Compare commits

...

131 Commits

Author SHA1 Message Date
Chester Curme
d765a91c5c avoid overwriting model param if passed explicitly 2025-09-08 09:57:51 -04:00
Chester Curme
88af494b37 Merge branch 'master' into fix/responses-api 2025-09-08 09:54:46 -04:00
ccurme
5b0a55ad35 chore(openai): apply formatting changes to AzureChatOpenAI (#32848) 2025-09-08 09:54:20 -04:00
Chester Curme
08c4055347 Merge branch 'master' into fix/responses-api 2025-09-08 09:42:36 -04:00
Sydney Runkle
6e2f46d04c feat(langchain): middleware support in create_agent (#32828)
## Overview

Adding new `AgentMiddleware` primitive that supports `before_model`,
`after_model`, and `prepare_model_request` hooks.

This is very exciting! It makes our `create_agent` prebuilt much more
extensible + capable. Still in alpha and subject to change.

This is different than the initial
[implementation](https://github.com/langchain-ai/langgraph/tree/nc/25aug/agent)
in that it:
* Fills in gaps w/ missing features, for ex -- new structured output,
optionality of tools + system prompt, sync and async model requests,
provider builtin tools
* Exposes private state extensions for middleware, enabling things like
model call tracking, etc
* Middleware can register tools
* Uses a `TypedDict` for `AgentState` -- dataclass subclassing is tricky
w/ required values + required decorators
* Addition of `model_settings` to `ModelRequest` so that we can pass
through things to bind (like cache kwargs for anthropic middleware)

## TODOs

### top prio
- [x] add middleware support to existing agent
- [x] top prio middlewares
  - [x] summarization node
  - [x] HITL
  - [x] prompt caching
 
other ones
- [x] model call limits
- [x] tool calling limits
- [ ] usage (requires output state)

### secondary prio
- [x] improve typing for state updates from middleware (not working
right now w/ simple `AgentUpdate` and `AgentJump`, at least in Python)
- [ ] add support for public state (input / output modifications via
pregel channel mods) -- to be tackled in another PR
- [x] testing!

### docs
See https://github.com/langchain-ai/docs/pull/390
- [x] high level docs about middleware
- [x] summarization node
- [x] HITL
- [x] prompt caching

## open questions

Lots of open questions right now, many of them inlined as comments for
the short term, will catalog some more significant ones here.

---------

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2025-09-08 01:10:57 +00:00
Christophe Bornet
5bf0b218c8 chore(cli): fix some ruff preview rules (#32803) 2025-09-07 16:53:19 -04:00
Mason Daugherty
4e39c164bb fix(anthropic): remove beta header warning for TTL (#32832)
No longer beta as of Aug 13
2025-09-05 14:28:58 -04:00
ScarletMercy
0b3af47335 fix(docs): resolve malformed character in tool_calling.ipynb (#32825)
**Description:**  
Remove a character in tool_calling.ipynb that causes a grammatical error
Verification: Local docs build passed after fix 
 
**Issue:**  
None (direct hotfix for rendering issue identified during documentation
review)
 
**Dependencies:**  
None
2025-09-05 11:28:56 -04:00
Mason Daugherty
bc91a4811c chore: update PR template (#32819) 2025-09-04 19:53:54 +00:00
Christophe Bornet
05a61f9508 fix(langchain): fix mypy versions in langchain_v1 (#32816) 2025-09-04 11:51:08 -04:00
Christophe Bornet
aa63de9366 chore(langchain): cleanup langchain_v1 mypy config (#32809)
Co-authored-by: Mason Daugherty <mason@langchain.dev>
2025-09-03 19:28:06 +00:00
Christophe Bornet
86fa34f3eb chore(langchain): add ruff rules D for langchain_v1 (#32808) 2025-09-03 15:26:17 -04:00
JING
36037c9251 fix(docs): update Anthropic model name and add version warnings (#32807)
**Description:** This PR fixes the broken Anthropic model example in the
documentation introduction page and adds a comment field to display
model version warnings in code blocks. The changes ensure that users can
successfully run the example code and are reminded to check for the
latest model versions.

**Issue:** https://github.com/langchain-ai/langchain/issues/32806

**Changes made:**
- Update Anthropic model from broken "claude-3-5-sonnet-latest" to
working "claude-3-7-sonnet-20250219"
- Add comment field to display model version warnings in code blocks
- Improve user experience by providing working examples and version
guidance

**Dependencies:** None required
2025-09-03 15:25:13 -04:00
Martin Meier-Zavodsky
ad26c892ea docs(langchain): update evaluation tutorial link (#32796)
**Description**
This PR updates the evaluation tutorial link for LangSmith to the new
official docs location.

**Issue**
N/A

**Dependencies**
None
2025-09-03 15:22:46 -04:00
Shahroz Ahmad
4828a85ab0 feat(core): add web_search in OpenAI tools list (#32738) 2025-09-02 21:57:25 +00:00
ccurme
b999f356e8 fix(langchain): update __init__ version (#32793) 2025-09-02 13:14:42 -04:00
Sydney Runkle
062196a7b3 release(langchain): v1.0.0a3 (#32791) 2025-09-02 12:29:14 -04:00
Sydney Runkle
dc9f941326 chore(langchain): rename create_react_agent -> create_agent (#32789) 2025-09-02 12:13:12 -04:00
Adithya1617
238ecd09e0 docs(langchain): update redirect url of "this langsmith conceptual guide" in tracing.mdx (#32776)
…ge (issue : #32775)

- **Description: updated the redirect url of "this langsmith conceptual
guide" in tracing.mdx
  - **Issue:** fixes #32775

---------

Co-authored-by: Adithya <adithya.vardhan1617@gmail.com>
Co-authored-by: Mason Daugherty <mason@langchain.dev>
2025-09-01 19:02:21 +00:00
Mason Daugherty
6b5fdfb804 release(text-splitters): 0.3.11 (#32770)
Fixes #32747

SpaCy integration test fixture was trying to use pip to download the
SpaCy language model (`en_core_web_sm`), but uv-managed environments
don't include pip by default. Fail test if not installed as opposed to
downloading.
2025-08-31 23:00:05 +00:00
Ravirajsingh Sodha
b42dac5fe6 docs: standardize OllamaLLM and BaseOpenAI docstrings (#32758)
- Add comprehensive docstring following LangChain standards
- Include Setup, Key init args, Instantiate, Invoke, Stream, and Async
sections
- Provide detailed parameter descriptions and code examples
- Fix linting issues for code formatting compliance

Contributes to #24803

---------

Co-authored-by: Mason Daugherty <github@mdrxy.com>
2025-08-31 17:45:56 -05:00
Christophe Bornet
e0a4af8d8b docs(text-splitters): fix some docstrings (#32767) 2025-08-31 13:46:11 -05:00
Rémy HUBSCHER
fcf7175392 chore(langchain): improve PostgreSQL Manager upsert SQLAlchemy API calls. (#32748)
- Make explicit the `constraint` parameter name to avoid mixing it with
`index_elements`
[[Documentation](https://docs.sqlalchemy.org/en/20/dialects/postgresql.html#sqlalchemy.dialects.postgresql.Insert.on_conflict_do_update)]
- ~Fallback on the existing `group_id` row value, to avoid setting it to
`None`.~
2025-08-30 14:13:24 -05:00
Kush Goswami
1f2ab17dff docs: fix typo and grammer in Conceptual guide (#32754)
fixed small typo and grammatical inconsistency in Conceptual guide
2025-08-30 13:48:55 -05:00
Mason Daugherty
2dc89a2ae7 release(cli): 0.0.37 (#32760)
It's been a minute. Final release prior to dropping Python 3.9 support.
2025-08-30 13:07:55 -05:00
Christophe Bornet
e3c4aeaea1 chore(cli): add mypy strict checking (#32386)
Co-authored-by: Mason Daugherty <mason@langchain.dev>
2025-08-30 13:02:45 -05:00
Vikas Shivpuriya
444939945a docs: fix punctuation in style guide (#32756)
Removed a period in bulleted list for consistency

Thank you for contributing to LangChain! Follow these steps to mark your
pull request as ready for review. **If any of these steps are not
completed, your PR will not be considered for review.**

- [ ] **PR title**: Follows the format: {TYPE}({SCOPE}): {DESCRIPTION}
  - Examples:
    - feat(core): add multi-tenant support
    - fix(cli): resolve flag parsing error
    - docs(openai): update API usage examples
  - Allowed `{TYPE}` values:
- feat, fix, docs, style, refactor, perf, test, build, ci, chore,
revert, release
  - Allowed `{SCOPE}` values (optional):
- core, cli, langchain, standard-tests, docs, anthropic, chroma,
deepseek, exa, fireworks, groq, huggingface, mistralai, nomic, ollama,
openai, perplexity, prompty, qdrant, xai
  - Note: the `{DESCRIPTION}` must not start with an uppercase letter.
- Once you've written the title, please delete this checklist item; do
not include it in the PR.

- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** a description of the change. Include a [closing
keyword](https://docs.github.com/en/issues/tracking-your-work-with-issues/using-issues/linking-a-pull-request-to-an-issue#linking-a-pull-request-to-an-issue-using-a-keyword)
if applicable to a relevant issue.
  - **Issue:** the issue # it fixes, if applicable (e.g. Fixes #123)
  - **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!

- [ ] **Add tests and docs**: If you're adding a new integration, you
must include:
1. A test for the integration, preferably unit tests that do not rely on
network access,
2. An example notebook showing its use. It lives in
`docs/docs/integrations` directory.

- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. **We will not consider
a PR unless these three are passing in CI.** See [contribution
guidelines](https://python.langchain.com/docs/contributing/) for more.

Additional guidelines:

- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to `pyproject.toml` files (even
optional ones) unless they are **required** for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
2025-08-30 12:56:17 -05:00
Vikas Shivpuriya
ae8db86486 docs: fixed typo in contributing guide (#32755)
Completed the sentence by adding a period ".", in sync with other points

>> Click "Propose changes"

to 

>> Click "Propose changes".

Thank you for contributing to LangChain! Follow these steps to mark your
pull request as ready for review. **If any of these steps are not
completed, your PR will not be considered for review.**

- [ ] **PR title**: Follows the format: {TYPE}({SCOPE}): {DESCRIPTION}
  - Examples:
    - feat(core): add multi-tenant support
    - fix(cli): resolve flag parsing error
    - docs(openai): update API usage examples
  - Allowed `{TYPE}` values:
- feat, fix, docs, style, refactor, perf, test, build, ci, chore,
revert, release
  - Allowed `{SCOPE}` values (optional):
- core, cli, langchain, standard-tests, docs, anthropic, chroma,
deepseek, exa, fireworks, groq, huggingface, mistralai, nomic, ollama,
openai, perplexity, prompty, qdrant, xai
  - Note: the `{DESCRIPTION}` must not start with an uppercase letter.
- Once you've written the title, please delete this checklist item; do
not include it in the PR.

- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** a description of the change. Include a [closing
keyword](https://docs.github.com/en/issues/tracking-your-work-with-issues/using-issues/linking-a-pull-request-to-an-issue#linking-a-pull-request-to-an-issue-using-a-keyword)
if applicable to a relevant issue.
  - **Issue:** the issue # it fixes, if applicable (e.g. Fixes #123)
  - **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!

- [ ] **Add tests and docs**: If you're adding a new integration, you
must include:
1. A test for the integration, preferably unit tests that do not rely on
network access,
2. An example notebook showing its use. It lives in
`docs/docs/integrations` directory.

- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. **We will not consider
a PR unless these three are passing in CI.** See [contribution
guidelines](https://python.langchain.com/docs/contributing/) for more.

Additional guidelines:

- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to `pyproject.toml` files (even
optional ones) unless they are **required** for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
2025-08-30 12:55:25 -05:00
Christophe Bornet
8a1419dad1 chore(cli): add ruff rules ANN401 and D1 (#32576) 2025-08-30 12:41:16 -05:00
Kush Goswami
840e4c8e9f docs: fix grammar and typo in Documentation style guide (#32741)
fixed grammer and one typo in the Documentation style guide
2025-08-29 14:22:54 -04:00
Caspar Broekhuizen
37aff0a153 chore: bump langchain-core minimum to 0.3.75 (#32753)
Update `langchain-core` dependency min from `>=0.3.63` to `>=0.3.75`.

### Motivation
- We located the `langchain-core` package locally in the monorepo and
need to align `langchain-tests` with the new minimum version.
2025-08-29 14:11:28 -04:00
Caspar Broekhuizen
a163d59988 chore(standard-tests): relax langchain-core bounds for langchain-tests 1.0.0a1 (#32752)
### Overview
Preparing the `1.0.0a1` release of `langchain-tests` to align with
`langchain-core` version `1.0.0a1`.

### Changes
- Bump package version to `1.0.0a1`
- Relax `langchain-core` requirement from `<1.0.0,>=0.3.63` to
`<2.0.0,>=0.3.63`

### Motivation
All main LangChain packages are now publishing `1.0.0a` prereleases.  
`langchain-tests` needs a matching prerelease so downstreams can install
tests alongside the 1.0 series without conflicts.

### Tests
- Verified installation and tests against both `0.3.75` and `1.0.0a1`.
2025-08-29 13:46:48 -04:00
Sydney Runkle
b26e52aa4d chore(text-splitters): bump version of core (#32740) 2025-08-28 13:14:57 -04:00
Sydney Runkle
38cdd7a2ec chore(text-splitters): relax max bound for langchain-core (#32739) 2025-08-28 13:05:47 -04:00
Sydney Runkle
26e5d1302b chore(langchain): remove upper bound at v1 for core (#32737) 2025-08-28 12:14:42 -04:00
Christopher Jones
107425c68d docs: fix basic Oracle example issues such as capitalization (#32730)
**Description:** fix capitalization and basic issues in
https://python.langchain.com/docs/integrations/document_loaders/oracleadb_loader/

Signed-off-by: Christopher Jones <christopher.jones@oracle.com>
2025-08-28 10:32:45 -04:00
Tik1993
009cc3bf50 docs(docs): added content= keyword when creating SystemMessage and HumanMessage (#32734)
Description: 
Added the content= keyword when creating SystemMessage and HumanMessage
in the messages list, making it consistent with the API reference.
2025-08-28 10:31:46 -04:00
NOOR UL HUDA
6185558449 docs: replace smart quotes with straight quotes on How-to guides landing page (#32725)
### Summary

This PR updates the sentence on the "How-to guides" landing page to
replace smart (curly) quotes with straight quotes in the phrase:

> "How do I...?"

### Why This Change?

- Ensures formatting consistency across documentation
- Avoids encoding or rendering issues with smart quotes
- Matches standard Markdown and inline code formatting

This is a small change, but improves clarity and polish on a key landing
page.
2025-08-28 10:30:12 -04:00
Kush Goswami
0928ff5b12 docs: fix typo in LangGraph section of Introduction (#32728)
Change "Linkedin" to "LinkedIn" to be consistent with LinkedIn's
spelling.

Thank you for contributing to LangChain! Follow these steps to mark your
pull request as ready for review. **If any of these steps are not
completed, your PR will not be considered for review.**

- [x] **Add tests and docs**: If you're adding a new integration, you
must include:
1. A test for the integration, preferably unit tests that do not rely on
network access,
2. An example notebook showing its use. It lives in
`docs/docs/integrations` directory.

- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. **We will not consider
a PR unless these three are passing in CI.** See [contribution
guidelines](https://python.langchain.com/docs/contributing/) for more.

Additional guidelines:

- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to `pyproject.toml` files (even
optional ones) unless they are **required** for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
2025-08-28 10:29:35 -04:00
Sydney Runkle
7f9b0772fc chore(langchain): also bump text splitters (#32722) 2025-08-27 18:09:57 +00:00
Sydney Runkle
d6e618258f chore(langchain): use latest core (#32720) 2025-08-27 14:06:07 -04:00
Sydney Runkle
806bc593ab chore(langchain): revert back to static versioning for now (#32719) 2025-08-27 13:54:41 -04:00
Sydney Runkle
047bcbaa13 release(langchain): v1.0.0a1 (#32718)
Also removing globals usage + static version
2025-08-27 13:46:20 -04:00
Sydney Runkle
18db07c292 feat(langchain): revamped create_react_agent (#32705)
Adding `create_react_agent` and introducing `langchain.agents`!

## Enhanced Structured Output

`create_react_agent` supports coercion of outputs to structured data
types like `pydantic` models, dataclasses, typed dicts, or JSON schemas
specifications.

### Structural Changes

In langgraph < 1.0, `create_react_agent` implemented support for
structured output via an additional LLM call to the model after the
standard model / tool calling loop finished. This introduced extra
expense and was unnecessary.

This new version implements structured output support in the main loop,
allowing a model to choose between calling tools or generating
structured output (or both).

The same basic pattern for structured output generation works:

```py
from langchain.agents import create_react_agent
from langchain_core.messages import HumanMessage
from pydantic import BaseModel


class Weather(BaseModel):
    temperature: float
    condition: str


def weather_tool(city: str) -> str:
    """Get the weather for a city."""

    return f"it's sunny and 70 degrees in {city}"


agent = create_react_agent("openai:gpt-4o-mini", tools=[weather_tool], response_format=Weather)
print(repr(result["structured_response"]))
#> Weather(temperature=70.0, condition='sunny')
```

### Advanced Configuration

The new API exposes two ways to configure how structured output is
generated. Under the hood, LangChain will attempt to pick the best
approach if not explicitly specified. That is, if provider native
support is available for a given model, that takes priority over
artificial tool calling.

1. Artificial tool calling (the default for most models)

LangChain generates a tool (or tools) under the hood that match the
schema of your response format. When the model calls those tools,
LangChain coerces the args to the desired format. Note, LangChain does
not validate outputs adhering to JSON schema specifications.

<details>
<summary>Extended example</summary>

```py
from langchain.agents import create_react_agent
from langchain_core.messages import HumanMessage
from langchain.agents.structured_output import ToolStrategy
from pydantic import BaseModel


class Weather(BaseModel):
    temperature: float
    condition: str


def weather_tool(city: str) -> str:
    """Get the weather for a city."""

    return f"it's sunny and 70 degrees in {city}"


agent = create_react_agent(
    "openai:gpt-4o-mini",
    tools=[weather_tool],
    response_format=ToolStrategy(
        schema=Weather, tool_message_content="Final Weather result generated"
    ),
)

result = agent.invoke({"messages": [HumanMessage("What's the weather in Tokyo?")]})
for message in result["messages"]:
    message.pretty_print()

"""
================================ Human Message =================================

What's the weather in Tokyo?
================================== Ai Message ==================================
Tool Calls:
  weather_tool (call_Gg933BMHMwck50Q39dtBjXm7)
 Call ID: call_Gg933BMHMwck50Q39dtBjXm7
  Args:
    city: Tokyo
================================= Tool Message =================================
Name: weather_tool

it's sunny and 70 degrees in Tokyo
================================== Ai Message ==================================
Tool Calls:
  Weather (call_9xOkYUM7PuEXl9DQq9sWGv5l)
 Call ID: call_9xOkYUM7PuEXl9DQq9sWGv5l
  Args:
    temperature: 70
    condition: sunny
================================= Tool Message =================================
Name: Weather

Final Weather result generated
"""

print(repr(result["structured_response"]))
#> Weather(temperature=70.0, condition='sunny')
```

</details>

2. Provider implementations (limited to OpenAI, Groq)

Some providers support structured output generating directly. For those
cases, we offer the `ProviderStrategy` hint:

<details>
<summary>Extended example</summary>

```py
from langchain.agents import create_react_agent
from langchain_core.messages import HumanMessage
from langchain.agents.structured_output import ProviderStrategy
from pydantic import BaseModel


class Weather(BaseModel):
    temperature: float
    condition: str


def weather_tool(city: str) -> str:
    """Get the weather for a city."""

    return f"it's sunny and 70 degrees in {city}"


agent = create_react_agent(
    "openai:gpt-4o-mini",
    tools=[weather_tool],
    response_format=ProviderStrategy(Weather),
)

result = agent.invoke({"messages": [HumanMessage("What's the weather in Tokyo?")]})
for message in result["messages"]:
    message.pretty_print()

"""
================================ Human Message =================================

What's the weather in Tokyo?
================================== Ai Message ==================================
Tool Calls:
  weather_tool (call_OFJq1FngIXS6cvjWv5nfSFZp)
 Call ID: call_OFJq1FngIXS6cvjWv5nfSFZp
  Args:
    city: Tokyo
================================= Tool Message =================================
Name: weather_tool

it's sunny and 70 degrees in Tokyo
================================== Ai Message ==================================

{"temperature":70,"condition":"sunny"}
Weather(temperature=70.0, condition='sunny')
"""

print(repr(result["structured_response"]))
#> Weather(temperature=70.0, condition='sunny')
```

Note! The final tool message has the custom content provided by the dev.

</details>

Prompted output was previously supported and is no longer supported via
the `response_format` argument to `create_react_agent`. If there's
significant demand for this, we'd be happy to engineer a solution.

## Error Handling

`create_react_agent` now exposes an API for managing errors associated
with structured output generation. There are two common problems with
structured output generation (w/ artificial tool calling):

1. **Parsing error** -- the model generates data that doesn't match the
desired structure for the output
2. **Multiple tool calls error** -- the model generates 2 or more tool
calls associated with structured output schemas

A developer can control the desired behavior for this via the
`handle_errors` arg to `ToolStrategy`.

<details>
<summary>Extended example</summary>

```py
from langchain_core.messages import HumanMessage
from pydantic import BaseModel

from langchain.agents import create_react_agent
from langchain.agents.structured_output import StructuredOutputValidationError, ToolStrategy


class Weather(BaseModel):
    temperature: float
    condition: str


def weather_tool(city: str) -> str:
    """Get the weather for a city."""
    return f"it's sunny and 70 degrees in {city}"


def handle_validation_error(error: Exception) -> str:
    if isinstance(error, StructuredOutputValidationError):
        return (
            f"Please call the {error.tool_name} call again with the correct arguments. "
            f"Your mistake was: {error.source}"
        )
    raise error


agent = create_react_agent(
    "openai:gpt-5",
    tools=[weather_tool],
    response_format=ToolStrategy(
        schema=Weather,
        handle_errors=handle_validation_error,
    ),
)
```

</details>

## Error Handling for Tool Calling

Tools fail for two main reasons:

1. **Invocation failure** -- the args generated by the model for the
tool are incorrect (missing, incompatible data types, etc)
2. **Execution failure** -- the tool execution itself fails due to a
developer error, network error, or some other exception.

By default, when tool **invocation** fails, the react agent will return
an artificial `ToolMessage` to the model asking it to correct its
mistakes and retry.

Now, when tool **execution** fails, the react agent raises the
`ToolException` by default instead of asking the model to retry. This
helps to avoid looping that should be avoided due to the aforementioned
issues.

Developers can configure their desired behavior for retries / error
handling via the `handle_tool_errors` arg to `ToolNode`.

## Pre-Bound Models

`create_react_agent` no longer supports inputs to `model` that have been
pre-bound w/ tools or other configuration. To properly support
structured output generation, the agent itself needs the power to bind
tools + structured output kwargs.

This also makes the devx cleaner - it's always expected that `model` is
an instance of `BaseChatModel` (or `str` that we coerce into a chat
model instance).

Dynamic model functions can return a pre-bound model **IF** structured
output is not also used. Dynamic model functions can then bind tools /
structured output logic.

## Import Changes

Users should now use `create_react_agent` from `langchain.agents`
instead of `langgraph.prebuilts`.
Other imports have a similar migration path, `ToolNode` and `AgentState`
for example.

* `chat_agent_executor.py` -> `react_agent.py`

Some notes:
1. Disabled blockbuster + some linting in `langchain/agents` -- beyond
ideal, but necessary to get this across the line for the alpha. We
should re-enable before official release.
2025-08-27 17:32:21 +00:00
Sydney Runkle
1fe2c4084b chore(langchain): remove untested chains for first alpha (#32710)
Also removing globals.py file
2025-08-27 08:24:43 -04:00
Sydney Runkle
c6c7fce6c9 chore(langchain): drop Python 3.9 to prep for v1 (#32704)
Python 3.9 EOL is October 2025, so we're going to drop it for the v1
alpha release.
2025-08-26 23:16:42 +00:00
Mason Daugherty
3d08b6bd11 chore: adress pytest-asyncio deprecation warnings + other nits (#32696)
amongst some linting imcompatible rules
2025-08-26 15:51:38 -04:00
Matthew Farrellee
f2dcdae467 fix(standard-tests): update function_args to match my_adder_tool param types (#32689)
**Description:**

https://api.llama.com implements strong type checking, which results in
a false negative.

with type mismatch (expected integer, received string) -

```
$ curl -X POST "https://api.llama.com/compat/v1/chat/completions" \
  -H "Authorization: Bearer API_KEY" \
  -H "Content-Type: application/json" \
  -d '{
 "model": "Llama-3.3-70B-Instruct",
 "messages": [
     {"role": "user", "content": "What is 1 + 2"},
     {"role": "assistant", "content": "", "tool_calls": [{"id": "abc123", "type": "function", "function": {"name": "my_adder_tool", "arguments": "{\"a\": \"1\", \"b\": \"2\"}"}}]},
     {"role": "tool", "tool_call_id": "abc123", "content": "{\"result\": 3}"}
 ],
 "tools": [{"type": "function", "function": {"name": "my_adder_tool", "description": "Sum two integers", "parameters": {"properties": {"a": {"type": "integer"}, "b": {"type": "integer"}}, "required": ["a", "b"], "type": "object"}}}]
}'

{"title":"Bad request","detail":"Unexpected param value `a`: \"1\"","status":400}
```

with correct type -

```
$ curl -X POST "https://api.llama.com/compat/v1/chat/completions" \
  -H "Authorization: Bearer API_KEY" \
  -H "Content-Type: application/json" \
  -d '{
 "model": "Llama-3.3-70B-Instruct",
 "messages": [
     {"role": "user", "content": "What is 1 + 2"},
     {"role": "assistant", "content": "", "tool_calls": [{"id": "abc123", "type": "function", "function": {"name": "my_adder_tool", "arguments": "{\"a\": 1, \"b\": 2}"}}]},
     {"role": "tool", "tool_call_id": "abc123", "content": "{\"result\": 3}"}
 ],
 "tools": [{"type": "function", "function": {"name": "my_adder_tool", "description": "Sum two integers", "parameters": {"properties": {"a": {"type": "integer"}, "b": {"type": "integer"}}, "required": ["a", "b"], "type": "object"}}}]
}'

{"id":"AhMwBbuaa5payFr_xsOHzxX","model":"Llama-3.3-70B-Instruct","choices":[{"finish_reason":"stop","index":0,"message":{"refusal":"","role":"assistant","content":"The result of 1 + 2 is 3.","id":"AhMwBbuaa5payFr_xsOHzxX"},"logprobs":null}],"created":1756167668,"object":"chat.completions","usage":{"prompt_tokens":248,"completion_tokens":17,"total_tokens":265}}
```
2025-08-26 15:50:47 -04:00
ccurme
dbebe2ca97 release(core): 0.3.75 (#32693) 2025-08-26 11:12:03 -04:00
ccurme
008043977d release(openai): 0.3.32 (#32691) 2025-08-26 14:05:40 +00:00
Jacob Lee
1459d4f4ce fix(openai): Always add raw response object to OpenAI client errors for invoke (#32655) 2025-08-26 09:59:25 -04:00
ccurme
f33480c2cf feat(core): trace response body on error (#32653) 2025-08-25 14:28:19 -04:00
Mason Daugherty
1c55536ec1 chore(core): add note about backward compatibility for tool_calls in additional_kwargs in JsonOutputKeyToolsParser 2025-08-25 10:30:41 -04:00
Maitrey Talware
622337a297 docs(docs): fixed typos in documentations (#32661)
Minor typo fixes. (Not linked to current open issues)
2025-08-25 10:02:53 -04:00
Shahroz Ahmad
1819c73d10 docs(docs): update Docker to ClickHouse 25.7 with vector_similarity support (#32659)
- **Description:** Updated Docker command to use ClickHouse 25.7 (has
`vector_similarity` index support). Added `CLICKHOUSE_SKIP_USER_SETUP=1`
env param to [bypass default user
setup](https://clickhouse.com/docs/install/docker#managing-default-user)
and allow external network access. There was also a bug where if you try
to access results using `similarity_search_with_relevance_scores`, they
need to unpacked first.

- **Issue:** Fixes #32094 if someone following tutorial with default
Clickhouse configurations.
2025-08-25 09:59:28 -04:00
Kim
8171403b4a docs(docs): rebranding of Azure AI Studio to Azure AI Foundry (#32658)
# Description
Updated documentation to reflect Microsoft’s rebranding of Azure AI
Studio to Azure AI Foundry. This ensures consistency with current Azure
terminology across the docs.

