Compare commits

..

9 Commits

Author SHA1 Message Date
Dev 2049
cefe4e7289 lint 2023-05-10 18:15:44 -07:00
Dev 2049
df61b71e60 add test 2023-05-10 18:02:51 -07:00
Davis Chase
b77e103ca6 Add aleph alpha api key attribute (#4489)
@tugot17 applied your change to master
2023-05-10 17:29:57 -07:00
Harrison Chase
3ce29cb4a6 Harrison/new search (#4359)
Co-authored-by: Jiaping(JP) Zhang <vincentzhangv@gmail.com>
2023-05-10 17:09:16 -07:00
Jakob Heyder
545ae8b756 Fix: Add run_manager on all AgentFinish returns in AgentExecutor (#4466) 2023-05-10 16:25:23 -07:00
Ankush Gola
ae8d6d5a89 Add docs for tracing environment variable (#4477) 2023-05-10 16:07:02 -07:00
Davis Chase
9ec60ad832 Add azure cognitive search retriever (#4467)
All credit to @UmerHA, made a couple small changes

---------

Co-authored-by: UmerHA <40663591+UmerHA@users.noreply.github.com>
2023-05-10 15:27:27 -07:00
Davis Chase
46b100ea63 Add DocArray vector stores (#4483)
Thanks to @anna-charlotte and @jupyterjazz for the contribution! Made
few small changes to get it across the finish line

---------

Signed-off-by: anna-charlotte <charlotte.gerhaher@jina.ai>
Signed-off-by: jupyterjazz <saba.sturua@jina.ai>
Co-authored-by: anna-charlotte <charlotte.gerhaher@jina.ai>
Co-authored-by: jupyterjazz <saba.sturua@jina.ai>
Co-authored-by: Saba Sturua <45267439+jupyterjazz@users.noreply.github.com>
2023-05-10 15:22:16 -07:00
Davis Chase
f2a536b445 release 165 (#4486)
bump version
2023-05-10 15:20:43 -07:00
28 changed files with 1832 additions and 244 deletions

View File

@@ -0,0 +1,128 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "1edb9e6b",
"metadata": {},
"source": [
"# Azure Cognitive Search Retriever\n",
"\n",
"This notebook shows how to use Azure Cognitive Search (ACS) within LangChain."
]
},
{
"cell_type": "markdown",
"id": "074b0004",
"metadata": {},
"source": [
"## Set up Azure Cognitive Search\n",
"\n",
"To set up ACS, please follow the instrcutions [here](https://learn.microsoft.com/en-us/azure/search/search-create-service-portal).\n",
"\n",
"Please note\n",
"1. the name of your ACS service, \n",
"2. the name of your ACS index,\n",
"3. your API key.\n",
"\n",
"Your API key can be either Admin or Query key, but as we only read data it is recommended to use a Query key."
]
},
{
"cell_type": "markdown",
"id": "0474661d",
"metadata": {},
"source": [
"## Using the Azure Cognitive Search Retriever"
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "39d6074e",
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"\n",
"from langchain.retrievers import AzureCognitiveSearchRetriever"
]
},
{
"cell_type": "markdown",
"id": "b7243e6d",
"metadata": {},
"source": [
"Set Service Name, Index Name and API key as environment variables (alternatively, you can pass them as arguments to `AzureCognitiveSearchRetriever`)."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "33fd23d1",
"metadata": {},
"outputs": [],
"source": [
"os.environ[\"AZURE_COGNITIVE_SEARCH_SERVICE_NAME\"] = \"<YOUR_ACS_SERVICE_NAME>\"\n",
"os.environ[\"AZURE_COGNITIVE_SEARCH_INDEX_NAME\"] =\"<YOUR_ACS_INDEX_NAME>\"\n",
"os.environ[\"AZURE_COGNITIVE_SEARCH_API_KEY\"] = \"<YOUR_API_KEY>\""
]
},
{
"cell_type": "markdown",
"id": "057deaad",
"metadata": {},
"source": [
"Create the Retriever"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "c18d0c4c",
"metadata": {},
"outputs": [],
"source": [
"retriever = AzureCognitiveSearchRetriever(content_key=\"content\")"
]
},
{
"cell_type": "markdown",
"id": "e94ea104",
"metadata": {},
"source": [
"Now you can use retrieve documents from Azure Cognitive Search"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "c8b5794b",
"metadata": {},
"outputs": [],
"source": [
"retriever.get_relevant_documents(\"what is langchain\")"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.3"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -46,18 +46,10 @@
},
{
"cell_type": "code",
"execution_count": 3,
"execution_count": null,
"id": "bcbe04d9",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Using embedded DuckDB without persistence: data will be transient\n"
]
}
],
"outputs": [],
"source": [
"docs = [\n",
" Document(page_content=\"A bunch of scientists bring back dinosaurs and mayhem breaks loose\", metadata={\"year\": 1993, \"rating\": 7.7, \"genre\": \"science fiction\"}),\n",
@@ -65,7 +57,7 @@
" Document(page_content=\"A psychologist / detective gets lost in a series of dreams within dreams within dreams and Inception reused the idea\", metadata={\"year\": 2006, \"director\": \"Satoshi Kon\", \"rating\": 8.6}),\n",
" Document(page_content=\"A bunch of normal-sized women are supremely wholesome and some men pine after them\", metadata={\"year\": 2019, \"director\": \"Greta Gerwig\", \"rating\": 8.3}),\n",
" Document(page_content=\"Toys come alive and have a blast doing so\", metadata={\"year\": 1995, \"genre\": \"animated\"}),\n",
" Document(page_content=\"Three men walk into the Zone, three men walk out of the Zone\", metadata={\"year\": 1979, \"rating\": 9.9, \"director\": \"Andrei Tarkovsky\", \"genre\": \"science fiction\", \"rating\": 9.9})\n",
" Document(page_content=\"Three men walk into the Zone, three men walk out of the Zone\", metadata={\"year\": 1979, \"director\": \"Andrei Tarkovsky\", \"genre\": \"science fiction\", \"rating\": 9.9})\n",
"]\n",
"vectorstore = Chroma.from_documents(\n",
" docs, embeddings\n",
@@ -302,7 +294,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.1"
"version": "3.11.3"
}
},
"nbformat": 4,

View File

@@ -32,19 +32,10 @@
},
{
"cell_type": "code",
"execution_count": 1,
"execution_count": null,
"id": "3eb9c9a4",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/Users/harrisonchase/.pyenv/versions/3.9.1/envs/langchain/lib/python3.9/site-packages/pinecone/index.py:4: TqdmExperimentalWarning: Using `tqdm.autonotebook.tqdm` in notebook mode. Use `tqdm.tqdm` instead to force console mode (e.g. in jupyter console)\n",
" from tqdm.autonotebook import tqdm\n"
]
}
],
"outputs": [],
"source": [
"import os\n",
"\n",
@@ -83,7 +74,7 @@
" Document(page_content=\"A psychologist / detective gets lost in a series of dreams within dreams within dreams and Inception reused the idea\", metadata={\"year\": 2006, \"director\": \"Satoshi Kon\", \"rating\": 8.6}),\n",
" Document(page_content=\"A bunch of normal-sized women are supremely wholesome and some men pine after them\", metadata={\"year\": 2019, \"director\": \"Greta Gerwig\", \"rating\": 8.3}),\n",
" Document(page_content=\"Toys come alive and have a blast doing so\", metadata={\"year\": 1995, \"genre\": \"animated\"}),\n",
" Document(page_content=\"Three men walk into the Zone, three men walk out of the Zone\", metadata={\"year\": 1979, \"rating\": 9.9, \"director\": \"Andrei Tarkovsky\", \"genre\": [\"science fiction\", \"thriller\"], \"rating\": 9.9})\n",
" Document(page_content=\"Three men walk into the Zone, three men walk out of the Zone\", metadata={\"year\": 1979, \"director\": \"Andrei Tarkovsky\", \"genre\": [\"science fiction\", \"thriller\"], \"rating\": 9.9})\n",
"]\n",
"vectorstore = Pinecone.from_documents(\n",
" docs, embeddings, index_name=\"langchain-self-retriever-demo\"\n",
@@ -320,7 +311,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.1"
"version": "3.11.3"
}
},
"nbformat": 4,

View File

@@ -25,18 +25,10 @@
},
{
"cell_type": "code",
"execution_count": 9,
"execution_count": 2,
"id": "9fbcc58f",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Exiting: Cleaning up .chroma directory\n"
]
}
],
"outputs": [],
"source": [
"from langchain.text_splitter import CharacterTextSplitter\n",
"from langchain.vectorstores import FAISS\n",
@@ -74,6 +66,7 @@
"id": "79b783de",
"metadata": {},
"source": [
"## Maximum Marginal Relevance Retrieval\n",
"By default, the vectorstore retriever uses similarity search. If the underlying vectorstore support maximum marginal relevance search, you can specify that as the search type."
]
},
@@ -97,11 +90,42 @@
"docs = retriever.get_relevant_documents(\"what did he say abotu ketanji brown jackson\")"
]
},
{
"cell_type": "markdown",
"id": "2d958271",
"metadata": {},
"source": [
"## Similarity Score Threshold Retrieval\n",
"\n",
"You can also a retrieval method that sets a similarity score threshold and only returns documents with a score above that threshold"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "d4272ad8",
"metadata": {},
"outputs": [],
"source": [
"retriever = db.as_retriever(search_type=\"similarity_score_threshold\", search_kwargs={\"score_threshold\": .5})"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "438e761d",
"metadata": {},
"outputs": [],
"source": [
"docs = retriever.get_relevant_documents(\"what did he say abotu ketanji brown jackson\")"
]
},
{
"cell_type": "markdown",
"id": "c23b7698",
"metadata": {},
"source": [
"## Specifying top k\n",
"You can also specify search kwargs like `k` to use when doing retrieval."
]
},
@@ -171,7 +195,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.3"
"version": "3.9.1"
}
},
"nbformat": 4,

View File

@@ -0,0 +1,227 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "2ce41f46-5711-4311-b04d-2fe233ac5b1b",
"metadata": {},
"source": [
"# DocArrayHnswSearch\n",
"\n",
">[DocArrayHnswSearch](https://docs.docarray.org/user_guide/storing/index_hnswlib/) is a lightweight Document Index implementation provided by [Docarray](https://docs.docarray.org/) that runs fully locally and is best suited for small- to medium-sized datasets. It stores vectors on disk in [hnswlib](https://github.com/nmslib/hnswlib), and stores all other data in [SQLite](https://www.sqlite.org/index.html).\n",
"\n",
"This notebook shows how to use functionality related to the `DocArrayHnswSearch`."
]
},
{
"cell_type": "markdown",
"id": "7ee37d28",
"metadata": {},
"source": [
"# Setup\n",
"\n",
"Uncomment the below cells to install docarray and get/set your OpenAI api key if you haven't already done so."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "8ce1b8cb-dbf0-40c3-99ee-04f28143331b",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"# !pip install \"docarray[hnswlib]\""
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "878f17df-100f-4854-9e87-472cf36d51f3",
"metadata": {
"scrolled": true,
"tags": []
},
"outputs": [],
"source": [
"# Get an OpenAI token: https://platform.openai.com/account/api-keys\n",
"\n",
"# import os\n",
"# from getpass import getpass\n",
"\n",
"# OPENAI_API_KEY = getpass()\n",
"\n",
"# os.environ[\"OPENAI_API_KEY\"] = OPENAI_API_KEY"
]
},
{
"cell_type": "markdown",
"id": "8dbb6de2",
"metadata": {
"tags": []
},
"source": [
"# Using DocArrayHnswSearch"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "b757afef-ef0a-465d-8e8a-9aadb9c32b88",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"from langchain.embeddings.openai import OpenAIEmbeddings\n",
"from langchain.text_splitter import CharacterTextSplitter\n",
"from langchain.vectorstores import DocArrayHnswSearch\n",
"from langchain.document_loaders import TextLoader"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "605e200e-e711-486b-b36e-cbe5dd2512d7",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"documents = TextLoader('../../../state_of_the_union.txt').load()\n",
"text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)\n",
"docs = text_splitter.split_documents(documents)\n",
"\n",
"embeddings = OpenAIEmbeddings()\n",
"\n",
"db = DocArrayHnswSearch.from_documents(docs, embeddings, work_dir='hnswlib_store/', n_dim=1536)"
]
},
{
"cell_type": "markdown",
"id": "ed6f905b-4853-4a44-9730-614aa8e22b78",
"metadata": {},
"source": [
"## Similarity search"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "4d7e742f-2002-449d-a10e-16046890906c",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"query = \"What did the president say about Ketanji Brown Jackson\"\n",
"docs = db.similarity_search(query)"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "0da9e26f-1fc2-48e6-95a7-f692c853bbd3",
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Tonight. I call on the Senate to: Pass the Freedom to Vote Act. Pass the John Lewis Voting Rights Act. And while youre at it, pass the Disclose Act so Americans can know who is funding our elections. \n",
"\n",
"Tonight, Id like to honor someone who has dedicated his life to serve this country: Justice Stephen Breyer—an Army veteran, Constitutional scholar, and retiring Justice of the United States Supreme Court. Justice Breyer, thank you for your service. \n",
"\n",
"One of the most serious constitutional responsibilities a President has is nominating someone to serve on the United States Supreme Court. \n",
"\n",
"And I did that 4 days ago, when I nominated Circuit Court of Appeals Judge Ketanji Brown Jackson. One of our nations top legal minds, who will continue Justice Breyers legacy of excellence.\n"
]
}
],
"source": [
"print(docs[0].page_content)"
]
},
{
"cell_type": "markdown",
"id": "3febb987-e903-416f-af26-6897d84c8d61",
"metadata": {},
"source": [
"## Similarity search with score"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "40764fdd-357d-475a-8152-5f1979d61a45",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"docs = db.similarity_search_with_score(query)"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "a479fc46-b299-4330-89b9-e9b5a218ea03",
"metadata": {
"tags": []
},
"outputs": [
{
"data": {
"text/plain": [
"(Document(page_content='Tonight. I call on the Senate to: Pass the Freedom to Vote Act. Pass the John Lewis Voting Rights Act. And while youre at it, pass the Disclose Act so Americans can know who is funding our elections. \\n\\nTonight, Id like to honor someone who has dedicated his life to serve this country: Justice Stephen Breyer—an Army veteran, Constitutional scholar, and retiring Justice of the United States Supreme Court. Justice Breyer, thank you for your service. \\n\\nOne of the most serious constitutional responsibilities a President has is nominating someone to serve on the United States Supreme Court. \\n\\nAnd I did that 4 days ago, when I nominated Circuit Court of Appeals Judge Ketanji Brown Jackson. One of our nations top legal minds, who will continue Justice Breyers legacy of excellence.', metadata={}),\n",
" 0.36962226)"
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"docs[0]"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "4d3d4e97-5d2b-4571-8ff9-e3f6b6778714",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"import shutil\n",
"# delete the dir\n",
"shutil.rmtree('hnswlib_store')"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.3"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -0,0 +1,210 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "a3afefb0-7e99-4912-a222-c6b186da11af",
"metadata": {},
"source": [
"# DocArrayInMemorySearch\n",
"\n",
">[DocArrayInMemorySearch](https://docs.docarray.org/user_guide/storing/index_in_memory/) is a document index provided by [Docarray](https://docs.docarray.org/) that stores documents in memory. It is a great starting point for small datasets, where you may not want to launch a database server.\n",
"\n",
"This notebook shows how to use functionality related to the `DocArrayInMemorySearch`."
]
},
{
"cell_type": "markdown",
"id": "5031a3ec",
"metadata": {},
"source": [
"# Setup\n",
"\n",
"Uncomment the below cells to install docarray and get/set your OpenAI api key if you haven't already done so."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "7cd7391f-7759-4a21-952a-2ec972d818c6",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"# !pip install \"docarray\""
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "c6a40ad8-920e-4370-818d-3227e2f506ed",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"# Get an OpenAI token: https://platform.openai.com/account/api-keys\n",
"\n",
"# import os\n",
"# from getpass import getpass\n",
"\n",
"# OPENAI_API_KEY = getpass()\n",
"\n",
"# os.environ[\"OPENAI_API_KEY\"] = OPENAI_API_KEY"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "e49be085-ddf1-4028-8c0c-97836ce4a873",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"from langchain.embeddings.openai import OpenAIEmbeddings\n",
"from langchain.text_splitter import CharacterTextSplitter\n",
"from langchain.vectorstores import DocArrayInMemorySearch\n",
"from langchain.document_loaders import TextLoader"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "38222aee-adc5-44c2-913c-97977b394cf5",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"documents = TextLoader('../../../state_of_the_union.txt').load()\n",
"text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)\n",
"docs = text_splitter.split_documents(documents)\n",
"\n",
"embeddings = OpenAIEmbeddings()\n",
"\n",
"db = DocArrayInMemorySearch.from_documents(docs, embeddings)"
]
},
{
"cell_type": "markdown",
"id": "efbb6684-3846-4332-a624-ddd4d75844c1",
"metadata": {},
"source": [
"## Similarity search"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "aa28a7f8-41d0-4299-84eb-91d1576e8a63",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"query = \"What did the president say about Ketanji Brown Jackson\"\n",
"docs = db.similarity_search(query)"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "1eb16d2a-b466-456a-b412-5e74bb8523dd",
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Tonight. I call on the Senate to: Pass the Freedom to Vote Act. Pass the John Lewis Voting Rights Act. And while youre at it, pass the Disclose Act so Americans can know who is funding our elections. \n",
"\n",
"Tonight, Id like to honor someone who has dedicated his life to serve this country: Justice Stephen Breyer—an Army veteran, Constitutional scholar, and retiring Justice of the United States Supreme Court. Justice Breyer, thank you for your service. \n",
"\n",
"One of the most serious constitutional responsibilities a President has is nominating someone to serve on the United States Supreme Court. \n",
"\n",
"And I did that 4 days ago, when I nominated Circuit Court of Appeals Judge Ketanji Brown Jackson. One of our nations top legal minds, who will continue Justice Breyers legacy of excellence.\n"
]
}
],
"source": [
"print(docs[0].page_content)"
]
},
{
"cell_type": "markdown",
"id": "43896697-f99e-47b6-9117-47a25e9afa9c",
"metadata": {},
"source": [
"## Similarity search with score"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "8e9eef05-1516-469a-ad36-880c69aef7a9",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"docs = db.similarity_search_with_score(query)"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "bd5fb0e4-2a94-4bb4-af8a-27327ecb1a7f",
"metadata": {
"tags": []
},
"outputs": [
{
"data": {
"text/plain": [
"(Document(page_content='Tonight. I call on the Senate to: Pass the Freedom to Vote Act. Pass the John Lewis Voting Rights Act. And while youre at it, pass the Disclose Act so Americans can know who is funding our elections. \\n\\nTonight, Id like to honor someone who has dedicated his life to serve this country: Justice Stephen Breyer—an Army veteran, Constitutional scholar, and retiring Justice of the United States Supreme Court. Justice Breyer, thank you for your service. \\n\\nOne of the most serious constitutional responsibilities a President has is nominating someone to serve on the United States Supreme Court. \\n\\nAnd I did that 4 days ago, when I nominated Circuit Court of Appeals Judge Ketanji Brown Jackson. One of our nations top legal minds, who will continue Justice Breyers legacy of excellence.', metadata={}),\n",
" 0.8154190158347903)"
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"docs[0]"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "3e5da522-ef0e-4a59-91ea-89e563f7b825",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.3"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -920,13 +920,15 @@ class AgentExecutor(Chain):
# See if tool should return directly
tool_return = self._get_tool_return(next_step_action)
if tool_return is not None:
return self._return(tool_return, intermediate_steps)
return self._return(
tool_return, intermediate_steps, run_manager=run_manager
)
iterations += 1
time_elapsed = time.time() - start_time
output = self.agent.return_stopped_response(
self.early_stopping_method, intermediate_steps, **inputs
)
return self._return(output, intermediate_steps)
return self._return(output, intermediate_steps, run_manager=run_manager)
async def _acall(
self,
@@ -957,7 +959,11 @@ class AgentExecutor(Chain):
run_manager=run_manager,
)
if isinstance(next_step_output, AgentFinish):
return await self._areturn(next_step_output, intermediate_steps)
return await self._areturn(
next_step_output,
intermediate_steps,
run_manager=run_manager,
)
intermediate_steps.extend(next_step_output)
if len(next_step_output) == 1:
@@ -965,7 +971,9 @@ class AgentExecutor(Chain):
# See if tool should return directly
tool_return = self._get_tool_return(next_step_action)
if tool_return is not None:
return await self._areturn(tool_return, intermediate_steps)
return await self._areturn(
tool_return, intermediate_steps, run_manager=run_manager
)
iterations += 1
time_elapsed = time.time() - start_time
@@ -980,7 +988,9 @@ class AgentExecutor(Chain):
output = self.agent.return_stopped_response(
self.early_stopping_method, intermediate_steps, **inputs
)
return await self._areturn(output, intermediate_steps)
return await self._areturn(
output, intermediate_steps, run_manager=run_manager
)
def _get_tool_return(
self, next_step_output: Tuple[AgentAction, str]

