloneInVolume?url=https://github.com/<YOUR_USERNAME>/<YOUR_CLONED_REPO_NAME>
|
||||
```
|
||||
|
||||
Then you will have a local cloned repo where you can contribute and then create pull requests.
|
||||
|
||||
If you already have VS Code and Docker installed, you can use the button above to get started. This will use VSCode to automatically install the Dev Containers extension if needed, clone the source code into a container volume, and spin up a dev container for use.
|
||||
|
||||
Alternatively you can also follow these steps to open this repo in a container using the VS Code Dev Containers extension:
|
||||
|
||||
1. If this is your first time using a development container, please ensure your system meets the pre-reqs (i.e. have Docker installed) in the [getting started steps](https://aka.ms/vscode-remote/containers/getting-started).
|
||||
|
||||
2. Open a locally cloned copy of the code:
|
||||
|
||||
- Fork and Clone this repository to your local filesystem.
|
||||
- Press <kbd>F1</kbd> and select the **Dev Containers: Open Folder in Container...** command.
|
||||
- Select the cloned copy of this folder, wait for the container to start, and try things out!
|
||||
|
||||
You can learn more in the [Dev Containers documentation](https://code.visualstudio.com/docs/devcontainers/containers).
|
||||
|
||||
## Tips and tricks
|
||||
|
||||
- If you are working with the same repository folder in a container and Windows, you'll want consistent line endings (otherwise you may see hundreds of changes in the SCM view). The `.gitattributes` file in the root of this repo will disable line ending conversion and should prevent this. See [tips and tricks](https://code.visualstudio.com/docs/devcontainers/tips-and-tricks#_resolving-git-line-ending-issues-in-containers-resulting-in-many-modified-files) for more info.
|
||||
- If you'd like to review the contents of the image used in this dev container, you can check it out in the [devcontainers/images](https://github.com/devcontainers/images/tree/main/src/python) repo.
|
||||
@@ -1,58 +0,0 @@
|
||||
// For format details, see https://aka.ms/devcontainer.json. For config options, see the
|
||||
// README at: https://github.com/devcontainers/templates/tree/main/src/docker-existing-docker-compose
|
||||
{
|
||||
// Name for the dev container
|
||||
"name": "langchain",
|
||||
// Point to a Docker Compose file
|
||||
"dockerComposeFile": "./docker-compose.yaml",
|
||||
// Required when using Docker Compose. The name of the service to connect to once running
|
||||
"service": "langchain",
|
||||
// The optional 'workspaceFolder' property is the path VS Code should open by default when
|
||||
// connected. This is typically a file mount in .devcontainer/docker-compose.yml
|
||||
"workspaceFolder": "/workspaces/langchain",
|
||||
"mounts": [
|
||||
"source=langchain-workspaces,target=/workspaces/langchain,type=volume"
|
||||
],
|
||||
// Prevent the container from shutting down
|
||||
"overrideCommand": true,
|
||||
// Features to add to the dev container. More info: https://containers.dev/features
|
||||
"features": {
|
||||
"ghcr.io/devcontainers/features/git:1": {},
|
||||
"ghcr.io/devcontainers/features/github-cli:1": {}
|
||||
},
|
||||
"containerEnv": {
|
||||
"UV_LINK_MODE": "copy"
|
||||
},
|
||||
// Use 'forwardPorts' to make a list of ports inside the container available locally.
|
||||
// "forwardPorts": [],
|
||||
// Run commands after the container is created
|
||||
"postCreateCommand": "cd libs/langchain_v1 && uv sync && echo 'LangChain (Python) dev environment ready!'",
|
||||
// Configure tool-specific properties.
|
||||
"customizations": {
|
||||
"vscode": {
|
||||
"extensions": [
|
||||
"ms-python.python",
|
||||
"ms-python.debugpy",
|
||||
"ms-python.mypy-type-checker",
|
||||
"ms-python.isort",
|
||||
"unifiedjs.vscode-mdx",
|
||||
"davidanson.vscode-markdownlint",
|
||||
"ms-toolsai.jupyter",
|
||||
"GitHub.copilot",
|
||||
"GitHub.copilot-chat"
|
||||
],
|
||||
"settings": {
|
||||
"python.defaultInterpreterPath": "libs/langchain_v1/.venv/bin/python",
|
||||
"python.formatting.provider": "none",
|
||||
"[python]": {
|
||||
"editor.formatOnSave": true,
|
||||
"editor.codeActionsOnSave": {
|
||||
"source.organizeImports": true
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
// Uncomment to connect as root instead. More info: https://aka.ms/dev-containers-non-root.
|
||||
// "remoteUser": "root"
|
||||
}
|
||||
@@ -1,13 +0,0 @@
|
||||
version: '3'
|
||||
services:
|
||||
langchain:
|
||||
build:
|
||||
dockerfile: libs/langchain/dev.Dockerfile
|
||||
context: ..
|
||||
|
||||
networks:
|
||||
- langchain-network
|
||||
|
||||
networks:
|
||||
langchain-network:
|
||||
driver: bridge
|
||||
@@ -1,34 +1,6 @@
|
||||
# Git
|
||||
.git
|
||||
.github
|
||||
|
||||
# Python
|
||||
__pycache__
|
||||
*.pyc
|
||||
*.pyo
|
||||
.venv
|
||||
.github
|
||||
.git
|
||||
.mypy_cache
|
||||
.pytest_cache
|
||||
.ruff_cache
|
||||
*.egg-info
|
||||
.tox
|
||||
|
||||
# IDE
|
||||
.idea
|
||||
.vscode
|
||||
|
||||
# Worktree
|
||||
worktree
|
||||
|
||||
# Test artifacts
|
||||
.coverage
|
||||
htmlcov
|
||||
coverage.xml
|
||||
|
||||
# Build artifacts
|
||||
dist
|
||||
build
|
||||
|
||||
# Misc
|
||||
*.log
|
||||
.DS_Store
|
||||
Dockerfile
|
||||
@@ -1,52 +0,0 @@
|
||||
# top-most EditorConfig file
|
||||
root = true
|
||||
|
||||
# All files
|
||||
[*]
|
||||
charset = utf-8
|
||||
end_of_line = lf
|
||||
insert_final_newline = true
|
||||
trim_trailing_whitespace = true
|
||||
|
||||
# Python files
|
||||
[*.py]
|
||||
indent_style = space
|
||||
indent_size = 4
|
||||
max_line_length = 88
|
||||
|
||||
# JSON files
|
||||
[*.json]
|
||||
indent_style = space
|
||||
indent_size = 2
|
||||
|
||||
# YAML files
|
||||
[*.{yml,yaml}]
|
||||
indent_style = space
|
||||
indent_size = 2
|
||||
|
||||
# Markdown files
|
||||
[*.md]
|
||||
indent_style = space
|
||||
indent_size = 2
|
||||
trim_trailing_whitespace = false
|
||||
|
||||
# Configuration files
|
||||
[*.{toml,ini,cfg}]
|
||||
indent_style = space
|
||||
indent_size = 4
|
||||
|
||||
# Shell scripts
|
||||
[*.sh]
|
||||
indent_style = space
|
||||
indent_size = 2
|
||||
|
||||
# Makefile
|
||||
[Makefile]
|
||||
indent_style = tab
|
||||
indent_size = 4
|
||||
|
||||
# Jupyter notebooks
|
||||
[*.ipynb]
|
||||
# Jupyter may include trailing whitespace in cell
|
||||
# outputs that's semantically meaningful
|
||||
trim_trailing_whitespace = false
|
||||
3
.gitattributes
vendored
3
.gitattributes
vendored
@@ -1,3 +0,0 @@
|
||||
* text=auto eol=lf
|
||||
*.{cmd,[cC][mM][dD]} text eol=crlf
|
||||
*.{bat,[bB][aA][tT]} text eol=crlf
|
||||
3
.github/CODEOWNERS
vendored
3
.github/CODEOWNERS
vendored
@@ -1,3 +0,0 @@
|
||||
/.github/ @baskaryan @ccurme @eyurtsev
|
||||
/libs/core/ @eyurtsev
|
||||
/libs/partners/ @ccurme @mdrxy
|
||||
190
.github/CONTRIBUTING.md
vendored
Normal file
190
.github/CONTRIBUTING.md
vendored
Normal file
@@ -0,0 +1,190 @@
|
||||
# Contributing to LangChain
|
||||
|
||||
Hi there! Thank you for even being interested in contributing to LangChain.
|
||||
As an open source project in a rapidly developing field, we are extremely open
|
||||
to contributions, whether it be in the form of a new feature, improved infra, or better documentation.
|
||||
|
||||
To contribute to this project, please follow a ["fork and pull request"](https://docs.github.com/en/get-started/quickstart/contributing-to-projects) workflow.
|
||||
Please do not try to push directly to this repo unless you are maintainer.
|
||||
|
||||
## 🗺️Contributing Guidelines
|
||||
|
||||
### 🚩GitHub Issues
|
||||
|
||||
Our [issues](https://github.com/hwchase17/langchain/issues) page is kept up to date
|
||||
with bugs, improvements, and feature requests. There is a taxonomy of labels to help
|
||||
with sorting and discovery of issues of interest. These include:
|
||||
|
||||
- prompts: related to prompt tooling/infra.
|
||||
- llms: related to LLM wrappers/tooling/infra.
|
||||
- chains
|
||||
- utilities: related to different types of utilities to integrate with (Python, SQL, etc.).
|
||||
- agents
|
||||
- memory
|
||||
- applications: related to example applications to build
|
||||
|
||||
If you start working on an issue, please assign it to yourself.
|
||||
|
||||
If you are adding an issue, please try to keep it focused on a single modular bug/improvement/feature.
|
||||
If the two issues are related, or blocking, please link them rather than keep them as one single one.
|
||||
|
||||
We will try to keep these issues as up to date as possible, though
|
||||
with the rapid rate of develop in this field some may get out of date.
|
||||
If you notice this happening, please just let us know.
|
||||
|
||||
### 🙋Getting Help
|
||||
|
||||
Although we try to have a developer setup to make it as easy as possible for others to contribute (see below)
|
||||
it is possible that some pain point may arise around environment setup, linting, documentation, or other.
|
||||
Should that occur, please contact a maintainer! Not only do we want to help get you unblocked,
|
||||
but we also want to make sure that the process is smooth for future contributors.
|
||||
|
||||
In a similar vein, we do enforce certain linting, formatting, and documentation standards in the codebase.
|
||||
If you are finding these difficult (or even just annoying) to work with,
|
||||
feel free to contact a maintainer for help - we do not want these to get in the way of getting
|
||||
good code into the codebase.
|
||||
|
||||
### 🏭Release process
|
||||
|
||||
As of now, LangChain has an ad hoc release process: releases are cut with high frequency by
|
||||
a developer and published to [PyPI](https://pypi.org/project/langchain/).
|
||||
|
||||
LangChain follows the [semver](https://semver.org/) versioning standard. However, as pre-1.0 software,
|
||||
even patch releases may contain [non-backwards-compatible changes](https://semver.org/#spec-item-4).
|
||||
|
||||
If your contribution has made its way into a release, we will want to give you credit on Twitter (only if you want though)!
|
||||
If you have a Twitter account you would like us to mention, please let us know in the PR or in another manner.
|
||||
|
||||
## 🚀Quick Start
|
||||
|
||||
This project uses [Poetry](https://python-poetry.org/) as a dependency manager. Check out Poetry's [documentation on how to install it](https://python-poetry.org/docs/#installation) on your system before proceeding.
|
||||
|
||||
❗Note: If you use `Conda` or `Pyenv` as your environment / package manager, avoid dependency conflicts by doing the following first:
|
||||
1. *Before installing Poetry*, create and activate a new Conda env (e.g. `conda create -n langchain python=3.9`)
|
||||
2. Install Poetry (see above)
|
||||
3. Tell Poetry to use the virtualenv python environment (`poetry config virtualenvs.prefer-active-python true`)
|
||||
4. Continue with the following steps.
|
||||
|
||||
To install requirements:
|
||||
|
||||
```bash
|
||||
poetry install -E all
|
||||
```
|
||||
|
||||
This will install all requirements for running the package, examples, linting, formatting, tests, and coverage. Note the `-E all` flag will install all optional dependencies necessary for integration testing.
|
||||
|
||||
❗Note: If you're running Poetry 1.4.1 and receive a `WheelFileValidationError` for `debugpy` during installation, you can try either downgrading to Poetry 1.4.0 or disabling "modern installation" (`poetry config installer.modern-installation false`) and re-install requirements. See [this `debugpy` issue](https://github.com/microsoft/debugpy/issues/1246) for more details.
|
||||
|
||||
Now, you should be able to run the common tasks in the following section. To double check, run `make test`, all tests should pass. If they don't you may need to pip install additional dependencies, such as `numexpr` and `openapi_schema_pydantic`.
|
||||
|
||||
## ✅Common Tasks
|
||||
|
||||
Type `make` for a list of common tasks.
|
||||
|
||||
### Code Formatting
|
||||
|
||||
Formatting for this project is done via a combination of [Black](https://black.readthedocs.io/en/stable/) and [isort](https://pycqa.github.io/isort/).
|
||||
|
||||
To run formatting for this project:
|
||||
|
||||
```bash
|
||||
make format
|
||||
```
|
||||
|
||||
### Linting
|
||||
|
||||
Linting for this project is done via a combination of [Black](https://black.readthedocs.io/en/stable/), [isort](https://pycqa.github.io/isort/), [flake8](https://flake8.pycqa.org/en/latest/), and [mypy](http://mypy-lang.org/).
|
||||
|
||||
To run linting for this project:
|
||||
|
||||
```bash
|
||||
make lint
|
||||
```
|
||||
|
||||
We recognize linting can be annoying - if you do not want to do it, please contact a project maintainer, and they can help you with it. We do not want this to be a blocker for good code getting contributed.
|
||||
|
||||
### Coverage
|
||||
|
||||
Code coverage (i.e. the amount of code that is covered by unit tests) helps identify areas of the code that are potentially more or less brittle.
|
||||
|
||||
To get a report of current coverage, run the following:
|
||||
|
||||
```bash
|
||||
make coverage
|
||||
```
|
||||
|
||||
### Testing
|
||||
|
||||
Unit tests cover modular logic that does not require calls to outside APIs.
|
||||
|
||||
To run unit tests:
|
||||
|
||||
```bash
|
||||
make test
|
||||
```
|
||||
|
||||
To run unit tests in Docker:
|
||||
|
||||
```bash
|
||||
make docker_tests
|
||||
```
|
||||
|
||||
If you add new logic, please add a unit test.
|
||||
|
||||
Integration tests cover logic that requires making calls to outside APIs (often integration with other services).
|
||||
|
||||
To run integration tests:
|
||||
|
||||
```bash
|
||||
make integration_tests
|
||||
```
|
||||
|
||||
If you add support for a new external API, please add a new integration test.
|
||||
|
||||
### Adding a Jupyter Notebook
|
||||
|
||||
If you are adding a Jupyter notebook example, you'll want to install the optional `dev` dependencies.
|
||||
|
||||
To install dev dependencies:
|
||||
|
||||
```bash
|
||||
poetry install --with dev
|
||||
```
|
||||
|
||||
Launch a notebook:
|
||||
|
||||
```bash
|
||||
poetry run jupyter notebook
|
||||
```
|
||||
|
||||
When you run `poetry install`, the `langchain` package is installed as editable in the virtualenv, so your new logic can be imported into the notebook.
|
||||
|
||||
## Documentation
|
||||
|
||||
### Contribute Documentation
|
||||
|
||||
Docs are largely autogenerated by [sphinx](https://www.sphinx-doc.org/en/master/) from the code.
|
||||
|
||||
For that reason, we ask that you add good documentation to all classes and methods.
|
||||
|
||||
Similar to linting, we recognize documentation can be annoying. If you do not want to do it, please contact a project maintainer, and they can help you with it. We do not want this to be a blocker for good code getting contributed.
|
||||
|
||||
### Build Documentation Locally
|
||||
|
||||
Before building the documentation, it is always a good idea to clean the build directory:
|
||||
|
||||
```bash
|
||||
make docs_clean
|
||||
```
|
||||
|
||||
Next, you can run the linkchecker to make sure all links are valid:
|
||||
|
||||
```bash
|
||||
make docs_linkcheck
|
||||
```
|
||||
|
||||
Finally, you can build the documentation as outlined below:
|
||||
|
||||
```bash
|
||||
make docs_build
|
||||
```
|
||||
142
.github/ISSUE_TEMPLATE/bug-report.yml
vendored
142
.github/ISSUE_TEMPLATE/bug-report.yml
vendored
@@ -1,142 +0,0 @@
|
||||
name: "\U0001F41B Bug Report"
|
||||
description: Report a bug in LangChain. To report a security issue, please instead use the security option (below). For questions, please use the LangChain forum (below).
|
||||
labels: ["bug"]
|
||||
type: bug
|
||||
body:
|
||||
- type: markdown
|
||||
attributes:
|
||||
value: |
|
||||
Thank you for taking the time to file a bug report.
|
||||
|
||||
For usage questions, feature requests and general design questions, please use the [LangChain Forum](https://forum.langchain.com/).
|
||||
|
||||
Check these before submitting to see if your issue has already been reported, fixed or if there's another way to solve your problem:
|
||||
|
||||
* [Documentation](https://docs.langchain.com/oss/python/langchain/overview),
|
||||
* [API Reference Documentation](https://reference.langchain.com/python/),
|
||||
* [LangChain ChatBot](https://chat.langchain.com/)
|
||||
* [GitHub search](https://github.com/langchain-ai/langchain),
|
||||
* [LangChain Forum](https://forum.langchain.com/),
|
||||
- type: checkboxes
|
||||
id: checks
|
||||
attributes:
|
||||
label: Checked other resources
|
||||
description: Please confirm and check all the following options.
|
||||
options:
|
||||
- label: This is a bug, not a usage question.
|
||||
required: true
|
||||
- label: I added a clear and descriptive title that summarizes this issue.
|
||||
required: true
|
||||
- label: I used the GitHub search to find a similar question and didn't find it.
|
||||
required: true
|
||||
- label: I am sure that this is a bug in LangChain rather than my code.
|
||||
required: true
|
||||
- label: The bug is not resolved by updating to the latest stable version of LangChain (or the specific integration package).
|
||||
required: true
|
||||
- label: This is not related to the langchain-community package.
|
||||
required: true
|
||||
- label: I posted a self-contained, minimal, reproducible example. A maintainer can copy it and run it AS IS.
|
||||
required: true
|
||||
- type: checkboxes
|
||||
id: package
|
||||
attributes:
|
||||
label: Package (Required)
|
||||
description: |
|
||||
Which `langchain` package(s) is this bug related to? Select at least one.
|
||||
|
||||
Note that if the package you are reporting for is not listed here, it is not in this repository (e.g. `langchain-google-genai` is in [`langchain-ai/langchain-google`](https://github.com/langchain-ai/langchain-google/)).
|
||||
|
||||
Please report issues for other packages to their respective repositories.
|
||||
options:
|
||||
- label: langchain
|
||||
- label: langchain-openai
|
||||
- label: langchain-anthropic
|
||||
- label: langchain-classic
|
||||
- label: langchain-core
|
||||
- label: langchain-cli
|
||||
- label: langchain-model-profiles
|
||||
- label: langchain-tests
|
||||
- label: langchain-text-splitters
|
||||
- label: langchain-chroma
|
||||
- label: langchain-deepseek
|
||||
- label: langchain-exa
|
||||
- label: langchain-fireworks
|
||||
- label: langchain-groq
|
||||
- label: langchain-huggingface
|
||||
- label: langchain-mistralai
|
||||
- label: langchain-nomic
|
||||
- label: langchain-ollama
|
||||
- label: langchain-perplexity
|
||||
- label: langchain-prompty
|
||||
- label: langchain-qdrant
|
||||
- label: langchain-xai
|
||||
- label: Other / not sure / general
|
||||
- type: textarea
|
||||
id: reproduction
|
||||
validations:
|
||||
required: true
|
||||
attributes:
|
||||
label: Reproduction Steps / Example Code (Python)
|
||||
description: |
|
||||
Please add a self-contained, [minimal, reproducible, example](https://stackoverflow.com/help/minimal-reproducible-example) with your use case.
|
||||
|
||||
If a maintainer can copy it, run it, and see it right away, there's a much higher chance that you'll be able to get help.
|
||||
|
||||
**Important!**
|
||||
|
||||
* Avoid screenshots, as they are hard to read and (more importantly) don't allow others to copy-and-paste your code.
|
||||
* Reduce your code to the minimum required to reproduce the issue if possible.
|
||||
|
||||
(This will be automatically formatted into code, so no need for backticks.)
|
||||
render: python
|
||||
placeholder: |
|
||||
from langchain_core.runnables import RunnableLambda
|
||||
|
||||
def bad_code(inputs) -> int:
|
||||
raise NotImplementedError('For demo purpose')
|
||||
|
||||
chain = RunnableLambda(bad_code)
|
||||
chain.invoke('Hello!')
|
||||
- type: textarea
|
||||
attributes:
|
||||
label: Error Message and Stack Trace (if applicable)
|
||||
description: |
|
||||
If you are reporting an error, please copy and paste the full error message and
|
||||
stack trace.
|
||||
(This will be automatically formatted into code, so no need for backticks.)
|
||||
render: shell
|
||||
- type: textarea
|
||||
id: description
|
||||
attributes:
|
||||
label: Description
|
||||
description: |
|
||||
What is the problem, question, or error?
|
||||
|
||||
Write a short description telling what you are doing, what you expect to happen, and what is currently happening.
|
||||
placeholder: |
|
||||
* I'm trying to use the `langchain` library to do X.
|
||||
* I expect to see Y.
|
||||
* Instead, it does Z.
|
||||
validations:
|
||||
required: true
|
||||
- type: textarea
|
||||
id: system-info
|
||||
attributes:
|
||||
label: System Info
|
||||
description: |
|
||||
Please share your system info with us.
|
||||
|
||||
Run the following command in your terminal and paste the output here:
|
||||
|
||||
`python -m langchain_core.sys_info`
|
||||
|
||||
or if you have an existing python interpreter running:
|
||||
|
||||
```python
|
||||
from langchain_core import sys_info
|
||||
sys_info.print_sys_info()
|
||||
```
|
||||
placeholder: |
|
||||
python -m langchain_core.sys_info
|
||||
validations:
|
||||
required: true
|
||||
15
.github/ISSUE_TEMPLATE/config.yml
vendored
15
.github/ISSUE_TEMPLATE/config.yml
vendored
@@ -1,15 +0,0 @@
|
||||
blank_issues_enabled: false
|
||||
version: 2.1
|
||||
contact_links:
|
||||
- name: 💬 LangChain Forum
|
||||
url: https://forum.langchain.com/
|
||||
about: General community discussions and support
|
||||
- name: 📚 LangChain Documentation
|
||||
url: https://docs.langchain.com/oss/python/langchain/overview
|
||||
about: View the official LangChain documentation
|
||||
- name: 📚 API Reference Documentation
|
||||
url: https://reference.langchain.com/python/
|
||||
about: View the official LangChain API reference documentation
|
||||
- name: 📚 Documentation issue
|
||||
url: https://github.com/langchain-ai/docs/issues/new?template=01-langchain.yml
|
||||
about: Report an issue related to the LangChain documentation
|
||||
152
.github/ISSUE_TEMPLATE/feature-request.yml
vendored
152
.github/ISSUE_TEMPLATE/feature-request.yml
vendored
@@ -1,152 +0,0 @@
|
||||
name: "✨ Feature Request"
|
||||
description: Request a new feature or enhancement for LangChain. For questions, please use the LangChain forum (below).
|
||||
labels: ["feature request"]
|
||||
type: feature
|
||||
body:
|
||||
- type: markdown
|
||||
attributes:
|
||||
value: |
|
||||
Thank you for taking the time to request a new feature.
|
||||
|
||||
Use this to request NEW FEATURES or ENHANCEMENTS in LangChain. For bug reports, please use the bug report template. For usage questions and general design questions, please use the [LangChain Forum](https://forum.langchain.com/).
|
||||
|
||||
Relevant links to check before filing a feature request to see if your request has already been made or
|
||||
if there's another way to achieve what you want:
|
||||
|
||||
* [Documentation](https://docs.langchain.com/oss/python/langchain/overview),
|
||||
* [API Reference Documentation](https://reference.langchain.com/python/),
|
||||
* [LangChain ChatBot](https://chat.langchain.com/)
|
||||
* [GitHub search](https://github.com/langchain-ai/langchain),
|
||||
* [LangChain Forum](https://forum.langchain.com/),
|
||||
- type: checkboxes
|
||||
id: checks
|
||||
attributes:
|
||||
label: Checked other resources
|
||||
description: Please confirm and check all the following options.
|
||||
options:
|
||||
- label: This is a feature request, not a bug report or usage question.
|
||||
required: true
|
||||
- label: I added a clear and descriptive title that summarizes the feature request.
|
||||
required: true
|
||||
- label: I used the GitHub search to find a similar feature request and didn't find it.
|
||||
required: true
|
||||
- label: I checked the LangChain documentation and API reference to see if this feature already exists.
|
||||
required: true
|
||||
- label: This is not related to the langchain-community package.
|
||||
required: true
|
||||
- type: checkboxes
|
||||
id: package
|
||||
attributes:
|
||||
label: Package (Required)
|
||||
description: |
|
||||
Which `langchain` package(s) is this request related to? Select at least one.
|
||||
|
||||
Note that if the package you are requesting for is not listed here, it is not in this repository (e.g. `langchain-google-genai` is in `langchain-ai/langchain`).
|
||||
|
||||
Please submit feature requests for other packages to their respective repositories.
|
||||
options:
|
||||
- label: langchain
|
||||
- label: langchain-openai
|
||||
- label: langchain-anthropic
|
||||
- label: langchain-classic
|
||||
- label: langchain-core
|
||||
- label: langchain-cli
|
||||
- label: langchain-model-profiles
|
||||
- label: langchain-tests
|
||||
- label: langchain-text-splitters
|
||||
- label: langchain-chroma
|
||||
- label: langchain-deepseek
|
||||
- label: langchain-exa
|
||||
- label: langchain-fireworks
|
||||
- label: langchain-groq
|
||||
- label: langchain-huggingface
|
||||
- label: langchain-mistralai
|
||||
- label: langchain-nomic
|
||||
- label: langchain-ollama
|
||||
- label: langchain-perplexity
|
||||
- label: langchain-prompty
|
||||
- label: langchain-qdrant
|
||||
- label: langchain-xai
|
||||
- label: Other / not sure / general
|
||||
- type: textarea
|
||||
id: feature-description
|
||||
validations:
|
||||
required: true
|
||||
attributes:
|
||||
label: Feature Description
|
||||
description: |
|
||||
Please provide a clear and concise description of the feature you would like to see added to LangChain.
|
||||
|
||||
What specific functionality are you requesting? Be as detailed as possible.
|
||||
placeholder: |
|
||||
I would like LangChain to support...
|
||||
|
||||
This feature would allow users to...
|
||||
- type: textarea
|
||||
id: use-case
|
||||
validations:
|
||||
required: true
|
||||
attributes:
|
||||
label: Use Case
|
||||
description: |
|
||||
Describe the specific use case or problem this feature would solve.
|
||||
|
||||
Why do you need this feature? What problem does it solve for you or other users?
|
||||
placeholder: |
|
||||
I'm trying to build an application that...
|
||||
|
||||
Currently, I have to work around this by...
|
||||
|
||||
This feature would help me/users to...
|
||||
- type: textarea
|
||||
id: proposed-solution
|
||||
validations:
|
||||
required: false
|
||||
attributes:
|
||||
label: Proposed Solution
|
||||
description: |
|
||||
If you have ideas about how this feature could be implemented, please describe them here.
|
||||
|
||||
This is optional but can be helpful for maintainers to understand your vision.
|
||||
placeholder: |
|
||||
I think this could be implemented by...
|
||||
|
||||
The API could look like...
|
||||
|
||||
```python
|
||||
# Example of how the feature might work
|
||||
```
|
||||
- type: textarea
|
||||
id: alternatives
|
||||
validations:
|
||||
required: false
|
||||
attributes:
|
||||
label: Alternatives Considered
|
||||
description: |
|
||||
Have you considered any alternative solutions or workarounds?
|
||||
|
||||
What other approaches have you tried or considered?
|
||||
placeholder: |
|
||||
I've tried using...
|
||||
|
||||
Alternative approaches I considered:
|
||||
1. ...
|
||||
2. ...
|
||||
|
||||
But these don't work because...
|
||||
- type: textarea
|
||||
id: additional-context
|
||||
validations:
|
||||
required: false
|
||||
attributes:
|
||||
label: Additional Context
|
||||
description: |
|
||||
Add any other context, screenshots, examples, or references that would help explain your feature request.
|
||||
placeholder: |
|
||||
Related issues: #...
|
||||
|
||||
Similar features in other libraries:
|
||||
- ...
|
||||
|
||||
Additional context or examples:
|
||||
- ...
|
||||
50
.github/ISSUE_TEMPLATE/privileged.yml
vendored
50
.github/ISSUE_TEMPLATE/privileged.yml
vendored
@@ -1,50 +0,0 @@
|
||||
name: 🔒 Privileged
|
||||
description: You are a LangChain maintainer, or was asked directly by a maintainer to create an issue here. If not, check the other options.
|
||||
body:
|
||||
- type: markdown
|
||||
attributes:
|
||||
value: |
|
||||
If you are not a LangChain maintainer, employee, or were not asked directly by a maintainer to create an issue, then please start the conversation on the [LangChain Forum](https://forum.langchain.com/) instead.
|
||||
- type: checkboxes
|
||||
id: privileged
|
||||
attributes:
|
||||
label: Privileged issue
|
||||
description: Confirm that you are allowed to create an issue here.
|
||||
options:
|
||||
- label: I am a LangChain maintainer, or was asked directly by a LangChain maintainer to create an issue here.
|
||||
required: true
|
||||
- type: textarea
|
||||
id: content
|
||||
attributes:
|
||||
label: Issue Content
|
||||
description: Add the content of the issue here.
|
||||
- type: checkboxes
|
||||
id: package
|
||||
attributes:
|
||||
label: Package (Required)
|
||||
description: |
|
||||
Please select package(s) that this issue is related to.
|
||||
options:
|
||||
- label: langchain
|
||||
- label: langchain-openai
|
||||
- label: langchain-anthropic
|
||||
- label: langchain-classic
|
||||
- label: langchain-core
|
||||
- label: langchain-cli
|
||||
- label: langchain-model-profiles
|
||||
- label: langchain-tests
|
||||
- label: langchain-text-splitters
|
||||
- label: langchain-chroma
|
||||
- label: langchain-deepseek
|
||||
- label: langchain-exa
|
||||
- label: langchain-fireworks
|
||||
- label: langchain-groq
|
||||
- label: langchain-huggingface
|
||||
- label: langchain-mistralai
|
||||
- label: langchain-nomic
|
||||
- label: langchain-ollama
|
||||
- label: langchain-perplexity
|
||||
- label: langchain-prompty
|
||||
- label: langchain-qdrant
|
||||
- label: langchain-xai
|
||||
- label: Other / not sure / general
|
||||
121
.github/ISSUE_TEMPLATE/task.yml
vendored
121
.github/ISSUE_TEMPLATE/task.yml
vendored
@@ -1,121 +0,0 @@
|
||||
name: "📋 Task"
|
||||
description: Create a task for project management and tracking by LangChain maintainers. If you are not a maintainer, please use other templates or the forum.
|
||||
labels: ["task"]
|
||||
type: task
|
||||
body:
|
||||
- type: markdown
|
||||
attributes:
|
||||
value: |
|
||||
Thanks for creating a task to help organize LangChain development.
|
||||
|
||||
This template is for **maintainer tasks** such as project management, development planning, refactoring, documentation updates, and other organizational work.
|
||||
|
||||
If you are not a LangChain maintainer or were not asked directly by a maintainer to create a task, then please start the conversation on the [LangChain Forum](https://forum.langchain.com/) instead or use the appropriate bug report or feature request templates on the previous page.
|
||||
- type: checkboxes
|
||||
id: maintainer
|
||||
attributes:
|
||||
label: Maintainer task
|
||||
description: Confirm that you are allowed to create a task here.
|
||||
options:
|
||||
- label: I am a LangChain maintainer, or was asked directly by a LangChain maintainer to create a task here.
|
||||
required: true
|
||||
- type: textarea
|
||||
id: task-description
|
||||
attributes:
|
||||
label: Task Description
|
||||
description: |
|
||||
Provide a clear and detailed description of the task.
|
||||
|
||||
What needs to be done? Be specific about the scope and requirements.
|
||||
placeholder: |
|
||||
This task involves...
|
||||
|
||||
The goal is to...
|
||||
|
||||
Specific requirements:
|
||||
- ...
|
||||
- ...
|
||||
validations:
|
||||
required: true
|
||||
- type: textarea
|
||||
id: acceptance-criteria
|
||||
attributes:
|
||||
label: Acceptance Criteria
|
||||
description: |
|
||||
Define the criteria that must be met for this task to be considered complete.
|
||||
|
||||
What are the specific deliverables or outcomes expected?
|
||||
placeholder: |
|
||||
This task will be complete when:
|
||||
- [ ] ...
|
||||
- [ ] ...
|
||||
- [ ] ...
|
||||
validations:
|
||||
required: true
|
||||
- type: textarea
|
||||
id: context
|
||||
attributes:
|
||||
label: Context and Background
|
||||
description: |
|
||||
Provide any relevant context, background information, or links to related issues/PRs.
|
||||
|
||||
Why is this task needed? What problem does it solve?
|
||||
placeholder: |
|
||||
Background:
|
||||
- ...
|
||||
|
||||
Related issues/PRs:
|
||||
- #...
|
||||
|
||||
Additional context:
|
||||
- ...
|
||||
validations:
|
||||
required: false
|
||||
- type: textarea
|
||||
id: dependencies
|
||||
attributes:
|
||||
label: Dependencies
|
||||
description: |
|
||||
List any dependencies or blockers for this task.
|
||||
|
||||
Are there other tasks, issues, or external factors that need to be completed first?
|
||||
placeholder: |
|
||||
This task depends on:
|
||||
- [ ] Issue #...
|
||||
- [ ] PR #...
|
||||
- [ ] External dependency: ...
|
||||
|
||||
Blocked by:
|
||||
- ...
|
||||
validations:
|
||||
required: false
|
||||
- type: checkboxes
|
||||
id: package
|
||||
attributes:
|
||||
label: Package (Required)
|
||||
description: |
|
||||
Please select package(s) that this task is related to.
|
||||
options:
|
||||
- label: langchain
|
||||
- label: langchain-openai
|
||||
- label: langchain-anthropic
|
||||
- label: langchain-classic
|
||||
- label: langchain-core
|
||||
- label: langchain-cli
|
||||
- label: langchain-model-profiles
|
||||
- label: langchain-tests
|
||||
- label: langchain-text-splitters
|
||||
- label: langchain-chroma
|
||||
- label: langchain-deepseek
|
||||
- label: langchain-exa
|
||||
- label: langchain-fireworks
|
||||
- label: langchain-groq
|
||||
- label: langchain-huggingface
|
||||
- label: langchain-mistralai
|
||||
- label: langchain-nomic
|
||||
- label: langchain-ollama
|
||||
- label: langchain-perplexity
|
||||
- label: langchain-prompty
|
||||
- label: langchain-qdrant
|
||||
- label: langchain-xai
|
||||
- label: Other / not sure / general
|
||||
30
.github/PULL_REQUEST_TEMPLATE.md
vendored
30
.github/PULL_REQUEST_TEMPLATE.md
vendored
@@ -1,30 +0,0 @@
|
||||
(Replace this entire block of text)
|
||||
|
||||
Read the full contributing guidelines: https://docs.langchain.com/oss/python/contributing/overview
|
||||
|
||||
Thank you for contributing to LangChain! Follow these steps to have your pull request considered as ready for review.
|
||||
|
||||
1. PR title: Should follow the format: TYPE(SCOPE): DESCRIPTION
|
||||
|
||||
- Examples:
|
||||
- fix(anthropic): resolve flag parsing error
|
||||
- feat(core): add multi-tenant support
|
||||
- test(openai): update API usage tests
|
||||
- Allowed TYPE and SCOPE values: https://github.com/langchain-ai/langchain/blob/master/.github/workflows/pr_lint.yml#L15-L33
|
||||
|
||||
2. PR description:
|
||||
|
||||
- Write 1-2 sentences summarizing the change.
|
||||
- If this PR addresses a specific issue, please include "Fixes #ISSUE_NUMBER" in the description to automatically close the issue when the PR is merged.
|
||||
- If there are any breaking changes, please clearly describe them.
|
||||
- If this PR depends on another PR being merged first, please include "Depends on #PR_NUMBER" in the description.
|
||||
|
||||
3. Run `make format`, `make lint` and `make test` from the root of the package(s) you've modified.
|
||||
|
||||
- We will not consider a PR unless these three are passing in CI.
|
||||
|
||||
Additional guidelines:
|
||||
|
||||
- We ask that if you use generative AI for your contribution, you include a disclaimer.
|
||||
- PRs should not touch more than one package unless absolutely necessary.
|
||||
- Do not update the `uv.lock` files or add dependencies to `pyproject.toml` files (even optional ones) unless you have explicit permission to do so by a maintainer.
