Compare commits

..

1 Commits

Author SHA1 Message Date
Lance Martin
c0f3a99893 Multi modal RAG template 2023-11-03 15:07:04 -07:00
279 changed files with 11824 additions and 25504 deletions

View File

@@ -38,7 +38,6 @@ Notebook | Description
[multiagent_bidding.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/multiagent_bidding.ipynb) | Implement a multi-agent simulation where agents bid to speak, with the highest bidder speaking next, demonstrated through a fictitious presidential debate example.
[myscale_vector_sql.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/myscale_vector_sql.ipynb) | Access and interact with the myscale integrated vector database, which can enhance the performance of language model (llm) applications.
[openai_functions_retrieval_qa....](https://github.com/langchain-ai/langchain/tree/master/cookbook/openai_functions_retrieval_qa.ipynb) | Structure response output in a question-answering system by incorporating openai functions into a retrieval pipeline.
[openai_v1_cookbook.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/openai_v1_cookbook.ipynb) | Explore new functionality released alongside the V1 release of the OpenAI Python library.
[petting_zoo.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/petting_zoo.ipynb) | Create multi-agent simulations with simulated environments using the petting zoo library.
[plan_and_execute_agent.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/plan_and_execute_agent.ipynb) | Create plan-and-execute agents that accomplish objectives by planning tasks with a language model (llm) and executing them with a separate agent.
[press_releases.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/press_releases.ipynb) | Retrieve and query company press release data powered by [Kay.ai](https://kay.ai).

View File

@@ -1,231 +0,0 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "f970f757-ec76-4bf0-90cd-a2fb68b945e3",
"metadata": {},
"source": [
"# Exploring OpenAI V1 functionality\n",
"\n",
"On 11.06.23 OpenAI released a number of new features, and along with it bumped their Python SDK to 1.0.0. This notebook shows off the new features and how to use them with LangChain."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "ee897729-263a-4073-898f-bb4cf01ed829",
"metadata": {},
"outputs": [],
"source": [
"!pip install \"openai>=1\""
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "c3e067ce-7a43-47a7-bc89-41f1de4cf136",
"metadata": {},
"outputs": [],
"source": [
"from langchain.chat_models import ChatOpenAI\n",
"from langchain.schema.messages import HumanMessage, SystemMessage"
]
},
{
"cell_type": "markdown",
"id": "fa7e7e95-90a1-4f73-98fe-10c4b4e0951b",
"metadata": {},
"source": [
"## [Vision](https://platform.openai.com/docs/guides/vision)\n",
"\n",
"OpenAI released multi-modal models, which can take a sequence of text and images as input."
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "1c8c3965-d3c9-4186-b5f3-5e67855ef916",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"AIMessage(content='The image appears to be a diagram representing the architecture or components of a software platform named \"LangChain.\" This diagram outlines various layers and elements of the platform, which seems to be related to language processing or computational linguistics, as suggested by the context clues in the names of the components.\\n\\nHere\\'s a breakdown of the components shown:\\n\\n- **LangSmith**: This seems to be a tool or suite related to testing, evaluation, monitoring, feedback, and annotation within the platform.\\n\\n- **LangServe**: This could represent a service layer that exposes the platform\\'s capabilities as REST API endpoints.\\n\\n- **Templates**: These are likely reference applications provided as starting points or examples for users of the platform.\\n\\n- **Chains, agents, agent executors**: This section describes the common application logic, perhaps indicating that the platform uses a chain of agents or processes to execute tasks.\\n\\n- **Model I/O**: This includes the components related to input/output processing for a model, like prompt, example selector, model, and output parser.\\n\\n- **Retrieval**: These components are involved in retrieving documents, splitting text, and managing embeddings and vector stores, which are important for tasks like search and information retrieval.\\n\\n- **Agent tooling**: This might refer to the tools used for creating,')"
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"chat = ChatOpenAI(model=\"gpt-4-vision-preview\", max_tokens=256)\n",
"chat.invoke(\n",
" [\n",
" HumanMessage(\n",
" content=[\n",
" {\"type\": \"text\", \"text\": \"What is this image showing\"},\n",
" {\n",
" \"type\": \"image_url\",\n",
" \"image_url\": {\n",
" \"url\": \"https://python.langchain.com/assets/images/langchain_stack-da369071b058555da3d491a695651f15.jpg\",\n",
" \"detail\": \"auto\",\n",
" },\n",
" },\n",
" ]\n",
" )\n",
" ]\n",
")"
]
},
{
"cell_type": "markdown",
"id": "71c34763-d1e7-4b9a-a9d7-3e4cc0dfc2c4",
"metadata": {},
"source": [
"## [JSON mode](https://platform.openai.com/docs/guides/text-generation/json-mode)\n",
"\n",
"Constrain the model to only generate valid JSON. Note that you must include a system message with instructions to use JSON for this mode to work.\n",
"\n",
"Only works with certain models. "
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "db6072c4-f3f3-415d-872b-71ea9f3c02bb",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"{\n",
" \"companies\": [\n",
" {\n",
" \"name\": \"Google\",\n",
" \"origin\": \"USA\"\n",
" },\n",
" {\n",
" \"name\": \"Deepmind\",\n",
" \"origin\": \"UK\"\n",
" }\n",
" ]\n",
"}\n"
]
}
],
"source": [
"chat = ChatOpenAI(model=\"gpt-3.5-turbo-1106\").bind(\n",
" response_format={\"type\": \"json_object\"}\n",
")\n",
"\n",
"output = chat.invoke(\n",
" [\n",
" SystemMessage(\n",
" content=\"Extract the 'name' and 'origin' of any companies mentioned in the following statement. Return a JSON list.\"\n",
" ),\n",
" HumanMessage(\n",
" content=\"Google was founded in the USA, while Deepmind was founded in the UK\"\n",
" ),\n",
" ]\n",
")\n",
"print(output.content)"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "08e00ccf-b991-4249-846b-9500a0ccbfa0",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'companies': [{'name': 'Google', 'origin': 'USA'},\n",
" {'name': 'Deepmind', 'origin': 'UK'}]}"
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import json\n",
"\n",
"json.loads(output.content)"
]
},
{
"cell_type": "markdown",
"id": "aa9a94d9-4319-4ab7-a979-c475ce6b5f50",
"metadata": {},
"source": [
"## [System fingerprint](https://platform.openai.com/docs/guides/text-generation/reproducible-outputs)\n",
"\n",
"OpenAI sometimes changes model configurations in a way that impacts outputs. Whenever this happens, the system_fingerprint associated with a generation will change."
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "1281883c-bf8f-4665-89cd-4f33ccde69ab",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"{'token_usage': {'completion_tokens': 43, 'prompt_tokens': 49, 'total_tokens': 92}, 'model_name': 'gpt-3.5-turbo-1106', 'system_fingerprint': 'fp_eeff13170a'}\n"
]
}
],
"source": [
"chat = ChatOpenAI(model=\"gpt-3.5-turbo-1106\")\n",
"output = chat.generate(\n",
" [\n",
" [\n",
" SystemMessage(\n",
" content=\"Extract the 'name' and 'origin' of any companies mentioned in the following statement. Return a JSON list.\"\n",
" ),\n",
" HumanMessage(\n",
" content=\"Google was founded in the USA, while Deepmind was founded in the UK\"\n",
" ),\n",
" ]\n",
" ]\n",
")\n",
"print(output.llm_output)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "5c637ba1-322d-4fc9-b97e-3afa83dc4d72",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "poetry-venv",
"language": "python",
"name": "poetry-venv"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.1"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -35,7 +35,7 @@
"tags": []
},
"source": [
"### API keys and other secrets\n",
"### API keys and other secrats\n",
"\n",
"We use an `.ini` file, like this: \n",
"```\n",

View File

@@ -15,7 +15,7 @@ poetry run python scripts/model_feat_table.py
poetry run nbdoc_build --srcdir docs
cp ../cookbook/README.md src/pages/cookbook.mdx
cp ../.github/CONTRIBUTING.md docs/contributing.md
wget https://raw.githubusercontent.com/langchain-ai/langserve/main/README.md -O docs/langserve.md
wget https://raw.githubusercontent.com/langchain-ai/langserve/main/README.md -O docs/guides/deployments/langserve.md
poetry run python scripts/generate_api_reference_links.py
yarn install
yarn start

File diff suppressed because one or more lines are too long

View File

@@ -8,31 +8,11 @@ sidebar_position: 0
- **Are context-aware**: connect a language model to sources of context (prompt instructions, few shot examples, content to ground its response in, etc.)
- **Reason**: rely on a language model to reason (about how to answer based on provided context, what actions to take, etc.)
This framework consists of several parts.
You can see how the parts interact with each other below:
![LangChain Diagram](/img/langchain_stack.jpg)
These parts include:
- **[LangChain Packages]**: The Python and JavaScript packages. Contains interfaces and integrations for a myriad of components, a basic run time for combining these components into chains and agents, and off-the-shelf implementations of chains and agents.
- **[LangChain Templates](https://github.com/langchain-ai/langchain/tree/master/templates)**: A collection of easily deployable reference architectures for a wide variety of tasks.
- **[LangServe](https://github.com/langchain-ai/langserve)**: A library for deploying LangChain chains as a REST API.
- **[LangSmith](https://smith.langchain.com/)**: A developer platform that lets you debug, test, evaluate, and monitor chains built on any LLM framework and seamlessly integrates with LangChain.
Together, these products simplify the entire application lifecycle:
- **Develop**: Write your applications in LangChain/LangChain.js. Hit the ground running using Templates for reference.
- **Productionize**: Use LangSmith to inspect, test and monitor your chains, so that you can constantly improve and deploy with confidence.
- **Deploy**: Turn any chain into an API with LangServe.
## LangChain Packages
The main value props of the LangChain packages are:
1. **Components**: composable tools and integrations for working with language models. Components are modular and easy-to-use, whether you are using the rest of the LangChain framework or not
2. **Off-the-shelf chains**: built-in assemblages of components for accomplishing higher-level tasks
Off-the-shelf chains make it easy to get started. Components make it easy to customize existing chains and build new ones.
The main value props of LangChain are:
1. **Components**: abstractions for working with language models, along with a collection of implementations for each abstraction. Components are modular and easy-to-use, whether you are using the rest of the LangChain framework or not
2. **Off-the-shelf chains**: a structured assembly of components for accomplishing specific higher-level tasks
Off-the-shelf chains make it easy to get started. For complex applications, components make it easy to customize existing chains and build new ones.
## Get started
@@ -40,9 +20,11 @@ Off-the-shelf chains make it easy to get started. Components make it easy to cus
We recommend following our [Quickstart](/docs/get_started/quickstart) guide to familiarize yourself with the framework by building your first LangChain application.
_**Note**: These docs are for the LangChain [Python package](https://github.com/langchain-ai/langchain). For documentation on [LangChain.js](https://github.com/langchain-ai/langchainjs), the JS/TS version, [head here](https://js.langchain.com/docs)._
## Modules
LangChain provides standard, extendable interfaces and integrations for the following modules, listed from least to most complex:
LangChain provides standard, extendable interfaces and external integrations for the following modules, listed from least to most complex:
#### [Model I/O](/docs/modules/model_io/)
Interface with language models
@@ -59,18 +41,21 @@ Log and stream intermediate steps of any chain
## Examples, ecosystem, and resources
### [Use cases](/docs/use_cases/question_answering/)
Walkthroughs and techniques for common end-to-end use cases, like:
Walkthroughs and best-practices for common end-to-end use cases, like:
- [Document question answering](/docs/use_cases/question_answering/)
- [Chatbots](/docs/use_cases/chatbots/)
- [Analyzing structured data](/docs/use_cases/qa_structured/sql/)
- and much more...
### [Guides](/docs/guides/adapters/openai)
Best practices for developing with LangChain.
### [Guides](/docs/guides/)
Learn best practices for developing with LangChain.
### [Ecosystem](/docs/integrations/providers/)
LangChain is part of a rich ecosystem of tools that integrate with our framework and build on top of it. Check out our growing list of [integrations](/docs/integrations/providers/) and [dependent repos](/docs/additional_resources/dependents).
### [Additional resources](/docs/additional_resources/)
Our community is full of prolific developers, creative builders, and fantastic teachers. Check out [YouTube tutorials](/docs/additional_resources/youtube) for great tutorials from folks in the community, and [Gallery](https://github.com/kyrolabs/awesome-langchain) for a list of awesome LangChain projects, compiled by the folks at [KyroLabs](https://kyrolabs.com).
### [Community](/docs/community)
Head to the [Community navigator](/docs/community) to find places to ask questions, share feedback, meet other developers, and dream about the future of LLMs.

View File

@@ -44,24 +44,11 @@ from langchain.llms import OpenAI
llm = OpenAI(openai_api_key="...")
```
## LangSmith Setup
Many of the applications you build with LangChain will contain multiple steps with multiple invocations of LLM calls.
As these applications get more and more complex, it becomes crucial to be able to inspect what exactly is going on inside your chain or agent.
The best way to do this is with [LangSmith](https://smith.langchain.com).
Note that LangSmith is not needed, but it is helpful.
If you do want to use LangSmith, after you sign up at the link above, make sure to set your environment variables to start logging traces:
```shell
export LANGCHAIN_TRACING_V2="true"
export LANGCHAIN_API_KEY=...
```
## Building an application
Now we can start building our language model application. LangChain provides many modules that can be used to build language model applications.