# Issue
N/A

# Dependencies
None
2025-08-25 09:58:31 -04:00
Mason Daugherty
2d0713c2fc fix(infra): ollama CI 2025-08-22 16:40:03 -04:00
Mason Daugherty
8060b371bb fix(infra): ollama CI 2025-08-22 16:37:05 -04:00
Mason Daugherty
7851f66503 release(ollama): 0.3.7 (#32651) 2025-08-22 15:18:40 -04:00
Mason Daugherty
af3b88f58d feat(ollama): update reasoning type to support string values for custom intensity levels (e.g. gpt-oss) (#32650) 2025-08-22 15:11:32 -04:00
Chester Curme
45f1b67340 fix for null model name (Azure) 2025-08-22 10:14:34 -04:00
Chester Curme
8e37d39d66 remove model param from Azure integration tests 2025-08-22 10:13:43 -04:00
강준형
be9274054f fix(openai): Update Azure unit tests to use SecretStr for API key
- Changed the API key parameter in AzureChatOpenAI instantiation to use SecretStr for better security.
- Simplified the test documentation by removing redundant phrases while maintaining clarity.
- Ensures unit tests adhere to best practices for handling sensitive information.
2025-08-22 22:26:06 +09:00
강준형
03b9214737 fix(openai): Remove unnecessary assertion in Azure unit tests
- Removed the assertion for 'reasoning' in the Responses API test as it is not applicable.
- Ensures unit tests are streamlined and focused on relevant fields for the Responses API.
2025-08-22 22:23:40 +09:00
강준형
fcebafea9b fix(openai): Update model assertions in Azure unit tests
- Responses API model field updated to use 'your_deployment' instead of custom name
- Chat Completions API model field updated to 'gpt-5' instead of 'gpt-4o'
- Ensures unit tests reflect the correct model names for both APIs
2025-08-22 22:20:28 +09:00
강준형
3efa31d786 fix(openai): Use Azure deployment name for Responses API model field
- Azure Responses API requires deployment name instead of model name
   - Maintains backward compatibility for Chat Completions API
   - Adds unit tests to verify the fix

   Fixes: Azure OpenAI Responses API model field issue
2025-08-22 22:04:37 +09:00
itaismith
1eb45d17fb feat(chroma): Add support for collection forking (#32627) 2025-08-21 17:57:55 -04:00
ccurme
8545d4731e release(openai): 0.3.31 (#32646) 2025-08-21 16:50:27 -04:00
Alex Naidis
21f7a9a9e5 fix(openai): allow temperature parameter for gpt-5-chat models (#32624) 2025-08-21 16:40:10 -04:00
sa411022
61bc1bf9cc fix(openai): construct responses api input (#32557) 2025-08-21 15:56:29 -04:00
Shahrukh Shaik
4ba222148d fix(openai): Chat Message Annotations defaults to [ ] if not list or None (#32614) 2025-08-21 15:30:12 -04:00
Christophe Bornet
b825f85bf2 fix(standard-tests): fix BaseStoreAsyncTests.test_set_values_is_idempotent (#32638)
The async version of the test should use the `ayield_keys` method
instead of `yield_keys`.
Otherwise tools such as `blockbuster` may trigger on a blocking call.
2025-08-21 10:07:46 -04:00
Mohammed Mohtasim .M.S
b5c44406eb docs(docs): fix typos in table in "How to load PDFs" documentation (#32635)
**Description:**
Fixed corrupted text in the code cell output of the documentation
notebook. The code cell itself was correct, but the saved output
contained garbage text.

**Issue:**
The saved output in the documentation notebook contained garbage/typo
text in the table name.

**Dependencies:**
None
2025-08-21 10:06:45 -04:00
Emmanuel Leroy
2ec63ca7da docs: migration to langchain_oci (#32619)
Doc update. I missed a couple mentions of the old package.
2025-08-21 10:03:44 -04:00
Christophe Bornet
f896bcdb1d chore(langchain): add mypy pydantic plugin (#32610) 2025-08-19 16:59:59 -04:00
Christophe Bornet
73a7de63aa chore(text-splitters): add mypy pydantic plugin (#32611) 2025-08-19 16:58:12 -04:00
Emmanuel Leroy
cd5f3ee364 docs: migrate from community package to langchain-oci (#32608)
Migrate package from langchain_community to langchain_oci
2025-08-19 16:57:37 -04:00
Christophe Bornet
02d6b9106b chore(core): add mypy pydantic plugin (#32604)
This helps to remove a bunch of mypy false positives.
2025-08-19 09:39:53 -04:00
William FH
b470c79f1d refactor(core): Use duck typing for _StreamingCallbackHandler (#32535)
It's used in langgraph and maybe elsewhere, so would be preferable if it
could just be duck-typed
2025-08-19 05:41:07 -07:00
Mason Daugherty
d204f0dd55 feat(infra): add skip-preview tag check in Vercel deployment script (#32600)
Having vercel attempt to deploy on each commit (even if unrelated to
docs) was getting annoying. Options:

- `[skip-preview]`
- `[no-preview]`
- `[skip-deploy]`

Full example: `fix(core): resolve memory leak [no-preview]`
2025-08-18 17:33:27 -04:00
Mohammad Mohtashim
00259b0061 fix(deepseek): Deep Seek Model for LS Tracing (#32575)
- **Description:** Fix for LS Tracing for Provider for DeepSeek.
  - **Issue:** #32484

---------

Co-authored-by: Mason Daugherty <mason@langchain.dev>
2025-08-18 18:48:30 +00:00
Mohammad Mohtashim
4fb1132e30 docs: Classification Notebook Update (#32357)
- **Description:** Updating the Classification notebook which was raised
[here](https://github.com/langchain-ai/langchain/issues/32354)
- **Issue:** Fixes #32354

---------

Co-authored-by: Mason Daugherty <github@mdrxy.com>
2025-08-18 18:45:03 +00:00
Mason Daugherty
a6690eb9fd release(anthropic): 0.3.19 (#32595) 2025-08-18 14:25:03 -04:00
Mason Daugherty
f69f9598f5 chore: update references to use the latest version of Claude-3.5 Sonnet (#32594) 2025-08-18 14:11:15 -04:00
Mason Daugherty
8d0fb2d04b fix(anthropic): correct input_token count for streaming (#32591)
* Create usage metadata on
[`message_delta`](https://docs.anthropic.com/en/docs/build-with-claude/streaming#event-types)
instead of at the beginning. Consequently, token counts are not included
during streaming but instead at the end. This allows for accurate
reporting of server-side tool usage (important for billing)
* Add some clarifying comments
* Fix some outstanding Pylance warnings
* Remove unnecessary `text` popping in thinking blocks
* Also now correctly reports `input_cache_read`/`input_cache_creation`
as a result
2025-08-18 17:51:47 +00:00
Mason Daugherty
8042b04da6 fix(anthropic): clean up null file_id fields in citations during message formatting (#32592)
When citations are returned from streaming, they include a `file_id:
null` field in their `content_block_location` structure.

When these citations are passed back to the API in subsequent messages,
the API rejects them with "Extra inputs are not permitted" for the
`file_id` field.
2025-08-18 13:01:52 -04:00
Daehwi Kim
fb74265175 fix(docs): update LangGraph guides link and add JS how-to link (#32583)
**Description:**  
Corrected LangGraph documentation link (changed to “guides”), and added
a link to LangGraph JS how-to guides for clarity.

**Issue:**  
N/A  

**Dependencies:**  
None

---------

Co-authored-by: Mason Daugherty <mason@langchain.dev>
2025-08-18 14:27:37 +00:00
Oresztesz Margaritisz
21b61aaf9a fix(docs): Using appropriate argument name in ToolNode for error handling (#32586)
The appropriate `ToolNode` attribute for error handling is called
`handle_tool_errors` instead of `handle_tool_error`.

For further info see [ToolNode source code in
LangGraph](https://github.com/langchain-ai/langgraph/blob/main/libs/prebuilt/langgraph/prebuilt/tool_node.py#L255)

**Twitter handle:** gitaroktato

- [x] **Add tests and docs**: If you're adding a new integration, you
must include:
1. A test for the integration, preferably unit tests that do not rely on
network access,
2. An example notebook showing its use. It lives in
`docs/docs/integrations` directory.

- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. **We will not consider
a PR unless these three are passing in CI.** See [contribution
guidelines](https://python.langchain.com/docs/contributing/) for more.

Additional guidelines:

- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to `pyproject.toml` files (even
optional ones) unless they are **required** for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
2025-08-18 10:12:10 -04:00
Keyu Chen
03138f41a0 feat(text-splitters): add optional custom header pattern support (#31887)
## Description

This PR adds support for custom header patterns in
`MarkdownHeaderTextSplitter`, allowing users to define non-standard
Markdown header formats (like `**Header**`) and specify their hierarchy
levels.

**Issue:** Fixes #22738

**Dependencies:** None - this change has no new dependencies

**Key Changes:**
- Added optional `custom_header_patterns` parameter to support
non-standard header formats
- Enable splitting on patterns like `**Header**` and `***Header***`
- Maintain full backward compatibility with existing usage
- Added comprehensive tests for custom and mixed header scenarios

## Example Usage

```python
from langchain_text_splitters import MarkdownHeaderTextSplitter

headers_to_split_on = [
    ("**", "Chapter"),
    ("***", "Section"),
]

custom_header_patterns = {
    "**": 1,   # Level 1 headers
    "***": 2,  # Level 2 headers
}

splitter = MarkdownHeaderTextSplitter(
    headers_to_split_on=headers_to_split_on,
    custom_header_patterns=custom_header_patterns,
)

# Now **Chapter 1** is treated as a level 1 header
# And ***Section 1.1*** is treated as a level 2 header
```

## Testing

-  Added unit tests for custom header patterns
-  Added tests for mixed standard and custom headers
-  All existing tests pass (backward compatibility maintained)
-  Linting and formatting checks pass

---

The implementation provides a flexible solution while maintaining the
simplicity of the existing API. Users can continue using the splitter
exactly as before, with the new functionality being entirely opt-in
through the `custom_header_patterns` parameter.

---------

Co-authored-by: Mason Daugherty <mason@langchain.dev>
Co-authored-by: Claude <noreply@anthropic.com>
2025-08-18 10:10:49 -04:00
Mason Daugherty
fd891ee3d4 revert(anthropic): streaming token counting to defer input tokens until completion (#32587)
Reverts langchain-ai/langchain#32518
2025-08-18 09:48:33 -04:00
ccurme
b8cdbc4eca fix(anthropic): sanitize tool use block when taking directly from content (#32574) 2025-08-18 09:06:57 -04:00
Christophe Bornet
791d309c06 chore(langchain): add mypy warn_unreachable setting (#32529)
See
https://mypy.readthedocs.io/en/stable/config_file.html#confval-warn_unreachable

---------

Co-authored-by: Mason Daugherty <github@mdrxy.com>
2025-08-15 23:03:53 +00:00
Mason Daugherty
d3d23e2372 fix(anthropic): streaming token counting to defer input tokens until completion (#32518)
Supersedes #32461

Fixed incorrect input token reporting during streaming when tools are
used. Previously, input tokens were counted at `message_start` before
tool execution, leading to inaccurate counts. Now input tokens are
properly deferred until `message_delta` (completion), aligning with
Anthropic's billing model and SDK expectations.

**Before Fix:**
- Streaming with tools: Input tokens = 0 
- Non-streaming with tools: Input tokens = 472 

**After Fix:**
- Streaming with tools: Input tokens = 472 
- Non-streaming with tools: Input tokens = 472 

Aligns with Anthropic's SDK expectations. The SDK handles input token
updates in `message_delta` events:

```python
# https://github.com/anthropics/anthropic-sdk-python/blob/main/src/anthropic/lib/streaming/_messages.py
if event.usage.input_tokens is not None:
      current_snapshot.usage.input_tokens = event.usage.input_tokens
```
2025-08-15 17:49:46 -04:00
Mason Daugherty
2f32c444b8 docs: add details on message IDs and their assignment process (#32534) 2025-08-15 18:22:28 +00:00
Mason Daugherty
fe740a9397 fix(docs): chatbot.ipynb trimming regression (#32561)
Supersedes #32544

Changes to the `trimmer` behavior resulted in the call `"What math
problem was asked?"` to no longer see the relevant query due to the
number of the queries' tokens. Adjusted to not trigger trimming the
relevant part of the message history. Also, add print to the trimmer to
increase observability on what is leaving the context window.

Add note to trimming tut & format links as inline
2025-08-15 14:47:22 +00:00
Rostyslav Borovyk
b2b835cb36 docs(docs): add Oxylabs document loader (#32429)
Thank you for contributing to LangChain! Follow these steps to mark your
pull request as ready for review. **If any of these steps are not
completed, your PR will not be considered for review.**

- [x] **PR title**: Follows the format: {TYPE}({SCOPE}): {DESCRIPTION}
  - Examples:
    - feat(core): add multi-tenant support
    - fix(cli): resolve flag parsing error
    - docs(openai): update API usage examples
  - Allowed `{TYPE}` values:
- feat, fix, docs, style, refactor, perf, test, build, ci, chore,
revert, release
  - Allowed `{SCOPE}` values (optional):
- core, cli, langchain, standard-tests, docs, anthropic, chroma,
deepseek, exa, fireworks, groq, huggingface, mistralai, nomic, ollama,
openai, perplexity, prompty, qdrant, xai
  - Note: the `{DESCRIPTION}` must not start with an uppercase letter.
- Once you've written the title, please delete this checklist item; do
not include it in the PR.

- [x] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** a description of the change. Include a [closing
keyword](https://docs.github.com/en/issues/tracking-your-work-with-issues/using-issues/linking-a-pull-request-to-an-issue#linking-a-pull-request-to-an-issue-using-a-keyword)
if applicable to a relevant issue.
  - **Issue:** the issue # it fixes, if applicable (e.g. Fixes #123)
  - **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!

- [x] **Add tests and docs**: If you're adding a new integration, you
must include:
1. A test for the integration, preferably unit tests that do not rely on
network access,
2. An example notebook showing its use. It lives in
`docs/docs/integrations` directory.

- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. **We will not consider
a PR unless these three are passing in CI.** See [contribution
guidelines](https://python.langchain.com/docs/contributing/) for more.

Additional guidelines:

- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to `pyproject.toml` files (even
optional ones) unless they are **required** for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.

---------

Co-authored-by: Mason Daugherty <github@mdrxy.com>
2025-08-15 10:46:26 -04:00
Christophe Bornet
4656f727da chore(text-splitters): add mypy warn_unreachable (#32558) 2025-08-15 09:45:20 -04:00
Mason Daugherty
34800332bf chore: update integrations table (#32556)
Enhance the integrations table by adding the `js:
'@langchain/community'` reference for several packages and updating the
titles of specific integrations to avoid improper capitalization
2025-08-14 22:37:36 -04:00
Mason Daugherty
06ba80ff68 docs: formatting Tavily (#32555) 2025-08-14 23:41:37 +00:00
Mason Daugherty
2bd8096faa docs: add pre-commit setup instructions to the dev setup guide (#32553) 2025-08-14 20:35:57 +00:00
Mason Daugherty
a0331285d7 fix(core): Support no-args tools by defaulting args to empty dict (#32530)
Supersedes #32408

Description:  
This PR ensures that tool calls without explicitly provided `args` will
default to an empty dictionary (`{}`), allowing tools with no parameters
(e.g. `def foo() -> str`) to be registered and invoked without
validation errors. This change improves compatibility with agent
frameworks that may omit the `args` field when generating tool calls.

Issue:  
See
[langgraph#5722](https://github.com/langchain-ai/langgraph/issues/5722)
–
LangGraph currently emits tool calls without `args`, which leads to
validation errors
when tools with no parameters are invoked. This PR ensures compatibility
by defaulting
`args` to `{}` when missing.

Dependencies:  
None

---------

Thank you for contributing to LangChain! Follow these steps to mark your
pull request as ready for review. **If any of these steps are not
completed, your PR will not be considered for review.**

- [ ] **PR title**: Follows the format: {TYPE}({SCOPE}): {DESCRIPTION}
  - Examples:
    - feat(core): add multi-tenant support
    - fix(cli): resolve flag parsing error
    - docs(openai): update API usage examples
  - Allowed `{TYPE}` values:
- feat, fix, docs, style, refactor, perf, test, build, ci, chore,
revert, release
  - Allowed `{SCOPE}` values (optional):
- core, cli, langchain, standard-tests, docs, anthropic, chroma,
deepseek, exa, fireworks, groq, huggingface, mistralai, nomic, ollama,
openai, perplexity, prompty, qdrant, xai
  - Note: the `{DESCRIPTION}` must not start with an uppercase letter.
- Once you've written the title, please delete this checklist item; do
not include it in the PR.

- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** a description of the change. Include a [closing
keyword](https://docs.github.com/en/issues/tracking-your-work-with-issues/using-issues/linking-a-pull-request-to-an-issue#linking-a-pull-request-to-an-issue-using-a-keyword)
if applicable to a relevant issue.
  - **Issue:** the issue # it fixes, if applicable (e.g. Fixes #123)
  - **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!

- [ ] **Add tests and docs**: If you're adding a new integration, you
must include:
1. A test for the integration, preferably unit tests that do not rely on
network access,
2. An example notebook showing its use. It lives in
`docs/docs/integrations` directory.

- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. **We will not consider
a PR unless these three are passing in CI.** See [contribution
guidelines](https://python.langchain.com/docs/contributing/) for more.

Additional guidelines:

- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to `pyproject.toml` files (even
optional ones) unless they are **required** for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.

---------

Signed-off-by: jitokim <pigberger70@gmail.com>
Co-authored-by: jito <pigberger70@gmail.com>
Co-authored-by: Copilot <175728472+Copilot@users.noreply.github.com>
2025-08-14 20:28:36 +00:00
Mason Daugherty
8f68a08528 chore: add Chat LangChain to README.md (#32545) 2025-08-14 16:15:27 -04:00
Lauren Hirata Singh
71651c4a11 docs: update banner (#32552) 2025-08-14 10:54:29 -07:00
Lauren Hirata Singh
44ec1f32b2 docs: banner for academy course (#32550)
Publish at 10AM PT
2025-08-14 10:05:00 -07:00
Yoon
0c81499243 docs(ollama): update API usage examples (#32547)
**Description**  
Corrected a typo in the Ollama chatbot example output in  
`docs/docs/integrations/chat/ollama.ipynb` where `"got-oss"` was  
mistakenly used instead of `"gpt-oss"`.

No functional changes to code; documentation-only update.  
All notebook outputs were cleared to keep the diff minimal.

**Issue**  
N/A

**Dependencies**  
None

**Twitter handle**  
N/A
2025-08-14 12:57:38 -04:00
Mason Daugherty
397cd89988 docs: update outdated README.md content (#32540) 2025-08-13 22:19:38 +00:00
mishraravibhushan
db438d8dcc docs(docs): fixed additional grammar and style issues in how-to index (#32533)
- Fix 'few shot' → 'few-shot' (add hyphen for consistency)
- Fix 'over the database' → 'over a database' (add missing article)
- Fix 'run time' → 'runtime' (more consistent terminology)
- Fix 'in-sync' → 'in sync' (remove unnecessary hyphen)
2025-08-13 14:10:58 -04:00
RecallIO
4f71c35eb0 docs(docs): Add RecallIO.AI as a memory provider (#32331)
Add requested files to add RecallIO as a memory provider.

---------

Co-authored-by: Frey <gfreyburger@gmail.com>
Co-authored-by: Mason Daugherty <mason@langchain.dev>
2025-08-13 15:09:56 +00:00
Mason Daugherty
156ae2e69b fix(docs): resolve langchain-azure-ai conflict with langchain-core (#32528) 2025-08-13 14:47:23 +00:00
Shenghang Tsai
f4f919768e docs(langchain): create SiliconFlow provider entry (#32342)
SiliconFlow's provider integration will be maintained at
https://github.com/siliconflow/langchain-siliconflow
This PR introduce the basic instruction to make use of the pip package
2025-08-13 10:41:23 -04:00
Mason Daugherty
7932e1edd1 feat(docs): clarify structured output with tools ordering (#32527) 2025-08-13 10:40:48 -04:00
Mason Daugherty
024422e9b0 chore: update to use new LGP docs url (#32522) 2025-08-13 03:38:39 +00:00
Mason Daugherty
d52036accc chore: update README.md to use pepy downloads badge (#32521) 2025-08-13 03:23:11 +00:00
Mason Daugherty
5b701b5189 fix(tests): add anthropic_proxy to configurable test parameters (for v1) 2025-08-12 18:33:21 -04:00
Mason Daugherty
8848b3e018 fix(tests): add anthropic_proxy to configurable test parameters 2025-08-12 18:27:35 -04:00
Mason Daugherty
80068432ed chore(core): bump lock 2025-08-12 17:32:24 -04:00
Jack
b9dcce95be fix(anthropic): Add proxy (#32409)
Thank you for contributing to LangChain! Follow these steps to mark your
pull request as ready for review. **If any of these steps are not
completed, your PR will not be considered for review.**

- [x] **PR title**: Follows the format: {TYPE}({SCOPE}): {DESCRIPTION}
- [x] **PR message**: ***Delete this entire checklist*** and replace
with
fix #30146
- [x] **Add tests and docs**: If you're adding a new integration, you
must include:
- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. **We will not consider
a PR unless these three are passing in CI.** See [contribution
guidelines](https://python.langchain.com/docs/contributing/) for more.

Additional guidelines:

- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to `pyproject.toml` files (even
optional ones) unless they are **required** for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.

---------

Co-authored-by: Mason Daugherty <mason@langchain.dev>
Co-authored-by: Mason Daugherty <github@mdrxy.com>
2025-08-12 21:21:26 +00:00
ccurme
be83ce74a7 feat(anthropic): support cache_control as a kwarg (#31523)
```python
from langchain_anthropic import ChatAnthropic

llm = ChatAnthropic(model="claude-3-5-haiku-latest")
caching_llm = llm.bind(cache_control={"type": "ephemeral"})

caching_llm.invoke(
    [
        HumanMessage("..."),
        AIMessage("..."),
        HumanMessage("..."),  # <-- final message / content block gets cache annotation
    ]
)
```
Potentially useful given's Anthropic's [incremental
caching](https://docs.anthropic.com/en/docs/build-with-claude/prompt-caching#continuing-a-multi-turn-conversation)
capabilities:
> During each turn, we mark the final block of the final message with
cache_control so the conversation can be incrementally cached. The
system will automatically lookup and use the longest previously cached
prefix for follow-up messages.

---------

Co-authored-by: Mason Daugherty <mason@langchain.dev>
Co-authored-by: Mason Daugherty <github@mdrxy.com>
2025-08-12 16:18:24 -04:00
Mason Daugherty
1167e7458e fix(anthropic): update test model names and adjust token count assertions in integration tests (#32422) 2025-08-12 19:39:35 +00:00
Mason Daugherty
d5fd0bca35 docs(anthropic): add documentation for extended context windows in Claude Sonnet 4 (#32517) 2025-08-12 19:16:26 +00:00
Narasimha Badrinath
30d646b576 docs(docs): remove redundant integration details from ChatGradient page. (#32514)
This commit removes redundant integration info from details page,
additionally, changing reference from "DigitalOcean GradientAI" to
"DigitalOcean Gradient™ AI" and updating the setup instructions
accordingly.
2025-08-12 16:14:18 +00:00
Mason Daugherty
262c83763f release(openai): 0.3.30 (#32515) 2025-08-12 16:06:17 +00:00
Mason Daugherty
0024dffa68 feat(openai): officially support verbosity (#32470) 2025-08-12 16:00:30 +00:00
Brody
98797f367a docs: fix broken links (#32513)
**Description:**

Two broken links were reported by another LangChain employee. This PR
fixes those links.

Fixed and tested locally.
  
**Dependencies:**

None
2025-08-12 15:55:37 +00:00
Christophe Bornet
1563099f3f chore(langchain): select ALL rules with exclusions (#31930)
Co-authored-by: Mason Daugherty <mason@langchain.dev>
2025-08-12 11:51:31 -04:00
rishiraj
7f259863e1 feat(docs): add truefoundry ai gateway (#32362)
This PR adds documentation for integrating [TrueFoundry’s AI
Gateway](https://www.truefoundry.com/ai-gateway) with Langfuse using the
Langraph OpenAI SDK.
The integration sends requests through TrueFoundry’s AI Gateway for
unified governance, observability, and routing, while Langraph runs on
the client side to capture execution traces and telemetry.
- Issue: N/A
- Dependencies: None
- Twitter - https://x.com/truefoundry


tests - Not applicable

---------

Co-authored-by: Mason Daugherty <mason@langchain.dev>
Co-authored-by: Mason Daugherty <github@mdrxy.com>
Co-authored-by: Copilot <175728472+Copilot@users.noreply.github.com>
2025-08-12 02:26:45 +00:00
Mason Daugherty
c8df6c7ec9 chore: update CONTRIBUTING.md to more clearly mention forum (#32509) 2025-08-11 23:02:21 +00:00
Christophe Bornet
cf2b4bbe09 chore(cli): select ALL rules with exclusions (#31936)
Co-authored-by: Mason Daugherty <mason@langchain.dev>
2025-08-11 22:43:11 +00:00
Christophe Bornet
09a616fe85 chore(standard-tests): add ruff rules D (#32347)
See https://docs.astral.sh/ruff/rules/#pydocstyle-d

Co-authored-by: Mason Daugherty <mason@langchain.dev>
2025-08-11 22:26:11 +00:00
Christophe Bornet
46bbd52e81 chore(cli): add ruff rules D1 (#32350)
Co-authored-by: Mason Daugherty <mason@langchain.dev>
2025-08-11 22:25:30 +00:00
Christophe Bornet
8b663ed6c6 chore(text-splitters): bump mypy version to 1.17 (#32387)
Co-authored-by: Mason Daugherty <mason@langchain.dev>
2025-08-11 22:24:49 +00:00
330 changed files with 16530 additions and 5240 deletions

View File

@@ -7,4 +7,4 @@ To learn how to contribute to LangChain, please follow the [contribution guide h
## New features
For new features, please start a new [discussion](https://forum.langchain.com/), where the maintainers will help with scoping out the necessary changes.
For new features, please start a new [discussion on our forum](https://forum.langchain.com/), where the maintainers will help with scoping out the necessary changes.

View File

@@ -1,3 +1,5 @@
(Replace this entire block of text)
Thank you for contributing to LangChain! Follow these steps to mark your pull request as ready for review. **If any of these steps are not completed, your PR will not be considered for review.**
- [ ] **PR title**: Follows the format: {TYPE}({SCOPE}): {DESCRIPTION}
@@ -9,14 +11,13 @@ Thank you for contributing to LangChain! Follow these steps to mark your pull re
- feat, fix, docs, style, refactor, perf, test, build, ci, chore, revert, release
- Allowed `{SCOPE}` values (optional):
- core, cli, langchain, standard-tests, docs, anthropic, chroma, deepseek, exa, fireworks, groq, huggingface, mistralai, nomic, ollama, openai, perplexity, prompty, qdrant, xai
- Note: the `{DESCRIPTION}` must not start with an uppercase letter.
- *Note:* the `{DESCRIPTION}` must not start with an uppercase letter.
- Once you've written the title, please delete this checklist item; do not include it in the PR.
- [ ] **PR message**: ***Delete this entire checklist*** and replace with
- **Description:** a description of the change. Include a [closing keyword](https://docs.github.com/en/issues/tracking-your-work-with-issues/using-issues/linking-a-pull-request-to-an-issue#linking-a-pull-request-to-an-issue-using-a-keyword) if applicable to a relevant issue.
- **Issue:** the issue # it fixes, if applicable (e.g. Fixes #123)
- **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a mention, we'll gladly shout you out!
- [ ] **Add tests and docs**: If you're adding a new integration, you must include:
1. A test for the integration, preferably unit tests that do not rely on network access,
@@ -26,7 +27,7 @@ Thank you for contributing to LangChain! Follow these steps to mark your pull re
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to `pyproject.toml` files (even optional ones) unless they are **required** for unit tests.
- Most PRs should not touch more than one package.
- Please do not add dependencies to `pyproject.toml` files (even optional ones) unless they are **required** for unit tests.
- Changes should be backwards compatible.
- Make sure optional dependencies are imported within a function.