View File

@@ -32,6 +32,11 @@ openai_callback_var: ContextVar[Optional[OpenAICallbackHandler]] = ContextVar(
tracing_callback_var: ContextVar[Optional[LangChainTracer]] = ContextVar( # noqa: E501
"tracing_callback", default=None
)
tracing_v2_callback_var: ContextVar[
Optional[LangChainTracerV2]
] = ContextVar( # noqa: E501
"tracing_callback_v2", default=None
)
@contextmanager
@@ -727,6 +732,11 @@ def _configure(
or tracer is not None
or os.environ.get("LANGCHAIN_HANDLER") is not None
)
tracer_v2 = tracing_v2_callback_var.get()
tracing_v2_enabled_ = (
os.environ.get("LANGCHAIN_TRACING_V2") is not None or tracer_v2 is not None
)
tracer_session = os.environ.get("LANGCHAIN_SESSION")
if tracer_session is None:
tracer_session = "default"
@@ -746,6 +756,16 @@ def _configure(
handler = LangChainTracer()
handler.load_session(tracer_session)
callback_manager.add_handler(handler, True)
if tracing_v2_enabled_ and not any(
isinstance(handler, LangChainTracerV2)
for handler in callback_manager.handlers
):
if tracer_v2:
callback_manager.add_handler(tracer_v2, True)
else:
handler = LangChainTracerV2()
handler.load_session(tracer_session)
callback_manager.add_handler(handler, True)
if open_ai is not None and not any(
isinstance(handler, OpenAICallbackHandler)
for handler in callback_manager.handlers

View File

@@ -46,6 +46,8 @@ class AlephAlphaAsymmetricSemanticEmbedding(BaseModel, Embeddings):
control_log_additive: Optional[bool] = True
"""Apply controls on prompt items by adding the log(control_factor)
to attention scores."""
aleph_alpha_api_key: Optional[str] = None
"""API key for Aleph Alpha API."""
@root_validator()
def validate_environment(cls, values: Dict) -> Dict:

View File

@@ -77,7 +77,9 @@
"\n",
"Datasets can be created in a number of ways, most often by collecting `Run`'s captured through the LangChain tracing API and converting a set of runs to a dataset.\n",
"\n",
"The V2 tracing API is currently accessible using the `tracing_v2_enabled` context manager. Assuming the server was succesfully started above, running LangChain Agents, Chains, LLMs, and other primitives will then automatically capture traces. We'll start with a simple math example."
"The V2 tracing API is currently accessible using the `tracing_v2_enabled` context manager. Assuming the server was succesfully started above, running LangChain Agents, Chains, LLMs, and other primitives will then automatically capture traces. We'll start with a simple math example.\n",
"\n",
"**Note** You can also use the `LANGCHAIN_TRACING_V2` environment variable to enable tracing for all runs by default, regardless of whether or not those runs happen within the `tracing_v2_enabled` context manager (i.e. `os.environ[\"LANGCHAIN_TRACING_V2\"] = \"true\"`)"
]
},
{
@@ -975,7 +977,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.2"
"version": "3.10.9"
}
},
"nbformat": 4,

View File

@@ -1,3 +1,4 @@
from langchain.retrievers.azure_cognitive_search import AzureCognitiveSearchRetriever
from langchain.retrievers.chatgpt_plugin_retriever import ChatGPTPluginRetriever
from langchain.retrievers.contextual_compression import ContextualCompressionRetriever
from langchain.retrievers.databerry import DataberryRetriever
@@ -31,5 +32,6 @@ __all__ = [
"TimeWeightedVectorStoreRetriever",
"VespaRetriever",
"WeaviateHybridSearchRetriever",
"AzureCognitiveSearchRetriever",
"WikipediaRetriever",
]

View File

@@ -0,0 +1,98 @@
"""Retriever wrapper for Azure Cognitive Search."""
from __future__ import annotations
import json
from typing import Dict, List, Optional
import aiohttp
import requests
from pydantic import BaseModel, Extra, root_validator
from langchain.schema import BaseRetriever, Document
from langchain.utils import get_from_dict_or_env
class AzureCognitiveSearchRetriever(BaseRetriever, BaseModel):
"""Wrapper around Azure Cognitive Search."""
service_name: str = ""
"""Name of Azure Cognitive Search service"""
index_name: str = ""
"""Name of Index inside Azure Cognitive Search service"""
api_key: str = ""
"""API Key. Both Admin and Query keys work, but for reading data it's
recommended to use a Query key."""
api_version: str = "2020-06-30"
"""API version"""
aiosession: Optional[aiohttp.ClientSession] = None
"""ClientSession, in case we want to reuse connection for better performance."""
content_key: str = "content"
"""Key in a retrieved result to set as the Document page_content."""
class Config:
extra = Extra.forbid
arbitrary_types_allowed = True
@root_validator(pre=True)
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that service name, index name and api key exists in environment."""
values["service_name"] = get_from_dict_or_env(
values, "service_name", "AZURE_COGNITIVE_SEARCH_SERVICE_NAME"
)
values["index_name"] = get_from_dict_or_env(
values, "index_name", "AZURE_COGNITIVE_SEARCH_INDEX_NAME"
)
values["api_key"] = get_from_dict_or_env(
values, "api_key", "AZURE_COGNITIVE_SEARCH_API_KEY"
)
return values
def _build_search_url(self, query: str) -> str:
base_url = f"https://{self.service_name}.search.windows.net/"
endpoint_path = f"indexes/{self.index_name}/docs?api-version={self.api_version}"
return base_url + endpoint_path + f"&search={query}"
@property
def _headers(self) -> Dict[str, str]:
return {
"Content-Type": "application/json",
"api-key": self.api_key,
}
def _search(self, query: str) -> List[dict]:
search_url = self._build_search_url(query)
response = requests.get(search_url, headers=self._headers)
if response.status_code != 200:
raise Exception(f"Error in search request: {response}")
return json.loads(response.text)["value"]
async def _asearch(self, query: str) -> List[dict]:
search_url = self._build_search_url(query)
if not self.aiosession:
async with aiohttp.ClientSession() as session:
async with session.get(search_url, headers=self._headers) as response:
response_json = await response.json()
else:
async with self.aiosession.get(
search_url, headers=self._headers
) as response:
response_json = await response.json()
return response_json["value"]
def get_relevant_documents(self, query: str) -> List[Document]:
search_results = self._search(query)
return [
Document(page_content=result.pop(self.content_key), metadata=result)
for result in search_results
]
async def aget_relevant_documents(self, query: str) -> List[Document]:
search_results = await self._asearch(query)
return [
Document(page_content=result.pop(self.content_key), metadata=result)
for result in search_results
]

View File

@@ -5,6 +5,7 @@ from langchain.vectorstores.atlas import AtlasDB
from langchain.vectorstores.base import VectorStore
from langchain.vectorstores.chroma import Chroma
from langchain.vectorstores.deeplake import DeepLake
from langchain.vectorstores.docarray import DocArrayHnswSearch, DocArrayInMemorySearch
from langchain.vectorstores.elastic_vector_search import ElasticVectorSearch
from langchain.vectorstores.faiss import FAISS
from langchain.vectorstores.lancedb import LanceDB
@@ -40,4 +41,6 @@ __all__ = [
"AnalyticDB",
"Tair",
"LanceDB",
"DocArrayHnswSearch",
"DocArrayInMemorySearch",
]

View File

@@ -2,6 +2,7 @@
from __future__ import annotations
import asyncio
import warnings
from abc import ABC, abstractmethod
from functools import partial
from typing import Any, Dict, Iterable, List, Optional, Tuple, Type, TypeVar
@@ -116,6 +117,16 @@ class VectorStore(ABC):
"""Return docs and relevance scores in the range [0, 1].
0 is dissimilar, 1 is most similar.
Args:
query: input text
k: Number of Documents to return. Defaults to 4.
**kwargs: kwargs to be passed to similarity search. Should include:
score_threshold: Optional, a floating point value between 0 to 1 to
filter the resulting set of retrieved docs
Returns:
List of Tuples of (doc, similarity_score)
"""
docs_and_similarities = self._similarity_search_with_relevance_scores(
query, k=k, **kwargs
@@ -124,10 +135,23 @@ class VectorStore(ABC):
similarity < 0.0 or similarity > 1.0
for _, similarity in docs_and_similarities
):
raise ValueError(
warnings.warn(
"Relevance scores must be between"
f" 0 and 1, got {docs_and_similarities}"
)
score_threshold = kwargs.get("score_threshold")
if score_threshold is not None:
docs_and_similarities = [
(doc, similarity)
for doc, similarity in docs_and_similarities
if similarity >= score_threshold
]
if len(docs_and_similarities) == 0:
warnings.warn(
f"No relevant docs were retrieved using the relevance score\
threshold {score_threshold}"
)
return docs_and_similarities
def _similarity_search_with_relevance_scores(
@@ -324,13 +348,29 @@ class VectorStoreRetriever(BaseRetriever, BaseModel):
"""Validate search type."""
if "search_type" in values:
search_type = values["search_type"]
if search_type not in ("similarity", "mmr"):
if search_type not in ("similarity", "similarity_score_threshold", "mmr"):
raise ValueError(f"search_type of {search_type} not allowed.")
if search_type == "similarity_score_threshold":
score_threshold = values["search_kwargs"].get("score_threshold")
if (score_threshold is None) or (
not isinstance(score_threshold, float)
):
raise ValueError(
"`score_threshold` is not specified with a float value(0~1) "
"in `search_kwargs`."
)
return values
def get_relevant_documents(self, query: str) -> List[Document]:
if self.search_type == "similarity":
docs = self.vectorstore.similarity_search(query, **self.search_kwargs)
elif self.search_type == "similarity_score_threshold":
docs_and_similarities = (
self.vectorstore.similarity_search_with_relevance_scores(
query, **self.search_kwargs
)
)
docs = [doc for doc, _ in docs_and_similarities]
elif self.search_type == "mmr":
docs = self.vectorstore.max_marginal_relevance_search(
query, **self.search_kwargs

View File

@@ -0,0 +1,7 @@
from langchain.vectorstores.docarray.hnsw import DocArrayHnswSearch
from langchain.vectorstores.docarray.in_memory import DocArrayInMemorySearch
__all__ = [
"DocArrayHnswSearch",
"DocArrayInMemorySearch",
]

View File

@@ -0,0 +1,199 @@
from abc import ABC
from typing import TYPE_CHECKING, Any, Iterable, List, Optional, Tuple, Type
import numpy as np
from pydantic import Field
from langchain.embeddings.base import Embeddings
from langchain.schema import Document
from langchain.vectorstores import VectorStore
from langchain.vectorstores.utils import maximal_marginal_relevance
if TYPE_CHECKING:
from docarray import BaseDoc
from docarray.index.abstract import BaseDocIndex
def _check_docarray_import() -> None:
try:
import docarray
da_version = docarray.__version__.split(".")
if int(da_version[0]) == 0 and int(da_version[1]) <= 30:
raise ValueError(
f"To use the DocArrayHnswSearch VectorStore the docarray "
f"version >=0.31.0 is expected, received: {docarray.__version__}."
f"To upgrade, please run: `pip install -U docarray`."
)
except ImportError:
raise ImportError(
"Could not import docarray python package. "
'Please install it with `pip install "langchain[docarray]"`.'
)
class DocArrayIndex(VectorStore, ABC):
def __init__(
self,
doc_index: "BaseDocIndex",
embedding: Embeddings,
):
"""Initialize a vector store from DocArray's DocIndex."""
self.doc_index = doc_index
self.embedding = embedding
@staticmethod
def _get_doc_cls(**embeddings_params: Any) -> Type["BaseDoc"]:
"""Get docarray Document class describing the schema of DocIndex."""
from docarray import BaseDoc
from docarray.typing import NdArray
class DocArrayDoc(BaseDoc):
text: Optional[str]
embedding: Optional[NdArray] = Field(**embeddings_params)
metadata: Optional[dict]
return DocArrayDoc
@property
def doc_cls(self) -> Type["BaseDoc"]:
if self.doc_index._schema is None:
raise ValueError("doc_index expected to have non-null _schema attribute.")
return self.doc_index._schema
def add_texts(
self,
texts: Iterable[str],
metadatas: Optional[List[dict]] = None,
**kwargs: Any,
) -> List[str]:
"""Run more texts through the embeddings and add to the vectorstore.
Args:
texts: Iterable of strings to add to the vectorstore.
metadatas: Optional list of metadatas associated with the texts.
Returns:
List of ids from adding the texts into the vectorstore.
"""
ids: List[str] = []
embeddings = self.embedding.embed_documents(list(texts))
for i, (t, e) in enumerate(zip(texts, embeddings)):
m = metadatas[i] if metadatas else {}
doc = self.doc_cls(text=t, embedding=e, metadata=m)
self.doc_index.index([doc])
ids.append(str(doc.id))
return ids
def similarity_search_with_score(
self, query: str, k: int = 4, **kwargs: Any
) -> List[Tuple[Document, float]]:
"""Return docs most similar to query.
Args:
query: Text to look up documents similar to.
k: Number of Documents to return. Defaults to 4.
Returns:
List of Documents most similar to the query and score for each.
"""
query_embedding = self.embedding.embed_query(query)
query_doc = self.doc_cls(embedding=query_embedding) # type: ignore
docs, scores = self.doc_index.find(query_doc, search_field="embedding", limit=k)
result = [
(Document(page_content=doc.text, metadata=doc.metadata), score)
for doc, score in zip(docs, scores)
]
return result
def similarity_search(
self, query: str, k: int = 4, **kwargs: Any
) -> List[Document]:
"""Return docs most similar to query.
Args:
query: Text to look up documents similar to.
k: Number of Documents to return. Defaults to 4.
Returns:
List of Documents most similar to the query.
"""
results = self.similarity_search_with_score(query, k=k, **kwargs)
return [doc for doc, _ in results]
def _similarity_search_with_relevance_scores(
self,
query: str,
k: int = 4,
**kwargs: Any,
) -> List[Tuple[Document, float]]:
"""Return docs and relevance scores, normalized on a scale from 0 to 1.
0 is dissimilar, 1 is most similar.
"""
raise NotImplementedError
def similarity_search_by_vector(
self, embedding: List[float], k: int = 4, **kwargs: Any
) -> List[Document]:
"""Return docs most similar to embedding vector.
Args:
embedding: Embedding to look up documents similar to.
k: Number of Documents to return. Defaults to 4.
Returns:
List of Documents most similar to the query vector.
"""
query_doc = self.doc_cls(embedding=embedding) # type: ignore
docs = self.doc_index.find(
query_doc, search_field="embedding", limit=k
).documents
result = [
Document(page_content=doc.text, metadata=doc.metadata) for doc in docs
]
return result
def max_marginal_relevance_search(
self,
query: str,
k: int = 4,
fetch_k: int = 20,
lambda_mult: float = 0.5,
**kwargs: Any,
) -> List[Document]:
"""Return docs selected using the maximal marginal relevance.
Maximal marginal relevance optimizes for similarity to query AND diversity
among selected documents.
Args:
query: Text to look up documents similar to.
k: Number of Documents to return. Defaults to 4.
fetch_k: Number of Documents to fetch to pass to MMR algorithm.
lambda_mult: Number between 0 and 1 that determines the degree
of diversity among the results with 0 corresponding
to maximum diversity and 1 to minimum diversity.
Defaults to 0.5.
Returns:
List of Documents selected by maximal marginal relevance.
"""
query_embedding = self.embedding.embed_query(query)
query_doc = self.doc_cls(embedding=query_embedding) # type: ignore
docs = self.doc_index.find(
query_doc, search_field="embedding", limit=fetch_k
).documents
mmr_selected = maximal_marginal_relevance(
np.array(query_embedding), docs.embedding, k=k
)
results = [
Document(page_content=docs[idx].text, metadata=docs[idx].metadata)
for idx in mmr_selected
]
return results