Modules can be used as standalones in simple applications and they can be combined for more complex use cases.
Modules can be used as stand-alones in simple applications and they can be combined for more complex use cases.
The most common and most important chain that LangChain helps create contains three things:
- LLM: The language model is the core reasoning engine here. In order to work with LangChain, you need to understand the different types of language models and how to work with them.

View File

Before

Width:  |  Height:  |  Size: 766 KiB

After

Width:  |  Height:  |  Size: 766 KiB

View File

Before

Width:  |  Height:  |  Size: 815 KiB

After

Width:  |  Height:  |  Size: 815 KiB

View File

@@ -1,13 +1,11 @@
---
sidebar_class_name: hidden
---
# LangSmith
import DocCardList from "@theme/DocCardList";
[LangSmith](https://smith.langchain.com) helps you trace and evaluate your language model applications and intelligent agents to help you
move from prototype to production.
Check out the [interactive walkthrough](/docs/guides/langsmith/walkthrough) to get started.
Check out the [interactive walkthrough](/docs/guides/langsmith/walkthrough) below to get started.
For more information, please refer to the [LangSmith documentation](https://docs.smith.langchain.com/).
@@ -20,3 +18,5 @@ check out the [LangSmith Cookbook](https://github.com/langchain-ai/langsmith-coo
- How to fine-tune a LLM on real usage data ([link](https://github.com/langchain-ai/langsmith-cookbook/blob/main/fine-tuning-examples/export-to-openai/fine-tuning-on-chat-runs.ipynb)).
- How to use the [LangChain Hub](https://smith.langchain.com/hub) to version your prompts ([link](https://github.com/langchain-ai/langsmith-cookbook/blob/main/hub-examples/retrieval-qa-chain/retrieval-qa.ipynb))
<DocCardList />

View File

@@ -7,7 +7,7 @@
"tags": []
},
"source": [
"# Walkthrough\n",
"# LangSmith Walkthrough\n",
"[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/langchain-ai/langchain/blob/master/docs/docs/guides/langsmith/walkthrough.ipynb)\n",
"\n",
"LangChain makes it easy to prototype LLM applications and Agents. However, delivering LLM applications to production can be deceptively difficult. You will likely have to heavily customize and iterate on your prompts, chains, and other components to create a high-quality product.\n",
@@ -790,7 +790,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.1"
"version": "3.11.2"
}
},
"nbformat": 4,

View File

@@ -65,7 +65,9 @@
"id": "359565a7-dad3-403c-a73c-6414b1295127",
"metadata": {},
"source": [
"## 2. Define chat loader"
"## 2. Define chat loader\n",
"\n",
"LangChain currently does not support "
]
},
{

View File

@@ -41,9 +41,7 @@
"id": "91ad075f-71d5-4bc8-ab91-cc0ad5ef16bb",
"metadata": {},
"source": [
"### Model Loading\n",
"\n",
"Models can be loaded by specifying the model parameters using the `from_model_id` method."
"### Load the model"
]
},
{
@@ -55,12 +53,12 @@
},
"outputs": [],
"source": [
"from langchain.llms.huggingface_pipeline import HuggingFacePipeline\n",
"from langchain.llms import HuggingFacePipeline\n",
"\n",
"hf = HuggingFacePipeline.from_model_id(\n",
" model_id=\"gpt2\",\n",
"llm = HuggingFacePipeline.from_model_id(\n",
" model_id=\"bigscience/bloom-1b7\",\n",
" task=\"text-generation\",\n",
" pipeline_kwargs={\"max_new_tokens\": 10},\n",
" model_kwargs={\"temperature\": 0, \"max_length\": 64},\n",
")"
]
},
@@ -68,29 +66,6 @@
"cell_type": "markdown",
"id": "00104b27-0c15-4a97-b198-4512337ee211",
"metadata": {},
"source": [
"They can also be loaded by passing in an existing `transformers` pipeline directly"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from langchain.llms.huggingface_pipeline import HuggingFacePipeline\n",
"from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline\n",
"\n",
"model_id = \"gpt2\"\n",
"tokenizer = AutoTokenizer.from_pretrained(model_id)\n",
"model = AutoModelForCausalLM.from_pretrained(model_id)\n",
"pipe = pipeline(\"text-generation\", model=model, tokenizer=tokenizer, max_new_tokens=10)\n",
"hf = HuggingFacePipeline(pipeline=pipe)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Create Chain\n",
"\n",
@@ -112,7 +87,7 @@
"Answer: Let's think step by step.\"\"\"\n",
"prompt = PromptTemplate.from_template(template)\n",
"\n",
"chain = prompt | hf\n",
"chain = prompt | llm\n",
"\n",
"question = \"What is electroencephalography?\"\n",
"\n",
@@ -123,40 +98,6 @@
"cell_type": "markdown",
"id": "dbbc3a37",
"metadata": {},
"source": [
"### GPU Inference\n",
"\n",
"When running on a machine with GPU, you can specify the `device=n` parameter to put the model on the specified device.\n",
"Defaults to `-1` for CPU inference.\n",
"\n",
"If you have multiple-GPUs and/or the model is too large for a single GPU, you can specify `device_map=\"auto\"`, which requires and uses the [Accelerate](https://huggingface.co/docs/accelerate/index) library to automatically determine how to load the model weights. \n",
"\n",
"*Note*: both `device` and `device_map` should not be specified together and can lead to unexpected behavior."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"gpu_llm = HuggingFacePipeline.from_model_id(\n",
" model_id=\"gpt2\",\n",
" task=\"text-generation\",\n",
" device=0, # replace with device_map=\"auto\" to use the accelerate library.\n",
" pipeline_kwargs={\"max_new_tokens\": 10},\n",
")\n",
"\n",
"gpu_chain = prompt | gpu_llm\n",
"\n",
"question = \"What is electroencephalography?\"\n",
"\n",
"print(gpu_chain.invoke({\"question\": question}))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Batch GPU Inference\n",
"\n",
@@ -206,7 +147,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.5"
"version": "3.8.10"
}
},
"nbformat": 4,

File diff suppressed because one or more lines are too long

View File

@@ -34,7 +34,7 @@
"source": [
"## Using `ZERO_SHOT_REACT_DESCRIPTION`\n",
"\n",
"This shows how to initialize the agent using the `ZERO_SHOT_REACT_DESCRIPTION` agent type."
"This shows how to initialize the agent using the `ZERO_SHOT_REACT_DESCRIPTION` agent type. Note that this is an alternative to the above."
]
},
{

View File

@@ -14,7 +14,7 @@
"E2B Data Analysis sandbox allows you to:\n",
"- Run Python code\n",
"- Generate charts via matplotlib\n",
"- Install Python packages dynamically during runtime\n",
"- Install Python packages dynamically durint runtime\n",
"- Install system packages dynamically during runtime\n",
"- Run shell commands\n",
"- Upload and download files\n",

View File

@@ -1,165 +0,0 @@
{
"cells": [
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"# Biadu Cloud ElasticSearch VectorSearch\n",
"\n",
">[Baidu Cloud VectorSearch](https://cloud.baidu.com/doc/BES/index.html?from=productToDoc) is a fully managed, enterprise-level distributed search and analysis service which is 100% compatible to open source. Baidu Cloud VectorSearch provides low-cost, high-performance, and reliable retrieval and analysis platform level product services for structured/unstructured data. As a vector database , it supports multiple index types and similarity distance methods. \n",
"\n",
">`Baidu Cloud ElasticSearch` provides a privilege management mechanism, for you to configure the cluster privileges freely, so as to further ensure data security.\n",
"\n",
"This notebook shows how to use functionality related to the `Baidu Cloud ElasticSearch VectorStore`.\n",
"To run, you should have an [Baidu Cloud ElasticSearch](https://cloud.baidu.com/product/bes.html) instance up and running:\n",
"\n",
"Read the [help document](https://cloud.baidu.com/doc/BES/s/8llyn0hh4 ) to quickly familiarize and configure Baidu Cloud ElasticSearch instance."
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"After the instance is up and running, follow these steps to split documents, get embeddings, connect to the baidu cloud elasticsearch instance, index documents, and perform vector retrieval."
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"We need to install the following Python packages first."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"#!pip install elasticsearch == 7.11.0"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"First, we want to use `QianfanEmbeddings` so we have to get the Qianfan AK and SK. Details for QianFan is related to [Baidu Qianfan Workshop](https://cloud.baidu.com/product/wenxinworkshop)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"import getpass\n",
"\n",
"os.environ[\"QIANFAN_AK\"] = getpass.getpass(\"Your Qianfan AK:\")\n",
"os.environ[\"QIANFAN_SK\"] = getpass.getpass(\"Your Qianfan SK:\")"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"Secondly, split documents and get embeddings."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from langchain.document_loaders import TextLoader\n",
"\n",
"loader = TextLoader(\"../../../state_of_the_union.txt\")\n",
"documents = loader.load()\n",
"text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)\n",
"docs = text_splitter.split_documents(documents)\n",
"\n",
"from langchain.embeddings import QianfanEmbeddingsEndpoint\n",
"\n",
"embeddings = QianfanEmbeddingsEndpoint()"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"Then, create a Baidu ElasticeSearch accessable instance."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Create a bes instance and index docs.\n",
"from langchain.vectorstores import BESVectorStore\n",
"\n",
"bes = BESVectorStore.from_documents(\n",
" documents=docs,\n",
" embedding=embeddings,\n",
" bes_url=\"your bes cluster url\",\n",
" index_name=\"your vector index\",\n",
")\n",
"bes.client.indices.refresh(index=\"your vector index\")"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"Finally, Query and retrive data"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"query = \"What did the president say about Ketanji Brown Jackson\"\n",
"docs = bes.similarity_search(query)\n",
"print(docs[0].page_content)"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"Please feel free to contact <liuboyao@baidu.com> if you encounter any problems during use, and we will do our best to support you."
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"name": "python",
"version": "3.9.17"
},
"orig_nbformat": 4,
"vscode": {
"interpreter": {
"hash": "aee8b7b246df8f9039afb4144a1f6fd8d2ca17a180786b69acc140d282b71a49"
}
}
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@@ -104,14 +104,11 @@
"source": [
"from dingodb import DingoDB\n",
"\n",
"index_name = \"langchain_demo\"\n",
"index_name = \"langchain-demo\"\n",
"\n",
"dingo_client = DingoDB(user=\"\", password=\"\", host=[\"127.0.0.1:13000\"])\n",
"# First, check if our index already exists. If it doesn't, we create it\n",
"if (\n",
" index_name not in dingo_client.get_index()\n",
" and index_name.upper() not in dingo_client.get_index()\n",
"):\n",
"if index_name not in dingo_client.get_index():\n",
" # we create a new index, modify to your own\n",
" dingo_client.create_index(\n",
" index_name=index_name, dimension=1536, metric_type=\"cosine\", auto_id=False\n",

View File

@@ -524,6 +524,7 @@
"from langchain.agents.agent_types import AgentType\n",
"\n",
"db = SQLDatabase.from_uri(\"sqlite:///Chinook.db\")\n",
"llm = OpenAI(temperature=0, verbose=True)\n",
"\n",
"agent_executor = create_sql_agent(\n",
" llm=OpenAI(temperature=0),\n",

View File

@@ -159,12 +159,6 @@ const config = {
sidebarId: "integrations",
label: "Integrations",
},
{
type: "docSidebar",
position: "left",
sidebarId: "guides",
label: "Guides",
},
{
href: "https://api.python.langchain.com",
label: "API",
@@ -198,31 +192,30 @@ const config = {
{ label: "Gallery", href: "https://github.com/kyrolabs/awesome-langchain" }
]
},
{
href: "https://chat.langchain.com",
label: "Chat our docs",
position: "right",
},
{
type: "dropdown",
label: "Also by LangChain",
position: "right",
items: [
{
href: "https://smith.langchain.com",
label: "LangSmith",
href: "https://chat.langchain.com",
label: "Chat our docs",
},
{
href: "https://github.com/langchain-ai/langserve",
label: "LangServe GitHub",
href: "https://smith.langchain.com",
label: "LangSmith",
},
{
href: "https://smith.langchain.com/hub",
label: "LangChain Hub",
},
{
href: "https://js.langchain.com",
label: "JS/TS Docs",
href: "https://github.com/langchain-ai/langserve",
label: "LangServe",
},
{
href: "https://js.langchain.com/docs",
label: "JS/TS",
},
]
},

View File

@@ -26,7 +26,7 @@ module.exports = {
label: "Get started",
collapsed: false,
collapsible: false,
items: [{ type: "autogenerated", dirName: "get_started" }, "security"],
items: [{ type: "autogenerated", dirName: "get_started" }],
link: {
type: 'generated-index',
description: 'Get started with LangChain',
@@ -46,24 +46,29 @@ module.exports = {
{
type: "category",
label: "Modules",
collapsed: true,
collapsed: false,
items: [{ type: "autogenerated", dirName: "modules" } ],
link: {
type: 'doc',
id: "modules/index"
},
},
{type: "doc", id: "langserve", label: "LangServe"},
{
type: "doc",
label: "Security",
id: "security",
},
{
type: "category",
label: "LangSmith",
label: "Guides",
collapsed: true,
items: [{ type: "autogenerated", dirName: "langsmith" } ],
items: [{ type: "autogenerated", dirName: "guides" }],
link: {
type: 'doc',
id: "langsmith/index"
type: 'generated-index',
description: 'Design guides for key parts of the development process',
slug: "guides",
},
},
}
],
integrations: [
{
@@ -106,7 +111,4 @@ module.exports = {
use_cases: [
{type: "autogenerated", dirName: "use_cases" }
],
guides: [
{type: "autogenerated", dirName: "guides" }
],
};

Binary file not shown.