View File

@@ -132,6 +132,8 @@ def _get_configs_for_single_dir(job: str, dir_: str) -> List[Dict[str, str]]:
elif dir_ == "libs/langchain" and job == "extended-tests":
py_versions = ["3.9", "3.13"]
elif dir_ == "libs/langchain_v1":
py_versions = ["3.10", "3.13"]
elif dir_ == ".":
# unable to install with 3.13 because tokenizers doesn't support 3.13 yet

View File

@@ -20,15 +20,30 @@ jobs:
- name: '✅ Verify pyproject.toml & version.py Match'
run: |
PYPROJECT_VERSION=$(grep -Po '(?<=^version = ")[^"]*' libs/core/pyproject.toml)
VERSION_PY_VERSION=$(grep -Po '(?<=^VERSION = ")[^"]*' libs/core/langchain_core/version.py)
# Check core versions
CORE_PYPROJECT_VERSION=$(grep -Po '(?<=^version = ")[^"]*' libs/core/pyproject.toml)
CORE_VERSION_PY_VERSION=$(grep -Po '(?<=^VERSION = ")[^"]*' libs/core/langchain_core/version.py)
# Compare the two versions
if [ "$PYPROJECT_VERSION" != "$VERSION_PY_VERSION" ]; then
# Compare core versions
if [ "$CORE_PYPROJECT_VERSION" != "$CORE_VERSION_PY_VERSION" ]; then
echo "langchain-core versions in pyproject.toml and version.py do not match!"
echo "pyproject.toml version: $PYPROJECT_VERSION"
echo "version.py version: $VERSION_PY_VERSION"
echo "pyproject.toml version: $CORE_PYPROJECT_VERSION"
echo "version.py version: $CORE_VERSION_PY_VERSION"
exit 1
else
echo "Versions match: $PYPROJECT_VERSION"
echo "Core versions match: $CORE_PYPROJECT_VERSION"
fi
# Check langchain_v1 versions
LANGCHAIN_PYPROJECT_VERSION=$(grep -Po '(?<=^version = ")[^"]*' libs/langchain_v1/pyproject.toml)
LANGCHAIN_INIT_PY_VERSION=$(grep -Po '(?<=^__version__ = ")[^"]*' libs/langchain_v1/langchain/__init__.py)
# Compare langchain_v1 versions
if [ "$LANGCHAIN_PYPROJECT_VERSION" != "$LANGCHAIN_INIT_PY_VERSION" ]; then
echo "langchain_v1 versions in pyproject.toml and __init__.py do not match!"
echo "pyproject.toml version: $LANGCHAIN_PYPROJECT_VERSION"
echo "version.py version: $LANGCHAIN_INIT_PY_VERSION"
exit 1
else
echo "Langchain v1 versions match: $LANGCHAIN_PYPROJECT_VERSION"
fi

View File

@@ -9,15 +9,13 @@
</div>
[![Release Notes](https://img.shields.io/github/release/langchain-ai/langchain?style=flat-square)](https://github.com/langchain-ai/langchain/releases)
[![CI](https://github.com/langchain-ai/langchain/actions/workflows/check_diffs.yml/badge.svg)](https://github.com/langchain-ai/langchain/actions/workflows/check_diffs.yml)
[![PyPI - License](https://img.shields.io/pypi/l/langchain-core?style=flat-square)](https://opensource.org/licenses/MIT)
[![PyPI - Downloads](https://img.shields.io/pypi/dm/langchain-core?style=flat-square)](https://pypistats.org/packages/langchain-core)
[![PyPI - Downloads](https://img.shields.io/pepy/dt/langchain)](https://pypistats.org/packages/langchain-core)
[![GitHub star chart](https://img.shields.io/github/stars/langchain-ai/langchain?style=flat-square)](https://star-history.com/#langchain-ai/langchain)
[![Open Issues](https://img.shields.io/github/issues-raw/langchain-ai/langchain?style=flat-square)](https://github.com/langchain-ai/langchain/issues)
[![Open in Dev Containers](https://img.shields.io/static/v1?label=Dev%20Containers&message=Open&color=blue&logo=visualstudiocode&style=flat-square)](https://vscode.dev/redirect?url=vscode://ms-vscode-remote.remote-containers/cloneInVolume?url=https://github.com/langchain-ai/langchain)
[<img src="https://github.com/codespaces/badge.svg" alt="Open in Github Codespace" title="Open in Github Codespace" width="150" height="20">](https://codespaces.new/langchain-ai/langchain)
[![Twitter](https://img.shields.io/twitter/url/https/twitter.com/langchainai.svg?style=social&label=Follow%20%40LangChainAI)](https://twitter.com/langchainai)
[![CodSpeed Badge](https://img.shields.io/endpoint?url=https://codspeed.io/badge.json)](https://codspeed.io/langchain-ai/langchain)
[![Twitter](https://img.shields.io/twitter/url/https/twitter.com/langchainai.svg?style=social&label=Follow%20%40LangChainAI)](https://twitter.com/langchainai)
> [!NOTE]
> Looking for the JS/TS library? Check out [LangChain.js](https://github.com/langchain-ai/langchainjs).
@@ -45,7 +43,7 @@ interface for models, embeddings, vector stores, and more.
Use LangChain for:
- **Real-time data augmentation**. Easily connect LLMs to diverse data sources and
external / internal systems, drawing from LangChains vast library of integrations with
external/internal systems, drawing from LangChains vast library of integrations with
model providers, tools, vector stores, retrievers, and more.
- **Model interoperability**. Swap models in and out as your engineering team
experiments to find the best choice for your applications needs. As the industry
@@ -60,7 +58,7 @@ applications.
To improve your LLM application development, pair LangChain with:
- [LangSmith](http://www.langchain.com/langsmith) - Helpful for agent evals and
- [LangSmith](https://www.langchain.com/langsmith) - Helpful for agent evals and
observability. Debug poor-performing LLM app runs, evaluate agent trajectories, gain
visibility in production, and improve performance over time.
- [LangGraph](https://langchain-ai.github.io/langgraph/) - Build agents that can
@@ -68,9 +66,8 @@ reliably handle complex tasks with LangGraph, our low-level agent orchestration
framework. LangGraph offers customizable architecture, long-term memory, and
human-in-the-loop workflows — and is trusted in production by companies like LinkedIn,
Uber, Klarna, and GitLab.
- [LangGraph Platform](https://langchain-ai.github.io/langgraph/concepts/langgraph_platform/) - Deploy
and scale agents effortlessly with a purpose-built deployment platform for long
running, stateful workflows. Discover, reuse, configure, and share agents across
- [LangGraph Platform](https://docs.langchain.com/langgraph-platform) - Deploy
and scale agents effortlessly with a purpose-built deployment platform for long-running, stateful workflows. Discover, reuse, configure, and share agents across
teams — and iterate quickly with visual prototyping in
[LangGraph Studio](https://langchain-ai.github.io/langgraph/concepts/langgraph_studio/).
@@ -85,3 +82,4 @@ concepts behind the LangChain framework.
- [LangChain Forum](https://forum.langchain.com/): Connect with the community and share all of your technical questions, ideas, and feedback.
- [API Reference](https://python.langchain.com/api_reference/): Detailed reference on
navigating base packages and integrations for LangChain.
- [Chat LangChain](https://chat.langchain.com/): Ask questions & chat with our documentation.

View File

@@ -4,9 +4,9 @@ LangChain has a large ecosystem of integrations with various external resources
## Best practices
When building such applications developers should remember to follow good security practices:
When building such applications, developers should remember to follow good security practices:
* [**Limit Permissions**](https://en.wikipedia.org/wiki/Principle_of_least_privilege): Scope permissions specifically to the application's need. Granting broad or excessive permissions can introduce significant security vulnerabilities. To avoid such vulnerabilities, consider using read-only credentials, disallowing access to sensitive resources, using sandboxing techniques (such as running inside a container), specifying proxy configurations to control external requests, etc. as appropriate for your application.
* [**Limit Permissions**](https://en.wikipedia.org/wiki/Principle_of_least_privilege): Scope permissions specifically to the application's need. Granting broad or excessive permissions can introduce significant security vulnerabilities. To avoid such vulnerabilities, consider using read-only credentials, disallowing access to sensitive resources, using sandboxing techniques (such as running inside a container), specifying proxy configurations to control external requests, etc., as appropriate for your application.
* **Anticipate Potential Misuse**: Just as humans can err, so can Large Language Models (LLMs). Always assume that any system access or credentials may be used in any way allowed by the permissions they are assigned. For example, if a pair of database credentials allows deleting data, it's safest to assume that any LLM able to use those credentials may in fact delete data.
* [**Defense in Depth**](https://en.wikipedia.org/wiki/Defense_in_depth_(computing)): No security technique is perfect. Fine-tuning and good chain design can reduce, but not eliminate, the odds that a Large Language Model (LLM) may make a mistake. It's best to combine multiple layered security approaches rather than relying on any single layer of defense to ensure security. For example: use both read-only permissions and sandboxing to ensure that LLMs are only able to access data that is explicitly meant for them to use.
@@ -67,8 +67,7 @@ All out of scope targets defined by huntr as well as:
for more details, but generally tools interact with the real world. Developers are
expected to understand the security implications of their code and are responsible
for the security of their tools.
* Code documented with security notices. This will be decided on a case by
case basis, but likely will not be eligible for a bounty as the code is already
* Code documented with security notices. This will be decided on a case-by-case basis, but likely will not be eligible for a bounty as the code is already
documented with guidelines for developers that should be followed for making their
application secure.
* Any LangSmith related repositories or APIs (see [Reporting LangSmith Vulnerabilities](#reporting-langsmith-vulnerabilities)).

View File

@@ -97,7 +97,7 @@ def skip_private_members(app, what, name, obj, skip, options):
if hasattr(obj, "__doc__") and obj.__doc__ and ":private:" in obj.__doc__:
return True
if name == "__init__" and obj.__objclass__ is object:
# dont document default init
# don't document default init
return True
return None

View File

@@ -31,7 +31,7 @@ The conceptual guide does not cover step-by-step instructions or specific implem
- **[Vector stores](/docs/concepts/vectorstores)**: Storage of and efficient search over vectors and associated metadata.
- **[Retriever](/docs/concepts/retrievers)**: A component that returns relevant documents from a knowledge base in response to a query.
- **[Retrieval Augmented Generation (RAG)](/docs/concepts/rag)**: A technique that enhances language models by combining them with external knowledge bases.
- **[Agents](/docs/concepts/agents)**: Use a [language model](/docs/concepts/chat_models) to choose a sequence of actions to take. Agents can interact with external resources via [tool](/docs/concepts/tools).
- **[Agents](/docs/concepts/agents)**: Use a [language model](/docs/concepts/chat_models) to choose a sequence of actions to take. Agents can interact with external resources via [tools](/docs/concepts/tools).
- **[Prompt templates](/docs/concepts/prompt_templates)**: Component for factoring out the static parts of a model "prompt" (usually a sequence of messages). Useful for serializing, versioning, and reusing these static parts.
- **[Output parsers](/docs/concepts/output_parsers)**: Responsible for taking the output of a model and transforming it into a more suitable format for downstream tasks. Output parsers were primarily useful prior to the general availability of [tool calling](/docs/concepts/tool_calling) and [structured outputs](/docs/concepts/structured_outputs).
- **[Few-shot prompting](/docs/concepts/few_shot_prompting)**: A technique for improving model performance by providing a few examples of the task to perform in the prompt.
@@ -48,7 +48,7 @@ The conceptual guide does not cover step-by-step instructions or specific implem
- **[AIMessage](/docs/concepts/messages#aimessage)**: Represents a complete response from an AI model.
- **[astream_events](/docs/concepts/chat_models#key-methods)**: Stream granular information from [LCEL](/docs/concepts/lcel) chains.
- **[BaseTool](/docs/concepts/tools/#tool-interface)**: The base class for all tools in LangChain.
- **[batch](/docs/concepts/runnables)**: Use to execute a runnable with batch inputs.
- **[batch](/docs/concepts/runnables)**: Used to execute a runnable with batch inputs.
- **[bind_tools](/docs/concepts/tool_calling/#tool-binding)**: Allows models to interact with tools.
- **[Caching](/docs/concepts/chat_models#caching)**: Storing results to avoid redundant calls to a chat model.
- **[Chat models](/docs/concepts/multimodality/#multimodality-in-chat-models)**: Chat models that handle multiple data modalities.

View File

@@ -147,7 +147,7 @@ An `AIMessage` has the following attributes. The attributes which are **standard
| `tool_calls` | Standardized | Tool calls associated with the message. See [tool calling](/docs/concepts/tool_calling) for details. |
| `invalid_tool_calls` | Standardized | Tool calls with parsing errors associated with the message. See [tool calling](/docs/concepts/tool_calling) for details. |
| `usage_metadata` | Standardized | Usage metadata for a message, such as [token counts](/docs/concepts/tokens). See [Usage Metadata API Reference](https://python.langchain.com/api_reference/core/messages/langchain_core.messages.ai.UsageMetadata.html). |
| `id` | Standardized | An optional unique identifier for the message, ideally provided by the provider/model that created the message. |
| `id` | Standardized | An optional unique identifier for the message, ideally provided by the provider/model that created the message. See [Message IDs](#message-ids) for details. |
| `response_metadata` | Raw | Response metadata, e.g., response headers, logprobs, token counts. |
#### content
@@ -243,3 +243,37 @@ At the moment, the output of the model will be in terms of LangChain messages, s
need OpenAI format for the output as well.
The [convert_to_openai_messages](https://python.langchain.com/api_reference/core/messages/langchain_core.messages.utils.convert_to_openai_messages.html) utility function can be used to convert from LangChain messages to OpenAI format.
## Message IDs
LangChain messages include an optional `id` field that serves as a unique identifier. Understanding when and how these IDs are assigned can be helpful for debugging, tracing, and working with message history.
### When Messages Get IDs
Messages receive IDs in the following scenarios:
**Automatically assigned by LangChain:**
- When generated through chat model invocation (`.invoke()`, `.stream()`, `.astream()`) with an active run manager/tracing context
- IDs follow the format:
- `run-$RUN_ID` (e.g., `run-ba48f958-6402-41a5-b461-5e250a4ebd36-0`)
- `run-$RUN_ID-$IDX` (e.g., `run-ba48f958-6402-41a5-b461-5e250a4ebd36-1`) when there are multiple generations from a single chat model invocation.
**Provider-assigned IDs (highest priority):**
- When the model provider assigns its own ID to the message
- These take precedence over LangChain-generated run IDs
- Format varies by provider
### When Messages Don't Get IDs
Messages will **not** receive IDs in these situations:
- **Manual message creation**: Messages created directly (e.g., `AIMessage(content="hello")`) without going through chat models
- **No run manager context**: When there's no active callback/tracing infrastructure
### ID Priority System
LangChain follows a clear precedence system for message IDs:
1. **Provider-assigned IDs** (highest priority): IDs from the model provider
2. **LangChain run IDs** (medium priority): IDs starting with `run-`
3. **Manual IDs** (lowest priority): IDs explicitly set by users

View File

@@ -29,6 +29,22 @@ model_with_structure = model.with_structured_output(schema)
structured_output = model_with_structure.invoke(user_input)
```
:::warning[Tool Order Matters]
When combining structured output with additional tools, bind tools **first**, then apply structured output:
```python
# Correct
model_with_tools = model.bind_tools([tool1, tool2])
structured_model = model_with_tools.with_structured_output(schema)
# Incorrect - will cause tool resolution errors
structured_model = model.with_structured_output(schema)
broken_model = structured_model.bind_tools([tool1, tool2])
```
:::
## Schema definition
The central concept is that the output structure of model responses needs to be represented in some way.

View File

@@ -7,4 +7,4 @@ Traces contain individual steps called `runs`. These can be individual calls fro
tool, or sub-chains.
Tracing gives you observability inside your chains and agents, and is vital in diagnosing issues.
For a deeper dive, check out [this LangSmith conceptual guide](https://docs.smith.langchain.com/concepts/tracing).
For a deeper dive, check out [this LangSmith conceptual guide](https://docs.langchain.com/langsmith/observability-quickstart).

View File

@@ -3,9 +3,9 @@
Here are some things to keep in mind for all types of contributions:
- Follow the ["fork and pull request"](https://docs.github.com/en/get-started/exploring-projects-on-github/contributing-to-a-project) workflow.
- Fill out the checked-in pull request template when opening pull requests. Note related issues and tag relevant maintainers.
- Fill out the checked-in pull request template when opening pull requests. Note related issues.
- Ensure your PR passes formatting, linting, and testing checks before requesting a review.
- If you would like comments or feedback on your current progress, please open an issue or discussion and tag a maintainer.
- If you would like comments or feedback on your current progress, please open an issue or discussion.
- See the sections on [Testing](setup.mdx#testing) and [Formatting and Linting](setup.mdx#formatting-and-linting) for how to run these checks locally.
- Backwards compatibility is key. Your changes must not be breaking, except in case of critical bug and security fixes.
- Look for duplicate PRs or issues that have already been opened before opening a new one.

View File

@@ -223,6 +223,49 @@ If codespell is incorrectly flagging a word, you can skip spellcheck for that wo
ignore-words-list = 'momento,collison,ned,foor,reworkd,parth,whats,aapply,mysogyny,unsecure'
```
### Pre-commit
We use [pre-commit](https://pre-commit.com/) to ensure commits are formatted/linted.
#### Installing Pre-commit
First, install pre-commit:
```bash
# Option 1: Using uv (recommended)
uv tool install pre-commit
# Option 2: Using Homebrew (globally for macOS/Linux)
brew install pre-commit
# Option 3: Using pip
pip install pre-commit
```
Then install the git hook scripts:
```bash
pre-commit install
```
#### How Pre-commit Works
Once installed, pre-commit will automatically run on every `git commit`. Hooks are specified in `.pre-commit-config.yaml` and will:
- Format code using `ruff` for the specific library/package you're modifying
- Only run on files that have changed
- Prevent commits if formatting fails
#### Skipping Pre-commit
In exceptional cases, you can skip pre-commit hooks with:
```bash
git commit --no-verify
```
However, this is discouraged as the CI system will still enforce the same formatting rules.
## Working with optional dependencies
`langchain`, `langchain-community`, and `langchain-experimental` rely on optional dependencies to keep these packages lightweight.

View File

@@ -79,7 +79,7 @@ Here are some high-level tips on writing a good how-to guide:
### Conceptual guide
LangChain's conceptual guide falls under the **Explanation** quadrant of Diataxis. These guides should cover LangChain terms and concepts
LangChain's conceptual guides fall under the **Explanation** quadrant of Diataxis. These guides should cover LangChain terms and concepts
in a more abstract way than how-to guides or tutorials, targeting curious users interested in
gaining a deeper understanding and insights of the framework. Try to avoid excessively large code examples as the primary goal is to
provide perspective to the user rather than to finish a practical project. These guides should cover **why** things work the way they do.
@@ -105,7 +105,7 @@ Here are some high-level tips on writing a good conceptual guide:
### References
References contain detailed, low-level information that describes exactly what functionality exists and how to use it.
In LangChain, this is mainly our API reference pages, which are populated from docstrings within code.
In LangChain, these are mainly our API reference pages, which are populated from docstrings within code.
References pages are generally not read end-to-end, but are consulted as necessary when a user needs to know
how to use something specific.
@@ -119,7 +119,7 @@ but here are some high-level tips on writing a good docstring:
- Be concise
- Discuss special cases and deviations from a user's expectations
- Go into detail on required inputs and outputs
- Light details on when one might use the feature are fine, but in-depth details belong in other sections.
- Light details on when one might use the feature are fine, but in-depth details belong in other sections
Each category serves a distinct purpose and requires a specific approach to writing and structuring the content.
@@ -127,17 +127,17 @@ Each category serves a distinct purpose and requires a specific approach to writ
Here are some other guidelines you should think about when writing and organizing documentation.
We generally do not merge new tutorials from outside contributors without an actue need.
We generally do not merge new tutorials from outside contributors without an acute need.
We welcome updates as well as new integration docs, how-tos, and references.
### Avoid duplication
Multiple pages that cover the same material in depth are difficult to maintain and cause confusion. There should
be only one (very rarely two), canonical pages for a given concept or feature. Instead, you should link to other guides.
be only one (very rarely two) canonical pages for a given concept or feature. Instead, you should link to other guides.
### Link to other sections
Because sections of the docs do not exist in a vacuum, it is important to link to other sections frequently,
Because sections of the docs do not exist in a vacuum, it is important to link to other sections frequently
to allow a developer to learn more about an unfamiliar topic within the flow of reading.
This includes linking to the API references and conceptual sections!

View File

@@ -33,7 +33,7 @@ Sometimes you want to make a small change, like fixing a typo, and the easiest w
- Click the "Commit changes..." button at the top-right corner of the page.
- Give your commit a title like "Fix typo in X section."
- Optionally, write an extended commit description.
- Click "Propose changes"
- Click "Propose changes".
5. **Submit a pull request (PR):**
- GitHub will redirect you to a page where you can create a pull request.

View File

@@ -159,7 +159,7 @@
},
{
"cell_type": "code",
"execution_count": 8,
"execution_count": null,
"id": "321e3036-abd2-4e1f-bcc6-606efd036954",
"metadata": {
"execution": {
@@ -183,7 +183,7 @@
],
"source": [
"configurable_model.invoke(\n",
" \"what's your name\", config={\"configurable\": {\"model\": \"claude-3-5-sonnet-20240620\"}}\n",
" \"what's your name\", config={\"configurable\": {\"model\": \"claude-3-5-sonnet-latest\"}}\n",
")"
]
},
@@ -234,7 +234,7 @@
},
{
"cell_type": "code",
"execution_count": 7,
"execution_count": null,
"id": "6c8755ba-c001-4f5a-a497-be3f1db83244",
"metadata": {
"execution": {
@@ -261,7 +261,7 @@
" \"what's your name\",\n",
" config={\n",
" \"configurable\": {\n",
" \"first_model\": \"claude-3-5-sonnet-20240620\",\n",
" \"first_model\": \"claude-3-5-sonnet-latest\",\n",
" \"first_temperature\": 0.5,\n",
" \"first_max_tokens\": 100,\n",
" }\n",
@@ -336,7 +336,7 @@
},
{
"cell_type": "code",
"execution_count": 9,
"execution_count": null,
"id": "e57dfe9f-cd24-4e37-9ce9-ccf8daf78f89",
"metadata": {
"execution": {
@@ -368,14 +368,14 @@
"source": [
"llm_with_tools.invoke(\n",
" \"what's bigger in 2024 LA or NYC\",\n",
" config={\"configurable\": {\"model\": \"claude-3-5-sonnet-20240620\"}},\n",
" config={\"configurable\": {\"model\": \"claude-3-5-sonnet-latest\"}},\n",
").tool_calls"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "langchain",
"display_name": "langchain-monorepo",
"language": "python",
"name": "python3"
},
@@ -389,7 +389,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.16"
"version": "3.12.11"
}
},
"nbformat": 4,

View File

@@ -741,13 +741,13 @@
"\n",
"If you're using tools with agents, you will likely need an error handling strategy, so the agent can recover from the error and continue execution.\n",
"\n",
"A simple strategy is to throw a `ToolException` from inside the tool and specify an error handler using `handle_tool_error`. \n",
"A simple strategy is to throw a `ToolException` from inside the tool and specify an error handler using `handle_tool_errors`. \n",
"\n",
"When the error handler is specified, the exception will be caught and the error handler will decide which output to return from the tool.\n",
"\n",
"You can set `handle_tool_error` to `True`, a string value, or a function. If it's a function, the function should take a `ToolException` as a parameter and return a value.\n",
"You can set `handle_tool_errors` to `True`, a string value, or a function. If it's a function, the function should take a `ToolException` as a parameter and return a value.\n",
"\n",
"Please note that only raising a `ToolException` won't be effective. You need to first set the `handle_tool_error` of the tool because its default value is `False`."
"Please note that only raising a `ToolException` won't be effective. You need to first set the `handle_tool_errors` of the tool because its default value is `False`."
]
},
{
@@ -777,7 +777,7 @@
"id": "9d93b217-1d44-4d31-8956-db9ea680ff4f",
"metadata": {},
"source": [
"Here's an example with the default `handle_tool_error=True` behavior."
"Here's an example with the default `handle_tool_errors=True` behavior."
]
},
{
@@ -807,7 +807,7 @@
"source": [
"get_weather_tool = StructuredTool.from_function(\n",
" func=get_weather,\n",
" handle_tool_error=True,\n",
" handle_tool_errors=True,\n",
")\n",
"\n",
"get_weather_tool.invoke({\"city\": \"foobar\"})"
@@ -818,7 +818,7 @@
"id": "f91d6dc0-3271-4adc-a155-21f2e62ffa56",
"metadata": {},
"source": [
"We can set `handle_tool_error` to a string that will always be returned."
"We can set `handle_tool_errors` to a string that will always be returned."
]
},
{
@@ -848,7 +848,7 @@
"source": [
"get_weather_tool = StructuredTool.from_function(\n",
" func=get_weather,\n",
" handle_tool_error=\"There is no such city, but it's probably above 0K there!\",\n",
" handle_tool_errors=\"There is no such city, but it's probably above 0K there!\",\n",
")\n",
"\n",
"get_weather_tool.invoke({\"city\": \"foobar\"})"
@@ -893,7 +893,7 @@
"\n",
"get_weather_tool = StructuredTool.from_function(\n",
" func=get_weather,\n",
" handle_tool_error=_handle_error,\n",
" handle_tool_errors=_handle_error,\n",
")\n",
"\n",
"get_weather_tool.invoke({\"city\": \"foobar\"})"

View File

@@ -565,7 +565,7 @@
"id": "3ac2c37a-06a1-40d3-a192-9078eb83994b",
"metadata": {},
"source": [
"<table><thead><tr><th colspan=\"3\">able 1. LUllclll 1ayoul actCCLloll 1110AdCs 111 L1C LayoOulralsel 1110U4cl 200</th></tr><tr><th>Dataset</th><th>| Base Model\\'|</th><th>Notes</th></tr></thead><tbody><tr><td>PubLayNet [38]</td><td>F/M</td><td>Layouts of modern scientific documents</td></tr><tr><td>PRImA</td><td>M</td><td>Layouts of scanned modern magazines and scientific reports</td></tr><tr><td>Newspaper</td><td>F</td><td>Layouts of scanned US newspapers from the 20th century</td></tr><tr><td>TableBank [18]</td><td>F</td><td>Table region on modern scientific and business document</td></tr><tr><td>HJDataset</td><td>F/M</td><td>Layouts of history Japanese documents</td></tr></tbody></table>"
"<table><thead><tr><th colspan=\"3\">Table 1: Current layout detection models in the LayoutParser model zoo</th></tr><tr><th>Dataset</th><th>Base Model1</th><th>Large Model Notes</th></tr></thead><tbody><tr><td>PubLayNet [38]</td><td>F/M</td><td>Layouts of modern scientific documents</td></tr><tr><td>PRImA</td><td>M</td><td>Layouts of scanned modern magazines and scientific reports</td></tr><tr><td>Newspaper</td><td>F</td><td>Layouts of scanned US newspapers from the 20th century</td></tr><tr><td>TableBank [18]</td><td>F</td><td>Table region on modern scientific and business document</td></tr><tr><td>HJDataset</td><td>F/M</td><td>Layouts of history Japanese documents</td></tr></tbody></table>"
]
},
{