|
||||
39
.github/actions/uv_setup/action.yml
vendored
39
.github/actions/uv_setup/action.yml
vendored
@@ -1,39 +0,0 @@
|
||||
# Helper to set up Python and uv with caching
|
||||
|
||||
name: uv-install
|
||||
description: Set up Python and uv with caching
|
||||
|
||||
inputs:
|
||||
python-version:
|
||||
description: Python version, supporting MAJOR.MINOR only
|
||||
required: true
|
||||
enable-cache:
|
||||
description: Enable caching for uv dependencies
|
||||
required: false
|
||||
default: "true"
|
||||
cache-suffix:
|
||||
description: Custom cache key suffix for cache invalidation
|
||||
required: false
|
||||
default: ""
|
||||
working-directory:
|
||||
description: Working directory for cache glob scoping
|
||||
required: false
|
||||
default: "**"
|
||||
|
||||
env:
|
||||
UV_VERSION: "0.5.25"
|
||||
|
||||
runs:
|
||||
using: composite
|
||||
steps:
|
||||
- name: Install uv and set the python version
|
||||
uses: astral-sh/setup-uv@v7
|
||||
with:
|
||||
version: ${{ env.UV_VERSION }}
|
||||
python-version: ${{ inputs.python-version }}
|
||||
enable-cache: ${{ inputs.enable-cache }}
|
||||
cache-dependency-glob: |
|
||||
${{ inputs.working-directory }}/pyproject.toml
|
||||
${{ inputs.working-directory }}/uv.lock
|
||||
${{ inputs.working-directory }}/requirements*.txt
|
||||
cache-suffix: ${{ inputs.cache-suffix }}
|
||||
11
.github/dependabot.yml
vendored
11
.github/dependabot.yml
vendored
@@ -1,11 +0,0 @@
|
||||
# Please see the documentation for all configuration options:
|
||||
# https://docs.github.com/github/administering-a-repository/configuration-options-for-dependency-updates
|
||||
# and
|
||||
# https://docs.github.com/code-security/dependabot/dependabot-version-updates/configuration-options-for-the-dependabot.yml-file
|
||||
|
||||
version: 2
|
||||
updates:
|
||||
- package-ecosystem: "github-actions"
|
||||
directory: "/"
|
||||
schedule:
|
||||
interval: "weekly"
|
||||
25
.github/images/logo-dark.svg
vendored
25
.github/images/logo-dark.svg
vendored
@@ -1,25 +0,0 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<svg id="Layer_1" data-name="Layer 1" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 1584.81 250">
|
||||
<defs>
|
||||
<style>
|
||||
.cls-1 {
|
||||
fill: #1c3c3c;
|
||||
stroke-width: 0px;
|
||||
}
|
||||
</style>
|
||||
</defs>
|
||||
<g id="LanChain-logo">
|
||||
<g id="LangChain-logotype">
|
||||
<polygon class="cls-1" points="596.33 49.07 596.33 200.67 700.76 200.67 700.76 177.78 620.04 177.78 620.04 49.07 596.33 49.07"/>
|
||||
<path class="cls-1" d="M1126.83,49.07c-20.53,0-37.95,7.4-50.38,21.41-12.32,13.88-18.82,33.36-18.82,56.33,0,47.23,27.25,77.75,69.41,77.75,29.71,0,52.71-15.54,61.54-41.56l2.14-6.31-23.53-8.94-2.17,7.03c-5.26,17.01-18.75,26.38-37.99,26.38-27.48,0-44.55-20.82-44.55-54.34s17.23-54.34,44.97-54.34c19.23,0,30.31,7.54,35.95,24.44l2.46,7.37,22.91-10.75-2.1-5.9c-8.96-25.22-29.65-38.56-59.85-38.56Z"/>
|
||||
<path class="cls-1" d="M756.43,85.05c-22.76,0-39.78,10.67-46.69,29.27-.44,1.19-1.77,4.78-1.77,4.78l19.51,12.62,2.65-6.91c4.52-11.78,12.88-17.27,26.3-17.27s21.1,6.51,20.96,19.33c0,.52-.04,2.09-.04,2.09,0,0-17.76,2.88-25.08,4.43-31.23,6.6-44.31,18.52-44.31,38.02,0,10.39,5.77,21.64,16.3,27.95,6.32,3.78,14.57,5.21,23.68,5.21,5.99,0,11.81-.89,17.2-2.53,12.25-4.07,15.67-12.07,15.67-12.07v10.46h20.29v-74.78c0-25.42-16.7-40.6-44.67-40.6ZM777.46,164.85c0,7.86-8.56,18.93-28.5,18.93-5.63,0-9.62-1.49-12.28-3.71-3.56-2.97-4.73-7.24-4.24-11.01.21-1.64,1.2-5.17,4.87-8.23,3.75-3.13,10.38-5.37,20.62-7.6,8.42-1.83,19.54-3.85,19.54-3.85v15.48Z"/>
|
||||
<path class="cls-1" d="M876.11,85.04c-2.82,0-5.57.2-8.24.57-18.17,2.73-23.49,11.96-23.49,11.96l.02-9.31h-22.74s0,112.19,0,112.19h23.71v-62.18c0-21.13,15.41-30.75,29.73-30.75,15.48,0,23,8.32,23,25.45v67.48h23.71v-70.74c0-27.56-17.51-44.67-45.69-44.67Z"/>
|
||||
<path class="cls-1" d="M1539.12,85.04c-2.82,0-5.57.2-8.24.57-18.17,2.73-23.49,11.96-23.49,11.96v-9.32h-22.72v112.2h23.71v-62.18c0-21.13,15.41-30.75,29.73-30.75,15.48,0,23,8.32,23,25.45v67.48h23.71v-70.74c0-27.56-17.51-44.67-45.69-44.67Z"/>
|
||||
<path class="cls-1" d="M1020.76,88.26v11.55s-5.81-14.77-32.24-14.77c-32.84,0-53.24,22.66-53.24,59.15,0,20.59,6.58,36.8,18.19,47.04,9.03,7.96,21.09,12.04,35.45,12.32,9.99.19,16.46-2.53,20.5-5.1,7.76-4.94,10.64-9.63,10.64-9.63,0,0-.33,3.67-.93,8.64-.43,3.6-1.24,6.13-1.24,6.13h0c-3.61,12.85-14.17,20.28-29.57,20.28s-24.73-5.07-26.58-15.06l-23.05,6.88c3.98,19.2,22,30.66,48.2,30.66,17.81,0,31.77-4.84,41.5-14.4,9.81-9.64,14.79-23.53,14.79-41.29v-102.41h-22.42ZM1019.26,145.21c0,22.44-10.96,35.84-29.32,35.84-19.67,0-30.95-13.44-30.95-36.86s11.28-36.66,30.95-36.66c17.92,0,29.15,13.34,29.32,34.82v2.86Z"/>
|
||||
<path class="cls-1" d="M1259.01,85.04c-2.6,0-5.13.17-7.59.49-17.88,2.79-23.14,11.9-23.14,11.9v-2.67h-.01s0-45.69,0-45.69h-23.71v151.39h23.71v-62.18c0-21.27,15.41-30.95,29.73-30.95,15.48,0,23,8.32,23,25.45v67.68h23.71v-70.94c0-27.01-17.94-44.47-45.69-44.47Z"/>
|
||||
<circle class="cls-1" cx="1450.93" cy="64.47" r="15.37"/>
|
||||
<path class="cls-1" d="M1439.14,88.2v56.94h0c-6.75-5.56-14.6-9.75-23.5-12.26v-7.23c0-25.42-16.7-40.6-44.67-40.6-22.76,0-39.78,10.67-46.69,29.27-.44,1.19-1.77,4.78-1.77,4.78l19.51,12.62,2.65-6.91c4.52-11.78,12.88-17.27,26.3-17.27s21.1,6.51,20.96,19.33c0,.08,0,1.15,0,2.86-10.04-.28-19.38.69-27.77,2.66,0,0,0,0,0,0-11.06,2.5-31.6,8.85-38.94,25.36-.05.11-1.13,2.96-1.13,2.96-1.06,3.28-1.59,6.84-1.59,10.7,0,10.39,5.77,21.64,16.3,27.95,6.32,3.78,14.57,5.21,23.68,5.21,5.88,0,11.6-.86,16.91-2.44,12.49-4.04,15.96-12.16,15.96-12.16v10.47h20.29v-34.27c-5.7-3.56-14.26-5.66-23.65-5.64,0,2.65,0,4.33,0,4.33,0,7.86-8.56,18.93-28.5,18.93-5.63,0-9.62-1.49-12.28-3.71-3.56-2.97-4.73-7.24-4.24-11.01.21-1.64,1.2-5.17,4.87-8.23l-.04-.11c8.42-6.89,24.97-9.64,40.17-9.04v.03c12.94.47,22.62,3.01,29.53,7.77,1.88,1.19,3.65,2.52,5.28,3.98,6.94,6.23,9.73,13.9,10.93,18.38,1.95,7.31,1.43,18.57,1.43,18.57h23.59v-112.2h-23.59Z"/>
|
||||
</g>
|
||||
<path id="LangChain-symbol" class="cls-1" d="M393.52,75.2c9.66,9.66,9.66,25.38,0,35.04l-21.64,21.29-.22-1.22c-1.58-8.75-5.74-16.69-12.02-22.97-4.73-4.72-10.32-8.21-16.62-10.37-3.91,3.93-6.06,9.08-6.06,14.5,0,1.1.1,2.24.3,3.38,3.47,1.25,6.54,3.18,9.12,5.76,9.66,9.66,9.66,25.38,0,35.04l-18.84,18.84c-4.83,4.83-11.17,7.24-17.52,7.24s-12.69-2.41-17.52-7.24c-9.66-9.66-9.66-25.38,0-35.04l21.64-21.28.22,1.22c1.57,8.73,5.73,16.67,12.03,22.96,4.74,4.74,9.99,7.89,16.28,10.04l1.16-1.16c3.52-3.52,5.45-8.2,5.45-13.19,0-1.11-.1-2.22-.29-3.31-3.63-1.2-6.62-2.91-9.34-5.63-3.92-3.92-6.36-8.93-7.04-14.48-.05-.4-.08-.79-.12-1.19-.54-7.23,2.07-14.29,7.16-19.37l18.84-18.84c4.67-4.67,10.89-7.25,17.52-7.25s12.85,2.57,17.52,7.25ZM491.9,125c0,68.93-56.08,125-125,125H125C56.08,250,0,193.93,0,125S56.08,0,125,0h241.9c68.93,0,125,56.08,125,125ZM240.9,187.69c1.97-2.39-7.13-9.12-8.99-11.59-3.78-4.1-3.8-10-6.35-14.79-6.24-14.46-13.41-28.81-23.44-41.05-10.6-13.39-23.68-24.47-35.17-37.04-8.53-8.77-10.81-21.26-18.34-30.69-10.38-15.33-43.2-19.51-48.01,2.14.02.68-.19,1.11-.78,1.54-2.66,1.93-5.03,4.14-7.02,6.81-4.87,6.78-5.62,18.28.46,24.37.2-3.21.31-6.24,2.85-8.54,4.7,4.03,11.8,5.46,17.25,2.45,12.04,17.19,9.04,40.97,18.6,59.49,2.64,4.38,5.3,8.85,8.69,12.69,2.75,4.28,12.25,9.33,12.81,13.29.1,6.8-.7,14.23,3.76,19.92,2.1,4.26-3.06,8.54-7.22,8.01-5.4.74-11.99-3.63-16.72-.94-1.67,1.81-4.94-.19-6.38,2.32-.5,1.3-3.2,3.13-1.59,4.38,1.79-1.36,3.45-2.78,5.86-1.97-.36,1.96,1.19,2.24,2.42,2.81-.04,1.33-.82,2.69.2,3.82,1.19-1.2,1.9-2.9,3.79-3.4,6.28,8.37,12.67-8.47,26.26-.89-2.76-.14-5.21.21-7.07,2.48-.46.51-.85,1.11-.04,1.77,7.33-4.73,7.29,1.62,12.05-.33,3.66-1.91,7.3-4.3,11.65-3.62-4.23,1.22-4.4,4.62-6.88,7.49-.42.44-.62.94-.13,1.67,8.78-.74,9.5-3.66,16.59-7.24,5.29-3.23,10.56,4.6,15.14.14,1.01-.97,2.39-.64,3.64-.77-1.6-8.53-19.19,1.56-18.91-9.88,5.66-3.85,4.36-11.22,4.74-17.17,6.51,3.61,13.75,5.71,20.13,9.16,3.22,5.2,8.27,12.07,15,11.62.18-.52.34-.98.53-1.51,2.04.35,4.66,1.7,5.78-.88,3.05,3.19,7.53,3.03,11.52,2.21,2.95-2.4-5.55-5.82-6.69-8.29ZM419.51,92.72c0-11.64-4.52-22.57-12.73-30.78-8.21-8.21-19.14-12.73-30.79-12.73s-22.58,4.52-30.79,12.73l-18.84,18.84c-4.4,4.4-7.74,9.57-9.93,15.36l-.13.33-.34.1c-6.84,2.11-12.87,5.73-17.92,10.78l-18.84,18.84c-16.97,16.98-16.97,44.6,0,61.57,8.21,8.21,19.14,12.73,30.78,12.73h0c11.64,0,22.58-4.52,30.79-12.73l18.84-18.84c4.38-4.38,7.7-9.53,9.89-15.31l.13-.33.34-.11c6.72-2.06,12.92-5.8,17.95-10.82l18.84-18.84c8.21-8.21,12.73-19.14,12.73-30.79ZM172.38,173.6c-1.62,6.32-2.15,17.09-10.37,17.4-.68,3.65,2.53,5.02,5.44,3.85,2.89-1.33,4.26,1.05,5.23,3.42,4.46.65,11.06-1.49,11.31-6.77-6.66-3.84-8.72-11.14-11.62-17.9Z"/>
|
||||
</g>
|
||||
</svg>
|
||||
|
Before Width: | Height: | Size: 6.4 KiB |
25
.github/images/logo-light.svg
vendored
25
.github/images/logo-light.svg
vendored
@@ -1,25 +0,0 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<svg id="Layer_1" data-name="Layer 1" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 1584.81 250">
|
||||
<defs>
|
||||
<style>
|
||||
.cls-1 {
|
||||
fill: #fff;
|
||||
stroke-width: 0px;
|
||||
}
|
||||
</style>
|
||||
</defs>
|
||||
<g id="LanChain-logo">
|
||||
<g id="LangChain-logotype">
|
||||
<polygon class="cls-1" points="596.33 49.07 596.33 200.67 700.76 200.67 700.76 177.78 620.04 177.78 620.04 49.07 596.33 49.07"/>
|
||||
<path class="cls-1" d="M1126.83,49.07c-20.53,0-37.95,7.4-50.38,21.41-12.32,13.88-18.82,33.36-18.82,56.33,0,47.23,27.25,77.75,69.41,77.75,29.71,0,52.71-15.54,61.54-41.56l2.14-6.31-23.53-8.94-2.17,7.03c-5.26,17.01-18.75,26.38-37.99,26.38-27.48,0-44.55-20.82-44.55-54.34s17.23-54.34,44.97-54.34c19.23,0,30.31,7.54,35.95,24.44l2.46,7.37,22.91-10.75-2.1-5.9c-8.96-25.22-29.65-38.56-59.85-38.56Z"/>
|
||||
<path class="cls-1" d="M756.43,85.05c-22.76,0-39.78,10.67-46.69,29.27-.44,1.19-1.77,4.78-1.77,4.78l19.51,12.62,2.65-6.91c4.52-11.78,12.88-17.27,26.3-17.27s21.1,6.51,20.96,19.33c0,.52-.04,2.09-.04,2.09,0,0-17.76,2.88-25.08,4.43-31.23,6.6-44.31,18.52-44.31,38.02,0,10.39,5.77,21.64,16.3,27.95,6.32,3.78,14.57,5.21,23.68,5.21,5.99,0,11.81-.89,17.2-2.53,12.25-4.07,15.67-12.07,15.67-12.07v10.46h20.29v-74.78c0-25.42-16.7-40.6-44.67-40.6ZM777.46,164.85c0,7.86-8.56,18.93-28.5,18.93-5.63,0-9.62-1.49-12.28-3.71-3.56-2.97-4.73-7.24-4.24-11.01.21-1.64,1.2-5.17,4.87-8.23,3.75-3.13,10.38-5.37,20.62-7.6,8.42-1.83,19.54-3.85,19.54-3.85v15.48Z"/>
|
||||
<path class="cls-1" d="M876.11,85.04c-2.82,0-5.57.2-8.24.57-18.17,2.73-23.49,11.96-23.49,11.96l.02-9.31h-22.74s0,112.19,0,112.19h23.71v-62.18c0-21.13,15.41-30.75,29.73-30.75,15.48,0,23,8.32,23,25.45v67.48h23.71v-70.74c0-27.56-17.51-44.67-45.69-44.67Z"/>
|
||||
<path class="cls-1" d="M1539.12,85.04c-2.82,0-5.57.2-8.24.57-18.17,2.73-23.49,11.96-23.49,11.96v-9.32h-22.72v112.2h23.71v-62.18c0-21.13,15.41-30.75,29.73-30.75,15.48,0,23,8.32,23,25.45v67.48h23.71v-70.74c0-27.56-17.51-44.67-45.69-44.67Z"/>
|
||||
<path class="cls-1" d="M1020.76,88.26v11.55s-5.81-14.77-32.24-14.77c-32.84,0-53.24,22.66-53.24,59.15,0,20.59,6.58,36.8,18.19,47.04,9.03,7.96,21.09,12.04,35.45,12.32,9.99.19,16.46-2.53,20.5-5.1,7.76-4.94,10.64-9.63,10.64-9.63,0,0-.33,3.67-.93,8.64-.43,3.6-1.24,6.13-1.24,6.13h0c-3.61,12.85-14.17,20.28-29.57,20.28s-24.73-5.07-26.58-15.06l-23.05,6.88c3.98,19.2,22,30.66,48.2,30.66,17.81,0,31.77-4.84,41.5-14.4,9.81-9.64,14.79-23.53,14.79-41.29v-102.41h-22.42ZM1019.26,145.21c0,22.44-10.96,35.84-29.32,35.84-19.67,0-30.95-13.44-30.95-36.86s11.28-36.66,30.95-36.66c17.92,0,29.15,13.34,29.32,34.82v2.86Z"/>
|
||||
<path class="cls-1" d="M1259.01,85.04c-2.6,0-5.13.17-7.59.49-17.88,2.79-23.14,11.9-23.14,11.9v-2.67h-.01s0-45.69,0-45.69h-23.71v151.39h23.71v-62.18c0-21.27,15.41-30.95,29.73-30.95,15.48,0,23,8.32,23,25.45v67.68h23.71v-70.94c0-27.01-17.94-44.47-45.69-44.47Z"/>
|
||||
<circle class="cls-1" cx="1450.93" cy="64.47" r="15.37"/>
|
||||
<path class="cls-1" d="M1439.14,88.2v56.94h0c-6.75-5.56-14.6-9.75-23.5-12.26v-7.23c0-25.42-16.7-40.6-44.67-40.6-22.76,0-39.78,10.67-46.69,29.27-.44,1.19-1.77,4.78-1.77,4.78l19.51,12.62,2.65-6.91c4.52-11.78,12.88-17.27,26.3-17.27s21.1,6.51,20.96,19.33c0,.08,0,1.15,0,2.86-10.04-.28-19.38.69-27.77,2.66,0,0,0,0,0,0-11.06,2.5-31.6,8.85-38.94,25.36-.05.11-1.13,2.96-1.13,2.96-1.06,3.28-1.59,6.84-1.59,10.7,0,10.39,5.77,21.64,16.3,27.95,6.32,3.78,14.57,5.21,23.68,5.21,5.88,0,11.6-.86,16.91-2.44,12.49-4.04,15.96-12.16,15.96-12.16v10.47h20.29v-34.27c-5.7-3.56-14.26-5.66-23.65-5.64,0,2.65,0,4.33,0,4.33,0,7.86-8.56,18.93-28.5,18.93-5.63,0-9.62-1.49-12.28-3.71-3.56-2.97-4.73-7.24-4.24-11.01.21-1.64,1.2-5.17,4.87-8.23l-.04-.11c8.42-6.89,24.97-9.64,40.17-9.04v.03c12.94.47,22.62,3.01,29.53,7.77,1.88,1.19,3.65,2.52,5.28,3.98,6.94,6.23,9.73,13.9,10.93,18.38,1.95,7.31,1.43,18.57,1.43,18.57h23.59v-112.2h-23.59Z"/>
|
||||
</g>
|
||||
<path id="LangChain-symbol" class="cls-1" d="M393.52,75.2c9.66,9.66,9.66,25.38,0,35.04l-21.64,21.29-.22-1.22c-1.58-8.75-5.74-16.69-12.02-22.97-4.73-4.72-10.32-8.21-16.62-10.37-3.91,3.93-6.06,9.08-6.06,14.5,0,1.1.1,2.24.3,3.38,3.47,1.25,6.54,3.18,9.12,5.76,9.66,9.66,9.66,25.38,0,35.04l-18.84,18.84c-4.83,4.83-11.17,7.24-17.52,7.24s-12.69-2.41-17.52-7.24c-9.66-9.66-9.66-25.38,0-35.04l21.64-21.28.22,1.22c1.57,8.73,5.73,16.67,12.03,22.96,4.74,4.74,9.99,7.89,16.28,10.04l1.16-1.16c3.52-3.52,5.45-8.2,5.45-13.19,0-1.11-.1-2.22-.29-3.31-3.63-1.2-6.62-2.91-9.34-5.63-3.92-3.92-6.36-8.93-7.04-14.48-.05-.4-.08-.79-.12-1.19-.54-7.23,2.07-14.29,7.16-19.37l18.84-18.84c4.67-4.67,10.89-7.25,17.52-7.25s12.85,2.57,17.52,7.25ZM491.9,125c0,68.93-56.08,125-125,125H125C56.08,250,0,193.93,0,125S56.08,0,125,0h241.9C435.82,0,491.9,56.08,491.9,125ZM240.9,187.69c1.97-2.39-7.13-9.12-8.99-11.59-3.78-4.1-3.8-10-6.35-14.79-6.24-14.46-13.41-28.81-23.44-41.05-10.6-13.39-23.68-24.47-35.17-37.04-8.53-8.77-10.81-21.26-18.34-30.69-10.38-15.33-43.2-19.51-48.01,2.14.02.68-.19,1.11-.78,1.54-2.66,1.93-5.03,4.14-7.02,6.81-4.87,6.78-5.62,18.28.46,24.37.2-3.21.31-6.24,2.85-8.54,4.7,4.03,11.8,5.46,17.25,2.45,12.04,17.19,9.04,40.97,18.6,59.49,2.64,4.38,5.3,8.85,8.69,12.69,2.75,4.28,12.25,9.33,12.81,13.29.1,6.8-.7,14.23,3.76,19.92,2.1,4.26-3.06,8.54-7.22,8.01-5.4.74-11.99-3.63-16.72-.94-1.67,1.81-4.94-.19-6.38,2.32-.5,1.3-3.2,3.13-1.59,4.38,1.79-1.36,3.45-2.78,5.86-1.97-.36,1.96,1.19,2.24,2.42,2.81-.04,1.33-.82,2.69.2,3.82,1.19-1.2,1.9-2.9,3.79-3.4,6.28,8.37,12.67-8.47,26.26-.89-2.76-.14-5.21.21-7.07,2.48-.46.51-.85,1.11-.04,1.77,7.33-4.73,7.29,1.62,12.05-.33,3.66-1.91,7.3-4.3,11.65-3.62-4.23,1.22-4.4,4.62-6.88,7.49-.42.44-.62.94-.13,1.67,8.78-.74,9.5-3.66,16.59-7.24,5.29-3.23,10.56,4.6,15.14.14,1.01-.97,2.39-.64,3.64-.77-1.6-8.53-19.19,1.56-18.91-9.88,5.66-3.85,4.36-11.22,4.74-17.17,6.51,3.61,13.75,5.71,20.13,9.16,3.22,5.2,8.27,12.07,15,11.62.18-.52.34-.98.53-1.51,2.04.35,4.66,1.7,5.78-.88,3.05,3.19,7.53,3.03,11.52,2.21,2.95-2.4-5.55-5.82-6.69-8.29ZM419.51,92.72c0-11.64-4.52-22.57-12.73-30.78-8.21-8.21-19.14-12.73-30.79-12.73s-22.58,4.52-30.79,12.73l-18.84,18.84c-4.4,4.4-7.74,9.57-9.93,15.36l-.13.33-.34.1c-6.84,2.11-12.87,5.73-17.92,10.78l-18.84,18.84c-16.97,16.98-16.97,44.6,0,61.57,8.21,8.21,19.14,12.73,30.78,12.73h0c11.64,0,22.58-4.52,30.79-12.73l18.84-18.84c4.38-4.38,7.7-9.53,9.89-15.31l.13-.33.34-.11c6.72-2.06,12.92-5.8,17.95-10.82l18.84-18.84c8.21-8.21,12.73-19.14,12.73-30.79ZM172.38,173.6c-1.62,6.32-2.15,17.09-10.37,17.4-.68,3.65,2.53,5.02,5.44,3.85,2.89-1.33,4.26,1.05,5.23,3.42,4.46.65,11.06-1.49,11.31-6.77-6.66-3.84-8.72-11.14-11.62-17.9Z"/>
|
||||
</g>
|
||||
</svg>
|
||||
|
Before Width: | Height: | Size: 6.4 KiB |
133
.github/pr-file-labeler.yml
vendored
133
.github/pr-file-labeler.yml
vendored
@@ -1,133 +0,0 @@
|
||||
# Label PRs (config)
|
||||
# Automatically applies labels based on changed files and branch patterns
|
||||
|
||||
# Core packages
|
||||
core:
|
||||
- changed-files:
|
||||
- any-glob-to-any-file:
|
||||
- "libs/core/**/*"
|
||||
|
||||
langchain-classic:
|
||||
- changed-files:
|
||||
- any-glob-to-any-file:
|
||||
- "libs/langchain/**/*"
|
||||
|
||||
langchain:
|
||||
- changed-files:
|
||||
- any-glob-to-any-file:
|
||||
- "libs/langchain_v1/**/*"
|
||||
|
||||
cli:
|
||||
- changed-files:
|
||||
- any-glob-to-any-file:
|
||||
- "libs/cli/**/*"
|
||||
|
||||
standard-tests:
|
||||
- changed-files:
|
||||
- any-glob-to-any-file:
|
||||
- "libs/standard-tests/**/*"
|
||||
|
||||
model-profiles:
|
||||
- changed-files:
|
||||
- any-glob-to-any-file:
|
||||
- "libs/model-profiles/**/*"
|
||||
|
||||
text-splitters:
|
||||
- changed-files:
|
||||
- any-glob-to-any-file:
|
||||
- "libs/text-splitters/**/*"
|
||||
|
||||
# Partner integrations
|
||||
integration:
|
||||
- changed-files:
|
||||
- any-glob-to-any-file:
|
||||
- "libs/partners/**/*"
|
||||
|
||||
anthropic:
|
||||
- changed-files:
|
||||
- any-glob-to-any-file:
|
||||
- "libs/partners/anthropic/**/*"
|
||||
|
||||
chroma:
|
||||
- changed-files:
|
||||
- any-glob-to-any-file:
|
||||
- "libs/partners/chroma/**/*"
|
||||
|
||||
deepseek:
|
||||
- changed-files:
|
||||
- any-glob-to-any-file:
|
||||
- "libs/partners/deepseek/**/*"
|
||||
|
||||
exa:
|
||||
- changed-files:
|
||||
- any-glob-to-any-file:
|
||||
- "libs/partners/exa/**/*"
|
||||
|
||||
fireworks:
|
||||
- changed-files:
|
||||
- any-glob-to-any-file:
|
||||
- "libs/partners/fireworks/**/*"
|
||||
|
||||
groq:
|
||||
- changed-files:
|
||||
- any-glob-to-any-file:
|
||||
- "libs/partners/groq/**/*"
|
||||
|
||||
huggingface:
|
||||
- changed-files:
|
||||
- any-glob-to-any-file:
|
||||
- "libs/partners/huggingface/**/*"
|
||||
|
||||
mistralai:
|
||||
- changed-files:
|
||||
- any-glob-to-any-file:
|
||||
- "libs/partners/mistralai/**/*"
|
||||
|
||||
nomic:
|
||||
- changed-files:
|
||||
- any-glob-to-any-file:
|
||||
- "libs/partners/nomic/**/*"
|
||||
|
||||
ollama:
|
||||
- changed-files:
|
||||
- any-glob-to-any-file:
|
||||
- "libs/partners/ollama/**/*"
|
||||
|
||||
openai:
|
||||
- changed-files:
|
||||
- any-glob-to-any-file:
|
||||
- "libs/partners/openai/**/*"
|
||||
|
||||
perplexity:
|
||||
- changed-files:
|
||||
- any-glob-to-any-file:
|
||||
- "libs/partners/perplexity/**/*"
|
||||
|
||||
prompty:
|
||||
- changed-files:
|
||||
- any-glob-to-any-file:
|
||||
- "libs/partners/prompty/**/*"
|
||||
|
||||
qdrant:
|
||||
- changed-files:
|
||||
- any-glob-to-any-file:
|
||||
- "libs/partners/qdrant/**/*"
|
||||
|
||||
xai:
|
||||
- changed-files:
|
||||
- any-glob-to-any-file:
|
||||
- "libs/partners/xai/**/*"
|
||||
|
||||
github_actions:
|
||||
- changed-files:
|
||||
- any-glob-to-any-file:
|
||||
- ".github/workflows/**/*"
|
||||
- ".github/actions/**/*"
|
||||
|
||||
dependencies:
|
||||
- changed-files:
|
||||
- any-glob-to-any-file:
|
||||
- "**/pyproject.toml"
|
||||
- "uv.lock"
|
||||
- "**/requirements*.txt"
|
||||
- "**/poetry.lock"
|
||||
340
.github/scripts/check_diff.py
vendored
340
.github/scripts/check_diff.py
vendored
@@ -1,340 +0,0 @@
|
||||
"""Analyze git diffs to determine which directories need to be tested.
|
||||
|
||||
Intelligently determines which LangChain packages and directories need to be tested,
|
||||
linted, or built based on the changes. Handles dependency relationships between
|
||||
packages, maps file changes to appropriate CI job configurations, and outputs JSON
|
||||
configurations for GitHub Actions.
|
||||
|
||||
- Maps changed files to affected package directories (libs/core, libs/partners/*, etc.)
|
||||
- Builds dependency graph to include dependent packages when core components change
|
||||
- Generates test matrix configurations with appropriate Python versions
|
||||
- Handles special cases for Pydantic version testing and performance benchmarks
|
||||
|
||||
Used as part of the check_diffs workflow.
|
||||
"""
|
||||
|
||||
import glob
|
||||
import json
|
||||
import os
|
||||
import sys
|
||||
from collections import defaultdict
|
||||
from pathlib import Path
|
||||
from typing import Dict, List, Set
|
||||
|
||||
import tomllib
|
||||
from get_min_versions import get_min_version_from_toml
|
||||
from packaging.requirements import Requirement
|
||||
|
||||
LANGCHAIN_DIRS = [
|
||||
"libs/core",
|
||||
"libs/text-splitters",
|
||||
"libs/langchain",
|
||||
"libs/langchain_v1",
|
||||
"libs/model-profiles",
|
||||
]
|
||||
|
||||
# When set to True, we are ignoring core dependents
|
||||
# in order to be able to get CI to pass for each individual
|
||||
# package that depends on core
|
||||
# e.g. if you touch core, we don't then add textsplitters/etc to CI
|
||||
IGNORE_CORE_DEPENDENTS = False
|
||||
|
||||
# ignored partners are removed from dependents
|
||||
# but still run if directly edited
|
||||
IGNORED_PARTNERS = [
|
||||
# remove huggingface from dependents because of CI instability
|
||||
# specifically in huggingface jobs
|
||||
# https://github.com/langchain-ai/langchain/issues/25558
|
||||
"huggingface",
|
||||
# prompty exhibiting issues with numpy for Python 3.13
|
||||
# https://github.com/langchain-ai/langchain/actions/runs/12651104685/job/35251034969?pr=29065
|
||||
"prompty",
|
||||
]
|
||||
|
||||
|
||||
def all_package_dirs() -> Set[str]:
|
||||
return {
|
||||
"/".join(path.split("/")[:-1]).lstrip("./")
|
||||
for path in glob.glob("./libs/**/pyproject.toml", recursive=True)
|
||||
if "libs/cli" not in path and "libs/standard-tests" not in path
|
||||
}
|
||||
|
||||
|
||||
def dependents_graph() -> dict:
|
||||
"""Construct a mapping of package -> dependents
|
||||
|
||||
Done such that we can run tests on all dependents of a package when a change is made.
|
||||
"""
|
||||
dependents = defaultdict(set)
|
||||
|
||||
for path in glob.glob("./libs/**/pyproject.toml", recursive=True):
|
||||
if "template" in path:
|
||||
continue
|
||||
|
||||
# load regular and test deps from pyproject.toml
|
||||
with open(path, "rb") as f:
|
||||
pyproject = tomllib.load(f)
|
||||
|
||||
pkg_dir = "libs" + "/".join(path.split("libs")[1].split("/")[:-1])
|
||||
for dep in [
|
||||
*pyproject["project"]["dependencies"],
|
||||
*pyproject["dependency-groups"]["test"],
|
||||
]:
|
||||
requirement = Requirement(dep)
|
||||
package_name = requirement.name
|
||||
if "langchain" in dep:
|
||||
dependents[package_name].add(pkg_dir)
|
||||
continue
|
||||
|
||||
# load extended deps from extended_testing_deps.txt
|
||||
package_path = Path(path).parent
|
||||
extended_requirement_path = package_path / "extended_testing_deps.txt"
|
||||
if extended_requirement_path.exists():
|
||||
with open(extended_requirement_path, "r") as f:
|
||||
extended_deps = f.read().splitlines()
|
||||
for depline in extended_deps:
|
||||
if depline.startswith("-e "):
|
||||
# editable dependency
|
||||
assert depline.startswith("-e ../partners/"), (
|
||||
"Extended test deps should only editable install partner packages"
|
||||
)
|
||||
partner = depline.split("partners/")[1]
|
||||
dep = f"langchain-{partner}"
|
||||
else:
|
||||
dep = depline.split("==")[0]
|
||||
|
||||
if "langchain" in dep:
|
||||
dependents[dep].add(pkg_dir)
|
||||
|
||||
for k in dependents:
|
||||
for partner in IGNORED_PARTNERS:
|
||||
if f"libs/partners/{partner}" in dependents[k]:
|
||||
dependents[k].remove(f"libs/partners/{partner}")
|
||||
return dependents
|
||||
|
||||
|
||||
def add_dependents(dirs_to_eval: Set[str], dependents: dict) -> List[str]:
|
||||
updated = set()
|
||||
for dir_ in dirs_to_eval:
|
||||
# handle core manually because it has so many dependents
|
||||
if "core" in dir_:
|
||||
updated.add(dir_)
|
||||
continue
|
||||
pkg = "langchain-" + dir_.split("/")[-1]
|
||||
updated.update(dependents[pkg])
|
||||
updated.add(dir_)
|
||||
return list(updated)
|
||||
|
||||
|
||||
def _get_configs_for_single_dir(job: str, dir_: str) -> List[Dict[str, str]]:
|
||||
if job == "test-pydantic":
|
||||
return _get_pydantic_test_configs(dir_)
|
||||
|
||||
if job == "codspeed":
|
||||
py_versions = ["3.13"]
|
||||
elif dir_ == "libs/core":
|
||||
py_versions = ["3.10", "3.11", "3.12", "3.13", "3.14"]
|
||||
# custom logic for specific directories
|
||||
elif dir_ in {"libs/partners/chroma"}:
|
||||
py_versions = ["3.10", "3.13"]
|
||||
else:
|
||||
py_versions = ["3.10", "3.14"]
|
||||
|
||||
return [{"working-directory": dir_, "python-version": py_v} for py_v in py_versions]
|
||||
|
||||
|
||||
def _get_pydantic_test_configs(
|
||||
dir_: str, *, python_version: str = "3.12"
|
||||
) -> List[Dict[str, str]]:
|
||||
with open("./libs/core/uv.lock", "rb") as f:
|
||||
core_uv_lock_data = tomllib.load(f)
|
||||
for package in core_uv_lock_data["package"]:
|
||||
if package["name"] == "pydantic":
|
||||
core_max_pydantic_minor = package["version"].split(".")[1]
|
||||
break
|
||||
|
||||
with open(f"./{dir_}/uv.lock", "rb") as f:
|
||||
dir_uv_lock_data = tomllib.load(f)
|
||||
|
||||
for package in dir_uv_lock_data["package"]:
|
||||
if package["name"] == "pydantic":
|
||||
dir_max_pydantic_minor = package["version"].split(".")[1]
|
||||
break
|
||||
|
||||
core_min_pydantic_version = get_min_version_from_toml(
|
||||
"./libs/core/pyproject.toml", "release", python_version, include=["pydantic"]
|
||||
)["pydantic"]
|
||||
core_min_pydantic_minor = (
|
||||
core_min_pydantic_version.split(".")[1]
|
||||
if "." in core_min_pydantic_version
|
||||
else "0"
|
||||
)
|
||||
dir_min_pydantic_version = get_min_version_from_toml(
|
||||
f"./{dir_}/pyproject.toml", "release", python_version, include=["pydantic"]
|
||||
).get("pydantic", "0.0.0")
|
||||
dir_min_pydantic_minor = (
|
||||
dir_min_pydantic_version.split(".")[1]
|
||||
if "." in dir_min_pydantic_version
|
||||
else "0"
|
||||
)
|
||||
|
||||
max_pydantic_minor = min(
|
||||
int(dir_max_pydantic_minor),
|
||||
int(core_max_pydantic_minor),
|
||||
)
|
||||
min_pydantic_minor = max(
|
||||
int(dir_min_pydantic_minor),
|
||||
int(core_min_pydantic_minor),
|
||||
)
|
||||
|
||||
configs = [
|
||||
{
|
||||
"working-directory": dir_,
|
||||
"pydantic-version": f"2.{v}.0",
|
||||
"python-version": python_version,
|
||||
}
|
||||
for v in range(min_pydantic_minor, max_pydantic_minor + 1)
|
||||
]
|
||||
return configs
|
||||
|
||||
|
||||
def _get_configs_for_multi_dirs(
|
||||
job: str, dirs_to_run: Dict[str, Set[str]], dependents: dict
|
||||
) -> List[Dict[str, str]]:
|
||||
if job == "lint":
|
||||
dirs = add_dependents(
|
||||
dirs_to_run["lint"] | dirs_to_run["test"] | dirs_to_run["extended-test"],
|
||||
dependents,
|
||||
)
|
||||
elif job in ["test", "compile-integration-tests", "dependencies", "test-pydantic"]:
|
||||
dirs = add_dependents(
|
||||
dirs_to_run["test"] | dirs_to_run["extended-test"], dependents
|
||||
)
|
||||
elif job == "extended-tests":
|
||||
dirs = list(dirs_to_run["extended-test"])
|
||||
elif job == "codspeed":
|
||||
dirs = list(dirs_to_run["codspeed"])
|
||||
else:
|
||||
raise ValueError(f"Unknown job: {job}")
|
||||
|
||||
return [
|
||||
config for dir_ in dirs for config in _get_configs_for_single_dir(job, dir_)
|
||||
]
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
files = sys.argv[1:]
|
||||
|
||||
dirs_to_run: Dict[str, set] = {
|
||||
"lint": set(),
|
||||
"test": set(),
|
||||
"extended-test": set(),
|
||||
"codspeed": set(),
|
||||
}
|
||||
docs_edited = False
|
||||
|
||||
if len(files) >= 300:
|
||||
# max diff length is 300 files - there are likely files missing
|
||||
dirs_to_run["lint"] = all_package_dirs()
|
||||
dirs_to_run["test"] = all_package_dirs()
|
||||
dirs_to_run["extended-test"] = set(LANGCHAIN_DIRS)
|
||||
|
||||
for file in files:
|
||||
if any(
|
||||
file.startswith(dir_)
|
||||
for dir_ in (
|
||||
".github/workflows",
|
||||
".github/tools",
|
||||
".github/actions",
|
||||
".github/scripts/check_diff.py",
|
||||
)
|
||||
):
|
||||
# Infrastructure changes (workflows, actions, CI scripts) trigger tests on
|
||||
# all core packages as a safety measure. This ensures that changes to CI/CD
|
||||
# infrastructure don't inadvertently break package testing, even if the change
|
||||
# appears unrelated (e.g., documentation build workflows). This is intentionally
|
||||
# conservative to catch unexpected side effects from workflow modifications.
|
||||
#
|
||||
# Example: A PR modifying .github/workflows/api_doc_build.yml will trigger
|
||||
# lint/test jobs for libs/core, libs/text-splitters, libs/langchain, and
|
||||
# libs/langchain_v1, even though the workflow may only affect documentation.
|
||||
dirs_to_run["extended-test"].update(LANGCHAIN_DIRS)
|
||||
|
||||
if file.startswith("libs/core"):
|
||||
dirs_to_run["codspeed"].add("libs/core")
|
||||
if any(file.startswith(dir_) for dir_ in LANGCHAIN_DIRS):
|
||||
# add that dir and all dirs after in LANGCHAIN_DIRS
|
||||
# for extended testing
|
||||
|
||||
found = False
|
||||
for dir_ in LANGCHAIN_DIRS:
|
||||
if dir_ == "libs/core" and IGNORE_CORE_DEPENDENTS:
|
||||
dirs_to_run["extended-test"].add(dir_)
|
||||
continue
|
||||
if file.startswith(dir_):
|
||||
found = True
|
||||
if found:
|
||||
dirs_to_run["extended-test"].add(dir_)
|
||||
elif file.startswith("libs/standard-tests"):
|
||||
# TODO: update to include all packages that rely on standard-tests (all partner packages)
|
||||
# Note: won't run on external repo partners
|
||||
dirs_to_run["lint"].add("libs/standard-tests")
|
||||
dirs_to_run["test"].add("libs/standard-tests")
|
||||
dirs_to_run["test"].add("libs/partners/mistralai")
|
||||
dirs_to_run["test"].add("libs/partners/openai")
|
||||
dirs_to_run["test"].add("libs/partners/anthropic")
|
||||
dirs_to_run["test"].add("libs/partners/fireworks")
|
||||
dirs_to_run["test"].add("libs/partners/groq")
|
||||
|
||||
elif file.startswith("libs/cli"):
|
||||
dirs_to_run["lint"].add("libs/cli")
|
||||
dirs_to_run["test"].add("libs/cli")
|
||||
|
||||
elif file.startswith("libs/partners"):
|
||||
partner_dir = file.split("/")[2]
|
||||
if os.path.isdir(f"libs/partners/{partner_dir}") and [
|
||||
filename
|
||||
for filename in os.listdir(f"libs/partners/{partner_dir}")
|
||||
if not filename.startswith(".")
|
||||
] != ["README.md"]:
|
||||
dirs_to_run["test"].add(f"libs/partners/{partner_dir}")
|
||||
# Skip codspeed for partners without benchmarks or in IGNORED_PARTNERS
|
||||
if partner_dir not in IGNORED_PARTNERS:
|
||||
dirs_to_run["codspeed"].add(f"libs/partners/{partner_dir}")
|
||||
# Skip if the directory was deleted or is just a tombstone readme
|
||||
elif file.startswith("libs/"):
|
||||
# Check if this is a root-level file in libs/ (e.g., libs/README.md)
|
||||
file_parts = file.split("/")
|
||||
if len(file_parts) == 2:
|
||||
# Root-level file in libs/, skip it (no tests needed)
|
||||
continue
|
||||
raise ValueError(
|
||||
f"Unknown lib: {file}. check_diff.py likely needs "
|
||||
"an update for this new library!"
|
||||
)
|
||||
elif file in [
|
||||
"pyproject.toml",
|
||||
"uv.lock",
|
||||
]: # root uv files
|
||||
docs_edited = True
|
||||
|
||||
dependents = dependents_graph()
|
||||
|
||||
# we now have dirs_by_job
|
||||
# todo: clean this up
|
||||
map_job_to_configs = {
|
||||
job: _get_configs_for_multi_dirs(job, dirs_to_run, dependents)
|
||||
for job in [
|
||||
"lint",
|
||||
"test",
|
||||
"extended-tests",
|
||||
"compile-integration-tests",
|
||||
"dependencies",
|
||||
"test-pydantic",
|
||||
"codspeed",
|
||||
]
|
||||
}
|
||||
|
||||
for key, value in map_job_to_configs.items():
|
||||
json_output = json.dumps(value)
|
||||
print(f"{key}={json_output}")
|
||||
36
.github/scripts/check_prerelease_dependencies.py
vendored
36
.github/scripts/check_prerelease_dependencies.py
vendored
@@ -1,36 +0,0 @@
|
||||
"""Check that no dependencies allow prereleases unless we're releasing a prerelease."""
|
||||
|
||||
import sys
|
||||
|
||||
import tomllib
|
||||
|
||||
if __name__ == "__main__":
|
||||
# Get the TOML file path from the command line argument
|
||||
toml_file = sys.argv[1]
|
||||
|
||||
with open(toml_file, "rb") as file:
|
||||
toml_data = tomllib.load(file)
|
||||
|
||||
# See if we're releasing an rc or dev version
|
||||
version = toml_data["project"]["version"]
|
||||
releasing_rc = "rc" in version or "dev" in version
|
||||
|
||||
# If not, iterate through dependencies and make sure none allow prereleases
|
||||
if not releasing_rc:
|
||||
dependencies = toml_data["project"]["dependencies"]
|
||||
for dep_version in dependencies:
|
||||
dep_version_string = (
|
||||
dep_version["version"] if isinstance(dep_version, dict) else dep_version
|
||||
)
|
||||
|
||||
if "rc" in dep_version_string:
|
||||
raise ValueError(
|
||||
f"Dependency {dep_version} has a prerelease version. Please remove this."
|
||||
)
|
||||
|
||||
if isinstance(dep_version, dict) and dep_version.get(
|
||||
"allow-prereleases", False
|
||||
):
|
||||
raise ValueError(
|
||||
f"Dependency {dep_version} has allow-prereleases set to true. Please remove this."
|
||||
)
|
||||
199
.github/scripts/get_min_versions.py
vendored
199
.github/scripts/get_min_versions.py
vendored
@@ -1,199 +0,0 @@
|
||||
"""Get minimum versions of dependencies from a pyproject.toml file."""
|
||||
|
||||
import sys
|
||||
from collections import defaultdict
|
||||
|
||||
if sys.version_info >= (3, 11):
|
||||
import tomllib
|
||||
else:
|
||||
# For Python 3.10 and below, which doesnt have stdlib tomllib
|
||||
import tomli as tomllib
|
||||
|
||||
import re
|
||||
from typing import List
|
||||
|
||||
import requests
|
||||
from packaging.requirements import Requirement
|
||||
from packaging.specifiers import SpecifierSet
|
||||
from packaging.version import Version, parse
|
||||
|
||||
MIN_VERSION_LIBS = [
|
||||
"langchain-core",
|
||||
"langchain",
|
||||
"langchain-text-splitters",
|
||||
"numpy",
|
||||
"SQLAlchemy",
|
||||
]
|
||||
|
||||
# some libs only get checked on release because of simultaneous changes in
|
||||
# multiple libs
|
||||
SKIP_IF_PULL_REQUEST = [
|
||||
"langchain-core",
|
||||
"langchain-text-splitters",
|
||||
"langchain",
|
||||
]
|
||||
|
||||
|
||||
def get_pypi_versions(package_name: str) -> List[str]:
|
||||
"""Fetch all available versions for a package from PyPI.
|
||||
|
||||
Args:
|
||||
package_name: Name of the package
|
||||
|
||||
Returns:
|
||||
List of all available versions
|
||||
|
||||
Raises:
|
||||
requests.exceptions.RequestException: If PyPI API request fails
|
||||
KeyError: If package not found or response format unexpected
|
||||
"""
|
||||
pypi_url = f"https://pypi.org/pypi/{package_name}/json"
|
||||
response = requests.get(pypi_url)
|
||||
response.raise_for_status()
|
||||
return list(response.json()["releases"].keys())
|
||||
|
||||
|
||||
def get_minimum_version(package_name: str, spec_string: str) -> str | None:
|
||||
"""Find the minimum published version that satisfies the given constraints.
|
||||
|
||||
Args:
|
||||
package_name: Name of the package
|
||||
spec_string: Version specification string (e.g., ">=0.2.43,<0.4.0,!=0.3.0")
|
||||
|
||||
Returns:
|
||||
Minimum compatible version or None if no compatible version found
|
||||
"""
|
||||
# Rewrite occurrences of ^0.0.z to 0.0.z (can be anywhere in constraint string)
|
||||
spec_string = re.sub(r"\^0\.0\.(\d+)", r"0.0.\1", spec_string)
|
||||
# Rewrite occurrences of ^0.y.z to >=0.y.z,<0.y+1 (can be anywhere in constraint string)
|
||||
for y in range(1, 10):
|
||||
spec_string = re.sub(
|
||||
rf"\^0\.{y}\.(\d+)", rf">=0.{y}.\1,<0.{y + 1}", spec_string
|
||||
)
|
||||
# Rewrite occurrences of ^x.y.z to >=x.y.z,<x+1.0.0 (can be anywhere in constraint string)
|
||||
for x in range(1, 10):
|
||||
spec_string = re.sub(
|
||||
rf"\^{x}\.(\d+)\.(\d+)", rf">={x}.\1.\2,<{x + 1}", spec_string
|
||||
)
|
||||
|
||||
spec_set = SpecifierSet(spec_string)
|
||||
all_versions = get_pypi_versions(package_name)
|
||||
|
||||
valid_versions = []
|
||||
for version_str in all_versions:
|
||||
try:
|
||||
version = parse(version_str)
|
||||
if spec_set.contains(version):
|
||||
valid_versions.append(version)
|
||||
except ValueError:
|
||||
continue
|
||||
|
||||
return str(min(valid_versions)) if valid_versions else None
|
||||
|
||||
|
||||
def _check_python_version_from_requirement(
|
||||
requirement: Requirement, python_version: str
|
||||
) -> bool:
|
||||
if not requirement.marker:
|
||||
return True
|
||||
else:
|
||||
marker_str = str(requirement.marker)
|
||||
if "python_version" in marker_str or "python_full_version" in marker_str:
|
||||
python_version_str = "".join(
|
||||
char
|
||||
for char in marker_str
|
||||
if char.isdigit() or char in (".", "<", ">", "=", ",")
|
||||
)
|
||||
return check_python_version(python_version, python_version_str)
|
||||
return True
|
||||
|
||||
|
||||
def get_min_version_from_toml(
|
||||
toml_path: str,
|
||||
versions_for: str,
|
||||
python_version: str,
|
||||
*,
|
||||
include: list | None = None,
|
||||
):
|
||||
# Parse the TOML file
|
||||
with open(toml_path, "rb") as file:
|
||||
toml_data = tomllib.load(file)
|
||||
|
||||
dependencies = defaultdict(list)
|
||||
for dep in toml_data["project"]["dependencies"]:
|
||||
requirement = Requirement(dep)
|
||||
dependencies[requirement.name].append(requirement)
|
||||
|
||||
# Initialize a dictionary to store the minimum versions
|
||||
min_versions = {}
|
||||
|
||||
# Iterate over the libs in MIN_VERSION_LIBS
|
||||
for lib in set(MIN_VERSION_LIBS + (include or [])):
|
||||
if versions_for == "pull_request" and lib in SKIP_IF_PULL_REQUEST:
|
||||
# some libs only get checked on release because of simultaneous
|
||||
# changes in multiple libs
|
||||
continue
|
||||
# Check if the lib is present in the dependencies
|
||||
if lib in dependencies:
|
||||
if include and lib not in include:
|
||||
continue
|
||||
requirements = dependencies[lib]
|
||||
for requirement in requirements:
|
||||
if _check_python_version_from_requirement(requirement, python_version):
|
||||
version_string = str(requirement.specifier)
|
||||
break
|
||||
|
||||
# Use parse_version to get the minimum supported version from version_string
|
||||
min_version = get_minimum_version(lib, version_string)
|
||||
|
||||
# Store the minimum version in the min_versions dictionary
|
||||
min_versions[lib] = min_version
|
||||
|
||||
return min_versions
|
||||
|
||||
|
||||
def check_python_version(version_string, constraint_string):
|
||||
"""Check if the given Python version matches the given constraints.
|
||||
|
||||
Args:
|
||||
version_string: A string representing the Python version (e.g. "3.8.5").
|
||||
constraint_string: A string representing the package's Python version
|
||||
constraints (e.g. ">=3.6, <4.0").
|
||||
|
||||
Returns:
|
||||
True if the version matches the constraints
|
||||
"""
|
||||
|
||||
# Rewrite occurrences of ^0.0.z to 0.0.z (can be anywhere in constraint string)
|
||||
constraint_string = re.sub(r"\^0\.0\.(\d+)", r"0.0.\1", constraint_string)
|
||||
# Rewrite occurrences of ^0.y.z to >=0.y.z,<0.y+1.0 (can be anywhere in constraint string)
|
||||
for y in range(1, 10):
|
||||
constraint_string = re.sub(
|
||||
rf"\^0\.{y}\.(\d+)", rf">=0.{y}.\1,<0.{y + 1}.0", constraint_string
|
||||
)
|
||||
# Rewrite occurrences of ^x.y.z to >=x.y.z,<x+1.0.0 (can be anywhere in constraint string)
|
||||
for x in range(1, 10):
|
||||
constraint_string = re.sub(
|
||||
rf"\^{x}\.0\.(\d+)", rf">={x}.0.\1,<{x + 1}.0.0", constraint_string
|
||||
)
|
||||
|
||||
try:
|
||||
version = Version(version_string)
|
||||
constraints = SpecifierSet(constraint_string)
|
||||
return version in constraints
|
||||
except Exception as e:
|
||||
print(f"Error: {e}")
|
||||
return False
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
# Get the TOML file path from the command line argument
|
||||
toml_file = sys.argv[1]
|
||||
versions_for = sys.argv[2]
|
||||
python_version = sys.argv[3]
|
||||
assert versions_for in ["release", "pull_request"]
|
||||
|
||||
# Call the function to get the minimum versions
|
||||
min_versions = get_min_version_from_toml(toml_file, versions_for, python_version)
|
||||
|
||||
print(" ".join([f"{lib}=={version}" for lib, version in min_versions.items()]))
|
||||
756
.github/tools/git-restore-mtime
vendored
756
.github/tools/git-restore-mtime
vendored
@@ -1,756 +0,0 @@
|
||||
#!/usr/bin/env python3
|
||||
#
|
||||
# git-restore-mtime - Change mtime of files based on commit date of last change
|
||||
#
|
||||
# Copyright (C) 2012 Rodrigo Silva (MestreLion) <linux@rodrigosilva.com>
|
||||
#
|
||||
# This program is free software: you can redistribute it and/or modify
|
||||
# it under the terms of the GNU General Public License as published by
|
||||
# the Free Software Foundation, either version 3 of the License, or
|
||||
# (at your option) any later version.
|
||||
#
|
||||
# This program is distributed in the hope that it will be useful,
|
||||
# but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
# GNU General Public License for more details.
|
||||
#
|
||||
# You should have received a copy of the GNU General Public License
|
||||
# along with this program. See <http://www.gnu.org/licenses/gpl.html>
|
||||
#
|
||||
# Source: https://github.com/MestreLion/git-tools
|
||||
# Version: July 13, 2023 (commit hash 5f832e72453e035fccae9d63a5056918d64476a2)
|
||||
"""
|
||||
Change the modification time (mtime) of files in work tree, based on the
|
||||
date of the most recent commit that modified the file, including renames.
|
||||
|
||||
Ignores untracked files and uncommitted deletions, additions and renames, and
|
||||
by default modifications too.
|
||||
---
|
||||
Useful prior to generating release tarballs, so each file is archived with a
|
||||
date that is similar to the date when the file was actually last modified,
|
||||
assuming the actual modification date and its commit date are close.
|
||||
"""
|
||||
|
||||
# TODO:
|
||||
# - Add -z on git whatchanged/ls-files, so we don't deal with filename decoding
|
||||
# - When Python is bumped to 3.7, use text instead of universal_newlines on subprocess
|
||||
# - Update "Statistics for some large projects" with modern hardware and repositories.
|
||||
# - Create a README.md for git-restore-mtime alone. It deserves extensive documentation
|
||||
# - Move Statistics there
|
||||
# - See git-extras as a good example on project structure and documentation
|
||||
|
||||
# FIXME:
|
||||
# - When current dir is outside the worktree, e.g. using --work-tree, `git ls-files`
|
||||
# assume any relative pathspecs are to worktree root, not the current dir. As such,
|
||||
# relative pathspecs may not work.
|
||||
# - Renames are tricky:
|
||||
# - R100 should not change mtime, but original name is not on filelist. Should
|
||||
# track renames until a valid (A, M) mtime found and then set on current name.
|
||||
# - Should set mtime for both current and original directories.
|
||||
# - Check mode changes with unchanged blobs?
|
||||
# - Check file (A, D) for the directory mtime is not sufficient:
|
||||
# - Renames also change dir mtime, unless rename was on a parent dir
|
||||
# - If most recent change of all files in a dir was a Modification (M),
|
||||
# dir might not be touched at all.
|
||||
# - Dirs containing only subdirectories but no direct files will also
|
||||
# not be touched. They're files' [grand]parent dir, but never their dirname().
|
||||
# - Some solutions:
|
||||
# - After files done, perform some dir processing for missing dirs, finding latest
|
||||
# file (A, D, R)
|
||||
# - Simple approach: dir mtime is the most recent child (dir or file) mtime
|
||||
# - Use a virtual concept of "created at most at" to fill missing info, bubble up
|
||||
# to parents and grandparents
|
||||
# - When handling [grand]parent dirs, stay inside <pathspec>
|
||||
# - Better handling of merge commits. `-m` is plain *wrong*. `-c/--cc` is perfect, but
|
||||
# painfully slow. First pass without merge commits is not accurate. Maybe add a new
|
||||
# `--accurate` mode for `--cc`?
|
||||
|
||||
if __name__ != "__main__":
|
||||
raise ImportError("{} should not be used as a module.".format(__name__))
|
||||
|
||||
import argparse
|
||||
import datetime
|
||||
import logging
|
||||
import os.path
|
||||
import shlex
|
||||
import signal
|
||||
import subprocess
|
||||
import sys
|
||||
import time
|
||||
|
||||
__version__ = "2022.12+dev"
|
||||
|
||||
# Update symlinks only if the platform supports not following them
|
||||
UPDATE_SYMLINKS = bool(os.utime in getattr(os, "supports_follow_symlinks", []))
|
||||
|
||||
# Call os.path.normpath() only if not in a POSIX platform (Windows)
|
||||
NORMALIZE_PATHS = os.path.sep != "/"
|
||||
|
||||
# How many files to process in each batch when re-trying merge commits
|
||||
STEPMISSING = 100
|
||||
|
||||
# (Extra) keywords for the os.utime() call performed by touch()
|
||||
UTIME_KWS = {} if not UPDATE_SYMLINKS else {"follow_symlinks": False}
|
||||
|
||||
|
||||
# Command-line interface ######################################################
|
||||
|
||||
|
||||
def parse_args():
|
||||
parser = argparse.ArgumentParser(description=__doc__.split("\n---")[0])
|
||||
|
||||
group = parser.add_mutually_exclusive_group()
|
||||
group.add_argument(
|
||||
"--quiet",
|
||||
"-q",
|
||||
dest="loglevel",
|
||||
action="store_const",
|
||||
const=logging.WARNING,
|
||||
default=logging.INFO,
|
||||
help="Suppress informative messages and summary statistics.",
|
||||
)
|
||||
group.add_argument(
|
||||
"--verbose",
|
||||
"-v",
|
||||
action="count",
|
||||
help="""
|
||||
Print additional information for each processed file.
|
||||
Specify twice to further increase verbosity.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--cwd",
|
||||
"-C",
|
||||
metavar="DIRECTORY",
|
||||
help="""
|
||||
Run as if %(prog)s was started in directory %(metavar)s.
|
||||
This affects how --work-tree, --git-dir and PATHSPEC arguments are handled.
|
||||
See 'man 1 git' or 'git --help' for more information.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--git-dir",
|
||||
dest="gitdir",
|
||||
metavar="GITDIR",
|
||||
help="""
|
||||
Path to the git repository, by default auto-discovered by searching
|
||||
the current directory and its parents for a .git/ subdirectory.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--work-tree",
|
||||
dest="workdir",
|
||||
metavar="WORKTREE",
|
||||
help="""
|
||||
Path to the work tree root, by default the parent of GITDIR if it's
|
||||
automatically discovered, or the current directory if GITDIR is set.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--force",
|
||||
"-f",
|
||||
default=False,
|
||||
action="store_true",
|
||||
help="""
|
||||
Force updating files with uncommitted modifications.
|
||||
Untracked files and uncommitted deletions, renames and additions are
|
||||
always ignored.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--merge",
|
||||
"-m",
|
||||
default=False,
|
||||
action="store_true",
|
||||
help="""
|
||||
Include merge commits.
|
||||
Leads to more recent times and more files per commit, thus with the same
|
||||
time, which may or may not be what you want.
|
||||
Including merge commits may lead to fewer commits being evaluated as files
|
||||
are found sooner, which can improve performance, sometimes substantially.
|
||||
But as merge commits are usually huge, processing them may also take longer.
|
||||
By default, merge commits are only used for files missing from regular commits.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--first-parent",
|
||||
default=False,
|
||||
action="store_true",
|
||||
help="""
|
||||
Consider only the first parent, the "main branch", when evaluating merge commits.
|
||||
Only effective when merge commits are processed, either when --merge is
|
||||
used or when finding missing files after the first regular log search.
|
||||
See --skip-missing.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--skip-missing",
|
||||
"-s",
|
||||
dest="missing",
|
||||
default=True,
|
||||
action="store_false",
|
||||
help="""
|
||||
Do not try to find missing files.
|
||||
If merge commits were not evaluated with --merge and some files were
|
||||
not found in regular commits, by default %(prog)s searches for these
|
||||
files again in the merge commits.
|
||||
This option disables this retry, so files found only in merge commits
|
||||
will not have their timestamp updated.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--no-directories",
|
||||
"-D",
|
||||
dest="dirs",
|
||||
default=True,
|
||||
action="store_false",
|
||||
help="""
|
||||
Do not update directory timestamps.
|
||||
By default, use the time of its most recently created, renamed or deleted file.
|
||||
Note that just modifying a file will NOT update its directory time.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--test",
|
||||
"-t",
|
||||
default=False,
|
||||
action="store_true",
|
||||
help="Test run: do not actually update any file timestamp.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--commit-time",
|
||||
"-c",
|
||||
dest="commit_time",
|
||||
default=False,
|
||||
action="store_true",
|
||||
help="Use commit time instead of author time.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--oldest-time",
|
||||
"-o",
|
||||
dest="reverse_order",
|
||||
default=False,
|
||||
action="store_true",
|
||||
help="""
|
||||
Update times based on the oldest, instead of the most recent commit of a file.
|
||||
This reverses the order in which the git log is processed to emulate a
|
||||
file "creation" date. Note this will be inaccurate for files deleted and
|
||||
re-created at later dates.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--skip-older-than",
|
||||
metavar="SECONDS",
|
||||
type=int,
|
||||
help="""
|
||||
Ignore files that are currently older than %(metavar)s.
|
||||
Useful in workflows that assume such files already have a correct timestamp,
|
||||
as it may improve performance by processing fewer files.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--skip-older-than-commit",
|
||||
"-N",
|
||||
default=False,
|
||||
action="store_true",
|
||||
help="""
|
||||
Ignore files older than the timestamp it would be updated to.
|
||||
Such files may be considered "original", likely in the author's repository.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--unique-times",
|
||||
default=False,
|
||||
action="store_true",
|
||||
help="""
|
||||
Set the microseconds to a unique value per commit.
|
||||
Allows telling apart changes that would otherwise have identical timestamps,
|
||||
as git's time accuracy is in seconds.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"pathspec",
|
||||
nargs="*",
|
||||
metavar="PATHSPEC",
|
||||
help="""
|
||||
Only modify paths matching %(metavar)s, relative to current directory.
|
||||
By default, update all but untracked files and submodules.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--version",
|
||||
"-V",
|
||||
action="version",
|
||||
version="%(prog)s version {version}".format(version=get_version()),
|
||||
)
|
||||
|
||||
args_ = parser.parse_args()
|
||||
if args_.verbose:
|
||||
args_.loglevel = max(logging.TRACE, logging.DEBUG // args_.verbose)
|
||||
args_.debug = args_.loglevel <= logging.DEBUG
|
||||
return args_
|
||||
|
||||
|
||||
def get_version(version=__version__):
|
||||
if not version.endswith("+dev"):
|
||||
return version
|
||||
try:
|
||||
cwd = os.path.dirname(os.path.realpath(__file__))
|
||||
return Git(cwd=cwd, errors=False).describe().lstrip("v")
|
||||
except Git.Error:
|
||||
return "-".join((version, "unknown"))
|
||||
|
||||
|
||||
# Helper functions ############################################################
|
||||
|
||||
|
||||
def setup_logging():
|
||||
"""Add TRACE logging level and corresponding method, return the root logger"""
|
||||
logging.TRACE = TRACE = logging.DEBUG // 2
|
||||
logging.Logger.trace = lambda _, m, *a, **k: _.log(TRACE, m, *a, **k)
|
||||
return logging.getLogger()
|
||||
|
||||
|
||||
def normalize(path):
|
||||
r"""Normalize paths from git, handling non-ASCII characters.