Before

Width:  |  Height:  |  Size: 914 KiB

View File

@@ -50,5 +50,5 @@ python3.11 scripts/model_feat_table.py
nbdoc_build --srcdir docs
cp ../cookbook/README.md src/pages/cookbook.mdx
cp ../.github/CONTRIBUTING.md docs/contributing.md
wget https://raw.githubusercontent.com/langchain-ai/langserve/main/README.md -O docs/langserve.md
wget https://raw.githubusercontent.com/langchain-ai/langserve/main/README.md -O docs/guides/deployments/langserve.md
python3.11 scripts/generate_api_reference_links.py

View File

@@ -6,7 +6,7 @@ from typing_extensions import Annotated
from langchain_cli.namespaces import app as app_namespace
from langchain_cli.namespaces import template as template_namespace
__version__ = "0.0.15"
__version__ = "0.0.14"
app = typer.Typer(no_args_is_help=True, add_completion=False)
app.add_typer(

View File

@@ -4,7 +4,6 @@ Manage LangChain apps
import shutil
import subprocess
import sys
from pathlib import Path
from typing import Dict, List, Optional, Tuple
@@ -220,9 +219,6 @@ def serve(
Starts the LangServe app.
"""
# add current dir as first entry of path
sys.path.append(str(Path.cwd()))
app_str = app if app is not None else "app.server:app"
host_str = host if host is not None else "127.0.0.1"

View File

@@ -1 +0,0 @@
__pycache__

View File

@@ -11,7 +11,7 @@ TODO: What environment variables need to be set (if any)
To use this package, you should first have the LangChain CLI installed:
```shell
pip install -U langchain-cli
pip install -U "langchain-cli[serve]"
```
To create a new LangChain project and install this as the only package, you can do:

View File

@@ -1 +0,0 @@
__pycache__

View File

@@ -5,7 +5,7 @@
Install the LangChain CLI if you haven't yet
```bash
pip install -U langchain-cli
pip install -U "langchain-cli[serve]"
```
## Adding packages

View File

@@ -1,6 +1,6 @@
[tool.poetry]
name = "langchain-cli"
version = "0.0.15"
version = "0.0.14"
description = "CLI for interacting with LangChain"
authors = ["Erick Friis <erick@langchain.dev>"]
readme = "README.md"

View File

@@ -87,9 +87,7 @@ def _parse_ai_message(message: BaseMessage) -> Union[List[AgentAction], AgentFin
final_tools.append(_tool)
return final_tools
return AgentFinish(
return_values={"output": message.content}, log=str(message.content)
)
return AgentFinish(return_values={"output": message.content}, log=message.content)
class OpenAIMultiFunctionsAgent(BaseMultiActionAgent):

View File

@@ -72,7 +72,7 @@ class OpenAIFunctionsAgentOutputParser(AgentOutputParser):
)
return AgentFinish(
return_values={"output": message.content}, log=str(message.content)
return_values={"output": message.content}, log=message.content
)
def parse_result(

View File

@@ -18,7 +18,7 @@ logger = logging.getLogger(__name__)
class StructuredChatOutputParser(AgentOutputParser):
"""Output parser for the structured chat agent."""
pattern = re.compile(r"```(?:json\s+)?(\W.*?)```", re.DOTALL)
pattern = re.compile(r"```(?:json)?\n(.*?)```", re.DOTALL)
def get_format_instructions(self) -> str:
return FORMAT_INSTRUCTIONS

View File

@@ -1,5 +1,5 @@
import time
from typing import Any, Dict, List, Optional, cast
from typing import Any, Dict, List, Optional
from langchain.callbacks.base import BaseCallbackHandler
from langchain.schema import AgentAction, AgentFinish, LLMResult
@@ -232,9 +232,7 @@ class InfinoCallbackHandler(BaseCallbackHandler):
self.chat_openai_model_name = model_name
prompt_tokens = 0
for message_list in messages:
message_string = " ".join(
cast(str, msg.content) for msg in message_list
)
message_string = " ".join(msg.content for msg in message_list)
num_tokens = get_num_tokens(
message_string,
openai_model_name=self.chat_openai_model_name,
@@ -251,9 +249,7 @@ class InfinoCallbackHandler(BaseCallbackHandler):
)
# Send the prompt to infino
prompt = " ".join(
cast(str, msg.content) for sublist in messages for msg in sublist
)
prompt = " ".join(msg.content for sublist in messages for msg in sublist)
self._send_to_infino("prompt", prompt, is_ts=False)
# Set the error flag to indicate no error (this will get overridden

View File

@@ -21,11 +21,6 @@ def merge_chat_runs_in_session(
"""
messages: List[BaseMessage] = []
for message in chat_session["messages"]:
if not isinstance(message.content, str):
raise ValueError(
"Chat Loaders only support messages with content type string, "
f"got {message.content}"
)
if not messages:
messages.append(deepcopy(message))
elif (
@@ -34,11 +29,6 @@ def merge_chat_runs_in_session(
and messages[-1].additional_kwargs["sender"]
== message.additional_kwargs.get("sender")
):
if not isinstance(messages[-1].content, str):
raise ValueError(
"Chat Loaders only support messages with content type string, "
f"got {messages[-1].content}"
)
messages[-1].content = (
messages[-1].content + delimiter + message.content
).strip()

View File

@@ -1,4 +1,4 @@
from typing import Any, AsyncIterator, Dict, Iterator, List, Optional, cast
from typing import Any, AsyncIterator, Dict, Iterator, List, Optional
from langchain.callbacks.manager import (
AsyncCallbackManagerForLLMRun,
@@ -27,15 +27,14 @@ def _convert_one_message_to_text(
human_prompt: str,
ai_prompt: str,
) -> str:
content = cast(str, message.content)
if isinstance(message, ChatMessage):
message_text = f"\n\n{message.role.capitalize()}: {content}"
message_text = f"\n\n{message.role.capitalize()}: {message.content}"
elif isinstance(message, HumanMessage):
message_text = f"{human_prompt} {content}"
message_text = f"{human_prompt} {message.content}"
elif isinstance(message, AIMessage):
message_text = f"{ai_prompt} {content}"
message_text = f"{ai_prompt} {message.content}"
elif isinstance(message, SystemMessage):
message_text = content
message_text = message.content
else:
raise ValueError(f"Got unknown type {message}")
return message_text

View File

@@ -30,8 +30,6 @@ DEFAULT_MODEL = "meta-llama/Llama-2-7b-chat-hf"
class ChatAnyscale(ChatOpenAI):
"""`Anyscale` Chat large language models.
See https://www.anyscale.com/ for information about Anyscale.
To use, you should have the ``openai`` python package installed, and the
environment variable ``ANYSCALE_API_KEY`` set with your API key.
Alternatively, you can use the anyscale_api_key keyword argument.
@@ -55,7 +53,7 @@ class ChatAnyscale(ChatOpenAI):
def lc_secrets(self) -> Dict[str, str]:
return {"anyscale_api_key": "ANYSCALE_API_KEY"}
anyscale_api_key: SecretStr
anyscale_api_key: Optional[SecretStr] = None
"""AnyScale Endpoints API keys."""
model_name: str = Field(default=DEFAULT_MODEL, alias="model")
"""Model name to use."""
@@ -100,12 +98,7 @@ class ChatAnyscale(ChatOpenAI):
@root_validator(pre=True)
def validate_environment_override(cls, values: dict) -> dict:
"""Validate that api key and python package exists in environment."""
values["openai_api_key"] = get_from_dict_or_env(
values,
"anyscale_api_key",
"ANYSCALE_API_KEY",
)
values["anyscale_api_key"] = convert_to_secret_str(
values["openai_api_key"] = convert_to_secret_str(
get_from_dict_or_env(
values,
"anyscale_api_key",

View File

@@ -2,10 +2,10 @@
from __future__ import annotations
import logging
from typing import Any, Dict, Union
from typing import Any, Dict, Mapping
from langchain.chat_models.openai import ChatOpenAI, _is_openai_v1
from langchain.pydantic_v1 import BaseModel, Field, root_validator
from langchain.chat_models.openai import ChatOpenAI
from langchain.pydantic_v1 import root_validator
from langchain.schema import ChatResult
from langchain.utils import get_from_dict_or_env
@@ -51,13 +51,13 @@ class AzureChatOpenAI(ChatOpenAI):
in, even if not explicitly saved on this class.
"""
deployment_name: str = Field(default="", alias="azure_deployment")
deployment_name: str = ""
model_version: str = ""
openai_api_type: str = ""
openai_api_base: str = Field(default="", alias="azure_endpoint")
openai_api_version: str = Field(default="", alias="api_version")
openai_api_key: str = Field(default="", alias="api_key")
openai_organization: str = Field(default="", alias="organization")
openai_api_base: str = ""
openai_api_version: str = ""
openai_api_key: str = ""
openai_organization: str = ""
openai_proxy: str = ""
@root_validator()
@@ -101,27 +101,14 @@ class AzureChatOpenAI(ChatOpenAI):
"Could not import openai python package. "
"Please install it with `pip install openai`."
)
if _is_openai_v1():
values["client"] = openai.AzureOpenAI(
azure_endpoint=values["openai_api_base"],
api_key=values["openai_api_key"],
timeout=values["request_timeout"],
max_retries=values["max_retries"],
organization=values["openai_organization"],
api_version=values["openai_api_version"],
azure_deployment=values["deployment_name"],
).chat.completions
values["async_client"] = openai.AsyncAzureOpenAI(
azure_endpoint=values["openai_api_base"],
api_key=values["openai_api_key"],
timeout=values["request_timeout"],
max_retries=values["max_retries"],
organization=values["openai_organization"],
api_version=values["openai_api_version"],
azure_deployment=values["deployment_name"],
).chat.completions
else:
try:
values["client"] = openai.ChatCompletion
except AttributeError:
raise ValueError(
"`openai` has no `ChatCompletion` attribute, this is likely "
"due to an old version of the openai package. Try upgrading it "
"with `pip install --upgrade openai`."
)
if values["n"] < 1:
raise ValueError("n must be at least 1.")
if values["n"] > 1 and values["streaming"]:
@@ -131,13 +118,10 @@ class AzureChatOpenAI(ChatOpenAI):
@property
def _default_params(self) -> Dict[str, Any]:
"""Get the default parameters for calling OpenAI API."""
if _is_openai_v1():
return super()._default_params
else:
return {
**super()._default_params,
"engine": self.deployment_name,
}
return {
**super()._default_params,
"engine": self.deployment_name,
}
@property
def _identifying_params(self) -> Dict[str, Any]:
@@ -147,14 +131,11 @@ class AzureChatOpenAI(ChatOpenAI):
@property
def _client_params(self) -> Dict[str, Any]:
"""Get the config params used for the openai client."""
if _is_openai_v1():
return super()._client_params
else:
return {
**super()._client_params,
"api_type": self.openai_api_type,
"api_version": self.openai_api_version,
}
return {
**super()._client_params,
"api_type": self.openai_api_type,
"api_version": self.openai_api_version,
}
@property
def _llm_type(self) -> str:
@@ -167,9 +148,7 @@ class AzureChatOpenAI(ChatOpenAI):
"openai_api_version": self.openai_api_version,
}
def _create_chat_result(self, response: Union[dict, BaseModel]) -> ChatResult:
if not isinstance(response, dict):
response = response.dict()
def _create_chat_result(self, response: Mapping[str, Any]) -> ChatResult:
for res in response["choices"]:
if res.get("finish_reason", None) == "content_filter":
raise ValueError(

View File

@@ -1,5 +1,5 @@
import json
from typing import Any, Dict, List, Optional, cast
from typing import Any, Dict, List, Optional
from langchain.callbacks.manager import CallbackManagerForLLMRun
from langchain.chat_models.base import SimpleChatModel
@@ -23,21 +23,26 @@ class LlamaContentFormatter(ContentFormatterBase):
@staticmethod
def _convert_message_to_dict(message: BaseMessage) -> Dict:
"""Converts message to a dict according to role"""
content = cast(str, message.content)
if isinstance(message, HumanMessage):
return {
"role": "user",
"content": ContentFormatterBase.escape_special_characters(content),
"content": ContentFormatterBase.escape_special_characters(
message.content
),
}
elif isinstance(message, AIMessage):
return {
"role": "assistant",
"content": ContentFormatterBase.escape_special_characters(content),
"content": ContentFormatterBase.escape_special_characters(
message.content
),
}
elif isinstance(message, SystemMessage):
return {
"role": "system",
"content": ContentFormatterBase.escape_special_characters(content),
"content": ContentFormatterBase.escape_special_characters(
message.content
),
}
elif (
isinstance(message, ChatMessage)
@@ -45,7 +50,9 @@ class LlamaContentFormatter(ContentFormatterBase):
):
return {
"role": message.role,
"content": ContentFormatterBase.escape_special_characters(content),
"content": ContentFormatterBase.escape_special_characters(
message.content
),
}
else:
supported = ",".join(

View File

@@ -1,7 +1,15 @@
from __future__ import annotations
import logging
from typing import Any, AsyncIterator, Dict, Iterator, List, Mapping, Optional, cast
from typing import (
Any,
AsyncIterator,
Dict,
Iterator,
List,
Mapping,
Optional,
)
from langchain.callbacks.manager import (
AsyncCallbackManagerForLLMRun,
@@ -203,7 +211,7 @@ class QianfanChatEndpoint(BaseChatModel):
for i in [i for i, m in enumerate(messages) if isinstance(m, SystemMessage)]:
if "system" not in messages_dict:
messages_dict["system"] = ""
messages_dict["system"] += cast(str, messages[i].content) + "\n"
messages_dict["system"] += messages[i].content + "\n"
return {
**messages_dict,

View File

@@ -634,10 +634,7 @@ class BaseChatModel(BaseLanguageModel[BaseMessage], ABC):
else:
_stop = list(stop)
result = self([HumanMessage(content=text)], stop=_stop, **kwargs)
if isinstance(result.content, str):
return result.content
else:
raise ValueError("Cannot use predict when output is not a string.")