View File

@@ -5,7 +5,7 @@ sidebar_class_name: hidden
# How-to guides
Here youll find answers to How do I….? types of questions.
Here youll find answers to "How do I….?" types of questions.
These guides are *goal-oriented* and *concrete*; they're meant to help you complete a specific task.
For conceptual explanations see the [Conceptual guide](/docs/concepts/).
For end-to-end walkthroughs see [Tutorials](/docs/tutorials).
@@ -47,7 +47,7 @@ See [supported integrations](/docs/integrations/chat/) for details on getting st
- [How to: use chat model to call tools](/docs/how_to/tool_calling)
- [How to: stream tool calls](/docs/how_to/tool_streaming)
- [How to: handle rate limits](/docs/how_to/chat_model_rate_limiting)
- [How to: few shot prompt tool behavior](/docs/how_to/tools_few_shot)
- [How to: few-shot prompt tool behavior](/docs/how_to/tools_few_shot)
- [How to: bind model-specific formatted tools](/docs/how_to/tools_model_specific)
- [How to: force a specific tool call](/docs/how_to/tool_choice)
- [How to: pass multimodal data directly to models](/docs/how_to/multimodal_inputs/)
@@ -64,8 +64,8 @@ See [supported integrations](/docs/integrations/chat/) for details on getting st
[Prompt Templates](/docs/concepts/prompt_templates) are responsible for formatting user input into a format that can be passed to a language model.
- [How to: use few shot examples](/docs/how_to/few_shot_examples)
- [How to: use few shot examples in chat models](/docs/how_to/few_shot_examples_chat/)
- [How to: use few-shot examples](/docs/how_to/few_shot_examples)
- [How to: use few-shot examples in chat models](/docs/how_to/few_shot_examples_chat/)
- [How to: partially format prompt templates](/docs/how_to/prompts_partial)
- [How to: compose prompts together](/docs/how_to/prompts_composition)
- [How to: use multimodal prompts](/docs/how_to/multimodal_prompts/)
@@ -168,7 +168,7 @@ See [supported integrations](/docs/integrations/vectorstores/) for details on ge
Indexing is the process of keeping your vectorstore in-sync with the underlying data source.
- [How to: reindex data to keep your vectorstore in-sync with the underlying data source](/docs/how_to/indexing)
- [How to: reindex data to keep your vectorstore in sync with the underlying data source](/docs/how_to/indexing)
### Tools
@@ -178,7 +178,7 @@ LangChain [Tools](/docs/concepts/tools) contain a description of the tool (to pa
- [How to: use built-in tools and toolkits](/docs/how_to/tools_builtin)
- [How to: use chat models to call tools](/docs/how_to/tool_calling)
- [How to: pass tool outputs to chat models](/docs/how_to/tool_results_pass_to_model)
- [How to: pass run time values to tools](/docs/how_to/tool_runtime)
- [How to: pass runtime values to tools](/docs/how_to/tool_runtime)
- [How to: add a human-in-the-loop for tools](/docs/how_to/tools_human)
- [How to: handle tool errors](/docs/how_to/tools_error)
- [How to: force models to call a tool](/docs/how_to/tool_choice)
@@ -297,7 +297,7 @@ For a high-level tutorial, check out [this guide](/docs/tutorials/sql_qa/).
You can use an LLM to do question answering over graph databases.
For a high-level tutorial, check out [this guide](/docs/tutorials/graph/).
- [How to: add a semantic layer over the database](/docs/how_to/graph_semantic)
- [How to: add a semantic layer over a database](/docs/how_to/graph_semantic)
- [How to: construct knowledge graphs](/docs/how_to/graph_constructing)
### Summarization
@@ -345,7 +345,7 @@ LangGraph is an extension of LangChain aimed at
building robust and stateful multi-actor applications with LLMs by modeling steps as edges and nodes in a graph.
LangGraph documentation is currently hosted on a separate site.
You can peruse [LangGraph how-to guides here](https://langchain-ai.github.io/langgraph/how-tos/).
You can find the [LangGraph guides here](https://langchain-ai.github.io/langgraph/guides/).
## [LangSmith](https://docs.smith.langchain.com/)

View File

@@ -998,6 +998,91 @@
"\n",
"chain.invoke({\"query\": query})"
]
},
{
"cell_type": "markdown",
"id": "xfejabhtn2",
"metadata": {},
"source": [
"## Combining with Additional Tools\n",
"\n",
"When you need to use both structured output and additional tools (like web search), note the order of operations:\n",
"\n",
"**Correct Order**:\n",
"```python\n",
"# 1. Bind tools first\n",
"llm_with_tools = llm.bind_tools([web_search_tool, calculator_tool])\n",
"\n",
"# 2. Apply structured output\n",
"structured_llm = llm_with_tools.with_structured_output(MySchema)\n",
"```\n",
"\n",
"**Incorrect Order**:\n",
"\n",
"```python\n",
"# This will fail with \"Tool 'MySchema' not found\" error\n",
"structured_llm = llm.with_structured_output(MySchema)\n",
"broken_llm = structured_llm.bind_tools([web_search_tool])\n",
"```"
]
},
{
"cell_type": "markdown",
"id": "653798ca",
"metadata": {},
"source": [
"**Why Order Matters:**\n",
"`with_structured_output()` internally uses tool calling to enforce the schema. When you bind additional tools afterward, it creates a conflict in the tool resolution system."
]
},
{
"cell_type": "markdown",
"id": "1345f4a4",
"metadata": {},
"source": [
"**Complete Example:**"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "0835637b",
"metadata": {},
"outputs": [],
"source": [
"from pydantic import BaseModel, Field\n",
"from langchain_openai import ChatOpenAI\n",
"\n",
"\n",
"class SearchResult(BaseModel):\n",
" \"\"\"Structured search result.\"\"\"\n",
"\n",
" query: str = Field(description=\"The search query\")\n",
" findings: str = Field(description=\"Summary of findings\")\n",
"\n",
"\n",
"# Define tools\n",
"search_tool = {\n",
" \"type\": \"function\",\n",
" \"function\": {\n",
" \"name\": \"web_search\",\n",
" \"description\": \"Search the web for information\",\n",
" \"parameters\": {\n",
" \"type\": \"object\",\n",
" \"properties\": {\"query\": {\"type\": \"string\", \"description\": \"Search query\"}},\n",
" \"required\": [\"query\"],\n",
" },\n",
" },\n",
"}\n",
"\n",
"# Correct approach\n",
"llm = ChatOpenAI()\n",
"llm_with_search = llm.bind_tools([search_tool])\n",
"structured_search_llm = llm_with_search.with_structured_output(SearchResult)\n",
"\n",
"# Now you can use both search and get structured output\n",
"result = structured_search_llm.invoke(\"Search for latest AI research and summarize\")"
]
}
],
"metadata": {

View File

@@ -147,7 +147,7 @@
},
{
"cell_type": "code",
"execution_count": 5,
"execution_count": null,
"id": "74de0286-b003-4b48-9cdd-ecab435515ca",
"metadata": {},
"outputs": [],
@@ -157,7 +157,7 @@
"\n",
"from langchain_anthropic import ChatAnthropic\n",
"\n",
"llm = ChatAnthropic(model=\"claude-3-5-sonnet-20240620\", temperature=0)"
"llm = ChatAnthropic(model=\"claude-3-5-sonnet-latest\", temperature=0)"
]
},
{

View File

@@ -55,7 +55,7 @@
"source": [
"## Defining tool schemas\n",
"\n",
"For a model to be able to call tools, we need to pass in tool schemas that describe what the tool does and what it's arguments are. Chat models that support tool calling features implement a `.bind_tools()` method for passing tool schemas to the model. Tool schemas can be passed in as Python functions (with typehints and docstrings), Pydantic models, TypedDict classes, or LangChain [Tool objects](https://python.langchain.com/api_reference/core/tools/langchain_core.tools.base.BaseTool.html#basetool). Subsequent invocations of the model will pass in these tool schemas along with the prompt.\n",
"For a model to be able to call tools, we need to pass in tool schemas that describe what the tool does and what its arguments are. Chat models that support tool calling features implement a `.bind_tools()` method for passing tool schemas to the model. Tool schemas can be passed in as Python functions (with typehints and docstrings), Pydantic models, TypedDict classes, or LangChain [Tool objects](https://python.langchain.com/api_reference/core/tools/langchain_core.tools.base.BaseTool.html#basetool). Subsequent invocations of the model will pass in these tool schemas along with the prompt.\n",
"\n",
"### Python functions\n",
"Our tool schemas can be Python functions:"

View File

@@ -38,7 +38,7 @@
},
{
"cell_type": "code",
"execution_count": 1,
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
@@ -53,7 +53,7 @@
"if \"ANTHROPIC_API_KEY\" not in os.environ:\n",
" os.environ[\"ANTHROPIC_API_KEY\"] = getpass()\n",
"\n",
"model = ChatAnthropic(model=\"claude-3-5-sonnet-20240620\", temperature=0)"
"model = ChatAnthropic(model=\"claude-3-5-sonnet-latest\", temperature=0)"
]
},
{

View File

@@ -53,7 +53,7 @@
"\n",
"To keep the most recent messages, we set `strategy=\"last\"`. We'll also set `include_system=True` to include the `SystemMessage`, and `start_on=\"human\"` to make sure the resulting chat history is valid. \n",
"\n",
"This is a good default configuration when using `trim_messages` based on token count. Remember to adjust `token_counter` and `max_tokens` for your use case.\n",
"This is a good default configuration when using `trim_messages` based on token count. Remember to adjust `token_counter` and `max_tokens` for your use case. Keep in mind that new queries added to the chat history will be included in the token count unless you trim prior to adding the new query.\n",
"\n",
"Notice that for our `token_counter` we can pass in a function (more on that below) or a language model (since language models have a message token counting method). It makes sense to pass in a model when you're trimming your messages to fit into the context window of that specific model:"
]
@@ -525,7 +525,7 @@
"id": "4d91d390-e7f7-467b-ad87-d100411d7a21",
"metadata": {},
"source": [
"Looking at the LangSmith trace we can see that before the messages are passed to the model they are first trimmed: https://smith.langchain.com/public/65af12c4-c24d-4824-90f0-6547566e59bb/r\n",
"Looking at [the LangSmith trace](https://smith.langchain.com/public/65af12c4-c24d-4824-90f0-6547566e59bb/r) we can see that before the messages are passed to the model they are first trimmed.\n",
"\n",
"Looking at just the trimmer, we can see that it's a Runnable object that can be invoked like all Runnables:"
]
@@ -620,7 +620,7 @@
"id": "556b7b4c-43cb-41de-94fc-1a41f4ec4d2e",
"metadata": {},
"source": [
"Looking at the LangSmith trace we can see that we retrieve all of our messages but before the messages are passed to the model they are trimmed to be just the system message and last human message: https://smith.langchain.com/public/17dd700b-9994-44ca-930c-116e00997315/r"
"Looking at [the LangSmith trace](https://smith.langchain.com/public/17dd700b-9994-44ca-930c-116e00997315/r) we can see that we retrieve all of our messages but before the messages are passed to the model they are trimmed to be just the system message and last human message."
]
},
{
@@ -630,7 +630,7 @@
"source": [
"## API reference\n",
"\n",
"For a complete description of all arguments head to the API reference: https://python.langchain.com/api_reference/core/messages/langchain_core.messages.utils.trim_messages.html"
"For a complete description of all arguments head to the [API reference](https://python.langchain.com/api_reference/core/messages/langchain_core.messages.utils.trim_messages.html)."
]
}
],

View File

@@ -124,7 +124,7 @@
},
{
"cell_type": "code",
"execution_count": 4,
"execution_count": null,
"id": "cb09c344-1836-4e0c-acf8-11d13ac1dbae",
"metadata": {},
"outputs": [],
@@ -132,7 +132,7 @@
"from langchain_anthropic import ChatAnthropic\n",
"\n",
"llm = ChatAnthropic(\n",
" model=\"claude-3-5-sonnet-20240620\",\n",
" model=\"claude-3-5-sonnet-latest\",\n",
" temperature=0,\n",
" max_tokens=1024,\n",
" timeout=None,\n",
@@ -1240,6 +1240,58 @@
"response = llm_with_tools.invoke(\"How do I update a web app to TypeScript 5.5?\")"
]
},
{
"cell_type": "markdown",
"id": "kloc4rvd1w",
"metadata": {},
"source": [
"#### Web search + structured output\n",
"\n",
"When combining web search tools with structured output, it's important to **bind the tools first and then apply structured output**:"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "rjjergy6ef",
"metadata": {},
"outputs": [],
"source": [
"from pydantic import BaseModel, Field\n",
"from langchain_anthropic import ChatAnthropic\n",
"\n",
"\n",
"# Define structured output schema\n",
"class ResearchResult(BaseModel):\n",
" \"\"\"Structured research result from web search.\"\"\"\n",
"\n",
" topic: str = Field(description=\"The research topic\")\n",
" summary: str = Field(description=\"Summary of key findings\")\n",
" key_points: list[str] = Field(description=\"List of important points discovered\")\n",
"\n",
"\n",
"# Configure web search tool\n",
"websearch_tools = [\n",
" {\n",
" \"type\": \"web_search_20250305\",\n",
" \"name\": \"web_search\",\n",
" \"max_uses\": 10,\n",
" }\n",
"]\n",
"\n",
"llm = ChatAnthropic(model=\"claude-3-5-sonnet-20241022\")\n",
"\n",
"# Correct order: bind tools first, then structured output\n",
"llm_with_search = llm.bind_tools(websearch_tools)\n",
"research_llm = llm_with_search.with_structured_output(ResearchResult)\n",
"\n",
"# Now you can use both web search and get structured output\n",
"result = research_llm.invoke(\"Research the latest developments in quantum computing\")\n",
"print(f\"Topic: {result.topic}\")\n",
"print(f\"Summary: {result.summary}\")\n",
"print(f\"Key Points: {result.key_points}\")"
]
},
{
"cell_type": "markdown",
"id": "1478cdc6-2e52-4870-80f9-b4ddf88f2db2",

View File

@@ -129,7 +129,7 @@
},
{
"cell_type": "code",
"execution_count": 1,
"execution_count": null,
"id": "cb09c344-1836-4e0c-acf8-11d13ac1dbae",
"metadata": {},
"outputs": [],
@@ -137,7 +137,7 @@
"from langchain_aws import ChatBedrockConverse\n",
"\n",
"llm = ChatBedrockConverse(\n",
" model_id=\"anthropic.claude-3-5-sonnet-20240620-v1:0\",\n",
" model_id=\"anthropic.claude-3-5-sonnet-latest-v1:0\",\n",
" # region_name=...,\n",
" # aws_access_key_id=...,\n",
" # aws_secret_access_key=...,\n",

View File

@@ -53,7 +53,7 @@
"source": [
"### Installation\n",
"\n",
"The LangChain OCIGenAI integration lives in the `langchain-community` package and you will also need to install the `oci` package:"
"The LangChain OCIGenAI integration lives in the `langchain-oci` package and you will also need to install the `oci` package:"
]
},
{
@@ -63,7 +63,7 @@
"metadata": {},
"outputs": [],
"source": [
"%pip install -qU langchain-community oci"
"%pip install -qU langchain-oci"
]
},
{
@@ -83,7 +83,7 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain_community.chat_models.oci_generative_ai import ChatOCIGenAI\n",
"from langchain_oci.chat_models import ChatOCIGenAI\n",
"from langchain_core.messages import AIMessage, HumanMessage, SystemMessage\n",
"\n",
"chat = ChatOCIGenAI(\n",

View File

@@ -17,7 +17,7 @@
"source": [
"# ChatOllama\n",
"\n",
"[Ollama](https://ollama.com/) allows you to run open-source large language models, such as `got-oss`, locally.\n",
"[Ollama](https://ollama.com/) allows you to run open-source large language models, such as `gpt-oss`, locally.\n",
"\n",
"`ollama` bundles model weights, configuration, and data into a single package, defined by a Modelfile.\n",
"\n",

View File

@@ -7,7 +7,7 @@
"source": [
"# Azure AI Data\n",
"\n",
">[Azure AI Studio](https://ai.azure.com/) provides the capability to upload data assets to cloud storage and register existing data assets from the following sources:\n",
">[Azure AI Foundry (formerly Azure AI Studio)](https://ai.azure.com/) provides the capability to upload data assets to cloud storage and register existing data assets from the following sources:\n",
">\n",
">- `Microsoft OneLake`\n",
">- `Azure Blob Storage`\n",

View File

@@ -2,67 +2,91 @@
"cells": [
{
"cell_type": "markdown",
"metadata": {
"collapsed": false,
"jupyter": {
"outputs_hidden": false
}
},
"source": [
"# Oracle Autonomous Database\n",
"\n",
"Oracle autonomous database is a cloud database that uses machine learning to automate database tuning, security, backups, updates, and other routine management tasks traditionally performed by DBAs.\n",
"Oracle Autonomous Database is a cloud database that uses machine learning to automate database tuning, security, backups, updates, and other routine management tasks traditionally performed by DBAs.\n",
"\n",
"This notebook covers how to load documents from oracle autonomous database, the loader supports connection with connection string or tns configuration.\n",
"This notebook covers how to load documents from Oracle Autonomous Database.\n",
"\n",
"## Prerequisites\n",
"1. Database runs in a 'Thin' mode:\n",
" https://python-oracledb.readthedocs.io/en/latest/user_guide/appendix_b.html\n",
"2. `pip install oracledb`:\n",
" https://python-oracledb.readthedocs.io/en/latest/user_guide/installation.html"
],
"metadata": {
"collapsed": false
}
"1. Install python-oracledb:\n",
"\n",
" `pip install oracledb`\n",
" \n",
" See [Installing python-oracledb](https://python-oracledb.readthedocs.io/en/latest/user_guide/installation.html).\n",
"\n",
"2. A database that python-oracledb's default 'Thin' mode can connected to. This is true of Oracle Autonomous Database, see [python-oracledb Architecture](https://python-oracledb.readthedocs.io/en/latest/user_guide/introduction.html#architecture).\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"collapsed": false,
"jupyter": {
"outputs_hidden": false
}
},
"source": [
"## Instructions"
],
"metadata": {
"collapsed": false
}
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false,
"jupyter": {
"outputs_hidden": false
}
},
"outputs": [],
"source": [
"pip install oracledb"
],
"metadata": {
"collapsed": false
}
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false,
"jupyter": {
"outputs_hidden": false
}
},
"outputs": [],
"source": [
"from langchain_community.document_loaders import OracleAutonomousDatabaseLoader\n",
"from settings import s"
],
"metadata": {
"collapsed": false
}
]
},
{
"cell_type": "markdown",
"source": [
"With mutual TLS authentication (mTLS), wallet_location and wallet_password are required to create the connection, user can create connection by providing either connection string or tns configuration details."
],
"metadata": {
"collapsed": false
}
"collapsed": false,
"jupyter": {
"outputs_hidden": false
}
},
"source": [
"With mutual TLS authentication (mTLS), wallet_location and wallet_password parameters are required to create the connection. See python-oracledb documentation [Connecting to Oracle Cloud Autonomous Databases](https://python-oracledb.readthedocs.io/en/latest/user_guide/connection_handling.html#connecting-to-oracle-cloud-autonomous-databases)."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false,
"jupyter": {
"outputs_hidden": false
}
},
"outputs": [],
"source": [
"SQL_QUERY = \"select prod_id, time_id from sh.costs fetch first 5 rows only\"\n",
@@ -89,24 +113,30 @@
" wallet_password=s.PASSWORD,\n",
")\n",
"doc_2 = doc_loader_2.load()"
],
"metadata": {
"collapsed": false
}
]
},
{
"cell_type": "markdown",
"source": [
"With TLS authentication, wallet_location and wallet_password are not required.\n",
"Bind variable option is provided by argument \"parameters\"."
],
"metadata": {
"collapsed": false
}
"collapsed": false,
"jupyter": {
"outputs_hidden": false
}
},
"source": [
"With 1-way TLS authentication, only the database credentials and connection string are required to establish a connection.\n",
"The example below also shows passing bind variable values with the argument \"parameters\"."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false,
"jupyter": {
"outputs_hidden": false
}
},
"outputs": [],
"source": [
"SQL_QUERY = \"select channel_id, channel_desc from sh.channels where channel_desc = :1 fetch first 5 rows only\"\n",
@@ -131,31 +161,28 @@
" parameters=[\"Direct Sales\"],\n",
")\n",
"doc_4 = doc_loader_4.load()"
],
"metadata": {
"collapsed": false
}
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 2
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython2",
"version": "2.7.6"
"pygments_lexer": "ipython3",
"version": "3.12.11"
}
},
"nbformat": 4,
"nbformat_minor": 0
"nbformat_minor": 4
}

View File

@@ -0,0 +1,334 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Oxylabs"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"[Oxylabs](https://oxylabs.io/) is a web intelligence collection platform that enables companies worldwide to unlock data-driven insights.\n",
"\n",
"## Overview\n",
"\n",
"Oxylabs document loader allows to load data from search engines, e-commerce sites, travel platforms, and any other website. It supports geolocation, browser rendering, data parsing, multiple user agents and many more parameters. Check out [Oxylabs documentation](https://developers.oxylabs.io/scraping-solutions/web-scraper-api) for more information.\n",
"\n",
"\n",
"### Integration details\n",
"\n",
"| Class | Package | Local | Serializable | Pricing |\n",
"|:--------------|:------------------------------------------------------------------|:-----:|:------------:|:-----------------------------:|\n",
"| OxylabsLoader | [langchain-oxylabs](https://github.com/oxylabs/langchain-oxylabs) | ✅ | ❌ | Free 5,000 results for 1 week |\n",
"\n",
"### Loader features\n",
"| Document Lazy Loading |\n",
"|:---------------------:|\n",
"| ✅ |\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Setup"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Install the required dependencies.\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"scrolled": true
},
"outputs": [],
"source": [
"%pip install -U langchain-oxylabs"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Credentials\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Set up the proper API keys and environment variables.\n",
"Create your API user credentials: Sign up for a free trial or purchase the product\n",
"in the [Oxylabs dashboard](https://dashboard.oxylabs.io/en/registration)\n",
"to create your API user credentials (OXYLABS_USERNAME and OXYLABS_PASSWORD)."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import getpass\n",
"import os\n",
"\n",
"os.environ[\"OXYLABS_USERNAME\"] = getpass.getpass(\"Enter your Oxylabs username: \")\n",
"os.environ[\"OXYLABS_PASSWORD\"] = getpass.getpass(\"Enter your Oxylabs password: \")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Initialization"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {
"ExecuteTime": {
"end_time": "2025-08-06T10:57:51.630011Z",
"start_time": "2025-08-06T10:57:51.623814Z"
}
},
"outputs": [],
"source": [
"from langchain_oxylabs import OxylabsLoader"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {
"ExecuteTime": {
"end_time": "2025-08-06T10:57:53.685413Z",
"start_time": "2025-08-06T10:57:53.628859Z"
}
},
"outputs": [],
"source": [
"loader = OxylabsLoader(\n",
" urls=[\n",
" \"https://sandbox.oxylabs.io/products/1\",\n",
" \"https://sandbox.oxylabs.io/products/2\",\n",
" ],\n",
" params={\"markdown\": True},\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": "## Load"
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {
"ExecuteTime": {
"end_time": "2025-08-06T10:59:51.487327Z",
"start_time": "2025-08-06T10:59:48.592743Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"2751\n",
"[![](data:image/svg+xml...)![logo](data:image/gif;base64...)![logo](/_next/image?url=%2F_next%2Fstatic%2Fmedia%2FnavLogo.a8764883.png&w=750&q=75)](/)\n",
"\n",
"Game platforms:\n",
"\n",
"* **All**\n",
"\n",
"* [Nintendo platform](/products/category/nintendo)\n",
"\n",
"+ wii\n",
"+ wii-u\n",
"+ nintendo-64\n",
"+ switch\n",
"+ gamecube\n",
"+ game-boy-advance\n",
"+ 3ds\n",
"+ ds\n",
"\n",
"* [Xbox platform](/products/category/xbox-platform)\n",
"\n",
"* **Dreamcast**\n",
"\n",
"* [Playstation platform](/products/category/playstation-platform)\n",
"\n",
"* **Pc**\n",
"\n",
"* **Stadia**\n",
"\n",
"Go Back\n",
"\n",
"Note!This is a sandbox website used for web scraping. Information listed in this website does not have any real meaning and should not be associated with the actual products.\n",
"\n",
"![The Legend of Zelda: Ocarina of Time](data:image/gif;base64...)![The Legend of Zelda: Ocarina of Time](/assets/action-adventure.svg)\n",
"\n",
"## The Legend of Zelda: Ocarina of Time\n",
"\n",
"**Developer:** Nintendo**Platform:****Type:** singleplayer\n",
"\n",
"As a young boy, Link is tricked by Ganondorf, the King of the Gerudo Thieves. The evil human uses Link to g\n",
"5542\n",
"[![](data:image/svg+xml...)![logo](data:image/gif;base64...)![logo](/_next/image?url=%2F_next%2Fstatic%2Fmedia%2FnavLogo.a8764883.png&w=750&q=75)](/)\n",
"\n",
"Game platforms:\n",
"\n",
"* **All**\n",
"\n",
"* [Nintendo platform](/products/category/nintendo)\n",
"\n",
"+ wii\n",
"+ wii-u\n",
"+ nintendo-64\n",
"+ switch\n",
"+ gamecube\n",
"+ game-boy-advance\n",
"+ 3ds\n",
"+ ds\n",
"\n",
"* [Xbox platform](/products/category/xbox-platform)\n",
"\n",
"* **Dreamcast**\n",
"\n",
"* [Playstation platform](/products/category/playstation-platform)\n",
"\n",
"* **Pc**\n",
"\n",
"* **Stadia**\n",
"\n",
"Go Back\n",
"\n",
"Note!This is a sandbox website used for web scraping. Information listed in this website does not have any real meaning and should not be associated with the actual products.\n",
"\n",
"![Super Mario Galaxy](data:image/gif;base64...)![Super Mario Galaxy](/assets/action.svg)\n",
"\n",
"## Super Mario Galaxy\n",
"\n",
"**Developer:** Nintendo**Platform:****Type:** singleplayer\n",
"\n",
"[Metacritic's 2007 Wii Game of the Year] The ultimate Nintendo hero is taking the ultimate step ... out into space. Join Mario as he ushers in a new era of video games, de\n"
]
}
],
"source": [
"for document in loader.load():\n",
" print(document.page_content[:1000])"
]
},
{
"metadata": {},
"cell_type": "markdown",
"source": "## Lazy Load"
},
{
"metadata": {},
"cell_type": "code",
"outputs": [],
"execution_count": null,
"source": [
"for document in loader.lazy_load():\n",
" print(document.page_content[:1000])"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Advanced examples\n",
"\n",
"The following examples show the usage of `OxylabsLoader` with geolocation, currency, pagination and user agent parameters for Amazon Search and Google Search sources."
]
},
{
"cell_type": "code",
"execution_count": 21,
"metadata": {
"ExecuteTime": {
"end_time": "2025-08-06T11:04:19.901122Z",
"start_time": "2025-08-06T11:04:19.838933Z"
}
},
"outputs": [],
"source": [
"loader = OxylabsLoader(\n",
" queries=[\"gaming headset\", \"gaming chair\", \"computer mouse\"],\n",
" params={\n",
" \"source\": \"amazon_search\",\n",
" \"parse\": True,\n",
" \"geo_location\": \"DE\",\n",
" \"currency\": \"EUR\",\n",
" \"pages\": 3,\n",
" },\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 23,
"metadata": {
"ExecuteTime": {
"end_time": "2025-08-06T11:07:17.648142Z",
"start_time": "2025-08-06T11:07:17.595629Z"
}
},
"outputs": [],
"source": [
"loader = OxylabsLoader(\n",
" queries=[\"europe gdp per capita\", \"us gdp per capita\"],\n",
" params={\n",
" \"source\": \"google_search\",\n",
" \"parse\": True,\n",
" \"geo_location\": \"Paris, France\",\n",
" \"user_agent_type\": \"mobile\",\n",
" },\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## API reference\n",
"\n",
"[More information about this package.](https://github.com/oxylabs/langchain-oxylabs)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.9"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@@ -31,7 +31,7 @@
"metadata": {},
"outputs": [],
"source": [
"!pip install -U oci langchain-community"
"!pip install -U langchain-oci"
]
},
{
@@ -47,7 +47,7 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain_community.llms.oci_generative_ai import OCIGenAI\n",
"from langchain_oci.llms import OCIGenAI\n",
"\n",
"llm = OCIGenAI(\n",
" model_id=\"cohere.command\",\n",

View File

@@ -0,0 +1,215 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# RecallioMemory + LangChain Integration Demo\n",
"A minimal notebook to show drop-in usage of RecallioMemory in LangChain (with scoped writes and recall)."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%pip install recallio langchain langchain-recallio openai"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Setup: API Keys & Imports"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from langchain_recallio.memory import RecallioMemory\n",
"from langchain_openai import ChatOpenAI\n",
"from langchain.prompts import ChatPromptTemplate\n",
"import os\n",
"\n",
"# Set your keys here or use environment variables\n",
"RECALLIO_API_KEY = os.getenv(\"RECALLIO_API_KEY\", \"YOUR_RECALLIO_API_KEY\")\n",
"OPENAI_API_KEY = os.getenv(\"OPENAI_API_KEY\", \"YOUR_OPENAI_API_KEY\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Initialize RecallioMemory"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"memory = RecallioMemory(\n",
" project_id=\"project_abc\",\n",
" api_key=RECALLIO_API_KEY,\n",
" session_id=\"demo-session-001\",\n",
" user_id=\"demo-user-42\",\n",
" default_tags=[\"test\", \"langchain\"],\n",
" return_messages=True,\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Build a LangChain ConversationChain with RecallioMemory"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# You can swap in any supported LLM here\n",
"llm = ChatOpenAI(api_key=OPENAI_API_KEY, temperature=0)\n",
"prompt = ChatPromptTemplate.from_messages(\n",
" [\n",
" (\n",
" \"system\",\n",
" \"The following is a friendly conversation between a human and an AI. \"\n",
" \"The AI is talkative and provides lots of specific details from its context. \"\n",
" \"If the AI does not know the answer to a question, it truthfully says it does not know.\",\n",
" ),\n",
" (\"placeholder\", \"{history}\"), # RecallioMemory will fill this slot\n",
" (\"human\", \"{input}\"),\n",
" ]\n",
")\n",
"\n",
"# LCEL chain that returns an AIMessage\n",
"base_chain = prompt | llm\n",
"\n",
"\n",
"# Create a stateful chain using RecallioMemory\n",
"def chat_with_memory(user_input: str):\n",
" # Load conversation history from memory\n",
" memory_vars = memory.load_memory_variables({\"input\": user_input})\n",
"\n",
" # Run the chain with history and user input\n",
" response = base_chain.invoke(\n",
" {\"input\": user_input, \"history\": memory_vars.get(\"history\", \"\")}\n",
" )\n",
"\n",
" # Save the conversation to memory\n",
" memory.save_context({\"input\": user_input}, {\"output\": response.content})\n",
"\n",
" return response"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example: Chat with Memory"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Bot: Hello Guillaume! It's nice to meet you. How can I assist you today?\n"
]
}
],
"source": [
"# First user message note the AI remembers the name\n",
"resp1 = chat_with_memory(\"Hi! My name is Guillaume. Remember that.\")\n",
"print(\"Bot:\", resp1.content)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Bot: Your name is Guillaume.\n"
]
}
],
"source": [
"# Second user message AI should recall the name from memory\n",
"resp2 = chat_with_memory(\"What is my name?\")\n",
"print(\"Bot:\", resp2.content)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## See What Is Stored in Recallio\n",
"This is for debugging/demo only; in production, you wouldn't do this on every run."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Current memory variables: {'history': [HumanMessage(content='Name is Guillaume', additional_kwargs={}, response_metadata={})]}\n"
]
}
],
"source": [
"print(\"Current memory variables:\", memory.load_memory_variables({}))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Clear Memory (Optional Cleanup - Requires Manager level Key)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# memory.clear()\n",
"# print(\"Memory cleared.\")"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"name": "python",
"version": "3.10"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@@ -2,17 +2,10 @@
This will help you getting started with DigitalOcean Gradient [chat models](/docs/concepts/chat_models).
## Overview
### Integration details
| Class | Package | Package downloads | Package latest |
| :--- | :--- | :---: | :---: |
| [ChatGradient](https://python.langchain.com/api_reference/langchain-gradient/chat_models/langchain_gradient.chat_models.ChatGradient.html) | [langchain-gradient](https://python.langchain.com/api_reference/langchain-gradient/) | ![PyPI - Downloads](https://img.shields.io/pypi/dm/langchain-gradient?style=flat-square&label=%20) | ![PyPI - Version](https://img.shields.io/pypi/v/langchain-gradient?style=flat-square&label=%20) |
## Setup
langchain-gradient uses DigitalOcean Gradient Platform.
langchain-gradient uses DigitalOcean's Gradient™ AI Platform.
Create an account on DigitalOcean, acquire a `DIGITALOCEAN_INFERENCE_KEY` API key from the Gradient Platform, and install the `langchain-gradient` integration package.