View File

@@ -0,0 +1,109 @@
"""Wrapper around Hnswlib store."""
from __future__ import annotations
from typing import Any, List, Literal, Optional
from langchain.embeddings.base import Embeddings
from langchain.vectorstores.docarray.base import (
DocArrayIndex,
_check_docarray_import,
)
class DocArrayHnswSearch(DocArrayIndex):
"""Wrapper around HnswLib storage.
To use it, you should have the ``docarray[hnswlib]`` package with version >=0.31.0
installed. You can install it with `pip install "langchain[hnswlib]"`.
"""
@classmethod
def from_params(
cls,
embedding: Embeddings,
work_dir: str,
n_dim: int,
dist_metric: Literal["cosine", "ip", "l2"] = "cosine",
max_elements: int = 1024,
index: bool = True,
ef_construction: int = 200,
ef: int = 10,
M: int = 16,
allow_replace_deleted: bool = True,
num_threads: int = 1,
**kwargs: Any,
) -> DocArrayHnswSearch:
"""Initialize DocArrayHnswSearch store.
Args:
embedding (Embeddings): Embedding function.
work_dir (str): path to the location where all the data will be stored.
n_dim (int): dimension of an embedding.
dist_metric (str): Distance metric for DocArrayHnswSearch can be one of:
"cosine", "ip", and "l2". Defaults to "cosine".
max_elements (int): Maximum number of vectors that can be stored.
Defaults to 1024.
index (bool): Whether an index should be built for this field.
Defaults to True.
ef_construction (int): defines a construction time/accuracy trade-off.
Defaults to 200.
ef (int): parameter controlling query time/accuracy trade-off.
Defaults to 10.
M (int): parameter that defines the maximum number of outgoing
connections in the graph. Defaults to 16.
allow_replace_deleted (bool): Enables replacing of deleted elements
with new added ones. Defaults to True.
num_threads (int): Sets the number of cpu threads to use. Defaults to 1.
**kwargs: Other keyword arguments to be passed to the get_doc_cls method.
"""
_check_docarray_import()
from docarray.index import HnswDocumentIndex
doc_cls = cls._get_doc_cls(
dim=n_dim,
space=dist_metric,
max_elements=max_elements,
index=index,
ef_construction=ef_construction,
ef=ef,
M=M,
allow_replace_deleted=allow_replace_deleted,
num_threads=num_threads,
**kwargs,
)
doc_index = HnswDocumentIndex[doc_cls](work_dir=work_dir) # type: ignore
return cls(doc_index, embedding)
@classmethod
def from_texts(
cls,
texts: List[str],
embedding: Embeddings,
metadatas: Optional[List[dict]] = None,
work_dir: Optional[str] = None,
n_dim: Optional[int] = None,
**kwargs: Any,
) -> DocArrayHnswSearch:
"""Create an DocArrayHnswSearch store and insert data.
Args:
texts (List[str]): Text data.
embedding (Embeddings): Embedding function.
metadatas (Optional[List[dict]]): Metadata for each text if it exists.
Defaults to None.
work_dir (str): path to the location where all the data will be stored.
n_dim (int): dimension of an embedding.
**kwargs: Other keyword arguments to be passed to the __init__ method.
Returns:
DocArrayHnswSearch Vector Store
"""
if work_dir is None:
raise ValueError("`work_dir` parameter has not been set.")
if n_dim is None:
raise ValueError("`n_dim` parameter has not been set.")
store = cls.from_params(embedding, work_dir, n_dim, **kwargs)
store.add_texts(texts=texts, metadatas=metadatas)
return store

View File

@@ -0,0 +1,69 @@
"""Wrapper around in-memory storage."""
from __future__ import annotations
from typing import Any, Dict, List, Literal, Optional
from langchain.embeddings.base import Embeddings
from langchain.vectorstores.docarray.base import (
DocArrayIndex,
_check_docarray_import,
)
class DocArrayInMemorySearch(DocArrayIndex):
"""Wrapper around in-memory storage for exact search.
To use it, you should have the ``docarray`` package with version >=0.31.0 installed.
You can install it with `pip install "langchain[in_memory_store]"`.
"""
@classmethod
def from_params(
cls,
embedding: Embeddings,
metric: Literal[
"cosine_sim", "euclidian_dist", "sgeuclidean_dist"
] = "cosine_sim",
**kwargs: Any,
) -> DocArrayInMemorySearch:
"""Initialize DocArrayInMemorySearch store.
Args:
embedding (Embeddings): Embedding function.
metric (str): metric for exact nearest-neighbor search.
Can be one of: "cosine_sim", "euclidean_dist" and "sqeuclidean_dist".
Defaults to "cosine_sim".
**kwargs: Other keyword arguments to be passed to the get_doc_cls method.
"""
_check_docarray_import()
from docarray.index import InMemoryExactNNIndex
doc_cls = cls._get_doc_cls(space=metric, **kwargs)
doc_index = InMemoryExactNNIndex[doc_cls]() # type: ignore
return cls(doc_index, embedding)
@classmethod
def from_texts(
cls,
texts: List[str],
embedding: Embeddings,
metadatas: Optional[List[Dict[Any, Any]]] = None,
**kwargs: Any,
) -> DocArrayInMemorySearch:
"""Create an DocArrayInMemorySearch store and insert data.
Args:
texts (List[str]): Text data.
embedding (Embeddings): Embedding function.
metadatas (Optional[List[Dict[Any, Any]]]): Metadata for each text
if it exists. Defaults to None.
metric (str): metric for exact nearest-neighbor search.
Can be one of: "cosine_sim", "euclidean_dist" and "sqeuclidean_dist".
Defaults to "cosine_sim".
Returns:
DocArrayInMemorySearch Vector Store
"""
store = cls.from_params(embedding, **kwargs)
store.add_texts(texts=texts, metadatas=metadatas)
return store