return result.content
def predict_messages(
self,
@@ -662,10 +659,7 @@ class BaseChatModel(BaseLanguageModel[BaseMessage], ABC):
result = await self._call_async(
[HumanMessage(content=text)], stop=_stop, **kwargs
)
if isinstance(result.content, str):
return result.content
else:
raise ValueError("Cannot use predict when output is not a string.")
return result.content
async def apredict_messages(
self,

View File

@@ -2,7 +2,7 @@
from __future__ import annotations
import logging
from typing import TYPE_CHECKING, Any, Callable, Dict, List, Optional, cast
from typing import TYPE_CHECKING, Any, Callable, Dict, List, Optional
from tenacity import (
before_sleep_log,
@@ -114,7 +114,7 @@ def _messages_to_prompt_dict(
if isinstance(input_message, SystemMessage):
if index != 0:
raise ChatGooglePalmError("System message must be first input message.")
context = cast(str, input_message.content)
context = input_message.content
elif isinstance(input_message, HumanMessage) and input_message.example:
if messages:
raise ChatGooglePalmError(

View File

@@ -58,10 +58,7 @@ def _collect_yaml_input(
if message is None:
return HumanMessage(content="")
if stop:
if isinstance(message.content, str):
message.content = enforce_stop_tokens(message.content, stop)
else:
raise ValueError("Cannot use when output is not a string.")
message.content = enforce_stop_tokens(message.content, stop)
return message
except yaml.YAMLError:
raise ValueError("Invalid YAML string entered.")

View File

@@ -21,8 +21,8 @@ from langchain.adapters.openai import convert_dict_to_message, convert_message_t
from langchain.callbacks.manager import (
CallbackManagerForLLMRun,
)
from langchain.chat_models.base import BaseChatModel, _generate_from_stream
from langchain.chat_models.openai import _convert_delta_to_message_chunk
from langchain.chat_models.base import _generate_from_stream
from langchain.chat_models.openai import ChatOpenAI, _convert_delta_to_message_chunk
from langchain.pydantic_v1 import Field, root_validator
from langchain.schema import ChatGeneration, ChatResult
from langchain.schema.messages import AIMessageChunk, BaseMessage
@@ -35,7 +35,7 @@ DEFAULT_MODEL = "meta-llama/Llama-2-13b-chat-hf"
logger = logging.getLogger(__name__)
class ChatKonko(BaseChatModel):
class ChatKonko(ChatOpenAI):
"""`ChatKonko` Chat large language models API.
To use, you should have the ``konko`` python package installed, and the

View File

@@ -1,6 +1,6 @@
"""Wrapper around Minimax chat models."""
import logging
from typing import Any, Dict, List, Optional, cast
from typing import Any, Dict, List, Optional
from langchain.callbacks.manager import (
AsyncCallbackManagerForLLMRun,
@@ -27,11 +27,10 @@ def _parse_chat_history(history: List[BaseMessage]) -> List:
"""Parse a sequence of messages into history."""
chat_history = []
for message in history:
content = cast(str, message.content)
if isinstance(message, HumanMessage):
chat_history.append(_parse_message("USER", content))
chat_history.append(_parse_message("USER", message.content))
if isinstance(message, AIMessage):
chat_history.append(_parse_message("BOT", content))
chat_history.append(_parse_message("BOT", message.content))
return chat_history

View File

@@ -3,7 +3,6 @@ from __future__ import annotations
import logging
import sys
from importlib.metadata import version
from typing import (
TYPE_CHECKING,
Any,
@@ -20,8 +19,6 @@ from typing import (
Union,
)
from packaging.version import Version, parse
from langchain.adapters.openai import convert_dict_to_message, convert_message_to_dict
from langchain.callbacks.manager import (
AsyncCallbackManagerForLLMRun,
@@ -47,13 +44,9 @@ from langchain.schema.messages import (
)
from langchain.schema.output import ChatGenerationChunk
from langchain.schema.runnable import Runnable
from langchain.utils import (
get_from_dict_or_env,
get_pydantic_field_names,
)
from langchain.utils import get_from_dict_or_env, get_pydantic_field_names
if TYPE_CHECKING:
import httpx
import tiktoken
@@ -98,9 +91,6 @@ async def acompletion_with_retry(
**kwargs: Any,
) -> Any:
"""Use tenacity to retry the async completion call."""
if _is_openai_v1():
return await llm.async_client.create(**kwargs)
retry_decorator = _create_retry_decorator(llm, run_manager=run_manager)
@retry_decorator
@@ -118,11 +108,6 @@ def _convert_delta_to_message_chunk(
content = _dict.get("content") or ""
if _dict.get("function_call"):
additional_kwargs = {"function_call": dict(_dict["function_call"])}
if (
"name" in additional_kwargs["function_call"]
and additional_kwargs["function_call"]["name"] is None
):
additional_kwargs["function_call"]["name"] = ""
else:
additional_kwargs = {}
@@ -140,11 +125,6 @@ def _convert_delta_to_message_chunk(
return default_class(content=content)
def _is_openai_v1() -> bool:
_version = parse(version("openai"))
return _version >= Version("1.0.0")
class ChatOpenAI(BaseChatModel):
"""`OpenAI` Chat large language models API.
@@ -186,28 +166,22 @@ class ChatOpenAI(BaseChatModel):
return True
client: Any = None #: :meta private:
async_client: Any = None #: :meta private:
model_name: str = Field(default="gpt-3.5-turbo", alias="model")
"""Model name to use."""
temperature: float = 0.7
"""What sampling temperature to use."""
model_kwargs: Dict[str, Any] = Field(default_factory=dict)
"""Holds any model parameters valid for `create` call not explicitly specified."""
# When updating this to use a SecretStr
# Check for classes that derive from this class (as some of them
# may assume openai_api_key is a str)
openai_api_key: Optional[str] = Field(default=None, alias="api_key")
openai_api_key: Optional[str] = None
"""Base URL path for API requests,
leave blank if not using a proxy or service emulator."""
openai_api_base: Optional[str] = Field(default=None, alias="base_url")
openai_organization: Optional[str] = Field(default=None, alias="organization")
openai_api_base: Optional[str] = None
openai_organization: Optional[str] = None
# to support explicit proxy for OpenAI
openai_proxy: Optional[str] = None
request_timeout: Union[float, Tuple[float, float], httpx.Timeout, None] = Field(
default=None, alias="timeout"
)
request_timeout: Optional[Union[float, Tuple[float, float]]] = None
"""Timeout for requests to OpenAI completion API. Default is 600 seconds."""
max_retries: int = 2
max_retries: int = 6
"""Maximum number of retries to make when generating."""
streaming: bool = False
"""Whether to stream the results or not."""
@@ -289,24 +263,14 @@ class ChatOpenAI(BaseChatModel):
"Could not import openai python package. "
"Please install it with `pip install openai`."
)
if _is_openai_v1():
values["client"] = openai.OpenAI(
api_key=values["openai_api_key"],
timeout=values["request_timeout"],
max_retries=values["max_retries"],
organization=values["openai_organization"],
base_url=values["openai_api_base"] or None,
).chat.completions
values["async_client"] = openai.AsyncOpenAI(
api_key=values["openai_api_key"],
timeout=values["request_timeout"],
max_retries=values["max_retries"],
organization=values["openai_organization"],
base_url=values["openai_api_base"] or None,
).chat.completions
else:
try:
values["client"] = openai.ChatCompletion
except AttributeError:
raise ValueError(
"`openai` has no `ChatCompletion` attribute, this is likely "
"due to an old version of the openai package. Try upgrading it "
"with `pip install --upgrade openai`."
)
if values["n"] < 1:
raise ValueError("n must be at least 1.")
if values["n"] > 1 and values["streaming"]:
@@ -316,24 +280,20 @@ class ChatOpenAI(BaseChatModel):
@property
def _default_params(self) -> Dict[str, Any]:
"""Get the default parameters for calling OpenAI API."""
params = {
return {
"model": self.model_name,
"request_timeout": self.request_timeout,
"max_tokens": self.max_tokens,
"stream": self.streaming,
"n": self.n,
"temperature": self.temperature,
**self.model_kwargs,
}
if self.max_tokens is not None:
params["max_tokens"] = self.max_tokens
return params
def completion_with_retry(
self, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any
) -> Any:
"""Use tenacity to retry the completion call."""
if _is_openai_v1():
return self.client.create(**kwargs)
retry_decorator = _create_retry_decorator(self, run_manager=run_manager)
@retry_decorator
@@ -344,7 +304,6 @@ class ChatOpenAI(BaseChatModel):
def _combine_llm_outputs(self, llm_outputs: List[Optional[dict]]) -> dict:
overall_token_usage: dict = {}
system_fingerprint = None
for output in llm_outputs:
if output is None:
# Happens in streaming
@@ -355,12 +314,7 @@ class ChatOpenAI(BaseChatModel):
overall_token_usage[k] += v
else:
overall_token_usage[k] = v
if system_fingerprint is None:
system_fingerprint = output.get("system_fingerprint")
combined = {"token_usage": overall_token_usage, "model_name": self.model_name}
if system_fingerprint:
combined["system_fingerprint"] = system_fingerprint
return combined
return {"token_usage": overall_token_usage, "model_name": self.model_name}
def _stream(
self,
@@ -376,8 +330,6 @@ class ChatOpenAI(BaseChatModel):
for chunk in self.completion_with_retry(
messages=message_dicts, run_manager=run_manager, **params
):
if not isinstance(chunk, dict):
chunk = chunk.dict()
if len(chunk["choices"]) == 0:
continue
choice = chunk["choices"][0]
@@ -426,10 +378,8 @@ class ChatOpenAI(BaseChatModel):
message_dicts = [convert_message_to_dict(m) for m in messages]
return message_dicts, params
def _create_chat_result(self, response: Union[dict, BaseModel]) -> ChatResult:
def _create_chat_result(self, response: Mapping[str, Any]) -> ChatResult:
generations = []
if not isinstance(response, dict):
response = response.dict()
for res in response["choices"]:
message = convert_dict_to_message(res["message"])
gen = ChatGeneration(
@@ -438,11 +388,7 @@ class ChatOpenAI(BaseChatModel):
)
generations.append(gen)
token_usage = response.get("usage", {})
llm_output = {
"token_usage": token_usage,
"model_name": self.model_name,
"system_fingerprint": response.get("system_fingerprint", ""),
}
llm_output = {"token_usage": token_usage, "model_name": self.model_name}
return ChatResult(generations=generations, llm_output=llm_output)
async def _astream(
@@ -459,8 +405,6 @@ class ChatOpenAI(BaseChatModel):
async for chunk in await acompletion_with_retry(
self, messages=message_dicts, run_manager=run_manager, **params
):
if not isinstance(chunk, dict):
chunk = chunk.dict()
if len(chunk["choices"]) == 0:
continue
choice = chunk["choices"][0]
@@ -508,16 +452,11 @@ class ChatOpenAI(BaseChatModel):
def _client_params(self) -> Dict[str, Any]:
"""Get the parameters used for the openai client."""
openai_creds: Dict[str, Any] = {
"api_key": self.openai_api_key,
"api_base": self.openai_api_base,
"organization": self.openai_organization,
"model": self.model_name,
}
if not _is_openai_v1():
openai_creds.update(
{
"api_key": self.openai_api_key,
"api_base": self.openai_api_base,
"organization": self.openai_organization,
}
)
if self.openai_proxy:
import openai

View File

@@ -2,7 +2,7 @@ import asyncio
import json
import logging
from functools import partial
from typing import Any, AsyncIterator, Dict, List, Optional, cast
from typing import Any, AsyncIterator, Dict, List, Optional
import requests
@@ -133,24 +133,23 @@ class PaiEasChatEndpoint(BaseChatModel):
for message in messages:
"""Converts message to a dict according to role"""
content = cast(str, message.content)
if isinstance(message, HumanMessage):
user_content = user_content + [content]
user_content = user_content + [message.content]
elif isinstance(message, AIMessage):
assistant_content = assistant_content + [content]
assistant_content = assistant_content + [message.content]
elif isinstance(message, SystemMessage):
prompt["system_prompt"] = content
prompt["system_prompt"] = message.content
elif isinstance(message, ChatMessage) and message.role in [
"user",
"assistant",
"system",
]:
if message.role == "system":
prompt["system_prompt"] = content
prompt["system_prompt"] = message.content
elif message.role == "user":
user_content = user_content + [content]
user_content = user_content + [message.content]
elif message.role == "assistant":
assistant_content = assistant_content + [content]
assistant_content = assistant_content + [message.content]
else:
supported = ",".join([role for role in ["user", "assistant", "system"]])
raise ValueError(
@@ -295,7 +294,7 @@ class PaiEasChatEndpoint(BaseChatModel):
# yield text, if any
if text:
if run_manager:
await run_manager.on_llm_new_token(cast(str, content.content))
await run_manager.on_llm_new_token(content.content)
yield ChatGenerationChunk(message=content)
# break if stop sequence found

View File

@@ -3,7 +3,7 @@ from __future__ import annotations
import logging
from dataclasses import dataclass, field
from typing import TYPE_CHECKING, Any, Dict, Iterator, List, Optional, Union, cast
from typing import TYPE_CHECKING, Any, Dict, Iterator, List, Optional, Union
from langchain.callbacks.manager import (
AsyncCallbackManagerForLLMRun,
@@ -57,9 +57,8 @@ def _parse_chat_history(history: List[BaseMessage]) -> _ChatHistory:
vertex_messages, context = [], None
for i, message in enumerate(history):
content = cast(str, message.content)
if i == 0 and isinstance(message, SystemMessage):
context = content
context = message.content
elif isinstance(message, AIMessage):
vertex_message = ChatMessage(content=message.content, author="bot")
vertex_messages.append(vertex_message)

View File

@@ -1,6 +1,6 @@
"""Wrapper around YandexGPT chat models."""