View File

@@ -11,17 +11,17 @@ The `LangChain` integrations related to [Oracle Cloud Infrastructure](https://ww
To use, you should have the latest `oci` python SDK and the langchain_community package installed.
```bash
pip install -U oci langchain-community
pip install -U langchain_oci
```
See [chat](/docs/integrations/llms/oci_generative_ai), [complete](/docs/integrations/chat/oci_generative_ai), and [embedding](/docs/integrations/text_embedding/oci_generative_ai) usage examples.
```python
from langchain_community.chat_models import ChatOCIGenAI
from langchain_oci.chat_models import ChatOCIGenAI
from langchain_community.llms import OCIGenAI
from langchain_oci.llms import OCIGenAI
from langchain_community.embeddings import OCIGenAIEmbeddings
from langchain_oci.embeddings import OCIGenAIEmbeddings
```
## OCI Data Science Model Deployment Endpoint
@@ -42,8 +42,8 @@ See [chat](/docs/integrations/chat/oci_data_science) and [complete](/docs/integr
```python
from langchain_community.chat_models import ChatOCIModelDeployment
from langchain_oci.chat_models import ChatOCIModelDeployment
from langchain_community.llms import OCIModelDeploymentLLM
from langchain_oci.llms import OCIModelDeploymentLLM
```

View File

@@ -0,0 +1,31 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Recallio\n",
"\n",
"[Recallio](https://recallio.ai/) is a powerfull API allowing to store, index, and retrieve application “memories” with built-in fact extraction, dynamic summaries, reranked recall, and a full knowledge-graph layer.\n",
"\n",
"\n",
"## Installation\n",
"\n",
"```bash\n",
"pip install langchain-recallio\n",
"```\n",
"\n",
"```python\n",
"from langchain_recallio.memory import RecallioMemory\n",
"```"
]
}
],
"metadata": {
"language_info": {
"name": "python"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@@ -0,0 +1,43 @@
# langchain-siliconflow
This package contains the LangChain integration with SiliconFlow
## Installation
```bash
pip install -U langchain-siliconflow
```
And you should configure credentials by setting the following environment variables:
```bash
export SILICONFLOW_API_KEY="your-api-key"
```
You can set the following environment variable to use the `.cn` endpoint:
```bash
export SILICONFLOW_BASE_URL="https://api.siliconflow.cn/v1"
```
## Chat Models
`ChatSiliconFlow` class exposes chat models from SiliconFlow.
```python
from langchain_siliconflow import ChatSiliconFlow
llm = ChatSiliconFlow()
llm.invoke("Sing a ballad of LangChain.")
```
## Embeddings
`SiliconFlowEmbeddings` class exposes embeddings from SiliconFlow.
```python
from langchain_siliconflow import SiliconFlowEmbeddings
embeddings = SiliconFlowEmbeddings()
embeddings.embed_query("What is the meaning of life?")
```

View File

@@ -0,0 +1,101 @@
# TrueFoundry
TrueFoundry provides an enterprise-ready [AI Gateway](https://www.truefoundry.com/ai-gateway) to provide governance and observability to agentic frameworks like LangChain. TrueFoundry AI Gateway serves as a unified interface for LLM access, providing:
- **Unified API Access**: Connect to 250+ LLMs (OpenAI, Claude, Gemini, Groq, Mistral) through one API
- **Low Latency**: Sub-3ms internal latency with intelligent routing and load balancing
- **Enterprise Security**: SOC 2, HIPAA, GDPR compliance with RBAC and audit logging
- **Quota and cost management**: Token-based quotas, rate limiting, and comprehensive usage tracking
- **Observability**: Full request/response logging, metrics, and traces with customizable retention
## Prerequisites
Before integrating LangChain with TrueFoundry, ensure you have:
1. **TrueFoundry Account**: A [TrueFoundry account](https://www.truefoundry.com/register) with at least one model provider configured. Follow quick start guide [here](https://docs.truefoundry.com/gateway/quick-start)
2. **Personal Access Token**: Generate a token by following the [TrueFoundry token generation guide](https://docs.truefoundry.com/gateway/authentication)
## Quickstart
You can connect to TrueFoundry's unified LLM gateway through the `ChatOpenAI` interface.
- Set the `base_url` to your TrueFoundry endpoint (explained below)
- Set the `api_key` to your TrueFoundry [PAT (Personal Access Token)](https://docs.truefoundry.com/gateway/authentication#personal-access-token-pat)
- Use the same `model-name` as shown in the unified code snippet
![TrueFoundry metrics](/img/unified-code-tfy.png)
### Installation
```bash
pip install langchain-openai
```
### Basic Setup
Connect to TrueFoundry by updating the `ChatOpenAI` model in LangChain:
```python
from langchain_openai import ChatOpenAI
llm = ChatOpenAI(
api_key=TRUEFOUNDRY_API_KEY,
base_url=TRUEFOUNDRY_GATEWAY_BASE_URL,
model="openai-main/gpt-4o" # Similarly you can call any model from any model provider
)
llm.invoke("What is the meaning of life, universe and everything?")
```
The request is routed through your TrueFoundry gateway to the specified model provider. TrueFoundry automatically handles rate limiting, load balancing, and observability.
### LangGraph Integration
```python
from langchain_openai import ChatOpenAI
from langgraph.graph import StateGraph, MessagesState
from langchain_core.messages import HumanMessage
# Define your LangGraph workflow
def call_model(state: MessagesState):
model = ChatOpenAI(
api_key=TRUEFOUNDRY_API_KEY,
base_url=TRUEFOUNDRY_GATEWAY_BASE_URL,
# Copy the exact model name from gateway
model="openai-main/gpt-4o"
)
response = model.invoke(state["messages"])
return {"messages": [response]}
# Build workflow
workflow = StateGraph(MessagesState)
workflow.add_node("agent", call_model)
workflow.set_entry_point("agent")
workflow.set_finish_point("agent")
app = workflow.compile()
# Run agent through TrueFoundry
result = app.invoke({"messages": [HumanMessage(content="Hello!")]})
```
## Observability and Governance
![TrueFoundry metrics](/img/gateway-metrics.png)
With the Metrics Dashboard, you can monitor and analyze:
- **Performance Metrics**: Track key latency metrics like Request Latency, Time to First Token (TTFS), and Inter-Token Latency (ITL) with P99, P90, and P50 percentiles
- **Cost and Token Usage**: Gain visibility into your application's costs with detailed breakdowns of input/output tokens and the associated expenses for each model
- **Usage Patterns**: Understand how your application is being used with detailed analytics on user activity, model distribution, and team-based usage
- **Rate Limiting & Load Balancing**: Configure limits, distribute traffic across models, and set up fallbacks
## Support
For questions, issues, or support:
- **Email**: [support@truefoundry.com](mailto:support@truefoundry.com)
- **Documentation**: [https://docs.truefoundry.com/](https://docs.truefoundry.com/)

View File

@@ -31,7 +31,7 @@
"metadata": {},
"outputs": [],
"source": [
"!pip install -U oci"
"!pip install -U langchain_oci"
]
},
{
@@ -71,7 +71,7 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain_community.embeddings import OCIGenAIEmbeddings\n",
"from langchain_oci.embeddings import OCIGenAIEmbeddings\n",
"\n",
"# use default authN method API-key\n",
"embeddings = OCIGenAIEmbeddings(\n",

View File

@@ -153,7 +153,7 @@
"from langgraph.prebuilt import create_react_agent\n",
"\n",
"llm = ChatAnthropic(\n",
" model=\"claude-3-5-sonnet-20240620\",\n",
" model=\"claude-3-5-sonnet-latest\",\n",
")\n",
"\n",
"langgraph_agent_executor = create_react_agent(llm, stripe_agent_toolkit.get_tools())\n",

File diff suppressed because one or more lines are too long

View File

@@ -73,8 +73,9 @@
]
},
{
"metadata": {},
"cell_type": "markdown",
"id": "72461be913bfaf2b",
"metadata": {},
"source": [
"## Instantiation\n",
"\n",
@@ -83,26 +84,26 @@
"Instantiation\n",
"The tool accepts various parameters during instantiation:\n",
"\n",
"- max_results (optional, int): Maximum number of search results to return. Default is 5.\n",
"- topic (optional, str): Category of the search. Can be \"general\", \"news\", or \"finance\". Default is \"general\".\n",
"- include_answer (optional, bool): Include an answer to original query in results. Default is False.\n",
"- include_raw_content (optional, bool): Include cleaned and parsed HTML of each search result. Default is False.\n",
"- include_images (optional, bool): Include a list of query related images in the response. Default is False.\n",
"- include_image_descriptions (optional, bool): Include descriptive text for each image. Default is False.\n",
"- search_depth (optional, str): Depth of the search, either \"basic\" or \"advanced\". Default is \"basic\".\n",
"- time_range (optional, str): The time range back from the current date to filter results - \"day\", \"week\", \"month\", or \"year\". Default is None.\n",
"- include_domains (optional, List[str]): List of domains to specifically include. Default is None.\n",
"- exclude_domains (optional, List[str]): List of domains to specifically exclude. Default is None.\n",
"- `max_results` (optional, int): Maximum number of search results to return. Default is 5.\n",
"- `topic` (optional, str): Category of the search. Can be `'general'`, `'news'`, or `'finance'`. Default is `'general'`.\n",
"- `include_answer` (optional, bool): Include an answer to original query in results. Default is False.\n",
"- `include_raw_content` (optional, bool): Include cleaned and parsed HTML of each search result. Default is False.\n",
"- `include_images` (optional, bool): Include a list of query related images in the response. Default is False.\n",
"- `include_image_descriptions` (optional, bool): Include descriptive text for each image. Default is False.\n",
"- `search_depth` (optional, str): Depth of the search, either `'basic'` or `'advanced'`. Default is `'basic'`.\n",
"- `time_range` (optional, str): The time range back from the current date to filter results - `'day'`, `'week'`, `'month'`, or `'year'`. Default is None.\n",
"- `include_domains` (optional, List[str]): List of domains to specifically include. Default is None.\n",
"- `exclude_domains` (optional, List[str]): List of domains to specifically exclude. Default is None.\n",
"\n",
"For a comprehensive overview of the available parameters, refer to the [Tavily Search API documentation](https://docs.tavily.com/documentation/api-reference/endpoint/search)"
],
"id": "72461be913bfaf2b"
]
},
{
"metadata": {},
"cell_type": "code",
"outputs": [],
"execution_count": null,
"id": "dc382e5426394836",
"metadata": {},
"outputs": [],
"source": [
"from langchain_tavily import TavilySearch\n",
"\n",
@@ -118,12 +119,12 @@
" # include_domains=None,\n",
" # exclude_domains=None\n",
")"
],
"id": "dc382e5426394836"
]
},
{
"metadata": {},
"cell_type": "markdown",
"id": "f997d2733b63f655",
"metadata": {},
"source": [
"## Invocation\n",
"\n",
@@ -134,18 +135,22 @@
"- The following arguments can also be set during invocation : `include_images`, `search_depth` , `time_range`, `include_domains`, `exclude_domains`, `include_images`\n",
"- For reliability and performance reasons, certain parameters that affect response size cannot be modified during invocation: `include_answer` and `include_raw_content`. These limitations prevent unexpected context window issues and ensure consistent results.\n",
"\n",
":::note\n",
"\n",
"NOTE: The optional arguments are available for agents to dynamically set, if you set an argument during instantiation and then invoke the tool with a different value, the tool will use the value you passed during invocation."
],
"id": "f997d2733b63f655"
"The optional arguments are available for agents to dynamically set, if you set an argument during instantiation and then invoke the tool with a different value, the tool will use the value you passed during invocation.\n",
"\n",
":::"
]
},
{
"metadata": {},
"cell_type": "code",
"outputs": [],
"execution_count": null,
"source": "tool.invoke({\"query\": \"What happened at the last wimbledon\"})",
"id": "5e75399230ab9fc1"
"id": "5e75399230ab9fc1",
"metadata": {},
"outputs": [],
"source": [
"tool.invoke({\"query\": \"What happened at the last wimbledon\"})"
]
},
{
"cell_type": "markdown",
@@ -154,7 +159,7 @@
"source": [
"### [Invoke with ToolCall](/docs/concepts/tools)\n",
"\n",
"We can also invoke the tool with a model-generated ToolCall, in which case a ToolMessage will be returned:"
"We can also invoke the tool with a model-generated `ToolCall`, in which case a `ToolMessage` will be returned:"
]
},
{
@@ -233,7 +238,7 @@
"id": "1020a506-473b-4e6a-a563-7aaf92c4d183",
"metadata": {},
"source": [
"We will need to install langgraph:"
"We will need to install `langgraph`:"
]
},
{
@@ -256,21 +261,21 @@
"name": "stdout",
"output_type": "stream",
"text": [
"================================\u001B[1m Human Message \u001B[0m=================================\n",
"================================\u001b[1m Human Message \u001b[0m=================================\n",
"\n",
"What nation hosted the Euro 2024? Include only wikipedia sources.\n",
"==================================\u001B[1m Ai Message \u001B[0m==================================\n",
"==================================\u001b[1m Ai Message \u001b[0m==================================\n",
"Tool Calls:\n",
" tavily_search (call_yxmR4K2uadsQ8LKoyi8JyoLD)\n",
" Call ID: call_yxmR4K2uadsQ8LKoyi8JyoLD\n",
" Args:\n",
" query: Euro 2024 host nation\n",
" include_domains: ['wikipedia.org']\n",
"=================================\u001B[1m Tool Message \u001B[0m=================================\n",
"=================================\u001b[1m Tool Message \u001b[0m=================================\n",
"Name: tavily_search\n",
"\n",
"{\"query\": \"Euro 2024 host nation\", \"follow_up_questions\": null, \"answer\": null, \"images\": [], \"results\": [{\"title\": \"UEFA Euro 2024 - Wikipedia\", \"url\": \"https://en.wikipedia.org/wiki/UEFA_Euro_2024\", \"content\": \"Tournament details Host country Germany Dates 14 June 14 July Teams 24 Venue(s) 10 (in 10 host cities) Final positions Champions Spain (4th title) Runners-up England Tournament statistics Matches played 51 Goals scored 117 (2.29 per match) Attendance 2,681,288 (52,574 per match) Top scorer(s) Harry Kane Georges Mikautadze Jamal Musiala Cody Gakpo Ivan Schranz Dani Olmo (3 goals each) Best player(s) Rodri Best young player Lamine Yamal ← 2020 2028 → The 2024 UEFA European Football Championship, commonly referred to as UEFA Euro 2024 (stylised as UEFA EURO 2024) or simply Euro 2024, was the 17th UEFA European Championship, the quadrennial international football championship organised by UEFA for the European men's national teams of their member associations. Germany hosted the tournament, which took place from 14 June to 14 July 2024. The tournament involved 24 teams, with Georgia making their European Championship debut. [4] Host nation Germany were eliminated by Spain in the quarter-finals; Spain went on to win the tournament for a record fourth time after defeating England 21 in the final.\", \"score\": 0.9104262, \"raw_content\": null}, {\"title\": \"UEFA Euro 2024 - Simple English Wikipedia, the free encyclopedia\", \"url\": \"https://simple.wikipedia.org/wiki/UEFA_Euro_2024\", \"content\": \"The 2024 UEFA European Football Championship, also known as UEFA Euro 2024 or simply Euro 2024, was the 17th edition of the UEFA European Championship. Germany was hosting the tournament. ... The UEFA Executive Committee voted for the host in a secret ballot, with only a simple majority (more than half of the valid votes) required to determine\", \"score\": 0.81418616, \"raw_content\": null}, {\"title\": \"Championnat d'Europe de football 2024 — Wikipédia\", \"url\": \"https://fr.wikipedia.org/wiki/Championnat_d'Europe_de_football_2024\", \"content\": \"Le Championnat d'Europe de l'UEFA de football 2024 est la 17 e édition du Championnat d'Europe de football, communément abrégé en Euro 2024, compétition organisée par l'UEFA et rassemblant les meilleures équipes nationales masculines européennes. L'Allemagne est désignée pays organisateur de la compétition le 27 septembre 2018. C'est la troisième fois que des matches du Championnat\", \"score\": 0.8055255, \"raw_content\": null}, {\"title\": \"UEFA Euro 2024 bids - Wikipedia\", \"url\": \"https://en.wikipedia.org/wiki/UEFA_Euro_2024_bids\", \"content\": \"The bidding process of UEFA Euro 2024 ended on 27 September 2018 in Nyon, Switzerland, when Germany was announced to be the host. [1] Two bids came before the deadline, 3 March 2017, which were Germany and Turkey as single bids. ... Press agencies revealed on 24 October 2013, that the European football governing body UEFA would have decided on\", \"score\": 0.7882741, \"raw_content\": null}, {\"title\": \"2024 UEFA European Under-19 Championship - Wikipedia\", \"url\": \"https://en.wikipedia.org/wiki/2024_UEFA_European_Under-19_Championship\", \"content\": \"The 2024 UEFA European Under-19 Championship (also known as UEFA Under-19 Euro 2024) was the 21st edition of the UEFA European Under-19 Championship (71st edition if the Under-18 and Junior eras are included), the annual international youth football championship organised by UEFA for the men's under-19 national teams of Europe. Northern Ireland hosted the tournament from 15 to 28 July 2024.\", \"score\": 0.7783298, \"raw_content\": null}], \"response_time\": 1.67}\n",
"==================================\u001B[1m Ai Message \u001B[0m==================================\n",
"==================================\u001b[1m Ai Message \u001b[0m==================================\n",
"\n",
"The nation that hosted Euro 2024 was Germany. You can find more information on the [Wikipedia page for UEFA Euro 2024](https://en.wikipedia.org/wiki/UEFA_Euro_2024).\n"
]
@@ -304,8 +309,14 @@
"source": [
"## API reference\n",
"\n",
"For detailed documentation of all Tavily Search API features and configurations head to the API reference: https://docs.tavily.com/documentation/api-reference/endpoint/search"
"For detailed documentation of all Tavily Search API features and configurations head to the [API reference](https://docs.tavily.com/documentation/api-reference/endpoint/search)."
]
},
{
"cell_type": "markdown",
"id": "589ff839",
"metadata": {},
"source": []
}
],
"metadata": {

View File

@@ -9,7 +9,7 @@
"\n",
"This notebook covers how to get started with the `Chroma` vector store.\n",
"\n",
">[Chroma](https://docs.trychroma.com/getting-started) is a AI-native open-source vector database focused on developer productivity and happiness. Chroma is licensed under Apache 2.0. View the full docs of `Chroma` at [this page](https://docs.trychroma.com/reference/py-collection), and find the API reference for the LangChain integration at [this page](https://python.langchain.com/api_reference/chroma/vectorstores/langchain_chroma.vectorstores.Chroma.html).\n",
">[Chroma](https://docs.trychroma.com/getting-started) is a AI-native open-source vector database focused on developer productivity and happiness. Chroma is licensed under Apache 2.0. View the full docs of `Chroma` at [this page](https://docs.trychroma.com/integrations/frameworks/langchain), and find the API reference for the LangChain integration at [this page](https://python.langchain.com/api_reference/chroma/vectorstores/langchain_chroma.vectorstores.Chroma.html).\n",
"\n",
":::info Chroma Cloud\n",
"\n",
@@ -522,6 +522,39 @@
"vector_store.delete(ids=uuids[-1])"
]
},
{
"cell_type": "markdown",
"id": "675b3708-b5ef-4298-b950-eac27096b456",
"metadata": {},
"source": [
"### Fork a vector store\n",
"\n",
"Forking lets you create a new `Chroma` vector store from an existing one instantly, using copy-on-write under the hood. This means that your new `Chroma` store is identical to the origin, but any modifications to it will not affect the origin, and vice-versa.\n",
"\n",
"Forks are great for any use case that benefits from data versioning. You can learn more about forking in the [Chroma docs](https://docs.trychroma.com/cloud/collection-forking).\n",
"\n",
"Note: Forking is only avaiable on `Chroma` instances with a Chroma Cloud connection."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "e08a0c79-4d2a-49ff-be63-d8591c268764",
"metadata": {},
"outputs": [],
"source": [
"forked_store = vector_store.fork(new_name=\"my_forked_collection\")\n",
"\n",
"updated_document_2 = Document(\n",
" page_content=\"The weather forecast for tomorrow is extrmeley hot, with a high of 100 degrees.\",\n",
" metadata={\"source\": \"news\"},\n",
" id=2,\n",
")\n",
"\n",
"# Update does not affect 'vector_store'\n",
"forked_store.update(ids=[\"2\"], documents=[updated_document_2])"
]
},
{
"cell_type": "markdown",
"id": "213acf08",
@@ -609,7 +642,7 @@
"source": [
"#### Other search methods\n",
"\n",
"There are a variety of other search methods that are not covered in this notebook, such as MMR search or searching by vector. For a full list of the search abilities available for `AstraDBVectorStore` check out the [API reference](https://python.langchain.com/api_reference/astradb/vectorstores/langchain_astradb.vectorstores.AstraDBVectorStore.html).\n",
"There are a variety of other search methods that are not covered in this notebook. For a full list of the search abilities available for `Chroma` check out the [API reference](https://python.langchain.com/api_reference/chroma/vectorstores/langchain_chroma.vectorstores.Chroma.html).\n",
"\n",
"### Query by turning into retriever\n",
"\n",
@@ -670,7 +703,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.0"
"version": "3.13.0"
}
},
"nbformat": 4,

View File

@@ -23,7 +23,7 @@
"metadata": {},
"outputs": [],
"source": [
"! docker run -d -p 8123:8123 -p9000:9000 --name langchain-clickhouse-server --ulimit nofile=262144:262144 clickhouse/clickhouse-server:24.7.6.8"
"! docker run -d -p 8123:8123 -p 9000:9000 --name langchain-clickhouse-server --ulimit nofile=262144:262144 -e CLICKHOUSE_SKIP_USER_SETUP=1 clickhouse/clickhouse-server:25.7"
]
},
{
@@ -310,7 +310,8 @@
" where_str=f\"{meta}.source = 'tweet'\",\n",
")\n",
"for res in results:\n",
" print(f\"* {res.page_content} [{res.metadata}]\")"
" page_content, metadata = res\n",
" print(f\"* {page_content} [{metadata}]\")"
]
},
{

View File

@@ -11,7 +11,7 @@ LangChain simplifies every stage of the LLM application lifecycle:
- **Development**: Build your applications using LangChain's open-source [components](/docs/concepts) and [third-party integrations](/docs/integrations/providers/).
Use [LangGraph](/docs/concepts/architecture/#langgraph) to build stateful agents with first-class streaming and human-in-the-loop support.
- **Productionization**: Use [LangSmith](https://docs.smith.langchain.com/) to inspect, monitor and evaluate your applications, so that you can continuously optimize and deploy with confidence.
- **Deployment**: Turn your LangGraph applications into production-ready APIs and Assistants with [LangGraph Platform](https://langchain-ai.github.io/langgraph/cloud/).
- **Deployment**: Turn your LangGraph applications into production-ready APIs and Assistants with [LangGraph Platform](https://docs.langchain.com/langgraph-platform).
import ThemedImage from '@theme/ThemedImage';
import useBaseUrl from '@docusaurus/useBaseUrl';
@@ -104,7 +104,7 @@ Head to the reference section for full documentation of all classes and methods
Trace and evaluate your language model applications and intelligent agents to help you move from prototype to production.
### [🦜🕸️ LangGraph](https://langchain-ai.github.io/langgraph)
Build stateful, multi-actor applications with LLMs. Integrates smoothly with LangChain, but can be used without it. LangGraph powers production-grade agents, trusted by Linkedin, Uber, Klarna, GitLab, and many more.
Build stateful, multi-actor applications with LLMs. Integrates smoothly with LangChain, but can be used without it. LangGraph powers production-grade agents, trusted by LinkedIn, Uber, Klarna, GitLab, and many more.
## Additional resources

View File

@@ -45,7 +45,7 @@
},
{
"cell_type": "code",
"execution_count": 5,
"execution_count": null,
"metadata": {},
"outputs": [
{
@@ -74,7 +74,7 @@
"\n",
"uncoercible_message = {\"role\": \"HumanMessage\", \"random_field\": \"random value\"}\n",
"\n",
"model = ChatAnthropic(model=\"claude-3-5-sonnet-20240620\")\n",
"model = ChatAnthropic(model=\"claude-3-5-sonnet-latest\")\n",
"\n",
"model.invoke([uncoercible_message])"
]
@@ -88,7 +88,7 @@
"The following may help resolve this error:\n",
"\n",
"- Ensure that all inputs to chat models are an array of LangChain message classes or a supported message-like.\n",
" - Check that there is no stringification or other unexpected transformation occuring.\n",
" - Check that there is no stringification or other unexpected transformation occurring.\n",
"- Check the error's stack trace and add log or debugger statements."
]
},