|
||||
|
||||
Git stores paths as UTF-8 normalization form C.
|
||||
If path contains non-ASCII or non-printable characters, git outputs the UTF-8
|
||||
in octal-escaped notation, escaping double-quotes and backslashes, and then
|
||||
double-quoting the whole path.
|
||||
https://git-scm.com/docs/git-config#Documentation/git-config.txt-corequotePath
|
||||
|
||||
This function reverts this encoding, so:
|
||||
normalize(r'"Back\\slash_double\"quote_a\303\247a\303\255"') =>
|
||||
r'Back\slash_double"quote_açaí')
|
||||
|
||||
Paths with invalid UTF-8 encoding, such as single 0x80-0xFF bytes (e.g, from
|
||||
Latin1/Windows-1251 encoding) are decoded using surrogate escape, the same
|
||||
method used by Python for filesystem paths. So 0xE6 ("æ" in Latin1, r'\\346'
|
||||
from Git) is decoded as "\udce6". See https://peps.python.org/pep-0383/ and
|
||||
https://vstinner.github.io/painful-history-python-filesystem-encoding.html
|
||||
|
||||
Also see notes on `windows/non-ascii-paths.txt` about path encodings on
|
||||
non-UTF-8 platforms and filesystems.
|
||||
"""
|
||||
if path and path[0] == '"':
|
||||
# Python 2: path = path[1:-1].decode("string-escape")
|
||||
# Python 3: https://stackoverflow.com/a/46650050/624066
|
||||
path = (
|
||||
path[1:-1] # Remove enclosing double quotes
|
||||
.encode("latin1") # Convert to bytes, required by 'unicode-escape'
|
||||
.decode("unicode-escape") # Perform the actual octal-escaping decode
|
||||
.encode("latin1") # 1:1 mapping to bytes, UTF-8 encoded
|
||||
.decode("utf8", "surrogateescape")
|
||||
) # Decode from UTF-8
|
||||
if NORMALIZE_PATHS:
|
||||
# Make sure the slash matches the OS; for Windows we need a backslash
|
||||
path = os.path.normpath(path)
|
||||
return path
|
||||
|
||||
|
||||
def dummy(*_args, **_kwargs):
|
||||
"""No-op function used in dry-run tests"""
|
||||
|
||||
|
||||
def touch(path, mtime):
|
||||
"""The actual mtime update"""
|
||||
os.utime(path, (mtime, mtime), **UTIME_KWS)
|
||||
|
||||
|
||||
def touch_ns(path, mtime_ns):
|
||||
"""The actual mtime update, using nanoseconds for unique timestamps"""
|
||||
os.utime(path, None, ns=(mtime_ns, mtime_ns), **UTIME_KWS)
|
||||
|
||||
|
||||
def isodate(secs: int):
|
||||
# time.localtime() accepts floats, but discards fractional part
|
||||
return time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(secs))
|
||||
|
||||
|
||||
def isodate_ns(ns: int):
|
||||
# for integers fromtimestamp() is equivalent and ~16% slower than isodate()
|
||||
return datetime.datetime.fromtimestamp(ns / 1000000000).isoformat(sep=" ")
|
||||
|
||||
|
||||
def get_mtime_ns(secs: int, idx: int):
|
||||
# Time resolution for filesystems and functions:
|
||||
# ext-4 and other POSIX filesystems: 1 nanosecond
|
||||
# NTFS (Windows default): 100 nanoseconds
|
||||
# datetime.datetime() (due to 64-bit float epoch): 1 microsecond
|
||||
us = idx % 1000000 # 10**6
|
||||
return 1000 * (1000000 * secs + us)
|
||||
|
||||
|
||||
def get_mtime_path(path):
|
||||
return os.path.getmtime(path)
|
||||
|
||||
|
||||
# Git class and parse_log(), the heart of the script ##########################
|
||||
|
||||
|
||||
class Git:
|
||||
def __init__(self, workdir=None, gitdir=None, cwd=None, errors=True):
|
||||
self.gitcmd = ["git"]
|
||||
self.errors = errors
|
||||
self._proc = None
|
||||
if workdir:
|
||||
self.gitcmd.extend(("--work-tree", workdir))
|
||||
if gitdir:
|
||||
self.gitcmd.extend(("--git-dir", gitdir))
|
||||
if cwd:
|
||||
self.gitcmd.extend(("-C", cwd))
|
||||
self.workdir, self.gitdir = self._get_repo_dirs()
|
||||
|
||||
def ls_files(self, paths: list = None):
|
||||
return (normalize(_) for _ in self._run("ls-files --full-name", paths))
|
||||
|
||||
def ls_dirty(self, force=False):
|
||||
return (
|
||||
normalize(_[3:].split(" -> ", 1)[-1])
|
||||
for _ in self._run("status --porcelain")
|
||||
if _[:2] != "??" and (not force or (_[0] in ("R", "A") or _[1] == "D"))
|
||||
)
|
||||
|
||||
def log(
|
||||
self,
|
||||
merge=False,
|
||||
first_parent=False,
|
||||
commit_time=False,
|
||||
reverse_order=False,
|
||||
paths: list = None,
|
||||
):
|
||||
cmd = "whatchanged --pretty={}".format("%ct" if commit_time else "%at")
|
||||
if merge:
|
||||
cmd += " -m"
|
||||
if first_parent:
|
||||
cmd += " --first-parent"
|
||||
if reverse_order:
|
||||
cmd += " --reverse"
|
||||
return self._run(cmd, paths)
|
||||
|
||||
def describe(self):
|
||||
return self._run("describe --tags", check=True)[0]
|
||||
|
||||
def terminate(self):
|
||||
if self._proc is None:
|
||||
return
|
||||
try:
|
||||
self._proc.terminate()
|
||||
except OSError:
|
||||
# Avoid errors on OpenBSD
|
||||
pass
|
||||
|
||||
def _get_repo_dirs(self):
|
||||
return (
|
||||
os.path.normpath(_)
|
||||
for _ in self._run(
|
||||
"rev-parse --show-toplevel --absolute-git-dir", check=True
|
||||
)
|
||||
)
|
||||
|
||||
def _run(self, cmdstr: str, paths: list = None, output=True, check=False):
|
||||
cmdlist = self.gitcmd + shlex.split(cmdstr)
|
||||
if paths:
|
||||
cmdlist.append("--")
|
||||
cmdlist.extend(paths)
|
||||
popen_args = dict(universal_newlines=True, encoding="utf8")
|
||||
if not self.errors:
|
||||
popen_args["stderr"] = subprocess.DEVNULL
|
||||
log.trace("Executing: %s", " ".join(cmdlist))
|
||||
if not output:
|
||||
return subprocess.call(cmdlist, **popen_args)
|
||||
if check:
|
||||
try:
|
||||
stdout: str = subprocess.check_output(cmdlist, **popen_args)
|
||||
return stdout.splitlines()
|
||||
except subprocess.CalledProcessError as e:
|
||||
raise self.Error(e.returncode, e.cmd, e.output, e.stderr)
|
||||
self._proc = subprocess.Popen(cmdlist, stdout=subprocess.PIPE, **popen_args)
|
||||
return (_.rstrip() for _ in self._proc.stdout)
|
||||
|
||||
def __del__(self):
|
||||
self.terminate()
|
||||
|
||||
class Error(subprocess.CalledProcessError):
|
||||
"""Error from git executable"""
|
||||
|
||||
|
||||
def parse_log(filelist, dirlist, stats, git, merge=False, filterlist=None):
|
||||
mtime = 0
|
||||
datestr = isodate(0)
|
||||
for line in git.log(
|
||||
merge, args.first_parent, args.commit_time, args.reverse_order, filterlist
|
||||
):
|
||||
stats["loglines"] += 1
|
||||
|
||||
# Blank line between Date and list of files
|
||||
if not line:
|
||||
continue
|
||||
|
||||
# Date line
|
||||
if line[0] != ":": # Faster than `not line.startswith(':')`
|
||||
stats["commits"] += 1
|
||||
mtime = int(line)
|
||||
if args.unique_times:
|
||||
mtime = get_mtime_ns(mtime, stats["commits"])
|
||||
if args.debug:
|
||||
datestr = isodate(mtime)
|
||||
continue
|
||||
|
||||
# File line: three tokens if it describes a renaming, otherwise two
|
||||
tokens = line.split("\t")
|
||||
|
||||
# Possible statuses:
|
||||
# M: Modified (content changed)
|
||||
# A: Added (created)
|
||||
# D: Deleted
|
||||
# T: Type changed: to/from regular file, symlinks, submodules
|
||||
# R099: Renamed (moved), with % of unchanged content. 100 = pure rename
|
||||
# Not possible in log: C=Copied, U=Unmerged, X=Unknown, B=pairing Broken
|
||||
status = tokens[0].split(" ")[-1]
|
||||
file = tokens[-1]
|
||||
|
||||
# Handles non-ASCII chars and OS path separator
|
||||
file = normalize(file)
|
||||
|
||||
def do_file():
|
||||
if args.skip_older_than_commit and get_mtime_path(file) <= mtime:
|
||||
stats["skip"] += 1
|
||||
return
|
||||
if args.debug:
|
||||
log.debug(
|
||||
"%d\t%d\t%d\t%s\t%s",
|
||||
stats["loglines"],
|
||||
stats["commits"],
|
||||
stats["files"],
|
||||
datestr,
|
||||
file,
|
||||
)
|
||||
try:
|
||||
touch(os.path.join(git.workdir, file), mtime)
|
||||
stats["touches"] += 1
|
||||
except Exception as e:
|
||||
log.error("ERROR: %s: %s", e, file)
|
||||
stats["errors"] += 1
|
||||
|
||||
def do_dir():
|
||||
if args.debug:
|
||||
log.debug(
|
||||
"%d\t%d\t-\t%s\t%s",
|
||||
stats["loglines"],
|
||||
stats["commits"],
|
||||
datestr,
|
||||
"{}/".format(dirname or "."),
|
||||
)
|
||||
try:
|
||||
touch(os.path.join(git.workdir, dirname), mtime)
|
||||
stats["dirtouches"] += 1
|
||||
except Exception as e:
|
||||
log.error("ERROR: %s: %s", e, dirname)
|
||||
stats["direrrors"] += 1
|
||||
|
||||
if file in filelist:
|
||||
stats["files"] -= 1
|
||||
filelist.remove(file)
|
||||
do_file()
|
||||
|
||||
if args.dirs and status in ("A", "D"):
|
||||
dirname = os.path.dirname(file)
|
||||
if dirname in dirlist:
|
||||
dirlist.remove(dirname)
|
||||
do_dir()
|
||||
|
||||
# All files done?
|
||||
if not stats["files"]:
|
||||
git.terminate()
|
||||
return
|
||||
|
||||
|
||||
# Main Logic ##################################################################
|
||||
|
||||
|
||||
def main():
|
||||
start = time.time() # yes, Wall time. CPU time is not realistic for users.
|
||||
stats = {
|
||||
_: 0
|
||||
for _ in (
|
||||
"loglines",
|
||||
"commits",
|
||||
"touches",
|
||||
"skip",
|
||||
"errors",
|
||||
"dirtouches",
|
||||
"direrrors",
|
||||
)
|
||||
}
|
||||
|
||||
logging.basicConfig(level=args.loglevel, format="%(message)s")
|
||||
log.trace("Arguments: %s", args)
|
||||
|
||||
# First things first: Where and Who are we?
|
||||
if args.cwd:
|
||||
log.debug("Changing directory: %s", args.cwd)
|
||||
try:
|
||||
os.chdir(args.cwd)
|
||||
except OSError as e:
|
||||
log.critical(e)
|
||||
return e.errno
|
||||
# Using both os.chdir() and `git -C` is redundant, but might prevent side effects
|
||||
# `git -C` alone could be enough if we make sure that:
|
||||
# - all paths, including args.pathspec, are processed by git: ls-files, rev-parse
|
||||
# - touch() / os.utime() path argument is always prepended with git.workdir
|
||||
try:
|
||||
git = Git(workdir=args.workdir, gitdir=args.gitdir, cwd=args.cwd)
|
||||
except Git.Error as e:
|
||||
# Not in a git repository, and git already informed user on stderr. So we just...
|
||||
return e.returncode
|
||||
|
||||
# Get the files managed by git and build file list to be processed
|
||||
if UPDATE_SYMLINKS and not args.skip_older_than:
|
||||
filelist = set(git.ls_files(args.pathspec))
|
||||
else:
|
||||
filelist = set()
|
||||
for path in git.ls_files(args.pathspec):
|
||||
fullpath = os.path.join(git.workdir, path)
|
||||
|
||||
# Symlink (to file, to dir or broken - git handles the same way)
|
||||
if not UPDATE_SYMLINKS and os.path.islink(fullpath):
|
||||
log.warning(
|
||||
"WARNING: Skipping symlink, no OS support for updates: %s", path
|
||||
)
|
||||
continue
|
||||
|
||||
# skip files which are older than given threshold
|
||||
if (
|
||||
args.skip_older_than
|
||||
and start - get_mtime_path(fullpath) > args.skip_older_than
|
||||
):
|
||||
continue
|
||||
|
||||
# Always add files relative to worktree root
|
||||
filelist.add(path)
|
||||
|
||||
# If --force, silently ignore uncommitted deletions (not in the filesystem)
|
||||
# and renames / additions (will not be found in log anyway)
|
||||
if args.force:
|
||||
filelist -= set(git.ls_dirty(force=True))
|
||||
# Otherwise, ignore any dirty files
|
||||
else:
|
||||
dirty = set(git.ls_dirty())
|
||||
if dirty:
|
||||
log.warning(
|
||||
"WARNING: Modified files in the working directory were ignored."
|
||||
"\nTo include such files, commit your changes or use --force."
|
||||
)
|
||||
filelist -= dirty
|
||||
|
||||
# Build dir list to be processed
|
||||
dirlist = set(os.path.dirname(_) for _ in filelist) if args.dirs else set()
|
||||
|
||||
stats["totalfiles"] = stats["files"] = len(filelist)
|
||||
log.info("{0:,} files to be processed in work dir".format(stats["totalfiles"]))
|
||||
|
||||
if not filelist:
|
||||
# Nothing to do. Exit silently and without errors, just like git does
|
||||
return
|
||||
|
||||
# Process the log until all files are 'touched'
|
||||
log.debug("Line #\tLog #\tF.Left\tModification Time\tFile Name")
|
||||
parse_log(filelist, dirlist, stats, git, args.merge, args.pathspec)
|
||||
|
||||
# Missing files
|
||||
if filelist:
|
||||
# Try to find them in merge logs, if not done already
|
||||
# (usually HUGE, thus MUCH slower!)
|
||||
if args.missing and not args.merge:
|
||||
filterlist = list(filelist)
|
||||
missing = len(filterlist)
|
||||
log.info(
|
||||
"{0:,} files not found in log, trying merge commits".format(missing)
|
||||
)
|
||||
for i in range(0, missing, STEPMISSING):
|
||||
parse_log(
|
||||
filelist,
|
||||
dirlist,
|
||||
stats,
|
||||
git,
|
||||
merge=True,
|
||||
filterlist=filterlist[i : i + STEPMISSING],
|
||||
)
|
||||
|
||||
# Still missing some?
|
||||
for file in filelist:
|
||||
log.warning("WARNING: not found in the log: %s", file)
|
||||
|
||||
# Final statistics
|
||||
# Suggestion: use git-log --before=mtime to brag about skipped log entries
|
||||
def log_info(msg, *a, width=13):
|
||||
ifmt = "{:%d,}" % (width,) # not using 'n' for consistency with ffmt
|
||||
ffmt = "{:%d,.2f}" % (width,)
|
||||
# %-formatting lacks a thousand separator, must pre-render with .format()
|
||||
log.info(msg.replace("%d", ifmt).replace("%f", ffmt).format(*a))
|
||||
|
||||
log_info(
|
||||
"Statistics:\n%f seconds\n%d log lines processed\n%d commits evaluated",
|
||||
time.time() - start,
|
||||
stats["loglines"],
|
||||
stats["commits"],
|
||||
)
|
||||
|
||||
if args.dirs:
|
||||
if stats["direrrors"]:
|
||||
log_info("%d directory update errors", stats["direrrors"])
|
||||
log_info("%d directories updated", stats["dirtouches"])
|
||||
|
||||
if stats["touches"] != stats["totalfiles"]:
|
||||
log_info("%d files", stats["totalfiles"])
|
||||
if stats["skip"]:
|
||||
log_info("%d files skipped", stats["skip"])
|
||||
if stats["files"]:
|
||||
log_info("%d files missing", stats["files"])
|
||||
if stats["errors"]:
|
||||
log_info("%d file update errors", stats["errors"])
|
||||
|
||||
log_info("%d files updated", stats["touches"])
|
||||
|
||||
if args.test:
|
||||
log.info("TEST RUN - No files modified!")
|
||||
|
||||
|
||||
# Keep only essential, global assignments here. Any other logic must be in main()
|
||||
log = setup_logging()
|
||||
args = parse_args()
|
||||
|
||||
# Set the actual touch() and other functions based on command-line arguments
|
||||
if args.unique_times:
|
||||
touch = touch_ns
|
||||
isodate = isodate_ns
|
||||
|
||||
# Make sure this is always set last to ensure --test behaves as intended
|
||||
if args.test:
|
||||
touch = dummy
|
||||
|
||||
# UI done, it's showtime!
|
||||
try:
|
||||
sys.exit(main())
|
||||
except KeyboardInterrupt:
|
||||
log.info("\nAborting")
|
||||
signal.signal(signal.SIGINT, signal.SIG_DFL)
|
||||
os.kill(os.getpid(), signal.SIGINT)
|
||||
65
.github/workflows/_compile_integration_test.yml
vendored
65
.github/workflows/_compile_integration_test.yml
vendored
@@ -1,65 +0,0 @@
|
||||
# Validates that a package's integration tests compile without syntax or import errors.
|
||||
#
|
||||
# (If an integration test fails to compile, it won't run.)
|
||||
#
|
||||
# Called as part of check_diffs.yml workflow
|
||||
#
|
||||
# Runs pytest with compile marker to check syntax/imports.
|
||||
|
||||
name: "🔗 Compile Integration Tests"
|
||||
|
||||
on:
|
||||
workflow_call:
|
||||
inputs:
|
||||
working-directory:
|
||||
required: true
|
||||
type: string
|
||||
description: "From which folder this pipeline executes"
|
||||
python-version:
|
||||
required: true
|
||||
type: string
|
||||
description: "Python version to use"
|
||||
|
||||
permissions:
|
||||
contents: read
|
||||
|
||||
env:
|
||||
UV_FROZEN: "true"
|
||||
|
||||
jobs:
|
||||
build:
|
||||
defaults:
|
||||
run:
|
||||
working-directory: ${{ inputs.working-directory }}
|
||||
runs-on: ubuntu-latest
|
||||
timeout-minutes: 20
|
||||
name: "Python ${{ inputs.python-version }}"
|
||||
steps:
|
||||
- uses: actions/checkout@v6
|
||||
|
||||
- name: "🐍 Set up Python ${{ inputs.python-version }} + UV"
|
||||
uses: "./.github/actions/uv_setup"
|
||||
with:
|
||||
python-version: ${{ inputs.python-version }}
|
||||
cache-suffix: compile-integration-tests-${{ inputs.working-directory }}
|
||||
working-directory: ${{ inputs.working-directory }}
|
||||
|
||||
- name: "📦 Install Integration Dependencies"
|
||||
shell: bash
|
||||
run: uv sync --group test --group test_integration
|
||||
|
||||
- name: "🔗 Check Integration Tests Compile"
|
||||
shell: bash
|
||||
run: uv run pytest -m compile tests/integration_tests
|
||||
|
||||
- name: "🧹 Verify Clean Working Directory"
|
||||
shell: bash
|
||||
run: |
|
||||
set -eu
|
||||
|
||||
STATUS="$(git status)"
|
||||
echo "$STATUS"
|
||||
|
||||
# grep will exit non-zero if the target message isn't found,
|
||||
# and `set -e` above will cause the step to fail.
|
||||
echo "$STATUS" | grep 'nothing to commit, working tree clean'
|
||||
81
.github/workflows/_lint.yml
vendored
81
.github/workflows/_lint.yml
vendored
@@ -1,81 +0,0 @@
|
||||
# Runs linting.
|
||||
#
|
||||
# Uses the package's Makefile to run the checks, specifically the
|
||||
# `lint_package` and `lint_tests` targets.
|
||||
#
|
||||
# Called as part of check_diffs.yml workflow.
|
||||
|
||||
name: "🧹 Linting"
|
||||
|
||||
on:
|
||||
workflow_call:
|
||||
inputs:
|
||||
working-directory:
|
||||
required: true
|
||||
type: string
|
||||
description: "From which folder this pipeline executes"
|
||||
python-version:
|
||||
required: true
|
||||
type: string
|
||||
description: "Python version to use"
|
||||
|
||||
permissions:
|
||||
contents: read
|
||||
|
||||
env:
|
||||
WORKDIR: ${{ inputs.working-directory == '' && '.' || inputs.working-directory }}
|
||||
|
||||
# This env var allows us to get inline annotations when ruff has complaints.
|
||||
RUFF_OUTPUT_FORMAT: github
|
||||
|
||||
UV_FROZEN: "true"
|
||||
|
||||
jobs:
|
||||
# Linting job - runs quality checks on package and test code
|
||||
build:
|
||||
name: "Python ${{ inputs.python-version }}"
|
||||
runs-on: ubuntu-latest
|
||||
timeout-minutes: 20
|
||||
steps:
|
||||
- name: "📋 Checkout Code"
|
||||
uses: actions/checkout@v6
|
||||
|
||||
- name: "🐍 Set up Python ${{ inputs.python-version }} + UV"
|
||||
uses: "./.github/actions/uv_setup"
|
||||
with:
|
||||
python-version: ${{ inputs.python-version }}
|
||||
cache-suffix: lint-${{ inputs.working-directory }}
|
||||
working-directory: ${{ inputs.working-directory }}
|
||||
|
||||
# - name: "🔒 Verify Lockfile is Up-to-Date"
|
||||
# working-directory: ${{ inputs.working-directory }}
|
||||
# run: |
|
||||
# unset UV_FROZEN
|
||||
# uv lock --check
|
||||
|
||||
- name: "📦 Install Lint & Typing Dependencies"
|
||||
working-directory: ${{ inputs.working-directory }}
|
||||
run: |
|
||||
uv sync --group lint --group typing
|
||||
|
||||
- name: "🔍 Analyze Package Code with Linters"
|
||||
working-directory: ${{ inputs.working-directory }}
|
||||
run: |
|
||||
make lint_package
|
||||
|
||||
- name: "📦 Install Test Dependencies (non-partners)"
|
||||
# (For directories NOT starting with libs/partners/)
|
||||
if: ${{ ! startsWith(inputs.working-directory, 'libs/partners/') }}
|
||||
working-directory: ${{ inputs.working-directory }}
|
||||
run: |
|
||||
uv sync --inexact --group test
|
||||
- name: "📦 Install Test Dependencies"
|
||||
if: ${{ startsWith(inputs.working-directory, 'libs/partners/') }}
|
||||
working-directory: ${{ inputs.working-directory }}
|
||||
run: |
|
||||
uv sync --inexact --group test --group test_integration
|
||||
|
||||
- name: "🔍 Analyze Test Code with Linters"
|
||||
working-directory: ${{ inputs.working-directory }}
|
||||
run: |
|
||||
make lint_tests
|
||||
621
.github/workflows/_release.yml
vendored
621
.github/workflows/_release.yml
vendored
@@ -1,621 +0,0 @@
|
||||
# Builds and publishes LangChain packages to PyPI.
|
||||
#
|
||||
# Manually triggered, though can be used as a reusable workflow (workflow_call).
|
||||
#
|
||||
# Handles version bumping, building, and publishing to PyPI with authentication.
|
||||
|
||||
name: "🚀 Package Release"
|
||||
run-name: "Release ${{ inputs.working-directory }} ${{ inputs.release-version }}"
|
||||
on:
|
||||
workflow_call:
|
||||
inputs:
|
||||
working-directory:
|
||||
required: true
|
||||
type: string
|
||||
description: "From which folder this pipeline executes"
|
||||
workflow_dispatch:
|
||||
inputs:
|
||||
working-directory:
|
||||
required: true
|
||||
type: string
|
||||
description: "From which folder this pipeline executes"
|
||||
default: "libs/langchain_v1"
|
||||
release-version:
|
||||
required: true
|
||||
type: string
|
||||
default: "0.1.0"
|
||||
description: "New version of package being released"
|
||||
dangerous-nonmaster-release:
|
||||
required: false
|
||||
type: boolean
|
||||
default: false
|
||||
description: "Release from a non-master branch (danger!) - Only use for hotfixes"
|
||||
|
||||
env:
|
||||
PYTHON_VERSION: "3.11"
|
||||
UV_FROZEN: "true"
|
||||
UV_NO_SYNC: "true"
|
||||
|
||||
permissions:
|
||||
contents: write # Required for creating GitHub releases
|
||||
|
||||
jobs:
|
||||
# Build the distribution package and extract version info
|
||||
# Runs in isolated environment with minimal permissions for security
|
||||
build:
|
||||
if: github.ref == 'refs/heads/master' || inputs.dangerous-nonmaster-release
|
||||
environment: Scheduled testing
|
||||
runs-on: ubuntu-latest
|
||||
permissions:
|
||||
contents: read
|
||||
|
||||
outputs:
|
||||
pkg-name: ${{ steps.check-version.outputs.pkg-name }}
|
||||
version: ${{ steps.check-version.outputs.version }}
|
||||
|
||||
steps:
|
||||
- uses: actions/checkout@v6
|
||||
|
||||
- name: Set up Python + uv
|
||||
uses: "./.github/actions/uv_setup"
|
||||
with:
|
||||
python-version: ${{ env.PYTHON_VERSION }}
|
||||
|
||||
# We want to keep this build stage *separate* from the release stage,
|
||||
# so that there's no sharing of permissions between them.
|
||||
# (Release stage has trusted publishing and GitHub repo contents write access,
|
||||
#
|
||||
# Otherwise, a malicious `build` step (e.g. via a compromised dependency)
|
||||
# could get access to our GitHub or PyPI credentials.
|
||||
#
|
||||
# Per the trusted publishing GitHub Action:
|
||||
# > It is strongly advised to separate jobs for building [...]
|
||||
# > from the publish job.
|
||||
# https://github.com/pypa/gh-action-pypi-publish#non-goals
|
||||
- name: Build project for distribution
|
||||
run: uv build
|
||||
working-directory: ${{ inputs.working-directory }}
|
||||
|
||||
- name: Upload build
|
||||
uses: actions/upload-artifact@v6
|
||||
with:
|
||||
name: dist
|
||||
path: ${{ inputs.working-directory }}/dist/
|
||||
|
||||
- name: Check version
|
||||
id: check-version
|
||||
shell: python
|
||||
working-directory: ${{ inputs.working-directory }}
|
||||
run: |
|
||||
import os
|
||||
import tomllib
|
||||
with open("pyproject.toml", "rb") as f:
|
||||
data = tomllib.load(f)
|
||||
pkg_name = data["project"]["name"]
|
||||
version = data["project"]["version"]
|
||||
with open(os.environ["GITHUB_OUTPUT"], "a") as f:
|
||||
f.write(f"pkg-name={pkg_name}\n")
|
||||
f.write(f"version={version}\n")
|
||||
release-notes:
|
||||
needs:
|
||||
- build
|
||||
runs-on: ubuntu-latest
|
||||
permissions:
|
||||
contents: read
|
||||
outputs:
|
||||
release-body: ${{ steps.generate-release-body.outputs.release-body }}
|
||||
steps:
|
||||
- uses: actions/checkout@v6
|
||||
with:
|
||||
repository: langchain-ai/langchain
|
||||
path: langchain
|
||||
sparse-checkout: | # this only grabs files for relevant dir
|
||||
${{ inputs.working-directory }}
|
||||
ref: ${{ github.ref }} # this scopes to just ref'd branch
|
||||
fetch-depth: 0 # this fetches entire commit history
|
||||
- name: Check tags
|
||||
id: check-tags
|
||||
shell: bash
|
||||
working-directory: langchain/${{ inputs.working-directory }}
|
||||
env:
|
||||
PKG_NAME: ${{ needs.build.outputs.pkg-name }}
|
||||
VERSION: ${{ needs.build.outputs.version }}
|
||||
run: |
|
||||
# Handle regular versions and pre-release versions differently
|
||||
if [[ "$VERSION" == *"-"* ]]; then
|
||||
# This is a pre-release version (contains a hyphen)
|
||||
# Extract the base version without the pre-release suffix
|
||||
BASE_VERSION=${VERSION%%-*}
|
||||
# Look for the latest release of the same base version
|
||||
REGEX="^$PKG_NAME==$BASE_VERSION\$"
|
||||
PREV_TAG=$(git tag --sort=-creatordate | (grep -P "$REGEX" || true) | head -1)
|
||||
|
||||
# If no exact base version match, look for the latest release of any kind
|
||||
if [ -z "$PREV_TAG" ]; then
|
||||
REGEX="^$PKG_NAME==\\d+\\.\\d+\\.\\d+\$"
|
||||
PREV_TAG=$(git tag --sort=-creatordate | (grep -P "$REGEX" || true) | head -1)
|
||||
fi
|
||||
else
|
||||
# Regular version handling
|
||||
PREV_TAG="$PKG_NAME==${VERSION%.*}.$(( ${VERSION##*.} - 1 ))"; [[ "${VERSION##*.}" -eq 0 ]] && PREV_TAG=""
|
||||
|
||||
# backup case if releasing e.g. 0.3.0, looks up last release
|
||||
# note if last release (chronologically) was e.g. 0.1.47 it will get
|
||||
# that instead of the last 0.2 release
|
||||
if [ -z "$PREV_TAG" ]; then
|
||||
REGEX="^$PKG_NAME==\\d+\\.\\d+\\.\\d+\$"
|
||||
echo $REGEX
|
||||
PREV_TAG=$(git tag --sort=-creatordate | (grep -P $REGEX || true) | head -1)
|
||||
fi
|
||||
fi
|
||||
|
||||
# if PREV_TAG is empty or came out to 0.0.0, let it be empty
|
||||
if [ -z "$PREV_TAG" ] || [ "$PREV_TAG" = "$PKG_NAME==0.0.0" ]; then
|
||||
echo "No previous tag found - first release"
|
||||
else
|
||||
# confirm prev-tag actually exists in git repo with git tag
|
||||
GIT_TAG_RESULT=$(git tag -l "$PREV_TAG")
|
||||
if [ -z "$GIT_TAG_RESULT" ]; then
|
||||
echo "Previous tag $PREV_TAG not found in git repo"
|
||||
exit 1
|
||||
fi
|
||||
fi
|
||||
|
||||
|
||||
TAG="${PKG_NAME}==${VERSION}"
|
||||
if [ "$TAG" == "$PREV_TAG" ]; then
|
||||
echo "No new version to release"
|
||||
exit 1
|
||||
fi
|
||||
echo tag="$TAG" >> $GITHUB_OUTPUT
|
||||
echo prev-tag="$PREV_TAG" >> $GITHUB_OUTPUT
|
||||
- name: Generate release body
|
||||
id: generate-release-body
|
||||
working-directory: langchain
|
||||
env:
|
||||
WORKING_DIR: ${{ inputs.working-directory }}
|
||||
PKG_NAME: ${{ needs.build.outputs.pkg-name }}
|
||||
TAG: ${{ steps.check-tags.outputs.tag }}
|
||||
PREV_TAG: ${{ steps.check-tags.outputs.prev-tag }}
|
||||
run: |
|
||||
PREAMBLE="Changes since $PREV_TAG"
|
||||
# if PREV_TAG is empty or 0.0.0, then we are releasing the first version
|
||||
if [ -z "$PREV_TAG" ] || [ "$PREV_TAG" = "$PKG_NAME==0.0.0" ]; then
|
||||
PREAMBLE="Initial release"
|
||||
PREV_TAG=$(git rev-list --max-parents=0 HEAD)
|
||||
fi
|
||||
{
|
||||
echo 'release-body<<EOF'
|
||||
echo $PREAMBLE
|
||||
echo
|
||||
git log --format="%s" "$PREV_TAG"..HEAD -- $WORKING_DIR
|
||||
echo EOF
|
||||
} >> "$GITHUB_OUTPUT"
|
||||
|
||||
test-pypi-publish:
|
||||
needs:
|
||||
- build
|
||||
- release-notes
|
||||
runs-on: ubuntu-latest
|
||||
permissions:
|
||||
# This permission is used for trusted publishing:
|
||||
# https://blog.pypi.org/posts/2023-04-20-introducing-trusted-publishers/
|
||||
#
|
||||
# Trusted publishing has to also be configured on PyPI for each package:
|
||||
# https://docs.pypi.org/trusted-publishers/adding-a-publisher/
|
||||
id-token: write
|
||||
|
||||
steps:
|
||||
- uses: actions/checkout@v6
|
||||
|
||||
- uses: actions/download-artifact@v7
|
||||
with:
|
||||
name: dist
|
||||
path: ${{ inputs.working-directory }}/dist/
|
||||
|
||||
- name: Publish to test PyPI
|
||||
uses: pypa/gh-action-pypi-publish@release/v1
|
||||
with:
|
||||
packages-dir: ${{ inputs.working-directory }}/dist/
|
||||
verbose: true
|
||||
print-hash: true
|
||||
repository-url: https://test.pypi.org/legacy/
|
||||
# We overwrite any existing distributions with the same name and version.
|
||||
# This is *only for CI use* and is *extremely dangerous* otherwise!
|
||||
# https://github.com/pypa/gh-action-pypi-publish#tolerating-release-package-file-duplicates
|
||||
skip-existing: true
|
||||
# Temp workaround since attestations are on by default as of gh-action-pypi-publish v1.11.0
|
||||
attestations: false
|
||||
|
||||
pre-release-checks:
|
||||
needs:
|
||||
- build
|
||||
- release-notes
|
||||
- test-pypi-publish
|
||||
runs-on: ubuntu-latest
|
||||
permissions:
|
||||
contents: read
|
||||
timeout-minutes: 20
|
||||
steps:
|
||||
- uses: actions/checkout@v6
|
||||
|
||||
# We explicitly *don't* set up caching here. This ensures our tests are
|
||||
# maximally sensitive to catching breakage.
|
||||
#
|
||||
# For example, here's a way that caching can cause a falsely-passing test:
|
||||
# - Make the langchain package manifest no longer list a dependency package
|
||||
# as a requirement. This means it won't be installed by `pip install`,
|
||||
# and attempting to use it would cause a crash.
|
||||
# - That dependency used to be required, so it may have been cached.
|
||||
# When restoring the venv packages from cache, that dependency gets included.
|
||||
# - Tests pass, because the dependency is present even though it wasn't specified.
|
||||
# - The package is published, and it breaks on the missing dependency when
|
||||
# used in the real world.
|
||||
|
||||
- name: Set up Python + uv
|
||||
uses: "./.github/actions/uv_setup"
|
||||
id: setup-python
|
||||
with:
|
||||
python-version: ${{ env.PYTHON_VERSION }}
|
||||
|
||||
- uses: actions/download-artifact@v7
|
||||
with:
|
||||
name: dist
|
||||
path: ${{ inputs.working-directory }}/dist/
|
||||
|
||||
- name: Import dist package
|
||||
shell: bash
|
||||
working-directory: ${{ inputs.working-directory }}
|
||||
env:
|
||||
PKG_NAME: ${{ needs.build.outputs.pkg-name }}
|
||||
VERSION: ${{ needs.build.outputs.version }}
|
||||
# Here we use:
|
||||
# - The default regular PyPI index as the *primary* index, meaning
|
||||
# that it takes priority (https://pypi.org/simple)
|
||||
# - The test PyPI index as an extra index, so that any dependencies that
|
||||
# are not found on test PyPI can be resolved and installed anyway.
|
||||
# (https://test.pypi.org/simple). This will include the PKG_NAME==VERSION
|
||||
# package because VERSION will not have been uploaded to regular PyPI yet.
|
||||
# - attempt install again after 5 seconds if it fails because there is
|
||||
# sometimes a delay in availability on test pypi
|
||||
run: |
|
||||
uv venv
|
||||
VIRTUAL_ENV=.venv uv pip install dist/*.whl
|
||||
|
||||
# Replace all dashes in the package name with underscores,
|
||||
# since that's how Python imports packages with dashes in the name.
|
||||
# also remove _official suffix
|
||||
IMPORT_NAME="$(echo "$PKG_NAME" | sed s/-/_/g | sed s/_official//g)"
|
||||
|
||||
uv run python -c "import $IMPORT_NAME; print(dir($IMPORT_NAME))"
|
||||
|
||||
- name: Import test dependencies
|
||||
run: uv sync --group test
|
||||
working-directory: ${{ inputs.working-directory }}
|
||||
|
||||
# Overwrite the local version of the package with the built version
|
||||
- name: Import published package (again)
|
||||
working-directory: ${{ inputs.working-directory }}
|
||||
shell: bash
|
||||
env:
|
||||
PKG_NAME: ${{ needs.build.outputs.pkg-name }}
|
||||
VERSION: ${{ needs.build.outputs.version }}
|
||||
run: |
|
||||
VIRTUAL_ENV=.venv uv pip install dist/*.whl
|
||||
|
||||
- name: Check for prerelease versions
|
||||
# Block release if any dependencies allow prerelease versions
|
||||
# (unless this is itself a prerelease version)
|
||||
working-directory: ${{ inputs.working-directory }}
|
||||
run: |
|
||||
uv run python $GITHUB_WORKSPACE/.github/scripts/check_prerelease_dependencies.py pyproject.toml
|
||||
|
||||
- name: Run unit tests
|
||||
run: make tests
|
||||
working-directory: ${{ inputs.working-directory }}
|
||||
|
||||
- name: Get minimum versions
|
||||
# Find the minimum published versions that satisfies the given constraints
|
||||
working-directory: ${{ inputs.working-directory }}
|
||||
id: min-version
|
||||
run: |
|
||||
VIRTUAL_ENV=.venv uv pip install packaging requests
|
||||
python_version="$(uv run python --version | awk '{print $2}')"
|
||||
min_versions="$(uv run python $GITHUB_WORKSPACE/.github/scripts/get_min_versions.py pyproject.toml release $python_version)"
|
||||
echo "min-versions=$min_versions" >> "$GITHUB_OUTPUT"
|
||||
echo "min-versions=$min_versions"
|
||||
|
||||
- name: Run unit tests with minimum dependency versions
|
||||
if: ${{ steps.min-version.outputs.min-versions != '' }}
|
||||
env:
|
||||
MIN_VERSIONS: ${{ steps.min-version.outputs.min-versions }}
|
||||
run: |
|
||||
VIRTUAL_ENV=.venv uv pip install --force-reinstall --editable .
|
||||
VIRTUAL_ENV=.venv uv pip install --force-reinstall $MIN_VERSIONS
|
||||
make tests
|
||||
working-directory: ${{ inputs.working-directory }}
|
||||
|
||||
- name: Import integration test dependencies
|
||||
run: uv sync --group test --group test_integration
|
||||
working-directory: ${{ inputs.working-directory }}
|
||||
|
||||
- name: Run integration tests
|
||||
# Uses the Makefile's `integration_tests` target for the specified package
|
||||
if: ${{ startsWith(inputs.working-directory, 'libs/partners/') }}
|
||||
env:
|
||||
AI21_API_KEY: ${{ secrets.AI21_API_KEY }}
|
||||
GOOGLE_API_KEY: ${{ secrets.GOOGLE_API_KEY }}
|
||||
ANTHROPIC_API_KEY: ${{ secrets.ANTHROPIC_API_KEY }}
|
||||
MISTRAL_API_KEY: ${{ secrets.MISTRAL_API_KEY }}
|
||||
TOGETHER_API_KEY: ${{ secrets.TOGETHER_API_KEY }}
|
||||
OPENAI_API_KEY: ${{ secrets.OPENAI_API_KEY }}
|
||||
AZURE_OPENAI_API_VERSION: ${{ secrets.AZURE_OPENAI_API_VERSION }}
|
||||
AZURE_OPENAI_API_BASE: ${{ secrets.AZURE_OPENAI_API_BASE }}
|
||||
AZURE_OPENAI_API_KEY: ${{ secrets.AZURE_OPENAI_API_KEY }}
|
||||
AZURE_OPENAI_CHAT_DEPLOYMENT_NAME: ${{ secrets.AZURE_OPENAI_CHAT_DEPLOYMENT_NAME }}
|
||||
AZURE_OPENAI_LEGACY_CHAT_DEPLOYMENT_NAME: ${{ secrets.AZURE_OPENAI_LEGACY_CHAT_DEPLOYMENT_NAME }}
|
||||
AZURE_OPENAI_LLM_DEPLOYMENT_NAME: ${{ secrets.AZURE_OPENAI_LLM_DEPLOYMENT_NAME }}
|
||||
AZURE_OPENAI_EMBEDDINGS_DEPLOYMENT_NAME: ${{ secrets.AZURE_OPENAI_EMBEDDINGS_DEPLOYMENT_NAME }}
|
||||
NVIDIA_API_KEY: ${{ secrets.NVIDIA_API_KEY }}
|
||||
GOOGLE_SEARCH_API_KEY: ${{ secrets.GOOGLE_SEARCH_API_KEY }}
|
||||
GOOGLE_CSE_ID: ${{ secrets.GOOGLE_CSE_ID }}
|
||||
GROQ_API_KEY: ${{ secrets.GROQ_API_KEY }}
|
||||
HUGGINGFACEHUB_API_TOKEN: ${{ secrets.HUGGINGFACEHUB_API_TOKEN }}
|
||||
EXA_API_KEY: ${{ secrets.EXA_API_KEY }}
|
||||
NOMIC_API_KEY: ${{ secrets.NOMIC_API_KEY }}
|
||||
WATSONX_APIKEY: ${{ secrets.WATSONX_APIKEY }}
|
||||
WATSONX_PROJECT_ID: ${{ secrets.WATSONX_PROJECT_ID }}
|
||||
ASTRA_DB_API_ENDPOINT: ${{ secrets.ASTRA_DB_API_ENDPOINT }}
|
||||
ASTRA_DB_APPLICATION_TOKEN: ${{ secrets.ASTRA_DB_APPLICATION_TOKEN }}
|
||||
ASTRA_DB_KEYSPACE: ${{ secrets.ASTRA_DB_KEYSPACE }}
|
||||
ES_URL: ${{ secrets.ES_URL }}
|
||||
ES_CLOUD_ID: ${{ secrets.ES_CLOUD_ID }}
|
||||
ES_API_KEY: ${{ secrets.ES_API_KEY }}
|
||||
MONGODB_ATLAS_URI: ${{ secrets.MONGODB_ATLAS_URI }}
|
||||
UPSTAGE_API_KEY: ${{ secrets.UPSTAGE_API_KEY }}
|
||||
FIREWORKS_API_KEY: ${{ secrets.FIREWORKS_API_KEY }}
|
||||
XAI_API_KEY: ${{ secrets.XAI_API_KEY }}
|
||||
DEEPSEEK_API_KEY: ${{ secrets.DEEPSEEK_API_KEY }}
|
||||
PPLX_API_KEY: ${{ secrets.PPLX_API_KEY }}
|
||||
LANGCHAIN_TESTS_USER_AGENT: ${{ secrets.LANGCHAIN_TESTS_USER_AGENT }}
|
||||
run: make integration_tests
|
||||
working-directory: ${{ inputs.working-directory }}
|
||||
|
||||
# Test select published packages against new core
|
||||
# Done when code changes are made to langchain-core
|
||||
test-prior-published-packages-against-new-core:
|
||||
# Installs the new core with old partners: Installs the new unreleased core
|
||||
# alongside the previously published partner packages and runs integration tests
|
||||
needs:
|
||||
- build
|
||||
- release-notes
|
||||
- test-pypi-publish
|
||||
- pre-release-checks
|
||||
runs-on: ubuntu-latest
|
||||
permissions:
|
||||
contents: read
|
||||
if: false # temporarily skip
|
||||
strategy:
|
||||
matrix:
|
||||
partner: [openai, anthropic]
|
||||
fail-fast: false # Continue testing other partners if one fails
|
||||
env:
|
||||
ANTHROPIC_API_KEY: ${{ secrets.ANTHROPIC_API_KEY }}
|
||||
ANTHROPIC_FILES_API_IMAGE_ID: ${{ secrets.ANTHROPIC_FILES_API_IMAGE_ID }}
|
||||
ANTHROPIC_FILES_API_PDF_ID: ${{ secrets.ANTHROPIC_FILES_API_PDF_ID }}
|
||||
OPENAI_API_KEY: ${{ secrets.OPENAI_API_KEY }}
|
||||
AZURE_OPENAI_API_VERSION: ${{ secrets.AZURE_OPENAI_API_VERSION }}
|
||||
AZURE_OPENAI_API_BASE: ${{ secrets.AZURE_OPENAI_API_BASE }}
|
||||
AZURE_OPENAI_API_KEY: ${{ secrets.AZURE_OPENAI_API_KEY }}
|
||||
AZURE_OPENAI_CHAT_DEPLOYMENT_NAME: ${{ secrets.AZURE_OPENAI_CHAT_DEPLOYMENT_NAME }}
|
||||
AZURE_OPENAI_LEGACY_CHAT_DEPLOYMENT_NAME: ${{ secrets.AZURE_OPENAI_LEGACY_CHAT_DEPLOYMENT_NAME }}
|
||||
AZURE_OPENAI_LLM_DEPLOYMENT_NAME: ${{ secrets.AZURE_OPENAI_LLM_DEPLOYMENT_NAME }}
|
||||
AZURE_OPENAI_EMBEDDINGS_DEPLOYMENT_NAME: ${{ secrets.AZURE_OPENAI_EMBEDDINGS_DEPLOYMENT_NAME }}
|
||||
LANGCHAIN_TESTS_USER_AGENT: ${{ secrets.LANGCHAIN_TESTS_USER_AGENT }}
|
||||
steps:
|
||||
- uses: actions/checkout@v6
|
||||
|
||||
# We implement this conditional as Github Actions does not have good support
|
||||
# for conditionally needing steps. https://github.com/actions/runner/issues/491
|
||||
# TODO: this seems to be resolved upstream, so we can probably remove this workaround
|
||||
- name: Check if libs/core
|
||||
run: |
|
||||
if [ "${{ startsWith(inputs.working-directory, 'libs/core') }}" != "true" ]; then
|
||||
echo "Not in libs/core. Exiting successfully."