import logging
from typing import Any, Dict, List, Optional, Tuple, cast
from typing import Any, Dict, List, Optional, Tuple
from langchain.callbacks.manager import (
AsyncCallbackManagerForLLMRun,
@@ -34,13 +34,12 @@ def _parse_chat_history(history: List[BaseMessage]) -> Tuple[List[Dict[str, str]
chat_history = []
instruction = ""
for message in history:
content = cast(str, message.content)
if isinstance(message, HumanMessage):
chat_history.append(_parse_message("user", content))
chat_history.append(_parse_message("user", message.content))
if isinstance(message, AIMessage):
chat_history.append(_parse_message("assistant", content))
chat_history.append(_parse_message("assistant", message.content))
if isinstance(message, SystemMessage):
instruction = content
instruction = message.content
return chat_history, instruction

View File

@@ -43,7 +43,7 @@ class BaiduBOSDirectoryLoader(BaseLoader):
if response.is_truncated or contents_len < int(str(response.max_keys)):
break
marker = response.next_marker
from langchain.document_loaders.baiducloud_bos_file import BaiduBOSFileLoader
from baidu_bos_file import BaiduBOSFileLoader
for content in contents:
if str(content.key).endswith("/"):

View File

@@ -53,7 +53,6 @@ from langchain.embeddings.mosaicml import MosaicMLInstructorEmbeddings
from langchain.embeddings.nlpcloud import NLPCloudEmbeddings
from langchain.embeddings.octoai_embeddings import OctoAIEmbeddings
from langchain.embeddings.ollama import OllamaEmbeddings
from langchain.embeddings.open_clip import OpenCLIPEmbeddings
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.embeddings.sagemaker_endpoint import SagemakerEndpointEmbeddings
from langchain.embeddings.self_hosted import SelfHostedEmbeddings
@@ -118,7 +117,6 @@ __all__ = [
"QianfanEmbeddingsEndpoint",
"JohnSnowLabsEmbeddings",
"VoyageEmbeddings",
"OpenCLIPEmbeddings",
]

View File

@@ -87,10 +87,7 @@ class CohereEmbeddings(BaseModel, Embeddings):
List of embeddings, one for each text.
"""
embeddings = self.client.embed(
model=self.model,
texts=texts,
input_type="search_document",
truncate=self.truncate,
model=self.model, texts=texts, truncate=self.truncate
).embeddings
return [list(map(float, e)) for e in embeddings]
@@ -104,10 +101,7 @@ class CohereEmbeddings(BaseModel, Embeddings):
List of embeddings, one for each text.
"""
embeddings = await self.async_client.embed(
model=self.model,
texts=texts,
input_type="search_document",
truncate=self.truncate,
model=self.model, texts=texts, truncate=self.truncate
)
return [list(map(float, e)) for e in embeddings.embeddings]
@@ -120,13 +114,7 @@ class CohereEmbeddings(BaseModel, Embeddings):
Returns:
Embeddings for the text.
"""
embeddings = self.client.embed(
model=self.model,
texts=[text],
input_type="search_query",
truncate=self.truncate,
).embeddings
return [list(map(float, e)) for e in embeddings][0]
return self.embed_documents([text])[0]
async def aembed_query(self, text: str) -> List[float]:
"""Async call out to Cohere's embedding endpoint.
@@ -137,10 +125,5 @@ class CohereEmbeddings(BaseModel, Embeddings):
Returns:
Embeddings for the text.
"""
embeddings = await self.async_client.embed(
model=self.model,
texts=[text],
input_type="search_query",
truncate=self.truncate,
)
return [list(map(float, e)) for e in embeddings.embeddings][0]
embeddings = await self.aembed_documents([text])
return embeddings[0]

View File

@@ -1,56 +0,0 @@
from typing import Any, Dict, List
import numpy as np
from langchain.pydantic_v1 import BaseModel, root_validator
from langchain.schema.embeddings import Embeddings
class OpenCLIPEmbeddings(BaseModel, Embeddings):
model: Any
preprocess: Any
tokenizer: Any
@root_validator()
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that open_clip and torch libraries are installed."""
try:
import open_clip
model_name = "ViT-B-32"
checkpoint = "laion2b_s34b_b79k"
model, _, preprocess = open_clip.create_model_and_transforms(
model_name=model_name, pretrained=checkpoint
)
tokenizer = open_clip.get_tokenizer(model_name)
values["model"] = model
values["preprocess"] = preprocess
values["tokenizer"] = tokenizer
except ImportError:
raise ImportError(
"Please ensure both open_clip and torch libraries are installed. "
"pip install open_clip_torch torch"
)
return values
def embed_documents(self, texts: List[str]) -> List[List[float]]:
text_features = [
self.model.encode_text(self.tokenizer(text)).tolist() for text in texts
]
return text_features
def embed_query(self, text: str) -> List[float]:
return self.embed_documents([text])[0]
def embed_image(self, images: List[np.ndarray]) -> List[List[float]]:
try:
from PIL import Image as _PILImage
except ImportError:
raise ImportError("Please install the PIL library: pip install pillow")
pil_images = [_PILImage.fromarray(image) for image in images]
image_features = [
self.model.encode_image(self.preprocess(pil_image).unsqueeze(0)).tolist()
for pil_image in pil_images
]
return image_features

View File

@@ -2,9 +2,7 @@ from __future__ import annotations
import logging
import warnings
from importlib.metadata import version
from typing import (
TYPE_CHECKING,
Any,
Callable,
Dict,
@@ -18,7 +16,6 @@ from typing import (
)
import numpy as np
from packaging.version import Version, parse
from tenacity import (
AsyncRetrying,
before_sleep_log,
@@ -32,9 +29,6 @@ from langchain.pydantic_v1 import BaseModel, Extra, Field, root_validator
from langchain.schema.embeddings import Embeddings
from langchain.utils import get_from_dict_or_env, get_pydantic_field_names
if TYPE_CHECKING:
import httpx
logger = logging.getLogger(__name__)
@@ -103,8 +97,6 @@ def _check_response(response: dict, skip_empty: bool = False) -> dict:
def embed_with_retry(embeddings: OpenAIEmbeddings, **kwargs: Any) -> Any:
"""Use tenacity to retry the embedding call."""
if _is_openai_v1():
return embeddings.client.create(**kwargs)
retry_decorator = _create_retry_decorator(embeddings)
@retry_decorator
@@ -118,9 +110,6 @@ def embed_with_retry(embeddings: OpenAIEmbeddings, **kwargs: Any) -> Any:
async def async_embed_with_retry(embeddings: OpenAIEmbeddings, **kwargs: Any) -> Any:
"""Use tenacity to retry the embedding call."""
if _is_openai_v1():
return await embeddings.async_client.create(**kwargs)
@_async_retry_decorator(embeddings)
async def _async_embed_with_retry(**kwargs: Any) -> Any:
response = await embeddings.client.acreate(**kwargs)
@@ -129,11 +118,6 @@ async def async_embed_with_retry(embeddings: OpenAIEmbeddings, **kwargs: Any) ->
return await _async_embed_with_retry(**kwargs)
def _is_openai_v1() -> bool:
_version = parse(version("openai"))
return _version >= Version("1.0.0")
class OpenAIEmbeddings(BaseModel, Embeddings):
"""OpenAI embedding models.
@@ -176,7 +160,6 @@ class OpenAIEmbeddings(BaseModel, Embeddings):
"""
client: Any = None #: :meta private:
async_client: Any = None #: :meta private:
model: str = "text-embedding-ada-002"
deployment: str = model # to support Azure OpenAI Service custom deployment names
openai_api_version: Optional[str] = None
@@ -196,9 +179,7 @@ class OpenAIEmbeddings(BaseModel, Embeddings):
"""Maximum number of texts to embed in each batch"""
max_retries: int = 6
"""Maximum number of retries to make when generating."""
request_timeout: Optional[Union[float, Tuple[float, float], httpx.Timeout]] = Field(
default=None, alias="timeout"
)
request_timeout: Optional[Union[float, Tuple[float, float]]] = None
"""Timeout in seconds for the OpenAPI request."""
headers: Any = None
tiktoken_model_name: Optional[str] = None
@@ -300,23 +281,7 @@ class OpenAIEmbeddings(BaseModel, Embeddings):
try:
import openai
if _is_openai_v1():
values["client"] = openai.OpenAI(
api_key=values.get("openai_api_key"),
timeout=values.get("request_timeout"),
max_retries=values.get("max_retries"),
organization=values.get("openai_organization"),
base_url=values.get("openai_api_base") or None,
).embeddings
values["async_client"] = openai.AsyncOpenAI(
api_key=values.get("openai_api_key"),
timeout=values.get("request_timeout"),
max_retries=values.get("max_retries"),
organization=values.get("openai_organization"),
base_url=values.get("openai_api_base") or None,
).embeddings
else:
values["client"] = openai.Embedding
values["client"] = openai.Embedding
except ImportError:
raise ImportError(
"Could not import openai python package. "
@@ -325,22 +290,18 @@ class OpenAIEmbeddings(BaseModel, Embeddings):
return values
@property
def _invocation_params(self) -> Dict[str, Any]:
openai_args: Dict[str, Any] = (
{"model": self.model, **self.model_kwargs}
if _is_openai_v1()
else {
"model": self.model,
"request_timeout": self.request_timeout,
"headers": self.headers,
"api_key": self.openai_api_key,
"organization": self.openai_organization,
"api_base": self.openai_api_base,
"api_type": self.openai_api_type,
"api_version": self.openai_api_version,
**self.model_kwargs,
}
)
def _invocation_params(self) -> Dict:
openai_args = {
"model": self.model,
"request_timeout": self.request_timeout,
"headers": self.headers,
"api_key": self.openai_api_key,
"organization": self.openai_organization,
"api_base": self.openai_api_base,
"api_type": self.openai_api_type,
"api_version": self.openai_api_version,
**self.model_kwargs,
}
if self.openai_api_type in ("azure", "azure_ad", "azuread"):
openai_args["engine"] = self.deployment
if self.openai_proxy:
@@ -415,8 +376,6 @@ class OpenAIEmbeddings(BaseModel, Embeddings):
input=tokens[i : i + _chunk_size],
**self._invocation_params,
)
if not isinstance(response, dict):
response = response.dict()
batched_embeddings.extend(r["embedding"] for r in response["data"])
results: List[List[List[float]]] = [[] for _ in range(len(texts))]
@@ -430,14 +389,11 @@ class OpenAIEmbeddings(BaseModel, Embeddings):
for i in range(len(texts)):
_result = results[i]
if len(_result) == 0:
average_embedded = embed_with_retry(
average = embed_with_retry(
self,
input="",
**self._invocation_params,
)
if not isinstance(average_embedded, dict):
average_embedded = average_embedded.dict()
average = average_embedded["data"][0]["embedding"]
)["data"][0]["embedding"]
else:
average = np.average(_result, axis=0, weights=num_tokens_in_batch[i])
embeddings[i] = (average / np.linalg.norm(average)).tolist()
@@ -490,9 +446,6 @@ class OpenAIEmbeddings(BaseModel, Embeddings):
input=tokens[i : i + _chunk_size],
**self._invocation_params,
)
if not isinstance(response, dict):
response = response.dict()
batched_embeddings.extend(r["embedding"] for r in response["data"])
results: List[List[List[float]]] = [[] for _ in range(len(texts))]
@@ -504,14 +457,13 @@ class OpenAIEmbeddings(BaseModel, Embeddings):
for i in range(len(texts)):
_result = results[i]
if len(_result) == 0:
average_embedded = embed_with_retry(
self,
input="",
**self._invocation_params,
)
if not isinstance(average_embedded, dict):
average_embedded = average_embedded.dict()
average = average_embedded["data"][0]["embedding"]
average = (
await async_embed_with_retry(
self,
input="",
**self._invocation_params,
)
)["data"][0]["embedding"]
else:
average = np.average(_result, axis=0, weights=num_tokens_in_batch[i])
embeddings[i] = (average / np.linalg.norm(average)).tolist()

View File

@@ -15,9 +15,8 @@ from tenacity import (
from langchain.callbacks.manager import CallbackManagerForLLMRun
from langchain.llms.base import LLM
from langchain.llms.utils import enforce_stop_tokens
from langchain.pydantic_v1 import Extra, SecretStr, root_validator
from langchain.utils import convert_to_secret_str
from langchain.utils.env import get_from_dict_or_env
from langchain.pydantic_v1 import Extra, root_validator
from langchain.utils import get_from_dict_or_env
DEFAULT_NEBULA_SERVICE_URL = "https://api-nebula.symbl.ai"
DEFAULT_NEBULA_SERVICE_PATH = "/v1/model/generate"
@@ -51,7 +50,7 @@ class Nebula(LLM):
nebula_service_url: Optional[str] = None
nebula_service_path: Optional[str] = None
nebula_api_key: Optional[SecretStr] = None
nebula_api_key: Optional[str] = None
model: Optional[str] = None
max_new_tokens: Optional[int] = 128
temperature: Optional[float] = 0.6
@@ -82,8 +81,8 @@ class Nebula(LLM):
"NEBULA_SERVICE_PATH",
DEFAULT_NEBULA_SERVICE_PATH,
)
nebula_api_key = convert_to_secret_str(
get_from_dict_or_env(values, "nebula_api_key", "NEBULA_API_KEY", None)
nebula_api_key = get_from_dict_or_env(
values, "nebula_api_key", "NEBULA_API_KEY", None
)
if nebula_service_url.endswith("/"):
@@ -188,12 +187,9 @@ def make_request(
) -> Any:
"""Generate text from the model."""
params = params or {}
api_key = None
if self.nebula_api_key is not None:
api_key = self.nebula_api_key.get_secret_value()
headers = {
"Content-Type": "application/json",
"ApiKey": f"{api_key}",
"ApiKey": f"{self.nebula_api_key}",
}
body = {

View File

@@ -64,7 +64,7 @@ class BaseMessage(Serializable):
Messages are the inputs and outputs of ChatModels.