View File

@@ -720,7 +720,7 @@
" AIMessage(content='yes!', additional_kwargs={}, response_metadata={})]"
]
},
"execution_count": 23,
"execution_count": 109,
"metadata": {},
"output_type": "execute_result"
}
@@ -771,8 +771,13 @@
"\n",
"\n",
"def call_model(state: State):\n",
" print(f\"Messages before trimming: {len(state['messages'])}\")\n",
" # highlight-start\n",
" trimmed_messages = trimmer.invoke(state[\"messages\"])\n",
" print(f\"Messages after trimming: {len(trimmed_messages)}\")\n",
" print(\"Remaining messages:\")\n",
" for msg in trimmed_messages:\n",
" print(f\" {type(msg).__name__}: {msg.content}\")\n",
" prompt = prompt_template.invoke(\n",
" {\"messages\": trimmed_messages, \"language\": state[\"language\"]}\n",
" )\n",
@@ -792,7 +797,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"Now if we try asking the model our name, it won't know it since we trimmed that part of the chat history:"
"Now if we try asking the model our name, it won't know it since we trimmed that part of the chat history. (By defining our trim stragegy as `'last'`, we are only keeping the most recent messages that fit within the `max_tokens`.)"
]
},
{
@@ -804,9 +809,20 @@
"name": "stdout",
"output_type": "stream",
"text": [
"Messages before trimming: 12\n",
"Messages after trimming: 8\n",
"Remaining messages:\n",
" SystemMessage: you're a good assistant\n",
" HumanMessage: whats 2 + 2\n",
" AIMessage: 4\n",
" HumanMessage: thanks\n",
" AIMessage: no problem!\n",
" HumanMessage: having fun?\n",
" AIMessage: yes!\n",
" HumanMessage: What is my name?\n",
"==================================\u001b[1m Ai Message \u001b[0m==================================\n",
"\n",
"I don't know your name. You haven't told me yet!\n"
"I don't know your name. If you'd like to share it, feel free!\n"
]
}
],
@@ -840,15 +856,27 @@
"name": "stdout",
"output_type": "stream",
"text": [
"Messages before trimming: 12\n",
"Messages after trimming: 8\n",
"Remaining messages:\n",
" SystemMessage: you're a good assistant\n",
" HumanMessage: whats 2 + 2\n",
" AIMessage: 4\n",
" HumanMessage: thanks\n",
" AIMessage: no problem!\n",
" HumanMessage: having fun?\n",
" AIMessage: yes!\n",
" HumanMessage: What math problem was asked?\n",
"==================================\u001b[1m Ai Message \u001b[0m==================================\n",
"\n",
"You asked what 2 + 2 equals.\n"
"The math problem that was asked was \"what's 2 + 2.\"\n"
]
}
],
"source": [
"config = {\"configurable\": {\"thread_id\": \"abc678\"}}\n",
"query = \"What math problem did I ask?\"\n",
"\n",
"query = \"What math problem was asked?\"\n",
"language = \"English\"\n",
"\n",
"input_messages = messages + [HumanMessage(query)]\n",
@@ -890,9 +918,9 @@
"text": [
"|Hi| Todd|!| Here|s| a| joke| for| you|:\n",
"\n",
"|Why| don|t| skeleton|s| fight| each| other|?\n",
"|Why| don't| scientists| trust| atoms|?\n",
"\n",
"|Because| they| don|t| have| the| guts|!||"
"|Because| they| make| up| everything|!||"
]
}
],

View File

@@ -49,7 +49,7 @@
"metadata": {},
"outputs": [],
"source": [
"pip install --upgrade --quiet langchain-core"
"pip install -U langchain-core"
]
},
{
@@ -89,7 +89,7 @@
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 3,
"id": "39f3ce3e",
"metadata": {},
"outputs": [],
@@ -124,7 +124,7 @@
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 4,
"id": "5509b6a6",
"metadata": {},
"outputs": [
@@ -134,7 +134,7 @@
"Classification(sentiment='positive', aggressiveness=1, language='Spanish')"
]
},
"execution_count": 8,
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
@@ -157,17 +157,17 @@
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 4,
"id": "9154474c",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'sentiment': 'enojado', 'aggressiveness': 8, 'language': 'es'}"
"{'sentiment': 'angry', 'aggressiveness': 8, 'language': 'Spanish'}"
]
},
"execution_count": 10,
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
@@ -218,7 +218,7 @@
},
{
"cell_type": "code",
"execution_count": 11,
"execution_count": 5,
"id": "6a5f7961",
"metadata": {},
"outputs": [],
@@ -237,7 +237,7 @@
},
{
"cell_type": "code",
"execution_count": 15,
"execution_count": 6,
"id": "e5a5881f",
"metadata": {},
"outputs": [],
@@ -268,17 +268,17 @@
},
{
"cell_type": "code",
"execution_count": 12,
"execution_count": 7,
"id": "d9b9d53d",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Classification(sentiment='positive', aggressiveness=1, language='Spanish')"
"Classification(sentiment='happy', aggressiveness=1, language='spanish')"
]
},
"execution_count": 12,
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
@@ -291,17 +291,17 @@
},
{
"cell_type": "code",
"execution_count": 13,
"execution_count": 8,
"id": "1c12fa00",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Classification(sentiment='enojado', aggressiveness=8, language='es')"
"Classification(sentiment='sad', aggressiveness=4, language='spanish')"
]
},
"execution_count": 13,
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
@@ -314,17 +314,17 @@
},
{
"cell_type": "code",
"execution_count": 14,
"execution_count": 9,
"id": "0bdfcb05",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Classification(sentiment='neutral', aggressiveness=1, language='English')"
"Classification(sentiment='happy', aggressiveness=1, language='english')"
]
},
"execution_count": 14,
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
@@ -359,7 +359,7 @@
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"display_name": "langchain-monorepo",
"language": "python",
"name": "python3"
},
@@ -373,7 +373,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.4"
"version": "3.12.11"
}
},
"nbformat": 4,

View File

@@ -44,4 +44,4 @@ You can peruse [LangSmith tutorials here](https://docs.smith.langchain.com/).
LangSmith helps you evaluate the performance of your LLM applications. The tutorial below is a great way to get started:
- [Evaluate your LLM application](https://docs.smith.langchain.com/tutorials/Developers/evaluation)
- [Evaluate your LLM application](https://docs.langchain.com/langsmith/evaluate-llm-application)

View File

@@ -159,7 +159,7 @@
},
{
"cell_type": "code",
"execution_count": 3,
"execution_count": null,
"id": "1b2481f0",
"metadata": {},
"outputs": [
@@ -178,8 +178,8 @@
"from langchain_core.messages import HumanMessage, SystemMessage\n",
"\n",
"messages = [\n",
" SystemMessage(\"Translate the following from English into Italian\"),\n",
" HumanMessage(\"hi!\"),\n",
" SystemMessage(content=\"Translate the following from English into Italian\"),\n",
" HumanMessage(content=\"hi!\"),\n",
"]\n",
"\n",
"model.invoke(messages)"
@@ -192,7 +192,7 @@
"source": [
":::tip\n",
"\n",
"If we've enabled LangSmith, we can see that this run is logged to LangSmith, and can see the [LangSmith trace](https://smith.langchain.com/public/88baa0b2-7c1a-4d09-ba30-a47985dde2ea/r). The LangSmith trace reports [token](/docs/concepts/tokens/) usage information, latency, [standard model parameters](/docs/concepts/chat_models/#standard-parameters) (such as temperature), and other information.\n",
"If we've enabled LangSmith, we can see that this run is logged to LangSmith, and can see the [LangSmith trace](https://docs.smith.langchain.com/observability/concepts#traces). The LangSmith trace reports [token](/docs/concepts/tokens/) usage information, latency, [standard model parameters](/docs/concepts/chat_models/#standard-parameters) (such as temperature), and other information.\n",
"\n",
":::\n",
"\n",

View File

@@ -236,7 +236,7 @@
"We can use [create_stuff_documents_chain](https://python.langchain.com/api_reference/langchain/chains/langchain.chains.combine_documents.stuff.create_stuff_documents_chain.html), especially if using larger context window models such as:\n",
"\n",
"* 128k token OpenAI `gpt-4o` \n",
"* 200k token Anthropic `claude-3-5-sonnet-20240620`\n",
"* 200k token Anthropic `claude-3-5-sonnet-latest`\n",
"\n",
"The chain will take a list of documents, insert them all into a prompt, and pass that prompt to an LLM:"
]

View File

@@ -142,8 +142,7 @@ const config = {
respectPrefersColorScheme: true,
},
announcementBar: {
content:
'<strong>Our <a href="https://academy.langchain.com/courses/ambient-agents/?utm_medium=internal&utm_source=docs&utm_campaign=q2-2025_ambient-agents_co" target="_blank">Building Ambient Agents with LangGraph</a> course is now available on LangChain Academy!</strong>',
content: "Our new LangChain Academy Course Deep Research with LangGraph is now live! <a href='https://academy.langchain.com/courses/deep-research-with-langgraph/?utm_medium=internal&utm_source=docs&utm_campaign=q3-2025_deep-research-course_co' target='_blank'>Enroll for free</a>.",
backgroundColor: "#d0c9fe",
},
prism: {

View File

@@ -5,6 +5,14 @@ echo "VERCEL_GIT_COMMIT_REF: $VERCEL_GIT_COMMIT_REF"
echo "VERCEL_GIT_REPO_OWNER: $VERCEL_GIT_REPO_OWNER"
echo "VERCEL_GIT_REPO_SLUG: $VERCEL_GIT_REPO_SLUG"
echo "Checking for skip-preview tags..."
COMMIT_MESSAGE=$(git log -1 --pretty=%B)
echo "Commit message: $COMMIT_MESSAGE"
if [[ "$COMMIT_MESSAGE" == *"[skip-preview]"* ]] || [[ "$COMMIT_MESSAGE" == *"[no-preview]"* ]] || [[ "$COMMIT_MESSAGE" == *"[skip-deploy]"* ]]; then
echo "🛑 Skip-preview tag found in commit message - skipping preview deployment"
exit 0
fi
if { \
[ "$VERCEL_ENV" == "production" ] || \
@@ -13,10 +21,10 @@ if { \
[ "$VERCEL_GIT_COMMIT_REF" == "v0.2" ] || \
[ "$VERCEL_GIT_COMMIT_REF" == "v0.3rc" ]; \
} && [ "$VERCEL_GIT_REPO_OWNER" == "langchain-ai" ]
then
then
echo "✅ Production build - proceeding with build"
exit 1
fi
fi
echo "Checking for changes in docs/"

View File

@@ -27,7 +27,7 @@ module.exports = {
},
{
type: "category",
link: {type: 'doc', id: 'tutorials/index'},
link: { type: 'doc', id: 'tutorials/index' },
label: "Tutorials",
collapsible: false,
items: [{
@@ -38,7 +38,7 @@ module.exports = {
},
{
type: "category",
link: {type: 'doc', id: 'how_to/index'},
link: { type: 'doc', id: 'how_to/index' },
label: "How-to guides",
collapsible: false,
items: [{
@@ -49,7 +49,7 @@ module.exports = {
},
{
type: "category",
link: {type: 'doc', id: 'concepts/index'},
link: { type: 'doc', id: 'concepts/index' },
label: "Conceptual guide",
collapsible: false,
items: [{
@@ -103,7 +103,7 @@ module.exports = {
{
type: "category",
label: "Migrating from v0.0 chains",
link: {type: 'doc', id: 'versions/migrating_chains/index'},
link: { type: 'doc', id: 'versions/migrating_chains/index' },
collapsible: false,
collapsed: false,
items: [{
@@ -115,7 +115,7 @@ module.exports = {
{
type: "category",
label: "Upgrading to LangGraph memory",
link: {type: 'doc', id: 'versions/migrating_memory/index'},
link: { type: 'doc', id: 'versions/migrating_memory/index' },
collapsible: false,
collapsed: false,
items: [{
@@ -418,7 +418,7 @@ module.exports = {
},
],
},
],
link: {
type: "generated-index",
@@ -434,7 +434,7 @@ module.exports = {
},
{
type: "category",
link: {type: 'doc', id: 'contributing/tutorials/index'},
link: { type: 'doc', id: 'contributing/tutorials/index' },
label: "Tutorials",
collapsible: false,
items: [{
@@ -445,7 +445,7 @@ module.exports = {
},
{
type: "category",
link: {type: 'doc', id: 'contributing/how_to/index'},
link: { type: 'doc', id: 'contributing/how_to/index' },
label: "How-to guides",
collapsible: false,
items: [{
@@ -456,7 +456,7 @@ module.exports = {
},
{
type: "category",
link: {type: 'doc', id: 'contributing/reference/index'},
link: { type: 'doc', id: 'contributing/reference/index' },
label: "Reference & FAQ",
collapsible: false,
items: [{

View File

@@ -118,7 +118,8 @@ export default function ChatModelTabs(props) {
{
value: "anthropic",
label: "Anthropic",
model: "claude-3-5-sonnet-latest",
model: "claude-3-7-sonnet-20250219",
comment: "# Note: Model versions may become outdated. Check https://docs.anthropic.com/en/docs/models-overview for latest versions",
apiKeyName: "ANTHROPIC_API_KEY",
packageName: "langchain[anthropic]",
},
@@ -269,6 +270,9 @@ if not os.environ.get("${selectedTabItem.apiKeyName}"):
${llmVarName} = init_chat_model("${selectedTabItem.model}", model_provider="${selectedTabItem.value}"${selectedTabItem?.kwargs ? `, ${selectedTabItem.kwargs}` : ""})`;
// Add comment if available
const commentText = selectedTabItem?.comment ? selectedTabItem.comment + "\n\n" : "";
return (
<div>
<CustomDropdown
@@ -282,7 +286,7 @@ ${llmVarName} = init_chat_model("${selectedTabItem.model}", model_provider="${se
{`pip install -qU "${selectedTabItem.packageName}"`}
</CodeBlock>
<CodeBlock language="python">
{apiKeyText ? apiKeyText + "\n\n" + initModelText : initModelText}
{apiKeyText ? apiKeyText + "\n\n" + commentText + initModelText : commentText + initModelText}
</CodeBlock>
</div>
);

View File

@@ -856,6 +856,13 @@ const FEATURE_TABLES = {
source: "Web interaction and structured data extraction from any web page using an AgentQL query or a Natural Language prompt",
api: "API",
apiLink: "https://python.langchain.com/docs/integrations/document_loaders/agentql/"
},
{
name: "Oxylabs",
link: "oxylabs",
source: "Web intelligence platform enabling the access to various data sources.",
api: "API",
apiLink: "https://github.com/oxylabs/langchain-oxylabs"
}
]
},

BIN
docs/static/img/gateway-metrics.png vendored Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 530 KiB

BIN
docs/static/img/unified-code-tfy.png vendored Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 408 KiB

View File

@@ -11,3 +11,5 @@ numpy>=1.26.0,<2.0.0
simsimd>=5.0.0
# Fix sentencepiece build error - use newer version that supports modern CMake
sentencepiece>=0.2.1
# Fix langchain-azure-ai dependency conflict with langchain-core
langchain-core @ file:///home/runner/work/langchain/langchain/langchain/libs/core

View File

@@ -1,3 +1,5 @@
"""LangChain CLI."""
from langchain_cli._version import __version__
__all__ = [

View File

@@ -1,3 +1,5 @@
"""LangChain CLI."""
from typing import Annotated, Optional
import typer
@@ -34,20 +36,21 @@ app.command(
)
def version_callback(show_version: bool) -> None: # noqa: FBT001
def _version_callback(*, show_version: bool) -> None:
if show_version:
typer.echo(f"langchain-cli {__version__}")
raise typer.Exit
@app.callback()
def main(
version: bool = typer.Option( # noqa: FBT001
def _main(
*,
version: bool = typer.Option(
False, # noqa: FBT003
"--version",
"-v",
help="Print the current CLI version.",
callback=version_callback,
callback=_version_callback,
is_eager=True,
),
) -> None:

View File

@@ -1,3 +1,5 @@
"""LangChain CLI constants."""
DEFAULT_GIT_REPO = "https://github.com/langchain-ai/langchain.git"
DEFAULT_GIT_SUBDIRECTORY = "templates"
DEFAULT_GIT_REF = "master"

View File

@@ -13,7 +13,7 @@ def create_demo_server(
*,
config_keys: Sequence[str] = (),
playground_type: Literal["default", "chat"] = "default",
):
) -> FastAPI:
"""Create a demo server for the current template."""
app = FastAPI()
package_root = get_package_root()
@@ -40,9 +40,11 @@ def create_demo_server(
return app
def create_demo_server_configurable():
def create_demo_server_configurable() -> FastAPI:
"""Create a configurable demo server."""
return create_demo_server(config_keys=["configurable"])
def create_demo_server_chat():
def create_demo_server_chat() -> FastAPI:
"""Create a chat demo server."""
return create_demo_server(playground_type="chat")

View File

@@ -0,0 +1 @@
"""Namespaces."""

View File

@@ -8,6 +8,7 @@ from pathlib import Path
from typing import Annotated, Optional
import typer
import uvicorn
from langchain_cli.utils.events import create_events
from langchain_cli.utils.git import (
@@ -71,9 +72,7 @@ def new(
name_str = name
pip_bool = bool(pip) # None should be false
else:
name_str = (
name if name else typer.prompt("What folder would you like to create?")
)
name_str = name or typer.prompt("What folder would you like to create?")
if not has_packages:
package = []
package_prompt = "What package would you like to add? (leave blank to skip)"
@@ -261,7 +260,7 @@ def add(
cmd = ["pip", "install", "-e", *installed_destination_strs]
cmd_str = " \\\n ".join(installed_destination_strs)
typer.echo(f"Running: pip install -e \\\n {cmd_str}")
subprocess.run(cmd, cwd=cwd) # noqa: S603
subprocess.run(cmd, cwd=cwd, check=True) # noqa: S603
chain_names = []
for e in installed_exports:
@@ -367,8 +366,6 @@ def serve(
app_str = app if app is not None else "app.server:app"
host_str = host if host is not None else "127.0.0.1"
import uvicorn
uvicorn.run(
app_str,
host=host_str,

View File

@@ -15,6 +15,8 @@ integration_cli = typer.Typer(no_args_is_help=True, add_completion=False)
class Replacements(TypedDict):
"""Replacements."""
__package_name__: str
__module_name__: str
__ModuleName__: str
@@ -127,6 +129,7 @@ def new(
subprocess.run(
["poetry", "install", "--with", "lint,test,typing,test_integration"], # noqa: S607
cwd=destination_dir,
check=True,
)
else:
# confirm src and dst are the same length

View File

@@ -0,0 +1 @@
"""Migrations."""

View File

@@ -0,0 +1 @@
"""Generate migrations."""

View File

@@ -3,6 +3,7 @@
import importlib
import inspect
import pkgutil
from types import ModuleType
def generate_raw_migrations(
@@ -89,7 +90,7 @@ def generate_top_level_imports(pkg: str) -> list[tuple[str, str]]:
items = []
# Function to handle importing from modules
def handle_module(module, module_name) -> None:
def handle_module(module: ModuleType, module_name: str) -> None:
if hasattr(module, "__all__"):
all_objects = module.__all__
for name in all_objects:

View File

@@ -1,3 +1,6 @@
"""Migration as Grit file."""
def split_package(package: str) -> tuple[str, str]:
"""Split a package name into the containing package and the final name."""
parts = package.split(".")

View File

@@ -1,9 +1,14 @@
"""Generate migrations utilities."""
import ast
import inspect
import os
import pathlib
from pathlib import Path
from typing import Any, Optional
from types import ModuleType
from typing import Optional
from typing_extensions import override
HERE = Path(__file__).parent
# Should bring us to [root]/src
@@ -15,12 +20,15 @@ PARTNER_PKGS = PKGS_ROOT / "partners"
class ImportExtractor(ast.NodeVisitor):
"""Import extractor."""
def __init__(self, *, from_package: Optional[str] = None) -> None:
"""Extract all imports from the given code, optionally filtering by package."""
self.imports: list = []
self.imports: list[tuple[str, str]] = []
self.package = from_package
def visit_ImportFrom(self, node) -> None: # noqa: N802
@override
def visit_ImportFrom(self, node: ast.ImportFrom) -> None:
if node.module and (
self.package is None or str(node.module).startswith(self.package)
):
@@ -39,7 +47,8 @@ def _get_class_names(code: str) -> list[str]:
# Define a node visitor class to collect class names
class ClassVisitor(ast.NodeVisitor):
def visit_ClassDef(self, node) -> None: # noqa: N802
@override
def visit_ClassDef(self, node: ast.ClassDef) -> None:
class_names.append(node.name)
self.generic_visit(node)
@@ -49,7 +58,7 @@ def _get_class_names(code: str) -> list[str]:
return class_names
def is_subclass(class_obj: Any, classes_: list[type]) -> bool:
def is_subclass(class_obj: type, classes_: list[type]) -> bool:
"""Check if the given class object is a subclass of any class in list classes."""
return any(
issubclass(class_obj, kls)
@@ -58,7 +67,7 @@ def is_subclass(class_obj: Any, classes_: list[type]) -> bool:
)
def find_subclasses_in_module(module, classes_: list[type]) -> list[str]:
def find_subclasses_in_module(module: ModuleType, classes_: list[type]) -> list[str]:
"""Find all classes in the module that inherit from one of the classes."""
subclasses = []
# Iterate over all attributes of the module that are classes
@@ -70,8 +79,7 @@ def find_subclasses_in_module(module, classes_: list[type]) -> list[str]:
def _get_all_classnames_from_file(file: Path, pkg: str) -> list[tuple[str, str]]:
"""Extract all class names from a file."""
with open(file, encoding="utf-8") as f:
code = f.read()
code = Path(file).read_text(encoding="utf-8")
module_name = _get_current_module(file, pkg)
class_names = _get_class_names(code)
@@ -84,8 +92,7 @@ def identify_all_imports_in_file(
from_package: Optional[str] = None,
) -> list[tuple[str, str]]:
"""Let's also identify all the imports in the given file."""
with open(file, encoding="utf-8") as f:
code = f.read()
code = Path(file).read_text(encoding="utf-8")
return find_imports_from_package(code, from_package=from_package)
@@ -143,6 +150,7 @@ def find_imports_from_package(
*,
from_package: Optional[str] = None,
) -> list[tuple[str, str]]:
"""Find imports in code."""
# Parse the code into an AST
tree = ast.parse(code)
# Create an instance of the visitor
@@ -154,8 +162,7 @@ def find_imports_from_package(
def _get_current_module(path: Path, pkg_root: str) -> str:
"""Convert a path to a module name."""
path_as_pathlib = pathlib.Path(os.path.abspath(path))
relative_path = path_as_pathlib.relative_to(pkg_root).with_suffix("")
relative_path = path.relative_to(pkg_root).with_suffix("")
posix_path = relative_path.as_posix()
norm_path = os.path.normpath(str(posix_path))
fully_qualified_module = norm_path.replace("/", ".")

View File

@@ -4,7 +4,7 @@ from pathlib import Path
import rich
import typer
from gritql import run # type: ignore[import]
from gritql import run # type: ignore[import-untyped]
from typer import Option
@@ -68,7 +68,7 @@ def migrate(
final_code = run.apply_pattern(
"langchain_all_migrations()",
args,
grit_dir=get_gritdir_path(),
grit_dir=str(get_gritdir_path()),
)
raise typer.Exit(code=final_code)

View File

@@ -7,7 +7,9 @@ from pathlib import Path
from typing import Annotated, Optional
import typer
import uvicorn
from langchain_cli.utils.github import list_packages
from langchain_cli.utils.packages import get_langserve_export, get_package_root
package_cli = typer.Typer(no_args_is_help=True, add_completion=False)
@@ -32,7 +34,7 @@ def new(
package_name_split = computed_name.split("/")
package_name = (
package_name_split[-2]
if len(package_name_split) > 1 and package_name_split[-1] == ""
if len(package_name_split) > 1 and not package_name_split[-1]
else package_name_split[-1]
)
module_name = re.sub(
@@ -79,7 +81,7 @@ def new(
# poetry install
if with_poetry:
subprocess.run(["poetry", "install"], cwd=destination_dir) # noqa: S607
subprocess.run(["poetry", "install"], cwd=destination_dir, check=True) # noqa: S607
@package_cli.command()
@@ -128,8 +130,6 @@ def serve(
)
)
import uvicorn
uvicorn.run(
script,
factory=True,
@@ -142,8 +142,6 @@ def serve(
@package_cli.command()
def list(contains: Annotated[Optional[str], typer.Argument()] = None) -> None: # noqa: A001
"""List all or search for available templates."""
from langchain_cli.utils.github import list_packages
packages = list_packages(contains=contains)
for package in packages:
typer.echo(package)

View File

@@ -6,7 +6,7 @@ app = FastAPI()
@app.get("/")
async def redirect_root_to_docs():
async def redirect_root_to_docs() -> RedirectResponse:
return RedirectResponse("/docs")

View File

@@ -0,0 +1 @@
"""Utilities."""

View File

@@ -1,3 +1,5 @@
"""Events utilities."""
import http.client
import json
from typing import Any, Optional, TypedDict
@@ -8,11 +10,19 @@ WRITE_KEY = "310apTK0HUFl4AOv"
class EventDict(TypedDict):
"""Event data structure for analytics tracking.
Attributes:
event: The name of the event.
properties: Optional dictionary of event properties.
"""
event: str
properties: Optional[dict[str, Any]]
def create_events(events: list[EventDict]) -> Optional[Any]:
def create_events(events: list[EventDict]) -> Optional[dict[str, Any]]:
"""Create events."""
try:
data = {
"events": [
@@ -38,7 +48,8 @@ def create_events(events: list[EventDict]) -> Optional[Any]:
res = conn.getresponse()
return json.loads(res.read())
response_data = json.loads(res.read())
return response_data if isinstance(response_data, dict) else None
except (http.client.HTTPException, OSError, json.JSONDecodeError) as exc:
typer.echo(f"Error sending events: {exc}")
return None

View File

@@ -1,7 +1,10 @@
"""Find and replace text in files."""
from pathlib import Path
def find_and_replace(source: str, replacements: dict[str, str]) -> str:
"""Find and replace text in a string."""
rtn = source
# replace keys in deterministic alphabetical order
@@ -13,6 +16,7 @@ def find_and_replace(source: str, replacements: dict[str, str]) -> str:
def replace_file(source: Path, replacements: dict[str, str]) -> None:
"""Replace text in a file."""
try:
content = source.read_text()
except UnicodeDecodeError:
@@ -24,6 +28,7 @@ def replace_file(source: Path, replacements: dict[str, str]) -> None:
def replace_glob(parent: Path, glob: str, replacements: dict[str, str]) -> None:
"""Replace text in files matching a glob pattern."""
for file in parent.glob(glob):
if not file.is_file():
continue

View File

@@ -1,9 +1,12 @@
"""Git utilities."""
import hashlib
import logging
import re
import shutil
from collections.abc import Sequence
from pathlib import Path
from typing import Optional, TypedDict
from typing import Any, Optional, TypedDict
from git import Repo
@@ -13,13 +16,17 @@ from langchain_cli.constants import (
DEFAULT_GIT_SUBDIRECTORY,
)
logger = logging.getLogger(__name__)
class DependencySource(TypedDict):
"""Dependency source information."""
git: str
ref: Optional[str]
subdirectory: Optional[str]
api_path: Optional[str]
event_metadata: dict
event_metadata: dict[str, Any]
# use poetry dependency string format
@@ -29,6 +36,7 @@ def parse_dependency_string(
branch: Optional[str],
api_path: Optional[str],
) -> DependencySource:
"""Parse a dependency string into a DependencySource."""
if dep is not None and dep.startswith("git+"):
if repo is not None or branch is not None:
msg = (
@@ -121,6 +129,7 @@ def parse_dependencies(
branch: list[str],
api_path: list[str],
) -> list[DependencySource]:
"""Parse dependencies."""
num_deps = max(
len(dependencies) if dependencies is not None else 0,
len(repo),
@@ -129,8 +138,8 @@ def parse_dependencies(
if (
(dependencies and len(dependencies) != num_deps)
or (api_path and len(api_path) != num_deps)
or (repo and len(repo) not in [1, num_deps])
or (branch and len(branch) not in [1, num_deps])
or (repo and len(repo) not in {1, num_deps})
or (branch and len(branch) not in {1, num_deps})
):
msg = (
"Number of defined repos/branches/api_paths did not match the "
@@ -142,15 +151,15 @@ def parse_dependencies(
inner_repos = _list_arg_to_length(repo, num_deps)
inner_branches = _list_arg_to_length(branch, num_deps)
return [
parse_dependency_string(iter_dep, iter_repo, iter_branch, iter_api_path)
for iter_dep, iter_repo, iter_branch, iter_api_path in zip(
return list(
map(
parse_dependency_string,
inner_deps,
inner_repos,
inner_branches,
inner_api_paths,
)
]
)
def _get_repo_path(gitstring: str, ref: Optional[str], repo_dir: Path) -> Path:
@@ -158,7 +167,7 @@ def _get_repo_path(gitstring: str, ref: Optional[str], repo_dir: Path) -> Path:
ref_str = ref if ref is not None else ""
hashed = hashlib.sha256((f"{gitstring}:{ref_str}").encode()).hexdigest()[:8]
removed_protocol = gitstring.split("://")[-1]
removed_protocol = gitstring.split("://", maxsplit=1)[-1]
removed_basename = re.split(r"[/:]", removed_protocol, maxsplit=1)[-1]
removed_extras = removed_basename.split("#")[0]
foldername = re.sub(r"\W", "_", removed_extras)
@@ -168,22 +177,22 @@ def _get_repo_path(gitstring: str, ref: Optional[str], repo_dir: Path) -> Path:
def update_repo(gitstring: str, ref: Optional[str], repo_dir: Path) -> Path:
"""Update a git repository to the specified ref."""
# see if path already saved
repo_path = _get_repo_path(gitstring, ref, repo_dir)
if repo_path.exists():
# try pulling
try:
repo = Repo(repo_path)
if repo.active_branch.name != ref:
raise ValueError
repo.remotes.origin.pull()
if repo.active_branch.name == ref:
repo.remotes.origin.pull()
return repo_path
except Exception:
# if it fails, delete and clone again
shutil.rmtree(repo_path)
Repo.clone_from(gitstring, repo_path, branch=ref, depth=1)
else:
Repo.clone_from(gitstring, repo_path, branch=ref, depth=1)
logger.exception("Failed to pull existing repo")
# if it fails, delete and clone again
shutil.rmtree(repo_path)
Repo.clone_from(gitstring, repo_path, branch=ref, depth=1)
return repo_path
@@ -196,7 +205,7 @@ def copy_repo(
Raises FileNotFound error if it can't find source
"""
def ignore_func(_, files):
def ignore_func(_: str, files: list[str]) -> list[str]:
return [f for f in files if f == ".git"]
shutil.copytree(source, destination, ignore=ignore_func)