457
poetry.lock generated
View File

@@ -883,14 +883,14 @@ files = [
[[package]]
name = "certifi"
version = "2022.12.7"
version = "2023.5.7"
description = "Python package for providing Mozilla's CA Bundle."
category = "main"
optional = false
python-versions = ">=3.6"
files = [
{file = "certifi-2022.12.7-py3-none-any.whl", hash = "sha256:4ad3232f5e926d6718ec31cfc1fcadfde020920e278684144551c91769c7bc18"},
{file = "certifi-2022.12.7.tar.gz", hash = "sha256:35824b4c3a97115964b408844d64aa14db1cc518f6562e8d7261699d1350a9e3"},
{file = "certifi-2023.5.7-py3-none-any.whl", hash = "sha256:c6c2e98f5c7869efca1f8916fed228dd91539f9f1b444c314c06eef02980c716"},
{file = "certifi-2023.5.7.tar.gz", hash = "sha256:0f0d56dc5a6ad56fd4ba36484d6cc34451e1c6548c61daad8c320169f91eddc7"},
]
[[package]]
@@ -1560,43 +1560,51 @@ wmi = ["wmi (>=1.5.1,<2.0.0)"]
[[package]]
name = "docarray"
version = "0.21.0"
description = "The data structure for unstructured data"
version = "0.31.0"
description = "The data structure for multimodal data"
category = "main"
optional = true
python-versions = "*"
python-versions = ">=3.7,<4.0"
files = [
{file = "docarray-0.21.0.tar.gz", hash = "sha256:3c9f605123800c1b0cdf8c458be3fb19c05e9a81f723e51200ef531b02e689ee"},
{file = "docarray-0.31.0-py3-none-any.whl", hash = "sha256:3783e9bdcf0d59b17499660e54577f4e3d202545998afca9306ebcc09cf0e14e"},
{file = "docarray-0.31.0.tar.gz", hash = "sha256:a79d1ed70bd143b3e2a53ff90a62e4b3ce7231d5d237a2fab9b8311d7ae7d245"},
]
[package.dependencies]
jina-hubble-sdk = ">=0.24.0"
numpy = "*"
rich = ">=12.0.0"
numpy = ">=1.17.3"
orjson = ">=3.8.2"
pydantic = ">=1.10.2"
rich = ">=13.1.0"
types-requests = ">=2.28.11.6"
typing-inspect = ">=0.8.0"
[package.extras]
annlite = ["annlite"]
benchmark = ["h5py", "matplotlib", "pandas", "seaborn"]
common = ["Pillow", "fastapi", "lz4", "matplotlib", "protobuf (>=3.13.0)", "pydantic (>=1.9.0)", "requests", "uvicorn"]
elasticsearch = ["elasticsearch (>=8.2.0)"]
full = ["Pillow", "av", "fastapi", "grpcio (>=1.46.0,<1.48.1)", "grpcio-health-checking (>=1.46.0,<1.48.1)", "grpcio-reflection (>=1.46.0,<1.48.1)", "ipython", "lz4", "matplotlib", "protobuf (>=3.13.0)", "pydantic (>=1.9.0)", "requests", "scipy", "strawberry-graphql", "trimesh[easy]", "uvicorn"]
milvus = ["pymilvus (>=2.1.0,<2.2.0)"]
opensearch = ["opensearch-py (==2.0.1)"]
qdrant = ["qdrant-client (>=0.10.3,<0.11.0)"]
redis = ["redis (>=4.3.0)"]
test = ["annlite", "black (==22.3.0)", "datasets", "elasticsearch (>=8.2.0)", "jina", "jupyterlab", "mock", "onnx", "onnxruntime", "opensearch-py (==2.0.1)", "paddlepaddle", "protobuf (>=3.13.0,<=3.20.0)", "pymilvus (==2.1.3)", "pytest", "pytest-cov (==3.0.0)", "pytest-custom_exit_code", "pytest-mock", "pytest-mock", "pytest-repeat", "pytest-reraise", "pytest-timeout", "redis (>=4.3.0)", "tensorflow (==2.7.0)", "torch (==1.9.0)", "torchvision (==0.10.0)", "transformers (>=4.16.2)", "weaviate-client (>=3.9.0,<3.10.0)"]
weaviate = ["weaviate-client (>=3.9.0,<3.10.0)"]
audio = ["pydub (>=0.25.1,<0.26.0)"]
aws = ["smart-open[s3] (>=6.3.0)"]
elasticsearch = ["elastic-transport (>=8.4.0,<9.0.0)", "elasticsearch (>=7.10.1)"]
full = ["av (>=10.0.0)", "lz4 (>=1.0.0)", "pandas (>=1.1.0)", "pillow (>=9.3.0)", "protobuf (>=3.19.0)", "pydub (>=0.25.1,<0.26.0)", "trimesh[easy] (>=3.17.1)", "types-pillow (>=9.3.0.1)"]
hnswlib = ["hnswlib (>=0.6.2)"]
image = ["pillow (>=9.3.0)", "types-pillow (>=9.3.0.1)"]
jac = ["jina-hubble-sdk (>=0.34.0)"]
mesh = ["trimesh[easy] (>=3.17.1)"]
pandas = ["pandas (>=1.1.0)"]
proto = ["lz4 (>=1.0.0)", "protobuf (>=3.19.0)"]
qdrant = ["qdrant-client (>=1.1.4)"]
torch = ["torch (>=1.0.0)"]
video = ["av (>=10.0.0)"]
weaviate = ["weaviate-client (>=3.15)"]
web = ["fastapi (>=0.87.0)"]
[[package]]
name = "docker"
version = "6.0.1"
version = "6.1.1"
description = "A Python library for the Docker Engine API."
category = "main"
optional = true
python-versions = ">=3.7"
files = [
{file = "docker-6.0.1-py3-none-any.whl", hash = "sha256:dbcb3bd2fa80dca0788ed908218bf43972772009b881ed1e20dfc29a65e49782"},
{file = "docker-6.0.1.tar.gz", hash = "sha256:896c4282e5c7af5c45e8b683b0b0c33932974fe6e50fc6906a0a83616ab3da97"},
{file = "docker-6.1.1-py3-none-any.whl", hash = "sha256:8308b23d3d0982c74f7aa0a3abd774898c0c4fba006e9c3bde4f68354e470fe2"},
{file = "docker-6.1.1.tar.gz", hash = "sha256:5ec18b9c49d48ee145a5b5824bb126dc32fc77931e18444783fc07a7724badc0"},
]
[package.dependencies]
@@ -2039,14 +2047,14 @@ files = [
[[package]]
name = "fsspec"
version = "2023.4.0"
version = "2023.5.0"
description = "File-system specification"
category = "main"
optional = false
python-versions = ">=3.8"
files = [
{file = "fsspec-2023.4.0-py3-none-any.whl", hash = "sha256:f398de9b49b14e9d84d2c2d11b7b67121bc072fe97b930c4e5668ac3917d8307"},
{file = "fsspec-2023.4.0.tar.gz", hash = "sha256:bf064186cd8808f0b2f6517273339ba0a0c8fb1b7048991c28bc67f58b8b67cd"},
{file = "fsspec-2023.5.0-py3-none-any.whl", hash = "sha256:51a4ad01a5bb66fcc58036e288c0d53d3975a0df2a5dc59a93b59bade0391f2a"},
{file = "fsspec-2023.5.0.tar.gz", hash = "sha256:b3b56e00fb93ea321bc9e5d9cf6f8522a0198b20eb24e02774d329e9c6fb84ce"},
]
[package.extras]
@@ -2099,26 +2107,24 @@ files = [
[[package]]
name = "google-api-core"
version = "2.11.0"
version = "2.8.2"
description = "Google API client core library"
category = "main"
optional = true
python-versions = ">=3.7"
python-versions = ">=3.6"
files = [
{file = "google-api-core-2.11.0.tar.gz", hash = "sha256:4b9bb5d5a380a0befa0573b302651b8a9a89262c1730e37bf423cec511804c22"},
{file = "google_api_core-2.11.0-py3-none-any.whl", hash = "sha256:ce222e27b0de0d7bc63eb043b956996d6dccab14cc3b690aaea91c9cc99dc16e"},
{file = "google-api-core-2.8.2.tar.gz", hash = "sha256:06f7244c640322b508b125903bb5701bebabce8832f85aba9335ec00b3d02edc"},
{file = "google_api_core-2.8.2-py3-none-any.whl", hash = "sha256:93c6a91ccac79079ac6bbf8b74ee75db970cc899278b97d53bc012f35908cf50"},
]
[package.dependencies]
google-auth = ">=2.14.1,<3.0dev"
google-auth = ">=1.25.0,<3.0dev"
googleapis-common-protos = ">=1.56.2,<2.0dev"
protobuf = ">=3.19.5,<3.20.0 || >3.20.0,<3.20.1 || >3.20.1,<4.21.0 || >4.21.0,<4.21.1 || >4.21.1,<4.21.2 || >4.21.2,<4.21.3 || >4.21.3,<4.21.4 || >4.21.4,<4.21.5 || >4.21.5,<5.0.0dev"
protobuf = ">=3.15.0,<5.0.0dev"
requests = ">=2.18.0,<3.0.0dev"
[package.extras]
grpc = ["grpcio (>=1.33.2,<2.0dev)", "grpcio (>=1.49.1,<2.0dev)", "grpcio-status (>=1.33.2,<2.0dev)", "grpcio-status (>=1.49.1,<2.0dev)"]
grpcgcp = ["grpcio-gcp (>=0.2.2,<1.0dev)"]
grpcio-gcp = ["grpcio-gcp (>=0.2.2,<1.0dev)"]
grpc = ["grpcio (>=1.33.2,<2.0dev)", "grpcio-status (>=1.33.2,<2.0dev)"]
[[package]]
name = "google-api-python-client"
@@ -2232,32 +2238,32 @@ requests = "*"
[[package]]
name = "googleapis-common-protos"
version = "1.59.0"
version = "1.56.4"
description = "Common protobufs used in Google APIs"
category = "main"
optional = true
python-versions = ">=3.7"
files = [
{file = "googleapis-common-protos-1.59.0.tar.gz", hash = "sha256:4168fcb568a826a52f23510412da405abd93f4d23ba544bb68d943b14ba3cb44"},
{file = "googleapis_common_protos-1.59.0-py2.py3-none-any.whl", hash = "sha256:b287dc48449d1d41af0c69f4ea26242b5ae4c3d7249a38b0984c86a4caffff1f"},
{file = "googleapis-common-protos-1.56.4.tar.gz", hash = "sha256:c25873c47279387cfdcbdafa36149887901d36202cb645a0e4f29686bf6e4417"},
{file = "googleapis_common_protos-1.56.4-py2.py3-none-any.whl", hash = "sha256:8eb2cbc91b69feaf23e32452a7ae60e791e09967d81d4fcc7fc388182d1bd394"},
]
[package.dependencies]
protobuf = ">=3.19.5,<3.20.0 || >3.20.0,<3.20.1 || >3.20.1,<4.21.1 || >4.21.1,<4.21.2 || >4.21.2,<4.21.3 || >4.21.3,<4.21.4 || >4.21.4,<4.21.5 || >4.21.5,<5.0.0dev"
protobuf = ">=3.15.0,<5.0.0dev"
[package.extras]
grpc = ["grpcio (>=1.44.0,<2.0.0dev)"]
grpc = ["grpcio (>=1.0.0,<2.0.0dev)"]
[[package]]
name = "gptcache"
version = "0.1.21"
version = "0.1.22"
description = "GPTCache, a powerful caching library that can be used to speed up and lower the cost of chat applications that rely on the LLM service. GPTCache works as a memcache for AIGC applications, similar to how Redis works for traditional applications."
category = "main"
optional = false
python-versions = ">=3.8.1"
files = [
{file = "gptcache-0.1.21-py3-none-any.whl", hash = "sha256:76322a19f96fe0576857072c62a7b29bc680dfde719d551d5bc1aedd0d8a5f34"},
{file = "gptcache-0.1.21.tar.gz", hash = "sha256:4c3eb750b972cc95681233358a7bbfd61233827e76ae81be47668552132a9002"},
{file = "gptcache-0.1.22-py3-none-any.whl", hash = "sha256:081fada6f4f2f57ef2955ee1ce1224eb4f3511546d7efd483648f1ff8d257fdb"},
{file = "gptcache-0.1.22.tar.gz", hash = "sha256:5fb7b7eb7ae774f2ec6c9b9dbcd7829da4a83925776d5edc98181811d8f71a0f"},
]
[package.dependencies]
@@ -2565,7 +2571,7 @@ numpy = ">=1.14.5"
name = "hnswlib"
version = "0.7.0"
description = "hnswlib"
category = "dev"
category = "main"
optional = false
python-versions = "*"
files = [
@@ -2856,14 +2862,14 @@ files = [
[[package]]
name = "ipykernel"
version = "6.22.0"
version = "6.23.0"
description = "IPython Kernel for Jupyter"
category = "dev"
optional = false
python-versions = ">=3.8"
files = [
{file = "ipykernel-6.22.0-py3-none-any.whl", hash = "sha256:1ae6047c1277508933078163721bbb479c3e7292778a04b4bacf0874550977d6"},
{file = "ipykernel-6.22.0.tar.gz", hash = "sha256:302558b81f1bc22dc259fb2a0c5c7cf2f4c0bdb21b50484348f7bafe7fb71421"},
{file = "ipykernel-6.23.0-py3-none-any.whl", hash = "sha256:fc886f1dcdc0ec17f277e4d21fd071c857d381adcb04f3f3735d25325ca323c6"},
{file = "ipykernel-6.23.0.tar.gz", hash = "sha256:bd6f487d9e2744c84f6e667d46462d7647a4c862e70e08282f05a52b9d4b705f"},
]
[package.dependencies]
@@ -2890,14 +2896,14 @@ test = ["flaky", "ipyparallel", "pre-commit", "pytest (>=7.0)", "pytest-asyncio"
[[package]]
name = "ipython"
version = "8.12.1"
version = "8.12.2"
description = "IPython: Productive Interactive Computing"
category = "dev"
optional = false
python-versions = ">=3.8"
files = [
{file = "ipython-8.12.1-py3-none-any.whl", hash = "sha256:e3015a1a4aa09b3984fb81b9cef4f0772af5a549878b81efb094cda8bb121993"},
{file = "ipython-8.12.1.tar.gz", hash = "sha256:2442915417763b62181009259782975fa50bb5eedb97ae97fb614204bf6ecc21"},
{file = "ipython-8.12.2-py3-none-any.whl", hash = "sha256:ea8801f15dfe4ffb76dea1b09b847430ffd70d827b41735c64a0638a04103bfc"},
{file = "ipython-8.12.2.tar.gz", hash = "sha256:c7b80eb7f5a855a88efc971fda506ff7a91c280b42cdae26643e0f601ea281ea"},
]
[package.dependencies]
@@ -3038,20 +3044,20 @@ testing = ["Django (<3.1)", "attrs", "colorama", "docopt", "pytest (<7.0.0)"]
[[package]]
name = "jina"
version = "3.15.0"
version = "3.14.1"
description = "Build multimodal AI services via cloud native technologies · Neural Search · Generative AI · MLOps"
category = "main"
optional = true
python-versions = "*"
files = [
{file = "jina-3.15.0.tar.gz", hash = "sha256:18a3be8ddca14ed66a554d8480a277bcb7620ebc6ae11352a9835c91865f9d1e"},
{file = "jina-3.14.1.tar.gz", hash = "sha256:00b1f5995b13c9a49a2287bd534bd32eb8c05706064752035d569e616a15b411"},
]
[package.dependencies]
aiofiles = "*"
aiohttp = "*"
aiostream = "*"
docarray = ">=0.16.4,<0.30.0"
docarray = ">=0.16.4"
docker = "*"
fastapi = ">=0.76.0"
filelock = "*"
@@ -3085,14 +3091,14 @@ websockets = "*"
aiofiles = ["aiofiles"]
aiohttp = ["aiohttp"]
aiostream = ["aiostream"]
all = ["Pillow", "aiofiles", "aiohttp", "aiostream", "black (==22.3.0)", "bs4", "coverage (==6.2)", "docarray (>=0.16.4,<0.30.0)", "docker", "fastapi (>=0.76.0)", "filelock", "flaky", "grpcio (>=1.46.0,<1.48.1)", "grpcio-health-checking (>=1.46.0,<1.48.1)", "grpcio-reflection (>=1.46.0,<1.48.1)", "jcloud (>=0.0.35)", "jina-hubble-sdk (>=0.30.4)", "jsonschema", "kubernetes (>=18.20.0)", "mock", "numpy", "opentelemetry-api (>=1.12.0)", "opentelemetry-exporter-otlp (>=1.12.0)", "opentelemetry-exporter-otlp-proto-grpc (>=1.13.0)", "opentelemetry-exporter-prometheus (>=1.12.0rc1)", "opentelemetry-instrumentation-aiohttp-client (>=0.33b0)", "opentelemetry-instrumentation-fastapi (>=0.33b0)", "opentelemetry-instrumentation-grpc (>=0.35b0)", "opentelemetry-sdk (>=1.14.0)", "opentelemetry-test-utils (>=0.33b0)", "packaging (>=20.0)", "pathspec", "portforward (>=0.2.4,<0.4.3)", "prometheus-api-client (>=0.5.1)", "prometheus_client (>=0.12.0)", "protobuf (>=3.19.0)", "psutil", "pydantic", "pytest", "pytest-asyncio", "pytest-cov (==3.0.0)", "pytest-custom_exit_code", "pytest-kind (==22.11.1)", "pytest-lazy-fixture", "pytest-mock", "pytest-repeat", "pytest-reraise", "pytest-timeout", "python-multipart", "pyyaml (>=5.3.1)", "requests", "requests-mock", "scipy (>=1.6.1)", "sgqlc", "strawberry-graphql (>=0.96.0)", "tensorflow (>=2.0)", "torch", "uvicorn[standard]", "uvloop", "watchfiles (>=0.18.0)", "websockets"]
all = ["Pillow", "aiofiles", "aiohttp", "aiostream", "black (==22.3.0)", "bs4", "coverage (==6.2)", "docarray (>=0.16.4)", "docker", "fastapi (>=0.76.0)", "filelock", "flaky", "grpcio (>=1.46.0,<1.48.1)", "grpcio-health-checking (>=1.46.0,<1.48.1)", "grpcio-reflection (>=1.46.0,<1.48.1)", "jcloud (>=0.0.35)", "jina-hubble-sdk (>=0.30.4)", "jsonschema", "kubernetes (>=18.20.0)", "mock", "numpy", "opentelemetry-api (>=1.12.0)", "opentelemetry-exporter-otlp (>=1.12.0)", "opentelemetry-exporter-otlp-proto-grpc (>=1.13.0)", "opentelemetry-exporter-prometheus (>=1.12.0rc1)", "opentelemetry-instrumentation-aiohttp-client (>=0.33b0)", "opentelemetry-instrumentation-fastapi (>=0.33b0)", "opentelemetry-instrumentation-grpc (>=0.35b0)", "opentelemetry-sdk (>=1.14.0)", "opentelemetry-test-utils (>=0.33b0)", "packaging (>=20.0)", "pathspec", "portforward (>=0.2.4)", "prometheus-api-client (>=0.5.1)", "prometheus_client (>=0.12.0)", "protobuf (>=3.19.0)", "psutil", "pydantic", "pytest", "pytest-asyncio", "pytest-cov (==3.0.0)", "pytest-custom_exit_code", "pytest-kind (==22.11.1)", "pytest-lazy-fixture", "pytest-mock", "pytest-repeat", "pytest-reraise", "pytest-timeout", "python-multipart", "pyyaml (>=5.3.1)", "requests", "requests-mock", "scipy (>=1.6.1)", "sgqlc", "strawberry-graphql (>=0.96.0)", "tensorflow (>=2.0)", "torch", "uvicorn[standard]", "uvloop", "watchfiles (>=0.18.0)", "websockets"]
black = ["black (==22.3.0)"]
bs4 = ["bs4"]
cicd = ["bs4", "jsonschema", "portforward (>=0.2.4,<0.4.3)", "sgqlc", "strawberry-graphql (>=0.96.0)", "tensorflow (>=2.0)", "torch"]
core = ["aiostream", "docarray (>=0.16.4,<0.30.0)", "grpcio (>=1.46.0,<1.48.1)", "grpcio-health-checking (>=1.46.0,<1.48.1)", "grpcio-reflection (>=1.46.0,<1.48.1)", "jcloud (>=0.0.35)", "jina-hubble-sdk (>=0.30.4)", "numpy", "opentelemetry-api (>=1.12.0)", "opentelemetry-instrumentation-grpc (>=0.35b0)", "packaging (>=20.0)", "protobuf (>=3.19.0)", "pyyaml (>=5.3.1)"]
cicd = ["bs4", "jsonschema", "portforward (>=0.2.4)", "sgqlc", "strawberry-graphql (>=0.96.0)", "tensorflow (>=2.0)", "torch"]
core = ["docarray (>=0.16.4)", "grpcio (>=1.46.0,<1.48.1)", "grpcio-health-checking (>=1.46.0,<1.48.1)", "grpcio-reflection (>=1.46.0,<1.48.1)", "jcloud (>=0.0.35)", "jina-hubble-sdk (>=0.30.4)", "numpy", "opentelemetry-api (>=1.12.0)", "opentelemetry-instrumentation-grpc (>=0.35b0)", "packaging (>=20.0)", "protobuf (>=3.19.0)", "pyyaml (>=5.3.1)"]
coverage = ["coverage (==6.2)"]
devel = ["aiofiles", "aiohttp", "docker", "fastapi (>=0.76.0)", "filelock", "opentelemetry-exporter-otlp (>=1.12.0)", "opentelemetry-exporter-otlp-proto-grpc (>=1.13.0)", "opentelemetry-exporter-prometheus (>=1.12.0rc1)", "opentelemetry-instrumentation-aiohttp-client (>=0.33b0)", "opentelemetry-instrumentation-fastapi (>=0.33b0)", "opentelemetry-sdk (>=1.14.0)", "pathspec", "prometheus_client (>=0.12.0)", "pydantic", "python-multipart", "requests", "sgqlc", "strawberry-graphql (>=0.96.0)", "uvicorn[standard]", "uvloop", "watchfiles (>=0.18.0)", "websockets"]
docarray = ["docarray (>=0.16.4,<0.30.0)"]
devel = ["aiofiles", "aiohttp", "aiostream", "docker", "fastapi (>=0.76.0)", "filelock", "opentelemetry-exporter-otlp (>=1.12.0)", "opentelemetry-exporter-otlp-proto-grpc (>=1.13.0)", "opentelemetry-exporter-prometheus (>=1.12.0rc1)", "opentelemetry-instrumentation-aiohttp-client (>=0.33b0)", "opentelemetry-instrumentation-fastapi (>=0.33b0)", "opentelemetry-sdk (>=1.14.0)", "pathspec", "prometheus_client (>=0.12.0)", "pydantic", "python-multipart", "requests", "sgqlc", "strawberry-graphql (>=0.96.0)", "uvicorn[standard]", "uvloop", "watchfiles (>=0.18.0)", "websockets"]