"""
content: Union[str, List[Union[str, Dict]]]
content: str
"""The string contents of the message."""
additional_kwargs: dict = Field(default_factory=dict)
@@ -87,33 +87,6 @@ class BaseMessage(Serializable):
return prompt + other
def merge_content(
first_content: Union[str, List[Union[str, Dict]]],
second_content: Union[str, List[Union[str, Dict]]],
) -> Union[str, List[Union[str, Dict]]]:
# If first chunk is a string
if isinstance(first_content, str):
# If the second chunk is also a string, then merge them naively
if isinstance(second_content, str):
return first_content + second_content
# If the second chunk is a list, add the first chunk to the start of the list
else:
return_list: List[Union[str, Dict]] = [first_content]
return return_list + second_content
# If both are lists, merge them naively
elif isinstance(second_content, List):
return first_content + second_content
# If the first content is a list, and the second content is a string
else:
# If the last element of the first content is a string
# Add the second content to the last element
if isinstance(first_content[-1], str):
return first_content[:-1] + [first_content[-1] + second_content]
else:
# Otherwise, add the second content as a new element of the list
return first_content + [second_content]
class BaseMessageChunk(BaseMessage):
"""A Message chunk, which can be concatenated with other Message chunks."""
@@ -148,13 +121,13 @@ class BaseMessageChunk(BaseMessage):
if isinstance(self, ChatMessageChunk):
return self.__class__(
role=self.role,
content=merge_content(self.content, other.content),
content=self.content + other.content,
additional_kwargs=self._merge_kwargs_dict(
self.additional_kwargs, other.additional_kwargs
),
)
return self.__class__(
content=merge_content(self.content, other.content),
content=self.content + other.content,
additional_kwargs=self._merge_kwargs_dict(
self.additional_kwargs, other.additional_kwargs
),
@@ -221,7 +194,7 @@ class AIMessageChunk(AIMessage, BaseMessageChunk):
return self.__class__(
example=self.example,
content=merge_content(self.content, other.content),
content=self.content + other.content,
additional_kwargs=self._merge_kwargs_dict(
self.additional_kwargs, other.additional_kwargs
),
@@ -279,7 +252,7 @@ class FunctionMessageChunk(FunctionMessage, BaseMessageChunk):
return self.__class__(
name=self.name,
content=merge_content(self.content, other.content),
content=self.content + other.content,
additional_kwargs=self._merge_kwargs_dict(
self.additional_kwargs, other.additional_kwargs
),
@@ -317,7 +290,7 @@ class ChatMessageChunk(ChatMessage, BaseMessageChunk):
return self.__class__(
role=self.role,
content=merge_content(self.content, other.content),
content=self.content + other.content,
additional_kwargs=self._merge_kwargs_dict(
self.additional_kwargs, other.additional_kwargs
),

View File

@@ -273,7 +273,7 @@ class ConfigurableFieldSingleOption(NamedTuple):
description: Optional[str] = None
def __hash__(self) -> int:
return hash((self.id, tuple(self.options.keys()), self.default))
return hash((self.id, tuple(self.options.items()), self.default))
class ConfigurableFieldMultiOption(NamedTuple):
@@ -287,7 +287,7 @@ class ConfigurableFieldMultiOption(NamedTuple):
description: Optional[str] = None
def __hash__(self) -> int:
return hash((self.id, tuple(self.options.keys()), tuple(self.default)))
return hash((self.id, tuple(self.options.items()), tuple(self.default)))
AnyConfigurableField = Union[

View File

@@ -9,7 +9,6 @@ from typing import IO, TYPE_CHECKING, Any, Callable, List, Optional, Type
from langchain.callbacks.manager import (
AsyncCallbackManagerForToolRun,
CallbackManager,
CallbackManagerForToolRun,
)
from langchain.pydantic_v1 import BaseModel, Field, PrivateAttr
@@ -152,26 +151,14 @@ class E2BDataAnalysisTool(BaseTool):
return "\n".join(lines)
def _run(
self,
python_code: str,
run_manager: Optional[CallbackManagerForToolRun] = None,
callbacks: Optional[CallbackManager] = None,
self, python_code: str, run_manager: Optional[CallbackManagerForToolRun] = None
) -> str:
python_code = add_last_line_print(python_code)
if callbacks is not None:
on_artifact = getattr(callbacks.metadata, "on_artifact", None)
else:
on_artifact = None
stdout, stderr, artifacts = self.session.run_python(
python_code, on_artifact=on_artifact
)
stdout, stderr, _ = self.session.run_python(python_code)
out = {
"stdout": stdout,
"stderr": stderr,
"artifacts": list(map(lambda artifact: artifact.name, artifacts)),
}
return json.dumps(out)

View File

@@ -95,8 +95,7 @@ class BESVectorStore(VectorStore):
connection_params: Dict[str, Any] = {}
connection_params["hosts"] = [bes_url]
if username and password:
connection_params["basic_auth"] = (username, password)
connection_params["basic_auth"] = (username, password)
es_client = elasticsearch.Elasticsearch(**connection_params)
try:
@@ -237,6 +236,7 @@ class BESVectorStore(VectorStore):
if "linear" == self.index_type:
query_vector_body["linear"] = True
query_vector_body["space_type"] = self.space_type
else:
query_vector_body["ef"] = search_params.get("ef", 10)
@@ -279,7 +279,7 @@ class BESVectorStore(VectorStore):
logger.debug(f"Query body: {query_body}")
# Perform the kNN search on the BES index and return the results.
response = self.client.search(index=self.index_name, body=query_body)
response = self.client.search(index=self.index_name, **query_body)
logger.debug(f"response={response}")
hits = [hit for hit in response["hits"]["hits"]]

View File

@@ -66,11 +66,7 @@ class Dingo(VectorStore):
self._text_key = text_key
self._client = dingo_client
if (
index_name is not None
and index_name not in dingo_client.get_index()
and index_name.upper() not in dingo_client.get_index()
):
if index_name is not None and index_name not in dingo_client.get_index():
if self_id is True:
dingo_client.create_index(
index_name, dimension=dimension, auto_id=False
@@ -181,9 +177,8 @@ class Dingo(VectorStore):
id = res["id"]
score = res["distance"]
text = metadatas[self._text_key]["fields"][0]["data"]
metadata = {"id": id, "text": text, "score": score}
for meta_key in metadatas.keys():
metadata[meta_key] = metadatas[meta_key]["fields"][0]["data"]
docs.append((Document(page_content=text, metadata=metadata), score))
return docs
@@ -323,20 +318,12 @@ class Dingo(VectorStore):
except ValueError as e:
raise ValueError(f"Dingo failed to connect: {e}")
if kwargs is not None and kwargs.get("self_id") is True:
if (
index_name is not None
and index_name not in dingo_client.get_index()
and index_name.upper() not in dingo_client.get_index()
):
if index_name not in dingo_client.get_index():
dingo_client.create_index(
index_name, dimension=dimension, auto_id=False
)
else:
if (
index_name is not None
and index_name not in dingo_client.get_index()
and index_name.upper() not in dingo_client.get_index()
):
if index_name not in dingo_client.get_index():
dingo_client.create_index(index_name, dimension=dimension)
# Embed and create the documents

View File

@@ -159,17 +159,7 @@ class PGVector(VectorStore):
def create_vector_extension(self) -> None:
try:
with Session(self._conn) as session:
# The advisor lock fixes issue arising from concurrent
# creation of the vector extension.
# https://github.com/langchain-ai/langchain/issues/12933
# For more information see:
# https://www.postgresql.org/docs/16/explicit-locking.html#ADVISORY-LOCKS
statement = sqlalchemy.text(
"BEGIN;"
"SELECT pg_advisory_xact_lock(1573678846307946496);"
"CREATE EXTENSION IF NOT EXISTS vector;"
"COMMIT;"
)
statement = sqlalchemy.text("CREATE EXTENSION IF NOT EXISTS vector")
session.execute(statement)
session.commit()
except Exception as e:

View File

@@ -1837,11 +1837,6 @@ class Qdrant(VectorStore):
)
return qdrant
@staticmethod
def _cosine_relevance_score_fn(distance: float) -> float:
"""Normalize the distance to a score on a scale [0, 1]."""
return (distance + 1.0) / 2.0
def _select_relevance_score_fn(self) -> Callable[[float], float]:
"""
The 'correct' relevance function

View File

@@ -1,6 +1,6 @@
[tool.poetry]
name = "langchain"
version = "0.0.331rc2"
version = "0.0.329"
description = "Building applications with LLMs through composability"
authors = []
license = "MIT"

View File

@@ -1,6 +1,5 @@
"""Test ChatFireworks wrapper."""
import sys
from typing import cast
import pytest
@@ -153,7 +152,7 @@ def test_fireworks_streaming_stop_words(chat: ChatFireworks) -> None:
last_token = ""
for token in chat.stream("I'm Pickle Rick", stop=[","]):
last_token = cast(str, token.content)
last_token = token.content
assert isinstance(token.content, str)
assert last_token[-1] == ","
@@ -184,6 +183,6 @@ async def test_fireworks_astream(chat: ChatFireworks) -> None:
async for token in chat.astream(
"Who's the best quarterback in the NFL?", stop=[","]
):
last_token = cast(str, token.content)
last_token = token.content
assert isinstance(token.content, str)
assert last_token[-1] == ","

View File

@@ -58,8 +58,6 @@ def test_chat_openai_generate() -> None:
response = chat.generate([[message], [message]])
assert isinstance(response, LLMResult)
assert len(response.generations) == 2
assert response.llm_output
assert "system_fingerprint" in response.llm_output
for generations in response.generations:
assert len(generations) == 2
for generation in generations:
@@ -165,8 +163,6 @@ async def test_async_chat_openai() -> None:
response = await chat.agenerate([[message], [message]])
assert isinstance(response, LLMResult)
assert len(response.generations) == 2
assert response.llm_output
assert "system_fingerprint" in response.llm_output
for generations in response.generations:
assert len(generations) == 2
for generation in generations:

View File

@@ -1,4 +1,6 @@
"""Test openai embeddings."""
import os
import numpy as np
import openai
import pytest
@@ -88,3 +90,26 @@ def test_embed_documents_normalized() -> None:
def test_embed_query_normalized() -> None:
output = OpenAIEmbeddings().embed_query("foo walked to the market")
assert np.isclose(np.linalg.norm(output), 1.0)
def test_azure_openai_embeddings() -> None:
from openai import error
os.environ["OPENAI_API_TYPE"] = "azure"
os.environ["OPENAI_API_BASE"] = "https://your-endpoint.openai.azure.com/"
os.environ["OPENAI_API_KEY"] = "your AzureOpenAI key"
os.environ["OPENAI_API_VERSION"] = "2023-03-15-preview"
embeddings = OpenAIEmbeddings(deployment="your-embeddings-deployment-name")
text = "This is a test document."
try:
embeddings.embed_query(text)
except error.InvalidRequestError as e:
if "Must provide an 'engine' or 'deployment_id' parameter" in str(e):
assert (
False
), "deployment was provided to but openai.Embeddings didn't get it."
except Exception:
# Expected to fail because endpoint doesn't exist.
pass

View File

@@ -490,13 +490,7 @@ async def test_arb_func_on_kv_singleio_dataset(
)
def my_func(x: dict) -> str:
content = runnable.invoke(x).content
if isinstance(content, str):
return content
else:
raise ValueError(
f"Expected message with content type string, got {content}"
)
return runnable.invoke(x).content
eval_config = RunEvalConfig(evaluators=[EvaluatorType.QA, EvaluatorType.CRITERIA])
await arun_on_dataset(

View File

@@ -2,7 +2,7 @@
from typing import Tuple
from langchain.agents.structured_chat.output_parser import StructuredChatOutputParser
from langchain.schema import AgentAction, AgentFinish
from langchain.schema import AgentAction
output_parser = StructuredChatOutputParser()
@@ -11,10 +11,8 @@ def get_action_and_input(text: str) -> Tuple[str, str]:
output = output_parser.parse(text)
if isinstance(output, AgentAction):
return output.tool, str(output.tool_input)
elif isinstance(output, AgentFinish):
return output.return_values["output"], output.log
else:
raise ValueError("Unexpected output type")
return "Final Answer", output.return_values["output"]
def test_parse_with_language() -> None:
@@ -47,59 +45,3 @@ def test_parse_without_language() -> None:
action, action_input = get_action_and_input(llm_output)
assert action == "foo"
assert action_input == "bar"
def test_parse_with_language_and_spaces() -> None:
llm_output = """I can use the `foo` tool to achieve the goal.