View File

@@ -1,9 +1,12 @@
"""GitHub utilities."""
import http.client
import json
from typing import Optional
def list_packages(*, contains: Optional[str] = None) -> list[str]:
"""List all packages in the langchain repository templates directory."""
conn = http.client.HTTPSConnection("api.github.com")
try:
headers = {

View File

@@ -1,3 +1,5 @@
"""Packages utilities."""
from pathlib import Path
from typing import Any, Optional, TypedDict
@@ -5,6 +7,7 @@ from tomlkit import load
def get_package_root(cwd: Optional[Path] = None) -> Path:
"""Get package root directory."""
# traverse path for routes to host (any directory holding a pyproject.toml file)
package_root = Path.cwd() if cwd is None else cwd
visited: set[Path] = set()
@@ -35,7 +38,8 @@ class LangServeExport(TypedDict):
def get_langserve_export(filepath: Path) -> LangServeExport:
with open(filepath) as f:
"""Get LangServe export information from a pyproject.toml file."""
with filepath.open() as f:
data: dict[str, Any] = load(f)
try:
module = data["tool"]["langserve"]["export_module"]

View File

@@ -1,3 +1,5 @@
"""Pyproject.toml utilities."""
import contextlib
from collections.abc import Iterable
from pathlib import Path
@@ -18,7 +20,7 @@ def add_dependencies_to_pyproject_toml(
local_editable_dependencies: Iterable[tuple[str, Path]],
) -> None:
"""Add dependencies to pyproject.toml."""
with open(pyproject_toml, encoding="utf-8") as f:
with pyproject_toml.open(encoding="utf-8") as f:
# tomlkit types aren't amazing - treat as Dict instead
pyproject: dict[str, Any] = load(f)
pyproject["tool"]["poetry"]["dependencies"].update(
@@ -27,7 +29,7 @@ def add_dependencies_to_pyproject_toml(
for name, loc in local_editable_dependencies
},
)
with open(pyproject_toml, "w", encoding="utf-8") as f:
with pyproject_toml.open("w", encoding="utf-8") as f:
dump(pyproject, f)
@@ -36,12 +38,13 @@ def remove_dependencies_from_pyproject_toml(
local_editable_dependencies: Iterable[str],
) -> None:
"""Remove dependencies from pyproject.toml."""
with open(pyproject_toml, encoding="utf-8") as f:
with pyproject_toml.open(encoding="utf-8") as f:
pyproject: dict[str, Any] = load(f)
# tomlkit types aren't amazing - treat as Dict instead
dependencies = pyproject["tool"]["poetry"]["dependencies"]
for name in local_editable_dependencies:
with contextlib.suppress(KeyError):
del dependencies[name]
with open(pyproject_toml, "w", encoding="utf-8") as f:
with pyproject_toml.open("w", encoding="utf-8") as f:
dump(pyproject, f)

View File

@@ -7,7 +7,7 @@ authors = [{ name = "Erick Friis", email = "erick@langchain.dev" }]
license = { text = "MIT" }
requires-python = ">=3.9"
dependencies = [
"typer[all]<1.0.0,>=0.9.0",
"typer<1.0.0,>=0.9.0",
"gitpython<4,>=3",
"langserve[all]>=0.0.51",
"uvicorn<1.0,>=0.23",
@@ -15,7 +15,7 @@ dependencies = [
"gritql<1.0.0,>=0.2.0",
]
name = "langchain-cli"
version = "0.0.36"
version = "0.0.37"
description = "CLI for interacting with LangChain"
readme = "README.md"
@@ -29,8 +29,8 @@ langchain = "langchain_cli.cli:app"
langchain-cli = "langchain_cli.cli:app"
[dependency-groups]
dev = ["pytest<8.0.0,>=7.4.2", "pytest-watcher<1.0.0,>=0.3.4"]
lint = ["ruff<0.13,>=0.12.2", "mypy<2.0.0,>=1.13.0"]
dev = ["pytest<9.0.0,>=7.4.2", "pytest-watcher<1.0.0,>=0.3.4"]
lint = ["ruff<0.13,>=0.12.2", "mypy<1.18,>=1.17.1"]
test = ["langchain-core", "langchain"]
typing = ["langchain"]
test_integration = []
@@ -48,59 +48,45 @@ exclude = [
]
[tool.ruff.lint]
select = [
"A", # flake8-builtins
"B", # flake8-bugbear
"ARG", # flake8-unused-arguments
"ASYNC", # flake8-async
"C4", # flake8-comprehensions
"COM", # flake8-commas
"D", # pydocstyle
"E", # pycodestyle error
"EM", # flake8-errmsg
"F", # pyflakes
"FA", # flake8-future-annotations
"FBT", # flake8-boolean-trap
"FLY", # flake8-flynt
"I", # isort
"ICN", # flake8-import-conventions
"INT", # flake8-gettext
"ISC", # isort-comprehensions
"N", # pep8-naming
"PT", # flake8-pytest-style
"PGH", # pygrep-hooks
"PIE", # flake8-pie
"PERF", # flake8-perf
"PYI", # flake8-pyi
"Q", # flake8-quotes
"RET", # flake8-return
"RSE", # flake8-rst-docstrings
"RUF", # ruff
"S", # flake8-bandit
"SLF", # flake8-self
"SLOT", # flake8-slots
"SIM", # flake8-simplify
"T10", # flake8-debugger
"T20", # flake8-print
"TID", # flake8-tidy-imports
"UP", # pyupgrade
"W", # pycodestyle warning
"YTT", # flake8-2020
]
select = [ "ALL",]
ignore = [
"D100", # pydocstyle: Missing docstring in public module
"D101", # pydocstyle: Missing docstring in public class
"D102", # pydocstyle: Missing docstring in public method
"D103", # pydocstyle: Missing docstring in public function
"D104", # pydocstyle: Missing docstring in public package
"D105", # pydocstyle: Missing docstring in magic method
"D107", # pydocstyle: Missing docstring in __init__
"D407", # pydocstyle: Missing-dashed-underline-after-section
"C90", # McCabe complexity
"COM812", # Messes with the formatter
"FIX002", # Line contains TODO
"PERF203", # Rarely useful
"PLR09", # Too many something (arg, statements, etc)
"RUF012", # Doesn't play well with Pydantic
"TC001", # Doesn't play well with Pydantic
"TC002", # Doesn't play well with Pydantic
"TC003", # Doesn't play well with Pydantic
"TD002", # Missing author in TODO
"TD003", # Missing issue link in TODO
# TODO rules
"BLE",
]
unfixable = [
"B028", # People should intentionally tune the stacklevel
"PLW1510", # People should intentionally set the check argument
]
flake8-annotations.allow-star-arg-any = true
flake8-annotations.mypy-init-return = true
flake8-type-checking.runtime-evaluated-base-classes = ["pydantic.BaseModel","langchain_core.load.serializable.Serializable","langchain_core.runnables.base.RunnableSerializable"]
pep8-naming.classmethod-decorators = [ "classmethod", "langchain_core.utils.pydantic.pre_init", "pydantic.field_validator", "pydantic.v1.root_validator",]
pydocstyle.convention = "google"
pyupgrade.keep-runtime-typing = true
[tool.ruff.lint.per-file-ignores]
"tests/**" = [ "D1", "S", "SLF",]
"scripts/**" = [ "INP", "S",]
[tool.mypy]
plugins = ["pydantic.mypy"]
strict = true
enable_error_code = "deprecated"
warn_unreachable = true
exclude = [
"langchain_cli/integration_template",
"langchain_cli/package_template",

View File

@@ -0,0 +1 @@
"""Scripts."""

View File

@@ -1,8 +1,8 @@
"""Script to generate migrations for the migration script."""
import json
import os
import pkgutil
from pathlib import Path
from typing import Optional
import click
@@ -52,7 +52,7 @@ def cli() -> None:
def generic(
pkg1: str,
pkg2: str,
output: str,
output: Optional[str],
filter_by_all: bool, # noqa: FBT001
format_: str,
) -> None:
@@ -73,19 +73,18 @@ def generic(
else:
dumped = dump_migrations_as_grit(name, migrations)
with open(output, "w") as f:
f.write(dumped)
Path(output).write_text(dumped, encoding="utf-8")
def handle_partner(pkg: str, output: Optional[str] = None) -> None:
"""Handle partner package migrations."""
migrations = get_migrations_for_partner_package(pkg)
# Run with python 3.9+
name = pkg.removeprefix("langchain_")
data = dump_migrations_as_grit(name, migrations)
output_name = f"{name}.grit" if output is None else output
if migrations:
with open(output_name, "w") as f:
f.write(data)
Path(output_name).write_text(data, encoding="utf-8")
click.secho(f"LangChain migration script saved to {output_name}")
else:
click.secho(f"No migrations found for {pkg}", fg="yellow")
@@ -104,13 +103,13 @@ def partner(pkg: str, output: str) -> None:
@click.argument("json_file")
def json_to_grit(json_file: str) -> None:
"""Generate a Grit migration from an old JSON migration file."""
with open(json_file) as f:
file = Path(json_file)
with file.open() as f:
migrations = json.load(f)
name = os.path.basename(json_file).removesuffix(".json").removesuffix(".grit")
name = file.stem
data = dump_migrations_as_grit(name, migrations)
output_name = f"{name}.grit"
with open(output_name, "w") as f:
f.write(data)
Path(output_name).write_text(data, encoding="utf-8")
click.secho(f"GritQL migration script saved to {output_name}")

View File

@@ -14,3 +14,6 @@ class File:
return False
return self.content == __value.content
def __hash__(self) -> int:
return hash((self.name, self.content))

View File

@@ -57,3 +57,6 @@ class Folder:
return False
return True
def __hash__(self) -> int:
return hash((self.name, tuple(self.files)))

View File

@@ -1,4 +1,4 @@
from typing import Optional
from typing import Any, Optional
import pytest
@@ -16,7 +16,7 @@ def _assert_dependency_equals(
git: Optional[str] = None,
ref: Optional[str] = None,
subdirectory: Optional[str] = None,
event_metadata: Optional[dict] = None,
event_metadata: Optional[dict[str, Any]] = None,
) -> None:
if dep["git"] != git:
msg = f"Expected git to be {git} but got {dep['git']}"

111
libs/cli/uv.lock generated
View File

@@ -1,5 +1,5 @@
version = 1
revision = 2
revision = 3
requires-python = ">=3.9"
resolution-markers = [
"python_full_version >= '3.12.4'",
@@ -425,15 +425,11 @@ dependencies = [
requires-dist = [
{ name = "async-timeout", marker = "python_full_version < '3.11'", specifier = ">=4.0.0,<5.0.0" },
{ name = "langchain-anthropic", marker = "extra == 'anthropic'" },
{ name = "langchain-aws", marker = "extra == 'aws'" },
{ name = "langchain-azure-ai", marker = "extra == 'azure-ai'" },
{ name = "langchain-cohere", marker = "extra == 'cohere'" },
{ name = "langchain-community", marker = "extra == 'community'" },
{ name = "langchain-core", editable = "../core" },
{ name = "langchain-deepseek", marker = "extra == 'deepseek'" },
{ name = "langchain-fireworks", marker = "extra == 'fireworks'" },
{ name = "langchain-google-genai", marker = "extra == 'google-genai'" },
{ name = "langchain-google-vertexai", marker = "extra == 'google-vertexai'" },
{ name = "langchain-groq", marker = "extra == 'groq'" },
{ name = "langchain-huggingface", marker = "extra == 'huggingface'" },
{ name = "langchain-mistralai", marker = "extra == 'mistralai'" },
@@ -442,14 +438,13 @@ requires-dist = [
{ name = "langchain-perplexity", marker = "extra == 'perplexity'" },
{ name = "langchain-text-splitters", editable = "../text-splitters" },
{ name = "langchain-together", marker = "extra == 'together'" },
{ name = "langchain-xai", marker = "extra == 'xai'" },
{ name = "langsmith", specifier = ">=0.1.17" },
{ name = "pydantic", specifier = ">=2.7.4,<3.0.0" },
{ name = "pyyaml", specifier = ">=5.3" },
{ name = "requests", specifier = ">=2,<3" },
{ name = "sqlalchemy", specifier = ">=1.4,<3" },
]
provides-extras = ["community", "anthropic", "openai", "azure-ai", "cohere", "google-vertexai", "google-genai", "fireworks", "ollama", "together", "mistralai", "huggingface", "groq", "aws", "deepseek", "xai", "perplexity"]
provides-extras = ["community", "anthropic", "openai", "google-genai", "fireworks", "ollama", "together", "mistralai", "huggingface", "groq", "deepseek", "perplexity"]
[package.metadata.requires-dev]
codespell = [{ name = "codespell", specifier = ">=2.2.0,<3.0.0" }]
@@ -520,7 +515,7 @@ typing = [
[[package]]
name = "langchain-cli"
version = "0.0.36"
version = "0.0.37"
source = { editable = "." }
dependencies = [
{ name = "gitpython" },
@@ -554,17 +549,17 @@ requires-dist = [
{ name = "gritql", specifier = ">=0.2.0,<1.0.0" },
{ name = "langserve", extras = ["all"], specifier = ">=0.0.51" },
{ name = "tomlkit", specifier = ">=0.12" },
{ name = "typer", extras = ["all"], specifier = ">=0.9.0,<1.0.0" },
{ name = "typer", specifier = ">=0.9.0,<1.0.0" },
{ name = "uvicorn", specifier = ">=0.23,<1.0" },
]
[package.metadata.requires-dev]
dev = [
{ name = "pytest", specifier = ">=7.4.2,<8.0.0" },
{ name = "pytest", specifier = ">=7.4.2,<9.0.0" },
{ name = "pytest-watcher", specifier = ">=0.3.4,<1.0.0" },
]
lint = [
{ name = "mypy", specifier = ">=1.13.0,<2.0.0" },
{ name = "mypy", specifier = ">=1.17.1,<1.18" },
{ name = "ruff", specifier = ">=0.12.2,<0.13" },
]
test = [
@@ -576,7 +571,7 @@ typing = [{ name = "langchain", editable = "../langchain" }]
[[package]]
name = "langchain-core"
version = "0.3.72"
version = "0.3.75"
source = { editable = "../core" }
dependencies = [
{ name = "jsonpatch" },
@@ -627,14 +622,14 @@ test = [
test-integration = []
typing = [
{ name = "langchain-text-splitters", directory = "../text-splitters" },
{ name = "mypy", specifier = ">=1.15,<1.16" },
{ name = "mypy", specifier = ">=1.17.1,<1.18" },
{ name = "types-pyyaml", specifier = ">=6.0.12.2,<7.0.0.0" },
{ name = "types-requests", specifier = ">=2.28.11.5,<3.0.0.0" },
]
[[package]]
name = "langchain-text-splitters"
version = "0.3.9"
version = "0.3.11"
source = { editable = "../text-splitters" }
dependencies = [
{ name = "langchain-core" },
@@ -650,7 +645,7 @@ dev = [
]
lint = [
{ name = "langchain-core", editable = "../core" },
{ name = "ruff", specifier = ">=0.12.2,<0.13" },
{ name = "ruff", specifier = ">=0.12.8,<0.13" },
]
test = [
{ name = "freezegun", specifier = ">=1.2.2,<2.0.0" },
@@ -663,15 +658,17 @@ test = [
{ name = "pytest-xdist", specifier = ">=3.6.1,<4.0.0" },
]
test-integration = [
{ name = "en-core-web-sm", url = "https://github.com/explosion/spacy-models/releases/download/en_core_web_sm-3.8.0/en_core_web_sm-3.8.0-py3-none-any.whl" },
{ name = "nltk", specifier = ">=3.9.1,<4.0.0" },
{ name = "sentence-transformers", specifier = ">=3.0.1" },
{ name = "spacy", specifier = ">=3.8.7,<4.0.0" },
{ name = "thinc", specifier = ">=8.3.6,<9.0.0" },
{ name = "tiktoken", specifier = ">=0.8.0,<1.0.0" },
{ name = "transformers", specifier = ">=4.51.3,<5.0.0" },
]
typing = [
{ name = "lxml-stubs", specifier = ">=0.5.1,<1.0.0" },
{ name = "mypy", specifier = ">=1.15,<2.0" },
{ name = "mypy", specifier = ">=1.17.1,<1.18" },
{ name = "tiktoken", specifier = ">=0.8.0,<1.0.0" },
{ name = "types-requests", specifier = ">=2.31.0.20240218,<3.0.0.0" },
]
@@ -738,46 +735,53 @@ wheels = [
[[package]]
name = "mypy"
version = "1.14.1"
version = "1.17.1"
source = { registry = "https://pypi.org/simple" }
dependencies = [
{ name = "mypy-extensions" },
{ name = "pathspec" },
{ name = "tomli", marker = "python_full_version < '3.11'" },
{ name = "typing-extensions" },
]
sdist = { url = "https://files.pythonhosted.org/packages/b9/eb/2c92d8ea1e684440f54fa49ac5d9a5f19967b7b472a281f419e69a8d228e/mypy-1.14.1.tar.gz", hash = "sha256:7ec88144fe9b510e8475ec2f5f251992690fcf89ccb4500b214b4226abcd32d6", size = 3216051, upload-time = "2024-12-30T16:39:07.335Z" }
sdist = { url = "https://files.pythonhosted.org/packages/8e/22/ea637422dedf0bf36f3ef238eab4e455e2a0dcc3082b5cc067615347ab8e/mypy-1.17.1.tar.gz", hash = "sha256:25e01ec741ab5bb3eec8ba9cdb0f769230368a22c959c4937360efb89b7e9f01", size = 3352570, upload-time = "2025-07-31T07:54:19.204Z" }
wheels = [
{ url = "https://files.pythonhosted.org/packages/9b/7a/87ae2adb31d68402da6da1e5f30c07ea6063e9f09b5e7cfc9dfa44075e74/mypy-1.14.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:52686e37cf13d559f668aa398dd7ddf1f92c5d613e4f8cb262be2fb4fedb0fcb", size = 11211002, upload-time = "2024-12-30T16:37:22.435Z" },
{ url = "https://files.pythonhosted.org/packages/e1/23/eada4c38608b444618a132be0d199b280049ded278b24cbb9d3fc59658e4/mypy-1.14.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:1fb545ca340537d4b45d3eecdb3def05e913299ca72c290326be19b3804b39c0", size = 10358400, upload-time = "2024-12-30T16:37:53.526Z" },
{ url = "https://files.pythonhosted.org/packages/43/c9/d6785c6f66241c62fd2992b05057f404237deaad1566545e9f144ced07f5/mypy-1.14.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:90716d8b2d1f4cd503309788e51366f07c56635a3309b0f6a32547eaaa36a64d", size = 12095172, upload-time = "2024-12-30T16:37:50.332Z" },
{ url = "https://files.pythonhosted.org/packages/c3/62/daa7e787770c83c52ce2aaf1a111eae5893de9e004743f51bfcad9e487ec/mypy-1.14.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:2ae753f5c9fef278bcf12e1a564351764f2a6da579d4a81347e1d5a15819997b", size = 12828732, upload-time = "2024-12-30T16:37:29.96Z" },
{ url = "https://files.pythonhosted.org/packages/1b/a2/5fb18318a3637f29f16f4e41340b795da14f4751ef4f51c99ff39ab62e52/mypy-1.14.1-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:e0fe0f5feaafcb04505bcf439e991c6d8f1bf8b15f12b05feeed96e9e7bf1427", size = 13012197, upload-time = "2024-12-30T16:38:05.037Z" },
{ url = "https://files.pythonhosted.org/packages/28/99/e153ce39105d164b5f02c06c35c7ba958aaff50a2babba7d080988b03fe7/mypy-1.14.1-cp310-cp310-win_amd64.whl", hash = "sha256:7d54bd85b925e501c555a3227f3ec0cfc54ee8b6930bd6141ec872d1c572f81f", size = 9780836, upload-time = "2024-12-30T16:37:19.726Z" },
{ url = "https://files.pythonhosted.org/packages/da/11/a9422850fd506edbcdc7f6090682ecceaf1f87b9dd847f9df79942da8506/mypy-1.14.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:f995e511de847791c3b11ed90084a7a0aafdc074ab88c5a9711622fe4751138c", size = 11120432, upload-time = "2024-12-30T16:37:11.533Z" },
{ url = "https://files.pythonhosted.org/packages/b6/9e/47e450fd39078d9c02d620545b2cb37993a8a8bdf7db3652ace2f80521ca/mypy-1.14.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:d64169ec3b8461311f8ce2fd2eb5d33e2d0f2c7b49116259c51d0d96edee48d1", size = 10279515, upload-time = "2024-12-30T16:37:40.724Z" },
{ url = "https://files.pythonhosted.org/packages/01/b5/6c8d33bd0f851a7692a8bfe4ee75eb82b6983a3cf39e5e32a5d2a723f0c1/mypy-1.14.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:ba24549de7b89b6381b91fbc068d798192b1b5201987070319889e93038967a8", size = 12025791, upload-time = "2024-12-30T16:36:58.73Z" },
{ url = "https://files.pythonhosted.org/packages/f0/4c/e10e2c46ea37cab5c471d0ddaaa9a434dc1d28650078ac1b56c2d7b9b2e4/mypy-1.14.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:183cf0a45457d28ff9d758730cd0210419ac27d4d3f285beda038c9083363b1f", size = 12749203, upload-time = "2024-12-30T16:37:03.741Z" },
{ url = "https://files.pythonhosted.org/packages/88/55/beacb0c69beab2153a0f57671ec07861d27d735a0faff135a494cd4f5020/mypy-1.14.1-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:f2a0ecc86378f45347f586e4163d1769dd81c5a223d577fe351f26b179e148b1", size = 12885900, upload-time = "2024-12-30T16:37:57.948Z" },
{ url = "https://files.pythonhosted.org/packages/a2/75/8c93ff7f315c4d086a2dfcde02f713004357d70a163eddb6c56a6a5eff40/mypy-1.14.1-cp311-cp311-win_amd64.whl", hash = "sha256:ad3301ebebec9e8ee7135d8e3109ca76c23752bac1e717bc84cd3836b4bf3eae", size = 9777869, upload-time = "2024-12-30T16:37:33.428Z" },
{ url = "https://files.pythonhosted.org/packages/43/1b/b38c079609bb4627905b74fc6a49849835acf68547ac33d8ceb707de5f52/mypy-1.14.1-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:30ff5ef8519bbc2e18b3b54521ec319513a26f1bba19a7582e7b1f58a6e69f14", size = 11266668, upload-time = "2024-12-30T16:38:02.211Z" },
{ url = "https://files.pythonhosted.org/packages/6b/75/2ed0d2964c1ffc9971c729f7a544e9cd34b2cdabbe2d11afd148d7838aa2/mypy-1.14.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:cb9f255c18052343c70234907e2e532bc7e55a62565d64536dbc7706a20b78b9", size = 10254060, upload-time = "2024-12-30T16:37:46.131Z" },
{ url = "https://files.pythonhosted.org/packages/a1/5f/7b8051552d4da3c51bbe8fcafffd76a6823779101a2b198d80886cd8f08e/mypy-1.14.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:8b4e3413e0bddea671012b063e27591b953d653209e7a4fa5e48759cda77ca11", size = 11933167, upload-time = "2024-12-30T16:37:43.534Z" },
{ url = "https://files.pythonhosted.org/packages/04/90/f53971d3ac39d8b68bbaab9a4c6c58c8caa4d5fd3d587d16f5927eeeabe1/mypy-1.14.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:553c293b1fbdebb6c3c4030589dab9fafb6dfa768995a453d8a5d3b23784af2e", size = 12864341, upload-time = "2024-12-30T16:37:36.249Z" },
{ url = "https://files.pythonhosted.org/packages/03/d2/8bc0aeaaf2e88c977db41583559319f1821c069e943ada2701e86d0430b7/mypy-1.14.1-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:fad79bfe3b65fe6a1efaed97b445c3d37f7be9fdc348bdb2d7cac75579607c89", size = 12972991, upload-time = "2024-12-30T16:37:06.743Z" },
{ url = "https://files.pythonhosted.org/packages/6f/17/07815114b903b49b0f2cf7499f1c130e5aa459411596668267535fe9243c/mypy-1.14.1-cp312-cp312-win_amd64.whl", hash = "sha256:8fa2220e54d2946e94ab6dbb3ba0a992795bd68b16dc852db33028df2b00191b", size = 9879016, upload-time = "2024-12-30T16:37:15.02Z" },
{ url = "https://files.pythonhosted.org/packages/9e/15/bb6a686901f59222275ab228453de741185f9d54fecbaacec041679496c6/mypy-1.14.1-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:92c3ed5afb06c3a8e188cb5da4984cab9ec9a77ba956ee419c68a388b4595255", size = 11252097, upload-time = "2024-12-30T16:37:25.144Z" },
{ url = "https://files.pythonhosted.org/packages/f8/b3/8b0f74dfd072c802b7fa368829defdf3ee1566ba74c32a2cb2403f68024c/mypy-1.14.1-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:dbec574648b3e25f43d23577309b16534431db4ddc09fda50841f1e34e64ed34", size = 10239728, upload-time = "2024-12-30T16:38:08.634Z" },
{ url = "https://files.pythonhosted.org/packages/c5/9b/4fd95ab20c52bb5b8c03cc49169be5905d931de17edfe4d9d2986800b52e/mypy-1.14.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:8c6d94b16d62eb3e947281aa7347d78236688e21081f11de976376cf010eb31a", size = 11924965, upload-time = "2024-12-30T16:38:12.132Z" },
{ url = "https://files.pythonhosted.org/packages/56/9d/4a236b9c57f5d8f08ed346914b3f091a62dd7e19336b2b2a0d85485f82ff/mypy-1.14.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:d4b19b03fdf54f3c5b2fa474c56b4c13c9dbfb9a2db4370ede7ec11a2c5927d9", size = 12867660, upload-time = "2024-12-30T16:38:17.342Z" },
{ url = "https://files.pythonhosted.org/packages/40/88/a61a5497e2f68d9027de2bb139c7bb9abaeb1be1584649fa9d807f80a338/mypy-1.14.1-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:0c911fde686394753fff899c409fd4e16e9b294c24bfd5e1ea4675deae1ac6fd", size = 12969198, upload-time = "2024-12-30T16:38:32.839Z" },
{ url = "https://files.pythonhosted.org/packages/54/da/3d6fc5d92d324701b0c23fb413c853892bfe0e1dbe06c9138037d459756b/mypy-1.14.1-cp313-cp313-win_amd64.whl", hash = "sha256:8b21525cb51671219f5307be85f7e646a153e5acc656e5cebf64bfa076c50107", size = 9885276, upload-time = "2024-12-30T16:38:20.828Z" },
{ url = "https://files.pythonhosted.org/packages/ca/1f/186d133ae2514633f8558e78cd658070ba686c0e9275c5a5c24a1e1f0d67/mypy-1.14.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:3888a1816d69f7ab92092f785a462944b3ca16d7c470d564165fe703b0970c35", size = 11200493, upload-time = "2024-12-30T16:38:26.935Z" },
{ url = "https://files.pythonhosted.org/packages/af/fc/4842485d034e38a4646cccd1369f6b1ccd7bc86989c52770d75d719a9941/mypy-1.14.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:46c756a444117c43ee984bd055db99e498bc613a70bbbc120272bd13ca579fbc", size = 10357702, upload-time = "2024-12-30T16:38:50.623Z" },
{ url = "https://files.pythonhosted.org/packages/b4/e6/457b83f2d701e23869cfec013a48a12638f75b9d37612a9ddf99072c1051/mypy-1.14.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:27fc248022907e72abfd8e22ab1f10e903915ff69961174784a3900a8cba9ad9", size = 12091104, upload-time = "2024-12-30T16:38:53.735Z" },
{ url = "https://files.pythonhosted.org/packages/f1/bf/76a569158db678fee59f4fd30b8e7a0d75bcbaeef49edd882a0d63af6d66/mypy-1.14.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:499d6a72fb7e5de92218db961f1a66d5f11783f9ae549d214617edab5d4dbdbb", size = 12830167, upload-time = "2024-12-30T16:38:56.437Z" },
{ url = "https://files.pythonhosted.org/packages/43/bc/0bc6b694b3103de9fed61867f1c8bd33336b913d16831431e7cb48ef1c92/mypy-1.14.1-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:57961db9795eb566dc1d1b4e9139ebc4c6b0cb6e7254ecde69d1552bf7613f60", size = 13013834, upload-time = "2024-12-30T16:38:59.204Z" },
{ url = "https://files.pythonhosted.org/packages/b0/79/5f5ec47849b6df1e6943d5fd8e6632fbfc04b4fd4acfa5a5a9535d11b4e2/mypy-1.14.1-cp39-cp39-win_amd64.whl", hash = "sha256:07ba89fdcc9451f2ebb02853deb6aaaa3d2239a236669a63ab3801bbf923ef5c", size = 9781231, upload-time = "2024-12-30T16:39:05.124Z" },
{ url = "https://files.pythonhosted.org/packages/a0/b5/32dd67b69a16d088e533962e5044e51004176a9952419de0370cdaead0f8/mypy-1.14.1-py3-none-any.whl", hash = "sha256:b66a60cc4073aeb8ae00057f9c1f64d49e90f918fbcef9a977eb121da8b8f1d1", size = 2752905, upload-time = "2024-12-30T16:38:42.021Z" },
{ url = "https://files.pythonhosted.org/packages/77/a9/3d7aa83955617cdf02f94e50aab5c830d205cfa4320cf124ff64acce3a8e/mypy-1.17.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:3fbe6d5555bf608c47203baa3e72dbc6ec9965b3d7c318aa9a4ca76f465bd972", size = 11003299, upload-time = "2025-07-31T07:54:06.425Z" },
{ url = "https://files.pythonhosted.org/packages/83/e8/72e62ff837dd5caaac2b4a5c07ce769c8e808a00a65e5d8f94ea9c6f20ab/mypy-1.17.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:80ef5c058b7bce08c83cac668158cb7edea692e458d21098c7d3bce35a5d43e7", size = 10125451, upload-time = "2025-07-31T07:53:52.974Z" },
{ url = "https://files.pythonhosted.org/packages/7d/10/f3f3543f6448db11881776f26a0ed079865926b0c841818ee22de2c6bbab/mypy-1.17.1-cp310-cp310-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:c4a580f8a70c69e4a75587bd925d298434057fe2a428faaf927ffe6e4b9a98df", size = 11916211, upload-time = "2025-07-31T07:53:18.879Z" },
{ url = "https://files.pythonhosted.org/packages/06/bf/63e83ed551282d67bb3f7fea2cd5561b08d2bb6eb287c096539feb5ddbc5/mypy-1.17.1-cp310-cp310-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:dd86bb649299f09d987a2eebb4d52d10603224500792e1bee18303bbcc1ce390", size = 12652687, upload-time = "2025-07-31T07:53:30.544Z" },
{ url = "https://files.pythonhosted.org/packages/69/66/68f2eeef11facf597143e85b694a161868b3b006a5fbad50e09ea117ef24/mypy-1.17.1-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:a76906f26bd8d51ea9504966a9c25419f2e668f012e0bdf3da4ea1526c534d94", size = 12896322, upload-time = "2025-07-31T07:53:50.74Z" },
{ url = "https://files.pythonhosted.org/packages/a3/87/8e3e9c2c8bd0d7e071a89c71be28ad088aaecbadf0454f46a540bda7bca6/mypy-1.17.1-cp310-cp310-win_amd64.whl", hash = "sha256:e79311f2d904ccb59787477b7bd5d26f3347789c06fcd7656fa500875290264b", size = 9507962, upload-time = "2025-07-31T07:53:08.431Z" },
{ url = "https://files.pythonhosted.org/packages/46/cf/eadc80c4e0a70db1c08921dcc220357ba8ab2faecb4392e3cebeb10edbfa/mypy-1.17.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:ad37544be07c5d7fba814eb370e006df58fed8ad1ef33ed1649cb1889ba6ff58", size = 10921009, upload-time = "2025-07-31T07:53:23.037Z" },
{ url = "https://files.pythonhosted.org/packages/5d/c1/c869d8c067829ad30d9bdae051046561552516cfb3a14f7f0347b7d973ee/mypy-1.17.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:064e2ff508e5464b4bd807a7c1625bc5047c5022b85c70f030680e18f37273a5", size = 10047482, upload-time = "2025-07-31T07:53:26.151Z" },
{ url = "https://files.pythonhosted.org/packages/98/b9/803672bab3fe03cee2e14786ca056efda4bb511ea02dadcedde6176d06d0/mypy-1.17.1-cp311-cp311-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:70401bbabd2fa1aa7c43bb358f54037baf0586f41e83b0ae67dd0534fc64edfd", size = 11832883, upload-time = "2025-07-31T07:53:47.948Z" },
{ url = "https://files.pythonhosted.org/packages/88/fb/fcdac695beca66800918c18697b48833a9a6701de288452b6715a98cfee1/mypy-1.17.1-cp311-cp311-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:e92bdc656b7757c438660f775f872a669b8ff374edc4d18277d86b63edba6b8b", size = 12566215, upload-time = "2025-07-31T07:54:04.031Z" },
{ url = "https://files.pythonhosted.org/packages/7f/37/a932da3d3dace99ee8eb2043b6ab03b6768c36eb29a02f98f46c18c0da0e/mypy-1.17.1-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:c1fdf4abb29ed1cb091cf432979e162c208a5ac676ce35010373ff29247bcad5", size = 12751956, upload-time = "2025-07-31T07:53:36.263Z" },
{ url = "https://files.pythonhosted.org/packages/8c/cf/6438a429e0f2f5cab8bc83e53dbebfa666476f40ee322e13cac5e64b79e7/mypy-1.17.1-cp311-cp311-win_amd64.whl", hash = "sha256:ff2933428516ab63f961644bc49bc4cbe42bbffb2cd3b71cc7277c07d16b1a8b", size = 9507307, upload-time = "2025-07-31T07:53:59.734Z" },
{ url = "https://files.pythonhosted.org/packages/17/a2/7034d0d61af8098ec47902108553122baa0f438df8a713be860f7407c9e6/mypy-1.17.1-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:69e83ea6553a3ba79c08c6e15dbd9bfa912ec1e493bf75489ef93beb65209aeb", size = 11086295, upload-time = "2025-07-31T07:53:28.124Z" },
{ url = "https://files.pythonhosted.org/packages/14/1f/19e7e44b594d4b12f6ba8064dbe136505cec813549ca3e5191e40b1d3cc2/mypy-1.17.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:1b16708a66d38abb1e6b5702f5c2c87e133289da36f6a1d15f6a5221085c6403", size = 10112355, upload-time = "2025-07-31T07:53:21.121Z" },
{ url = "https://files.pythonhosted.org/packages/5b/69/baa33927e29e6b4c55d798a9d44db5d394072eef2bdc18c3e2048c9ed1e9/mypy-1.17.1-cp312-cp312-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:89e972c0035e9e05823907ad5398c5a73b9f47a002b22359b177d40bdaee7056", size = 11875285, upload-time = "2025-07-31T07:53:55.293Z" },
{ url = "https://files.pythonhosted.org/packages/90/13/f3a89c76b0a41e19490b01e7069713a30949d9a6c147289ee1521bcea245/mypy-1.17.1-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:03b6d0ed2b188e35ee6d5c36b5580cffd6da23319991c49ab5556c023ccf1341", size = 12737895, upload-time = "2025-07-31T07:53:43.623Z" },
{ url = "https://files.pythonhosted.org/packages/23/a1/c4ee79ac484241301564072e6476c5a5be2590bc2e7bfd28220033d2ef8f/mypy-1.17.1-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:c837b896b37cd103570d776bda106eabb8737aa6dd4f248451aecf53030cdbeb", size = 12931025, upload-time = "2025-07-31T07:54:17.125Z" },
{ url = "https://files.pythonhosted.org/packages/89/b8/7409477be7919a0608900e6320b155c72caab4fef46427c5cc75f85edadd/mypy-1.17.1-cp312-cp312-win_amd64.whl", hash = "sha256:665afab0963a4b39dff7c1fa563cc8b11ecff7910206db4b2e64dd1ba25aed19", size = 9584664, upload-time = "2025-07-31T07:54:12.842Z" },
{ url = "https://files.pythonhosted.org/packages/5b/82/aec2fc9b9b149f372850291827537a508d6c4d3664b1750a324b91f71355/mypy-1.17.1-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:93378d3203a5c0800c6b6d850ad2f19f7a3cdf1a3701d3416dbf128805c6a6a7", size = 11075338, upload-time = "2025-07-31T07:53:38.873Z" },
{ url = "https://files.pythonhosted.org/packages/07/ac/ee93fbde9d2242657128af8c86f5d917cd2887584cf948a8e3663d0cd737/mypy-1.17.1-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:15d54056f7fe7a826d897789f53dd6377ec2ea8ba6f776dc83c2902b899fee81", size = 10113066, upload-time = "2025-07-31T07:54:14.707Z" },
{ url = "https://files.pythonhosted.org/packages/5a/68/946a1e0be93f17f7caa56c45844ec691ca153ee8b62f21eddda336a2d203/mypy-1.17.1-cp313-cp313-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:209a58fed9987eccc20f2ca94afe7257a8f46eb5df1fb69958650973230f91e6", size = 11875473, upload-time = "2025-07-31T07:53:14.504Z" },
{ url = "https://files.pythonhosted.org/packages/9f/0f/478b4dce1cb4f43cf0f0d00fba3030b21ca04a01b74d1cd272a528cf446f/mypy-1.17.1-cp313-cp313-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:099b9a5da47de9e2cb5165e581f158e854d9e19d2e96b6698c0d64de911dd849", size = 12744296, upload-time = "2025-07-31T07:53:03.896Z" },
{ url = "https://files.pythonhosted.org/packages/ca/70/afa5850176379d1b303f992a828de95fc14487429a7139a4e0bdd17a8279/mypy-1.17.1-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:fa6ffadfbe6994d724c5a1bb6123a7d27dd68fc9c059561cd33b664a79578e14", size = 12914657, upload-time = "2025-07-31T07:54:08.576Z" },
{ url = "https://files.pythonhosted.org/packages/53/f9/4a83e1c856a3d9c8f6edaa4749a4864ee98486e9b9dbfbc93842891029c2/mypy-1.17.1-cp313-cp313-win_amd64.whl", hash = "sha256:9a2b7d9180aed171f033c9f2fc6c204c1245cf60b0cb61cf2e7acc24eea78e0a", size = 9593320, upload-time = "2025-07-31T07:53:01.341Z" },
{ url = "https://files.pythonhosted.org/packages/38/56/79c2fac86da57c7d8c48622a05873eaab40b905096c33597462713f5af90/mypy-1.17.1-cp314-cp314-macosx_10_13_x86_64.whl", hash = "sha256:15a83369400454c41ed3a118e0cc58bd8123921a602f385cb6d6ea5df050c733", size = 11040037, upload-time = "2025-07-31T07:54:10.942Z" },
{ url = "https://files.pythonhosted.org/packages/4d/c3/adabe6ff53638e3cad19e3547268482408323b1e68bf082c9119000cd049/mypy-1.17.1-cp314-cp314-macosx_11_0_arm64.whl", hash = "sha256:55b918670f692fc9fba55c3298d8a3beae295c5cded0a55dccdc5bbead814acd", size = 10131550, upload-time = "2025-07-31T07:53:41.307Z" },
{ url = "https://files.pythonhosted.org/packages/b8/c5/2e234c22c3bdeb23a7817af57a58865a39753bde52c74e2c661ee0cfc640/mypy-1.17.1-cp314-cp314-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:62761474061feef6f720149d7ba876122007ddc64adff5ba6f374fda35a018a0", size = 11872963, upload-time = "2025-07-31T07:53:16.878Z" },
{ url = "https://files.pythonhosted.org/packages/ab/26/c13c130f35ca8caa5f2ceab68a247775648fdcd6c9a18f158825f2bc2410/mypy-1.17.1-cp314-cp314-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:c49562d3d908fd49ed0938e5423daed8d407774a479b595b143a3d7f87cdae6a", size = 12710189, upload-time = "2025-07-31T07:54:01.962Z" },
{ url = "https://files.pythonhosted.org/packages/82/df/c7d79d09f6de8383fe800521d066d877e54d30b4fb94281c262be2df84ef/mypy-1.17.1-cp314-cp314-musllinux_1_2_x86_64.whl", hash = "sha256:397fba5d7616a5bc60b45c7ed204717eaddc38f826e3645402c426057ead9a91", size = 12900322, upload-time = "2025-07-31T07:53:10.551Z" },
{ url = "https://files.pythonhosted.org/packages/b8/98/3d5a48978b4f708c55ae832619addc66d677f6dc59f3ebad71bae8285ca6/mypy-1.17.1-cp314-cp314-win_amd64.whl", hash = "sha256:9d6b20b97d373f41617bd0708fd46aa656059af57f2ef72aa8c7d6a2b73b74ed", size = 9751879, upload-time = "2025-07-31T07:52:56.683Z" },
{ url = "https://files.pythonhosted.org/packages/29/cb/673e3d34e5d8de60b3a61f44f80150a738bff568cd6b7efb55742a605e98/mypy-1.17.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:5d1092694f166a7e56c805caaf794e0585cabdbf1df36911c414e4e9abb62ae9", size = 10992466, upload-time = "2025-07-31T07:53:57.574Z" },
{ url = "https://files.pythonhosted.org/packages/0c/d0/fe1895836eea3a33ab801561987a10569df92f2d3d4715abf2cfeaa29cb2/mypy-1.17.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:79d44f9bfb004941ebb0abe8eff6504223a9c1ac51ef967d1263c6572bbebc99", size = 10117638, upload-time = "2025-07-31T07:53:34.256Z" },
{ url = "https://files.pythonhosted.org/packages/97/f3/514aa5532303aafb95b9ca400a31054a2bd9489de166558c2baaeea9c522/mypy-1.17.1-cp39-cp39-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:b01586eed696ec905e61bd2568f48740f7ac4a45b3a468e6423a03d3788a51a8", size = 11915673, upload-time = "2025-07-31T07:52:59.361Z" },
{ url = "https://files.pythonhosted.org/packages/ab/c3/c0805f0edec96fe8e2c048b03769a6291523d509be8ee7f56ae922fa3882/mypy-1.17.1-cp39-cp39-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:43808d9476c36b927fbcd0b0255ce75efe1b68a080154a38ae68a7e62de8f0f8", size = 12649022, upload-time = "2025-07-31T07:53:45.92Z" },
{ url = "https://files.pythonhosted.org/packages/45/3e/d646b5a298ada21a8512fa7e5531f664535a495efa672601702398cea2b4/mypy-1.17.1-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:feb8cc32d319edd5859da2cc084493b3e2ce5e49a946377663cc90f6c15fb259", size = 12895536, upload-time = "2025-07-31T07:53:06.17Z" },
{ url = "https://files.pythonhosted.org/packages/14/55/e13d0dcd276975927d1f4e9e2ec4fd409e199f01bdc671717e673cc63a22/mypy-1.17.1-cp39-cp39-win_amd64.whl", hash = "sha256:d7598cf74c3e16539d4e2f0b8d8c318e00041553d83d4861f87c7a72e95ac24d", size = 9512564, upload-time = "2025-07-31T07:53:12.346Z" },
{ url = "https://files.pythonhosted.org/packages/1d/f3/8fcd2af0f5b806f6cf463efaffd3c9548a28f84220493ecd38d127b6b66d/mypy-1.17.1-py3-none-any.whl", hash = "sha256:a9f52c0351c21fe24c21d8c0eb1f62967b262d6729393397b6f443c3b773c3b9", size = 2283411, upload-time = "2025-07-31T07:53:24.664Z" },
]
[[package]]
@@ -871,6 +875,15 @@ wheels = [
{ url = "https://files.pythonhosted.org/packages/88/ef/eb23f262cca3c0c4eb7ab1933c3b1f03d021f2c48f54763065b6f0e321be/packaging-24.2-py3-none-any.whl", hash = "sha256:09abb1bccd265c01f4a3aa3f7a7db064b36514d2cba19a2f694fe6150451a759", size = 65451, upload-time = "2024-11-08T09:47:44.722Z" },
]
[[package]]
name = "pathspec"
version = "0.12.1"
source = { registry = "https://pypi.org/simple" }
sdist = { url = "https://files.pythonhosted.org/packages/ca/bc/f35b8446f4531a7cb215605d100cd88b7ac6f44ab3fc94870c120ab3adbf/pathspec-0.12.1.tar.gz", hash = "sha256:a482d51503a1ab33b1c67a6c3813a26953dbdc71c31dacaef9a838c4e29f5712", size = 51043, upload-time = "2023-12-10T22:30:45Z" }
wheels = [
{ url = "https://files.pythonhosted.org/packages/cc/20/ff623b09d963f88bfde16306a54e12ee5ea43e9b597108672ff3a408aad6/pathspec-0.12.1-py3-none-any.whl", hash = "sha256:a0d503e138a4c123b27490a4f7beda6a01c6f288df0e4a8b79c7eb0dc7b4cc08", size = 31191, upload-time = "2023-12-10T22:30:43.14Z" },
]
[[package]]
name = "pluggy"
version = "1.5.0"