docarray = ["docarray (>=0.16.4)"]
docker = ["docker"]
fastapi = ["fastapi (>=0.76.0)"]
filelock = ["filelock"]
@@ -3119,7 +3125,7 @@ packaging = ["packaging (>=20.0)"]
pathspec = ["pathspec"]
perf = ["opentelemetry-exporter-otlp (>=1.12.0)", "opentelemetry-exporter-otlp-proto-grpc (>=1.13.0)", "opentelemetry-exporter-prometheus (>=1.12.0rc1)", "opentelemetry-instrumentation-aiohttp-client (>=0.33b0)", "opentelemetry-instrumentation-fastapi (>=0.33b0)", "opentelemetry-sdk (>=1.14.0)", "prometheus_client (>=0.12.0)", "uvloop"]
pillow = ["Pillow"]
portforward = ["portforward (>=0.2.4,<0.4.3)"]
portforward = ["portforward (>=0.2.4)"]
prometheus-api-client = ["prometheus-api-client (>=0.5.1)"]
prometheus-client = ["prometheus_client (>=0.12.0)"]
protobuf = ["protobuf (>=3.19.0)"]
@@ -3141,7 +3147,7 @@ requests = ["requests"]
requests-mock = ["requests-mock"]
scipy = ["scipy (>=1.6.1)"]
sgqlc = ["sgqlc"]
standard = ["aiofiles", "aiohttp", "docker", "fastapi (>=0.76.0)", "filelock", "opentelemetry-exporter-otlp (>=1.12.0)", "opentelemetry-exporter-prometheus (>=1.12.0rc1)", "opentelemetry-instrumentation-aiohttp-client (>=0.33b0)", "opentelemetry-instrumentation-fastapi (>=0.33b0)", "opentelemetry-sdk (>=1.14.0)", "pathspec", "prometheus_client (>=0.12.0)", "pydantic", "python-multipart", "requests", "uvicorn[standard]", "uvloop", "websockets"]
standard = ["aiofiles", "aiohttp", "aiostream", "docker", "fastapi (>=0.76.0)", "filelock", "opentelemetry-exporter-otlp (>=1.12.0)", "opentelemetry-exporter-prometheus (>=1.12.0rc1)", "opentelemetry-instrumentation-aiohttp-client (>=0.33b0)", "opentelemetry-instrumentation-fastapi (>=0.33b0)", "opentelemetry-sdk (>=1.14.0)", "pathspec", "prometheus_client (>=0.12.0)", "pydantic", "python-multipart", "requests", "uvicorn[standard]", "uvloop", "websockets"]
standrad = ["opentelemetry-exporter-otlp-proto-grpc (>=1.13.0)"]
strawberry-graphql = ["strawberry-graphql (>=0.96.0)"]
tensorflow = ["tensorflow (>=2.0)"]
@@ -3579,18 +3585,18 @@ files = [
[[package]]
name = "lancedb"
version = "0.1.1"
version = "0.1.2"
description = "lancedb"
category = "main"
optional = true
python-versions = ">=3.8"
files = [
{file = "lancedb-0.1.1-py3-none-any.whl", hash = "sha256:f98c993194f48a4adc1d11123382f47af16dd0c6254b8d2e84ddf20453727ea6"},
{file = "lancedb-0.1.1.tar.gz", hash = "sha256:7a6443a8244a370ce43e16f6f424856e275e02e67fe8ee03d7280d67dae0b056"},
{file = "lancedb-0.1.2-py3-none-any.whl", hash = "sha256:aa2baea7d16caeaa4c720c25ab46b5c5d88d8833486724e5a132e5b6cf392663"},
{file = "lancedb-0.1.2.tar.gz", hash = "sha256:d561568dacaa4fcdf5aac262bdb807004bb0dde550a44d43f7cdb4f95956b2bf"},
]
[package.dependencies]
pylance = ">=0.4.4"
pylance = ">=0.4.6"
ratelimiter = "*"
retry = "*"
tqdm = "*"
@@ -4349,14 +4355,14 @@ testing = ["beautifulsoup4", "coverage[toml]", "pytest (>=6,<7)", "pytest-cov",
[[package]]
name = "nbclassic"
version = "0.5.6"
version = "1.0.0"
description = "Jupyter Notebook as a Jupyter Server extension."
category = "dev"
optional = false
python-versions = ">=3.7"
files = [
{file = "nbclassic-0.5.6-py3-none-any.whl", hash = "sha256:e3c8b7de80046c4a36a74662a5e325386d345289906c618366d8154e03dc2322"},
{file = "nbclassic-0.5.6.tar.gz", hash = "sha256:aab53fa1bea084fb6ade5c538b011a4f070c69f88d72878a8e8fb356f152509f"},
{file = "nbclassic-1.0.0-py3-none-any.whl", hash = "sha256:f99e4769b4750076cd4235c044b61232110733322384a94a63791d2e7beacc66"},
{file = "nbclassic-1.0.0.tar.gz", hash = "sha256:0ae11eb2319455d805596bf320336cda9554b41d99ab9a3c31bf8180bffa30e3"},
]
[package.dependencies]
@@ -4408,14 +4414,14 @@ test = ["flaky", "ipykernel", "ipython", "ipywidgets", "nbconvert (>=7.0.0)", "p
[[package]]
name = "nbconvert"
version = "7.3.1"
version = "7.4.0"
description = "Converting Jupyter Notebooks"
category = "dev"
optional = false
python-versions = ">=3.7"
files = [
{file = "nbconvert-7.3.1-py3-none-any.whl", hash = "sha256:d2e95904666f1ff77d36105b9de4e0801726f93b862d5b28f69e93d99ad3b19c"},
{file = "nbconvert-7.3.1.tar.gz", hash = "sha256:78685362b11d2e8058e70196fe83b09abed8df22d3e599cf271f4d39fdc48b9e"},
{file = "nbconvert-7.4.0-py3-none-any.whl", hash = "sha256:af5064a9db524f9f12f4e8be7f0799524bd5b14c1adea37e34e83c95127cc818"},
{file = "nbconvert-7.4.0.tar.gz", hash = "sha256:51b6c77b507b177b73f6729dba15676e42c4e92bcb00edc8cc982ee72e7d89d7"},
]
[package.dependencies]
@@ -5201,6 +5207,62 @@ numpy = ">=1.7"
docs = ["numpydoc", "sphinx (==1.2.3)", "sphinx-rtd-theme", "sphinxcontrib-napoleon"]
tests = ["pytest", "pytest-cov", "pytest-pep8"]
[[package]]
name = "orjson"
version = "3.8.12"
description = "Fast, correct Python JSON library supporting dataclasses, datetimes, and numpy"
category = "main"
optional = true
python-versions = ">=3.7"
files = [
{file = "orjson-3.8.12-cp310-cp310-macosx_11_0_x86_64.macosx_11_0_arm64.macosx_11_0_universal2.whl", hash = "sha256:c84046e890e13a119404a83f2e09e622509ed4692846ff94c4ca03654fbc7fb5"},
{file = "orjson-3.8.12-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:29706dd8189835bcf1781faed286e99ae54fd6165437d364dfdbf0276bf39b19"},
{file = "orjson-3.8.12-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:f4e22b0aa70c963ac01fcd620de15be21a5027711b0e5d4b96debcdeea43e3ae"},
{file = "orjson-3.8.12-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:6d1acf52d3a4b9384af09a5c2658c3a7a472a4d62a0ad1fe2c8fab8ef460c9b4"},
{file = "orjson-3.8.12-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:a72b50719bdd6bb0acfca3d4d1c841aa4b191f3ff37268e7aba04e5d6be44ccd"},
{file = "orjson-3.8.12-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:83e8c740a718fa6d511a82e463adc7ab17631c6eea81a716b723e127a9c51d57"},
{file = "orjson-3.8.12-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:ebb03e4c7648f7bb299872002a6120082da018f41ba7a9ebf4ceae8d765443d2"},
{file = "orjson-3.8.12-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:44f7bb4c995652106276442de1147c9993716d1e2d79b7fd435afa154ff236b9"},
{file = "orjson-3.8.12-cp310-none-win_amd64.whl", hash = "sha256:06e528f9a84fbb4000fd0eee573b5db543ee70ae586fdbc53e740b0ac981701c"},
{file = "orjson-3.8.12-cp311-cp311-macosx_11_0_x86_64.macosx_11_0_arm64.macosx_11_0_universal2.whl", hash = "sha256:9a6c1594d5a9ff56e5babc4a87ac372af38d37adef9e06744e9f158431e33f43"},
{file = "orjson-3.8.12-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c6390ce0bce24c107fc275736aa8a4f768ef7eb5df935d7dca0cc99815eb5d99"},
{file = "orjson-3.8.12-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:efb3a10030462a22c731682434df5c137a67632a8339f821cd501920b169007e"},
{file = "orjson-3.8.12-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:7e405d54c84c30d9b1c918c290bcf4ef484a45c69d5583a95db81ffffba40b44"},
{file = "orjson-3.8.12-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:cd6fbd1413559572e81b5ac64c45388147c3ba85cc3df2eaa11002945e0dbd1f"},
{file = "orjson-3.8.12-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f480ae7b84369b1860d8867f0baf8d885fede400fda390ce088bfa8edf97ffdc"},
{file = "orjson-3.8.12-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:355055e0977c43b0e5325b9312b7208c696fe20cd54eed1d6fc80b0a4d6721f5"},
{file = "orjson-3.8.12-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:d937503e4dfba5edc8d5e0426d3cc97ed55716e93212b2e12a198664487b9965"},
{file = "orjson-3.8.12-cp311-none-win_amd64.whl", hash = "sha256:eb16e0195febd24b44f4db1ab3be85ecf6038f92fd511370cebc004b3d422294"},
{file = "orjson-3.8.12-cp37-cp37m-macosx_10_9_x86_64.macosx_11_0_arm64.macosx_10_9_universal2.whl", hash = "sha256:dc27a8ec13f28e92dc1ea89bf1232d77e7d3ebfd5c1ccf4f3729a70561cb63bd"},
{file = "orjson-3.8.12-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:77710774faed337ac4ad919dadc5f3b655b0cd40518e5386e6f1f116de9c6c25"},
{file = "orjson-3.8.12-cp37-cp37m-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:7e549468867991f6f9cfbd9c5bbc977330173bd8f6ceb79973bbd4634e13e1b9"},
{file = "orjson-3.8.12-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:96fb1eb82b578eb6c0e53e3cf950839fe98ea210626f87c8204bd4fc2cc6ba02"},
{file = "orjson-3.8.12-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:8d153b228b6e24f8bccf732a51e01e8e938eef59efed9030c5c257778fbe0804"},
{file = "orjson-3.8.12-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:becbd5af6d035a7ec2ee3239d4700929d52d8517806b97dd04efcc37289403f7"},
{file = "orjson-3.8.12-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:7d63f524048825e05950db3b6998c756d5377a5e8c469b2e3bdb9f3217523d74"},
{file = "orjson-3.8.12-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:ec4f0130d9a27cb400423e09e0f9e46480e9e977f05fdcf663a7a2c68735513e"},
{file = "orjson-3.8.12-cp37-none-win_amd64.whl", hash = "sha256:6f1b01f641f5e87168b819ac1cbd81aa6278e7572c326f3d27e92dea442a2c0d"},
{file = "orjson-3.8.12-cp38-cp38-macosx_10_9_x86_64.macosx_11_0_arm64.macosx_10_9_universal2.whl", hash = "sha256:062e67108c218fdb9475edd5272b1629c05b56c66416fa915de5656adde30e73"},
{file = "orjson-3.8.12-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0ba645c92801417933fa74448622ba614a275ea82df05e888095c7742d913bb4"},
{file = "orjson-3.8.12-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:7d50d9b1ae409ea15534365fec0ce8a5a5f7dc94aa790aacfb8cfec87ab51aa4"},
{file = "orjson-3.8.12-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:8f00038bf5d07439d13c0c2c5cd6ad48eb86df7dbd7a484013ce6a113c421b14"},
{file = "orjson-3.8.12-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:397670665f94cf5cff779054781d80395084ba97191d82f7b3a86f0a20e6102b"},
{file = "orjson-3.8.12-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6f568205519bb0197ca91915c5da6058cfbb59993e557b02dfc3b2718b34770a"},
{file = "orjson-3.8.12-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:4fd240e736ce52cd757d74142d9933fd35a3184396be887c435f0574e0388654"},
{file = "orjson-3.8.12-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:6cae2ff288a80e81ce30313e735c5436495ab58cf8d4fbe84900e616d0ee7a78"},
{file = "orjson-3.8.12-cp38-none-win_amd64.whl", hash = "sha256:710c40c214b753392e46f9275fd795e9630dd737a5ab4ac6e4ee1a02fe83cc0d"},
{file = "orjson-3.8.12-cp39-cp39-macosx_11_0_x86_64.macosx_11_0_arm64.macosx_11_0_universal2.whl", hash = "sha256:aff761de5ed5543a0a51e9f703668624749aa2239de5d7d37d9c9693daeaf5dc"},
{file = "orjson-3.8.12-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:135f29cf936283a0cd1b8bce86540ca181108f2a4d4483eedad6b8026865d2a9"},
{file = "orjson-3.8.12-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:62f999798f2fa55e567d483864ebfc30120fb055c2696a255979439323a5b15c"},
{file = "orjson-3.8.12-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:3fa58ca064c640fa9d823f98fbbc8e71940ecb78cea3ac2507da1cbf49d60b51"},
{file = "orjson-3.8.12-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:8682f752c19f6a7d9fc727fd98588b4c8b0dce791b5794bb814c7379ccd64a79"},
{file = "orjson-3.8.12-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:de3d096dde3e46d01841abc1982b906694ab3c92f338d37a2e6184739dc8a958"},
{file = "orjson-3.8.12-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:834b50df79f1fe89bbaced3a1c1d8c8c92cc99e84cdcd374d8da4974b3560d2a"},
{file = "orjson-3.8.12-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:2ad149ed76dce2bbdfbadd61c35959305e77141badf364a158beb4ef3d88ec37"},
{file = "orjson-3.8.12-cp39-none-win_amd64.whl", hash = "sha256:82d65e478a21f98107b4eb8390104746bb3024c27084b57edab7d427385f1f70"},
{file = "orjson-3.8.12.tar.gz", hash = "sha256:9f0f042cf002a474a6aea006dd9f8d7a5497e35e5fb190ec78eb4d232ec19955"},
]
[[package]]
name = "packaging"
version = "23.1"
@@ -5777,37 +5839,36 @@ requests = "*"
[[package]]
name = "protobuf"
version = "3.19.6"
version = "3.19.0"
description = "Protocol Buffers"
category = "main"
optional = true
python-versions = ">=3.5"
files = [
{file = "protobuf-3.19.6-cp310-cp310-manylinux2014_aarch64.whl", hash = "sha256:010be24d5a44be7b0613750ab40bc8b8cedc796db468eae6c779b395f50d1fa1"},
{file = "protobuf-3.19.6-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:11478547958c2dfea921920617eb457bc26867b0d1aa065ab05f35080c5d9eb6"},
{file = "protobuf-3.19.6-cp310-cp310-win32.whl", hash = "sha256:559670e006e3173308c9254d63facb2c03865818f22204037ab76f7a0ff70b5f"},
{file = "protobuf-3.19.6-cp310-cp310-win_amd64.whl", hash = "sha256:347b393d4dd06fb93a77620781e11c058b3b0a5289262f094379ada2920a3730"},
{file = "protobuf-3.19.6-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:a8ce5ae0de28b51dff886fb922012dad885e66176663950cb2344c0439ecb473"},
{file = "protobuf-3.19.6-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:90b0d02163c4e67279ddb6dc25e063db0130fc299aefabb5d481053509fae5c8"},
{file = "protobuf-3.19.6-cp36-cp36m-win32.whl", hash = "sha256:30f5370d50295b246eaa0296533403961f7e64b03ea12265d6dfce3a391d8992"},
{file = "protobuf-3.19.6-cp36-cp36m-win_amd64.whl", hash = "sha256:0c0714b025ec057b5a7600cb66ce7c693815f897cfda6d6efb58201c472e3437"},
{file = "protobuf-3.19.6-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:5057c64052a1f1dd7d4450e9aac25af6bf36cfbfb3a1cd89d16393a036c49157"},
{file = "protobuf-3.19.6-cp37-cp37m-manylinux2014_aarch64.whl", hash = "sha256:bb6776bd18f01ffe9920e78e03a8676530a5d6c5911934c6a1ac6eb78973ecb6"},
{file = "protobuf-3.19.6-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:84a04134866861b11556a82dd91ea6daf1f4925746b992f277b84013a7cc1229"},
{file = "protobuf-3.19.6-cp37-cp37m-win32.whl", hash = "sha256:4bc98de3cdccfb5cd769620d5785b92c662b6bfad03a202b83799b6ed3fa1fa7"},
{file = "protobuf-3.19.6-cp37-cp37m-win_amd64.whl", hash = "sha256:aa3b82ca1f24ab5326dcf4ea00fcbda703e986b22f3d27541654f749564d778b"},
{file = "protobuf-3.19.6-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:2b2d2913bcda0e0ec9a784d194bc490f5dc3d9d71d322d070b11a0ade32ff6ba"},
{file = "protobuf-3.19.6-cp38-cp38-manylinux2014_aarch64.whl", hash = "sha256:d0b635cefebd7a8a0f92020562dead912f81f401af7e71f16bf9506ff3bdbb38"},
{file = "protobuf-3.19.6-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7a552af4dc34793803f4e735aabe97ffc45962dfd3a237bdde242bff5a3de684"},
{file = "protobuf-3.19.6-cp38-cp38-win32.whl", hash = "sha256:0469bc66160180165e4e29de7f445e57a34ab68f49357392c5b2f54c656ab25e"},
{file = "protobuf-3.19.6-cp38-cp38-win_amd64.whl", hash = "sha256:91d5f1e139ff92c37e0ff07f391101df77e55ebb97f46bbc1535298d72019462"},
{file = "protobuf-3.19.6-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:c0ccd3f940fe7f3b35a261b1dd1b4fc850c8fde9f74207015431f174be5976b3"},
{file = "protobuf-3.19.6-cp39-cp39-manylinux2014_aarch64.whl", hash = "sha256:30a15015d86b9c3b8d6bf78d5b8c7749f2512c29f168ca259c9d7727604d0e39"},
{file = "protobuf-3.19.6-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:878b4cd080a21ddda6ac6d1e163403ec6eea2e206cf225982ae04567d39be7b0"},
{file = "protobuf-3.19.6-cp39-cp39-win32.whl", hash = "sha256:5a0d7539a1b1fb7e76bf5faa0b44b30f812758e989e59c40f77a7dab320e79b9"},
{file = "protobuf-3.19.6-cp39-cp39-win_amd64.whl", hash = "sha256:bbf5cea5048272e1c60d235c7bd12ce1b14b8a16e76917f371c718bd3005f045"},
{file = "protobuf-3.19.6-py2.py3-none-any.whl", hash = "sha256:14082457dc02be946f60b15aad35e9f5c69e738f80ebbc0900a19bc83734a5a4"},
{file = "protobuf-3.19.6.tar.gz", hash = "sha256:5f5540d57a43042389e87661c6eaa50f47c19c6176e8cf1c4f287aeefeccb5c4"},
{file = "protobuf-3.19.0-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:01a0645ef3acddfbc90237e1cdfae1086130fc7cb480b5874656193afd657083"},
{file = "protobuf-3.19.0-cp310-cp310-manylinux2014_aarch64.whl", hash = "sha256:d3861c9721a90ba83ee0936a9cfcc4fa1c4b4144ac9658fb6f6343b38558e9b4"},
{file = "protobuf-3.19.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b64be5d7270cf5e76375bac049846e8a9543a2d4368b69afe78ab725380a7487"},
{file = "protobuf-3.19.0-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:2f6046b9e2feee0dce994493186e8715b4392ed5f50f356280ad9c2f9f93080a"},
{file = "protobuf-3.19.0-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ac2f8ec942d414609aba0331952ae12bb823e8f424bbb6b8c422f1cef32dc842"},