Action:
```json
{
"action": "foo",
"action_input": "bar"
}
```
"""
action, action_input = get_action_and_input(llm_output)
assert action == "foo"
assert action_input == "bar"
def test_parse_without_language_without_a_new_line() -> None:
llm_output = """I can use the `foo` tool to achieve the goal.
Action:
```{"action": "foo", "action_input": "bar"}```
"""
action, action_input = get_action_and_input(llm_output)
assert action == "foo"
assert action_input == "bar"
def test_parse_with_language_without_a_new_line() -> None:
llm_output = """I can use the `foo` tool to achieve the goal.
Action:
```json{"action": "foo", "action_input": "bar"}```
"""
# TODO: How should this be handled?
output, log = get_action_and_input(llm_output)
assert output == llm_output
assert log == llm_output
def test_parse_case_matched_and_final_answer() -> None:
llm_output = """I can use the `foo` tool to achieve the goal.
Action:
```json
{
"action": "Final Answer",
"action_input": "This is the final answer"
}
```
"""
output, log = get_action_and_input(llm_output)
assert output == "This is the final answer"
assert log == llm_output

View File

@@ -1,5 +1,6 @@
import json
import os
from typing import Any, Mapping, cast
from unittest import mock
import pytest
@@ -47,8 +48,9 @@ def test_model_name_set_on_chat_result_when_present_in_response(
"""
# convert sample_response_text to instance of Mapping[str, Any]
sample_response = json.loads(sample_response_text)
mock_response = cast(Mapping[str, Any], sample_response)
mock_chat = AzureChatOpenAI()
chat_result = mock_chat._create_chat_result(sample_response)
chat_result = mock_chat._create_chat_result(mock_response)
assert (
chat_result.llm_output is not None
and chat_result.llm_output["model_name"] == model_name

View File

@@ -48,7 +48,6 @@ EXPECTED_ALL = [
"QianfanEmbeddingsEndpoint",
"JohnSnowLabsEmbeddings",
"VoyageEmbeddings",
"OpenCLIPEmbeddings",
]

View File

@@ -1,29 +0,0 @@
"""Test the Nebula model by Symbl.ai"""
from pytest import CaptureFixture, MonkeyPatch
from langchain.llms.symblai_nebula import Nebula
from langchain.pydantic_v1 import SecretStr
def test_api_key_is_secret_string() -> None:
llm = Nebula(nebula_api_key="secret-api-key")
assert isinstance(llm.nebula_api_key, SecretStr)
assert llm.nebula_api_key.get_secret_value() == "secret-api-key"
def test_api_key_masked_when_passed_from_env(
monkeypatch: MonkeyPatch, capsys: CaptureFixture
) -> None:
monkeypatch.setenv("NEBULA_API_KEY", "secret-api-key")
llm = Nebula()
print(llm.nebula_api_key, end="")
captured = capsys.readouterr()
assert captured.out == "**********"
def test_api_key_masked_when_passed_via_constructor(capsys: CaptureFixture) -> None:
llm = Nebula(nebula_api_key="secret-api-key")
print(llm.nebula_api_key, end="")
captured = capsys.readouterr()
assert captured.out == "**********"

View File

@@ -1685,25 +1685,8 @@
'type': 'object',
}),
'content': dict({
'anyOf': list([
dict({
'type': 'string',
}),
dict({
'items': dict({
'anyOf': list([
dict({
'type': 'string',
}),
dict({
'type': 'object',
}),
]),
}),
'type': 'array',
}),
]),
'title': 'Content',
'type': 'string',
}),
'example': dict({
'default': False,
@@ -1733,25 +1716,8 @@
'type': 'object',
}),
'content': dict({
'anyOf': list([
dict({
'type': 'string',
}),
dict({
'items': dict({
'anyOf': list([
dict({
'type': 'string',
}),
dict({
'type': 'object',
}),
]),
}),
'type': 'array',
}),
]),
'title': 'Content',
'type': 'string',
}),
'role': dict({
'title': 'Role',
@@ -1825,25 +1791,8 @@
'type': 'object',
}),
'content': dict({
'anyOf': list([
dict({
'type': 'string',
}),
dict({
'items': dict({
'anyOf': list([
dict({
'type': 'string',
}),
dict({
'type': 'object',
}),
]),
}),
'type': 'array',
}),
]),
'title': 'Content',
'type': 'string',
}),
'name': dict({
'title': 'Name',
@@ -1873,25 +1822,8 @@
'type': 'object',
}),
'content': dict({
'anyOf': list([
dict({
'type': 'string',
}),
dict({
'items': dict({
'anyOf': list([
dict({
'type': 'string',
}),
dict({
'type': 'object',
}),
]),
}),
'type': 'array',
}),
]),
'title': 'Content',
'type': 'string',
}),
'example': dict({
'default': False,
@@ -1946,25 +1878,8 @@
'type': 'object',
}),
'content': dict({
'anyOf': list([
dict({
'type': 'string',
}),
dict({
'items': dict({
'anyOf': list([
dict({
'type': 'string',
}),
dict({
'type': 'object',
}),
]),
}),
'type': 'array',
}),
]),
'title': 'Content',
'type': 'string',
}),
'type': dict({
'default': 'system',
@@ -2029,25 +1944,8 @@
'type': 'object',
}),
'content': dict({
'anyOf': list([
dict({
'type': 'string',
}),
dict({
'items': dict({
'anyOf': list([
dict({
'type': 'string',
}),
dict({
'type': 'object',
}),
]),
}),
'type': 'array',
}),
]),
'title': 'Content',
'type': 'string',
}),
'example': dict({
'default': False,
@@ -2077,25 +1975,8 @@
'type': 'object',
}),
'content': dict({
'anyOf': list([
dict({
'type': 'string',
}),
dict({
'items': dict({
'anyOf': list([
dict({
'type': 'string',
}),
dict({
'type': 'object',
}),
]),
}),
'type': 'array',
}),
]),
'title': 'Content',
'type': 'string',
}),
'role': dict({
'title': 'Role',
@@ -2169,25 +2050,8 @@
'type': 'object',
}),
'content': dict({
'anyOf': list([
dict({
'type': 'string',
}),
dict({
'items': dict({
'anyOf': list([
dict({
'type': 'string',
}),
dict({
'type': 'object',
}),
]),
}),
'type': 'array',
}),
]),
'title': 'Content',
'type': 'string',
}),
'name': dict({
'title': 'Name',
@@ -2217,25 +2081,8 @@
'type': 'object',
}),
'content': dict({
'anyOf': list([
dict({
'type': 'string',
}),
dict({
'items': dict({
'anyOf': list([
dict({
'type': 'string',
}),
dict({
'type': 'object',
}),
]),
}),
'type': 'array',
}),
]),
'title': 'Content',
'type': 'string',
}),
'example': dict({
'default': False,
@@ -2290,25 +2137,8 @@
'type': 'object',
}),
'content': dict({
'anyOf': list([
dict({
'type': 'string',
}),
dict({
'items': dict({
'anyOf': list([
dict({
'type': 'string',
}),
dict({
'type': 'object',
}),
]),
}),
'type': 'array',
}),
]),
'title': 'Content',
'type': 'string',
}),
'type': dict({
'default': 'system',
@@ -2357,25 +2187,8 @@
'type': 'object',
}),
'content': dict({
'anyOf': list([
dict({
'type': 'string',
}),
dict({
'items': dict({
'anyOf': list([
dict({
'type': 'string',
}),
dict({
'type': 'object',
}),
]),
}),
'type': 'array',
}),
]),
'title': 'Content',
'type': 'string',
}),
'example': dict({
'default': False,
@@ -2405,25 +2218,8 @@
'type': 'object',
}),
'content': dict({
'anyOf': list([
dict({
'type': 'string',
}),
dict({
'items': dict({
'anyOf': list([
dict({
'type': 'string',
}),
dict({
'type': 'object',
}),
]),
}),
'type': 'array',
}),
]),
'title': 'Content',
'type': 'string',
}),
'role': dict({
'title': 'Role',
@@ -2453,25 +2249,8 @@
'type': 'object',
}),
'content': dict({
'anyOf': list([
dict({
'type': 'string',
}),
dict({
'items': dict({
'anyOf': list([
dict({
'type': 'string',
}),
dict({
'type': 'object',
}),
]),
}),
'type': 'array',
}),
]),
'title': 'Content',
'type': 'string',
}),
'name': dict({
'title': 'Name',
@@ -2501,25 +2280,8 @@
'type': 'object',
}),
'content': dict({
'anyOf': list([
dict({
'type': 'string',
}),
dict({
'items': dict({
'anyOf': list([
dict({
'type': 'string',
}),
dict({
'type': 'object',
}),
]),
}),
'type': 'array',
}),
]),
'title': 'Content',
'type': 'string',
}),
'example': dict({
'default': False,
@@ -2552,25 +2314,8 @@
'type': 'object',
}),
'content': dict({
'anyOf': list([
dict({
'type': 'string',
}),
dict({
'items': dict({
'anyOf': list([
dict({
'type': 'string',
}),
dict({
'type': 'object',
}),
]),
}),
'type': 'array',
}),
]),
'title': 'Content',
'type': 'string',
}),
'type': dict({
'default': 'system',
@@ -2610,25 +2355,8 @@
'type': 'object',
}),
'content': dict({
'anyOf': list([
dict({
'type': 'string',
}),
dict({
'items': dict({
'anyOf': list([
dict({
'type': 'string',
}),
dict({
'type': 'object',
}),
]),
}),
'type': 'array',
}),
]),
'title': 'Content',
'type': 'string',
}),
'example': dict({
'default': False,
@@ -2658,25 +2386,8 @@
'type': 'object',
}),
'content': dict({
'anyOf': list([
dict({
'type': 'string',
}),
dict({
'items': dict({
'anyOf': list([
dict({
'type': 'string',
}),
dict({
'type': 'object',
}),
]),
}),
'type': 'array',
}),
]),
'title': 'Content',
'type': 'string',
}),
'role': dict({
'title': 'Role',
@@ -2750,25 +2461,8 @@
'type': 'object',
}),
'content': dict({
'anyOf': list([
dict({
'type': 'string',
}),
dict({
'items': dict({
'anyOf': list([
dict({
'type': 'string',
}),
dict({
'type': 'object',
}),
]),
}),
'type': 'array',
}),
]),
'title': 'Content',
'type': 'string',
}),
'name': dict({
'title': 'Name',
@@ -2798,25 +2492,8 @@
'type': 'object',
}),
'content': dict({
'anyOf': list([
dict({
'type': 'string',
}),
dict({
'items': dict({
'anyOf': list([
dict({
'type': 'string',
}),
dict({
'type': 'object',
}),
]),
}),
'type': 'array',
}),
]),
'title': 'Content',
'type': 'string',
}),
'example': dict({
'default': False,
@@ -2871,25 +2548,8 @@
'type': 'object',
}),
'content': dict({
'anyOf': list([
dict({
'type': 'string',
}),
dict({
'items': dict({
'anyOf': list([
dict({
'type': 'string',
}),
dict({
'type': 'object',
}),
]),
}),
'type': 'array',
}),
]),
'title': 'Content',
'type': 'string',
}),
'type': dict({
'default': 'system',
@@ -2929,25 +2589,8 @@
'type': 'object',
}),
'content': dict({
'anyOf': list([
dict({
'type': 'string',
}),
dict({
'items': dict({
'anyOf': list([
dict({
'type': 'string',
}),
dict({
'type': 'object',
}),
]),
}),
'type': 'array',
}),
]),
'title': 'Content',
'type': 'string',
}),
'example': dict({
'default': False,
@@ -2977,25 +2620,8 @@
'type': 'object',
}),
'content': dict({
'anyOf': list([
dict({
'type': 'string',
}),
dict({
'items': dict({
'anyOf': list([
dict({
'type': 'string',
}),
dict({
'type': 'object',
}),
]),
}),
'type': 'array',
}),
]),
'title': 'Content',
'type': 'string',
}),
'role': dict({
'title': 'Role',
@@ -3069,25 +2695,8 @@
'type': 'object',
}),
'content': dict({
'anyOf': list([
dict({
'type': 'string',
}),
dict({
'items': dict({
'anyOf': list([
dict({
'type': 'string',
}),
dict({
'type': 'object',
}),
]),
}),
'type': 'array',
}),
]),
'title': 'Content',
'type': 'string',
}),
'name': dict({
'title': 'Name',
@@ -3117,25 +2726,8 @@
'type': 'object',
}),
'content': dict({
'anyOf': list([
dict({
'type': 'string',
}),
dict({
'items': dict({
'anyOf': list([
dict({
'type': 'string',
}),
dict({
'type': 'object',
}),
]),
}),
'type': 'array',
}),
]),
'title': 'Content',
'type': 'string',
}),
'example': dict({
'default': False,
@@ -3190,25 +2782,8 @@
'type': 'object',
}),
'content': dict({