|
||||
exit 0
|
||||
fi
|
||||
|
||||
- name: Set up Python + uv
|
||||
if: startsWith(inputs.working-directory, 'libs/core')
|
||||
uses: "./.github/actions/uv_setup"
|
||||
with:
|
||||
python-version: ${{ env.PYTHON_VERSION }}
|
||||
|
||||
- uses: actions/download-artifact@v7
|
||||
if: startsWith(inputs.working-directory, 'libs/core')
|
||||
with:
|
||||
name: dist
|
||||
path: ${{ inputs.working-directory }}/dist/
|
||||
|
||||
- name: Test against ${{ matrix.partner }}
|
||||
if: startsWith(inputs.working-directory, 'libs/core')
|
||||
run: |
|
||||
# Identify latest tag, excluding pre-releases
|
||||
LATEST_PACKAGE_TAG="$(
|
||||
git ls-remote --tags origin "langchain-${{ matrix.partner }}*" \
|
||||
| awk '{print $2}' \
|
||||
| sed 's|refs/tags/||' \
|
||||
| grep -E '[0-9]+\.[0-9]+\.[0-9]+$' \
|
||||
| sort -Vr \
|
||||
| head -n 1
|
||||
)"
|
||||
echo "Latest package tag: $LATEST_PACKAGE_TAG"
|
||||
|
||||
# Shallow-fetch just that single tag
|
||||
git fetch --depth=1 origin tag "$LATEST_PACKAGE_TAG"
|
||||
|
||||
# Checkout the latest package files
|
||||
rm -rf $GITHUB_WORKSPACE/libs/partners/${{ matrix.partner }}/*
|
||||
rm -rf $GITHUB_WORKSPACE/libs/standard-tests/*
|
||||
cd $GITHUB_WORKSPACE/libs/
|
||||
git checkout "$LATEST_PACKAGE_TAG" -- standard-tests/
|
||||
git checkout "$LATEST_PACKAGE_TAG" -- partners/${{ matrix.partner }}/
|
||||
cd partners/${{ matrix.partner }}
|
||||
|
||||
# Print as a sanity check
|
||||
echo "Version number from pyproject.toml: "
|
||||
cat pyproject.toml | grep "version = "
|
||||
|
||||
# Run tests
|
||||
uv sync --group test --group test_integration
|
||||
uv pip install ../../core/dist/*.whl
|
||||
make integration_tests
|
||||
|
||||
# Test external packages that depend on langchain-core/langchain against the new release
|
||||
# Only runs for core and langchain_v1 releases to catch breaking changes before publish
|
||||
test-dependents:
|
||||
name: "🐍 Python ${{ matrix.python-version }}: ${{ matrix.package.path }}"
|
||||
needs:
|
||||
- build
|
||||
- release-notes
|
||||
- test-pypi-publish
|
||||
- pre-release-checks
|
||||
runs-on: ubuntu-latest
|
||||
permissions:
|
||||
contents: read
|
||||
# Only run for core or langchain_v1 releases
|
||||
if: startsWith(inputs.working-directory, 'libs/core') || startsWith(inputs.working-directory, 'libs/langchain_v1')
|
||||
strategy:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
python-version: ["3.11", "3.13"]
|
||||
package:
|
||||
- name: deepagents
|
||||
repo: langchain-ai/deepagents
|
||||
path: libs/deepagents
|
||||
# No API keys needed for now - deepagents `make test` only runs unit tests
|
||||
|
||||
steps:
|
||||
- uses: actions/checkout@v6
|
||||
with:
|
||||
path: langchain
|
||||
|
||||
- uses: actions/checkout@v6
|
||||
with:
|
||||
repository: ${{ matrix.package.repo }}
|
||||
path: ${{ matrix.package.name }}
|
||||
|
||||
- name: Set up Python + uv
|
||||
uses: "./langchain/.github/actions/uv_setup"
|
||||
with:
|
||||
python-version: ${{ matrix.python-version }}
|
||||
|
||||
- uses: actions/download-artifact@v7
|
||||
with:
|
||||
name: dist
|
||||
path: dist/
|
||||
|
||||
- name: Install ${{ matrix.package.name }} with local packages
|
||||
# External dependents don't have [tool.uv.sources] pointing to this repo,
|
||||
# so we install the package normally then override with the built wheel.
|
||||
run: |
|
||||
cd ${{ matrix.package.name }}/${{ matrix.package.path }}
|
||||
|
||||
# Install the package with test dependencies
|
||||
uv sync --group test
|
||||
|
||||
# Override with the built wheel from this release
|
||||
uv pip install $GITHUB_WORKSPACE/dist/*.whl
|
||||
|
||||
- name: Run ${{ matrix.package.name }} tests
|
||||
run: |
|
||||
cd ${{ matrix.package.name }}/${{ matrix.package.path }}
|
||||
make test
|
||||
|
||||
publish:
|
||||
# Publishes the package to PyPI
|
||||
needs:
|
||||
- build
|
||||
- release-notes
|
||||
- test-pypi-publish
|
||||
- pre-release-checks
|
||||
- test-dependents
|
||||
# - test-prior-published-packages-against-new-core
|
||||
# Run if all needed jobs succeeded or were skipped (test-dependents only runs for core/langchain_v1)
|
||||
if: ${{ !cancelled() && !failure() }}
|
||||
runs-on: ubuntu-latest
|
||||
permissions:
|
||||
# This permission is used for trusted publishing:
|
||||
# https://blog.pypi.org/posts/2023-04-20-introducing-trusted-publishers/
|
||||
#
|
||||
# Trusted publishing has to also be configured on PyPI for each package:
|
||||
# https://docs.pypi.org/trusted-publishers/adding-a-publisher/
|
||||
id-token: write
|
||||
|
||||
defaults:
|
||||
run:
|
||||
working-directory: ${{ inputs.working-directory }}
|
||||
|
||||
steps:
|
||||
- uses: actions/checkout@v6
|
||||
|
||||
- name: Set up Python + uv
|
||||
uses: "./.github/actions/uv_setup"
|
||||
with:
|
||||
python-version: ${{ env.PYTHON_VERSION }}
|
||||
|
||||
- uses: actions/download-artifact@v7
|
||||
with:
|
||||
name: dist
|
||||
path: ${{ inputs.working-directory }}/dist/
|
||||
|
||||
- name: Publish package distributions to PyPI
|
||||
uses: pypa/gh-action-pypi-publish@release/v1
|
||||
with:
|
||||
packages-dir: ${{ inputs.working-directory }}/dist/
|
||||
verbose: true
|
||||
print-hash: true
|
||||
# Temp workaround since attestations are on by default as of gh-action-pypi-publish v1.11.0
|
||||
attestations: false
|
||||
|
||||
mark-release:
|
||||
# Marks the GitHub release with the new version tag
|
||||
needs:
|
||||
- build
|
||||
- release-notes
|
||||
- test-pypi-publish
|
||||
- pre-release-checks
|
||||
- publish
|
||||
runs-on: ubuntu-latest
|
||||
permissions:
|
||||
# This permission is needed by `ncipollo/release-action` to
|
||||
# create the GitHub release/tag
|
||||
contents: write
|
||||
|
||||
defaults:
|
||||
run:
|
||||
working-directory: ${{ inputs.working-directory }}
|
||||
|
||||
steps:
|
||||
- uses: actions/checkout@v6
|
||||
|
||||
- name: Set up Python + uv
|
||||
uses: "./.github/actions/uv_setup"
|
||||
with:
|
||||
python-version: ${{ env.PYTHON_VERSION }}
|
||||
|
||||
- uses: actions/download-artifact@v7
|
||||
with:
|
||||
name: dist
|
||||
path: ${{ inputs.working-directory }}/dist/
|
||||
|
||||
- name: Create Tag
|
||||
uses: ncipollo/release-action@v1
|
||||
with:
|
||||
artifacts: "dist/*"
|
||||
token: ${{ secrets.GITHUB_TOKEN }}
|
||||
generateReleaseNotes: false
|
||||
tag: ${{needs.build.outputs.pkg-name}}==${{ needs.build.outputs.version }}
|
||||
body: ${{ needs.release-notes.outputs.release-body }}
|
||||
commit: ${{ github.sha }}
|
||||
makeLatest: ${{ needs.build.outputs.pkg-name == 'langchain-core'}}
|
||||
85
.github/workflows/_test.yml
vendored
85
.github/workflows/_test.yml
vendored
@@ -1,85 +0,0 @@
|
||||
# Runs unit tests with both current and minimum supported dependency versions
|
||||
# to ensure compatibility across the supported range.
|
||||
|
||||
name: "🧪 Unit Testing"
|
||||
|
||||
on:
|
||||
workflow_call:
|
||||
inputs:
|
||||
working-directory:
|
||||
required: true
|
||||
type: string
|
||||
description: "From which folder this pipeline executes"
|
||||
python-version:
|
||||
required: true
|
||||
type: string
|
||||
description: "Python version to use"
|
||||
|
||||
permissions:
|
||||
contents: read
|
||||
|
||||
env:
|
||||
UV_FROZEN: "true"
|
||||
UV_NO_SYNC: "true"
|
||||
|
||||
jobs:
|
||||
# Main test job - runs unit tests with current deps, then retests with minimum versions
|
||||
build:
|
||||
defaults:
|
||||
run:
|
||||
working-directory: ${{ inputs.working-directory }}
|
||||
runs-on: ubuntu-latest
|
||||
timeout-minutes: 20
|
||||
name: "Python ${{ inputs.python-version }}"
|
||||
steps:
|
||||
- name: "📋 Checkout Code"
|
||||
uses: actions/checkout@v6
|
||||
|
||||
- name: "🐍 Set up Python ${{ inputs.python-version }} + UV"
|
||||
uses: "./.github/actions/uv_setup"
|
||||
id: setup-python
|
||||
with:
|
||||
python-version: ${{ inputs.python-version }}
|
||||
cache-suffix: test-${{ inputs.working-directory }}
|
||||
working-directory: ${{ inputs.working-directory }}
|
||||
|
||||
- name: "📦 Install Test Dependencies"
|
||||
shell: bash
|
||||
run: uv sync --group test --dev
|
||||
|
||||
- name: "🧪 Run Core Unit Tests"
|
||||
shell: bash
|
||||
run: |
|
||||
make test
|
||||
|
||||
- name: "🔍 Calculate Minimum Dependency Versions"
|
||||
working-directory: ${{ inputs.working-directory }}
|
||||
id: min-version
|
||||
shell: bash
|
||||
run: |
|
||||
VIRTUAL_ENV=.venv uv pip install packaging tomli requests
|
||||
python_version="$(uv run python --version | awk '{print $2}')"
|
||||
min_versions="$(uv run python $GITHUB_WORKSPACE/.github/scripts/get_min_versions.py pyproject.toml pull_request $python_version)"
|
||||
echo "min-versions=$min_versions" >> "$GITHUB_OUTPUT"
|
||||
echo "min-versions=$min_versions"
|
||||
|
||||
- name: "🧪 Run Tests with Minimum Dependencies"
|
||||
if: ${{ steps.min-version.outputs.min-versions != '' }}
|
||||
env:
|
||||
MIN_VERSIONS: ${{ steps.min-version.outputs.min-versions }}
|
||||
run: |
|
||||
VIRTUAL_ENV=.venv uv pip install $MIN_VERSIONS
|
||||
make tests
|
||||
working-directory: ${{ inputs.working-directory }}
|
||||
|
||||
- name: "🧹 Verify Clean Working Directory"
|
||||
shell: bash
|
||||
run: |
|
||||
set -eu
|
||||
|
||||
STATUS="$(git status)"
|
||||
echo "$STATUS"
|
||||
|
||||
# grep will exit non-zero if the target message isn't found,
|
||||
# and `set -e` above will cause the step to fail.
|
||||
echo "$STATUS" | grep 'nothing to commit, working tree clean'
|
||||
73
.github/workflows/_test_pydantic.yml
vendored
73
.github/workflows/_test_pydantic.yml
vendored
@@ -1,73 +0,0 @@
|
||||
# Facilitate unit testing against different Pydantic versions for a provided package.
|
||||
|
||||
name: "🐍 Pydantic Version Testing"
|
||||
|
||||
on:
|
||||
workflow_call:
|
||||
inputs:
|
||||
working-directory:
|
||||
required: true
|
||||
type: string
|
||||
description: "From which folder this pipeline executes"
|
||||
python-version:
|
||||
required: false
|
||||
type: string
|
||||
description: "Python version to use"
|
||||
default: "3.12"
|
||||
pydantic-version:
|
||||
required: true
|
||||
type: string
|
||||
description: "Pydantic version to test."
|
||||
|
||||
permissions:
|
||||
contents: read
|
||||
|
||||
env:
|
||||
UV_FROZEN: "true"
|
||||
UV_NO_SYNC: "true"
|
||||
|
||||
jobs:
|
||||
build:
|
||||
defaults:
|
||||
run:
|
||||
working-directory: ${{ inputs.working-directory }}
|
||||
runs-on: ubuntu-latest
|
||||
timeout-minutes: 20
|
||||
name: "Pydantic ~=${{ inputs.pydantic-version }}"
|
||||
steps:
|
||||
- name: "📋 Checkout Code"
|
||||
uses: actions/checkout@v6
|
||||
|
||||
- name: "🐍 Set up Python ${{ inputs.python-version }} + UV"
|
||||
uses: "./.github/actions/uv_setup"
|
||||
with:
|
||||
python-version: ${{ inputs.python-version }}
|
||||
cache-suffix: test-pydantic-${{ inputs.working-directory }}
|
||||
working-directory: ${{ inputs.working-directory }}
|
||||
|
||||
- name: "📦 Install Test Dependencies"
|
||||
shell: bash
|
||||
run: uv sync --group test
|
||||
|
||||
- name: "🔄 Install Specific Pydantic Version"
|
||||
shell: bash
|
||||
env:
|
||||
PYDANTIC_VERSION: ${{ inputs.pydantic-version }}
|
||||
run: VIRTUAL_ENV=.venv uv pip install "pydantic~=$PYDANTIC_VERSION"
|
||||
|
||||
- name: "🧪 Run Core Tests"
|
||||
shell: bash
|
||||
run: |
|
||||
make test
|
||||
|
||||
- name: "🧹 Verify Clean Working Directory"
|
||||
shell: bash
|
||||
run: |
|
||||
set -eu
|
||||
|
||||
STATUS="$(git status)"
|
||||
echo "$STATUS"
|
||||
|
||||
# grep will exit non-zero if the target message isn't found,
|
||||
# and `set -e` above will cause the step to fail.
|
||||
echo "$STATUS" | grep 'nothing to commit, working tree clean'
|
||||
107
.github/workflows/auto-label-by-package.yml
vendored
107
.github/workflows/auto-label-by-package.yml
vendored
@@ -1,107 +0,0 @@
|
||||
name: Auto Label Issues by Package
|
||||
|
||||
on:
|
||||
issues:
|
||||
types: [opened, edited]
|
||||
|
||||
jobs:
|
||||
label-by-package:
|
||||
permissions:
|
||||
issues: write
|
||||
runs-on: ubuntu-latest
|
||||
|
||||
steps:
|
||||
- name: Sync package labels
|
||||
uses: actions/github-script@v8
|
||||
with:
|
||||
script: |
|
||||
const body = context.payload.issue.body || "";
|
||||
|
||||
// Extract text under "### Package" (handles " (Required)" suffix and being last section)
|
||||
const match = body.match(/### Package[^\n]*\n([\s\S]*?)(?:\n###|$)/i);
|
||||
if (!match) return;
|
||||
|
||||
const packageSection = match[1].trim();
|
||||
|
||||
// Mapping table for package names to labels
|
||||
const mapping = {
|
||||
"langchain": "langchain",
|
||||
"langchain-openai": "openai",
|
||||
"langchain-anthropic": "anthropic",
|
||||
"langchain-classic": "langchain-classic",
|
||||
"langchain-core": "core",
|
||||
"langchain-cli": "cli",
|
||||
"langchain-model-profiles": "model-profiles",
|
||||
"langchain-tests": "standard-tests",
|
||||
"langchain-text-splitters": "text-splitters",
|
||||
"langchain-chroma": "chroma",
|
||||
"langchain-deepseek": "deepseek",
|
||||
"langchain-exa": "exa",
|
||||
"langchain-fireworks": "fireworks",
|
||||
"langchain-groq": "groq",
|
||||
"langchain-huggingface": "huggingface",
|
||||
"langchain-mistralai": "mistralai",
|
||||
"langchain-nomic": "nomic",
|
||||
"langchain-ollama": "ollama",
|
||||
"langchain-perplexity": "perplexity",
|
||||
"langchain-prompty": "prompty",
|
||||
"langchain-qdrant": "qdrant",
|
||||
"langchain-xai": "xai",
|
||||
};
|
||||
|
||||
// All possible package labels we manage
|
||||
const allPackageLabels = Object.values(mapping);
|
||||
const selectedLabels = [];
|
||||
|
||||
// Check if this is checkbox format (multiple selection)
|
||||
const checkboxMatches = packageSection.match(/- \[x\]\s+([^\n\r]+)/gi);
|
||||
if (checkboxMatches) {
|
||||
// Handle checkbox format
|
||||
for (const match of checkboxMatches) {
|
||||
const packageName = match.replace(/- \[x\]\s+/i, '').trim();
|
||||
const label = mapping[packageName];
|
||||
if (label && !selectedLabels.includes(label)) {
|
||||
selectedLabels.push(label);
|
||||
}
|
||||
}
|
||||
} else {
|
||||
// Handle dropdown format (single selection)
|
||||
const label = mapping[packageSection];
|
||||
if (label) {
|
||||
selectedLabels.push(label);
|
||||
}
|
||||
}
|
||||
|
||||
// Get current issue labels
|
||||
const issue = await github.rest.issues.get({
|
||||
owner: context.repo.owner,
|
||||
repo: context.repo.repo,
|
||||
issue_number: context.issue.number
|
||||
});
|
||||
|
||||
const currentLabels = issue.data.labels.map(label => label.name);
|
||||
const currentPackageLabels = currentLabels.filter(label => allPackageLabels.includes(label));
|
||||
|
||||
// Determine labels to add and remove
|
||||
const labelsToAdd = selectedLabels.filter(label => !currentPackageLabels.includes(label));
|
||||
const labelsToRemove = currentPackageLabels.filter(label => !selectedLabels.includes(label));
|
||||
|
||||
// Add new labels
|
||||
if (labelsToAdd.length > 0) {
|
||||
await github.rest.issues.addLabels({
|
||||
owner: context.repo.owner,
|
||||
repo: context.repo.repo,
|
||||
issue_number: context.issue.number,
|
||||
labels: labelsToAdd
|
||||
});
|
||||
}
|
||||
|
||||
// Remove old labels
|
||||
for (const label of labelsToRemove) {
|
||||
await github.rest.issues.removeLabel({
|
||||
owner: context.repo.owner,
|
||||
repo: context.repo.repo,
|
||||
issue_number: context.issue.number,
|
||||
name: label
|
||||
});
|
||||
}
|
||||
51
.github/workflows/check_core_versions.yml
vendored
51
.github/workflows/check_core_versions.yml
vendored
@@ -1,51 +0,0 @@
|
||||
# Ensures version numbers in pyproject.toml and version.py stay in sync.
|
||||
#
|
||||
# (Prevents releases with mismatched version numbers)
|
||||
|
||||
name: "🔍 Check Version Equality"
|
||||
|
||||
on:
|
||||
pull_request:
|
||||
paths:
|
||||
- "libs/core/pyproject.toml"
|
||||
- "libs/core/langchain_core/version.py"
|
||||
|
||||
permissions:
|
||||
contents: read
|
||||
|
||||
jobs:
|
||||
check_version_equality:
|
||||
runs-on: ubuntu-latest
|
||||
|
||||
steps:
|
||||
- uses: actions/checkout@v6
|
||||
|
||||
- name: "✅ Verify pyproject.toml & version.py Match"
|
||||
run: |
|
||||
# Check core versions
|
||||
CORE_PYPROJECT_VERSION=$(grep -Po '(?<=^version = ")[^"]*' libs/core/pyproject.toml)
|
||||
CORE_VERSION_PY_VERSION=$(grep -Po '(?<=^VERSION = ")[^"]*' libs/core/langchain_core/version.py)
|
||||
|
||||
# Compare core versions
|
||||
if [ "$CORE_PYPROJECT_VERSION" != "$CORE_VERSION_PY_VERSION" ]; then
|
||||
echo "langchain-core versions in pyproject.toml and version.py do not match!"
|
||||
echo "pyproject.toml version: $CORE_PYPROJECT_VERSION"
|
||||
echo "version.py version: $CORE_VERSION_PY_VERSION"
|
||||
exit 1
|
||||
else
|
||||
echo "Core versions match: $CORE_PYPROJECT_VERSION"
|
||||
fi
|
||||
|
||||
# Check langchain_v1 versions
|
||||
LANGCHAIN_PYPROJECT_VERSION=$(grep -Po '(?<=^version = ")[^"]*' libs/langchain_v1/pyproject.toml)
|
||||
LANGCHAIN_INIT_PY_VERSION=$(grep -Po '(?<=^__version__ = ")[^"]*' libs/langchain_v1/langchain/__init__.py)
|
||||
|
||||
# Compare langchain_v1 versions
|
||||
if [ "$LANGCHAIN_PYPROJECT_VERSION" != "$LANGCHAIN_INIT_PY_VERSION" ]; then
|
||||
echo "langchain_v1 versions in pyproject.toml and __init__.py do not match!"
|
||||
echo "pyproject.toml version: $LANGCHAIN_PYPROJECT_VERSION"
|
||||
echo "version.py version: $LANGCHAIN_INIT_PY_VERSION"
|
||||
exit 1
|
||||
else
|
||||
echo "Langchain v1 versions match: $LANGCHAIN_PYPROJECT_VERSION"
|
||||
fi
|
||||
261
.github/workflows/check_diffs.yml
vendored
261
.github/workflows/check_diffs.yml
vendored
@@ -1,261 +0,0 @@
|
||||
# Primary CI workflow.
|
||||
#
|
||||
# Only runs against packages that have changed files.
|
||||
#
|
||||
# Runs:
|
||||
# - Linting (_lint.yml)
|
||||
# - Unit Tests (_test.yml)
|
||||
# - Pydantic compatibility tests (_test_pydantic.yml)
|
||||
# - Integration test compilation checks (_compile_integration_test.yml)
|
||||
# - Extended test suites that require additional dependencies
|
||||
# - Codspeed benchmarks (if not labeled 'codspeed-ignore')
|
||||
#
|
||||
# Reports status to GitHub checks and PR status.
|
||||
|
||||
name: "🔧 CI"
|
||||
|
||||
on:
|
||||
push:
|
||||
branches: [master]
|
||||
pull_request:
|
||||
merge_group:
|
||||
|
||||
# Optimizes CI performance by canceling redundant workflow runs
|
||||
# If another push to the same PR or branch happens while this workflow is still running,
|
||||
# cancel the earlier run in favor of the next run.
|
||||
#
|
||||
# There's no point in testing an outdated version of the code. GitHub only allows
|
||||
# a limited number of job runners to be active at the same time, so it's better to
|
||||
# cancel pointless jobs early so that more useful jobs can run sooner.
|
||||
concurrency:
|
||||
group: ${{ github.workflow }}-${{ github.ref }}
|
||||
cancel-in-progress: true
|
||||
|
||||
permissions:
|
||||
contents: read
|
||||
|
||||
env:
|
||||
UV_FROZEN: "true"
|
||||
UV_NO_SYNC: "true"
|
||||
|
||||
jobs:
|
||||
# This job analyzes which files changed and creates a dynamic test matrix
|
||||
# to only run tests/lints for the affected packages, improving CI efficiency
|
||||
build:
|
||||
name: "Detect Changes & Set Matrix"
|
||||
runs-on: ubuntu-latest
|
||||
if: ${{ !contains(github.event.pull_request.labels.*.name, 'ci-ignore') }}
|
||||
steps:
|
||||
- name: "📋 Checkout Code"
|
||||
uses: actions/checkout@v6
|
||||
- name: "🐍 Setup Python 3.11"
|
||||
uses: actions/setup-python@v6
|
||||
with:
|
||||
python-version: "3.11"
|
||||
- name: "📂 Get Changed Files"
|
||||
id: files
|
||||
uses: Ana06/get-changed-files@v2.3.0
|
||||
- name: "🔍 Analyze Changed Files & Generate Build Matrix"
|
||||
id: set-matrix
|
||||
run: |
|
||||
python -m pip install packaging requests
|
||||
python .github/scripts/check_diff.py ${{ steps.files.outputs.all }} >> $GITHUB_OUTPUT
|
||||
outputs:
|
||||
lint: ${{ steps.set-matrix.outputs.lint }}
|
||||
test: ${{ steps.set-matrix.outputs.test }}
|
||||
extended-tests: ${{ steps.set-matrix.outputs.extended-tests }}
|
||||
compile-integration-tests: ${{ steps.set-matrix.outputs.compile-integration-tests }}
|
||||
dependencies: ${{ steps.set-matrix.outputs.dependencies }}
|
||||
test-pydantic: ${{ steps.set-matrix.outputs.test-pydantic }}
|
||||
codspeed: ${{ steps.set-matrix.outputs.codspeed }}
|
||||
# Run linting only on packages that have changed files
|
||||
lint:
|
||||
needs: [build]
|
||||
if: ${{ needs.build.outputs.lint != '[]' }}
|
||||
strategy:
|
||||
matrix:
|
||||
job-configs: ${{ fromJson(needs.build.outputs.lint) }}
|
||||
fail-fast: false
|
||||
uses: ./.github/workflows/_lint.yml
|
||||
with:
|
||||
working-directory: ${{ matrix.job-configs.working-directory }}
|
||||
python-version: ${{ matrix.job-configs.python-version }}
|
||||
secrets: inherit
|
||||
|
||||
# Run unit tests only on packages that have changed files
|
||||
test:
|
||||
needs: [build]
|
||||
if: ${{ needs.build.outputs.test != '[]' }}
|
||||
strategy:
|
||||
matrix:
|
||||
job-configs: ${{ fromJson(needs.build.outputs.test) }}
|
||||
fail-fast: false
|
||||
uses: ./.github/workflows/_test.yml
|
||||
with:
|
||||
working-directory: ${{ matrix.job-configs.working-directory }}
|
||||
python-version: ${{ matrix.job-configs.python-version }}
|
||||
secrets: inherit
|
||||
|
||||
# Test compatibility with different Pydantic versions for affected packages
|
||||
test-pydantic:
|
||||
needs: [build]
|
||||
if: ${{ needs.build.outputs.test-pydantic != '[]' }}
|
||||
strategy:
|
||||
matrix:
|
||||
job-configs: ${{ fromJson(needs.build.outputs.test-pydantic) }}
|
||||
fail-fast: false
|
||||
uses: ./.github/workflows/_test_pydantic.yml
|
||||
with:
|
||||
working-directory: ${{ matrix.job-configs.working-directory }}
|
||||
pydantic-version: ${{ matrix.job-configs.pydantic-version }}
|
||||
secrets: inherit
|
||||
|
||||
# Verify integration tests compile without actually running them (faster feedback)
|
||||
compile-integration-tests:
|
||||
name: "Compile Integration Tests"
|
||||
needs: [build]
|
||||
if: ${{ needs.build.outputs.compile-integration-tests != '[]' }}
|
||||
strategy:
|
||||
matrix:
|
||||
job-configs: ${{ fromJson(needs.build.outputs.compile-integration-tests) }}
|
||||
fail-fast: false
|
||||
uses: ./.github/workflows/_compile_integration_test.yml
|
||||
with:
|
||||
working-directory: ${{ matrix.job-configs.working-directory }}
|
||||
python-version: ${{ matrix.job-configs.python-version }}
|
||||
secrets: inherit
|
||||
|
||||
# Run extended test suites that require additional dependencies
|
||||
extended-tests:
|
||||
name: "Extended Tests"
|
||||
needs: [build]
|
||||
if: ${{ needs.build.outputs.extended-tests != '[]' }}
|
||||
strategy:
|
||||
matrix:
|
||||
# note different variable for extended test dirs
|
||||
job-configs: ${{ fromJson(needs.build.outputs.extended-tests) }}
|
||||
fail-fast: false
|
||||
runs-on: ubuntu-latest
|
||||
timeout-minutes: 20
|
||||
defaults:
|
||||
run:
|
||||
working-directory: ${{ matrix.job-configs.working-directory }}
|
||||
steps:
|
||||
- uses: actions/checkout@v6
|
||||
|
||||
- name: "🐍 Set up Python ${{ matrix.job-configs.python-version }} + UV"
|
||||
uses: "./.github/actions/uv_setup"
|
||||
with:
|
||||
python-version: ${{ matrix.job-configs.python-version }}
|
||||
cache-suffix: extended-tests-${{ matrix.job-configs.working-directory }}
|
||||
working-directory: ${{ matrix.job-configs.working-directory }}
|
||||
|
||||
- name: "📦 Install Dependencies & Run Extended Tests"
|
||||
shell: bash
|
||||
run: |
|
||||
echo "Running extended tests, installing dependencies with uv..."
|
||||
uv venv
|
||||
uv sync --group test
|
||||
VIRTUAL_ENV=.venv uv pip install -r extended_testing_deps.txt
|
||||
VIRTUAL_ENV=.venv make extended_tests
|
||||
|
||||
- name: "🧹 Verify Clean Working Directory"
|
||||
shell: bash
|
||||
run: |
|
||||
set -eu
|
||||
|
||||
STATUS="$(git status)"
|
||||
echo "$STATUS"
|
||||
|
||||
# grep will exit non-zero if the target message isn't found,
|
||||
# and `set -e` above will cause the step to fail.
|
||||
echo "$STATUS" | grep 'nothing to commit, working tree clean'
|
||||
|
||||
# Run codspeed benchmarks only on packages that have changed files
|
||||
codspeed:
|
||||
name: "⚡ CodSpeed Benchmarks"
|
||||
needs: [build]
|
||||
if: ${{ needs.build.outputs.codspeed != '[]' && !contains(github.event.pull_request.labels.*.name, 'codspeed-ignore') }}
|
||||
runs-on: ubuntu-latest
|
||||
strategy:
|
||||
matrix:
|
||||
job-configs: ${{ fromJson(needs.build.outputs.codspeed) }}
|
||||
fail-fast: false
|
||||
steps:
|
||||
- uses: actions/checkout@v6
|
||||
|
||||
- name: "📦 Install UV Package Manager"
|
||||
uses: astral-sh/setup-uv@v7
|
||||
with:
|
||||
python-version: "3.13"
|
||||
|
||||
- uses: actions/setup-python@v6
|
||||
with:
|
||||
python-version: "3.13"
|
||||
|
||||
- name: "📦 Install Test Dependencies"
|
||||
run: uv sync --group test
|
||||
working-directory: ${{ matrix.job-configs.working-directory }}
|
||||
|
||||
- name: "⚡ Run Benchmarks: ${{ matrix.job-configs.working-directory }}"
|
||||
uses: CodSpeedHQ/action@v4
|
||||
env:
|
||||
ANTHROPIC_API_KEY: ${{ secrets.ANTHROPIC_API_KEY }}
|
||||
ANTHROPIC_FILES_API_IMAGE_ID: ${{ secrets.ANTHROPIC_FILES_API_IMAGE_ID }}
|
||||
ANTHROPIC_FILES_API_PDF_ID: ${{ secrets.ANTHROPIC_FILES_API_PDF_ID }}
|
||||
AZURE_OPENAI_API_VERSION: ${{ secrets.AZURE_OPENAI_API_VERSION }}
|
||||
AZURE_OPENAI_API_BASE: ${{ secrets.AZURE_OPENAI_API_BASE }}
|
||||
AZURE_OPENAI_API_KEY: ${{ secrets.AZURE_OPENAI_API_KEY }}
|
||||
AZURE_OPENAI_CHAT_DEPLOYMENT_NAME: ${{ secrets.AZURE_OPENAI_CHAT_DEPLOYMENT_NAME }}
|
||||
AZURE_OPENAI_LEGACY_CHAT_DEPLOYMENT_NAME: ${{ secrets.AZURE_OPENAI_LEGACY_CHAT_DEPLOYMENT_NAME }}
|
||||
AZURE_OPENAI_LLM_DEPLOYMENT_NAME: ${{ secrets.AZURE_OPENAI_LLM_DEPLOYMENT_NAME }}
|
||||
AZURE_OPENAI_EMBEDDINGS_DEPLOYMENT_NAME: ${{ secrets.AZURE_OPENAI_EMBEDDINGS_DEPLOYMENT_NAME }}
|
||||
COHERE_API_KEY: ${{ secrets.COHERE_API_KEY }}
|
||||
DEEPSEEK_API_KEY: ${{ secrets.DEEPSEEK_API_KEY }}
|
||||
EXA_API_KEY: ${{ secrets.EXA_API_KEY }}
|
||||
FIREWORKS_API_KEY: ${{ secrets.FIREWORKS_API_KEY }}
|
||||
GROQ_API_KEY: ${{ secrets.GROQ_API_KEY }}
|
||||
HUGGINGFACEHUB_API_TOKEN: ${{ secrets.HUGGINGFACEHUB_API_TOKEN }}
|
||||
MISTRAL_API_KEY: ${{ secrets.MISTRAL_API_KEY }}
|
||||
NOMIC_API_KEY: ${{ secrets.NOMIC_API_KEY }}
|
||||
OPENAI_API_KEY: ${{ secrets.OPENAI_API_KEY }}
|
||||
PPLX_API_KEY: ${{ secrets.PPLX_API_KEY }}
|
||||
XAI_API_KEY: ${{ secrets.XAI_API_KEY }}
|
||||
with:
|
||||
token: ${{ secrets.CODSPEED_TOKEN }}
|
||||
run: |
|
||||
cd ${{ matrix.job-configs.working-directory }}
|
||||
if [ "${{ matrix.job-configs.working-directory }}" = "libs/core" ]; then
|
||||
uv run --no-sync pytest ./tests/benchmarks --codspeed
|
||||
else
|
||||
uv run --no-sync pytest ./tests/ --codspeed
|
||||
fi
|
||||
mode: ${{ matrix.job-configs.working-directory == 'libs/core' && 'walltime' || 'instrumentation' }}
|
||||
|
||||
# Final status check - ensures all required jobs passed before allowing merge
|
||||
ci_success:
|
||||
name: "✅ CI Success"
|
||||
needs:
|
||||
[
|
||||
build,
|
||||
lint,
|
||||
test,
|
||||
compile-integration-tests,
|
||||
extended-tests,
|
||||
test-pydantic,
|
||||
codspeed,
|
||||
]
|
||||
if: |
|
||||
always()
|
||||
runs-on: ubuntu-latest
|
||||
env:
|
||||
JOBS_JSON: ${{ toJSON(needs) }}
|
||||
RESULTS_JSON: ${{ toJSON(needs.*.result) }}
|
||||
EXIT_CODE: ${{!contains(needs.*.result, 'failure') && !contains(needs.*.result, 'cancelled') && '0' || '1'}}
|
||||
steps:
|
||||
- name: "🎉 All Checks Passed"
|
||||
run: |
|
||||
echo $JOBS_JSON
|
||||
echo $RESULTS_JSON
|
||||
echo "Exiting with $EXIT_CODE"
|
||||
exit $EXIT_CODE
|
||||
269
.github/workflows/integration_tests.yml
vendored
269
.github/workflows/integration_tests.yml
vendored
@@ -1,269 +0,0 @@
|
||||
# Routine integration tests against partner libraries with live API credentials.
|
||||
#
|
||||
# Uses `make integration_tests` within each library being tested.
|
||||
#
|
||||
# Runs daily with the option to trigger manually.
|
||||
|
||||
name: "⏰ Integration Tests"
|
||||
run-name: "Run Integration Tests - ${{ inputs.working-directory-force || 'all libs' }} (Python ${{ inputs.python-version-force || '3.10, 3.13' }})"
|
||||
|
||||
on:
|
||||
workflow_dispatch:
|
||||
inputs:
|
||||
working-directory-force:
|
||||
type: string
|
||||
description: "From which folder this pipeline executes - defaults to all in matrix - example value: libs/partners/anthropic"
|
||||
python-version-force:
|
||||
type: string
|
||||
description: "Python version to use - defaults to 3.10 and 3.13 in matrix - example value: 3.11"
|
||||
schedule:
|
||||
- cron: "0 13 * * *" # Runs daily at 1PM UTC (9AM EDT/6AM PDT)
|
||||
|
||||
permissions:
|
||||
contents: read
|
||||
|
||||
env:
|
||||
UV_FROZEN: "true"
|
||||
DEFAULT_LIBS: >-
|
||||
["libs/partners/openai",
|
||||
"libs/partners/anthropic",
|
||||
"libs/partners/fireworks",
|
||||
"libs/partners/groq",
|
||||
"libs/partners/mistralai",
|
||||
"libs/partners/xai",
|
||||
"libs/partners/google-vertexai",
|
||||
"libs/partners/google-genai",
|
||||
"libs/partners/aws"]
|
||||
|
||||
jobs:
|
||||
# Generate dynamic test matrix based on input parameters or defaults
|
||||
# Only runs on the main repo (for scheduled runs) or when manually triggered
|
||||
compute-matrix:
|
||||
# Defend against forks running scheduled jobs, but allow manual runs from forks
|
||||
if: github.repository_owner == 'langchain-ai' || github.event_name != 'schedule'
|
||||
|
||||
runs-on: ubuntu-latest
|
||||
name: "📋 Compute Test Matrix"
|
||||
outputs:
|
||||
matrix: ${{ steps.set-matrix.outputs.matrix }}
|
||||
python-version-min-3-11: ${{ steps.set-matrix.outputs.python-version-min-3-11 }}
|
||||
steps:
|
||||
- name: "🔢 Generate Python & Library Matrix"
|
||||
id: set-matrix
|
||||
env:
|
||||
DEFAULT_LIBS: ${{ env.DEFAULT_LIBS }}
|
||||
WORKING_DIRECTORY_FORCE: ${{ github.event.inputs.working-directory-force || '' }}
|
||||
PYTHON_VERSION_FORCE: ${{ github.event.inputs.python-version-force || '' }}
|
||||
run: |
|
||||
# echo "matrix=..." where matrix is a json formatted str with keys python-version and working-directory
|
||||
# python-version should default to 3.10 and 3.13, but is overridden to [PYTHON_VERSION_FORCE] if set
|
||||
# working-directory should default to DEFAULT_LIBS, but is overridden to [WORKING_DIRECTORY_FORCE] if set
|
||||
python_version='["3.10", "3.13"]'
|
||||
python_version_min_3_11='["3.11", "3.13"]'
|
||||
working_directory="$DEFAULT_LIBS"
|
||||
if [ -n "$PYTHON_VERSION_FORCE" ]; then
|
||||
python_version="[\"$PYTHON_VERSION_FORCE\"]"
|
||||
# Bound forced version to >= 3.11 for packages requiring it
|
||||
if [ "$(echo "$PYTHON_VERSION_FORCE >= 3.11" | bc -l)" -eq 1 ]; then
|
||||
python_version_min_3_11="[\"$PYTHON_VERSION_FORCE\"]"
|
||||
else
|
||||
python_version_min_3_11='["3.11"]'
|
||||
fi
|
||||
fi
|
||||
if [ -n "$WORKING_DIRECTORY_FORCE" ]; then
|
||||
working_directory="[\"$WORKING_DIRECTORY_FORCE\"]"
|
||||
fi
|
||||
matrix="{\"python-version\": $python_version, \"working-directory\": $working_directory}"
|
||||
echo $matrix
|
||||
echo "matrix=$matrix" >> $GITHUB_OUTPUT
|
||||
echo "python-version-min-3-11=$python_version_min_3_11" >> $GITHUB_OUTPUT
|
||||
|
||||
# Run integration tests against partner libraries with live API credentials
|
||||
integration-tests:
|
||||
if: github.repository_owner == 'langchain-ai' || github.event_name != 'schedule'
|
||||
name: "🐍 Python ${{ matrix.python-version }}: ${{ matrix.working-directory }}"
|
||||
runs-on: ubuntu-latest
|
||||
needs: [compute-matrix]
|
||||
timeout-minutes: 30
|
||||
strategy:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
python-version: ${{ fromJSON(needs.compute-matrix.outputs.matrix).python-version }}
|
||||
working-directory: ${{ fromJSON(needs.compute-matrix.outputs.matrix).working-directory }}
|
||||
|
||||
steps:
|
||||
- uses: actions/checkout@v6
|
||||
with:
|
||||
path: langchain
|
||||
|
||||
# These libraries exist outside of the monorepo and need to be checked out separately
|
||||
- uses: actions/checkout@v6
|
||||
with:
|
||||
repository: langchain-ai/langchain-google
|
||||
path: langchain-google
|
||||
- name: "🔐 Authenticate to Google Cloud"
|
||||
id: "auth"
|
||||
uses: google-github-actions/auth@v3
|
||||
with:
|
||||
credentials_json: "${{ secrets.GOOGLE_CREDENTIALS }}"
|
||||
- uses: actions/checkout@v6
|
||||
with:
|
||||
repository: langchain-ai/langchain-aws
|
||||
path: langchain-aws
|
||||
- name: "🔐 Configure AWS Credentials"
|
||||
uses: aws-actions/configure-aws-credentials@v5
|
||||
with:
|
||||
aws-access-key-id: ${{ secrets.AWS_ACCESS_KEY_ID }}
|
||||
aws-secret-access-key: ${{ secrets.AWS_SECRET_ACCESS_KEY }}
|
||||
aws-region: ${{ secrets.AWS_REGION }}
|
||||
- name: "📦 Organize External Libraries"
|
||||
run: |
|
||||
rm -rf \
|
||||
langchain/libs/partners/google-genai \
|
||||
langchain/libs/partners/google-vertexai
|
||||
mv langchain-google/libs/genai langchain/libs/partners/google-genai
|
||||
mv langchain-google/libs/vertexai langchain/libs/partners/google-vertexai
|
||||
mv langchain-aws/libs/aws langchain/libs/partners/aws
|
||||
|
||||
- name: "🐍 Set up Python ${{ matrix.python-version }} + UV"
|
||||
uses: "./langchain/.github/actions/uv_setup"
|
||||
with:
|
||||
python-version: ${{ matrix.python-version }}
|
||||
|
||||
- name: "📦 Install Dependencies"
|
||||
# Partner packages use [tool.uv.sources] in their pyproject.toml to resolve
|
||||
# langchain-core/langchain to local editable installs, so `uv sync` automatically
|
||||
# tests against the versions from the current branch (not published releases).
|
||||
|
||||
# TODO: external google/aws don't have local resolution since they live in
|
||||
# separate repos, so they pull `core`/`langchain_v1` from PyPI. We should update
|
||||
# their dev groups to use git source dependencies pointing to the current
|
||||
# branch's latest commit SHA to fully test against local langchain changes.
|
||||
run: |
|
||||
echo "Running scheduled tests, installing dependencies with uv..."
|
||||
cd langchain/${{ matrix.working-directory }}
|
||||
uv sync --group test --group test_integration
|
||||
|
||||
- name: "🚀 Run Integration Tests"
|
||||
# WARNING: All secrets below are available to every matrix job regardless of
|
||||
# which package is being tested. This is intentional for simplicity, but means
|
||||
# any test file could technically access any key. Only use for trusted code.
|
||||
env:
|
||||
LANGCHAIN_TESTS_USER_AGENT: ${{ secrets.LANGCHAIN_TESTS_USER_AGENT }}
|
||||
|
||||
AI21_API_KEY: ${{ secrets.AI21_API_KEY }}
|
||||
ANTHROPIC_API_KEY: ${{ secrets.ANTHROPIC_API_KEY }}
|
||||
ANTHROPIC_FILES_API_IMAGE_ID: ${{ secrets.ANTHROPIC_FILES_API_IMAGE_ID }}
|
||||
ANTHROPIC_FILES_API_PDF_ID: ${{ secrets.ANTHROPIC_FILES_API_PDF_ID }}
|
||||
ASTRA_DB_API_ENDPOINT: ${{ secrets.ASTRA_DB_API_ENDPOINT }}
|
||||
ASTRA_DB_APPLICATION_TOKEN: ${{ secrets.ASTRA_DB_APPLICATION_TOKEN }}
|
||||
ASTRA_DB_KEYSPACE: ${{ secrets.ASTRA_DB_KEYSPACE }}
|
||||
AZURE_OPENAI_API_VERSION: ${{ secrets.AZURE_OPENAI_API_VERSION }}
|
||||
AZURE_OPENAI_API_BASE: ${{ secrets.AZURE_OPENAI_API_BASE }}
|
||||
AZURE_OPENAI_API_KEY: ${{ secrets.AZURE_OPENAI_API_KEY }}
|
||||
AZURE_OPENAI_CHAT_DEPLOYMENT_NAME: ${{ secrets.AZURE_OPENAI_CHAT_DEPLOYMENT_NAME }}
|
||||
AZURE_OPENAI_LEGACY_CHAT_DEPLOYMENT_NAME: ${{ secrets.AZURE_OPENAI_LEGACY_CHAT_DEPLOYMENT_NAME }}
|
||||
AZURE_OPENAI_LLM_DEPLOYMENT_NAME: ${{ secrets.AZURE_OPENAI_LLM_DEPLOYMENT_NAME }}
|
||||
AZURE_OPENAI_EMBEDDINGS_DEPLOYMENT_NAME: ${{ secrets.AZURE_OPENAI_EMBEDDINGS_DEPLOYMENT_NAME }}
|
||||
COHERE_API_KEY: ${{ secrets.COHERE_API_KEY }}
|
||||
DEEPSEEK_API_KEY: ${{ secrets.DEEPSEEK_API_KEY }}
|
||||
ES_URL: ${{ secrets.ES_URL }}
|
||||
ES_CLOUD_ID: ${{ secrets.ES_CLOUD_ID }}
|
||||
ES_API_KEY: ${{ secrets.ES_API_KEY }}
|
||||
EXA_API_KEY: ${{ secrets.EXA_API_KEY }}
|
||||
FIREWORKS_API_KEY: ${{ secrets.FIREWORKS_API_KEY }}
|
||||
GOOGLE_API_KEY: ${{ secrets.GOOGLE_API_KEY }}
|
||||
GOOGLE_SEARCH_API_KEY: ${{ secrets.GOOGLE_SEARCH_API_KEY }}
|
||||
GOOGLE_CSE_ID: ${{ secrets.GOOGLE_CSE_ID }}
|
||||
GROQ_API_KEY: ${{ secrets.GROQ_API_KEY }}
|
||||
HUGGINGFACEHUB_API_TOKEN: ${{ secrets.HUGGINGFACEHUB_API_TOKEN }}
|
||||
MISTRAL_API_KEY: ${{ secrets.MISTRAL_API_KEY }}
|
||||
MONGODB_ATLAS_URI: ${{ secrets.MONGODB_ATLAS_URI }}
|
||||
NOMIC_API_KEY: ${{ secrets.NOMIC_API_KEY }}
|
||||
NVIDIA_API_KEY: ${{ secrets.NVIDIA_API_KEY }}
|
||||
OPENAI_API_KEY: ${{ secrets.OPENAI_API_KEY }}
|
||||
PPLX_API_KEY: ${{ secrets.PPLX_API_KEY }}
|
||||
TOGETHER_API_KEY: ${{ secrets.TOGETHER_API_KEY }}
|
||||
UPSTAGE_API_KEY: ${{ secrets.UPSTAGE_API_KEY }}
|
||||
WATSONX_APIKEY: ${{ secrets.WATSONX_APIKEY }}
|
||||
WATSONX_PROJECT_ID: ${{ secrets.WATSONX_PROJECT_ID }}
|
||||
XAI_API_KEY: ${{ secrets.XAI_API_KEY }}
|
||||
run: |
|
||||
cd langchain/${{ matrix.working-directory }}
|
||||
make integration_tests
|
||||
|
||||
- name: "🧹 Clean up External Libraries"
|
||||
# Clean up external libraries to avoid affecting the following git status check
|
||||
run: |
|
||||
rm -rf \
|
||||
langchain/libs/partners/google-genai \
|
||||
langchain/libs/partners/google-vertexai \
|
||||
langchain/libs/partners/aws
|
||||
|
||||
- name: "🧹 Verify Clean Working Directory"
|
||||
working-directory: langchain
|
||||
run: |
|
||||
set -eu
|
||||
|
||||
STATUS="$(git status)"
|
||||
echo "$STATUS"
|
||||
|
||||
# grep will exit non-zero if the target message isn't found,
|
||||
# and `set -e` above will cause the step to fail.
|
||||
echo "$STATUS" | grep 'nothing to commit, working tree clean'
|
||||
|
||||
# Test dependent packages against local packages to catch breaking changes
|
||||
test-dependents:
|
||||
# Defend against forks running scheduled jobs, but allow manual runs from forks
|
||||
if: github.repository_owner == 'langchain-ai' || github.event_name != 'schedule'
|
||||
|
||||
name: "🐍 Python ${{ matrix.python-version }}: ${{ matrix.package.path }}"
|
||||
runs-on: ubuntu-latest
|
||||
needs: [compute-matrix]
|
||||
timeout-minutes: 30
|
||||
strategy:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
# deepagents requires Python >= 3.11, use bounded version from compute-matrix
|
||||
python-version: ${{ fromJSON(needs.compute-matrix.outputs.python-version-min-3-11) }}
|
||||
package:
|
||||
- name: deepagents
|
||||
repo: langchain-ai/deepagents
|
||||
path: libs/deepagents
|
||||
|
||||
steps:
|
||||
- uses: actions/checkout@v6
|
||||
with:
|
||||
path: langchain
|
||||
|
||||
- uses: actions/checkout@v6
|
||||
with:
|
||||
repository: ${{ matrix.package.repo }}
|
||||
path: ${{ matrix.package.name }}
|
||||
|
||||
- name: "🐍 Set up Python ${{ matrix.python-version }} + UV"
|
||||
uses: "./langchain/.github/actions/uv_setup"
|
||||
with:
|
||||
python-version: ${{ matrix.python-version }}
|
||||
|
||||
- name: "📦 Install ${{ matrix.package.name }} with Local"
|
||||
# Unlike partner packages (which use [tool.uv.sources] for local resolution),
|
||||
# external dependents live in separate repos and need explicit overrides to
|
||||
# test against the langchain versions from the current branch, as their
|
||||
# pyproject.toml files point to released versions.
|
||||
run: |
|
||||
cd ${{ matrix.package.name }}/${{ matrix.package.path }}
|
||||
|
||||
# Install the package with test dependencies
|
||||
uv sync --group test
|
||||
|
||||
# Override langchain packages with local versions
|
||||
uv pip install \
|
||||
-e $GITHUB_WORKSPACE/langchain/libs/core \
|
||||
-e $GITHUB_WORKSPACE/langchain/libs/langchain_v1
|
||||
|
||||
# No API keys needed for now - deepagents `make test` only runs unit tests
|
||||
- name: "🚀 Run ${{ matrix.package.name }} Tests"
|
||||
run: |
|
||||
cd ${{ matrix.package.name }}/${{ matrix.package.path }}
|
||||
make test
|
||||
36
.github/workflows/linkcheck.yml
vendored
Normal file
36
.github/workflows/linkcheck.yml
vendored
Normal file
@@ -0,0 +1,36 @@
|
||||
name: linkcheck
|
||||
|
||||
on:
|
||||
push:
|
||||
branches: [master]
|
||||
pull_request:
|
||||
|
||||
env:
|
||||
POETRY_VERSION: "1.3.1"
|
||||
|
||||
jobs:
|
||||
build:
|
||||
runs-on: ubuntu-latest
|
||||
strategy:
|
||||
matrix:
|
||||
python-version:
|
||||
- "3.11"
|
||||
steps:
|
||||
- uses: actions/checkout@v3
|
||||
- name: Install poetry
|
||||
run: |
|
||||
pipx install poetry==$POETRY_VERSION
|
||||
- name: Set up Python ${{ matrix.python-version }}
|
||||
uses: actions/setup-python@v4
|
||||
with:
|
||||
python-version: ${{ matrix.python-version }}
|
||||
cache: poetry
|
||||
- name: Install dependencies
|
||||
run: |
|
||||
poetry install --with docs
|
||||
- name: Build the docs
|
||||
run: |
|
||||
make docs_build
|
||||
- name: Analyzing the docs with linkcheck
|
||||
run: |
|
||||
make docs_linkcheck
|
||||
36
.github/workflows/lint.yml
vendored
Normal file
36
.github/workflows/lint.yml
vendored
Normal file
@@ -0,0 +1,36 @@
|
||||
name: lint
|
||||
|
||||
on:
|
||||
push:
|
||||
branches: [master]
|
||||
pull_request:
|
||||
|
||||
env:
|
||||
POETRY_VERSION: "1.3.1"
|
||||
|
||||
jobs:
|
||||
build:
|
||||
runs-on: ubuntu-latest
|
||||
strategy:
|
||||
matrix:
|
||||
python-version:
|
||||
- "3.8"
|
||||
- "3.9"
|
||||
- "3.10"
|
||||
- "3.11"
|
||||
steps:
|
||||
- uses: actions/checkout@v3
|
||||
- name: Install poetry
|
||||
run: |
|
||||
pipx install poetry==$POETRY_VERSION
|
||||
- name: Set up Python ${{ matrix.python-version }}
|
||||
uses: actions/setup-python@v4
|
||||
with:
|
||||
python-version: ${{ matrix.python-version }}
|
||||
cache: poetry
|
||||
- name: Install dependencies
|
||||
run: |
|
||||
poetry install
|
||||
- name: Analysing the code with our lint
|
||||
run: |
|
||||
make lint
|
||||
28
.github/workflows/pr_labeler_file.yml
vendored
28
.github/workflows/pr_labeler_file.yml
vendored
@@ -1,28 +0,0 @@
|
||||
# Label PRs based on changed files.
|
||||
#
|
||||
# See `.github/pr-file-labeler.yml` to see rules for each label/directory.
|
||||
|
||||
name: "🏷️ Pull Request Labeler"
|
||||
|
||||
on:
|
||||
# Safe since we're not checking out or running the PR's code
|
||||
# Never check out the PR's head in a pull_request_target job
|
||||
pull_request_target:
|
||||
types: [opened, synchronize, reopened]
|
||||
|
||||
jobs:
|
||||
labeler:
|
||||
name: "label"
|
||||
permissions:
|
||||
contents: read
|
||||
pull-requests: write
|
||||
issues: write
|
||||
runs-on: ubuntu-latest
|
||||
|
||||
steps:
|
||||
- name: Label Pull Request
|
||||
uses: actions/labeler@v6
|
||||
with:
|
||||
repo-token: "${{ secrets.GITHUB_TOKEN }}"
|
||||
configuration-path: .github/pr-file-labeler.yml
|
||||
sync-labels: false
|
||||
44
.github/workflows/pr_labeler_title.yml
vendored
44
.github/workflows/pr_labeler_title.yml
vendored
@@ -1,44 +0,0 @@
|
||||
# Label PRs based on their titles.
|
||||
#
|
||||
# Uses conventional commit types from PR titles to apply labels.
|
||||
# Note: Scope-based labeling (e.g., integration labels) is handled by pr_labeler_file.yml
|
||||
|
||||
name: "🏷️ PR Title Labeler"
|
||||
|
||||
on:
|
||||
# Safe since we're not checking out or running the PR's code
|
||||
# Never check out the PR's head in a pull_request_target job
|
||||
pull_request_target:
|
||||
types: [opened, edited]
|
||||
|
||||
jobs:
|
||||
pr-title-labeler:
|
||||
name: "label"
|
||||
permissions:
|
||||
contents: read
|
||||
pull-requests: write
|
||||
issues: write
|
||||
runs-on: ubuntu-latest
|
||||
|
||||
steps:
|
||||
- name: Label PR based on title
|
||||
uses: bcoe/conventional-release-labels@v1
|
||||
with:
|
||||
token: ${{ secrets.GITHUB_TOKEN }}
|
||||
type_labels: >-
|
||||
{
|
||||
"feat": "feature",
|
||||
"fix": "fix",
|
||||
"docs": "documentation",
|
||||
"style": "linting",
|
||||
"refactor": "refactor",
|
||||
"perf": "performance",
|
||||
"test": "tests",
|
||||
"build": "infra",
|
||||
"ci": "infra",
|
||||
"chore": "infra",
|
||||
"revert": "revert",
|
||||
"release": "release",
|
||||
"breaking": "breaking"
|
||||
}
|
||||
ignored_types: '[]'