View File

@@ -21,13 +21,13 @@ For full documentation see the [API reference](https://python.langchain.com/api_
## 1⃣ Core Interface: Runnables
The concept of a Runnable is central to LangChain Core it is the interface that most LangChain Core components implement, giving them
The concept of a `Runnable` is central to LangChain Core it is the interface that most LangChain Core components implement, giving them
- a common invocation interface (invoke, batch, stream, etc.)
- a common invocation interface (`invoke()`, `batch()`, `stream()`, etc.)
- built-in utilities for retries, fallbacks, schemas and runtime configurability
- easy deployment with [LangServe](https://github.com/langchain-ai/langserve)
- easy deployment with [LangGraph](https://github.com/langchain-ai/langgraph)
For more check out the [runnable docs](https://python.langchain.com/docs/expression_language/interface). Examples of components that implement the interface include: LLMs, Chat Models, Prompts, Retrievers, Tools, Output Parsers.
For more check out the [runnable docs](https://python.langchain.com/docs/concepts/runnables/). Examples of components that implement the interface include: LLMs, Chat Models, Prompts, Retrievers, Tools, Output Parsers.
You can use LangChain Core objects in two ways:
@@ -51,7 +51,7 @@ LangChain Expression Language (LCEL) is a _declarative language_ for composing L
LangChain Core compiles LCEL sequences to an _optimized execution plan_, with automatic parallelization, streaming, tracing, and async support.
For more check out the [LCEL docs](https://python.langchain.com/docs/expression_language/).
For more check out the [LCEL docs](https://python.langchain.com/docs/concepts/lcel/).
![Diagram outlining the hierarchical organization of the LangChain framework, displaying the interconnected parts across multiple layers.](https://raw.githubusercontent.com/langchain-ai/langchain/master/docs/static/svg/langchain_stack_112024.svg "LangChain Framework Overview")
@@ -59,8 +59,6 @@ For more advanced use cases, also check out [LangGraph](https://github.com/langc
## 📕 Releases & Versioning
`langchain-core` is currently on version `0.1.x`.
As `langchain-core` contains the base abstractions and runtime for the whole LangChain ecosystem, we will communicate any breaking changes with advance notice and version bumps. The exception for this is anything in `langchain_core.beta`. The reason for `langchain_core.beta` is that given the rate of change of the field, being able to move quickly is still a priority, and this module is our attempt to do so.
Minor version increases will occur for:

View File

@@ -253,7 +253,7 @@ class ContextSet(RunnableSerializable):
"""
if key is not None:
kwargs[key] = value
super().__init__( # type: ignore[call-arg]
super().__init__(
keys={
k: _coerce_set_value(v) if v is not None else None
for k, v in kwargs.items()

View File

@@ -277,7 +277,7 @@ class Document(BaseMedia):
"""Pass page_content in as positional or named arg."""
# my-py is complaining that page_content is not defined on the base class.
# Here, we're relying on pydantic base class to handle the validation.
super().__init__(page_content=page_content, **kwargs) # type: ignore[call-arg]
super().__init__(page_content=page_content, **kwargs)
@classmethod
def is_lc_serializable(cls) -> bool:

View File

@@ -78,6 +78,11 @@ def _generate_response_from_error(error: BaseException) -> list[ChatGeneration]:
if hasattr(error, "response"):
response = error.response
metadata: dict = {}
if hasattr(response, "json"):
try:
metadata["body"] = response.json()
except Exception:
metadata["body"] = getattr(response, "text", None)
if hasattr(response, "headers"):
try:
metadata["headers"] = dict(response.headers)
@@ -533,7 +538,7 @@ class BaseChatModel(BaseLanguageModel[BaseMessage], ABC):
generations = [generations_with_error_metadata]
run_manager.on_llm_error(
e,
response=LLMResult(generations=generations), # type: ignore[arg-type]
response=LLMResult(generations=generations),
)
raise
@@ -627,7 +632,7 @@ class BaseChatModel(BaseLanguageModel[BaseMessage], ABC):
generations = [generations_with_error_metadata]
await run_manager.on_llm_error(
e,
response=LLMResult(generations=generations), # type: ignore[arg-type]
response=LLMResult(generations=generations),
)
raise
@@ -842,17 +847,17 @@ class BaseChatModel(BaseLanguageModel[BaseMessage], ABC):
run_managers[i].on_llm_error(
e,
response=LLMResult(
generations=[generations_with_error_metadata] # type: ignore[list-item]
generations=[generations_with_error_metadata]
),
)
raise
flattened_outputs = [
LLMResult(generations=[res.generations], llm_output=res.llm_output) # type: ignore[list-item]
LLMResult(generations=[res.generations], llm_output=res.llm_output)
for res in results
]
llm_output = self._combine_llm_outputs([res.llm_output for res in results])
generations = [res.generations for res in results]
output = LLMResult(generations=generations, llm_output=llm_output) # type: ignore[arg-type]
output = LLMResult(generations=generations, llm_output=llm_output)
if run_managers:
run_infos = []
for manager, flattened_output in zip(run_managers, flattened_outputs):
@@ -962,7 +967,7 @@ class BaseChatModel(BaseLanguageModel[BaseMessage], ABC):
await run_managers[i].on_llm_error(
res,
response=LLMResult(
generations=[generations_with_error_metadata] # type: ignore[list-item]
generations=[generations_with_error_metadata]
),
)
exceptions.append(res)
@@ -972,7 +977,7 @@ class BaseChatModel(BaseLanguageModel[BaseMessage], ABC):
*[
run_manager.on_llm_end(
LLMResult(
generations=[res.generations], # type: ignore[list-item, union-attr]
generations=[res.generations], # type: ignore[union-attr]
llm_output=res.llm_output, # type: ignore[union-attr]
)
)
@@ -982,12 +987,12 @@ class BaseChatModel(BaseLanguageModel[BaseMessage], ABC):
)
raise exceptions[0]
flattened_outputs = [
LLMResult(generations=[res.generations], llm_output=res.llm_output) # type: ignore[list-item, union-attr]
LLMResult(generations=[res.generations], llm_output=res.llm_output) # type: ignore[union-attr]
for res in results
]
llm_output = self._combine_llm_outputs([res.llm_output for res in results]) # type: ignore[union-attr]
generations = [res.generations for res in results] # type: ignore[union-attr]
output = LLMResult(generations=generations, llm_output=llm_output) # type: ignore[arg-type]
output = LLMResult(generations=generations, llm_output=llm_output)
await asyncio.gather(
*[
run_manager.on_llm_end(flattened_output)

View File

@@ -358,7 +358,10 @@ class AIMessageChunk(AIMessage, BaseMessageChunk):
for chunk in self.tool_call_chunks:
try:
args_ = parse_partial_json(chunk["args"]) if chunk["args"] != "" else {} # type: ignore[arg-type]
if chunk["args"] is not None and chunk["args"] != "":
args_ = parse_partial_json(chunk["args"])
else:
args_ = {}
if isinstance(args_, dict):
tool_calls.append(
create_tool_call(

View File

@@ -246,6 +246,8 @@ class JsonOutputKeyToolsParser(JsonOutputToolsParser):
_ = tool_call.pop("id")
else:
try:
# This exists purely for backward compatibility / cached messages
# All new messages should use `message.tool_calls`
raw_tool_calls = copy.deepcopy(message.additional_kwargs["tool_calls"])
except KeyError:
if self.first_tool_only:

View File

@@ -155,9 +155,7 @@ class MessagesPlaceholder(BaseMessagePromptTemplate):
"""
# mypy can't detect the init which is defined in the parent class
# b/c these are BaseModel classes.
super().__init__( # type: ignore[call-arg]
variable_name=variable_name, optional=optional, **kwargs
)
super().__init__(variable_name=variable_name, optional=optional, **kwargs)
def format_messages(self, **kwargs: Any) -> list[BaseMessage]:
"""Format messages from kwargs.

View File

@@ -2819,7 +2819,7 @@ class RunnableSequence(RunnableSerializable[Input, Output]):
if len(steps_flat) < 2:
msg = f"RunnableSequence must have at least 2 steps, got {len(steps_flat)}"
raise ValueError(msg)
super().__init__( # type: ignore[call-arg]
super().__init__(
first=steps_flat[0],
middle=list(steps_flat[1:-1]),
last=steps_flat[-1],
@@ -3612,7 +3612,7 @@ class RunnableParallel(RunnableSerializable[Input, dict[str, Any]]):
"""
merged = {**steps__} if steps__ is not None else {}
merged.update(kwargs)
super().__init__( # type: ignore[call-arg]
super().__init__(
steps__={key: coerce_to_runnable(r) for key, r in merged.items()}
)
@@ -5325,7 +5325,7 @@ class RunnableEach(RunnableEachBase[Input, Output]):
)
class RunnableBindingBase(RunnableSerializable[Input, Output]):
class RunnableBindingBase(RunnableSerializable[Input, Output]): # type: ignore[no-redef]
"""``Runnable`` that delegates calls to another ``Runnable`` with a set of kwargs.
Use only if creating a new ``RunnableBinding`` subclass with different ``__init__``
@@ -5404,7 +5404,7 @@ class RunnableBindingBase(RunnableSerializable[Input, Output]):
``Runnable`` with a custom type. Defaults to None.
**other_kwargs: Unpacked into the base class.
""" # noqa: E501
super().__init__( # type: ignore[call-arg]
super().__init__(
bound=bound,
kwargs=kwargs or {},
config=config or {},
@@ -5729,7 +5729,7 @@ class RunnableBindingBase(RunnableSerializable[Input, Output]):
yield item
class RunnableBinding(RunnableBindingBase[Input, Output]):
class RunnableBinding(RunnableBindingBase[Input, Output]): # type: ignore[no-redef]
"""Wrap a ``Runnable`` with additional functionality.
A ``RunnableBinding`` can be thought of as a "runnable decorator" that

View File

@@ -136,7 +136,7 @@ class RunnableBranch(RunnableSerializable[Input, Output]):
super().__init__(
branches=branches_,
default=default_,
) # type: ignore[call-arg]
)
model_config = ConfigDict(
arbitrary_types_allowed=True,

View File

@@ -38,7 +38,7 @@ MessagesOrDictWithMessages = Union[Sequence["BaseMessage"], dict[str, Any]]
GetSessionHistoryCallable = Callable[..., BaseChatMessageHistory]
class RunnableWithMessageHistory(RunnableBindingBase):
class RunnableWithMessageHistory(RunnableBindingBase): # type: ignore[no-redef]
"""Runnable that manages chat message history for another Runnable.
A chat message history is a sequence of messages that represent a conversation.

View File

@@ -186,7 +186,7 @@ class RunnablePassthrough(RunnableSerializable[Other, Other]):
afunc = func
func = None
super().__init__(func=func, afunc=afunc, input_type=input_type, **kwargs) # type: ignore[call-arg]
super().__init__(func=func, afunc=afunc, input_type=input_type, **kwargs)
@classmethod
@override
@@ -406,7 +406,7 @@ class RunnableAssign(RunnableSerializable[dict[str, Any], dict[str, Any]]):
mapper: A ``RunnableParallel`` instance that will be used to transform the
input dictionary.
"""
super().__init__(mapper=mapper, **kwargs) # type: ignore[call-arg]
super().__init__(mapper=mapper, **kwargs)
@classmethod
@override
@@ -710,7 +710,7 @@ class RunnablePick(RunnableSerializable[dict[str, Any], dict[str, Any]]):
Args:
keys: A single key or a list of keys to pick from the input dictionary.
"""
super().__init__(keys=keys, **kwargs) # type: ignore[call-arg]
super().__init__(keys=keys, **kwargs)
@classmethod
@override

Some files were not shown because too many files have changed in this diff Show More