{file = "protobuf-3.19.0-cp36-cp36m-win32.whl", hash = "sha256:3fea09aa04ef2f8b01fcc9bb87f19509934f8a35d177c865b8f9ee5c32b60c1b"},
{file = "protobuf-3.19.0-cp36-cp36m-win_amd64.whl", hash = "sha256:d1f4277d321f60456845ca9b882c4845736f1f5c1c69eb778eba22a97977d8af"},
{file = "protobuf-3.19.0-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:8488c2276f14f294e890cc1260ab342a13e90cd20dcc03319d2eea258f1fd321"},
{file = "protobuf-3.19.0-cp37-cp37m-manylinux2014_aarch64.whl", hash = "sha256:36bf292f44966c67080e535321501717f4f1eba30faef8f2cd4b0c745a027211"},
{file = "protobuf-3.19.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c99af73ae34c93e0e2ace57ea2e70243f34fc015c8c23fd39ee93652e726f7e7"},
{file = "protobuf-3.19.0-cp37-cp37m-win32.whl", hash = "sha256:f7a031cf8e2fc14acc0ba694f6dff0a01e06b70d817eba6edc72ee6cc20517ac"},
{file = "protobuf-3.19.0-cp37-cp37m-win_amd64.whl", hash = "sha256:d4ca5f0c7bc8d2e6966ca3bbd85e9ebe7191b6e21f067896d4af6b28ecff29fe"},
{file = "protobuf-3.19.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:9a8a880593015ef2c83f7af797fa4fbf583b2c98b4bd94e46c5b61fee319d84b"},
{file = "protobuf-3.19.0-cp38-cp38-manylinux2014_aarch64.whl", hash = "sha256:6f16925f5c977dd7787973a50c242e60c22b1d1182aba6bec7bd02862579c10f"},
{file = "protobuf-3.19.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f9097327d277b0aa4a3224e61cd6850aef3269172397715299bcffc9f90293c9"},
{file = "protobuf-3.19.0-cp38-cp38-win32.whl", hash = "sha256:708d04394a63ee9bdc797938b6e15ed5bf24a1cb37743eb3886fd74a5a67a234"},
{file = "protobuf-3.19.0-cp38-cp38-win_amd64.whl", hash = "sha256:ee4d07d596357f51316b6ecf1cc1927660e9d5e418385bb1c51fd2496cd9bee7"},
{file = "protobuf-3.19.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:34a77b8fafdeb8f89fee2b7108ae60d8958d72e33478680cc1e05517892ecc46"},
{file = "protobuf-3.19.0-cp39-cp39-manylinux2014_aarch64.whl", hash = "sha256:4f93e0f6af796ddd1502225ff8ea25340ced186ca05b601c44d5c88b45ba80a0"},
{file = "protobuf-3.19.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:942dd6bc8bd2a3c6a156d8ab0f80bd45313f22b78e1176283270054dcc8ca4c2"},
{file = "protobuf-3.19.0-cp39-cp39-win32.whl", hash = "sha256:7b3867795708ac88fde8d6f34f0d9a50af56087e41f624bdb2e9ff808ea5dda7"},
{file = "protobuf-3.19.0-cp39-cp39-win_amd64.whl", hash = "sha256:a74432e9d28a6072a2359a0f49f81eb14dd718e7dbbfb6c0789b456c49e1f130"},
{file = "protobuf-3.19.0-py2.py3-none-any.whl", hash = "sha256:c96e94d3e523a82caa3e5f74b35dd1c4884199358d01c950d95c341255ff48bc"},
{file = "protobuf-3.19.0.tar.gz", hash = "sha256:6a1dc6584d24ef86f5b104bcad64fa0fe06ed36e5687f426e0445d363a041d18"},
]
[[package]]
@@ -6223,16 +6284,16 @@ tests = ["coverage[toml] (==5.0.4)", "pytest (>=6.0.0,<7.0.0)"]
[[package]]
name = "pylance"
version = "0.4.4"
version = "0.4.6"
description = "python wrapper for lance-rs"
category = "main"
optional = true
python-versions = ">=3.8"
files = [
{file = "pylance-0.4.4-cp38-abi3-macosx_10_15_x86_64.whl", hash = "sha256:bd6a0e62bb49db2abba05183e1eea18da20ecde7653cd111a9c814e9323d5c6a"},
{file = "pylance-0.4.4-cp38-abi3-macosx_11_0_arm64.whl", hash = "sha256:eb432fe63c89059185f28b1a24e3f2d711258231ef770f5ac1cb9bd18ce4b627"},
{file = "pylance-0.4.4-cp38-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:87024b00e816cfce16a6693ec85112314e5dd3613dbf9eafa858c82e8a72a570"},
{file = "pylance-0.4.4-cp38-abi3-win_amd64.whl", hash = "sha256:f5f6642540ad4cecb6afc421bd7480ebce56ab61971d0adb69944613d9b7ed27"},
{file = "pylance-0.4.6-cp38-abi3-macosx_10_15_x86_64.whl", hash = "sha256:ca295089231dfd982dc1ab24ce92765ac70ab06d7e1567de7a2262b2c785d466"},
{file = "pylance-0.4.6-cp38-abi3-macosx_11_0_arm64.whl", hash = "sha256:2c6f6b427bccf2c6870922f6a7f80156d9d3668c7f6f0f8192385c32dacefd24"},
{file = "pylance-0.4.6-cp38-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6d7432c8b918a751121ecdb0e211c586e47c59721f5f0116d44204192ec35ccc"},
{file = "pylance-0.4.6-cp38-abi3-win_amd64.whl", hash = "sha256:cc654a35d4b92bdf69f4456719ca4002ac236762f5b335d76b820afe955389fa"},
]
[package.dependencies]
@@ -6923,14 +6984,14 @@ urllib3 = ">=1.26.14,<2.0.0"
[[package]]
name = "qtconsole"
version = "5.4.2"
version = "5.4.3"
description = "Jupyter Qt console"
category = "dev"
optional = false
python-versions = ">= 3.7"
files = [
{file = "qtconsole-5.4.2-py3-none-any.whl", hash = "sha256:30975c6a7d7941dd646d00a23e5982db49beaa60c3920bb243727d43da805f12"},
{file = "qtconsole-5.4.2.tar.gz", hash = "sha256:dc935780da276a2ab31a7a08a8cf327a2ea47fa27e21d485073251a7eeb16167"},
{file = "qtconsole-5.4.3-py3-none-any.whl", hash = "sha256:35fd6e87b1f6d1fd41801b07e69339f8982e76afd4fa8ef35595bc6036717189"},
{file = "qtconsole-5.4.3.tar.gz", hash = "sha256:5e4082a86a201796b2a5cfd4298352d22b158b51b57736531824715fc2a979dd"},
]
[package.dependencies]
@@ -7268,14 +7329,14 @@ files = [
[[package]]
name = "s3transfer"
version = "0.6.0"
version = "0.6.1"
description = "An Amazon S3 Transfer Manager"
category = "main"
optional = false
python-versions = ">= 3.7"
files = [
{file = "s3transfer-0.6.0-py3-none-any.whl", hash = "sha256:06176b74f3a15f61f1b4f25a1fc29a4429040b7647133a463da8fa5bd28d5ecd"},
{file = "s3transfer-0.6.0.tar.gz", hash = "sha256:2ed07d3866f523cc561bf4a00fc5535827981b117dd7876f036b0c1aca42c947"},
{file = "s3transfer-0.6.1-py3-none-any.whl", hash = "sha256:3c0da2d074bf35d6870ef157158641178a4204a6e689e82546083e31e0311346"},
{file = "s3transfer-0.6.1.tar.gz", hash = "sha256:640bb492711f4c0c0905e1f62b6aaeb771881935ad27884852411f8e9cacbca9"},
]
[package.dependencies]
@@ -8267,18 +8328,18 @@ files = [
[[package]]
name = "tensorflow-hub"
version = "0.13.0"
version = "0.12.0"
description = "TensorFlow Hub is a library to foster the publication, discovery, and consumption of reusable parts of machine learning models."
category = "main"
optional = true
python-versions = "*"
files = [
{file = "tensorflow_hub-0.13.0-py2.py3-none-any.whl", hash = "sha256:3544f4fd9fd99e4eeb6da1b5b5320e4a2dbdef7f9bb778f66f76d6790f32dd65"},
{file = "tensorflow_hub-0.12.0-py2.py3-none-any.whl", hash = "sha256:822fe5f7338c95efcc3a534011c6689e4309ba2459def87194179c4de8a6e1fc"},
]
[package.dependencies]
numpy = ">=1.12.0"
protobuf = ">=3.19.6"
protobuf = ">=3.8.0"
[package.extras]
make-image-classifier = ["keras-preprocessing[image]"]
@@ -8904,14 +8965,14 @@ files = [
[[package]]
name = "types-redis"
version = "4.5.4.1"
version = "4.5.4.2"
description = "Typing stubs for redis"
category = "dev"
optional = false
python-versions = "*"
files = [
{file = "types-redis-4.5.4.1.tar.gz", hash = "sha256:bf04192f415b2b42ecefd70bb4b91eb0352e48f2716a213e038e35c096a639c2"},
{file = "types_redis-4.5.4.1-py3-none-any.whl", hash = "sha256:2db530f54facec3149147bfe61d5ac24f5fe4e871823d95a601cd2c1d775d8a0"},
{file = "types-redis-4.5.4.2.tar.gz", hash = "sha256:7979ce406cd7b4a0093b10a377e5060c5c890e8463cd1ef50423c1669efbc075"},
{file = "types_redis-4.5.4.2-py3-none-any.whl", hash = "sha256:b6f7e44aae1a79732f694cb6df6093e38361382d2be03780460684ef59745d62"},
]
[package.dependencies]
@@ -8920,18 +8981,18 @@ types-pyOpenSSL = "*"
[[package]]
name = "types-requests"
version = "2.29.0.0"
version = "2.30.0.0"
description = "Typing stubs for requests"
category = "dev"
category = "main"
optional = false
python-versions = "*"
files = [
{file = "types-requests-2.29.0.0.tar.gz", hash = "sha256:c86f4a955d943d2457120dbe719df24ef0924e11177164d10a0373cf311d7b4d"},
{file = "types_requests-2.29.0.0-py3-none-any.whl", hash = "sha256:4cf6e323e856c779fbe8815bb977a5bf5d6c5034713e4c17ff2a9a20610f5b27"},
{file = "types-requests-2.30.0.0.tar.gz", hash = "sha256:dec781054324a70ba64430ae9e62e7e9c8e4618c185a5cb3f87a6738251b5a31"},
{file = "types_requests-2.30.0.0-py3-none-any.whl", hash = "sha256:c6cf08e120ca9f0dc4fa4e32c3f953c3fba222bcc1db6b97695bce8da1ba9864"},
]
[package.dependencies]
types-urllib3 = "<1.27"
types-urllib3 = "*"
[[package]]
name = "types-toml"
@@ -8949,7 +9010,7 @@ files = [
name = "types-urllib3"
version = "1.26.25.12"
description = "Typing stubs for urllib3"
category = "dev"
category = "main"
optional = false
python-versions = "*"
files = [
@@ -9271,14 +9332,14 @@ files = [
[[package]]
name = "weaviate-client"
version = "3.16.2"
version = "3.17.1"
description = "A python native weaviate client"
category = "main"
optional = false
python-versions = ">=3.8"
files = [
{file = "weaviate-client-3.16.2.tar.gz", hash = "sha256:709066d122a9d28b55e8558b02c24a296d922c77dfb72cc3a5401fd10540e138"},
{file = "weaviate_client-3.16.2-py3-none-any.whl", hash = "sha256:dae0b6f923ad4a82de7b26819a397743db3da5a2ffcb872ae98a50b92bdbf2b9"},
{file = "weaviate-client-3.17.1.tar.gz", hash = "sha256:04277030396a0e63e73b994a185c705f07f948254d27c0a3774c60b4795c37ab"},
{file = "weaviate_client-3.17.1-py3-none-any.whl", hash = "sha256:0c86f4d5fcb155efd0888515c8caa20364241c0df01dead361ce0c023dbc5da9"},
]
[package.dependencies]
@@ -9337,82 +9398,82 @@ test = ["websockets"]
[[package]]
name = "websockets"
version = "11.0.2"
version = "11.0.3"
description = "An implementation of the WebSocket Protocol (RFC 6455 & 7692)"
category = "main"
optional = false
python-versions = ">=3.7"
files = [
{file = "websockets-11.0.2-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:580cc95c58118f8c39106be71e24d0b7e1ad11a155f40a2ee687f99b3e5e432e"},
{file = "websockets-11.0.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:143782041e95b63083b02107f31cda999f392903ae331de1307441f3a4557d51"},
{file = "websockets-11.0.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:8df63dcd955eb6b2e371d95aacf8b7c535e482192cff1b6ce927d8f43fb4f552"},
{file = "websockets-11.0.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ca9b2dced5cbbc5094678cc1ec62160f7b0fe4defd601cd28a36fde7ee71bbb5"},
{file = "websockets-11.0.2-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:e0eeeea3b01c97fd3b5049a46c908823f68b59bf0e18d79b231d8d6764bc81ee"},
{file = "websockets-11.0.2-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:502683c5dedfc94b9f0f6790efb26aa0591526e8403ad443dce922cd6c0ec83b"},
{file = "websockets-11.0.2-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:d3cc3e48b6c9f7df8c3798004b9c4b92abca09eeea5e1b0a39698f05b7a33b9d"},
{file = "websockets-11.0.2-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:808b8a33c961bbd6d33c55908f7c137569b09ea7dd024bce969969aa04ecf07c"},
{file = "websockets-11.0.2-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:34a6f8996964ccaa40da42ee36aa1572adcb1e213665e24aa2f1037da6080909"},
{file = "websockets-11.0.2-cp310-cp310-win32.whl", hash = "sha256:8f24cd758cbe1607a91b720537685b64e4d39415649cac9177cd1257317cf30c"},
{file = "websockets-11.0.2-cp310-cp310-win_amd64.whl", hash = "sha256:3b87cd302f08ea9e74fdc080470eddbed1e165113c1823fb3ee6328bc40ca1d3"},
{file = "websockets-11.0.2-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:3565a8f8c7bdde7c29ebe46146bd191290413ee6f8e94cf350609720c075b0a1"},
{file = "websockets-11.0.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:f97e03d4d5a4f0dca739ea274be9092822f7430b77d25aa02da6775e490f6846"},
{file = "websockets-11.0.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:8f392587eb2767afa8a34e909f2fec779f90b630622adc95d8b5e26ea8823cb8"},
{file = "websockets-11.0.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7742cd4524622cc7aa71734b51294644492a961243c4fe67874971c4d3045982"},
{file = "websockets-11.0.2-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:46dda4bc2030c335abe192b94e98686615f9274f6b56f32f2dd661fb303d9d12"},
{file = "websockets-11.0.2-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d6b2bfa1d884c254b841b0ff79373b6b80779088df6704f034858e4d705a4802"},
{file = "websockets-11.0.2-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:1df2413266bf48430ef2a752c49b93086c6bf192d708e4a9920544c74cd2baa6"},
{file = "websockets-11.0.2-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:cf45d273202b0c1cec0f03a7972c655b93611f2e996669667414557230a87b88"},
{file = "websockets-11.0.2-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:3a09cce3dacb6ad638fdfa3154d9e54a98efe7c8f68f000e55ca9c716496ca67"},
{file = "websockets-11.0.2-cp311-cp311-win32.whl", hash = "sha256:2174a75d579d811279855df5824676d851a69f52852edb0e7551e0eeac6f59a4"},
{file = "websockets-11.0.2-cp311-cp311-win_amd64.whl", hash = "sha256:c78ca3037a954a4209b9f900e0eabbc471fb4ebe96914016281df2c974a93e3e"},
{file = "websockets-11.0.2-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:3a2100b02d1aaf66dc48ff1b2a72f34f6ebc575a02bc0350cc8e9fbb35940166"},
{file = "websockets-11.0.2-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:dca9708eea9f9ed300394d4775beb2667288e998eb6f542cdb6c02027430c599"},
{file = "websockets-11.0.2-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:320ddceefd2364d4afe6576195201a3632a6f2e6d207b0c01333e965b22dbc84"},
{file = "websockets-11.0.2-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b2a573c8d71b7af937852b61e7ccb37151d719974146b5dc734aad350ef55a02"},
{file = "websockets-11.0.2-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:13bd5bebcd16a4b5e403061b8b9dcc5c77e7a71e3c57e072d8dff23e33f70fba"},
{file = "websockets-11.0.2-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:95c09427c1c57206fe04277bf871b396476d5a8857fa1b99703283ee497c7a5d"},
{file = "websockets-11.0.2-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:2eb042734e710d39e9bc58deab23a65bd2750e161436101488f8af92f183c239"},
{file = "websockets-11.0.2-cp37-cp37m-win32.whl", hash = "sha256:5875f623a10b9ba154cb61967f940ab469039f0b5e61c80dd153a65f024d9fb7"},
{file = "websockets-11.0.2-cp37-cp37m-win_amd64.whl", hash = "sha256:634239bc844131863762865b75211a913c536817c0da27f691400d49d256df1d"},
{file = "websockets-11.0.2-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:3178d965ec204773ab67985a09f5696ca6c3869afeed0bb51703ea404a24e975"},
{file = "websockets-11.0.2-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:955fcdb304833df2e172ce2492b7b47b4aab5dcc035a10e093d911a1916f2c87"},
{file = "websockets-11.0.2-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:cb46d2c7631b2e6f10f7c8bac7854f7c5e5288f024f1c137d4633c79ead1e3c0"},
{file = "websockets-11.0.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:25aae96c1060e85836552a113495db6d857400288161299d77b7b20f2ac569f2"},
{file = "websockets-11.0.2-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:2abeeae63154b7f63d9f764685b2d299e9141171b8b896688bd8baec6b3e2303"},
{file = "websockets-11.0.2-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:daa1e8ea47507555ed7a34f8b49398d33dff5b8548eae3de1dc0ef0607273a33"},
{file = "websockets-11.0.2-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:954eb789c960fa5daaed3cfe336abc066941a5d456ff6be8f0e03dd89886bb4c"},
{file = "websockets-11.0.2-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:3ffe251a31f37e65b9b9aca5d2d67fd091c234e530f13d9dce4a67959d5a3fba"},
{file = "websockets-11.0.2-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:adf6385f677ed2e0b021845b36f55c43f171dab3a9ee0ace94da67302f1bc364"},
{file = "websockets-11.0.2-cp38-cp38-win32.whl", hash = "sha256:aa7b33c1fb2f7b7b9820f93a5d61ffd47f5a91711bc5fa4583bbe0c0601ec0b2"},
{file = "websockets-11.0.2-cp38-cp38-win_amd64.whl", hash = "sha256:220d5b93764dd70d7617f1663da64256df7e7ea31fc66bc52c0e3750ee134ae3"},
{file = "websockets-11.0.2-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:0fb4480556825e4e6bf2eebdbeb130d9474c62705100c90e59f2f56459ddab42"},
{file = "websockets-11.0.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:ec00401846569aaf018700249996143f567d50050c5b7b650148989f956547af"},
{file = "websockets-11.0.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:87c69f50281126dcdaccd64d951fb57fbce272578d24efc59bce72cf264725d0"},
{file = "websockets-11.0.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:232b6ba974f5d09b1b747ac232f3a3d8f86de401d7b565e837cc86988edf37ac"},
{file = "websockets-11.0.2-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:392d409178db1e46d1055e51cc850136d302434e12d412a555e5291ab810f622"},
{file = "websockets-11.0.2-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a4fe2442091ff71dee0769a10449420fd5d3b606c590f78dd2b97d94b7455640"},