|
||||
117
.github/workflows/pr_lint.yml
vendored
117
.github/workflows/pr_lint.yml
vendored
@@ -1,117 +0,0 @@
|
||||
# PR title linting.
|
||||
#
|
||||
# FORMAT (Conventional Commits 1.0.0):
|
||||
#
|
||||
# <type>[optional scope]: <description>
|
||||
# [optional body]
|
||||
# [optional footer(s)]
|
||||
#
|
||||
# Examples:
|
||||
# feat(core): add multi‐tenant support
|
||||
# fix(cli): resolve flag parsing error
|
||||
# docs: update API usage examples
|
||||
# docs(openai): update API usage examples
|
||||
#
|
||||
# Allowed Types:
|
||||
# * feat — a new feature (MINOR)
|
||||
# * fix — a bug fix (PATCH)
|
||||
# * docs — documentation only changes
|
||||
# * style — formatting, linting, etc.; no code change or typing refactors
|
||||
# * refactor — code change that neither fixes a bug nor adds a feature
|
||||
# * perf — code change that improves performance
|
||||
# * test — adding tests or correcting existing
|
||||
# * build — changes that affect the build system/external dependencies
|
||||
# * ci — continuous integration/configuration changes
|
||||
# * chore — other changes that don't modify source or test files
|
||||
# * revert — reverts a previous commit
|
||||
# * release — prepare a new release
|
||||
#
|
||||
# Allowed Scope(s) (optional):
|
||||
# core, cli, langchain, langchain-classic, model-profiles,
|
||||
# standard-tests, text-splitters, docs, anthropic, chroma, deepseek, exa,
|
||||
# fireworks, groq, huggingface, mistralai, nomic, ollama, openai,
|
||||
# perplexity, prompty, qdrant, xai, infra, deps
|
||||
#
|
||||
# Multiple scopes can be used by separating them with a comma. For example:
|
||||
#
|
||||
# feat(core,cli): add multi‐tenant support to core and cli
|
||||
#
|
||||
# Note: PRs touching the langchain package should use the 'langchain' scope. It is not
|
||||
# acceptable to omit the scope for changes to the langchain package, despite it being
|
||||
# the main package & name of the repo.
|
||||
#
|
||||
# Rules:
|
||||
# 1. The 'Type' must start with a lowercase letter.
|
||||
# 2. Breaking changes: append "!" after type/scope (e.g., feat!: drop x support)
|
||||
# 3. When releasing (updating the pyproject.toml and uv.lock), the commit message
|
||||
# should be: `release(scope): x.y.z` (e.g., `release(core): 1.2.0` with no
|
||||
# body, footer, or preceeding/proceeding text).
|
||||
#
|
||||
# Enforces Conventional Commits format for pull request titles to maintain a clear and
|
||||
# machine-readable change history.
|
||||
|
||||
name: "🏷️ PR Title Lint"
|
||||
|
||||
permissions:
|
||||
pull-requests: read
|
||||
|
||||
on:
|
||||
pull_request:
|
||||
types: [opened, edited, synchronize]
|
||||
|
||||
jobs:
|
||||
# Validates that PR title follows Conventional Commits 1.0.0 specification
|
||||
lint-pr-title:
|
||||
name: "validate format"
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- name: "✅ Validate Conventional Commits Format"
|
||||
uses: amannn/action-semantic-pull-request@v6
|
||||
env:
|
||||
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
|
||||
with:
|
||||
types: |
|
||||
feat
|
||||
fix
|
||||
docs
|
||||
style
|
||||
refactor
|
||||
perf
|
||||
test
|
||||
build
|
||||
ci
|
||||
chore
|
||||
revert
|
||||
release
|
||||
scopes: |
|
||||
core
|
||||
cli
|
||||
langchain
|
||||
langchain-classic
|
||||
model-profiles
|
||||
standard-tests
|
||||
text-splitters
|
||||
docs
|
||||
anthropic
|
||||
chroma
|
||||
deepseek
|
||||
exa
|
||||
fireworks
|
||||
groq
|
||||
huggingface
|
||||
mistralai
|
||||
nomic
|
||||
ollama
|
||||
openai
|
||||
perplexity
|
||||
prompty
|
||||
qdrant
|
||||
xai
|
||||
infra
|
||||
deps
|
||||
requireScope: false
|
||||
disallowScopes: |
|
||||
release
|
||||
[A-Z]+
|
||||
ignoreLabels: |
|
||||
ignore-lint-pr-title
|
||||
49
.github/workflows/release.yml
vendored
Normal file
49
.github/workflows/release.yml
vendored
Normal file
@@ -0,0 +1,49 @@
|
||||
name: release
|
||||
|
||||
on:
|
||||
pull_request:
|
||||
types:
|
||||
- closed
|
||||
branches:
|
||||
- master
|
||||
paths:
|
||||
- 'pyproject.toml'
|
||||
|
||||
env:
|
||||
POETRY_VERSION: "1.3.1"
|
||||
|
||||
jobs:
|
||||
if_release:
|
||||
if: |
|
||||
${{ github.event.pull_request.merged == true }}
|
||||
&& ${{ contains(github.event.pull_request.labels.*.name, 'release') }}
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- uses: actions/checkout@v3
|
||||
- name: Install poetry
|
||||
run: pipx install poetry==$POETRY_VERSION
|
||||
- name: Set up Python 3.10
|
||||
uses: actions/setup-python@v4
|
||||
with:
|
||||
python-version: "3.10"
|
||||
cache: "poetry"
|
||||
- name: Build project for distribution
|
||||
run: poetry build
|
||||
- name: Check Version
|
||||
id: check-version
|
||||
run: |
|
||||
echo version=$(poetry version --short) >> $GITHUB_OUTPUT
|
||||
- name: Create Release
|
||||
uses: ncipollo/release-action@v1
|
||||
with:
|
||||
artifacts: "dist/*"
|
||||
token: ${{ secrets.GITHUB_TOKEN }}
|
||||
draft: false
|
||||
generateReleaseNotes: true
|
||||
tag: v${{ steps.check-version.outputs.version }}
|
||||
commit: master
|
||||
- name: Publish to PyPI
|
||||
env:
|
||||
POETRY_PYPI_TOKEN_PYPI: ${{ secrets.PYPI_API_TOKEN }}
|
||||
run: |
|
||||
poetry publish
|
||||
148
.github/workflows/tag-external-contributions.yml
vendored
148
.github/workflows/tag-external-contributions.yml
vendored
@@ -1,148 +0,0 @@
|
||||
# Automatically tag issues and pull requests as "external" or "internal"
|
||||
# based on whether the author is a member of the langchain-ai
|
||||
# GitHub organization.
|
||||
#
|
||||
# Setup Requirements:
|
||||
# 1. Create a GitHub App with permissions:
|
||||
# - Repository: Issues (write), Pull requests (write)
|
||||
# - Organization: Members (read)
|
||||
# 2. Install the app on your organization and this repository
|
||||
# 3. Add these repository secrets:
|
||||
# - ORG_MEMBERSHIP_APP_ID: Your app's ID
|
||||
# - ORG_MEMBERSHIP_APP_PRIVATE_KEY: Your app's private key
|
||||
#
|
||||
# The GitHub App token is required to check private organization membership.
|
||||
# Without it, the workflow will fail.
|
||||
|
||||
name: Tag External Contributions
|
||||
|
||||
on:
|
||||
issues:
|
||||
types: [opened]
|
||||
pull_request_target:
|
||||
types: [opened]
|
||||
|
||||
jobs:
|
||||
tag-external:
|
||||
runs-on: ubuntu-latest
|
||||
permissions:
|
||||
issues: write
|
||||
pull-requests: write
|
||||
|
||||
steps:
|
||||
- name: Generate GitHub App token
|
||||
id: app-token
|
||||
uses: actions/create-github-app-token@v1
|
||||
with:
|
||||
app-id: ${{ secrets.ORG_MEMBERSHIP_APP_ID }}
|
||||
private-key: ${{ secrets.ORG_MEMBERSHIP_APP_PRIVATE_KEY }}
|
||||
|
||||
- name: Check if contributor is external
|
||||
id: check-membership
|
||||
uses: actions/github-script@v7
|
||||
with:
|
||||
github-token: ${{ steps.app-token.outputs.token }}
|
||||
script: |
|
||||
const { owner, repo } = context.repo;
|
||||
const author = context.payload.sender.login;
|
||||
|
||||
try {
|
||||
// Check if the author is a member of the langchain-ai organization
|
||||
// This requires org:read permissions to see private memberships
|
||||
const membership = await github.rest.orgs.getMembershipForUser({
|
||||
org: 'langchain-ai',
|
||||
username: author
|
||||
});
|
||||
|
||||
// Check if membership is active (not just pending invitation)
|
||||
if (membership.data.state === 'active') {
|
||||
console.log(`User ${author} is an active member of langchain-ai organization`);
|
||||
core.setOutput('is-external', 'false');
|
||||
} else {
|
||||
console.log(`User ${author} has pending membership in langchain-ai organization`);
|
||||
core.setOutput('is-external', 'true');
|
||||
}
|
||||
} catch (error) {
|
||||
if (error.status === 404) {
|
||||
console.log(`User ${author} is not a member of langchain-ai organization`);
|
||||
core.setOutput('is-external', 'true');
|
||||
} else {
|
||||
console.error('Error checking membership:', error);
|
||||
console.log('Status:', error.status);
|
||||
console.log('Message:', error.message);
|
||||
// If we can't determine membership due to API error, assume external for safety
|
||||
core.setOutput('is-external', 'true');
|
||||
}
|
||||
}
|
||||
|
||||
- name: Add external label to issue
|
||||
if: steps.check-membership.outputs.is-external == 'true' && github.event_name == 'issues'
|
||||
uses: actions/github-script@v7
|
||||
with:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
script: |
|
||||
const { owner, repo } = context.repo;
|
||||
const issue_number = context.payload.issue.number;
|
||||
|
||||
await github.rest.issues.addLabels({
|
||||
owner,
|
||||
repo,
|
||||
issue_number,
|
||||
labels: ['external']
|
||||
});
|
||||
|
||||
console.log(`Added 'external' label to issue #${issue_number}`);
|
||||
|
||||
- name: Add external label to pull request
|
||||
if: steps.check-membership.outputs.is-external == 'true' && github.event_name == 'pull_request_target'
|
||||
uses: actions/github-script@v7
|
||||
with:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
script: |
|
||||
const { owner, repo } = context.repo;
|
||||
const pull_number = context.payload.pull_request.number;
|
||||
|
||||
await github.rest.issues.addLabels({
|
||||
owner,
|
||||
repo,
|
||||
issue_number: pull_number,
|
||||
labels: ['external']
|
||||
});
|
||||
|
||||
console.log(`Added 'external' label to pull request #${pull_number}`);
|
||||
|
||||
- name: Add internal label to issue
|
||||
if: steps.check-membership.outputs.is-external == 'false' && github.event_name == 'issues'
|
||||
uses: actions/github-script@v7
|
||||
with:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
script: |
|
||||
const { owner, repo } = context.repo;
|
||||
const issue_number = context.payload.issue.number;
|
||||
|
||||
await github.rest.issues.addLabels({
|
||||
owner,
|
||||
repo,
|
||||
issue_number,
|
||||
labels: ['internal']
|
||||
});
|
||||
|
||||
console.log(`Added 'internal' label to issue #${issue_number}`);
|
||||
|
||||
- name: Add internal label to pull request
|
||||
if: steps.check-membership.outputs.is-external == 'false' && github.event_name == 'pull_request_target'
|
||||
uses: actions/github-script@v7
|
||||
with:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
script: |
|
||||
const { owner, repo } = context.repo;
|
||||
const pull_number = context.payload.pull_request.number;
|
||||
|
||||
await github.rest.issues.addLabels({
|
||||
owner,
|
||||
repo,
|
||||
issue_number: pull_number,
|
||||
labels: ['internal']
|
||||
});
|
||||
|
||||
console.log(`Added 'internal' label to pull request #${pull_number}`);
|
||||
34
.github/workflows/test.yml
vendored
Normal file
34
.github/workflows/test.yml
vendored
Normal file
@@ -0,0 +1,34 @@
|
||||
name: test
|
||||
|
||||
on:
|
||||
push:
|
||||
branches: [master]
|
||||
pull_request:
|
||||
|
||||
env:
|
||||
POETRY_VERSION: "1.3.1"
|
||||
|
||||
jobs:
|
||||
build:
|
||||
runs-on: ubuntu-latest
|
||||
strategy:
|
||||
matrix:
|
||||
python-version:
|
||||
- "3.8"
|
||||
- "3.9"
|
||||
- "3.10"
|
||||
- "3.11"
|
||||
steps:
|
||||
- uses: actions/checkout@v3
|
||||
- name: Install poetry
|
||||
run: pipx install poetry==$POETRY_VERSION
|
||||
- name: Set up Python ${{ matrix.python-version }}
|
||||
uses: actions/setup-python@v4
|
||||
with:
|
||||
python-version: ${{ matrix.python-version }}
|
||||
cache: "poetry"
|
||||
- name: Install dependencies
|
||||
run: poetry install
|
||||
- name: Run unit tests
|
||||
run: |
|
||||
make test
|
||||
164
.github/workflows/v03_api_doc_build.yml
vendored
164
.github/workflows/v03_api_doc_build.yml
vendored
@@ -1,164 +0,0 @@
|
||||
# Build the API reference documentation for v0.3 branch.
|
||||
#
|
||||
# Manual trigger only.
|
||||
#
|
||||
# Built HTML pushed to langchain-ai/langchain-api-docs-html.
|
||||
#
|
||||
# Looks for langchain-ai org repos in packages.yml and checks them out.
|
||||
# Calls prep_api_docs_build.py.
|
||||
|
||||
name: "📚 API Docs (v0.3)"
|
||||
run-name: "Build & Deploy API Reference (v0.3)"
|
||||
|
||||
on:
|
||||
workflow_dispatch:
|
||||
|
||||
env:
|
||||
PYTHON_VERSION: "3.11"
|
||||
|
||||
jobs:
|
||||
build:
|
||||
if: github.repository == 'langchain-ai/langchain' || github.event_name != 'schedule'
|
||||
runs-on: ubuntu-latest
|
||||
permissions:
|
||||
contents: read
|
||||
steps:
|
||||
- uses: actions/checkout@v6
|
||||
with:
|
||||
ref: v0.3
|
||||
path: langchain
|
||||
|
||||
- uses: actions/checkout@v6
|
||||
with:
|
||||
repository: langchain-ai/langchain-api-docs-html
|
||||
path: langchain-api-docs-html
|
||||
token: ${{ secrets.TOKEN_GITHUB_API_DOCS_HTML }}
|
||||
|
||||
- name: "📋 Extract Repository List with yq"
|
||||
id: get-unsorted-repos
|
||||
uses: mikefarah/yq@master
|
||||
with:
|
||||
cmd: |
|
||||
# Extract repos from packages.yml that are in the langchain-ai org
|
||||
# (excluding 'langchain' itself)
|
||||
yq '
|
||||
.packages[]
|
||||
| select(
|
||||
(
|
||||
(.repo | test("^langchain-ai/"))
|
||||
and
|
||||
(.repo != "langchain-ai/langchain")
|
||||
)
|
||||
or
|
||||
(.include_in_api_ref // false)
|
||||
)
|
||||
| .repo
|
||||
' langchain/libs/packages.yml
|
||||
|
||||
- name: "📋 Parse YAML & Checkout Repositories"
|
||||
env:
|
||||
REPOS_UNSORTED: ${{ steps.get-unsorted-repos.outputs.result }}
|
||||
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
|
||||
run: |
|
||||
# Get unique repositories
|
||||
REPOS=$(echo "$REPOS_UNSORTED" | sort -u)
|
||||
# Checkout each unique repository
|
||||
for repo in $REPOS; do
|
||||
# Validate repository format (allow any org with proper format)
|
||||
if [[ ! "$repo" =~ ^[a-zA-Z0-9_.-]+/[a-zA-Z0-9_.-]+$ ]]; then
|
||||
echo "Error: Invalid repository format: $repo"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
REPO_NAME=$(echo $repo | cut -d'/' -f2)
|
||||
|
||||
# Additional validation for repo name
|
||||
if [[ ! "$REPO_NAME" =~ ^[a-zA-Z0-9_.-]+$ ]]; then
|
||||
echo "Error: Invalid repository name: $REPO_NAME"
|
||||
exit 1
|
||||
fi
|
||||
echo "Checking out $repo to $REPO_NAME"
|
||||
|
||||
# Special handling for langchain-tavily: checkout by commit hash
|
||||
if [[ "$REPO_NAME" == "langchain-tavily" ]]; then
|
||||
git clone https://github.com/$repo.git $REPO_NAME
|
||||
cd $REPO_NAME
|
||||
git checkout f3515654724a9e87bdfe2c2f509d6cdde646e563
|
||||
cd ..
|
||||
else
|
||||
git clone --depth 1 --branch v0.3 https://github.com/$repo.git $REPO_NAME
|
||||
fi
|
||||
done
|
||||
|
||||
- name: "🐍 Setup Python ${{ env.PYTHON_VERSION }}"
|
||||
uses: actions/setup-python@v6
|
||||
id: setup-python
|
||||
with:
|
||||
python-version: ${{ env.PYTHON_VERSION }}
|
||||
|
||||
- name: "📦 Install Initial Python Dependencies using uv"
|
||||
working-directory: langchain
|
||||
run: |
|
||||
python -m pip install -U uv
|
||||
python -m uv pip install --upgrade --no-cache-dir pip setuptools pyyaml
|
||||
|
||||
- name: "📦 Organize Library Directories"
|
||||
# Places cloned partner packages into libs/partners structure
|
||||
run: python langchain/.github/scripts/prep_api_docs_build.py
|
||||
|
||||
- name: "🧹 Clear Prior Build"
|
||||
run:
|
||||
# Remove artifacts from prior docs build
|
||||
rm -rf langchain-api-docs-html/api_reference_build/html
|
||||
|
||||
- name: "📦 Install Documentation Dependencies using uv"
|
||||
working-directory: langchain
|
||||
run: |
|
||||
# Install all partner packages in editable mode with overrides
|
||||
python -m uv pip install $(ls ./libs/partners | grep -v azure-ai | xargs -I {} echo "./libs/partners/{}") --overrides ./docs/vercel_overrides.txt --prerelease=allow
|
||||
|
||||
# Install langchain-azure-ai with tools extra
|
||||
python -m uv pip install "./libs/partners/azure-ai[tools]" --overrides ./docs/vercel_overrides.txt --prerelease=allow
|
||||
|
||||
# Install core langchain and other main packages
|
||||
python -m uv pip install libs/core libs/langchain libs/text-splitters libs/community libs/experimental libs/standard-tests
|
||||
|
||||
# Install Sphinx and related packages for building docs
|
||||
python -m uv pip install -r docs/api_reference/requirements.txt
|
||||
|
||||
- name: "🔧 Configure Git Settings"
|
||||
working-directory: langchain
|
||||
run: |
|
||||
git config --local user.email "actions@github.com"
|
||||
git config --local user.name "Github Actions"
|
||||
|
||||
- name: "📚 Build API Documentation"
|
||||
working-directory: langchain
|
||||
run: |
|
||||
# Generate the API reference RST files
|
||||
python docs/api_reference/create_api_rst.py
|
||||
|
||||
# Build the HTML documentation using Sphinx
|
||||
# -T: show full traceback on exception
|
||||
# -E: don't use cached environment (force rebuild, ignore cached doctrees)
|
||||
# -b html: build HTML docs (vs PDS, etc.)
|
||||
# -d: path for the cached environment (parsed document trees / doctrees)
|
||||
# - Separate from output dir for faster incremental builds
|
||||
# -c: path to conf.py
|
||||
# -j auto: parallel build using all available CPU cores
|
||||
python -m sphinx -T -E -b html -d ../langchain-api-docs-html/_build/doctrees -c docs/api_reference docs/api_reference ../langchain-api-docs-html/api_reference_build/html -j auto
|
||||
|
||||
# Post-process the generated HTML
|
||||
python docs/api_reference/scripts/custom_formatter.py ../langchain-api-docs-html/api_reference_build/html
|
||||
|
||||
# Default index page is blank so we copy in the actual home page.
|
||||
cp ../langchain-api-docs-html/api_reference_build/html/{reference,index}.html
|
||||
|
||||
# Removes Sphinx's intermediate build artifacts after the build is complete.
|
||||
rm -rf ../langchain-api-docs-html/_build/
|
||||
|
||||
# Commit and push changes to langchain-api-docs-html repo
|
||||
- uses: EndBug/add-and-commit@v9
|
||||
with:
|
||||
cwd: langchain-api-docs-html
|
||||
message: "Update API docs build from v0.3 branch"
|
||||
39
.gitignore
vendored
39
.gitignore
vendored
@@ -1,8 +1,5 @@
|
||||
.vs/
|
||||
.claude/
|
||||
.vscode/
|
||||
.idea/
|
||||
#Emacs backup
|
||||
*~
|
||||
# Byte-compiled / optimized / DLL files
|
||||
__pycache__/
|
||||
*.py[cod]
|
||||
@@ -32,12 +29,6 @@ share/python-wheels/
|
||||
*.egg
|
||||
MANIFEST
|
||||
|
||||
# Google GitHub Actions credentials files created by:
|
||||
# https://github.com/google-github-actions/auth
|
||||
#
|
||||
# That action recommends adding this gitignore to prevent accidentally committing keys.
|
||||
gha-creds-*.json
|
||||
|
||||
# PyInstaller
|
||||
# Usually these files are written by a python script from a template
|
||||
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
||||
@@ -61,7 +52,6 @@ coverage.xml
|
||||
*.py,cover
|
||||
.hypothesis/
|
||||
.pytest_cache/
|
||||
.codspeed/
|
||||
|
||||
# Translations
|
||||
*.mo
|
||||
@@ -80,6 +70,9 @@ instance/
|
||||
# Scrapy stuff:
|
||||
.scrapy
|
||||
|
||||
# Sphinx documentation
|
||||
docs/_build/
|
||||
|
||||
# PyBuilder
|
||||
target/
|
||||
|
||||
@@ -114,11 +107,13 @@ celerybeat.pid
|
||||
# Environments
|
||||
.env
|
||||
.envrc
|
||||
.venv*
|
||||
venv*
|
||||
.venv
|
||||
.venvs
|
||||
env/
|
||||
venv/
|
||||
ENV/
|
||||
env.bak/
|
||||
venv.bak/
|
||||
|
||||
# Spyder project settings
|
||||
.spyderproject
|
||||
@@ -132,7 +127,6 @@ env.bak/
|
||||
|
||||
# mypy
|
||||
.mypy_cache/
|
||||
.mypy_cache_test/
|
||||
.dmypy.json
|
||||
dmypy.json
|
||||
|
||||
@@ -150,19 +144,4 @@ wandb/
|
||||
/.ruff_cache/
|
||||
|
||||
*.pkl
|
||||
*.bin
|
||||
|
||||
# integration test artifacts
|
||||
data_map*
|
||||
\[('_type', 'fake'), ('stop', None)]
|
||||
|
||||
# Replit files
|
||||
*replit*
|
||||
|
||||
node_modules
|
||||
|
||||
prof
|
||||
virtualenv/
|
||||
scratch/
|
||||
|
||||
.langgraph_api/
|
||||
*.bin
|
||||
@@ -1,14 +0,0 @@
|
||||
{
|
||||
"MD013": false,
|
||||
"MD024": {
|
||||
"siblings_only": true
|
||||
},
|
||||
"MD025": false,
|
||||
"MD033": false,
|
||||
"MD034": false,
|
||||
"MD036": false,
|
||||
"MD041": false,
|
||||
"MD046": {
|
||||
"style": "fenced"
|
||||
}
|
||||
}
|
||||
@@ -1,8 +0,0 @@
|
||||
{
|
||||
"mcpServers": {
|
||||
"docs-langchain": {
|
||||
"type": "http",
|
||||
"url": "https://docs.langchain.com/mcp"
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -1,131 +0,0 @@
|
||||
repos:
|
||||
- repo: https://github.com/pre-commit/pre-commit-hooks
|
||||
rev: v4.3.0
|
||||
hooks:
|
||||
- id: no-commit-to-branch # prevent direct commits to protected branches
|
||||
args: ["--branch", "master"]
|
||||
- id: check-yaml # validate YAML syntax
|
||||
args: ["--unsafe"] # allow custom tags
|
||||
- id: check-toml # validate TOML syntax
|
||||
- id: end-of-file-fixer # ensure files end with a newline
|
||||
- id: trailing-whitespace # remove trailing whitespace from lines
|
||||
exclude: \.ambr$
|
||||
|
||||
# Text normalization hooks for consistent formatting
|
||||
- repo: https://github.com/sirosen/texthooks
|
||||
rev: 0.6.8
|
||||
hooks:
|
||||
- id: fix-smartquotes # replace curly quotes with straight quotes
|
||||
- id: fix-spaces # replace non-standard spaces (e.g., non-breaking) with regular spaces
|
||||
|
||||
# Per-package format and lint hooks for the monorepo
|
||||
- repo: local
|
||||
hooks:
|
||||
- id: core
|
||||
name: format and lint core
|
||||
language: system
|
||||
entry: make -C libs/core format lint
|
||||
files: ^libs/core/
|
||||
pass_filenames: false
|
||||
- id: langchain
|
||||
name: format and lint langchain
|
||||
language: system
|
||||
entry: make -C libs/langchain format lint
|
||||
files: ^libs/langchain/
|
||||
pass_filenames: false
|
||||
- id: standard-tests
|
||||
name: format and lint standard-tests
|
||||
language: system
|
||||
entry: make -C libs/standard-tests format lint
|
||||
files: ^libs/standard-tests/
|
||||
pass_filenames: false
|
||||
- id: text-splitters
|
||||
name: format and lint text-splitters
|
||||
language: system
|
||||
entry: make -C libs/text-splitters format lint
|
||||
files: ^libs/text-splitters/
|
||||
pass_filenames: false
|
||||
- id: anthropic
|
||||
name: format and lint partners/anthropic
|
||||
language: system
|
||||
entry: make -C libs/partners/anthropic format lint
|
||||
files: ^libs/partners/anthropic/
|
||||
pass_filenames: false
|
||||
- id: chroma
|
||||
name: format and lint partners/chroma
|
||||
language: system
|
||||
entry: make -C libs/partners/chroma format lint
|
||||
files: ^libs/partners/chroma/
|
||||
pass_filenames: false
|
||||
- id: exa
|
||||
name: format and lint partners/exa
|
||||
language: system
|
||||
entry: make -C libs/partners/exa format lint
|
||||
files: ^libs/partners/exa/
|
||||
pass_filenames: false
|
||||
- id: fireworks
|
||||
name: format and lint partners/fireworks
|
||||
language: system
|
||||
entry: make -C libs/partners/fireworks format lint
|
||||
files: ^libs/partners/fireworks/
|
||||
pass_filenames: false
|
||||
- id: groq
|
||||
name: format and lint partners/groq
|
||||
language: system
|
||||
entry: make -C libs/partners/groq format lint
|
||||
files: ^libs/partners/groq/
|
||||
pass_filenames: false
|
||||
- id: huggingface
|
||||
name: format and lint partners/huggingface
|
||||
language: system
|
||||
entry: make -C libs/partners/huggingface format lint
|
||||
files: ^libs/partners/huggingface/
|
||||
pass_filenames: false
|
||||
- id: mistralai
|
||||
name: format and lint partners/mistralai
|
||||
language: system
|
||||
entry: make -C libs/partners/mistralai format lint
|
||||
files: ^libs/partners/mistralai/
|
||||
pass_filenames: false
|
||||
- id: nomic
|
||||
name: format and lint partners/nomic
|
||||
language: system
|
||||
entry: make -C libs/partners/nomic format lint
|
||||
files: ^libs/partners/nomic/
|
||||
pass_filenames: false
|
||||
- id: ollama
|
||||
name: format and lint partners/ollama
|
||||
language: system
|
||||
entry: make -C libs/partners/ollama format lint
|
||||
files: ^libs/partners/ollama/
|
||||
pass_filenames: false
|
||||
- id: openai
|
||||
name: format and lint partners/openai
|
||||
language: system
|
||||
entry: make -C libs/partners/openai format lint
|
||||
files: ^libs/partners/openai/
|
||||
pass_filenames: false
|
||||
- id: prompty
|
||||
name: format and lint partners/prompty
|
||||
language: system
|
||||
entry: make -C libs/partners/prompty format lint
|
||||
files: ^libs/partners/prompty/
|
||||
pass_filenames: false
|
||||
- id: qdrant
|
||||
name: format and lint partners/qdrant
|
||||
language: system
|
||||
entry: make -C libs/partners/qdrant format lint
|
||||
files: ^libs/partners/qdrant/
|
||||
pass_filenames: false
|
||||
- id: core-version
|
||||
name: check core version consistency
|
||||
language: system
|
||||
entry: make -C libs/core check_version
|
||||
files: ^libs/core/(pyproject\.toml|langchain_core/version\.py)$
|
||||
pass_filenames: false
|
||||
- id: langchain-v1-version
|
||||
name: check langchain version consistency
|
||||
language: system
|
||||
entry: make -C libs/langchain_v1 check_version
|
||||
files: ^libs/langchain_v1/(pyproject\.toml|langchain/__init__\.py)$
|
||||
pass_filenames: false
|
||||
19
.vscode/extensions.json
vendored
19
.vscode/extensions.json
vendored
@@ -1,19 +0,0 @@
|
||||
{
|
||||
"recommendations": [
|
||||
"ms-python.python",
|
||||
"charliermarsh.ruff",
|
||||
"ms-python.mypy-type-checker",
|
||||
"ms-toolsai.jupyter",
|
||||
"ms-toolsai.jupyter-keymap",
|
||||
"ms-toolsai.jupyter-renderers",
|
||||
"yzhang.markdown-all-in-one",
|
||||
"davidanson.vscode-markdownlint",
|
||||
"bierner.markdown-mermaid",
|
||||
"bierner.markdown-preview-github-styles",
|
||||
"eamodio.gitlens",
|
||||
"github.vscode-pull-request-github",
|
||||
"github.vscode-github-actions",
|
||||
"redhat.vscode-yaml",
|
||||
"editorconfig.editorconfig",
|
||||
],
|
||||
}
|
||||
78
.vscode/settings.json
vendored
78
.vscode/settings.json
vendored
@@ -1,78 +0,0 @@
|
||||
{
|
||||
"python.analysis.include": [
|
||||
"libs/**",
|
||||
],
|
||||
"python.analysis.exclude": [
|
||||
"**/node_modules",
|
||||
"**/__pycache__",
|
||||
"**/.pytest_cache",
|
||||
"**/.*",
|
||||
],
|
||||
"python.analysis.autoImportCompletions": true,
|
||||
"python.analysis.typeCheckingMode": "basic",
|
||||
"python.testing.cwd": "${workspaceFolder}",
|
||||
"python.linting.enabled": true,
|
||||
"python.linting.ruffEnabled": true,
|
||||
"[python]": {
|
||||
"editor.formatOnSave": true,
|
||||
"editor.codeActionsOnSave": {
|
||||
"source.organizeImports.ruff": "explicit",
|
||||
"source.fixAll": "explicit"
|
||||
},
|
||||
"editor.defaultFormatter": "charliermarsh.ruff"
|
||||
},
|
||||
"editor.rulers": [
|
||||
88
|
||||
],
|
||||
"editor.tabSize": 4,
|
||||
"editor.insertSpaces": true,
|
||||
"editor.trimAutoWhitespace": true,
|
||||
"files.trimTrailingWhitespace": true,
|
||||
"files.insertFinalNewline": true,
|
||||
"files.exclude": {
|
||||
"**/__pycache__": true,
|
||||
"**/.pytest_cache": true,
|
||||
"**/*.pyc": true,
|
||||
"**/.mypy_cache": true,
|
||||
"**/.ruff_cache": true,
|
||||
"_dist/**": true,
|
||||
"**/node_modules": true,
|
||||
"**/.git": false
|
||||
},
|
||||
"search.exclude": {
|
||||
"**/__pycache__": true,
|
||||
"**/*.pyc": true,
|
||||
"_dist/**": true,
|
||||
"**/node_modules": true,
|
||||
"**/.git": true,
|
||||
"uv.lock": true,
|
||||
"yarn.lock": true
|
||||
},
|
||||
"git.autofetch": true,
|
||||
"git.enableSmartCommit": true,
|
||||
"jupyter.askForKernelRestart": false,
|
||||
"jupyter.interactiveWindow.textEditor.executeSelection": true,
|
||||
"[markdown]": {
|
||||
"editor.wordWrap": "on",
|
||||
"editor.quickSuggestions": {
|
||||
"comments": "off",
|
||||
"strings": "off",
|
||||
"other": "off"
|
||||
}
|
||||
},
|
||||
"[yaml]": {
|
||||
"editor.tabSize": 2,
|
||||
"editor.insertSpaces": true
|
||||
},
|
||||
"[json]": {
|
||||
"editor.tabSize": 2,
|
||||
"editor.insertSpaces": true
|
||||
},
|
||||
"python.terminal.activateEnvironment": false,
|
||||
"python.defaultInterpreterPath": "./.venv/bin/python",
|
||||
"github.copilot.chat.commitMessageGeneration.instructions": [
|
||||
{
|
||||
"file": ".github/workflows/pr_lint.yml"
|
||||
}
|
||||
]
|
||||
}
|
||||
190
AGENTS.md
190
AGENTS.md
@@ -1,190 +0,0 @@
|
||||
# Global development guidelines for the LangChain monorepo
|
||||
|
||||
This document provides context to understand the LangChain Python project and assist with development.
|
||||
|
||||
## Project architecture and context
|
||||
|
||||
### Monorepo structure
|
||||
|
||||
This is a Python monorepo with multiple independently versioned packages that use `uv`.
|
||||
|
||||
```txt
|
||||
langchain/
|
||||
├── libs/
|
||||
│ ├── core/ # `langchain-core` primitives and base abstractions
|
||||
│ ├── langchain/ # `langchain-classic` (legacy, no new features)
|
||||
│ ├── langchain_v1/ # Actively maintained `langchain` package
|
||||
│ ├── partners/ # Third-party integrations
|
||||
│ │ ├── openai/ # OpenAI models and embeddings
|
||||
│ │ ├── anthropic/ # Anthropic (Claude) integration
|
||||
│ │ ├── ollama/ # Local model support
|
||||
│ │ └── ... (other integrations maintained by the LangChain team)
|
||||
│ ├── text-splitters/ # Document chunking utilities
|
||||
│ ├── standard-tests/ # Shared test suite for integrations
|
||||
│ ├── model-profiles/ # Model configuration profiles
|
||||
│ └── cli/ # Command-line interface tools
|
||||
├── .github/ # CI/CD workflows and templates
|
||||
├── .vscode/ # VSCode IDE standard settings and recommended extensions
|
||||
└── README.md # Information about LangChain
|
||||
```
|
||||
|
||||
- **Core layer** (`langchain-core`): Base abstractions, interfaces, and protocols. Users should not need to know about this layer directly.
|
||||
- **Implementation layer** (`langchain`): Concrete implementations and high-level public utilities
|
||||
- **Integration layer** (`partners/`): Third-party service integrations. Note that this monorepo is not exhaustive of all LangChain integrations; some are maintained in separate repos, such as `langchain-ai/langchain-google` and `langchain-ai/langchain-aws`. Usually these repos are cloned at the same level as this monorepo, so if needed, you can refer to their code directly by navigating to `../langchain-google/` from this monorepo.
|
||||
- **Testing layer** (`standard-tests/`): Standardized integration tests for partner integrations
|
||||
|
||||
### Development tools & commands**
|
||||
|
||||
- `uv` – Fast Python package installer and resolver (replaces pip/poetry)
|
||||
- `make` – Task runner for common development commands. Feel free to look at the `Makefile` for available commands and usage patterns.
|
||||
- `ruff` – Fast Python linter and formatter
|
||||
- `mypy` – Static type checking
|
||||
- `pytest` – Testing framework
|
||||
|
||||
This monorepo uses `uv` for dependency management. Local development uses editable installs: `[tool.uv.sources]`
|
||||
|
||||
Each package in `libs/` has its own `pyproject.toml` and `uv.lock`.
|
||||
|
||||
```bash
|
||||
# Run unit tests (no network)
|
||||
make test
|
||||
|
||||
# Run specific test file
|
||||
uv run --group test pytest tests/unit_tests/test_specific.py
|
||||
```
|
||||
|
||||
```bash
|
||||
# Lint code
|
||||
make lint
|
||||
|
||||
# Format code
|
||||
make format
|
||||
|
||||
# Type checking
|
||||
uv run --group lint mypy .
|
||||
```
|
||||
|
||||
#### Key config files
|
||||
|
||||
- pyproject.toml: Main workspace configuration with dependency groups
|
||||
- uv.lock: Locked dependencies for reproducible builds
|
||||
- Makefile: Development tasks
|
||||
|
||||
#### Commit standards
|
||||
|
||||
Suggest PR titles that follow Conventional Commits format. Refer to .github/workflows/pr_lint for allowed types and scopes. Note that all commit/PR titles should be in lowercase with the exception of proper nouns/named entities. All PR titles should include a scope with no exceptions. For example:
|
||||
|
||||
```txt
|
||||
feat(langchain): add new chat completion feature
|
||||
fix(core): resolve type hinting issue in vector store
|
||||
chore(anthropic): update infrastructure dependencies
|
||||
```
|
||||
|
||||
Note how `feat(langchain)` includes a scope even though it is the main package and name of the repo.
|
||||
|
||||
#### Pull request guidelines
|
||||
|
||||
- Always add a disclaimer to the PR description mentioning how AI agents are involved with the contribution.
|
||||
- Describe the "why" of the changes, why the proposed solution is the right one. Limit prose.
|
||||
- Highlight areas of the proposed changes that require careful review.
|
||||
|
||||
## Core development principles
|
||||
|
||||
### Maintain stable public interfaces
|
||||
|
||||
CRITICAL: Always attempt to preserve function signatures, argument positions, and names for exported/public methods. Do not make breaking changes.
|
||||
You should warn the developer for any function signature changes, regardless of whether they look breaking or not.
|
||||
|
||||
**Before making ANY changes to public APIs:**
|
||||
|
||||
- Check if the function/class is exported in `__init__.py`
|
||||
- Look for existing usage patterns in tests and examples
|
||||
- Use keyword-only arguments for new parameters: `*, new_param: str = "default"`
|
||||
- Mark experimental features clearly with docstring warnings (using MkDocs Material admonitions, like `!!! warning`)
|
||||
|
||||
Ask: "Would this change break someone's code if they used it last week?"
|
||||
|
||||
### Code quality standards
|
||||
|
||||
All Python code MUST include type hints and return types.
|
||||
|
||||
```python title="Example"
|
||||
def filter_unknown_users(users: list[str], known_users: set[str]) -> list[str]:
|
||||
"""Single line description of the function.
|
||||
|
||||
Any additional context about the function can go here.
|
||||
|
||||
Args:
|
||||
users: List of user identifiers to filter.
|
||||
known_users: Set of known/valid user identifiers.
|
||||
|
||||
Returns:
|
||||
List of users that are not in the known_users set.
|
||||
"""
|
||||
```
|
||||
|
||||
- Use descriptive, self-explanatory variable names.
|
||||
- Follow existing patterns in the codebase you're modifying
|
||||
- Attempt to break up complex functions (>20 lines) into smaller, focused functions where it makes sense
|
||||
|
||||
### Testing requirements
|
||||
|
||||
Every new feature or bugfix MUST be covered by unit tests.
|
||||
|
||||
- Unit tests: `tests/unit_tests/` (no network calls allowed)
|
||||
- Integration tests: `tests/integration_tests/` (network calls permitted)
|
||||
- We use `pytest` as the testing framework; if in doubt, check other existing tests for examples.
|
||||
- The testing file structure should mirror the source code structure.
|
||||
|
||||
**Checklist:**
|
||||
|
||||
- [ ] Tests fail when your new logic is broken
|
||||
- [ ] Happy path is covered
|
||||
- [ ] Edge cases and error conditions are tested
|
||||
- [ ] Use fixtures/mocks for external dependencies
|
||||
- [ ] Tests are deterministic (no flaky tests)
|
||||
- [ ] Does the test suite fail if your new logic is broken?
|
||||
|
||||
### Security and risk assessment
|
||||
|
||||
- No `eval()`, `exec()`, or `pickle` on user-controlled input
|
||||
- Proper exception handling (no bare `except:`) and use a `msg` variable for error messages
|
||||
- Remove unreachable/commented code before committing
|
||||
- Race conditions or resource leaks (file handles, sockets, threads).
|
||||
- Ensure proper resource cleanup (file handles, connections)
|
||||
|
||||
### Documentation standards
|
||||
|
||||
Use Google-style docstrings with Args section for all public functions.
|
||||
|
||||
```python title="Example"
|
||||
def send_email(to: str, msg: str, *, priority: str = "normal") -> bool:
|
||||
"""Send an email to a recipient with specified priority.
|
||||
|
||||
Any additional context about the function can go here.
|
||||
|
||||
Args:
|
||||
to: The email address of the recipient.
|
||||
msg: The message body to send.
|
||||
priority: Email priority level.
|
||||
|
||||
Returns:
|
||||
`True` if email was sent successfully, `False` otherwise.
|
||||
|
||||
Raises:
|
||||
InvalidEmailError: If the email address format is invalid.
|
||||
SMTPConnectionError: If unable to connect to email server.
|
||||
"""
|
||||
```
|
||||
|
||||
- Types go in function signatures, NOT in docstrings
|
||||
- If a default is present, DO NOT repeat it in the docstring unless there is post-processing or it is set conditionally.
|
||||
- Focus on "why" rather than "what" in descriptions
|
||||
- Document all parameters, return values, and exceptions
|
||||
- Keep descriptions concise but clear
|
||||
- Ensure American English spelling (e.g., "behavior", not "behaviour")
|
||||
|
||||
## Additional resources
|
||||
|
||||
- **Documentation:** https://docs.langchain.com/oss/python/langchain/overview and source at https://github.com/langchain-ai/docs or `../docs/`. Prefer the local install and use file search tools for best results. If needed, use the docs MCP server as defined in `.mcp.json` for programmatic access.
|
||||
- **Contributing Guide:** [`.github/CONTRIBUTING.md`](https://docs.langchain.com/oss/python/contributing/overview)
|
||||
@@ -5,4 +5,4 @@ authors:
|
||||
given-names: "Harrison"
|
||||
title: "LangChain"
|
||||
date-released: 2022-10-17
|
||||
url: "https://github.com/langchain-ai/langchain"
|
||||
url: "https://github.com/hwchase17/langchain"
|
||||
|
||||
190
CLAUDE.md
190
CLAUDE.md
@@ -1,190 +0,0 @@
|
||||
# Global development guidelines for the LangChain monorepo
|
||||
|
||||
This document provides context to understand the LangChain Python project and assist with development.
|
||||
|
||||
## Project architecture and context
|
||||
|
||||
### Monorepo structure
|
||||
|
||||
This is a Python monorepo with multiple independently versioned packages that use `uv`.
|
||||
|
||||
```txt
|
||||
langchain/
|
||||
├── libs/
|
||||
│ ├── core/ # `langchain-core` primitives and base abstractions
|
||||
│ ├── langchain/ # `langchain-classic` (legacy, no new features)
|
||||
│ ├── langchain_v1/ # Actively maintained `langchain` package
|
||||
│ ├── partners/ # Third-party integrations
|
||||
│ │ ├── openai/ # OpenAI models and embeddings
|
||||
│ │ ├── anthropic/ # Anthropic (Claude) integration
|
||||
│ │ ├── ollama/ # Local model support
|
||||
│ │ └── ... (other integrations maintained by the LangChain team)
|
||||
│ ├── text-splitters/ # Document chunking utilities
|
||||
│ ├── standard-tests/ # Shared test suite for integrations
|
||||
│ ├── model-profiles/ # Model configuration profiles
|
||||
│ └── cli/ # Command-line interface tools
|
||||
├── .github/ # CI/CD workflows and templates
|
||||
├── .vscode/ # VSCode IDE standard settings and recommended extensions
|
||||
└── README.md # Information about LangChain
|
||||
```
|
||||
|
||||
- **Core layer** (`langchain-core`): Base abstractions, interfaces, and protocols. Users should not need to know about this layer directly.
|
||||
- **Implementation layer** (`langchain`): Concrete implementations and high-level public utilities
|
||||
- **Integration layer** (`partners/`): Third-party service integrations. Note that this monorepo is not exhaustive of all LangChain integrations; some are maintained in separate repos, such as `langchain-ai/langchain-google` and `langchain-ai/langchain-aws`. Usually these repos are cloned at the same level as this monorepo, so if needed, you can refer to their code directly by navigating to `../langchain-google/` from this monorepo.
|
||||
- **Testing layer** (`standard-tests/`): Standardized integration tests for partner integrations
|
||||
|
||||
### Development tools & commands**
|
||||
|
||||
- `uv` – Fast Python package installer and resolver (replaces pip/poetry)
|
||||
- `make` – Task runner for common development commands. Feel free to look at the `Makefile` for available commands and usage patterns.
|
||||
- `ruff` – Fast Python linter and formatter
|
||||
- `mypy` – Static type checking
|
||||
- `pytest` – Testing framework
|
||||
|
||||
This monorepo uses `uv` for dependency management. Local development uses editable installs: `[tool.uv.sources]`
|
||||
|
||||
Each package in `libs/` has its own `pyproject.toml` and `uv.lock`.
|
||||
|
||||
```bash
|
||||
# Run unit tests (no network)
|
||||
make test
|
||||
|
||||
# Run specific test file
|
||||
uv run --group test pytest tests/unit_tests/test_specific.py
|
||||
```
|
||||
|
||||
```bash
|
||||
# Lint code
|
||||
make lint
|
||||
|
||||
# Format code
|
||||
make format
|
||||
|
||||
# Type checking
|
||||
uv run --group lint mypy .
|
||||
```
|
||||
|
||||
#### Key config files
|
||||
|
||||
- pyproject.toml: Main workspace configuration with dependency groups
|
||||
- uv.lock: Locked dependencies for reproducible builds
|
||||
- Makefile: Development tasks
|
||||
|
||||
#### Commit standards
|
||||
|
||||
Suggest PR titles that follow Conventional Commits format. Refer to .github/workflows/pr_lint for allowed types and scopes. Note that all commit/PR titles should be in lowercase with the exception of proper nouns/named entities. All PR titles should include a scope with no exceptions. For example:
|
||||
|
||||
```txt
|
||||
feat(langchain): add new chat completion feature
|
||||
fix(core): resolve type hinting issue in vector store
|
||||
chore(anthropic): update infrastructure dependencies
|
||||
```
|
||||
|
||||
Note how `feat(langchain)` includes a scope even though it is the main package and name of the repo.
|
||||
|
||||
#### Pull request guidelines
|
||||
|
||||
- Always add a disclaimer to the PR description mentioning how AI agents are involved with the contribution.
|
||||
- Describe the "why" of the changes, why the proposed solution is the right one. Limit prose.
|
||||
- Highlight areas of the proposed changes that require careful review.
|
||||
|
||||
## Core development principles
|
||||
|
||||
### Maintain stable public interfaces
|
||||
|
||||
CRITICAL: Always attempt to preserve function signatures, argument positions, and names for exported/public methods. Do not make breaking changes.
|
||||
You should warn the developer for any function signature changes, regardless of whether they look breaking or not.
|
||||
|
||||
**Before making ANY changes to public APIs:**
|
||||
|
||||
- Check if the function/class is exported in `__init__.py`
|
||||
- Look for existing usage patterns in tests and examples
|
||||
- Use keyword-only arguments for new parameters: `*, new_param: str = "default"`
|
||||
- Mark experimental features clearly with docstring warnings (using MkDocs Material admonitions, like `!!! warning`)
|
||||
|
||||
Ask: "Would this change break someone's code if they used it last week?"
|
||||
|
||||
### Code quality standards
|
||||
|
||||
All Python code MUST include type hints and return types.
|
||||
|
||||
```python title="Example"
|
||||
def filter_unknown_users(users: list[str], known_users: set[str]) -> list[str]:
|
||||
"""Single line description of the function.
|
||||
|
||||
Any additional context about the function can go here.
|
||||
|
||||
Args:
|
||||
users: List of user identifiers to filter.
|
||||
known_users: Set of known/valid user identifiers.
|
||||
|
||||
Returns:
|
||||
List of users that are not in the known_users set.
|
||||
"""
|
||||
```
|
||||
|
||||
- Use descriptive, self-explanatory variable names.
|
||||
- Follow existing patterns in the codebase you're modifying
|
||||
- Attempt to break up complex functions (>20 lines) into smaller, focused functions where it makes sense
|
||||
|
||||
### Testing requirements
|
||||
|
||||
Every new feature or bugfix MUST be covered by unit tests.
|
||||
|
||||
- Unit tests: `tests/unit_tests/` (no network calls allowed)
|
||||
- Integration tests: `tests/integration_tests/` (network calls permitted)
|
||||
- We use `pytest` as the testing framework; if in doubt, check other existing tests for examples.
|
||||
- The testing file structure should mirror the source code structure.
|
||||
|
||||
**Checklist:**
|
||||
|
||||
- [ ] Tests fail when your new logic is broken
|
||||
- [ ] Happy path is covered
|
||||
- [ ] Edge cases and error conditions are tested
|
||||
- [ ] Use fixtures/mocks for external dependencies
|
||||
- [ ] Tests are deterministic (no flaky tests)
|
||||
- [ ] Does the test suite fail if your new logic is broken?
|
||||
|
||||
### Security and risk assessment
|
||||
|
||||
- No `eval()`, `exec()`, or `pickle` on user-controlled input
|
||||
- Proper exception handling (no bare `except:`) and use a `msg` variable for error messages
|
||||
- Remove unreachable/commented code before committing
|
||||
- Race conditions or resource leaks (file handles, sockets, threads).
|
||||
- Ensure proper resource cleanup (file handles, connections)
|
||||
|
||||
### Documentation standards
|
||||
|
||||
Use Google-style docstrings with Args section for all public functions.
|
||||
|
||||
```python title="Example"
|
||||
def send_email(to: str, msg: str, *, priority: str = "normal") -> bool:
|
||||
"""Send an email to a recipient with specified priority.
|
||||
|
||||
Any additional context about the function can go here.
|
||||
|
||||
Args:
|
||||
to: The email address of the recipient.
|
||||
msg: The message body to send.
|
||||
priority: Email priority level.
|
||||
|
||||
Returns:
|
||||
`True` if email was sent successfully, `False` otherwise.
|
||||
|
||||
Raises:
|
||||
InvalidEmailError: If the email address format is invalid.
|
||||
SMTPConnectionError: If unable to connect to email server.
|
||||
"""
|
||||
```
|
||||
|
||||
- Types go in function signatures, NOT in docstrings
|
||||
- If a default is present, DO NOT repeat it in the docstring unless there is post-processing or it is set conditionally.
|
||||
- Focus on "why" rather than "what" in descriptions
|
||||
- Document all parameters, return values, and exceptions
|
||||
- Keep descriptions concise but clear
|
||||
- Ensure American English spelling (e.g., "behavior", not "behaviour")
|
||||
|
||||
## Additional resources
|
||||
|
||||
- **Documentation:** https://docs.langchain.com/oss/python/langchain/overview and source at https://github.com/langchain-ai/docs or `../docs/`. Prefer the local install and use file search tools for best results. If needed, use the docs MCP server as defined in `.mcp.json` for programmatic access.
|
||||
- **Contributing Guide:** [`.github/CONTRIBUTING.md`](https://docs.langchain.com/oss/python/contributing/overview)
|
||||
44
Dockerfile
Normal file
44
Dockerfile
Normal file
@@ -0,0 +1,44 @@
|
||||
# This is a Dockerfile for running unit tests
|
||||
|
||||
# Use the Python base image
|
||||
FROM python:3.11.2-bullseye AS builder
|
||||
|
||||
# Define the version of Poetry to install (default is 1.4.2)
|
||||
ARG POETRY_VERSION=1.4.2
|
||||
|
||||
# Define the directory to install Poetry to (default is /opt/poetry)
|
||||
ARG POETRY_HOME=/opt/poetry
|
||||
|
||||
# Create a Python virtual environment for Poetry and install it
|
||||
RUN python3 -m venv ${POETRY_HOME} && \
|
||||
$POETRY_HOME/bin/pip install --upgrade pip && \
|
||||
$POETRY_HOME/bin/pip install poetry==${POETRY_VERSION}
|
||||
|
||||
# Test if Poetry is installed in the expected path
|
||||
RUN echo "Poetry version:" && $POETRY_HOME/bin/poetry --version
|
||||
|
||||
# Set the working directory for the app
|
||||
WORKDIR /app
|
||||
|
||||
# Use a multi-stage build to install dependencies
|
||||
FROM builder AS dependencies
|
||||
|
||||
# Copy only the dependency files for installation
|
||||
COPY pyproject.toml poetry.lock poetry.toml ./
|
||||
|
||||
# Install the Poetry dependencies (this layer will be cached as long as the dependencies don't change)
|
||||
RUN $POETRY_HOME/bin/poetry install --no-interaction --no-ansi --with test
|
||||
|
||||
# Use a multi-stage build to run tests
|
||||
FROM dependencies AS tests
|
||||
|
||||
# Copy the rest of the app source code (this layer will be invalidated and rebuilt whenever the source code changes)
|
||||
COPY . .
|
||||
|
||||
RUN /opt/poetry/bin/poetry install --no-interaction --no-ansi --with test
|
||||
|
||||
# Set the entrypoint to run tests using Poetry
|
||||
ENTRYPOINT ["/opt/poetry/bin/poetry", "run", "pytest"]
|
||||
|
||||
# Set the default command to run all unit tests
|
||||
CMD ["tests/unit_tests"]
|
||||
12
LICENSE
12
LICENSE
@@ -1,6 +1,6 @@
|
||||
MIT License
|
||||
The MIT License
|
||||
|
||||
Copyright (c) LangChain, Inc.
|
||||
Copyright (c) Harrison Chase
|
||||
|
||||
Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
of this software and associated documentation files (the "Software"), to deal
|
||||
@@ -9,13 +9,13 @@ to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||
copies of the Software, and to permit persons to whom the Software is
|
||||
furnished to do so, subject to the following conditions:
|
||||
|
||||
The above copyright notice and this permission notice shall be included in all
|
||||
copies or substantial portions of the Software.
|
||||
The above copyright notice and this permission notice shall be included in
|
||||
all copies or substantial portions of the Software.
|
||||
|
||||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||||
SOFTWARE.
|
||||
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
||||
THE SOFTWARE.
|
||||
62
Makefile
Normal file
62
Makefile
Normal file
@@ -0,0 +1,62 @@
|
||||
.PHONY: all clean format lint test tests test_watch integration_tests docker_tests help
|
||||
|
||||
all: help
|
||||
|
||||
coverage:
|
||||
poetry run pytest --cov \
|
||||
--cov-config=.coveragerc \
|
||||
--cov-report xml \
|
||||
--cov-report term-missing:skip-covered
|
||||
|
||||
clean: docs_clean
|
||||
|
||||
docs_build:
|
||||
cd docs && poetry run make html
|
||||
|
||||
docs_clean:
|
||||
cd docs && poetry run make clean
|
||||
|
||||
docs_linkcheck:
|
||||
poetry run linkchecker docs/_build/html/index.html
|
||||
|
||||
format:
|
||||
poetry run black .
|
||||
poetry run ruff --select I --fix .
|
||||
|
||||
PYTHON_FILES=.
|
||||
lint: PYTHON_FILES=.
|
||||
lint_diff: PYTHON_FILES=$(shell git diff --name-only --diff-filter=d master | grep -E '\.py$$')
|
||||
|
||||
lint lint_diff:
|
||||
poetry run mypy $(PYTHON_FILES)
|
||||
poetry run black $(PYTHON_FILES) --check
|
||||
poetry run ruff .
|
||||
|
||||
test:
|
||||
poetry run pytest tests/unit_tests
|
||||
|
||||
tests:
|
||||
poetry run pytest tests/unit_tests
|
||||
|
||||
test_watch:
|
||||
poetry run ptw --now . -- tests/unit_tests
|
||||
|
||||
integration_tests:
|
||||
poetry run pytest tests/integration_tests
|
||||
|
||||
docker_tests:
|
||||
docker build -t my-langchain-image:test .
|
||||
docker run --rm my-langchain-image:test
|
||||
|
||||
help:
|
||||
@echo '----'
|
||||
@echo 'coverage - run unit tests and generate coverage report'
|
||||
@echo 'docs_build - build the documentation'
|
||||
@echo 'docs_clean - clean the documentation build artifacts'
|
||||
@echo 'docs_linkcheck - run linkchecker on the documentation'
|
||||
@echo 'format - run code formatters'
|
||||
@echo 'lint - run linters'
|
||||
@echo 'test - run unit tests'
|
||||
@echo 'test_watch - run unit tests in watch mode'
|
||||
@echo 'integration_tests - run integration tests'
|
||||
@echo 'docker_tests - run unit tests in docker'
|
||||
119
README.md
119
README.md
@@ -1,75 +1,84 @@
|
||||
<div align="center">
|
||||
<a href="https://www.langchain.com/">
|
||||
<picture>
|
||||
<source media="(prefers-color-scheme: light)" srcset=".github/images/logo-dark.svg">
|
||||
<source media="(prefers-color-scheme: dark)" srcset=".github/images/logo-light.svg">
|
||||
<img alt="LangChain Logo" src=".github/images/logo-dark.svg" width="80%">
|
||||
</picture>
|
||||
</a>
|
||||
</div>
|
||||
# 🦜️🔗 LangChain
|
||||
|
||||
<div align="center">
|
||||
<h3>The platform for reliable agents.</h3>
|
||||
</div>
|
||||
⚡ Building applications with LLMs through composability ⚡
|
||||
|
||||
<div align="center">
|
||||
<a href="https://opensource.org/licenses/MIT" target="_blank"><img src="https://img.shields.io/pypi/l/langchain" alt="PyPI - License"></a>
|
||||
<a href="https://pypistats.org/packages/langchain" target="_blank"><img src="https://img.shields.io/pepy/dt/langchain" alt="PyPI - Downloads"></a>
|
||||
<a href="https://pypi.org/project/langchain/#history" target="_blank"><img src="https://img.shields.io/pypi/v/langchain?label=%20" alt="Version"></a>
|
||||
<a href="https://vscode.dev/redirect?url=vscode://ms-vscode-remote.remote-containers/cloneInVolume?url=https://github.com/langchain-ai/langchain" target="_blank"><img src="https://img.shields.io/static/v1?label=Dev%20Containers&message=Open&color=blue&logo=visualstudiocode" alt="Open in Dev Containers"></a>
|
||||
<a href="https://codespaces.new/langchain-ai/langchain" target="_blank"><img src="https://github.com/codespaces/badge.svg" alt="Open in Github Codespace" title="Open in Github Codespace" width="150" height="20"></a>
|
||||
<a href="https://codspeed.io/langchain-ai/langchain" target="_blank"><img src="https://img.shields.io/endpoint?url=https://codspeed.io/badge.json" alt="CodSpeed Badge"></a>
|
||||
<a href="https://x.com/langchain" target="_blank"><img src="https://img.shields.io/twitter/url/https/twitter.com/langchain.svg?style=social&label=Follow%20%40LangChain" alt="Twitter / X"></a>
|
||||
</div>
|
||||
[](https://github.com/hwchase17/langchain/actions/workflows/lint.yml) [](https://github.com/hwchase17/langchain/actions/workflows/test.yml) [](https://github.com/hwchase17/langchain/actions/workflows/linkcheck.yml) [](https://pepy.tech/project/langchain) [](https://opensource.org/licenses/MIT) [](https://twitter.com/langchainai) [](https://discord.gg/6adMQxSpJS)
|
||||
|
||||
LangChain is a framework for building agents and LLM-powered applications. It helps you chain together interoperable components and third-party integrations to simplify AI application development – all while future-proofing decisions as the underlying technology evolves.
|
||||
**Production Support:** As you move your LangChains into production, we'd love to offer more comprehensive support.
|
||||
Please fill out [this form](https://forms.gle/57d8AmXBYp8PP8tZA) and we'll set up a dedicated support Slack channel.
|
||||
|
||||
```bash
|
||||
pip install langchain
|
||||
```
|
||||
## Quick Install
|
||||
|
||||
If you're looking for more advanced customization or agent orchestration, check out [LangGraph](https://docs.langchain.com/oss/python/langgraph/overview), our framework for building controllable agent workflows.
|
||||
`pip install langchain`
|
||||
or
|
||||
`conda install langchain -c conda-forge`
|
||||
|
||||
---
|
||||
## 🤔 What is this?
|
||||
|
||||
**Documentation**:
|
||||
Large language models (LLMs) are emerging as a transformative technology, enabling
|
||||
developers to build applications that they previously could not.
|
||||
But using these LLMs in isolation is often not enough to
|
||||
create a truly powerful app - the real power comes when you can combine them with other sources of computation or knowledge.
|
||||
|
||||
- [docs.langchain.com](https://docs.langchain.com/oss/python/langchain/overview) – Comprehensive documentation, including conceptual overviews and guides
|
||||
- [reference.langchain.com/python](https://reference.langchain.com/python) – API reference docs for LangChain packages
|
||||
This library is aimed at assisting in the development of those types of applications. Common examples of these types of applications include:
|
||||
|
||||
**Discussions**: Visit the [LangChain Forum](https://forum.langchain.com) to connect with the community and share all of your technical questions, ideas, and feedback.
|
||||
**❓ Question Answering over specific documents**
|
||||
|
||||
> [!NOTE]
|
||||
> Looking for the JS/TS library? Check out [LangChain.js](https://github.com/langchain-ai/langchainjs).
|
||||
- [Documentation](https://langchain.readthedocs.io/en/latest/use_cases/question_answering.html)
|
||||
- End-to-end Example: [Question Answering over Notion Database](https://github.com/hwchase17/notion-qa)
|
||||
|
||||
## Why use LangChain?
|
||||
**💬 Chatbots**
|
||||
|
||||
LangChain helps developers build applications powered by LLMs through a standard interface for models, embeddings, vector stores, and more.
|
||||
- [Documentation](https://langchain.readthedocs.io/en/latest/use_cases/chatbots.html)
|
||||
- End-to-end Example: [Chat-LangChain](https://github.com/hwchase17/chat-langchain)
|
||||
|
||||
Use LangChain for:
|
||||
**🤖 Agents**
|
||||
|
||||
- **Real-time data augmentation**. Easily connect LLMs to diverse data sources and external/internal systems, drawing from LangChain's vast library of integrations with model providers, tools, vector stores, retrievers, and more.
|
||||
- **Model interoperability**. Swap models in and out as your engineering team experiments to find the best choice for your application's needs. As the industry frontier evolves, adapt quickly – LangChain's abstractions keep you moving without losing momentum.
|
||||
- **Rapid prototyping**. Quickly build and iterate on LLM applications with LangChain's modular, component-based architecture. Test different approaches and workflows without rebuilding from scratch, accelerating your development cycle.
|
||||
- **Production-ready features**. Deploy reliable applications with built-in support for monitoring, evaluation, and debugging through integrations like LangSmith. Scale with confidence using battle-tested patterns and best practices.
|
||||
- **Vibrant community and ecosystem**. Leverage a rich ecosystem of integrations, templates, and community-contributed components. Benefit from continuous improvements and stay up-to-date with the latest AI developments through an active open-source community.
|
||||
- **Flexible abstraction layers**. Work at the level of abstraction that suits your needs - from high-level chains for quick starts to low-level components for fine-grained control. LangChain grows with your application's complexity.
|
||||
- [Documentation](https://langchain.readthedocs.io/en/latest/modules/agents.html)
|
||||
- End-to-end Example: [GPT+WolframAlpha](https://huggingface.co/spaces/JavaFXpert/Chat-GPT-LangChain)
|
||||
|
||||
## LangChain ecosystem
|
||||
## 📖 Documentation
|
||||
|
||||
While the LangChain framework can be used standalone, it also integrates seamlessly with any LangChain product, giving developers a full suite of tools when building LLM applications.
|
||||
Please see [here](https://langchain.readthedocs.io/en/latest/?) for full documentation on:
|
||||
|
||||
To improve your LLM application development, pair LangChain with:
|
||||
- Getting started (installation, setting up the environment, simple examples)
|
||||
- How-To examples (demos, integrations, helper functions)
|
||||
- Reference (full API docs)
|
||||
- Resources (high-level explanation of core concepts)
|
||||
|
||||
- [LangGraph](https://docs.langchain.com/oss/python/langgraph/overview) – Build agents that can reliably handle complex tasks with LangGraph, our low-level agent orchestration framework. LangGraph offers customizable architecture, long-term memory, and human-in-the-loop workflows – and is trusted in production by companies like LinkedIn, Uber, Klarna, and GitLab.
|
||||
- [Integrations](https://docs.langchain.com/oss/python/integrations/providers/overview) – List of LangChain integrations, including chat & embedding models, tools & toolkits, and more
|
||||
- [LangSmith](https://www.langchain.com/langsmith) – Helpful for agent evals and observability. Debug poor-performing LLM app runs, evaluate agent trajectories, gain visibility in production, and improve performance over time.
|
||||
- [LangSmith Deployment](https://docs.langchain.com/langsmith/deployments) – Deploy and scale agents effortlessly with a purpose-built deployment platform for long-running, stateful workflows. Discover, reuse, configure, and share agents across teams – and iterate quickly with visual prototyping in [LangSmith Studio](https://docs.langchain.com/langsmith/studio).
|
||||
- [Deep Agents](https://github.com/langchain-ai/deepagents) *(new!)* – Build agents that can plan, use subagents, and leverage file systems for complex tasks
|
||||
## 🚀 What can this help with?
|
||||
|
||||
## Additional resources
|
||||
There are six main areas that LangChain is designed to help with.
|
||||
These are, in increasing order of complexity:
|
||||
|
||||
- [API Reference](https://reference.langchain.com/python) – Detailed reference on navigating base packages and integrations for LangChain.
|
||||
- [Contributing Guide](https://docs.langchain.com/oss/python/contributing/overview) – Learn how to contribute to LangChain projects and find good first issues.
|
||||
- [Code of Conduct](https://github.com/langchain-ai/langchain/?tab=coc-ov-file) – Our community guidelines and standards for participation.
|
||||
- [LangChain Academy](https://academy.langchain.com/) – Comprehensive, free courses on LangChain libraries and products, made by the LangChain team.
|
||||
**📃 LLMs and Prompts:**
|
||||
|
||||
This includes prompt management, prompt optimization, generic interface for all LLMs, and common utilities for working with LLMs.
|
||||
|
||||
**🔗 Chains:**
|
||||
|
||||
Chains go beyond just a single LLM call, and are sequences of calls (whether to an LLM or a different utility). LangChain provides a standard interface for chains, lots of integrations with other tools, and end-to-end chains for common applications.
|
||||
|
||||
**📚 Data Augmented Generation:**
|
||||
|
||||
Data Augmented Generation involves specific types of chains that first interact with an external datasource to fetch data to use in the generation step. Examples of this include summarization of long pieces of text and question/answering over specific data sources.
|
||||
|
||||
**🤖 Agents:**
|
||||
|
||||
Agents involve an LLM making decisions about which Actions to take, taking that Action, seeing an Observation, and repeating that until done. LangChain provides a standard interface for agents, a selection of agents to choose from, and examples of end to end agents.
|
||||
|
||||
**🧠 Memory:**
|
||||
|
||||
Memory is the concept of persisting state between calls of a chain/agent. LangChain provides a standard interface for memory, a collection of memory implementations, and examples of chains/agents that use memory.
|
||||
|
||||
**🧐 Evaluation:**
|
||||
|
||||
[BETA] Generative models are notoriously hard to evaluate with traditional metrics. One new way of evaluating them is using language models themselves to do the evaluation. LangChain provides some prompts/chains for assisting in this.
|
||||
|
||||
For more information on these concepts, please see our [full documentation](https://langchain.readthedocs.io/en/latest/).
|
||||
|
||||
## 💁 Contributing
|
||||
|
||||
As an open source project in a rapidly developing field, we are extremely open to contributions, whether it be in the form of a new feature, improved infra, or better documentation.
|
||||
|
||||
For detailed information on how to contribute, see [here](.github/CONTRIBUTING.md).
|
||||
|
||||
21
docs/Makefile
Normal file
21
docs/Makefile
Normal file
@@ -0,0 +1,21 @@
|
||||
# Minimal makefile for Sphinx documentation
|
||||
#
|
||||
|
||||
# You can set these variables from the command line, and also
|
||||
# from the environment for the first two.
|
||||
SPHINXOPTS ?=
|
||||
SPHINXBUILD ?= sphinx-build
|
||||
SPHINXAUTOBUILD ?= sphinx-autobuild
|
||||
SOURCEDIR = .
|
||||
BUILDDIR = _build
|
||||
|
||||
# Put it first so that "make" without argument is like "make help".
|
||||
help:
|
||||
@$(SPHINXBUILD) -M help "$(SOURCEDIR)" "$(BUILDDIR)" $(SPHINXOPTS) $(O)
|
||||
|
||||
.PHONY: help Makefile
|
||||
|
||||
# Catch-all target: route all unknown targets to Sphinx using the new
|
||||
# "make mode" option. $(O) is meant as a shortcut for $(SPHINXOPTS).
|
||||
%: Makefile
|
||||
@$(SPHINXBUILD) -M $@ "$(SOURCEDIR)" "$(BUILDDIR)" $(SPHINXOPTS) $(O)
|
||||
BIN
docs/_static/ApifyActors.png
vendored
Normal file
BIN
docs/_static/ApifyActors.png
vendored
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 559 KiB |
BIN
docs/_static/DataberryDashboard.png
vendored
Normal file
BIN
docs/_static/DataberryDashboard.png
vendored
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 157 KiB |
BIN
docs/_static/HeliconeDashboard.png
vendored
Normal file
BIN
docs/_static/HeliconeDashboard.png
vendored
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 235 KiB |
BIN
docs/_static/HeliconeKeys.png
vendored
Normal file
BIN
docs/_static/HeliconeKeys.png
vendored
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 148 KiB |
17
docs/_static/css/custom.css
vendored
Normal file
17
docs/_static/css/custom.css
vendored
Normal file
@@ -0,0 +1,17 @@
|
||||
pre {
|
||||
white-space: break-spaces;
|
||||
}
|
||||
|
||||
@media (min-width: 1200px) {
|
||||
.container,
|
||||
.container-lg,
|
||||
.container-md,
|
||||
.container-sm,
|
||||
.container-xl {
|
||||
max-width: 2560px !important;
|
||||
}
|
||||
}
|
||||
|
||||
#my-component-root *, #headlessui-portal-root * {
|
||||
z-index: 1000000000000;
|
||||
}
|
||||
58
docs/_static/js/mendablesearch.js
vendored
Normal file
58
docs/_static/js/mendablesearch.js
vendored
Normal file
@@ -0,0 +1,58 @@
|
||||
document.addEventListener('DOMContentLoaded', () => {
|
||||
// Load the external dependencies
|
||||
function loadScript(src, onLoadCallback) {
|
||||
const script = document.createElement('script');
|
||||
script.src = src;
|
||||
script.onload = onLoadCallback;
|
||||
document.head.appendChild(script);
|
||||
}
|
||||
|
||||
function createRootElement() {
|
||||
const rootElement = document.createElement('div');
|
||||
rootElement.id = 'my-component-root';
|
||||
document.body.appendChild(rootElement);
|
||||
return rootElement;
|
||||
}
|
||||
|
||||
|
||||
|
||||
function initializeMendable() {
|
||||
const rootElement = createRootElement();
|
||||
const { MendableFloatingButton } = Mendable;
|
||||
|
||||
|
||||
const iconSpan1 = React.createElement('span', {
|
||||
}, '🦜');
|
||||
|
||||
const iconSpan2 = React.createElement('span', {
|
||||
}, '🔗');
|
||||
|
||||
const icon = React.createElement('p', {
|
||||
style: { color: '#ffffff', fontSize: '22px',width: '48px', height: '48px', margin: '0px', padding: '0px', display: 'flex', alignItems: 'center', justifyContent: 'center', textAlign: 'center' },
|
||||
}, [iconSpan1, iconSpan2]);
|
||||
|
||||
|
||||
|
||||
|
||||
const mendableFloatingButton = React.createElement(
|
||||
MendableFloatingButton,
|
||||
{
|
||||
style: { darkMode: false, accentColor: '#010810' },
|
||||
floatingButtonStyle: { color: '#ffffff', backgroundColor: '#010810' },
|
||||
anon_key: '82842b36-3ea6-49b2-9fb8-52cfc4bde6bf', // Mendable Search Public ANON key, ok to be public
|
||||
messageSettings: {
|
||||
openSourcesInNewTab: false,
|
||||
},
|
||||
icon: icon,
|
||||
}
|
||||
);
|
||||
|
||||
ReactDOM.render(mendableFloatingButton, rootElement);
|
||||
}
|
||||
|
||||
loadScript('https://unpkg.com/react@17/umd/react.production.min.js', () => {
|
||||
loadScript('https://unpkg.com/react-dom@17/umd/react-dom.production.min.js', () => {
|
||||
loadScript('https://unpkg.com/@mendable/search@0.0.83/dist/umd/mendable.min.js', initializeMendable);
|
||||
});
|
||||
});
|
||||
});
|
||||
112
docs/conf.py
Normal file
112
docs/conf.py
Normal file
@@ -0,0 +1,112 @@
|
||||
"""Configuration file for the Sphinx documentation builder."""
|
||||
# Configuration file for the Sphinx documentation builder.
|
||||
#
|
||||
# This file only contains a selection of the most common options. For a full
|
||||
# list see the documentation:
|
||||
# https://www.sphinx-doc.org/en/master/usage/configuration.html
|
||||
|
||||
# -- Path setup --------------------------------------------------------------
|
||||
|
||||
# If extensions (or modules to document with autodoc) are in another directory,
|
||||
# add these directories to sys.path here. If the directory is relative to the
|
||||
# documentation root, use os.path.abspath to make it absolute, like shown here.
|
||||
#
|
||||
# import os
|
||||
# import sys
|
||||
# sys.path.insert(0, os.path.abspath('.'))
|
||||
|
||||
import toml
|
||||
|
||||
with open("../pyproject.toml") as f:
|
||||
data = toml.load(f)
|
||||
|
||||
# -- Project information -----------------------------------------------------
|
||||
|
||||
project = "🦜🔗 LangChain"
|
||||
copyright = "2023, Harrison Chase"
|
||||
author = "Harrison Chase"
|
||||
|
||||
version = data["tool"]["poetry"]["version"]
|
||||
release = version
|
||||
|
||||
html_title = project + " " + version
|
||||
html_last_updated_fmt = "%b %d, %Y"
|
||||
|
||||
|
||||
# -- General configuration ---------------------------------------------------
|
||||
|
||||
# Add any Sphinx extension module names here, as strings. They can be
|
||||
# extensions coming with Sphinx (named 'sphinx.ext.*') or your custom
|
||||
# ones.
|
||||
extensions = [
|
||||
"sphinx.ext.autodoc",
|
||||
"sphinx.ext.autodoc.typehints",
|
||||
"sphinx.ext.autosummary",
|
||||
"sphinx.ext.napoleon",
|
||||
"sphinx.ext.viewcode",
|
||||
"sphinxcontrib.autodoc_pydantic",
|
||||
"myst_nb",
|
||||
"sphinx_copybutton",
|
||||
"sphinx_panels",
|
||||
"IPython.sphinxext.ipython_console_highlighting",
|
||||
]
|
||||
source_suffix = [".ipynb", ".html", ".md", ".rst"]
|
||||
|
||||
autodoc_pydantic_model_show_json = False
|
||||
autodoc_pydantic_field_list_validators = False
|
||||
autodoc_pydantic_config_members = False
|
||||
autodoc_pydantic_model_show_config_summary = False
|
||||
autodoc_pydantic_model_show_validator_members = False
|
||||
autodoc_pydantic_model_show_field_summary = False
|
||||
autodoc_pydantic_model_members = False
|
||||
autodoc_pydantic_model_undoc_members = False
|
||||
# autodoc_typehints = "signature"
|
||||
# autodoc_typehints = "description"
|
||||
|
||||
# Add any paths that contain templates here, relative to this directory.
|
||||
templates_path = ["_templates"]
|
||||
|
||||
# List of patterns, relative to source directory, that match files and
|
||||
# directories to ignore when looking for source files.
|
||||
# This pattern also affects html_static_path and html_extra_path.
|
||||
exclude_patterns = ["_build", "Thumbs.db", ".DS_Store"]
|
||||
|
||||
|
||||
# -- Options for HTML output -------------------------------------------------
|
||||
|
||||
# The theme to use for HTML and HTML Help pages. See the documentation for
|
||||
# a list of builtin themes.
|
||||
#
|
||||
html_theme = "sphinx_book_theme"
|
||||
|
||||
html_theme_options = {
|
||||
"path_to_docs": "docs",
|
||||
"repository_url": "https://github.com/hwchase17/langchain",
|
||||
"use_repository_button": True,
|
||||
}
|
||||
|
||||
html_context = {
|
||||
"display_github": True, # Integrate GitHub
|
||||
"github_user": "hwchase17", # Username
|
||||
"github_repo": "langchain", # Repo name
|
||||
"github_version": "master", # Version
|
||||
"conf_py_path": "/docs/", # Path in the checkout to the docs root
|
||||
}
|
||||
|
||||
# Add any paths that contain custom static files (such as style sheets) here,
|
||||
# relative to this directory. They are copied after the builtin static files,
|
||||
# so a file named "default.css" will overwrite the builtin "default.css".
|
||||
html_static_path = ["_static"]
|
||||
|
||||
# These paths are either relative to html_static_path
|
||||
# or fully qualified paths (eg. https://...)
|
||||
html_css_files = [
|
||||
"css/custom.css",
|
||||
]
|
||||
|
||||
html_js_files = [
|
||||
"js/mendablesearch.js",
|
||||
]
|
||||
|
||||
nb_execution_mode = "off"
|
||||
myst_enable_extensions = ["colon_fence"]
|
||||
55
docs/deployments.md
Normal file
55
docs/deployments.md
Normal file
@@ -0,0 +1,55 @@
|
||||
# Deployments
|
||||
|
||||
So you've made a really cool chain - now what? How do you deploy it and make it easily sharable with the world?
|
||||
|
||||
This section covers several options for that.
|
||||
Note that these are meant as quick deployment options for prototypes and demos, and not for production systems.
|
||||
If you are looking for help with deployment of a production system, please contact us directly.
|
||||
|
||||
What follows is a list of template GitHub repositories aimed that are intended to be
|
||||
very easy to fork and modify to use your chain.
|
||||
This is far from an exhaustive list of options, and we are EXTREMELY open to contributions here.
|
||||
|
||||
## [Streamlit](https://github.com/hwchase17/langchain-streamlit-template)
|
||||
|
||||
This repo serves as a template for how to deploy a LangChain with Streamlit.
|
||||
It implements a chatbot interface.
|
||||
It also contains instructions for how to deploy this app on the Streamlit platform.
|
||||
|
||||
## [Gradio (on Hugging Face)](https://github.com/hwchase17/langchain-gradio-template)
|
||||
|
||||
This repo serves as a template for how deploy a LangChain with Gradio.
|
||||
It implements a chatbot interface, with a "Bring-Your-Own-Token" approach (nice for not wracking up big bills).
|
||||
It also contains instructions for how to deploy this app on the Hugging Face platform.
|
||||
This is heavily influenced by James Weaver's [excellent examples](https://huggingface.co/JavaFXpert).
|
||||
|
||||
## [Beam](https://github.com/slai-labs/get-beam/tree/main/examples/langchain-question-answering)
|
||||
|
||||
This repo serves as a template for how deploy a LangChain with [Beam](https://beam.cloud).
|
||||
|
||||
It implements a Question Answering app and contains instructions for deploying the app as a serverless REST API.
|
||||
|
||||
## [Vercel](https://github.com/homanp/vercel-langchain)
|
||||
|
||||
A minimal example on how to run LangChain on Vercel using Flask.
|
||||
|
||||
## [Digitalocean App Platform](https://github.com/homanp/digitalocean-langchain)
|
||||
|
||||
A minimal example on how to deploy LangChain to DigitalOcean App Platform.
|
||||
|
||||
## [Google Cloud Run](https://github.com/homanp/gcp-langchain)
|
||||
|
||||
A minimal example on how to deploy LangChain to Google Cloud Run.
|
||||
|
||||
## [SteamShip](https://github.com/steamship-core/steamship-langchain/)
|
||||
|
||||
This repository contains LangChain adapters for Steamship, enabling LangChain developers to rapidly deploy their apps on Steamship.
|
||||
This includes: production ready endpoints, horizontal scaling across dependencies, persistant storage of app state, multi-tenancy support, etc.
|
||||
|
||||
## [Langchain-serve](https://github.com/jina-ai/langchain-serve)
|
||||
|
||||
This repository allows users to serve local chains and agents as RESTful, gRPC, or Websocket APIs thanks to [Jina](https://docs.jina.ai/). Deploy your chains & agents with ease and enjoy independent scaling, serverless and autoscaling APIs, as well as a Streamlit playground on Jina AI Cloud.
|
||||
|
||||
## [BentoML](https://github.com/ssheng/BentoChain)
|
||||
|
||||
This repository provides an example of how to deploy a LangChain application with [BentoML](https://github.com/bentoml/BentoML). BentoML is a framework that enables the containerization of machine learning applications as standard OCI images. BentoML also allows for the automatic generation of OpenAPI and gRPC endpoints. With BentoML, you can integrate models from all popular ML frameworks and deploy them as microservices running on the most optimal hardware and scaling independently.
|
||||
29
docs/ecosystem.rst
Normal file
29
docs/ecosystem.rst
Normal file
@@ -0,0 +1,29 @@
|
||||
LangChain Ecosystem
|
||||
===================
|
||||
|
||||
Guides for how other companies/products can be used with LangChain
|
||||
|
||||
Groups
|
||||
----------
|
||||
|
||||
LangChain provides integration with many LLMs and systems:
|
||||
|
||||
- `LLM Providers <./modules/models/llms/integrations.html>`_
|
||||
- `Chat Model Providers <./modules/models/chat/integrations.html>`_
|
||||
- `Text Embedding Model Providers <./modules/models/text_embedding.html>`_
|
||||
- `Document Loader Integrations <./modules/indexes/document_loaders.html>`_
|
||||
- `Text Splitter Integrations <./modules/indexes/text_splitters.html>`_
|
||||
- `Vectorstore Providers <./modules/indexes/vectorstores.html>`_
|
||||
- `Retriever Providers <./modules/indexes/retrievers.html>`_
|
||||
- `Tool Providers <./modules/agents/tools.html>`_
|
||||
- `Toolkit Integrations <./modules/agents/toolkits.html>`_
|
||||
|
||||
Companies / Products
|
||||
----------
|
||||
|
||||
|
||||
.. toctree::
|
||||
:maxdepth: 1
|
||||
:glob:
|
||||
|
||||
ecosystem/*
|
||||
16
docs/ecosystem/ai21.md
Normal file
16
docs/ecosystem/ai21.md
Normal file
@@ -0,0 +1,16 @@
|
||||
# AI21 Labs
|
||||
|
||||
This page covers how to use the AI21 ecosystem within LangChain.
|
||||
It is broken into two parts: installation and setup, and then references to specific AI21 wrappers.
|
||||
|
||||
## Installation and Setup
|
||||
- Get an AI21 api key and set it as an environment variable (`AI21_API_KEY`)
|
||||
|
||||
## Wrappers
|
||||
|
||||
### LLM
|
||||
|
||||
There exists an AI21 LLM wrapper, which you can access with
|
||||
```python
|
||||
from langchain.llms import AI21
|
||||
```
|
||||
293
docs/ecosystem/aim_tracking.ipynb
Normal file
293
docs/ecosystem/aim_tracking.ipynb
Normal file
@@ -0,0 +1,293 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Aim\n",
|
||||
"\n",
|
||||
"Aim makes it super easy to visualize and debug LangChain executions. Aim tracks inputs and outputs of LLMs and tools, as well as actions of agents. \n",
|
||||
"\n",
|
||||
"With Aim, you can easily debug and examine an individual execution:\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"Additionally, you have the option to compare multiple executions side by side:\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"Aim is fully open source, [learn more](https://github.com/aimhubio/aim) about Aim on GitHub.\n",
|
||||
"\n",
|
||||
"Let's move forward and see how to enable and configure Aim callback."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"<h3>Tracking LangChain Executions with Aim</h3>"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"In this notebook we will explore three usage scenarios. To start off, we will install the necessary packages and import certain modules. Subsequently, we will configure two environment variables that can be established either within the Python script or through the terminal."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"id": "mf88kuCJhbVu"
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"!pip install aim\n",
|
||||
"!pip install langchain\n",
|
||||
"!pip install openai\n",
|
||||
"!pip install google-search-results"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"id": "g4eTuajwfl6L"
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import os\n",
|
||||
"from datetime import datetime\n",
|
||||
"\n",
|
||||
"from langchain.llms import OpenAI\n",
|
||||
"from langchain.callbacks.base import CallbackManager\n",
|
||||
"from langchain.callbacks import AimCallbackHandler, StdOutCallbackHandler"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Our examples use a GPT model as the LLM, and OpenAI offers an API for this purpose. You can obtain the key from the following link: https://platform.openai.com/account/api-keys .\n",
|
||||
"\n",
|
||||
"We will use the SerpApi to retrieve search results from Google. To acquire the SerpApi key, please go to https://serpapi.com/manage-api-key ."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"id": "T1bSmKd6V2If"
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"os.environ[\"OPENAI_API_KEY\"] = \"...\"\n",
|
||||
"os.environ[\"SERPAPI_API_KEY\"] = \"...\""
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"id": "QenUYuBZjIzc"
|
||||
},
|
||||
"source": [
|
||||
"The event methods of `AimCallbackHandler` accept the LangChain module or agent as input and log at least the prompts and generated results, as well as the serialized version of the LangChain module, to the designated Aim run."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"id": "KAz8weWuUeXF"
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"session_group = datetime.now().strftime(\"%m.%d.%Y_%H.%M.%S\")\n",
|
||||
"aim_callback = AimCallbackHandler(\n",
|
||||
" repo=\".\",\n",
|
||||
" experiment_name=\"scenario 1: OpenAI LLM\",\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"manager = CallbackManager([StdOutCallbackHandler(), aim_callback])\n",
|
||||
"llm = OpenAI(temperature=0, callback_manager=manager, verbose=True)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"id": "b8WfByB4fl6N"
|
||||
},
|
||||
"source": [
|
||||
"The `flush_tracker` function is used to record LangChain assets on Aim. By default, the session is reset rather than being terminated outright."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"<h3>Scenario 1</h3> In the first scenario, we will use OpenAI LLM."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"id": "o_VmneyIUyx8"
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# scenario 1 - LLM\n",
|
||||
"llm_result = llm.generate([\"Tell me a joke\", \"Tell me a poem\"] * 3)\n",
|
||||
"aim_callback.flush_tracker(\n",
|
||||
" langchain_asset=llm,\n",
|
||||
" experiment_name=\"scenario 2: Chain with multiple SubChains on multiple generations\",\n",
|
||||
")\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"<h3>Scenario 2</h3> Scenario two involves chaining with multiple SubChains across multiple generations."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"id": "trxslyb1U28Y"
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain.prompts import PromptTemplate\n",
|
||||
"from langchain.chains import LLMChain"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"id": "uauQk10SUzF6"
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# scenario 2 - Chain\n",
|
||||
"template = \"\"\"You are a playwright. Given the title of play, it is your job to write a synopsis for that title.\n",
|
||||
"Title: {title}\n",
|
||||
"Playwright: This is a synopsis for the above play:\"\"\"\n",
|
||||
"prompt_template = PromptTemplate(input_variables=[\"title\"], template=template)\n",
|
||||
"synopsis_chain = LLMChain(llm=llm, prompt=prompt_template, callback_manager=manager)\n",
|
||||
"\n",
|
||||
"test_prompts = [\n",
|
||||
" {\"title\": \"documentary about good video games that push the boundary of game design\"},\n",
|
||||
" {\"title\": \"the phenomenon behind the remarkable speed of cheetahs\"},\n",
|
||||
" {\"title\": \"the best in class mlops tooling\"},\n",
|
||||
"]\n",
|
||||
"synopsis_chain.apply(test_prompts)\n",
|
||||
"aim_callback.flush_tracker(\n",
|
||||
" langchain_asset=synopsis_chain, experiment_name=\"scenario 3: Agent with Tools\"\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"<h3>Scenario 3</h3> The third scenario involves an agent with tools."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"id": "_jN73xcPVEpI"
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain.agents import initialize_agent, load_tools\n",
|
||||
"from langchain.agents import AgentType"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"colab": {
|
||||
"base_uri": "https://localhost:8080/"
|
||||
},
|
||||
"id": "Gpq4rk6VT9cu",
|
||||
"outputId": "68ae261e-d0a2-4229-83c4-762562263b66"
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"\n",
|
||||
"\n",
|
||||
"\u001b[1m> Entering new AgentExecutor chain...\u001b[0m\n",
|
||||
"\u001b[32;1m\u001b[1;3m I need to find out who Leo DiCaprio's girlfriend is and then calculate her age raised to the 0.43 power.\n",
|
||||
"Action: Search\n",
|
||||
"Action Input: \"Leo DiCaprio girlfriend\"\u001b[0m\n",
|
||||
"Observation: \u001b[36;1m\u001b[1;3mLeonardo DiCaprio seemed to prove a long-held theory about his love life right after splitting from girlfriend Camila Morrone just months ...\u001b[0m\n",
|
||||
"Thought:\u001b[32;1m\u001b[1;3m I need to find out Camila Morrone's age\n",
|
||||
"Action: Search\n",
|
||||
"Action Input: \"Camila Morrone age\"\u001b[0m\n",
|
||||
"Observation: \u001b[36;1m\u001b[1;3m25 years\u001b[0m\n",
|
||||
"Thought:\u001b[32;1m\u001b[1;3m I need to calculate 25 raised to the 0.43 power\n",
|
||||
"Action: Calculator\n",
|
||||
"Action Input: 25^0.43\u001b[0m\n",
|
||||
"Observation: \u001b[33;1m\u001b[1;3mAnswer: 3.991298452658078\n",
|
||||
"\u001b[0m\n",
|
||||
"Thought:\u001b[32;1m\u001b[1;3m I now know the final answer\n",
|
||||
"Final Answer: Camila Morrone is Leo DiCaprio's girlfriend and her current age raised to the 0.43 power is 3.991298452658078.\u001b[0m\n",
|
||||
"\n",
|
||||
"\u001b[1m> Finished chain.\u001b[0m\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"# scenario 3 - Agent with Tools\n",
|
||||
"tools = load_tools([\"serpapi\", \"llm-math\"], llm=llm, callback_manager=manager)\n",
|
||||
"agent = initialize_agent(\n",
|
||||
" tools,\n",
|
||||
" llm,\n",
|
||||
" agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION,\n",
|
||||
" callback_manager=manager,\n",
|
||||
" verbose=True,\n",
|
||||
")\n",
|
||||
"agent.run(\n",
|
||||
" \"Who is Leo DiCaprio's girlfriend? What is her current age raised to the 0.43 power?\"\n",
|
||||
")\n",
|
||||
"aim_callback.flush_tracker(langchain_asset=agent, reset=False, finish=True)"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"accelerator": "GPU",
|
||||
"colab": {
|
||||
"provenance": []
|
||||
},
|
||||
"gpuClass": "standard",
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3 (ipykernel)",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.9.1"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 1
|
||||
}
|
||||
15
docs/ecosystem/analyticdb.md
Normal file
15
docs/ecosystem/analyticdb.md
Normal file
@@ -0,0 +1,15 @@
|
||||
# AnalyticDB
|
||||
|
||||
This page covers how to use the AnalyticDB ecosystem within LangChain.
|
||||
|
||||
### VectorStore
|
||||
|
||||
There exists a wrapper around AnalyticDB, allowing you to use it as a vectorstore,
|
||||
whether for semantic search or example selection.
|
||||
|
||||
To import this vectorstore:
|
||||
```python
|
||||
from langchain.vectorstores import AnalyticDB
|
||||
```
|
||||
|
||||
For a more detailed walkthrough of the AnalyticDB wrapper, see [this notebook](../modules/indexes/vectorstores/examples/analyticdb.ipynb)
|
||||
46
docs/ecosystem/apify.md
Normal file
46
docs/ecosystem/apify.md
Normal file
@@ -0,0 +1,46 @@
|
||||
# Apify
|
||||
|
||||
This page covers how to use [Apify](https://apify.com) within LangChain.
|
||||
|
||||
## Overview
|
||||
|
||||
Apify is a cloud platform for web scraping and data extraction,
|
||||
which provides an [ecosystem](https://apify.com/store) of more than a thousand
|
||||
ready-made apps called *Actors* for various scraping, crawling, and extraction use cases.
|
||||
|
||||
[](https://apify.com/store)
|
||||
|
||||
This integration enables you run Actors on the Apify platform and load their results into LangChain to feed your vector
|
||||
indexes with documents and data from the web, e.g. to generate answers from websites with documentation,
|
||||
blogs, or knowledge bases.
|
||||
|
||||
|
||||
## Installation and Setup
|
||||
|
||||
- Install the Apify API client for Python with `pip install apify-client`
|
||||
- Get your [Apify API token](https://console.apify.com/account/integrations) and either set it as
|
||||
an environment variable (`APIFY_API_TOKEN`) or pass it to the `ApifyWrapper` as `apify_api_token` in the constructor.
|
||||
|
||||
|
||||
## Wrappers
|
||||
|
||||
### Utility
|
||||
|
||||
You can use the `ApifyWrapper` to run Actors on the Apify platform.
|
||||
|
||||
```python
|
||||
from langchain.utilities import ApifyWrapper
|
||||
```
|
||||
|
||||
For a more detailed walkthrough of this wrapper, see [this notebook](../modules/agents/tools/examples/apify.ipynb).
|
||||
|
||||
|
||||
### Loader
|
||||
|
||||
You can also use our `ApifyDatasetLoader` to get data from Apify dataset.
|
||||
|
||||
```python
|
||||
from langchain.document_loaders import ApifyDatasetLoader
|
||||
```
|
||||
|
||||
For a more detailed walkthrough of this loader, see [this notebook](../modules/indexes/document_loaders/examples/apify_dataset.ipynb).
|
||||
27
docs/ecosystem/atlas.md
Normal file
27
docs/ecosystem/atlas.md
Normal file
@@ -0,0 +1,27 @@
|
||||
# AtlasDB
|
||||
|
||||
This page covers how to use Nomic's Atlas ecosystem within LangChain.
|
||||
It is broken into two parts: installation and setup, and then references to specific Atlas wrappers.
|
||||
|
||||
## Installation and Setup
|
||||
- Install the Python package with `pip install nomic`
|
||||
- Nomic is also included in langchains poetry extras `poetry install -E all`
|
||||
|
||||
## Wrappers
|
||||
|
||||
### VectorStore
|
||||
|
||||
There exists a wrapper around the Atlas neural database, allowing you to use it as a vectorstore.
|
||||
This vectorstore also gives you full access to the underlying AtlasProject object, which will allow you to use the full range of Atlas map interactions, such as bulk tagging and automatic topic modeling.
|
||||
Please see [the Atlas docs](https://docs.nomic.ai/atlas_api.html) for more detailed information.