{file = "websockets-11.0.2-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:ede13a6998ba2568b21825809d96e69a38dc43184bdeebbde3699c8baa21d015"},
{file = "websockets-11.0.2-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:4c54086b2d2aec3c3cb887ad97e9c02c6be9f1d48381c7419a4aa932d31661e4"},
{file = "websockets-11.0.2-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:e37a76ccd483a6457580077d43bc3dfe1fd784ecb2151fcb9d1c73f424deaeba"},
{file = "websockets-11.0.2-cp39-cp39-win32.whl", hash = "sha256:d1881518b488a920434a271a6e8a5c9481a67c4f6352ebbdd249b789c0467ddc"},
{file = "websockets-11.0.2-cp39-cp39-win_amd64.whl", hash = "sha256:25e265686ea385f22a00cc2b719b880797cd1bb53b46dbde969e554fb458bfde"},
{file = "websockets-11.0.2-pp37-pypy37_pp73-macosx_10_9_x86_64.whl", hash = "sha256:ce69f5c742eefd039dce8622e99d811ef2135b69d10f9aa79fbf2fdcc1e56cd7"},
{file = "websockets-11.0.2-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b985ba2b9e972cf99ddffc07df1a314b893095f62c75bc7c5354a9c4647c6503"},
{file = "websockets-11.0.2-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:1b52def56d2a26e0e9c464f90cadb7e628e04f67b0ff3a76a4d9a18dfc35e3dd"},
{file = "websockets-11.0.2-pp37-pypy37_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d70a438ef2a22a581d65ad7648e949d4ccd20e3c8ed7a90bbc46df4e60320891"},
{file = "websockets-11.0.2-pp37-pypy37_pp73-win_amd64.whl", hash = "sha256:752fbf420c71416fb1472fec1b4cb8631c1aa2be7149e0a5ba7e5771d75d2bb9"},
{file = "websockets-11.0.2-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:dd906b0cdc417ea7a5f13bb3c6ca3b5fd563338dc596996cb0fdd7872d691c0a"},
{file = "websockets-11.0.2-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3e79065ff6549dd3c765e7916067e12a9c91df2affea0ac51bcd302aaf7ad207"},
{file = "websockets-11.0.2-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:46388a050d9e40316e58a3f0838c63caacb72f94129eb621a659a6e49bad27ce"},
{file = "websockets-11.0.2-pp38-pypy38_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5c7de298371d913824f71b30f7685bb07ad13969c79679cca5b1f7f94fec012f"},
{file = "websockets-11.0.2-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:6d872c972c87c393e6a49c1afbdc596432df8c06d0ff7cd05aa18e885e7cfb7c"},
{file = "websockets-11.0.2-pp39-pypy39_pp73-macosx_10_9_x86_64.whl", hash = "sha256:b444366b605d2885f0034dd889faf91b4b47668dd125591e2c64bfde611ac7e1"},
{file = "websockets-11.0.2-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e8b967a4849db6b567dec3f7dd5d97b15ce653e3497b8ce0814e470d5e074750"},
{file = "websockets-11.0.2-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:2acdc82099999e44fa7bd8c886f03c70a22b1d53ae74252f389be30d64fd6004"},
{file = "websockets-11.0.2-pp39-pypy39_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:518ed6782d9916c5721ebd61bb7651d244178b74399028302c8617d0620af291"},
{file = "websockets-11.0.2-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:58477b041099bb504e1a5ddd8aa86302ed1d5c6995bdd3db2b3084ef0135d277"},
{file = "websockets-11.0.2-py3-none-any.whl", hash = "sha256:5004c087d17251938a52cce21b3dbdabeecbbe432ce3f5bbbf15d8692c36eac9"},
{file = "websockets-11.0.2.tar.gz", hash = "sha256:b1a69701eb98ed83dd099de4a686dc892c413d974fa31602bc00aca7cb988ac9"},
{file = "websockets-11.0.3-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:3ccc8a0c387629aec40f2fc9fdcb4b9d5431954f934da3eaf16cdc94f67dbfac"},
{file = "websockets-11.0.3-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:d67ac60a307f760c6e65dad586f556dde58e683fab03323221a4e530ead6f74d"},
{file = "websockets-11.0.3-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:84d27a4832cc1a0ee07cdcf2b0629a8a72db73f4cf6de6f0904f6661227f256f"},
{file = "websockets-11.0.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ffd7dcaf744f25f82190856bc26ed81721508fc5cbf2a330751e135ff1283564"},
{file = "websockets-11.0.3-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7622a89d696fc87af8e8d280d9b421db5133ef5b29d3f7a1ce9f1a7bf7fcfa11"},
{file = "websockets-11.0.3-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bceab846bac555aff6427d060f2fcfff71042dba6f5fca7dc4f75cac815e57ca"},
{file = "websockets-11.0.3-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:54c6e5b3d3a8936a4ab6870d46bdd6ec500ad62bde9e44462c32d18f1e9a8e54"},
{file = "websockets-11.0.3-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:41f696ba95cd92dc047e46b41b26dd24518384749ed0d99bea0a941ca87404c4"},
{file = "websockets-11.0.3-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:86d2a77fd490ae3ff6fae1c6ceaecad063d3cc2320b44377efdde79880e11526"},
{file = "websockets-11.0.3-cp310-cp310-win32.whl", hash = "sha256:2d903ad4419f5b472de90cd2d40384573b25da71e33519a67797de17ef849b69"},
{file = "websockets-11.0.3-cp310-cp310-win_amd64.whl", hash = "sha256:1d2256283fa4b7f4c7d7d3e84dc2ece74d341bce57d5b9bf385df109c2a1a82f"},
{file = "websockets-11.0.3-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:e848f46a58b9fcf3d06061d17be388caf70ea5b8cc3466251963c8345e13f7eb"},
{file = "websockets-11.0.3-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:aa5003845cdd21ac0dc6c9bf661c5beddd01116f6eb9eb3c8e272353d45b3288"},
{file = "websockets-11.0.3-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:b58cbf0697721120866820b89f93659abc31c1e876bf20d0b3d03cef14faf84d"},
{file = "websockets-11.0.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:660e2d9068d2bedc0912af508f30bbeb505bbbf9774d98def45f68278cea20d3"},
{file = "websockets-11.0.3-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:c1f0524f203e3bd35149f12157438f406eff2e4fb30f71221c8a5eceb3617b6b"},
{file = "websockets-11.0.3-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:def07915168ac8f7853812cc593c71185a16216e9e4fa886358a17ed0fd9fcf6"},
{file = "websockets-11.0.3-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:b30c6590146e53149f04e85a6e4fcae068df4289e31e4aee1fdf56a0dead8f97"},
{file = "websockets-11.0.3-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:619d9f06372b3a42bc29d0cd0354c9bb9fb39c2cbc1a9c5025b4538738dbffaf"},
{file = "websockets-11.0.3-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:01f5567d9cf6f502d655151645d4e8b72b453413d3819d2b6f1185abc23e82dd"},
{file = "websockets-11.0.3-cp311-cp311-win32.whl", hash = "sha256:e1459677e5d12be8bbc7584c35b992eea142911a6236a3278b9b5ce3326f282c"},
{file = "websockets-11.0.3-cp311-cp311-win_amd64.whl", hash = "sha256:e7837cb169eca3b3ae94cc5787c4fed99eef74c0ab9506756eea335e0d6f3ed8"},
{file = "websockets-11.0.3-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:9f59a3c656fef341a99e3d63189852be7084c0e54b75734cde571182c087b152"},
{file = "websockets-11.0.3-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2529338a6ff0eb0b50c7be33dc3d0e456381157a31eefc561771ee431134a97f"},
{file = "websockets-11.0.3-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:34fd59a4ac42dff6d4681d8843217137f6bc85ed29722f2f7222bd619d15e95b"},
{file = "websockets-11.0.3-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:332d126167ddddec94597c2365537baf9ff62dfcc9db4266f263d455f2f031cb"},
{file = "websockets-11.0.3-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:6505c1b31274723ccaf5f515c1824a4ad2f0d191cec942666b3d0f3aa4cb4007"},
{file = "websockets-11.0.3-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:f467ba0050b7de85016b43f5a22b46383ef004c4f672148a8abf32bc999a87f0"},
{file = "websockets-11.0.3-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:9d9acd80072abcc98bd2c86c3c9cd4ac2347b5a5a0cae7ed5c0ee5675f86d9af"},
{file = "websockets-11.0.3-cp37-cp37m-win32.whl", hash = "sha256:e590228200fcfc7e9109509e4d9125eace2042fd52b595dd22bbc34bb282307f"},
{file = "websockets-11.0.3-cp37-cp37m-win_amd64.whl", hash = "sha256:b16fff62b45eccb9c7abb18e60e7e446998093cdcb50fed33134b9b6878836de"},
{file = "websockets-11.0.3-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:fb06eea71a00a7af0ae6aefbb932fb8a7df3cb390cc217d51a9ad7343de1b8d0"},
{file = "websockets-11.0.3-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:8a34e13a62a59c871064dfd8ffb150867e54291e46d4a7cf11d02c94a5275bae"},
{file = "websockets-11.0.3-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:4841ed00f1026dfbced6fca7d963c4e7043aa832648671b5138008dc5a8f6d99"},
{file = "websockets-11.0.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1a073fc9ab1c8aff37c99f11f1641e16da517770e31a37265d2755282a5d28aa"},
{file = "websockets-11.0.3-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:68b977f21ce443d6d378dbd5ca38621755f2063d6fdb3335bda981d552cfff86"},
{file = "websockets-11.0.3-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e1a99a7a71631f0efe727c10edfba09ea6bee4166a6f9c19aafb6c0b5917d09c"},
{file = "websockets-11.0.3-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:bee9fcb41db2a23bed96c6b6ead6489702c12334ea20a297aa095ce6d31370d0"},
{file = "websockets-11.0.3-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:4b253869ea05a5a073ebfdcb5cb3b0266a57c3764cf6fe114e4cd90f4bfa5f5e"},
{file = "websockets-11.0.3-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:1553cb82942b2a74dd9b15a018dce645d4e68674de2ca31ff13ebc2d9f283788"},
{file = "websockets-11.0.3-cp38-cp38-win32.whl", hash = "sha256:f61bdb1df43dc9c131791fbc2355535f9024b9a04398d3bd0684fc16ab07df74"},
{file = "websockets-11.0.3-cp38-cp38-win_amd64.whl", hash = "sha256:03aae4edc0b1c68498f41a6772d80ac7c1e33c06c6ffa2ac1c27a07653e79d6f"},
{file = "websockets-11.0.3-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:777354ee16f02f643a4c7f2b3eff8027a33c9861edc691a2003531f5da4f6bc8"},
{file = "websockets-11.0.3-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:8c82f11964f010053e13daafdc7154ce7385ecc538989a354ccc7067fd7028fd"},
{file = "websockets-11.0.3-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:3580dd9c1ad0701169e4d6fc41e878ffe05e6bdcaf3c412f9d559389d0c9e016"},
{file = "websockets-11.0.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6f1a3f10f836fab6ca6efa97bb952300b20ae56b409414ca85bff2ad241d2a61"},
{file = "websockets-11.0.3-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:df41b9bc27c2c25b486bae7cf42fccdc52ff181c8c387bfd026624a491c2671b"},
{file = "websockets-11.0.3-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:279e5de4671e79a9ac877427f4ac4ce93751b8823f276b681d04b2156713b9dd"},
{file = "websockets-11.0.3-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:1fdf26fa8a6a592f8f9235285b8affa72748dc12e964a5518c6c5e8f916716f7"},
{file = "websockets-11.0.3-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:69269f3a0b472e91125b503d3c0b3566bda26da0a3261c49f0027eb6075086d1"},
{file = "websockets-11.0.3-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:97b52894d948d2f6ea480171a27122d77af14ced35f62e5c892ca2fae9344311"},
{file = "websockets-11.0.3-cp39-cp39-win32.whl", hash = "sha256:c7f3cb904cce8e1be667c7e6fef4516b98d1a6a0635a58a57528d577ac18a128"},
{file = "websockets-11.0.3-cp39-cp39-win_amd64.whl", hash = "sha256:c792ea4eabc0159535608fc5658a74d1a81020eb35195dd63214dcf07556f67e"},
{file = "websockets-11.0.3-pp37-pypy37_pp73-macosx_10_9_x86_64.whl", hash = "sha256:f2e58f2c36cc52d41f2659e4c0cbf7353e28c8c9e63e30d8c6d3494dc9fdedcf"},
{file = "websockets-11.0.3-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:de36fe9c02995c7e6ae6efe2e205816f5f00c22fd1fbf343d4d18c3d5ceac2f5"},
{file = "websockets-11.0.3-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:0ac56b661e60edd453585f4bd68eb6a29ae25b5184fd5ba51e97652580458998"},
{file = "websockets-11.0.3-pp37-pypy37_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e052b8467dd07d4943936009f46ae5ce7b908ddcac3fda581656b1b19c083d9b"},
{file = "websockets-11.0.3-pp37-pypy37_pp73-win_amd64.whl", hash = "sha256:42cc5452a54a8e46a032521d7365da775823e21bfba2895fb7b77633cce031bb"},
{file = "websockets-11.0.3-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:e6316827e3e79b7b8e7d8e3b08f4e331af91a48e794d5d8b099928b6f0b85f20"},
{file = "websockets-11.0.3-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8531fdcad636d82c517b26a448dcfe62f720e1922b33c81ce695d0edb91eb931"},
{file = "websockets-11.0.3-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:c114e8da9b475739dde229fd3bc6b05a6537a88a578358bc8eb29b4030fac9c9"},
{file = "websockets-11.0.3-pp38-pypy38_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e063b1865974611313a3849d43f2c3f5368093691349cf3c7c8f8f75ad7cb280"},
{file = "websockets-11.0.3-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:92b2065d642bf8c0a82d59e59053dd2fdde64d4ed44efe4870fa816c1232647b"},
{file = "websockets-11.0.3-pp39-pypy39_pp73-macosx_10_9_x86_64.whl", hash = "sha256:0ee68fe502f9031f19d495dae2c268830df2760c0524cbac5d759921ba8c8e82"},
{file = "websockets-11.0.3-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:dcacf2c7a6c3a84e720d1bb2b543c675bf6c40e460300b628bab1b1efc7c034c"},
{file = "websockets-11.0.3-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:b67c6f5e5a401fc56394f191f00f9b3811fe843ee93f4a70df3c389d1adf857d"},
{file = "websockets-11.0.3-pp39-pypy39_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1d5023a4b6a5b183dc838808087033ec5df77580485fc533e7dab2567851b0a4"},
{file = "websockets-11.0.3-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:ed058398f55163a79bb9f06a90ef9ccc063b204bb346c4de78efc5d15abfe602"},
{file = "websockets-11.0.3-py3-none-any.whl", hash = "sha256:6681ba9e7f8f3b19440921e99efbb40fc89f26cd71bf539e45d8c8a25c976dc6"},
{file = "websockets-11.0.3.tar.gz", hash = "sha256:88fc51d9a26b10fc331be344f1781224a375b78488fc343620184e95a4b27016"},
]
[[package]]
@@ -9476,7 +9537,7 @@ name = "wikipedia"
version = "1.4.0"
description = "Wikipedia API for Python"
category = "main"
optional = true
optional = false
python-versions = "*"
files = [
{file = "wikipedia-1.4.0.tar.gz", hash = "sha256:db0fad1829fdd441b1852306e9856398204dc0786d2996dd2e0c8bb8e26133b2"},
@@ -9798,11 +9859,13 @@ cffi = {version = ">=1.11", markers = "platform_python_implementation == \"PyPy\
cffi = ["cffi (>=1.11)"]
[extras]
all = ["O365", "aleph-alpha-client", "anthropic", "arxiv", "atlassian-python-api", "azure-cosmos", "azure-identity", "beautifulsoup4", "clickhouse-connect", "cohere", "deeplake", "duckduckgo-search", "elasticsearch", "faiss-cpu", "google-api-python-client", "google-search-results", "gptcache", "html2text", "huggingface_hub", "jina", "jinja2", "jq", "lancedb", "lark", "manifest-ml", "networkx", "nlpcloud", "nltk", "nomic", "openai", "opensearch-py", "pexpect", "pgvector", "pinecone-client", "pinecone-text", "psycopg2-binary", "pyowm", "pypdf", "pytesseract", "pyvespa", "qdrant-client", "redis", "sentence-transformers", "spacy", "tensorflow-text", "tiktoken", "torch", "transformers", "weaviate-client", "wikipedia", "wolframalpha"]
all = ["O365", "aleph-alpha-client", "anthropic", "arxiv", "atlassian-python-api", "azure-cosmos", "azure-identity", "beautifulsoup4", "clickhouse-connect", "cohere", "deeplake", "docarray", "duckduckgo-search", "elasticsearch", "faiss-cpu", "google-api-python-client", "google-search-results", "gptcache", "hnswlib", "html2text", "huggingface_hub", "jina", "jinja2", "jq", "lancedb", "lark", "manifest-ml", "networkx", "nlpcloud", "nltk", "nomic", "openai", "opensearch-py", "pexpect", "pgvector", "pinecone-client", "pinecone-text", "protobuf", "psycopg2-binary", "pyowm", "pypdf", "pytesseract", "pyvespa", "qdrant-client", "redis", "sentence-transformers", "spacy", "tensorflow-text", "tiktoken", "torch", "transformers", "weaviate-client", "wikipedia", "wolframalpha"]
azure = ["azure-core", "azure-cosmos", "azure-identity", "openai"]
cohere = ["cohere"]
embeddings = ["sentence-transformers"]
extended-testing = ["pdfminer-six", "pypdf"]
hnswlib = ["docarray", "hnswlib", "protobuf"]
in-memory-store = ["docarray"]
llms = ["anthropic", "cohere", "huggingface_hub", "manifest-ml", "nlpcloud", "openai", "torch", "transformers"]
openai = ["openai"]
qdrant = ["qdrant-client"]
@@ -9810,4 +9873,4 @@ qdrant = ["qdrant-client"]
[metadata]
lock-version = "2.0"
python-versions = ">=3.8.1,<4.0"
content-hash = "63324f95fc04b48b631353c5e1a1a2ecc1b9dc757441181d4920e9d77cd8951f"
content-hash = "302163050738bb858c34c066dbf684aab5940a430756999940dc9ba66a4f24a6"