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
To import this vectorstore:
|
||||
```python
|
||||
from langchain.vectorstores import AtlasDB
|
||||
```
|
||||
|
||||
For a more detailed walkthrough of the AtlasDB wrapper, see [this notebook](../modules/indexes/vectorstores/examples/atlas.ipynb)
|
||||
79
docs/ecosystem/bananadev.md
Normal file
79
docs/ecosystem/bananadev.md
Normal file
@@ -0,0 +1,79 @@
|
||||
# Banana
|
||||
|
||||
This page covers how to use the Banana ecosystem within LangChain.
|
||||
It is broken into two parts: installation and setup, and then references to specific Banana wrappers.
|
||||
|
||||
## Installation and Setup
|
||||
|
||||
- Install with `pip install banana-dev`
|
||||
- Get an Banana api key and set it as an environment variable (`BANANA_API_KEY`)
|
||||
|
||||
## Define your Banana Template
|
||||
|
||||
If you want to use an available language model template you can find one [here](https://app.banana.dev/templates/conceptofmind/serverless-template-palmyra-base).
|
||||
This template uses the Palmyra-Base model by [Writer](https://writer.com/product/api/).
|
||||
You can check out an example Banana repository [here](https://github.com/conceptofmind/serverless-template-palmyra-base).
|
||||
|
||||
## Build the Banana app
|
||||
|
||||
Banana Apps must include the "output" key in the return json.
|
||||
There is a rigid response structure.
|
||||
|
||||
```python
|
||||
# Return the results as a dictionary
|
||||
result = {'output': result}
|
||||
```
|
||||
|
||||
An example inference function would be:
|
||||
|
||||
```python
|
||||
def inference(model_inputs:dict) -> dict:
|
||||
global model
|
||||
global tokenizer
|
||||
|
||||
# Parse out your arguments
|
||||
prompt = model_inputs.get('prompt', None)
|
||||
if prompt == None:
|
||||
return {'message': "No prompt provided"}
|
||||
|
||||
# Run the model
|
||||
input_ids = tokenizer.encode(prompt, return_tensors='pt').cuda()
|
||||
output = model.generate(
|
||||
input_ids,
|
||||
max_length=100,
|
||||
do_sample=True,
|
||||
top_k=50,
|
||||
top_p=0.95,
|
||||
num_return_sequences=1,
|
||||
temperature=0.9,
|
||||
early_stopping=True,
|
||||
no_repeat_ngram_size=3,
|
||||
num_beams=5,
|
||||
length_penalty=1.5,
|
||||
repetition_penalty=1.5,
|
||||
bad_words_ids=[[tokenizer.encode(' ', add_prefix_space=True)[0]]]
|
||||
)
|
||||
|
||||
result = tokenizer.decode(output[0], skip_special_tokens=True)
|
||||
# Return the results as a dictionary
|
||||
result = {'output': result}
|
||||
return result
|
||||
```
|
||||
|
||||
You can find a full example of a Banana app [here](https://github.com/conceptofmind/serverless-template-palmyra-base/blob/main/app.py).
|
||||
|
||||
## Wrappers
|
||||
|
||||
### LLM
|
||||
|
||||
There exists an Banana LLM wrapper, which you can access with
|
||||
|
||||
```python
|
||||
from langchain.llms import Banana
|
||||
```
|
||||
|
||||
You need to provide a model key located in the dashboard:
|
||||
|
||||
```python
|
||||
llm = Banana(model_key="YOUR_MODEL_KEY")
|
||||
```
|
||||
17
docs/ecosystem/cerebriumai.md
Normal file
17
docs/ecosystem/cerebriumai.md
Normal file
@@ -0,0 +1,17 @@
|
||||
# CerebriumAI
|
||||
|
||||
This page covers how to use the CerebriumAI ecosystem within LangChain.
|
||||
It is broken into two parts: installation and setup, and then references to specific CerebriumAI wrappers.
|
||||
|
||||
## Installation and Setup
|
||||
- Install with `pip install cerebrium`
|
||||
- Get an CerebriumAI api key and set it as an environment variable (`CEREBRIUMAI_API_KEY`)
|
||||
|
||||
## Wrappers
|
||||
|
||||
### LLM
|
||||
|
||||
There exists an CerebriumAI LLM wrapper, which you can access with
|
||||
```python
|
||||
from langchain.llms import CerebriumAI
|
||||
```
|
||||
20
docs/ecosystem/chroma.md
Normal file
20
docs/ecosystem/chroma.md
Normal file
@@ -0,0 +1,20 @@
|
||||
# Chroma
|
||||
|
||||
This page covers how to use the Chroma ecosystem within LangChain.
|
||||
It is broken into two parts: installation and setup, and then references to specific Chroma wrappers.
|
||||
|
||||
## Installation and Setup
|
||||
- Install the Python package with `pip install chromadb`
|
||||
## Wrappers
|
||||
|
||||
### VectorStore
|
||||
|
||||
There exists a wrapper around Chroma vector databases, allowing you to use it as a vectorstore,
|
||||
whether for semantic search or example selection.
|
||||
|
||||
To import this vectorstore:
|
||||
```python
|
||||
from langchain.vectorstores import Chroma
|
||||
```
|
||||
|
||||
For a more detailed walkthrough of the Chroma wrapper, see [this notebook](../modules/indexes/vectorstores/getting_started.ipynb)
|
||||
589
docs/ecosystem/clearml_tracking.ipynb
Normal file
589
docs/ecosystem/clearml_tracking.ipynb
Normal file
@@ -0,0 +1,589 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"attachments": {},
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# ClearML Integration\n",
|
||||
"\n",
|
||||
"In order to properly keep track of your langchain experiments and their results, you can enable the ClearML integration. ClearML is an experiment manager that neatly tracks and organizes all your experiment runs.\n",
|
||||
"\n",
|
||||
"<a target=\"_blank\" href=\"https://colab.research.google.com/github/hwchase17/langchain/blob/master/docs/ecosystem/clearml_tracking.ipynb\">\n",
|
||||
" <img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/>\n",
|
||||
"</a>"
|
||||
]
|
||||
},
|
||||
{
|
||||
"attachments": {},
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Getting API Credentials\n",
|
||||
"\n",
|
||||
"We'll be using quite some APIs in this notebook, here is a list and where to get them:\n",
|
||||
"\n",
|
||||
"- ClearML: https://app.clear.ml/settings/workspace-configuration\n",
|
||||
"- OpenAI: https://platform.openai.com/account/api-keys\n",
|
||||
"- SerpAPI (google search): https://serpapi.com/dashboard"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 2,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import os\n",
|
||||
"os.environ[\"CLEARML_API_ACCESS_KEY\"] = \"\"\n",
|
||||
"os.environ[\"CLEARML_API_SECRET_KEY\"] = \"\"\n",
|
||||
"\n",
|
||||
"os.environ[\"OPENAI_API_KEY\"] = \"\"\n",
|
||||
"os.environ[\"SERPAPI_API_KEY\"] = \"\""
|
||||
]
|
||||
},
|
||||
{
|
||||
"attachments": {},
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Setting Up"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"!pip install clearml\n",
|
||||
"!pip install pandas\n",
|
||||
"!pip install textstat\n",
|
||||
"!pip install spacy\n",
|
||||
"!python -m spacy download en_core_web_sm"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 3,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"The clearml callback is currently in beta and is subject to change based on updates to `langchain`. Please report any issues to https://github.com/allegroai/clearml/issues with the tag `langchain`.\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"from datetime import datetime\n",
|
||||
"from langchain.callbacks import ClearMLCallbackHandler, StdOutCallbackHandler\n",
|
||||
"from langchain.callbacks.base import CallbackManager\n",
|
||||
"from langchain.llms import OpenAI\n",
|
||||
"\n",
|
||||
"# Setup and use the ClearML Callback\n",
|
||||
"clearml_callback = ClearMLCallbackHandler(\n",
|
||||
" task_type=\"inference\",\n",
|
||||
" project_name=\"langchain_callback_demo\",\n",
|
||||
" task_name=\"llm\",\n",
|
||||
" tags=[\"test\"],\n",
|
||||
" # Change the following parameters based on the amount of detail you want tracked\n",
|
||||
" visualize=True,\n",
|
||||
" complexity_metrics=True,\n",
|
||||
" stream_logs=True\n",
|
||||
")\n",
|
||||
"manager = CallbackManager([StdOutCallbackHandler(), clearml_callback])\n",
|
||||
"# Get the OpenAI model ready to go\n",
|
||||
"llm = OpenAI(temperature=0, callback_manager=manager, verbose=True)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"attachments": {},
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Scenario 1: Just an LLM\n",
|
||||
"\n",
|
||||
"First, let's just run a single LLM a few times and capture the resulting prompt-answer conversation in ClearML"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 5,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"{'action': 'on_llm_start', 'name': 'OpenAI', 'step': 3, 'starts': 2, 'ends': 1, 'errors': 0, 'text_ctr': 0, 'chain_starts': 0, 'chain_ends': 0, 'llm_starts': 2, 'llm_ends': 1, 'llm_streams': 0, 'tool_starts': 0, 'tool_ends': 0, 'agent_ends': 0, 'prompts': 'Tell me a joke'}\n",
|
||||
"{'action': 'on_llm_start', 'name': 'OpenAI', 'step': 3, 'starts': 2, 'ends': 1, 'errors': 0, 'text_ctr': 0, 'chain_starts': 0, 'chain_ends': 0, 'llm_starts': 2, 'llm_ends': 1, 'llm_streams': 0, 'tool_starts': 0, 'tool_ends': 0, 'agent_ends': 0, 'prompts': 'Tell me a poem'}\n",
|
||||
"{'action': 'on_llm_start', 'name': 'OpenAI', 'step': 3, 'starts': 2, 'ends': 1, 'errors': 0, 'text_ctr': 0, 'chain_starts': 0, 'chain_ends': 0, 'llm_starts': 2, 'llm_ends': 1, 'llm_streams': 0, 'tool_starts': 0, 'tool_ends': 0, 'agent_ends': 0, 'prompts': 'Tell me a joke'}\n",
|
||||
"{'action': 'on_llm_start', 'name': 'OpenAI', 'step': 3, 'starts': 2, 'ends': 1, 'errors': 0, 'text_ctr': 0, 'chain_starts': 0, 'chain_ends': 0, 'llm_starts': 2, 'llm_ends': 1, 'llm_streams': 0, 'tool_starts': 0, 'tool_ends': 0, 'agent_ends': 0, 'prompts': 'Tell me a poem'}\n",
|
||||
"{'action': 'on_llm_start', 'name': 'OpenAI', 'step': 3, 'starts': 2, 'ends': 1, 'errors': 0, 'text_ctr': 0, 'chain_starts': 0, 'chain_ends': 0, 'llm_starts': 2, 'llm_ends': 1, 'llm_streams': 0, 'tool_starts': 0, 'tool_ends': 0, 'agent_ends': 0, 'prompts': 'Tell me a joke'}\n",
|
||||
"{'action': 'on_llm_start', 'name': 'OpenAI', 'step': 3, 'starts': 2, 'ends': 1, 'errors': 0, 'text_ctr': 0, 'chain_starts': 0, 'chain_ends': 0, 'llm_starts': 2, 'llm_ends': 1, 'llm_streams': 0, 'tool_starts': 0, 'tool_ends': 0, 'agent_ends': 0, 'prompts': 'Tell me a poem'}\n",
|
||||
"{'action': 'on_llm_end', 'token_usage_prompt_tokens': 24, 'token_usage_completion_tokens': 138, 'token_usage_total_tokens': 162, 'model_name': 'text-davinci-003', 'step': 4, 'starts': 2, 'ends': 2, 'errors': 0, 'text_ctr': 0, 'chain_starts': 0, 'chain_ends': 0, 'llm_starts': 2, 'llm_ends': 2, 'llm_streams': 0, 'tool_starts': 0, 'tool_ends': 0, 'agent_ends': 0, 'text': '\\n\\nQ: What did the fish say when it hit the wall?\\nA: Dam!', 'generation_info_finish_reason': 'stop', 'generation_info_logprobs': None, 'flesch_reading_ease': 109.04, 'flesch_kincaid_grade': 1.3, 'smog_index': 0.0, 'coleman_liau_index': -1.24, 'automated_readability_index': 0.3, 'dale_chall_readability_score': 5.5, 'difficult_words': 0, 'linsear_write_formula': 5.5, 'gunning_fog': 5.2, 'text_standard': '5th and 6th grade', 'fernandez_huerta': 133.58, 'szigriszt_pazos': 131.54, 'gutierrez_polini': 62.3, 'crawford': -0.2, 'gulpease_index': 79.8, 'osman': 116.91}\n",
|
||||
"{'action': 'on_llm_end', 'token_usage_prompt_tokens': 24, 'token_usage_completion_tokens': 138, 'token_usage_total_tokens': 162, 'model_name': 'text-davinci-003', 'step': 4, 'starts': 2, 'ends': 2, 'errors': 0, 'text_ctr': 0, 'chain_starts': 0, 'chain_ends': 0, 'llm_starts': 2, 'llm_ends': 2, 'llm_streams': 0, 'tool_starts': 0, 'tool_ends': 0, 'agent_ends': 0, 'text': '\\n\\nRoses are red,\\nViolets are blue,\\nSugar is sweet,\\nAnd so are you.', 'generation_info_finish_reason': 'stop', 'generation_info_logprobs': None, 'flesch_reading_ease': 83.66, 'flesch_kincaid_grade': 4.8, 'smog_index': 0.0, 'coleman_liau_index': 3.23, 'automated_readability_index': 3.9, 'dale_chall_readability_score': 6.71, 'difficult_words': 2, 'linsear_write_formula': 6.5, 'gunning_fog': 8.28, 'text_standard': '6th and 7th grade', 'fernandez_huerta': 115.58, 'szigriszt_pazos': 112.37, 'gutierrez_polini': 54.83, 'crawford': 1.4, 'gulpease_index': 72.1, 'osman': 100.17}\n",
|
||||
"{'action': 'on_llm_end', 'token_usage_prompt_tokens': 24, 'token_usage_completion_tokens': 138, 'token_usage_total_tokens': 162, 'model_name': 'text-davinci-003', 'step': 4, 'starts': 2, 'ends': 2, 'errors': 0, 'text_ctr': 0, 'chain_starts': 0, 'chain_ends': 0, 'llm_starts': 2, 'llm_ends': 2, 'llm_streams': 0, 'tool_starts': 0, 'tool_ends': 0, 'agent_ends': 0, 'text': '\\n\\nQ: What did the fish say when it hit the wall?\\nA: Dam!', 'generation_info_finish_reason': 'stop', 'generation_info_logprobs': None, 'flesch_reading_ease': 109.04, 'flesch_kincaid_grade': 1.3, 'smog_index': 0.0, 'coleman_liau_index': -1.24, 'automated_readability_index': 0.3, 'dale_chall_readability_score': 5.5, 'difficult_words': 0, 'linsear_write_formula': 5.5, 'gunning_fog': 5.2, 'text_standard': '5th and 6th grade', 'fernandez_huerta': 133.58, 'szigriszt_pazos': 131.54, 'gutierrez_polini': 62.3, 'crawford': -0.2, 'gulpease_index': 79.8, 'osman': 116.91}\n",
|
||||
"{'action': 'on_llm_end', 'token_usage_prompt_tokens': 24, 'token_usage_completion_tokens': 138, 'token_usage_total_tokens': 162, 'model_name': 'text-davinci-003', 'step': 4, 'starts': 2, 'ends': 2, 'errors': 0, 'text_ctr': 0, 'chain_starts': 0, 'chain_ends': 0, 'llm_starts': 2, 'llm_ends': 2, 'llm_streams': 0, 'tool_starts': 0, 'tool_ends': 0, 'agent_ends': 0, 'text': '\\n\\nRoses are red,\\nViolets are blue,\\nSugar is sweet,\\nAnd so are you.', 'generation_info_finish_reason': 'stop', 'generation_info_logprobs': None, 'flesch_reading_ease': 83.66, 'flesch_kincaid_grade': 4.8, 'smog_index': 0.0, 'coleman_liau_index': 3.23, 'automated_readability_index': 3.9, 'dale_chall_readability_score': 6.71, 'difficult_words': 2, 'linsear_write_formula': 6.5, 'gunning_fog': 8.28, 'text_standard': '6th and 7th grade', 'fernandez_huerta': 115.58, 'szigriszt_pazos': 112.37, 'gutierrez_polini': 54.83, 'crawford': 1.4, 'gulpease_index': 72.1, 'osman': 100.17}\n",
|
||||
"{'action': 'on_llm_end', 'token_usage_prompt_tokens': 24, 'token_usage_completion_tokens': 138, 'token_usage_total_tokens': 162, 'model_name': 'text-davinci-003', 'step': 4, 'starts': 2, 'ends': 2, 'errors': 0, 'text_ctr': 0, 'chain_starts': 0, 'chain_ends': 0, 'llm_starts': 2, 'llm_ends': 2, 'llm_streams': 0, 'tool_starts': 0, 'tool_ends': 0, 'agent_ends': 0, 'text': '\\n\\nQ: What did the fish say when it hit the wall?\\nA: Dam!', 'generation_info_finish_reason': 'stop', 'generation_info_logprobs': None, 'flesch_reading_ease': 109.04, 'flesch_kincaid_grade': 1.3, 'smog_index': 0.0, 'coleman_liau_index': -1.24, 'automated_readability_index': 0.3, 'dale_chall_readability_score': 5.5, 'difficult_words': 0, 'linsear_write_formula': 5.5, 'gunning_fog': 5.2, 'text_standard': '5th and 6th grade', 'fernandez_huerta': 133.58, 'szigriszt_pazos': 131.54, 'gutierrez_polini': 62.3, 'crawford': -0.2, 'gulpease_index': 79.8, 'osman': 116.91}\n",
|
||||
"{'action': 'on_llm_end', 'token_usage_prompt_tokens': 24, 'token_usage_completion_tokens': 138, 'token_usage_total_tokens': 162, 'model_name': 'text-davinci-003', 'step': 4, 'starts': 2, 'ends': 2, 'errors': 0, 'text_ctr': 0, 'chain_starts': 0, 'chain_ends': 0, 'llm_starts': 2, 'llm_ends': 2, 'llm_streams': 0, 'tool_starts': 0, 'tool_ends': 0, 'agent_ends': 0, 'text': '\\n\\nRoses are red,\\nViolets are blue,\\nSugar is sweet,\\nAnd so are you.', 'generation_info_finish_reason': 'stop', 'generation_info_logprobs': None, 'flesch_reading_ease': 83.66, 'flesch_kincaid_grade': 4.8, 'smog_index': 0.0, 'coleman_liau_index': 3.23, 'automated_readability_index': 3.9, 'dale_chall_readability_score': 6.71, 'difficult_words': 2, 'linsear_write_formula': 6.5, 'gunning_fog': 8.28, 'text_standard': '6th and 7th grade', 'fernandez_huerta': 115.58, 'szigriszt_pazos': 112.37, 'gutierrez_polini': 54.83, 'crawford': 1.4, 'gulpease_index': 72.1, 'osman': 100.17}\n",
|
||||
"{'action_records': action name step starts ends errors text_ctr chain_starts \\\n",
|
||||
"0 on_llm_start OpenAI 1 1 0 0 0 0 \n",
|
||||
"1 on_llm_start OpenAI 1 1 0 0 0 0 \n",
|
||||
"2 on_llm_start OpenAI 1 1 0 0 0 0 \n",
|
||||
"3 on_llm_start OpenAI 1 1 0 0 0 0 \n",
|
||||
"4 on_llm_start OpenAI 1 1 0 0 0 0 \n",
|
||||
"5 on_llm_start OpenAI 1 1 0 0 0 0 \n",
|
||||
"6 on_llm_end NaN 2 1 1 0 0 0 \n",
|
||||
"7 on_llm_end NaN 2 1 1 0 0 0 \n",
|
||||
"8 on_llm_end NaN 2 1 1 0 0 0 \n",
|
||||
"9 on_llm_end NaN 2 1 1 0 0 0 \n",
|
||||
"10 on_llm_end NaN 2 1 1 0 0 0 \n",
|
||||
"11 on_llm_end NaN 2 1 1 0 0 0 \n",
|
||||
"12 on_llm_start OpenAI 3 2 1 0 0 0 \n",
|
||||
"13 on_llm_start OpenAI 3 2 1 0 0 0 \n",
|
||||
"14 on_llm_start OpenAI 3 2 1 0 0 0 \n",
|
||||
"15 on_llm_start OpenAI 3 2 1 0 0 0 \n",
|
||||
"16 on_llm_start OpenAI 3 2 1 0 0 0 \n",
|
||||
"17 on_llm_start OpenAI 3 2 1 0 0 0 \n",
|
||||
"18 on_llm_end NaN 4 2 2 0 0 0 \n",
|
||||
"19 on_llm_end NaN 4 2 2 0 0 0 \n",
|
||||
"20 on_llm_end NaN 4 2 2 0 0 0 \n",
|
||||
"21 on_llm_end NaN 4 2 2 0 0 0 \n",
|
||||
"22 on_llm_end NaN 4 2 2 0 0 0 \n",
|
||||
"23 on_llm_end NaN 4 2 2 0 0 0 \n",
|
||||
"\n",
|
||||
" chain_ends llm_starts ... difficult_words linsear_write_formula \\\n",
|
||||
"0 0 1 ... NaN NaN \n",
|
||||
"1 0 1 ... NaN NaN \n",
|
||||
"2 0 1 ... NaN NaN \n",
|
||||
"3 0 1 ... NaN NaN \n",
|
||||
"4 0 1 ... NaN NaN \n",
|
||||
"5 0 1 ... NaN NaN \n",
|
||||
"6 0 1 ... 0.0 5.5 \n",
|
||||
"7 0 1 ... 2.0 6.5 \n",
|
||||
"8 0 1 ... 0.0 5.5 \n",
|
||||
"9 0 1 ... 2.0 6.5 \n",
|
||||
"10 0 1 ... 0.0 5.5 \n",
|
||||
"11 0 1 ... 2.0 6.5 \n",
|
||||
"12 0 2 ... NaN NaN \n",
|
||||
"13 0 2 ... NaN NaN \n",
|
||||
"14 0 2 ... NaN NaN \n",
|
||||
"15 0 2 ... NaN NaN \n",
|
||||
"16 0 2 ... NaN NaN \n",
|
||||
"17 0 2 ... NaN NaN \n",
|
||||
"18 0 2 ... 0.0 5.5 \n",
|
||||
"19 0 2 ... 2.0 6.5 \n",
|
||||
"20 0 2 ... 0.0 5.5 \n",
|
||||
"21 0 2 ... 2.0 6.5 \n",
|
||||
"22 0 2 ... 0.0 5.5 \n",
|
||||
"23 0 2 ... 2.0 6.5 \n",
|
||||
"\n",
|
||||
" gunning_fog text_standard fernandez_huerta szigriszt_pazos \\\n",
|
||||
"0 NaN NaN NaN NaN \n",
|
||||
"1 NaN NaN NaN NaN \n",
|
||||
"2 NaN NaN NaN NaN \n",
|
||||
"3 NaN NaN NaN NaN \n",
|
||||
"4 NaN NaN NaN NaN \n",
|
||||
"5 NaN NaN NaN NaN \n",
|
||||
"6 5.20 5th and 6th grade 133.58 131.54 \n",
|
||||
"7 8.28 6th and 7th grade 115.58 112.37 \n",
|
||||
"8 5.20 5th and 6th grade 133.58 131.54 \n",
|
||||
"9 8.28 6th and 7th grade 115.58 112.37 \n",
|
||||
"10 5.20 5th and 6th grade 133.58 131.54 \n",
|
||||
"11 8.28 6th and 7th grade 115.58 112.37 \n",
|
||||
"12 NaN NaN NaN NaN \n",
|
||||
"13 NaN NaN NaN NaN \n",
|
||||
"14 NaN NaN NaN NaN \n",
|
||||
"15 NaN NaN NaN NaN \n",
|
||||
"16 NaN NaN NaN NaN \n",
|
||||
"17 NaN NaN NaN NaN \n",
|
||||
"18 5.20 5th and 6th grade 133.58 131.54 \n",
|
||||
"19 8.28 6th and 7th grade 115.58 112.37 \n",
|
||||
"20 5.20 5th and 6th grade 133.58 131.54 \n",
|
||||
"21 8.28 6th and 7th grade 115.58 112.37 \n",
|
||||
"22 5.20 5th and 6th grade 133.58 131.54 \n",
|
||||
"23 8.28 6th and 7th grade 115.58 112.37 \n",
|
||||
"\n",
|
||||
" gutierrez_polini crawford gulpease_index osman \n",
|
||||
"0 NaN NaN NaN NaN \n",
|
||||
"1 NaN NaN NaN NaN \n",
|
||||
"2 NaN NaN NaN NaN \n",
|
||||
"3 NaN NaN NaN NaN \n",
|
||||
"4 NaN NaN NaN NaN \n",
|
||||
"5 NaN NaN NaN NaN \n",
|
||||
"6 62.30 -0.2 79.8 116.91 \n",
|
||||
"7 54.83 1.4 72.1 100.17 \n",
|
||||
"8 62.30 -0.2 79.8 116.91 \n",
|
||||
"9 54.83 1.4 72.1 100.17 \n",
|
||||
"10 62.30 -0.2 79.8 116.91 \n",
|
||||
"11 54.83 1.4 72.1 100.17 \n",
|
||||
"12 NaN NaN NaN NaN \n",
|
||||
"13 NaN NaN NaN NaN \n",
|
||||
"14 NaN NaN NaN NaN \n",
|
||||
"15 NaN NaN NaN NaN \n",
|
||||
"16 NaN NaN NaN NaN \n",
|
||||
"17 NaN NaN NaN NaN \n",
|
||||
"18 62.30 -0.2 79.8 116.91 \n",
|
||||
"19 54.83 1.4 72.1 100.17 \n",
|
||||
"20 62.30 -0.2 79.8 116.91 \n",
|
||||
"21 54.83 1.4 72.1 100.17 \n",
|
||||
"22 62.30 -0.2 79.8 116.91 \n",
|
||||
"23 54.83 1.4 72.1 100.17 \n",
|
||||
"\n",
|
||||
"[24 rows x 39 columns], 'session_analysis': prompt_step prompts name output_step \\\n",
|
||||
"0 1 Tell me a joke OpenAI 2 \n",
|
||||
"1 1 Tell me a poem OpenAI 2 \n",
|
||||
"2 1 Tell me a joke OpenAI 2 \n",
|
||||
"3 1 Tell me a poem OpenAI 2 \n",
|
||||
"4 1 Tell me a joke OpenAI 2 \n",
|
||||
"5 1 Tell me a poem OpenAI 2 \n",
|
||||
"6 3 Tell me a joke OpenAI 4 \n",
|
||||
"7 3 Tell me a poem OpenAI 4 \n",
|
||||
"8 3 Tell me a joke OpenAI 4 \n",
|
||||
"9 3 Tell me a poem OpenAI 4 \n",
|
||||
"10 3 Tell me a joke OpenAI 4 \n",
|
||||
"11 3 Tell me a poem OpenAI 4 \n",
|
||||
"\n",
|
||||
" output \\\n",
|
||||
"0 \\n\\nQ: What did the fish say when it hit the w... \n",
|
||||
"1 \\n\\nRoses are red,\\nViolets are blue,\\nSugar i... \n",
|
||||
"2 \\n\\nQ: What did the fish say when it hit the w... \n",
|
||||
"3 \\n\\nRoses are red,\\nViolets are blue,\\nSugar i... \n",
|
||||
"4 \\n\\nQ: What did the fish say when it hit the w... \n",
|
||||
"5 \\n\\nRoses are red,\\nViolets are blue,\\nSugar i... \n",
|
||||
"6 \\n\\nQ: What did the fish say when it hit the w... \n",
|
||||
"7 \\n\\nRoses are red,\\nViolets are blue,\\nSugar i... \n",
|
||||
"8 \\n\\nQ: What did the fish say when it hit the w... \n",
|
||||
"9 \\n\\nRoses are red,\\nViolets are blue,\\nSugar i... \n",
|
||||
"10 \\n\\nQ: What did the fish say when it hit the w... \n",
|
||||
"11 \\n\\nRoses are red,\\nViolets are blue,\\nSugar i... \n",
|
||||
"\n",
|
||||
" token_usage_total_tokens token_usage_prompt_tokens \\\n",
|
||||
"0 162 24 \n",
|
||||
"1 162 24 \n",
|
||||
"2 162 24 \n",
|
||||
"3 162 24 \n",
|
||||
"4 162 24 \n",
|
||||
"5 162 24 \n",
|
||||
"6 162 24 \n",
|
||||
"7 162 24 \n",
|
||||
"8 162 24 \n",
|
||||
"9 162 24 \n",
|
||||
"10 162 24 \n",
|
||||
"11 162 24 \n",
|
||||
"\n",
|
||||
" token_usage_completion_tokens flesch_reading_ease flesch_kincaid_grade \\\n",
|
||||
"0 138 109.04 1.3 \n",
|
||||
"1 138 83.66 4.8 \n",
|
||||
"2 138 109.04 1.3 \n",
|
||||
"3 138 83.66 4.8 \n",
|
||||
"4 138 109.04 1.3 \n",
|
||||
"5 138 83.66 4.8 \n",
|
||||
"6 138 109.04 1.3 \n",
|
||||
"7 138 83.66 4.8 \n",
|
||||
"8 138 109.04 1.3 \n",
|
||||
"9 138 83.66 4.8 \n",
|
||||
"10 138 109.04 1.3 \n",
|
||||
"11 138 83.66 4.8 \n",
|
||||
"\n",
|
||||
" ... difficult_words linsear_write_formula gunning_fog \\\n",
|
||||
"0 ... 0 5.5 5.20 \n",
|
||||
"1 ... 2 6.5 8.28 \n",
|
||||
"2 ... 0 5.5 5.20 \n",
|
||||
"3 ... 2 6.5 8.28 \n",
|
||||
"4 ... 0 5.5 5.20 \n",
|
||||
"5 ... 2 6.5 8.28 \n",
|
||||
"6 ... 0 5.5 5.20 \n",
|
||||
"7 ... 2 6.5 8.28 \n",
|
||||
"8 ... 0 5.5 5.20 \n",
|
||||
"9 ... 2 6.5 8.28 \n",
|
||||
"10 ... 0 5.5 5.20 \n",
|
||||
"11 ... 2 6.5 8.28 \n",
|
||||
"\n",
|
||||
" text_standard fernandez_huerta szigriszt_pazos gutierrez_polini \\\n",
|
||||
"0 5th and 6th grade 133.58 131.54 62.30 \n",
|
||||
"1 6th and 7th grade 115.58 112.37 54.83 \n",
|
||||
"2 5th and 6th grade 133.58 131.54 62.30 \n",
|
||||
"3 6th and 7th grade 115.58 112.37 54.83 \n",
|
||||
"4 5th and 6th grade 133.58 131.54 62.30 \n",
|
||||
"5 6th and 7th grade 115.58 112.37 54.83 \n",
|
||||
"6 5th and 6th grade 133.58 131.54 62.30 \n",
|
||||
"7 6th and 7th grade 115.58 112.37 54.83 \n",
|
||||
"8 5th and 6th grade 133.58 131.54 62.30 \n",
|
||||
"9 6th and 7th grade 115.58 112.37 54.83 \n",
|
||||
"10 5th and 6th grade 133.58 131.54 62.30 \n",
|
||||
"11 6th and 7th grade 115.58 112.37 54.83 \n",
|
||||
"\n",
|
||||
" crawford gulpease_index osman \n",
|
||||
"0 -0.2 79.8 116.91 \n",
|
||||
"1 1.4 72.1 100.17 \n",
|
||||
"2 -0.2 79.8 116.91 \n",
|
||||
"3 1.4 72.1 100.17 \n",
|
||||
"4 -0.2 79.8 116.91 \n",
|
||||
"5 1.4 72.1 100.17 \n",
|
||||
"6 -0.2 79.8 116.91 \n",
|
||||
"7 1.4 72.1 100.17 \n",
|
||||
"8 -0.2 79.8 116.91 \n",
|
||||
"9 1.4 72.1 100.17 \n",
|
||||
"10 -0.2 79.8 116.91 \n",
|
||||
"11 1.4 72.1 100.17 \n",
|
||||
"\n",
|
||||
"[12 rows x 24 columns]}\n",
|
||||
"2023-03-29 14:00:25,948 - clearml.Task - INFO - Completed model upload to https://files.clear.ml/langchain_callback_demo/llm.988bd727b0e94a29a3ac0ee526813545/models/simple_sequential\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"# SCENARIO 1 - LLM\n",
|
||||
"llm_result = llm.generate([\"Tell me a joke\", \"Tell me a poem\"] * 3)\n",
|
||||
"# After every generation run, use flush to make sure all the metrics\n",
|
||||
"# prompts and other output are properly saved separately\n",
|
||||
"clearml_callback.flush_tracker(langchain_asset=llm, name=\"simple_sequential\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"attachments": {},
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"At this point you can already go to https://app.clear.ml and take a look at the resulting ClearML Task that was created.\n",
|
||||
"\n",
|
||||
"Among others, you should see that this notebook is saved along with any git information. The model JSON that contains the used parameters is saved as an artifact, there are also console logs and under the plots section, you'll find tables that represent the flow of the chain.\n",
|
||||
"\n",
|
||||
"Finally, if you enabled visualizations, these are stored as HTML files under debug samples."
|
||||
]
|
||||
},
|
||||
{
|
||||
"attachments": {},
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Scenario 2: Creating an agent with tools\n",
|
||||
"\n",
|
||||
"To show a more advanced workflow, let's create an agent with access to tools. The way ClearML tracks the results is not different though, only the table will look slightly different as there are other types of actions taken when compared to the earlier, simpler example.\n",
|
||||
"\n",
|
||||
"You can now also see the use of the `finish=True` keyword, which will fully close the ClearML Task, instead of just resetting the parameters and prompts for a new conversation."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 8,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"\n",
|
||||
"\n",
|
||||
"\u001b[1m> Entering new AgentExecutor chain...\u001b[0m\n",
|
||||
"{'action': 'on_chain_start', 'name': 'AgentExecutor', 'step': 1, 'starts': 1, 'ends': 0, 'errors': 0, 'text_ctr': 0, 'chain_starts': 1, 'chain_ends': 0, 'llm_starts': 0, 'llm_ends': 0, 'llm_streams': 0, 'tool_starts': 0, 'tool_ends': 0, 'agent_ends': 0, 'input': 'Who is the wife of the person who sang summer of 69?'}\n",
|
||||
"{'action': 'on_llm_start', 'name': 'OpenAI', 'step': 2, 'starts': 2, 'ends': 0, 'errors': 0, 'text_ctr': 0, 'chain_starts': 1, 'chain_ends': 0, 'llm_starts': 1, 'llm_ends': 0, 'llm_streams': 0, 'tool_starts': 0, 'tool_ends': 0, 'agent_ends': 0, 'prompts': 'Answer the following questions as best you can. You have access to the following tools:\\n\\nSearch: A search engine. Useful for when you need to answer questions about current events. Input should be a search query.\\nCalculator: Useful for when you need to answer questions about math.\\n\\nUse the following format:\\n\\nQuestion: the input question you must answer\\nThought: you should always think about what to do\\nAction: the action to take, should be one of [Search, Calculator]\\nAction Input: the input to the action\\nObservation: the result of the action\\n... (this Thought/Action/Action Input/Observation can repeat N times)\\nThought: I now know the final answer\\nFinal Answer: the final answer to the original input question\\n\\nBegin!\\n\\nQuestion: Who is the wife of the person who sang summer of 69?\\nThought:'}\n",
|
||||
"{'action': 'on_llm_end', 'token_usage_prompt_tokens': 189, 'token_usage_completion_tokens': 34, 'token_usage_total_tokens': 223, 'model_name': 'text-davinci-003', 'step': 3, 'starts': 2, 'ends': 1, 'errors': 0, 'text_ctr': 0, 'chain_starts': 1, 'chain_ends': 0, 'llm_starts': 1, 'llm_ends': 1, 'llm_streams': 0, 'tool_starts': 0, 'tool_ends': 0, 'agent_ends': 0, 'text': ' I need to find out who sang summer of 69 and then find out who their wife is.\\nAction: Search\\nAction Input: \"Who sang summer of 69\"', 'generation_info_finish_reason': 'stop', 'generation_info_logprobs': None, 'flesch_reading_ease': 91.61, 'flesch_kincaid_grade': 3.8, 'smog_index': 0.0, 'coleman_liau_index': 3.41, 'automated_readability_index': 3.5, 'dale_chall_readability_score': 6.06, 'difficult_words': 2, 'linsear_write_formula': 5.75, 'gunning_fog': 5.4, 'text_standard': '3rd and 4th grade', 'fernandez_huerta': 121.07, 'szigriszt_pazos': 119.5, 'gutierrez_polini': 54.91, 'crawford': 0.9, 'gulpease_index': 72.7, 'osman': 92.16}\n",
|
||||
"\u001b[32;1m\u001b[1;3m I need to find out who sang summer of 69 and then find out who their wife is.\n",
|
||||
"Action: Search\n",
|
||||
"Action Input: \"Who sang summer of 69\"\u001b[0m{'action': 'on_agent_action', 'tool': 'Search', 'tool_input': 'Who sang summer of 69', 'log': ' I need to find out who sang summer of 69 and then find out who their wife is.\\nAction: Search\\nAction Input: \"Who sang summer of 69\"', 'step': 4, 'starts': 3, 'ends': 1, 'errors': 0, 'text_ctr': 0, 'chain_starts': 1, 'chain_ends': 0, 'llm_starts': 1, 'llm_ends': 1, 'llm_streams': 0, 'tool_starts': 1, 'tool_ends': 0, 'agent_ends': 0}\n",
|
||||
"{'action': 'on_tool_start', 'input_str': 'Who sang summer of 69', 'name': 'Search', 'description': 'A search engine. Useful for when you need to answer questions about current events. Input should be a search query.', 'step': 5, 'starts': 4, 'ends': 1, 'errors': 0, 'text_ctr': 0, 'chain_starts': 1, 'chain_ends': 0, 'llm_starts': 1, 'llm_ends': 1, 'llm_streams': 0, 'tool_starts': 2, 'tool_ends': 0, 'agent_ends': 0}\n",
|
||||
"\n",
|
||||
"Observation: \u001b[36;1m\u001b[1;3mBryan Adams - Summer Of 69 (Official Music Video).\u001b[0m\n",
|
||||
"Thought:{'action': 'on_tool_end', 'output': 'Bryan Adams - Summer Of 69 (Official Music Video).', 'step': 6, 'starts': 4, 'ends': 2, 'errors': 0, 'text_ctr': 0, 'chain_starts': 1, 'chain_ends': 0, 'llm_starts': 1, 'llm_ends': 1, 'llm_streams': 0, 'tool_starts': 2, 'tool_ends': 1, 'agent_ends': 0}\n",
|
||||
"{'action': 'on_llm_start', 'name': 'OpenAI', 'step': 7, 'starts': 5, 'ends': 2, 'errors': 0, 'text_ctr': 0, 'chain_starts': 1, 'chain_ends': 0, 'llm_starts': 2, 'llm_ends': 1, 'llm_streams': 0, 'tool_starts': 2, 'tool_ends': 1, 'agent_ends': 0, 'prompts': 'Answer the following questions as best you can. You have access to the following tools:\\n\\nSearch: A search engine. Useful for when you need to answer questions about current events. Input should be a search query.\\nCalculator: Useful for when you need to answer questions about math.\\n\\nUse the following format:\\n\\nQuestion: the input question you must answer\\nThought: you should always think about what to do\\nAction: the action to take, should be one of [Search, Calculator]\\nAction Input: the input to the action\\nObservation: the result of the action\\n... (this Thought/Action/Action Input/Observation can repeat N times)\\nThought: I now know the final answer\\nFinal Answer: the final answer to the original input question\\n\\nBegin!\\n\\nQuestion: Who is the wife of the person who sang summer of 69?\\nThought: I need to find out who sang summer of 69 and then find out who their wife is.\\nAction: Search\\nAction Input: \"Who sang summer of 69\"\\nObservation: Bryan Adams - Summer Of 69 (Official Music Video).\\nThought:'}\n",
|
||||
"{'action': 'on_llm_end', 'token_usage_prompt_tokens': 242, 'token_usage_completion_tokens': 28, 'token_usage_total_tokens': 270, 'model_name': 'text-davinci-003', 'step': 8, 'starts': 5, 'ends': 3, 'errors': 0, 'text_ctr': 0, 'chain_starts': 1, 'chain_ends': 0, 'llm_starts': 2, 'llm_ends': 2, 'llm_streams': 0, 'tool_starts': 2, 'tool_ends': 1, 'agent_ends': 0, 'text': ' I need to find out who Bryan Adams is married to.\\nAction: Search\\nAction Input: \"Who is Bryan Adams married to\"', 'generation_info_finish_reason': 'stop', 'generation_info_logprobs': None, 'flesch_reading_ease': 94.66, 'flesch_kincaid_grade': 2.7, 'smog_index': 0.0, 'coleman_liau_index': 4.73, 'automated_readability_index': 4.0, 'dale_chall_readability_score': 7.16, 'difficult_words': 2, 'linsear_write_formula': 4.25, 'gunning_fog': 4.2, 'text_standard': '4th and 5th grade', 'fernandez_huerta': 124.13, 'szigriszt_pazos': 119.2, 'gutierrez_polini': 52.26, 'crawford': 0.7, 'gulpease_index': 74.7, 'osman': 84.2}\n",
|
||||
"\u001b[32;1m\u001b[1;3m I need to find out who Bryan Adams is married to.\n",
|
||||
"Action: Search\n",
|
||||
"Action Input: \"Who is Bryan Adams married to\"\u001b[0m{'action': 'on_agent_action', 'tool': 'Search', 'tool_input': 'Who is Bryan Adams married to', 'log': ' I need to find out who Bryan Adams is married to.\\nAction: Search\\nAction Input: \"Who is Bryan Adams married to\"', 'step': 9, 'starts': 6, 'ends': 3, 'errors': 0, 'text_ctr': 0, 'chain_starts': 1, 'chain_ends': 0, 'llm_starts': 2, 'llm_ends': 2, 'llm_streams': 0, 'tool_starts': 3, 'tool_ends': 1, 'agent_ends': 0}\n",
|
||||
"{'action': 'on_tool_start', 'input_str': 'Who is Bryan Adams married to', 'name': 'Search', 'description': 'A search engine. Useful for when you need to answer questions about current events. Input should be a search query.', 'step': 10, 'starts': 7, 'ends': 3, 'errors': 0, 'text_ctr': 0, 'chain_starts': 1, 'chain_ends': 0, 'llm_starts': 2, 'llm_ends': 2, 'llm_streams': 0, 'tool_starts': 4, 'tool_ends': 1, 'agent_ends': 0}\n",
|
||||
"\n",
|
||||
"Observation: \u001b[36;1m\u001b[1;3mBryan Adams has never married. In the 1990s, he was in a relationship with Danish model Cecilie Thomsen. In 2011, Bryan and Alicia Grimaldi, his ...\u001b[0m\n",
|
||||
"Thought:{'action': 'on_tool_end', 'output': 'Bryan Adams has never married. In the 1990s, he was in a relationship with Danish model Cecilie Thomsen. In 2011, Bryan and Alicia Grimaldi, his ...', 'step': 11, 'starts': 7, 'ends': 4, 'errors': 0, 'text_ctr': 0, 'chain_starts': 1, 'chain_ends': 0, 'llm_starts': 2, 'llm_ends': 2, 'llm_streams': 0, 'tool_starts': 4, 'tool_ends': 2, 'agent_ends': 0}\n",
|
||||
"{'action': 'on_llm_start', 'name': 'OpenAI', 'step': 12, 'starts': 8, 'ends': 4, 'errors': 0, 'text_ctr': 0, 'chain_starts': 1, 'chain_ends': 0, 'llm_starts': 3, 'llm_ends': 2, 'llm_streams': 0, 'tool_starts': 4, 'tool_ends': 2, 'agent_ends': 0, 'prompts': 'Answer the following questions as best you can. You have access to the following tools:\\n\\nSearch: A search engine. Useful for when you need to answer questions about current events. Input should be a search query.\\nCalculator: Useful for when you need to answer questions about math.\\n\\nUse the following format:\\n\\nQuestion: the input question you must answer\\nThought: you should always think about what to do\\nAction: the action to take, should be one of [Search, Calculator]\\nAction Input: the input to the action\\nObservation: the result of the action\\n... (this Thought/Action/Action Input/Observation can repeat N times)\\nThought: I now know the final answer\\nFinal Answer: the final answer to the original input question\\n\\nBegin!\\n\\nQuestion: Who is the wife of the person who sang summer of 69?\\nThought: I need to find out who sang summer of 69 and then find out who their wife is.\\nAction: Search\\nAction Input: \"Who sang summer of 69\"\\nObservation: Bryan Adams - Summer Of 69 (Official Music Video).\\nThought: I need to find out who Bryan Adams is married to.\\nAction: Search\\nAction Input: \"Who is Bryan Adams married to\"\\nObservation: Bryan Adams has never married. In the 1990s, he was in a relationship with Danish model Cecilie Thomsen. In 2011, Bryan and Alicia Grimaldi, his ...\\nThought:'}\n",
|
||||
"{'action': 'on_llm_end', 'token_usage_prompt_tokens': 314, 'token_usage_completion_tokens': 18, 'token_usage_total_tokens': 332, 'model_name': 'text-davinci-003', 'step': 13, 'starts': 8, 'ends': 5, 'errors': 0, 'text_ctr': 0, 'chain_starts': 1, 'chain_ends': 0, 'llm_starts': 3, 'llm_ends': 3, 'llm_streams': 0, 'tool_starts': 4, 'tool_ends': 2, 'agent_ends': 0, 'text': ' I now know the final answer.\\nFinal Answer: Bryan Adams has never been married.', 'generation_info_finish_reason': 'stop', 'generation_info_logprobs': None, 'flesch_reading_ease': 81.29, 'flesch_kincaid_grade': 3.7, 'smog_index': 0.0, 'coleman_liau_index': 5.75, 'automated_readability_index': 3.9, 'dale_chall_readability_score': 7.37, 'difficult_words': 1, 'linsear_write_formula': 2.5, 'gunning_fog': 2.8, 'text_standard': '3rd and 4th grade', 'fernandez_huerta': 115.7, 'szigriszt_pazos': 110.84, 'gutierrez_polini': 49.79, 'crawford': 0.7, 'gulpease_index': 85.4, 'osman': 83.14}\n",
|
||||
"\u001b[32;1m\u001b[1;3m I now know the final answer.\n",
|
||||
"Final Answer: Bryan Adams has never been married.\u001b[0m\n",
|
||||
"{'action': 'on_agent_finish', 'output': 'Bryan Adams has never been married.', 'log': ' I now know the final answer.\\nFinal Answer: Bryan Adams has never been married.', 'step': 14, 'starts': 8, 'ends': 6, 'errors': 0, 'text_ctr': 0, 'chain_starts': 1, 'chain_ends': 0, 'llm_starts': 3, 'llm_ends': 3, 'llm_streams': 0, 'tool_starts': 4, 'tool_ends': 2, 'agent_ends': 1}\n",
|
||||
"\n",
|
||||
"\u001b[1m> Finished chain.\u001b[0m\n",
|
||||
"{'action': 'on_chain_end', 'outputs': 'Bryan Adams has never been married.', 'step': 15, 'starts': 8, 'ends': 7, 'errors': 0, 'text_ctr': 0, 'chain_starts': 1, 'chain_ends': 1, 'llm_starts': 3, 'llm_ends': 3, 'llm_streams': 0, 'tool_starts': 4, 'tool_ends': 2, 'agent_ends': 1}\n",
|
||||
"{'action_records': action name step starts ends errors text_ctr \\\n",
|
||||
"0 on_llm_start OpenAI 1 1 0 0 0 \n",
|
||||
"1 on_llm_start OpenAI 1 1 0 0 0 \n",
|
||||
"2 on_llm_start OpenAI 1 1 0 0 0 \n",
|
||||
"3 on_llm_start OpenAI 1 1 0 0 0 \n",
|
||||
"4 on_llm_start OpenAI 1 1 0 0 0 \n",
|
||||
".. ... ... ... ... ... ... ... \n",
|
||||
"66 on_tool_end NaN 11 7 4 0 0 \n",
|
||||
"67 on_llm_start OpenAI 12 8 4 0 0 \n",
|
||||
"68 on_llm_end NaN 13 8 5 0 0 \n",
|
||||
"69 on_agent_finish NaN 14 8 6 0 0 \n",
|
||||
"70 on_chain_end NaN 15 8 7 0 0 \n",
|
||||
"\n",
|
||||
" chain_starts chain_ends llm_starts ... gulpease_index osman input \\\n",
|
||||
"0 0 0 1 ... NaN NaN NaN \n",
|
||||
"1 0 0 1 ... NaN NaN NaN \n",
|
||||
"2 0 0 1 ... NaN NaN NaN \n",
|
||||
"3 0 0 1 ... NaN NaN NaN \n",
|
||||
"4 0 0 1 ... NaN NaN NaN \n",
|
||||
".. ... ... ... ... ... ... ... \n",
|
||||
"66 1 0 2 ... NaN NaN NaN \n",
|
||||
"67 1 0 3 ... NaN NaN NaN \n",
|
||||
"68 1 0 3 ... 85.4 83.14 NaN \n",
|
||||
"69 1 0 3 ... NaN NaN NaN \n",
|
||||
"70 1 1 3 ... NaN NaN NaN \n",
|
||||
"\n",
|
||||
" tool tool_input log \\\n",
|
||||
"0 NaN NaN NaN \n",
|
||||
"1 NaN NaN NaN \n",
|
||||
"2 NaN NaN NaN \n",
|
||||
"3 NaN NaN NaN \n",
|
||||
"4 NaN NaN NaN \n",
|
||||
".. ... ... ... \n",
|
||||
"66 NaN NaN NaN \n",
|
||||
"67 NaN NaN NaN \n",
|
||||
"68 NaN NaN NaN \n",
|
||||
"69 NaN NaN I now know the final answer.\\nFinal Answer: B... \n",
|
||||
"70 NaN NaN NaN \n",
|
||||
"\n",
|
||||
" input_str description output \\\n",
|
||||
"0 NaN NaN NaN \n",
|
||||
"1 NaN NaN NaN \n",
|
||||
"2 NaN NaN NaN \n",
|
||||
"3 NaN NaN NaN \n",
|
||||
"4 NaN NaN NaN \n",
|
||||
".. ... ... ... \n",
|
||||
"66 NaN NaN Bryan Adams has never married. In the 1990s, h... \n",
|
||||
"67 NaN NaN NaN \n",
|
||||
"68 NaN NaN NaN \n",
|
||||
"69 NaN NaN Bryan Adams has never been married. \n",
|
||||
"70 NaN NaN NaN \n",
|
||||
"\n",
|
||||
" outputs \n",
|
||||
"0 NaN \n",
|
||||
"1 NaN \n",
|
||||
"2 NaN \n",
|
||||
"3 NaN \n",
|
||||
"4 NaN \n",
|
||||
".. ... \n",
|
||||
"66 NaN \n",
|
||||
"67 NaN \n",
|
||||
"68 NaN \n",
|
||||
"69 NaN \n",
|
||||
"70 Bryan Adams has never been married. \n",
|
||||
"\n",
|
||||
"[71 rows x 47 columns], 'session_analysis': prompt_step prompts name \\\n",
|
||||
"0 2 Answer the following questions as best you can... OpenAI \n",
|
||||
"1 7 Answer the following questions as best you can... OpenAI \n",
|
||||
"2 12 Answer the following questions as best you can... OpenAI \n",
|
||||
"\n",
|
||||
" output_step output \\\n",
|
||||
"0 3 I need to find out who sang summer of 69 and ... \n",
|
||||
"1 8 I need to find out who Bryan Adams is married... \n",
|
||||
"2 13 I now know the final answer.\\nFinal Answer: B... \n",
|
||||
"\n",
|
||||
" token_usage_total_tokens token_usage_prompt_tokens \\\n",
|
||||
"0 223 189 \n",
|
||||
"1 270 242 \n",
|
||||
"2 332 314 \n",
|
||||
"\n",
|
||||
" token_usage_completion_tokens flesch_reading_ease flesch_kincaid_grade \\\n",
|
||||
"0 34 91.61 3.8 \n",
|
||||
"1 28 94.66 2.7 \n",
|
||||
"2 18 81.29 3.7 \n",
|
||||
"\n",
|
||||
" ... difficult_words linsear_write_formula gunning_fog \\\n",
|
||||
"0 ... 2 5.75 5.4 \n",
|
||||
"1 ... 2 4.25 4.2 \n",
|
||||
"2 ... 1 2.50 2.8 \n",
|
||||
"\n",
|
||||
" text_standard fernandez_huerta szigriszt_pazos gutierrez_polini \\\n",
|
||||
"0 3rd and 4th grade 121.07 119.50 54.91 \n",
|
||||
"1 4th and 5th grade 124.13 119.20 52.26 \n",
|
||||
"2 3rd and 4th grade 115.70 110.84 49.79 \n",
|
||||
"\n",
|
||||
" crawford gulpease_index osman \n",
|
||||
"0 0.9 72.7 92.16 \n",
|
||||
"1 0.7 74.7 84.20 \n",
|
||||
"2 0.7 85.4 83.14 \n",
|
||||
"\n",
|
||||
"[3 rows x 24 columns]}\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"name": "stderr",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Could not update last created model in Task 988bd727b0e94a29a3ac0ee526813545, Task status 'completed' cannot be updated\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"from langchain.agents import initialize_agent, load_tools\n",
|
||||
"from langchain.agents import AgentType\n",
|
||||
"\n",
|
||||
"# SCENARIO 2 - Agent with Tools\n",
|
||||
"tools = load_tools([\"serpapi\", \"llm-math\"], llm=llm, callback_manager=manager)\n",
|
||||
"agent = initialize_agent(\n",
|
||||
" tools,\n",
|
||||
" llm,\n",
|
||||
" agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION,\n",
|
||||
" callback_manager=manager,\n",
|
||||
" verbose=True,\n",
|
||||
")\n",
|
||||
"agent.run(\n",
|
||||
" \"Who is the wife of the person who sang summer of 69?\"\n",
|
||||
")\n",
|
||||
"clearml_callback.flush_tracker(langchain_asset=agent, name=\"Agent with Tools\", finish=True)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"attachments": {},
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Tips and Next Steps\n",
|
||||
"\n",
|
||||
"- Make sure you always use a unique `name` argument for the `clearml_callback.flush_tracker` function. If not, the model parameters used for a run will override the previous run!\n",
|
||||
"\n",
|
||||
"- If you close the ClearML Callback using `clearml_callback.flush_tracker(..., finish=True)` the Callback cannot be used anymore. Make a new one if you want to keep logging.\n",
|
||||
"\n",
|
||||
"- Check out the rest of the open source ClearML ecosystem, there is a data version manager, a remote execution agent, automated pipelines and much more!\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": ".venv",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.10.9"
|
||||
},
|
||||
"orig_nbformat": 4,
|
||||
"vscode": {
|
||||
"interpreter": {
|
||||
"hash": "a53ebf4a859167383b364e7e7521d0add3c2dbbdecce4edf676e8c4634ff3fbb"
|
||||
}
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 2
|
||||
}
|
||||
25
docs/ecosystem/cohere.md
Normal file
25
docs/ecosystem/cohere.md
Normal file
@@ -0,0 +1,25 @@
|
||||
# Cohere
|
||||
|
||||
This page covers how to use the Cohere ecosystem within LangChain.
|
||||
It is broken into two parts: installation and setup, and then references to specific Cohere wrappers.
|
||||
|
||||
## Installation and Setup
|
||||
- Install the Python SDK with `pip install cohere`
|
||||
- Get an Cohere api key and set it as an environment variable (`COHERE_API_KEY`)
|
||||
|
||||
## Wrappers
|
||||
|
||||
### LLM
|
||||
|
||||
There exists an Cohere LLM wrapper, which you can access with
|
||||
```python
|
||||
from langchain.llms import Cohere
|
||||
```
|
||||
|
||||
### Embeddings
|
||||
|
||||
There exists an Cohere Embeddings wrapper, which you can access with
|
||||
```python
|
||||
from langchain.embeddings import CohereEmbeddings
|
||||
```
|
||||
For a more detailed walkthrough of this, see [this notebook](../modules/models/text_embedding/examples/cohere.ipynb)
|
||||
352
docs/ecosystem/comet_tracking.ipynb
Normal file
352
docs/ecosystem/comet_tracking.ipynb
Normal file
@@ -0,0 +1,352 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Comet"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
""
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"In this guide we will demonstrate how to track your Langchain Experiments, Evaluation Metrics, and LLM Sessions with [Comet](https://www.comet.com/site/?utm_source=langchain&utm_medium=referral&utm_campaign=comet_notebook). \n",
|
||||
"\n",
|
||||
"<a target=\"_blank\" href=\"https://colab.research.google.com/github/hwchase17/langchain/blob/master/docs/ecosystem/comet_tracking.ipynb\">\n",
|
||||
" <img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/>\n",
|
||||
"</a>\n",
|
||||
"\n",
|
||||
"**Example Project:** [Comet with LangChain](https://www.comet.com/examples/comet-example-langchain/view/b5ZThK6OFdhKWVSP3fDfRtrNF/panels?utm_source=langchain&utm_medium=referral&utm_campaign=comet_notebook)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"<img width=\"1280\" alt=\"comet-langchain\" src=\"https://user-images.githubusercontent.com/7529846/230326720-a9711435-9c6f-4edb-a707-94b67271ab25.png\">\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Install Comet and Dependencies"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"%pip install comet_ml langchain openai google-search-results spacy textstat pandas\n",
|
||||
"\n",
|
||||
"import sys\n",
|
||||
"!{sys.executable} -m spacy download en_core_web_sm"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Initialize Comet and Set your Credentials"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"You can grab your [Comet API Key here](https://www.comet.com/signup?utm_source=langchain&utm_medium=referral&utm_campaign=comet_notebook) or click the link after intializing Comet"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import comet_ml\n",
|
||||
"\n",
|
||||
"comet_ml.init(project_name=\"comet-example-langchain\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Set OpenAI and SerpAPI credentials"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"You will need an [OpenAI API Key](https://platform.openai.com/account/api-keys) and a [SerpAPI API Key](https://serpapi.com/dashboard) to run the following examples"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import os\n",
|
||||
"\n",
|
||||
"os.environ[\"OPENAI_API_KEY\"] = \"...\"\n",
|
||||
"#os.environ[\"OPENAI_ORGANIZATION\"] = \"...\"\n",
|
||||
"os.environ[\"SERPAPI_API_KEY\"] = \"...\""
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Scenario 1: Using just an LLM"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from datetime import datetime\n",
|
||||
"\n",
|
||||
"from langchain.callbacks import CometCallbackHandler, StdOutCallbackHandler\n",
|
||||
"from langchain.callbacks.base import CallbackManager\n",
|
||||
"from langchain.llms import OpenAI\n",
|
||||
"\n",
|
||||
"comet_callback = CometCallbackHandler(\n",
|
||||
" project_name=\"comet-example-langchain\",\n",
|
||||
" complexity_metrics=True,\n",
|
||||
" stream_logs=True,\n",
|
||||
" tags=[\"llm\"],\n",
|
||||
" visualizations=[\"dep\"],\n",
|
||||
")\n",
|
||||
"manager = CallbackManager([StdOutCallbackHandler(), comet_callback])\n",
|
||||
"llm = OpenAI(temperature=0.9, callback_manager=manager, verbose=True)\n",
|
||||
"\n",
|
||||
"llm_result = llm.generate([\"Tell me a joke\", \"Tell me a poem\", \"Tell me a fact\"] * 3)\n",
|
||||
"print(\"LLM result\", llm_result)\n",
|
||||
"comet_callback.flush_tracker(llm, finish=True)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Scenario 2: Using an LLM in a Chain"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain.callbacks import CometCallbackHandler, StdOutCallbackHandler\n",
|
||||
"from langchain.callbacks.base import CallbackManager\n",
|
||||
"from langchain.chains import LLMChain\n",
|
||||
"from langchain.llms import OpenAI\n",
|
||||
"from langchain.prompts import PromptTemplate\n",
|
||||
"\n",
|
||||
"comet_callback = CometCallbackHandler(\n",
|
||||
" complexity_metrics=True,\n",
|
||||
" project_name=\"comet-example-langchain\",\n",
|
||||
" stream_logs=True,\n",
|
||||
" tags=[\"synopsis-chain\"],\n",
|
||||
")\n",
|
||||
"manager = CallbackManager([StdOutCallbackHandler(), comet_callback])\n",
|
||||
"\n",
|
||||
"llm = OpenAI(temperature=0.9, callback_manager=manager, verbose=True)\n",
|
||||
"\n",
|
||||
"template = \"\"\"You are a playwright. Given the title of play, it is your job to write a synopsis for that title.\n",
|
||||
"Title: {title}\n",
|
||||
"Playwright: This is a synopsis for the above play:\"\"\"\n",
|
||||
"prompt_template = PromptTemplate(input_variables=[\"title\"], template=template)\n",
|
||||
"synopsis_chain = LLMChain(llm=llm, prompt=prompt_template, callback_manager=manager)\n",
|
||||
"\n",
|
||||
"test_prompts = [{\"title\": \"Documentary about Bigfoot in Paris\"}]\n",
|
||||
"print(synopsis_chain.apply(test_prompts))\n",
|
||||
"comet_callback.flush_tracker(synopsis_chain, finish=True)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Scenario 3: Using An Agent with Tools "
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain.agents import initialize_agent, load_tools\n",
|
||||
"from langchain.callbacks import CometCallbackHandler, StdOutCallbackHandler\n",
|
||||
"from langchain.callbacks.base import CallbackManager\n",
|
||||
"from langchain.llms import OpenAI\n",
|
||||
"\n",
|
||||
"comet_callback = CometCallbackHandler(\n",
|
||||
" project_name=\"comet-example-langchain\",\n",
|
||||
" complexity_metrics=True,\n",
|
||||
" stream_logs=True,\n",
|
||||
" tags=[\"agent\"],\n",
|
||||
")\n",
|
||||
"manager = CallbackManager([StdOutCallbackHandler(), comet_callback])\n",
|
||||
"llm = OpenAI(temperature=0.9, callback_manager=manager, verbose=True)\n",
|
||||
"\n",
|
||||
"tools = load_tools([\"serpapi\", \"llm-math\"], llm=llm, callback_manager=manager)\n",
|
||||
"agent = initialize_agent(\n",
|
||||
" tools,\n",
|
||||
" llm,\n",
|
||||
" agent=\"zero-shot-react-description\",\n",
|
||||
" callback_manager=manager,\n",
|
||||
" verbose=True,\n",
|
||||
")\n",
|
||||
"agent.run(\n",
|
||||
" \"Who is Leo DiCaprio's girlfriend? What is her current age raised to the 0.43 power?\"\n",
|
||||
")\n",
|
||||
"comet_callback.flush_tracker(agent, finish=True)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Scenario 4: Using Custom Evaluation Metrics"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"The `CometCallbackManager` also allows you to define and use Custom Evaluation Metrics to assess generated outputs from your model. Let's take a look at how this works. \n",
|
||||
"\n",
|
||||
"\n",
|
||||
"In the snippet below, we will use the [ROUGE](https://huggingface.co/spaces/evaluate-metric/rouge) metric to evaluate the quality of a generated summary of an input prompt. "
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"%pip install rouge-score"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from rouge_score import rouge_scorer\n",
|
||||
"\n",
|
||||
"from langchain.callbacks import CometCallbackHandler, StdOutCallbackHandler\n",
|
||||
"from langchain.callbacks.base import CallbackManager\n",
|
||||
"from langchain.chains import LLMChain\n",
|
||||
"from langchain.llms import OpenAI\n",
|
||||
"from langchain.prompts import PromptTemplate\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"class Rouge:\n",
|
||||
" def __init__(self, reference):\n",
|
||||
" self.reference = reference\n",
|
||||
" self.scorer = rouge_scorer.RougeScorer([\"rougeLsum\"], use_stemmer=True)\n",
|
||||
"\n",
|
||||
" def compute_metric(self, generation, prompt_idx, gen_idx):\n",
|
||||
" prediction = generation.text\n",
|
||||
" results = self.scorer.score(target=self.reference, prediction=prediction)\n",
|
||||
"\n",
|
||||
" return {\n",
|
||||
" \"rougeLsum_score\": results[\"rougeLsum\"].fmeasure,\n",
|
||||
" \"reference\": self.reference,\n",
|
||||
" }\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"reference = \"\"\"\n",
|
||||
"The tower is 324 metres (1,063 ft) tall, about the same height as an 81-storey building.\n",
|
||||
"It was the first structure to reach a height of 300 metres.\n",
|
||||
"\n",
|
||||
"It is now taller than the Chrysler Building in New York City by 5.2 metres (17 ft)\n",
|
||||
"Excluding transmitters, the Eiffel Tower is the second tallest free-standing structure in France .\n",
|
||||
"\"\"\"\n",
|
||||
"rouge_score = Rouge(reference=reference)\n",
|
||||
"\n",
|
||||
"template = \"\"\"Given the following article, it is your job to write a summary.\n",
|
||||
"Article:\n",
|
||||
"{article}\n",
|
||||
"Summary: This is the summary for the above article:\"\"\"\n",
|
||||
"prompt_template = PromptTemplate(input_variables=[\"article\"], template=template)\n",
|
||||
"\n",
|
||||
"comet_callback = CometCallbackHandler(\n",
|
||||
" project_name=\"comet-example-langchain\",\n",
|
||||
" complexity_metrics=False,\n",
|
||||
" stream_logs=True,\n",
|
||||
" tags=[\"custom_metrics\"],\n",
|
||||
" custom_metrics=rouge_score.compute_metric,\n",
|
||||
")\n",
|
||||
"manager = CallbackManager([StdOutCallbackHandler(), comet_callback])\n",
|
||||
"llm = OpenAI(temperature=0.9, callback_manager=manager, verbose=True)\n",
|
||||
"\n",
|
||||
"synopsis_chain = LLMChain(llm=llm, prompt=prompt_template, callback_manager=manager)\n",
|
||||
"\n",
|
||||
"test_prompts = [\n",
|
||||
" {\n",
|
||||
" \"article\": \"\"\"\n",
|
||||
" The tower is 324 metres (1,063 ft) tall, about the same height as\n",
|
||||
" an 81-storey building, and the tallest structure in Paris. Its base is square,\n",
|
||||
" measuring 125 metres (410 ft) on each side.\n",
|
||||
" During its construction, the Eiffel Tower surpassed the\n",
|
||||
" Washington Monument to become the tallest man-made structure in the world,\n",
|
||||
" a title it held for 41 years until the Chrysler Building\n",
|
||||
" in New York City was finished in 1930.\n",
|
||||
"\n",
|
||||
" It was the first structure to reach a height of 300 metres.\n",
|
||||
" Due to the addition of a broadcasting aerial at the top of the tower in 1957,\n",
|
||||
" it is now taller than the Chrysler Building by 5.2 metres (17 ft).\n",
|
||||
"\n",
|
||||
" Excluding transmitters, the Eiffel Tower is the second tallest\n",
|
||||
" free-standing structure in France after the Millau Viaduct.\n",
|
||||
" \"\"\"\n",
|
||||
" }\n",
|
||||
"]\n",
|
||||
"print(synopsis_chain.apply(test_prompts))\n",
|
||||
"comet_callback.flush_tracker(synopsis_chain, finish=True)"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3 (ipykernel)",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.9.15"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 2
|
||||
}
|
||||
25
docs/ecosystem/databerry.md
Normal file
25
docs/ecosystem/databerry.md
Normal file
@@ -0,0 +1,25 @@
|
||||
# Databerry
|
||||
|
||||
This page covers how to use the [Databerry](https://databerry.ai) within LangChain.
|
||||
|
||||
## What is Databerry?
|
||||
|
||||
Databerry is an [open source](https://github.com/gmpetrov/databerry) document retrievial platform that helps to connect your personal data with Large Language Models.
|
||||
|
||||

|
||||
|
||||
## Quick start
|
||||
|
||||
Retrieving documents stored in Databerry from LangChain is very easy!
|
||||
|
||||
```python
|
||||
from langchain.retrievers import DataberryRetriever
|
||||
|
||||
retriever = DataberryRetriever(
|
||||
datastore_url="https://api.databerry.ai/query/clg1xg2h80000l708dymr0fxc",
|
||||
# api_key="DATABERRY_API_KEY", # optional if datastore is public
|
||||
# top_k=10 # optional
|
||||
)
|
||||
|
||||
docs = retriever.get_relevant_documents("What's Databerry?")
|
||||
```
|
||||
17
docs/ecosystem/deepinfra.md
Normal file
17
docs/ecosystem/deepinfra.md
Normal file
@@ -0,0 +1,17 @@
|
||||
# DeepInfra
|
||||
|
||||
This page covers how to use the DeepInfra ecosystem within LangChain.
|
||||
It is broken into two parts: installation and setup, and then references to specific DeepInfra wrappers.
|
||||
|
||||
## Installation and Setup
|
||||
- Get your DeepInfra api key from this link [here](https://deepinfra.com/).
|
||||
- Get an DeepInfra api key and set it as an environment variable (`DEEPINFRA_API_TOKEN`)
|
||||
|
||||
## Wrappers
|
||||
|
||||
### LLM
|
||||
|
||||
There exists an DeepInfra LLM wrapper, which you can access with
|
||||
```python
|
||||
from langchain.llms import DeepInfra
|
||||
```
|
||||
30
docs/ecosystem/deeplake.md
Normal file
30
docs/ecosystem/deeplake.md
Normal file
@@ -0,0 +1,30 @@
|
||||
# Deep Lake
|
||||
This page covers how to use the Deep Lake ecosystem within LangChain.
|
||||
|
||||
## Why Deep Lake?
|
||||
- More than just a (multi-modal) vector store. You can later use the dataset to fine-tune your own LLM models.
|
||||
- Not only stores embeddings, but also the original data with automatic version control.
|
||||
- Truly serverless. Doesn't require another service and can be used with major cloud providers (AWS S3, GCS, etc.)
|
||||
|
||||
## More Resources
|
||||
1. [Ultimate Guide to LangChain & Deep Lake: Build ChatGPT to Answer Questions on Your Financial Data](https://www.activeloop.ai/resources/ultimate-guide-to-lang-chain-deep-lake-build-chat-gpt-to-answer-questions-on-your-financial-data/)
|
||||
2. [Twitter the-algorithm codebase analysis with Deep Lake](../use_cases/code/twitter-the-algorithm-analysis-deeplake.ipynb)
|
||||
3. Here is [whitepaper](https://www.deeplake.ai/whitepaper) and [academic paper](https://arxiv.org/pdf/2209.10785.pdf) for Deep Lake
|
||||
4. Here is a set of additional resources available for review: [Deep Lake](https://github.com/activeloopai/deeplake), [Getting Started](https://docs.activeloop.ai/getting-started) and [Tutorials](https://docs.activeloop.ai/hub-tutorials)
|
||||
|
||||
## Installation and Setup
|
||||
- Install the Python package with `pip install deeplake`
|
||||
|
||||
## Wrappers
|
||||
|
||||
### VectorStore
|
||||
|
||||
There exists a wrapper around Deep Lake, a data lake for Deep Learning applications, allowing you to use it as a vector store (for now), whether for semantic search or example selection.
|
||||
|
||||
To import this vectorstore:
|
||||
```python
|
||||
from langchain.vectorstores import DeepLake
|
||||
```
|
||||
|
||||
|
||||
For a more detailed walkthrough of the Deep Lake wrapper, see [this notebook](../modules/indexes/vectorstores/examples/deeplake.ipynb)
|
||||
16
docs/ecosystem/forefrontai.md
Normal file
16
docs/ecosystem/forefrontai.md
Normal file
@@ -0,0 +1,16 @@
|
||||
# ForefrontAI
|
||||
|
||||
This page covers how to use the ForefrontAI ecosystem within LangChain.
|
||||
It is broken into two parts: installation and setup, and then references to specific ForefrontAI wrappers.
|
||||
|
||||
## Installation and Setup
|
||||
- Get an ForefrontAI api key and set it as an environment variable (`FOREFRONTAI_API_KEY`)
|
||||
|
||||
## Wrappers
|
||||
|
||||
### LLM
|
||||
|
||||
There exists an ForefrontAI LLM wrapper, which you can access with
|
||||
```python
|
||||
from langchain.llms import ForefrontAI
|
||||
```
|
||||
32
docs/ecosystem/google_search.md
Normal file
32
docs/ecosystem/google_search.md
Normal file
@@ -0,0 +1,32 @@
|
||||
# Google Search Wrapper
|
||||
|
||||
This page covers how to use the Google Search API within LangChain.
|
||||
It is broken into two parts: installation and setup, and then references to the specific Google Search wrapper.
|
||||
|
||||
## Installation and Setup
|
||||
- Install requirements with `pip install google-api-python-client`
|
||||
- Set up a Custom Search Engine, following [these instructions](https://stackoverflow.com/questions/37083058/programmatically-searching-google-in-python-using-custom-search)
|
||||
- Get an API Key and Custom Search Engine ID from the previous step, and set them as environment variables `GOOGLE_API_KEY` and `GOOGLE_CSE_ID` respectively
|
||||
|
||||
## Wrappers
|
||||
|
||||
### Utility
|
||||
|
||||
There exists a GoogleSearchAPIWrapper utility which wraps this API. To import this utility:
|
||||
|
||||
```python
|
||||
from langchain.utilities import GoogleSearchAPIWrapper
|
||||
```
|
||||
|
||||
For a more detailed walkthrough of this wrapper, see [this notebook](../modules/agents/tools/examples/google_search.ipynb).
|
||||
|
||||
### Tool
|
||||
|
||||
You can also easily load this wrapper as a Tool (to use with an Agent).
|
||||
You can do this with:
|
||||
```python
|
||||
from langchain.agents import load_tools
|
||||
tools = load_tools(["google-search"])
|
||||
```
|
||||
|
||||
For more information on this, see [this page](../modules/agents/tools/getting_started.md)
|
||||
73
docs/ecosystem/google_serper.md
Normal file
73
docs/ecosystem/google_serper.md
Normal file
@@ -0,0 +1,73 @@
|
||||
# Google Serper Wrapper
|
||||
|
||||
This page covers how to use the [Serper](https://serper.dev) Google Search API within LangChain. Serper is a low-cost Google Search API that can be used to add answer box, knowledge graph, and organic results data from Google Search.
|
||||
It is broken into two parts: setup, and then references to the specific Google Serper wrapper.
|
||||
|
||||
## Setup
|
||||
- Go to [serper.dev](https://serper.dev) to sign up for a free account
|
||||
- Get the api key and set it as an environment variable (`SERPER_API_KEY`)
|
||||
|
||||
## Wrappers
|
||||
|
||||
### Utility
|
||||
|
||||
There exists a GoogleSerperAPIWrapper utility which wraps this API. To import this utility:
|
||||
|
||||
```python
|
||||
from langchain.utilities import GoogleSerperAPIWrapper
|
||||
```
|
||||
|
||||
You can use it as part of a Self Ask chain:
|
||||
|
||||
```python
|
||||
from langchain.utilities import GoogleSerperAPIWrapper
|
||||
from langchain.llms.openai import OpenAI
|
||||
from langchain.agents import initialize_agent, Tool
|
||||
from langchain.agents import AgentType
|
||||
|
||||
import os
|
||||
|
||||
os.environ["SERPER_API_KEY"] = ""
|
||||
os.environ['OPENAI_API_KEY'] = ""
|
||||
|
||||
llm = OpenAI(temperature=0)
|
||||
search = GoogleSerperAPIWrapper()
|
||||
tools = [
|
||||
Tool(
|
||||
name="Intermediate Answer",
|
||||
func=search.run,
|
||||
description="useful for when you need to ask with search"
|
||||
)
|
||||
]
|
||||
|
||||
self_ask_with_search = initialize_agent(tools, llm, agent=AgentType.SELF_ASK_WITH_SEARCH, verbose=True)
|
||||
self_ask_with_search.run("What is the hometown of the reigning men's U.S. Open champion?")
|
||||
```
|
||||
|
||||
#### Output
|
||||
```
|
||||
Entering new AgentExecutor chain...
|
||||
Yes.
|
||||
Follow up: Who is the reigning men's U.S. Open champion?
|
||||
Intermediate answer: Current champions Carlos Alcaraz, 2022 men's singles champion.
|
||||
Follow up: Where is Carlos Alcaraz from?
|
||||
Intermediate answer: El Palmar, Spain
|
||||
So the final answer is: El Palmar, Spain
|
||||
|
||||
> Finished chain.
|
||||
|
||||
'El Palmar, Spain'
|
||||
```
|
||||
|
||||
For a more detailed walkthrough of this wrapper, see [this notebook](../modules/agents/tools/examples/google_serper.ipynb).
|
||||
|
||||
### Tool
|
||||
|
||||
You can also easily load this wrapper as a Tool (to use with an Agent).
|
||||
You can do this with:
|
||||
```python
|
||||
from langchain.agents import load_tools
|
||||
tools = load_tools(["google-serper"])
|
||||
```
|
||||
|
||||
For more information on this, see [this page](../modules/agents/tools/getting_started.md)
|
||||
23
docs/ecosystem/gooseai.md
Normal file
23
docs/ecosystem/gooseai.md
Normal file
@@ -0,0 +1,23 @@
|
||||
# GooseAI
|
||||
|
||||
This page covers how to use the GooseAI ecosystem within LangChain.
|
||||
It is broken into two parts: installation and setup, and then references to specific GooseAI wrappers.
|
||||
|
||||
## Installation and Setup
|
||||
- Install the Python SDK with `pip install openai`
|
||||
- Get your GooseAI api key from this link [here](https://goose.ai/).
|
||||
- Set the environment variable (`GOOSEAI_API_KEY`).
|
||||
|
||||
```python
|
||||
import os
|
||||
os.environ["GOOSEAI_API_KEY"] = "YOUR_API_KEY"
|
||||
```
|
||||
|
||||
## Wrappers
|
||||
|
||||
### LLM
|
||||
|
||||
There exists an GooseAI LLM wrapper, which you can access with:
|
||||
```python
|
||||
from langchain.llms import GooseAI
|
||||
```
|
||||
47
docs/ecosystem/gpt4all.md
Normal file
47
docs/ecosystem/gpt4all.md
Normal file
@@ -0,0 +1,47 @@
|
||||
# GPT4All
|
||||
|
||||
This page covers how to use the `GPT4All` wrapper within LangChain. The tutorial is divided into two parts: installation and setup, followed by usage with an example.
|
||||
|
||||
## Installation and Setup
|
||||
- Install the Python package with `pip install pyllamacpp`
|
||||
- Download a [GPT4All model](https://github.com/nomic-ai/pyllamacpp#supported-model) and place it in your desired directory
|
||||
|
||||
## Usage
|
||||
|
||||
### GPT4All
|
||||
|
||||
To use the GPT4All wrapper, you need to provide the path to the pre-trained model file and the model's configuration.
|
||||
|
||||
```python
|
||||
from langchain.llms import GPT4All
|
||||
|
||||
# Instantiate the model. Callbacks support token-wise streaming
|
||||
model = GPT4All(model="./models/gpt4all-model.bin", n_ctx=512, n_threads=8)
|
||||
|
||||
# Generate text
|
||||
response = model("Once upon a time, ")
|
||||
```
|
||||
|
||||
You can also customize the generation parameters, such as n_predict, temp, top_p, top_k, and others.
|
||||
|
||||
To stream the model's predictions, add in a CallbackManager.
|
||||
|
||||
```python
|
||||
from langchain.llms import GPT4All
|
||||
from langchain.callbacks.base import CallbackManager
|
||||
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
|
||||
# There are many CallbackHandlers supported, such as
|
||||
# from langchain.callbacks.streamlit import StreamlitCallbackHandler
|
||||
|
||||
callback_manager = CallbackManager([StreamingStdOutCallbackHandler()])
|
||||
model = GPT4All(model="./models/gpt4all-model.bin", n_ctx=512, n_threads=8, callback_handler=callback_handler, verbose=True)
|
||||
|
||||
# Generate text. Tokens are streamed through the callback manager.
|
||||
model("Once upon a time, ")
|
||||
```
|
||||
|
||||
## Model File
|
||||
|
||||
You can find links to model file downloads in the [pyllamacpp](https://github.com/nomic-ai/pyllamacpp) repository.
|
||||
|
||||
For a more detailed walkthrough of this, see [this notebook](../modules/models/llms/integrations/gpt4all.ipynb)
|
||||
44
docs/ecosystem/graphsignal.md
Normal file
44
docs/ecosystem/graphsignal.md
Normal file
@@ -0,0 +1,44 @@
|
||||
# Graphsignal
|
||||
|
||||
This page covers how to use [Graphsignal](https://app.graphsignal.com) to trace and monitor LangChain. Graphsignal enables full visibility into your application. It provides latency breakdowns by chains and tools, exceptions with full context, data monitoring, compute/GPU utilization, OpenAI cost analytics, and more.
|
||||
|
||||
## Installation and Setup
|
||||
|
||||
- Install the Python library with `pip install graphsignal`
|
||||
- Create free Graphsignal account [here](https://graphsignal.com)
|
||||
- Get an API key and set it as an environment variable (`GRAPHSIGNAL_API_KEY`)
|
||||
|
||||
## Tracing and Monitoring
|
||||
|
||||
Graphsignal automatically instruments and starts tracing and monitoring chains. Traces and metrics are then available in your [Graphsignal dashboards](https://app.graphsignal.com).
|
||||
|
||||
Initialize the tracer by providing a deployment name:
|
||||
|
||||
```python
|
||||
import graphsignal
|
||||
|
||||
graphsignal.configure(deployment='my-langchain-app-prod')
|
||||
```
|
||||
|
||||
To additionally trace any function or code, you can use a decorator or a context manager:
|
||||
|
||||
```python
|
||||
@graphsignal.trace_function
|
||||
def handle_request():
|
||||
chain.run("some initial text")
|
||||
```
|
||||
|
||||
```python
|
||||
with graphsignal.start_trace('my-chain'):
|
||||
chain.run("some initial text")
|
||||
```
|
||||
|
||||
Optionally, enable profiling to record function-level statistics for each trace.
|
||||
|
||||
```python
|
||||
with graphsignal.start_trace(
|
||||
'my-chain', options=graphsignal.TraceOptions(enable_profiling=True)):
|
||||
chain.run("some initial text")
|
||||
```
|
||||
|
||||
See the [Quick Start](https://graphsignal.com/docs/guides/quick-start/) guide for complete setup instructions.
|
||||
19
docs/ecosystem/hazy_research.md
Normal file
19
docs/ecosystem/hazy_research.md
Normal file
@@ -0,0 +1,19 @@
|
||||
# Hazy Research
|
||||
|
||||
This page covers how to use the Hazy Research ecosystem within LangChain.
|
||||
It is broken into two parts: installation and setup, and then references to specific Hazy Research wrappers.
|
||||
|
||||
## Installation and Setup
|
||||
- To use the `manifest`, install it with `pip install manifest-ml`
|
||||
|
||||
## Wrappers
|
||||
|
||||
### LLM
|
||||
|
||||
There exists an LLM wrapper around Hazy Research's `manifest` library.
|
||||
`manifest` is a python library which is itself a wrapper around many model providers, and adds in caching, history, and more.
|
||||
|
||||
To use this wrapper:
|
||||
```python
|
||||
from langchain.llms.manifest import ManifestWrapper
|
||||
```
|
||||
53
docs/ecosystem/helicone.md
Normal file
53
docs/ecosystem/helicone.md
Normal file
@@ -0,0 +1,53 @@
|
||||
# Helicone
|
||||
|
||||
This page covers how to use the [Helicone](https://helicone.ai) ecosystem within LangChain.
|
||||
|
||||
## What is Helicone?
|
||||
|
||||
Helicone is an [open source](https://github.com/Helicone/helicone) observability platform that proxies your OpenAI traffic and provides you key insights into your spend, latency and usage.
|
||||
|
||||

|
||||
|
||||
## Quick start
|
||||
|
||||
With your LangChain environment you can just add the following parameter.
|
||||
|
||||
```bash
|
||||
export OPENAI_API_BASE="https://oai.hconeai.com/v1"
|
||||
```
|
||||
|
||||
Now head over to [helicone.ai](https://helicone.ai/onboarding?step=2) to create your account, and add your OpenAI API key within our dashboard to view your logs.
|
||||
|
||||

|
||||
|
||||
## How to enable Helicone caching
|
||||
|
||||
```python
|
||||
from langchain.llms import OpenAI
|
||||
import openai
|
||||
openai.api_base = "https://oai.hconeai.com/v1"
|
||||
|
||||
llm = OpenAI(temperature=0.9, headers={"Helicone-Cache-Enabled": "true"})
|
||||
text = "What is a helicone?"
|
||||
print(llm(text))
|
||||
```
|
||||
|
||||
[Helicone caching docs](https://docs.helicone.ai/advanced-usage/caching)
|
||||
|
||||
## How to use Helicone custom properties
|
||||
|
||||
```python
|
||||
from langchain.llms import OpenAI
|
||||
import openai
|
||||
openai.api_base = "https://oai.hconeai.com/v1"
|
||||
|
||||
llm = OpenAI(temperature=0.9, headers={
|
||||
"Helicone-Property-Session": "24",
|
||||
"Helicone-Property-Conversation": "support_issue_2",
|
||||
"Helicone-Property-App": "mobile",
|
||||
})
|
||||
text = "What is a helicone?"
|
||||
print(llm(text))
|
||||
```
|
||||
|
||||
[Helicone property docs](https://docs.helicone.ai/advanced-usage/custom-properties)
|
||||
69
docs/ecosystem/huggingface.md
Normal file
69
docs/ecosystem/huggingface.md
Normal file
@@ -0,0 +1,69 @@
|
||||
# Hugging Face
|
||||
|
||||
This page covers how to use the Hugging Face ecosystem (including the [Hugging Face Hub](https://huggingface.co)) within LangChain.
|
||||
It is broken into two parts: installation and setup, and then references to specific Hugging Face wrappers.
|
||||
|
||||
## Installation and Setup
|
||||
|
||||
If you want to work with the Hugging Face Hub:
|
||||
- Install the Hub client library with `pip install huggingface_hub`
|
||||
- Create a Hugging Face account (it's free!)
|
||||
- Create an [access token](https://huggingface.co/docs/hub/security-tokens) and set it as an environment variable (`HUGGINGFACEHUB_API_TOKEN`)
|
||||
|
||||
If you want work with the Hugging Face Python libraries:
|
||||
- Install `pip install transformers` for working with models and tokenizers
|
||||
- Install `pip install datasets` for working with datasets
|
||||
|
||||
## Wrappers
|
||||
|
||||
### LLM
|
||||
|
||||
There exists two Hugging Face LLM wrappers, one for a local pipeline and one for a model hosted on Hugging Face Hub.
|
||||
Note that these wrappers only work for models that support the following tasks: [`text2text-generation`](https://huggingface.co/models?library=transformers&pipeline_tag=text2text-generation&sort=downloads), [`text-generation`](https://huggingface.co/models?library=transformers&pipeline_tag=text-classification&sort=downloads)
|
||||
|
||||
To use the local pipeline wrapper:
|
||||
```python
|
||||
from langchain.llms import HuggingFacePipeline
|
||||
```
|
||||
|
||||
To use a the wrapper for a model hosted on Hugging Face Hub:
|
||||
```python
|
||||
from langchain.llms import HuggingFaceHub
|
||||
```
|
||||
For a more detailed walkthrough of the Hugging Face Hub wrapper, see [this notebook](../modules/models/llms/integrations/huggingface_hub.ipynb)
|
||||
|
||||
|
||||
### Embeddings
|
||||
|
||||
There exists two Hugging Face Embeddings wrappers, one for a local model and one for a model hosted on Hugging Face Hub.
|
||||
Note that these wrappers only work for [`sentence-transformers` models](https://huggingface.co/models?library=sentence-transformers&sort=downloads).
|
||||
|
||||
To use the local pipeline wrapper:
|
||||
```python
|
||||
from langchain.embeddings import HuggingFaceEmbeddings
|
||||
```
|
||||
|
||||
To use a the wrapper for a model hosted on Hugging Face Hub:
|
||||
```python
|
||||
from langchain.embeddings import HuggingFaceHubEmbeddings
|
||||
```
|
||||
For a more detailed walkthrough of this, see [this notebook](../modules/models/text_embedding/examples/huggingfacehub.ipynb)
|
||||
|
||||
### Tokenizer
|
||||
|
||||
There are several places you can use tokenizers available through the `transformers` package.
|
||||
By default, it is used to count tokens for all LLMs.
|
||||
|
||||
You can also use it to count tokens when splitting documents with
|
||||
```python
|
||||
from langchain.text_splitter import CharacterTextSplitter
|
||||
CharacterTextSplitter.from_huggingface_tokenizer(...)
|
||||
```
|
||||
For a more detailed walkthrough of this, see [this notebook](../modules/indexes/text_splitters/examples/huggingface_length_function.ipynb)
|
||||
|
||||
|
||||
### Datasets
|
||||
|
||||
The Hugging Face Hub has lots of great [datasets](https://huggingface.co/datasets) that can be used to evaluate your LLM chains.
|
||||
|
||||
For a detailed walkthrough of how to use them to do so, see [this notebook](../use_cases/evaluation/huggingface_datasets.ipynb)
|
||||
18
docs/ecosystem/jina.md
Normal file
18
docs/ecosystem/jina.md
Normal file
@@ -0,0 +1,18 @@
|
||||
# Jina
|
||||
|
||||
This page covers how to use the Jina ecosystem within LangChain.
|
||||
It is broken into two parts: installation and setup, and then references to specific Jina wrappers.
|
||||
|
||||
## Installation and Setup
|
||||
- Install the Python SDK with `pip install jina`
|
||||
- Get a Jina AI Cloud auth token from [here](https://cloud.jina.ai/settings/tokens) and set it as an environment variable (`JINA_AUTH_TOKEN`)
|
||||
|
||||
## Wrappers
|
||||
|
||||
### Embeddings
|
||||
|
||||
There exists a Jina Embeddings wrapper, which you can access with
|
||||
```python
|
||||
from langchain.embeddings import JinaEmbeddings
|
||||
```
|
||||
For a more detailed walkthrough of this, see [this notebook](../modules/models/text_embedding/examples/jina.ipynb)
|
||||
26
docs/ecosystem/llamacpp.md
Normal file
26
docs/ecosystem/llamacpp.md
Normal file
@@ -0,0 +1,26 @@
|
||||
# Llama.cpp
|
||||
|
||||
This page covers how to use [llama.cpp](https://github.com/ggerganov/llama.cpp) within LangChain.
|
||||
It is broken into two parts: installation and setup, and then references to specific Llama-cpp wrappers.
|
||||
|
||||
## Installation and Setup
|
||||
- Install the Python package with `pip install llama-cpp-python`
|
||||
- Download one of the [supported models](https://github.com/ggerganov/llama.cpp#description) and convert them to the llama.cpp format per the [instructions](https://github.com/ggerganov/llama.cpp)
|
||||
|
||||
## Wrappers
|
||||
|
||||
### LLM
|
||||
|
||||
There exists a LlamaCpp LLM wrapper, which you can access with
|
||||
```python
|
||||
from langchain.llms import LlamaCpp
|
||||
```
|
||||
For a more detailed walkthrough of this, see [this notebook](../modules/models/llms/integrations/llamacpp.ipynb)
|
||||
|
||||
### Embeddings
|
||||
|
||||
There exists a LlamaCpp Embeddings wrapper, which you can access with
|
||||
```python
|
||||
from langchain.embeddings import LlamaCppEmbeddings
|
||||
```
|
||||
For a more detailed walkthrough of this, see [this notebook](../modules/models/text_embedding/examples/llamacpp.ipynb)
|
||||
20
docs/ecosystem/milvus.md
Normal file
20
docs/ecosystem/milvus.md
Normal file
@@ -0,0 +1,20 @@
|
||||
# Milvus
|
||||
|
||||
This page covers how to use the Milvus ecosystem within LangChain.
|
||||
It is broken into two parts: installation and setup, and then references to specific Milvus wrappers.
|
||||
|
||||
## Installation and Setup
|
||||
- Install the Python SDK with `pip install pymilvus`
|
||||
## Wrappers
|
||||
|
||||
### VectorStore
|
||||
|
||||
There exists a wrapper around Milvus indexes, allowing you to use it as a vectorstore,
|
||||
whether for semantic search or example selection.
|
||||
|
||||
To import this vectorstore:
|
||||
```python
|
||||
from langchain.vectorstores import Milvus
|
||||
```
|
||||
|
||||
For a more detailed walkthrough of the Miluvs wrapper, see [this notebook](../modules/indexes/vectorstores/examples/milvus.ipynb)
|
||||
66
docs/ecosystem/modal.md
Normal file
66
docs/ecosystem/modal.md
Normal file
@@ -0,0 +1,66 @@
|
||||
# Modal
|
||||
|
||||
This page covers how to use the Modal ecosystem within LangChain.
|
||||
It is broken into two parts: installation and setup, and then references to specific Modal wrappers.
|
||||
|
||||
## Installation and Setup
|
||||
- Install with `pip install modal-client`
|
||||
- Run `modal token new`
|
||||
|
||||
## Define your Modal Functions and Webhooks
|
||||
|
||||
You must include a prompt. There is a rigid response structure.
|
||||
|
||||
```python
|
||||
class Item(BaseModel):
|
||||
prompt: str
|
||||
|
||||
@stub.webhook(method="POST")
|
||||
def my_webhook(item: Item):
|
||||
return {"prompt": my_function.call(item.prompt)}
|
||||
```
|
||||
|
||||
An example with GPT2:
|
||||
|
||||
```python
|
||||
from pydantic import BaseModel
|
||||
|
||||
import modal
|
||||
|
||||
stub = modal.Stub("example-get-started")
|
||||
|
||||
volume = modal.SharedVolume().persist("gpt2_model_vol")
|
||||
CACHE_PATH = "/root/model_cache"
|
||||
|
||||
@stub.function(
|
||||
gpu="any",
|
||||
image=modal.Image.debian_slim().pip_install(
|
||||
"tokenizers", "transformers", "torch", "accelerate"
|
||||
),
|
||||
shared_volumes={CACHE_PATH: volume},
|
||||
retries=3,
|
||||
)
|
||||
def run_gpt2(text: str):
|
||||
from transformers import GPT2Tokenizer, GPT2LMHeadModel
|
||||
tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
|
||||
model = GPT2LMHeadModel.from_pretrained('gpt2')
|
||||
encoded_input = tokenizer(text, return_tensors='pt').input_ids
|
||||
output = model.generate(encoded_input, max_length=50, do_sample=True)
|
||||
return tokenizer.decode(output[0], skip_special_tokens=True)
|
||||
|
||||
class Item(BaseModel):
|
||||
prompt: str
|
||||
|
||||
@stub.webhook(method="POST")
|
||||
def get_text(item: Item):
|
||||
return {"prompt": run_gpt2.call(item.prompt)}
|
||||
```
|
||||
|
||||
## Wrappers
|
||||
|
||||
### LLM
|
||||
|
||||
There exists an Modal LLM wrapper, which you can access with
|
||||
```python
|
||||
from langchain.llms import Modal
|
||||
```
|
||||
65
docs/ecosystem/myscale.md
Normal file
65
docs/ecosystem/myscale.md
Normal file
@@ -0,0 +1,65 @@
|
||||
# MyScale
|
||||
|
||||
This page covers how to use MyScale vector database within LangChain.
|
||||
It is broken into two parts: installation and setup, and then references to specific MyScale wrappers.
|
||||
|
||||
With MyScale, you can manage both structured and unstructured (vectorized) data, and perform joint queries and analytics on both types of data using SQL. Plus, MyScale's cloud-native OLAP architecture, built on top of ClickHouse, enables lightning-fast data processing even on massive datasets.
|
||||
|
||||
## Introduction
|
||||
|
||||
[Overview to MyScale and High performance vector search](https://docs.myscale.com/en/overview/)
|
||||
|
||||
You can now register on our SaaS and [start a cluster now!](https://docs.myscale.com/en/quickstart/)
|
||||
|
||||
If you are also interested in how we managed to integrate SQL and vector, please refer to [this document](https://docs.myscale.com/en/vector-reference/) for further syntax reference.
|
||||
|
||||
We also deliver with live demo on huggingface! Please checkout our [huggingface space](https://huggingface.co/myscale)! They search millions of vector within a blink!
|
||||
|
||||
## Installation and Setup
|
||||
- Install the Python SDK with `pip install clickhouse-connect`
|
||||
|
||||
### Setting up envrionments
|
||||
|
||||
There are two ways to set up parameters for myscale index.
|
||||
|
||||
1. Environment Variables
|
||||
|
||||
Before you run the app, please set the environment variable with `export`:
|
||||
`export MYSCALE_URL='<your-endpoints-url>' MYSCALE_PORT=<your-endpoints-port> MYSCALE_USERNAME=<your-username> MYSCALE_PASSWORD=<your-password> ...`
|
||||
|
||||
You can easily find your account, password and other info on our SaaS. For details please refer to [this document](https://docs.myscale.com/en/cluster-management/)
|
||||
Every attributes under `MyScaleSettings` can be set with prefix `MYSCALE_` and is case insensitive.
|
||||
|
||||
2. Create `MyScaleSettings` object with parameters
|
||||
|
||||
|
||||
```python
|
||||
from langchain.vectorstores import MyScale, MyScaleSettings
|
||||
config = MyScaleSetting(host="<your-backend-url>", port=8443, ...)
|
||||
index = MyScale(embedding_function, config)
|
||||
index.add_documents(...)
|
||||
```
|
||||
|
||||
## Wrappers
|
||||
supported functions:
|
||||
- `add_texts`
|
||||
- `add_documents`
|
||||
- `from_texts`
|
||||
- `from_documents`
|
||||
- `similarity_search`
|
||||
- `asimilarity_search`
|
||||
- `similarity_search_by_vector`
|
||||
- `asimilarity_search_by_vector`
|
||||
- `similarity_search_with_relevance_scores`
|
||||
|
||||
### VectorStore
|
||||
|
||||
There exists a wrapper around MyScale database, allowing you to use it as a vectorstore,
|
||||
whether for semantic search or similar example retrieval.
|
||||
|
||||
To import this vectorstore:
|
||||
```python
|
||||
from langchain.vectorstores import MyScale
|
||||
```
|
||||
|
||||
For a more detailed walkthrough of the MyScale wrapper, see [this notebook](../modules/indexes/vectorstores/examples/myscale.ipynb)
|
||||
17
docs/ecosystem/nlpcloud.md
Normal file
17
docs/ecosystem/nlpcloud.md
Normal file
@@ -0,0 +1,17 @@
|
||||
# NLPCloud
|
||||
|
||||
This page covers how to use the NLPCloud ecosystem within LangChain.
|
||||
It is broken into two parts: installation and setup, and then references to specific NLPCloud wrappers.
|
||||
|
||||
## Installation and Setup
|
||||
- Install the Python SDK with `pip install nlpcloud`
|
||||
- Get an NLPCloud api key and set it as an environment variable (`NLPCLOUD_API_KEY`)
|
||||
|
||||
## Wrappers
|
||||
|
||||
### LLM
|
||||
|
||||
There exists an NLPCloud LLM wrapper, which you can access with
|
||||
```python
|
||||
from langchain.llms import NLPCloud
|
||||
```
|
||||
55
docs/ecosystem/openai.md
Normal file
55
docs/ecosystem/openai.md
Normal file
@@ -0,0 +1,55 @@
|
||||
# OpenAI
|
||||
|
||||
This page covers how to use the OpenAI ecosystem within LangChain.
|
||||
It is broken into two parts: installation and setup, and then references to specific OpenAI wrappers.
|
||||
|
||||
## Installation and Setup
|
||||
- Install the Python SDK with `pip install openai`
|
||||
- Get an OpenAI api key and set it as an environment variable (`OPENAI_API_KEY`)
|
||||
- If you want to use OpenAI's tokenizer (only available for Python 3.9+), install it with `pip install tiktoken`
|
||||
|
||||
## Wrappers
|
||||
|
||||
### LLM
|
||||
|
||||
There exists an OpenAI LLM wrapper, which you can access with
|
||||
```python
|
||||
from langchain.llms import OpenAI
|
||||
```
|
||||
|
||||
If you are using a model hosted on Azure, you should use different wrapper for that:
|
||||
```python
|
||||
from langchain.llms import AzureOpenAI
|
||||
```
|
||||
For a more detailed walkthrough of the Azure wrapper, see [this notebook](../modules/models/llms/integrations/azure_openai_example.ipynb)
|
||||
|
||||
|
||||
|
||||
### Embeddings
|
||||
|
||||
There exists an OpenAI Embeddings wrapper, which you can access with
|
||||
```python
|
||||
from langchain.embeddings import OpenAIEmbeddings
|
||||
```
|
||||
For a more detailed walkthrough of this, see [this notebook](../modules/models/text_embedding/examples/openai.ipynb)
|
||||
|
||||
|
||||
### Tokenizer
|
||||
|
||||
There are several places you can use the `tiktoken` tokenizer. By default, it is used to count tokens
|
||||
for OpenAI LLMs.
|
||||
|
||||
You can also use it to count tokens when splitting documents with
|
||||
```python
|
||||
from langchain.text_splitter import CharacterTextSplitter
|
||||
CharacterTextSplitter.from_tiktoken_encoder(...)
|
||||
```
|
||||
For a more detailed walkthrough of this, see [this notebook](../modules/indexes/text_splitters/examples/tiktoken.ipynb)
|
||||
|
||||
### Moderation
|
||||
You can also access the OpenAI content moderation endpoint with
|
||||
|
||||
```python
|
||||
from langchain.chains import OpenAIModerationChain
|
||||
```
|
||||
For a more detailed walkthrough of this, see [this notebook](../modules/chains/examples/moderation.ipynb)
|
||||
21
docs/ecosystem/opensearch.md
Normal file
21
docs/ecosystem/opensearch.md
Normal file
@@ -0,0 +1,21 @@
|
||||
# OpenSearch
|
||||
|
||||
This page covers how to use the OpenSearch ecosystem within LangChain.
|
||||
It is broken into two parts: installation and setup, and then references to specific OpenSearch wrappers.
|
||||
|
||||
## Installation and Setup
|
||||
- Install the Python package with `pip install opensearch-py`
|
||||
## Wrappers
|
||||
|
||||
### VectorStore
|
||||
|
||||
There exists a wrapper around OpenSearch vector databases, allowing you to use it as a vectorstore
|
||||
for semantic search using approximate vector search powered by lucene, nmslib and faiss engines
|
||||
or using painless scripting and script scoring functions for bruteforce vector search.
|
||||
|
||||
To import this vectorstore:
|
||||
```python
|
||||
from langchain.vectorstores import OpenSearchVectorSearch
|
||||
```
|
||||
|
||||
For a more detailed walkthrough of the OpenSearch wrapper, see [this notebook](../modules/indexes/vectorstores/examples/opensearch.ipynb)
|
||||
17
docs/ecosystem/petals.md
Normal file
17
docs/ecosystem/petals.md
Normal file
@@ -0,0 +1,17 @@
|
||||
# Petals
|
||||
|
||||
This page covers how to use the Petals ecosystem within LangChain.
|
||||
It is broken into two parts: installation and setup, and then references to specific Petals wrappers.
|
||||
|
||||
## Installation and Setup
|
||||
- Install with `pip install petals`
|
||||
- Get a Hugging Face api key and set it as an environment variable (`HUGGINGFACE_API_KEY`)
|
||||
|
||||
## Wrappers
|
||||
|
||||
### LLM
|
||||
|
||||
There exists an Petals LLM wrapper, which you can access with
|
||||
```python
|
||||
from langchain.llms import Petals
|
||||
```
|
||||
29
docs/ecosystem/pgvector.md
Normal file
29
docs/ecosystem/pgvector.md
Normal file
@@ -0,0 +1,29 @@
|
||||
# PGVector
|
||||
|
||||
This page covers how to use the Postgres [PGVector](https://github.com/pgvector/pgvector) ecosystem within LangChain
|
||||
It is broken into two parts: installation and setup, and then references to specific PGVector wrappers.
|
||||
|
||||
## Installation
|
||||
- Install the Python package with `pip install pgvector`
|
||||
|
||||
|
||||
## Setup
|
||||
1. The first step is to create a database with the `pgvector` extension installed.
|
||||
|
||||
Follow the steps at [PGVector Installation Steps](https://github.com/pgvector/pgvector#installation) to install the database and the extension. The docker image is the easiest way to get started.
|
||||
|
||||
## Wrappers
|
||||
|
||||
### VectorStore
|
||||
|
||||
There exists a wrapper around Postgres vector databases, allowing you to use it as a vectorstore,
|
||||
whether for semantic search or example selection.
|
||||
|
||||
To import this vectorstore:
|
||||
```python
|
||||
from langchain.vectorstores.pgvector import PGVector
|
||||
```
|
||||
|
||||
### Usage
|
||||
|
||||
For a more detailed walkthrough of the PGVector Wrapper, see [this notebook](../modules/indexes/vectorstores/examples/pgvector.ipynb)
|
||||
20
docs/ecosystem/pinecone.md
Normal file
20
docs/ecosystem/pinecone.md
Normal file
@@ -0,0 +1,20 @@
|
||||
# Pinecone
|
||||
|
||||
This page covers how to use the Pinecone ecosystem within LangChain.
|
||||
It is broken into two parts: installation and setup, and then references to specific Pinecone wrappers.
|
||||
|
||||
## Installation and Setup
|
||||
- Install the Python SDK with `pip install pinecone-client`
|
||||
## Wrappers
|
||||
|
||||
### VectorStore
|
||||
|
||||
There exists a wrapper around Pinecone indexes, allowing you to use it as a vectorstore,
|
||||
whether for semantic search or example selection.
|
||||
|
||||
To import this vectorstore:
|
||||
```python
|
||||
from langchain.vectorstores import Pinecone
|
||||
```
|
||||
|
||||
For a more detailed walkthrough of the Pinecone wrapper, see [this notebook](../modules/indexes/vectorstores/examples/pinecone.ipynb)
|
||||
49
docs/ecosystem/promptlayer.md
Normal file
49
docs/ecosystem/promptlayer.md
Normal file
@@ -0,0 +1,49 @@
|
||||
# PromptLayer
|
||||
|
||||
This page covers how to use [PromptLayer](https://www.promptlayer.com) within LangChain.
|
||||
It is broken into two parts: installation and setup, and then references to specific PromptLayer wrappers.
|
||||
|
||||
## Installation and Setup
|
||||
|
||||
If you want to work with PromptLayer:
|
||||
- Install the promptlayer python library `pip install promptlayer`
|
||||
- Create a PromptLayer account
|
||||
- Create an api token and set it as an environment variable (`PROMPTLAYER_API_KEY`)
|
||||
|
||||
## Wrappers
|
||||
|
||||
### LLM
|
||||
|
||||
There exists an PromptLayer OpenAI LLM wrapper, which you can access with
|
||||
```python
|
||||
from langchain.llms import PromptLayerOpenAI
|
||||
```
|
||||
|
||||
To tag your requests, use the argument `pl_tags` when instanializing the LLM
|
||||
```python
|
||||
from langchain.llms import PromptLayerOpenAI
|
||||
llm = PromptLayerOpenAI(pl_tags=["langchain-requests", "chatbot"])
|
||||
```
|
||||
|
||||
To get the PromptLayer request id, use the argument `return_pl_id` when instanializing the LLM
|
||||
```python
|
||||
from langchain.llms import PromptLayerOpenAI
|
||||
llm = PromptLayerOpenAI(return_pl_id=True)
|
||||
```
|
||||
This will add the PromptLayer request ID in the `generation_info` field of the `Generation` returned when using `.generate` or `.agenerate`
|
||||
|
||||
For example:
|
||||
```python
|
||||
llm_results = llm.generate(["hello world"])
|
||||
for res in llm_results.generations:
|
||||
print("pl request id: ", res[0].generation_info["pl_request_id"])
|
||||
```
|
||||
You can use the PromptLayer request ID to add a prompt, score, or other metadata to your request. [Read more about it here](https://magniv.notion.site/Track-4deee1b1f7a34c1680d085f82567dab9).
|
||||
|
||||
This LLM is identical to the [OpenAI LLM](./openai.md), except that
|
||||
- all your requests will be logged to your PromptLayer account
|
||||
- you can add `pl_tags` when instantializing to tag your requests on PromptLayer
|
||||
- you can add `return_pl_id` when instantializing to return a PromptLayer request id to use [while tracking requests](https://magniv.notion.site/Track-4deee1b1f7a34c1680d085f82567dab9).
|
||||
|
||||
|
||||
PromptLayer also provides native wrappers for [`PromptLayerChatOpenAI`](../modules/models/chat/integrations/promptlayer_chatopenai.ipynb) and `PromptLayerOpenAIChat`
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user