View File

@@ -1,6 +1,6 @@
[tool.poetry]
name = "langchain"
version = "0.0.164"
version = "0.0.165"
description = "Building applications with LLMs through composability"
authors = []
license = "MIT"
@@ -78,6 +78,9 @@ pyvespa = {version = "^0.33.0", optional = true}
O365 = {version = "^2.0.26", optional = true}
jq = {version = "^1.4.1", optional = true}
pdfminer-six = {version = "^20221105", optional = true}
docarray = {version="^0.31.0", optional=true}
protobuf = {version="3.19", optional=true}
hnswlib = {version="^0.7.0", optional=true}
[tool.poetry.group.docs.dependencies]
@@ -159,9 +162,11 @@ llms = ["anthropic", "cohere", "openai", "nlpcloud", "huggingface_hub", "manifes
qdrant = ["qdrant-client"]
openai = ["openai"]
cohere = ["cohere"]
in_memory_store = ["docarray"]
hnswlib = ["docarray", "protobuf", "hnswlib"]
embeddings = ["sentence-transformers"]
azure = ["azure-identity", "azure-cosmos", "openai", "azure-core"]
all = ["anthropic", "cohere", "openai", "nlpcloud", "huggingface_hub", "jina", "manifest-ml", "elasticsearch", "opensearch-py", "google-search-results", "faiss-cpu", "sentence-transformers", "transformers", "spacy", "nltk", "wikipedia", "beautifulsoup4", "tiktoken", "torch", "jinja2", "pinecone-client", "pinecone-text", "weaviate-client", "redis", "google-api-python-client", "wolframalpha", "qdrant-client", "tensorflow-text", "pypdf", "networkx", "nomic", "aleph-alpha-client", "deeplake", "pgvector", "psycopg2-binary", "boto3", "pyowm", "pytesseract", "html2text", "atlassian-python-api", "gptcache", "duckduckgo-search", "arxiv", "azure-identity", "clickhouse-connect", "azure-cosmos", "lancedb", "lark", "pexpect", "pyvespa", "O365", "jq"]
all = ["anthropic", "cohere", "openai", "nlpcloud", "huggingface_hub", "jina", "manifest-ml", "elasticsearch", "opensearch-py", "google-search-results", "faiss-cpu", "sentence-transformers", "transformers", "spacy", "nltk", "wikipedia", "beautifulsoup4", "tiktoken", "torch", "jinja2", "pinecone-client", "pinecone-text", "weaviate-client", "redis", "google-api-python-client", "wolframalpha", "qdrant-client", "tensorflow-text", "pypdf", "networkx", "nomic", "aleph-alpha-client", "deeplake", "pgvector", "psycopg2-binary", "boto3", "pyowm", "pytesseract", "html2text", "atlassian-python-api", "gptcache", "duckduckgo-search", "arxiv", "azure-identity", "clickhouse-connect", "azure-cosmos", "lancedb", "lark", "pexpect", "pyvespa", "O365", "jq", "docarray", "protobuf", "hnswlib"]
# An extra used to be able to add extended testing.
extended_testing = ["pypdf", "pdfminer.six"]

View File

@@ -7,6 +7,7 @@ from aiohttp import ClientSession
from langchain.agents import AgentType, initialize_agent, load_tools
from langchain.callbacks import tracing_enabled
from langchain.callbacks.manager import tracing_v2_enabled
from langchain.llms import OpenAI
questions = [
@@ -121,3 +122,33 @@ async def test_tracing_context_manager_async() -> None:
await asyncio.gather(*tasks)
await task
@pytest.mark.asyncio
async def test_tracing_v2_environment_variable() -> None:
os.environ["LANGCHAIN_TRACING_V2"] = "true"
aiosession = ClientSession()
llm = OpenAI(temperature=0)
async_tools = load_tools(["llm-math", "serpapi"], llm=llm, aiosession=aiosession)
agent = initialize_agent(
async_tools, llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, verbose=True
)
tasks = [agent.arun(q) for q in questions[:3]]
await asyncio.gather(*tasks)
await aiosession.close()
def test_tracing_v2_context_manager() -> None:
llm = OpenAI(temperature=0)
tools = load_tools(["llm-math", "serpapi"], llm=llm)
agent = initialize_agent(
tools, llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, verbose=True
)
if "LANGCHAIN_TRACING_V2" in os.environ:
del os.environ["LANGCHAIN_TRACING_V2"]
with tracing_v2_enabled() as session:
assert session
agent.run(questions[0]) # this should be traced
agent.run(questions[0]) # this should not be traced

View File

@@ -0,0 +1,24 @@
"""Test Azure Cognitive Search wrapper."""
import pytest
from langchain.retrievers.azure_cognitive_search import AzureCognitiveSearchRetriever
from langchain.schema import Document
def test_azure_cognitive_search_get_relevant_documents() -> None:
"""Test valid call to Azure Cognitive Search."""
retriever = AzureCognitiveSearchRetriever()
documents = retriever.get_relevant_documents("what is langchain")
for doc in documents:
assert isinstance(doc, Document)
assert doc.page_content
@pytest.mark.asyncio
async def test_azure_cognitive_search_aget_relevant_documents() -> None:
"""Test valid async call to Azure Cognitive Search."""
retriever = AzureCognitiveSearchRetriever()
documents = await retriever.aget_relevant_documents("what is langchain")
for doc in documents:
assert isinstance(doc, Document)
assert doc.page_content

View File

@@ -0,0 +1,89 @@
import pytest
from langchain.chains.query_constructor.base import AttributeInfo
from langchain.embeddings import FakeEmbeddings
from langchain.llms import OpenAI
from langchain.retrievers.self_query.base import SelfQueryRetriever
from langchain.schema import Document
from langchain.vectorstores import Chroma
@pytest.fixture
def retriever() -> SelfQueryRetriever:
docs = [
Document(
page_content=(
"A bunch of scientists bring back dinosaurs and mayhem breaks loose"
),
metadata={"year": 1993, "rating": 7.7, "genre": "science fiction"},
),
Document(
page_content=(
"Leo DiCaprio gets lost in a dream within a dream within a dream "
"within a ..."
),
metadata={"year": 2010, "director": "Christopher Nolan", "rating": 8.2},
),
Document(
page_content=(
"A psychologist / detective gets lost in a series of dreams within"
" dreams within dreams and Inception reused the idea"
),
metadata={"year": 2006, "director": "Satoshi Kon", "rating": 8.6},
),
Document(
page_content=(
"A bunch of normal-sized women are supremely wholesome and some men "
"pine after them"
),
metadata={"year": 2019, "director": "Greta Gerwig", "rating": 8.3},
),
Document(
page_content="Toys come alive and have a blast doing so",
metadata={"year": 1995, "genre": "animated"},
),
Document(
page_content="Three men walk into the Zone, three men walk out of the Zone",
metadata={
"year": 1979,
"director": "Andrei Tarkovsky",
"genre": "science fiction",
"rating": 9.9,
},
),
]
vectorstore = Chroma.from_documents(docs, FakeEmbeddings(size=10))
metadata_field_info = [
AttributeInfo(
name="genre",
description="The genre of the movie",
type="string or list[string]",
),
AttributeInfo(
name="year",
description="The year the movie was released",
type="integer",
),
AttributeInfo(
name="director",
description="The name of the movie director",
type="string",
),
AttributeInfo(
name="rating", description="A 1-10 rating for the movie", type="float"
),
]
retriever = SelfQueryRetriever.from_llm(
OpenAI(temperature=0),
vectorstore,
"Brief summary of a movie",
metadata_field_info,
)
return retriever
def test_get_relevant_documents(retriever: SelfQueryRetriever) -> None:
docs = retriever.get_relevant_documents(
"What are some movies about dinosaurs that came out before 2000"
)
assert len(docs) > 0

View File

@@ -0,0 +1,148 @@
from pathlib import Path
from typing import List
import numpy as np
import pytest
from langchain.schema import Document
from langchain.vectorstores.docarray import DocArrayHnswSearch
from tests.integration_tests.vectorstores.fake_embeddings import FakeEmbeddings
@pytest.fixture
def texts() -> List[str]:
return ["foo", "bar", "baz"]
def test_from_texts(texts: List[str], tmp_path: Path) -> None:
"""Test end to end construction and simple similarity search."""
docsearch = DocArrayHnswSearch.from_texts(
texts,
FakeEmbeddings(),
work_dir=str(tmp_path),
n_dim=10,
)
assert docsearch.doc_index.num_docs() == 3
def test_add_texts(texts: List[str], tmp_path: Path) -> None:
"""Test end to end construction and simple similarity search."""
docsearch = DocArrayHnswSearch.from_params(
work_dir=str(tmp_path),
n_dim=10,
embedding=FakeEmbeddings(),
)
docsearch.add_texts(texts=texts)
assert docsearch.doc_index.num_docs() == 3
@pytest.mark.parametrize("metric", ["cosine", "l2"])
def test_sim_search(metric: str, texts: List[str], tmp_path: Path) -> None:
"""Test end to end construction and simple similarity search."""
hnsw_vec_store = DocArrayHnswSearch.from_texts(
texts,
FakeEmbeddings(),
work_dir=str(tmp_path),
n_dim=10,
dist_metric=metric,
index=True,
)
output = hnsw_vec_store.similarity_search("foo", k=1)
assert output == [Document(page_content="foo")]
@pytest.mark.parametrize("metric", ["cosine", "l2"])
def test_sim_search_all_configurations(
metric: str, texts: List[str], tmp_path: Path
) -> None:
"""Test end to end construction and simple similarity search."""
hnsw_vec_store = DocArrayHnswSearch.from_texts(
texts,
FakeEmbeddings(),
work_dir=str(tmp_path),
dist_metric=metric,
n_dim=10,
max_elements=8,
ef_construction=300,
ef=20,
M=8,
allow_replace_deleted=False,
num_threads=2,
)
output = hnsw_vec_store.similarity_search("foo", k=1)
assert output == [Document(page_content="foo")]
@pytest.mark.parametrize("metric", ["cosine", "l2"])
def test_sim_search_by_vector(metric: str, texts: List[str], tmp_path: Path) -> None:
"""Test end to end construction and similarity search by vector."""
hnsw_vec_store = DocArrayHnswSearch.from_texts(
texts,
FakeEmbeddings(),
work_dir=str(tmp_path),
n_dim=10,
dist_metric=metric,
)
embedding = [1.0] * 10
output = hnsw_vec_store.similarity_search_by_vector(embedding, k=1)
assert output == [Document(page_content="bar")]
@pytest.mark.parametrize("metric", ["cosine", "l2"])
def test_sim_search_with_score(metric: str, tmp_path: Path) -> None:
"""Test end to end construction and similarity search with score."""
texts = ["foo", "bar", "baz"]
hnsw_vec_store = DocArrayHnswSearch.from_texts(
texts,
FakeEmbeddings(),
work_dir=str(tmp_path),
n_dim=10,
dist_metric=metric,
)
output = hnsw_vec_store.similarity_search_with_score("foo", k=1)
assert len(output) == 1
out_doc, out_score = output[0]
assert out_doc == Document(page_content="foo")
assert np.isclose(out_score, 0.0, atol=1.0e-6)
def test_sim_search_with_score_for_ip_metric(texts: List[str], tmp_path: Path) -> None:
"""
Test end to end construction and similarity search with score for ip
(inner-product) metric.
"""
hnsw_vec_store = DocArrayHnswSearch.from_texts(
texts,
FakeEmbeddings(),
work_dir=str(tmp_path),
n_dim=10,
dist_metric="ip",
)
output = hnsw_vec_store.similarity_search_with_score("foo", k=3)
assert len(output) == 3
for result in output:
assert result[1] == -8.0
@pytest.mark.parametrize("metric", ["cosine", "l2"])
def test_max_marginal_relevance_search(
metric: str, texts: List[str], tmp_path: Path
) -> None:
"""Test MRR search."""
metadatas = [{"page": i} for i in range(len(texts))]
docsearch = DocArrayHnswSearch.from_texts(
texts,
FakeEmbeddings(),
metadatas=metadatas,
dist_metric=metric,
work_dir=str(tmp_path),
n_dim=10,
)
output = docsearch.max_marginal_relevance_search("foo", k=2, fetch_k=3)
assert output == [
Document(page_content="foo", metadata={"page": 0}),
Document(page_content="bar", metadata={"page": 1}),
]

View File

@@ -0,0 +1,95 @@
from pathlib import Path
from typing import List
import numpy as np
import pytest
from langchain.schema import Document
from langchain.vectorstores.docarray import DocArrayInMemorySearch
from tests.integration_tests.vectorstores.fake_embeddings import FakeEmbeddings
@pytest.fixture
def texts() -> List[str]:
return ["foo", "bar", "baz"]
def test_from_texts(texts: List[str]) -> None:
"""Test end to end construction and simple similarity search."""
docsearch = DocArrayInMemorySearch.from_texts(
texts,
FakeEmbeddings(),
)
assert isinstance(docsearch, DocArrayInMemorySearch)
assert docsearch.doc_index.num_docs() == 3
def test_add_texts(texts: List[str], tmp_path: Path) -> None:
"""Test end to end construction and simple similarity search."""
docsearch = DocArrayInMemorySearch.from_params(FakeEmbeddings())
assert isinstance(docsearch, DocArrayInMemorySearch)
assert docsearch.doc_index.num_docs() == 0
docsearch.add_texts(texts=texts)
assert docsearch.doc_index.num_docs() == 3
@pytest.mark.parametrize("metric", ["cosine_sim", "euclidean_dist", "sqeuclidean_dist"])
def test_sim_search(metric: str, texts: List[str]) -> None:
"""Test end to end construction and simple similarity search."""
texts = ["foo", "bar", "baz"]
in_memory_vec_store = DocArrayInMemorySearch.from_texts(
texts=texts,
embedding=FakeEmbeddings(),
metric=metric,
)
output = in_memory_vec_store.similarity_search("foo", k=1)
assert output == [Document(page_content="foo")]
@pytest.mark.parametrize("metric", ["cosine_sim", "euclidean_dist", "sqeuclidean_dist"])
def test_sim_search_with_score(metric: str, texts: List[str]) -> None:
"""Test end to end construction and similarity search with score."""
in_memory_vec_store = DocArrayInMemorySearch.from_texts(
texts=texts,
embedding=FakeEmbeddings(),
metric=metric,
)
output = in_memory_vec_store.similarity_search_with_score("foo", k=1)
out_doc, out_score = output[0]
assert out_doc == Document(page_content="foo")
expected_score = 0.0 if "dist" in metric else 1.0
assert np.isclose(out_score, expected_score, atol=1.0e-6)
@pytest.mark.parametrize("metric", ["cosine_sim", "euclidean_dist", "sqeuclidean_dist"])
def test_sim_search_by_vector(metric: str, texts: List[str]) -> None:
"""Test end to end construction and similarity search by vector."""
in_memory_vec_store = DocArrayInMemorySearch.from_texts(
texts=texts,
embedding=FakeEmbeddings(),
metric=metric,
)
embedding = [1.0] * 10
output = in_memory_vec_store.similarity_search_by_vector(embedding, k=1)
assert output == [Document(page_content="bar")]
@pytest.mark.parametrize("metric", ["cosine_sim", "euclidean_dist", "sqeuclidean_dist"])
def test_max_marginal_relevance_search(metric: str, texts: List[str]) -> None:
"""Test MRR search."""
metadatas = [{"page": i} for i in range(len(texts))]
docsearch = DocArrayInMemorySearch.from_texts(
texts, FakeEmbeddings(), metadatas=metadatas, metric=metric
)
output = docsearch.max_marginal_relevance_search("foo", k=2, fetch_k=3)
assert output == [
Document(page_content="foo", metadata={"page": 0}),
Document(page_content="bar", metadata={"page": 1}),
]

Binary file not shown.

Binary file not shown.