'anyOf': list([
dict({
'type': 'string',
}),
dict({
'items': dict({
'anyOf': list([
dict({
'type': 'string',
}),
dict({
'type': 'object',
}),
]),
}),
'type': 'array',
}),
]),
'title': 'Content',
'type': 'string',
}),
'type': dict({
'default': 'system',
@@ -3240,25 +2815,8 @@
'type': 'object',
}),
'content': dict({
'anyOf': list([
dict({
'type': 'string',
}),
dict({
'items': dict({
'anyOf': list([
dict({
'type': 'string',
}),
dict({
'type': 'object',
}),
]),
}),
'type': 'array',
}),
]),
'title': 'Content',
'type': 'string',
}),
'example': dict({
'default': False,
@@ -3288,25 +2846,8 @@
'type': 'object',
}),
'content': dict({
'anyOf': list([
dict({
'type': 'string',
}),
dict({
'items': dict({
'anyOf': list([
dict({
'type': 'string',
}),
dict({
'type': 'object',
}),
]),
}),
'type': 'array',
}),
]),
'title': 'Content',
'type': 'string',
}),
'role': dict({
'title': 'Role',
@@ -3380,25 +2921,8 @@
'type': 'object',
}),
'content': dict({
'anyOf': list([
dict({
'type': 'string',
}),
dict({
'items': dict({
'anyOf': list([
dict({
'type': 'string',
}),
dict({
'type': 'object',
}),
]),
}),
'type': 'array',
}),
]),
'title': 'Content',
'type': 'string',
}),
'name': dict({
'title': 'Name',
@@ -3428,25 +2952,8 @@
'type': 'object',
}),
'content': dict({
'anyOf': list([
dict({
'type': 'string',
}),
dict({
'items': dict({
'anyOf': list([
dict({
'type': 'string',
}),
dict({
'type': 'object',
}),
]),
}),
'type': 'array',
}),
]),
'title': 'Content',
'type': 'string',
}),
'example': dict({
'default': False,
@@ -3512,25 +3019,8 @@
'type': 'object',
}),
'content': dict({
'anyOf': list([
dict({
'type': 'string',
}),
dict({
'items': dict({
'anyOf': list([
dict({
'type': 'string',
}),
dict({
'type': 'object',
}),
]),
}),
'type': 'array',
}),
]),
'title': 'Content',
'type': 'string',
}),
'type': dict({
'default': 'system',
@@ -3586,25 +3076,8 @@
'type': 'object',
}),
'content': dict({
'anyOf': list([
dict({
'type': 'string',
}),
dict({
'items': dict({
'anyOf': list([
dict({
'type': 'string',
}),
dict({
'type': 'object',
}),
]),
}),
'type': 'array',
}),
]),
'title': 'Content',
'type': 'string',
}),
'example': dict({
'default': False,
@@ -3634,25 +3107,8 @@
'type': 'object',
}),
'content': dict({
'anyOf': list([
dict({
'type': 'string',
}),
dict({
'items': dict({
'anyOf': list([
dict({
'type': 'string',
}),
dict({
'type': 'object',
}),
]),
}),
'type': 'array',
}),
]),
'title': 'Content',
'type': 'string',
}),
'role': dict({
'title': 'Role',
@@ -3682,25 +3138,8 @@
'type': 'object',
}),
'content': dict({
'anyOf': list([
dict({
'type': 'string',
}),
dict({
'items': dict({
'anyOf': list([
dict({
'type': 'string',
}),
dict({
'type': 'object',
}),
]),
}),
'type': 'array',
}),
]),
'title': 'Content',
'type': 'string',
}),
'name': dict({
'title': 'Name',
@@ -3730,25 +3169,8 @@
'type': 'object',
}),
'content': dict({
'anyOf': list([
dict({
'type': 'string',
}),
dict({
'items': dict({
'anyOf': list([
dict({
'type': 'string',
}),
dict({
'type': 'object',
}),
]),
}),
'type': 'array',
}),
]),
'title': 'Content',
'type': 'string',
}),
'example': dict({
'default': False,
@@ -3781,25 +3203,8 @@
'type': 'object',
}),
'content': dict({
'anyOf': list([
dict({
'type': 'string',
}),
dict({
'items': dict({
'anyOf': list([
dict({
'type': 'string',
}),
dict({
'type': 'object',
}),
]),
}),
'type': 'array',
}),
]),
'title': 'Content',
'type': 'string',
}),
'type': dict({
'default': 'system',

View File

@@ -295,18 +295,7 @@ def test_schemas(snapshot: SnapshotAssertion) -> None:
"description": "A Message from an AI.",
"type": "object",
"properties": {
"content": {
"title": "Content",
"anyOf": [
{"type": "string"},
{
"type": "array",
"items": {
"anyOf": [{"type": "string"}, {"type": "object"}]
},
},
],
},
"content": {"title": "Content", "type": "string"},
"additional_kwargs": {
"title": "Additional Kwargs",
"type": "object",
@@ -330,18 +319,7 @@ def test_schemas(snapshot: SnapshotAssertion) -> None:
"description": "A Message from a human.",
"type": "object",
"properties": {
"content": {
"title": "Content",
"anyOf": [
{"type": "string"},
{
"type": "array",
"items": {
"anyOf": [{"type": "string"}, {"type": "object"}]
},
},
],
},
"content": {"title": "Content", "type": "string"},
"additional_kwargs": {
"title": "Additional Kwargs",
"type": "object",
@@ -365,18 +343,7 @@ def test_schemas(snapshot: SnapshotAssertion) -> None:
"description": "A Message that can be assigned an arbitrary speaker (i.e. role).", # noqa: E501
"type": "object",
"properties": {
"content": {
"title": "Content",
"anyOf": [
{"type": "string"},
{
"type": "array",
"items": {
"anyOf": [{"type": "string"}, {"type": "object"}]
},
},
],
},
"content": {"title": "Content", "type": "string"},
"additional_kwargs": {
"title": "Additional Kwargs",
"type": "object",
@@ -396,18 +363,7 @@ def test_schemas(snapshot: SnapshotAssertion) -> None:
"description": "A Message for priming AI behavior, usually passed in as the first of a sequence\nof input messages.", # noqa: E501
"type": "object",
"properties": {
"content": {
"title": "Content",
"anyOf": [
{"type": "string"},
{
"type": "array",
"items": {
"anyOf": [{"type": "string"}, {"type": "object"}]
},
},
],
},
"content": {"title": "Content", "type": "string"},
"additional_kwargs": {
"title": "Additional Kwargs",
"type": "object",
@@ -426,18 +382,7 @@ def test_schemas(snapshot: SnapshotAssertion) -> None:
"description": "A Message for passing the result of executing a function back to a model.", # noqa: E501
"type": "object",
"properties": {
"content": {
"title": "Content",
"anyOf": [
{"type": "string"},
{
"type": "array",
"items": {
"anyOf": [{"type": "string"}, {"type": "object"}]
},
},
],
},
"content": {"title": "Content", "type": "string"},
"additional_kwargs": {
"title": "Additional Kwargs",
"type": "object",

View File

@@ -11,7 +11,7 @@ They are all in a standard format which make it easy to deploy them with [LangSe
To use, first install the LangChain CLI.
```shell
pip install -U langchain-cli
pip install -U "langchain-cli[serve]"
```
Next, create a new LangChain project:

View File

@@ -14,7 +14,7 @@ Set the `ANTHROPIC_API_KEY` environment variable to access the Anthropic models.
To use this package, you should first have the LangChain CLI installed:
```shell
pip install -U langchain-cli
pip install -U "langchain-cli[serve]"
```
To create a new LangChain project and install this as the only package, you can do:

View File

@@ -1,3 +1,11 @@
from .chain import chain
from langchain.schema.runnable import ConfigurableField
__all__ = ["chain"]
from .chain import chain
from .retriever_agent import executor
final_chain = chain.configurable_alternatives(
ConfigurableField(id="chain"),
default_key="response",
# This adds a new option, with name `openai` that is equal to `ChatOpenAI()`
retrieve=executor,
)

View File

@@ -2,7 +2,6 @@ from langchain.chat_models import ChatAnthropic
from langchain.prompts import ChatPromptTemplate
from langchain.pydantic_v1 import BaseModel
from langchain.schema.output_parser import StrOutputParser
from langchain.schema.runnable import ConfigurableField
from .prompts import answer_prompt
from .retriever_agent import executor
@@ -26,10 +25,3 @@ class Inputs(BaseModel):
chain = chain.with_types(input_type=Inputs)
chain = chain.configurable_alternatives(
ConfigurableField(id="chain"),
default_key="response",
# This adds a new option, with name `openai` that is equal to `ChatOpenAI()`
retrieve=executor,
)

View File

@@ -122,6 +122,20 @@ files = [
[package.dependencies]
frozenlist = ">=1.1.0"
[[package]]
name = "annotated-types"
version = "0.6.0"
description = "Reusable constraint types to use with typing.Annotated"
optional = false
python-versions = ">=3.8"
files = [
{file = "annotated_types-0.6.0-py3-none-any.whl", hash = "sha256:0641064de18ba7a25dee8f96403ebc39113d0cb953a01429249d5c7564666a43"},
{file = "annotated_types-0.6.0.tar.gz", hash = "sha256:563339e807e53ffd9c267e99fc6d9ea23eb8443c08f112651963e24e22f84a5d"},
]
[package.dependencies]
typing-extensions = {version = ">=4.0.0", markers = "python_version < \"3.9\""}
[[package]]
name = "anthropic"
version = "0.5.0"
@@ -319,20 +333,6 @@ files = [
{file = "charset_normalizer-3.3.0-py3-none-any.whl", hash = "sha256:e46cd37076971c1040fc8c41273a8b3e2c624ce4f2be3f5dfcb7a430c1d3acc2"},
]
[[package]]
name = "click"
version = "8.1.7"
description = "Composable command line interface toolkit"
optional = false
python-versions = ">=3.7"
files = [
{file = "click-8.1.7-py3-none-any.whl", hash = "sha256:ae74fb96c20a0277a1d615f1e4d73c8414f5a98db8b799a7931d1582f3390c28"},
{file = "click-8.1.7.tar.gz", hash = "sha256:ca9853ad459e787e2192211578cc907e7594e294c7ccc834310722b41b9ca6de"},
]
[package.dependencies]
colorama = {version = "*", markers = "platform_system == \"Windows\""}
[[package]]
name = "colorama"
version = "0.4.6"
@@ -384,26 +384,6 @@ files = [
[package.extras]
test = ["pytest (>=6)"]
[[package]]
name = "fastapi"
version = "0.104.1"
description = "FastAPI framework, high performance, easy to learn, fast to code, ready for production"
optional = false
python-versions = ">=3.8"
files = [
{file = "fastapi-0.104.1-py3-none-any.whl", hash = "sha256:752dc31160cdbd0436bb93bad51560b57e525cbb1d4bbf6f4904ceee75548241"},
{file = "fastapi-0.104.1.tar.gz", hash = "sha256:e5e4540a7c5e1dcfbbcf5b903c234feddcdcd881f191977a1c5dfd917487e7ae"},
]
[package.dependencies]
anyio = ">=3.7.1,<4.0.0"
pydantic = ">=1.7.4,<1.8 || >1.8,<1.8.1 || >1.8.1,<2.0.0 || >2.0.0,<2.0.1 || >2.0.1,<2.1.0 || >2.1.0,<3.0.0"
starlette = ">=0.27.0,<0.28.0"
typing-extensions = ">=4.8.0"
[package.extras]
all = ["email-validator (>=2.0.0)", "httpx (>=0.23.0)", "itsdangerous (>=1.1.0)", "jinja2 (>=2.11.2)", "orjson (>=3.2.1)", "pydantic-extra-types (>=2.0.0)", "pydantic-settings (>=2.0.0)", "python-multipart (>=0.0.5)", "pyyaml (>=5.3.1)", "ujson (>=4.0.1,!=4.0.2,!=4.1.0,!=4.2.0,!=4.3.0,!=5.0.0,!=5.1.0)", "uvicorn[standard] (>=0.12.0)"]
[[package]]
name = "filelock"
version = "3.12.4"
@@ -525,37 +505,6 @@ smb = ["smbprotocol"]
ssh = ["paramiko"]
tqdm = ["tqdm"]
[[package]]
name = "gitdb"
version = "4.0.11"
description = "Git Object Database"
optional = false
python-versions = ">=3.7"
files = [
{file = "gitdb-4.0.11-py3-none-any.whl", hash = "sha256:81a3407ddd2ee8df444cbacea00e2d038e40150acfa3001696fe0dcf1d3adfa4"},
{file = "gitdb-4.0.11.tar.gz", hash = "sha256:bf5421126136d6d0af55bc1e7c1af1c397a34f5b7bd79e776cd3e89785c2b04b"},
]
[package.dependencies]
smmap = ">=3.0.1,<6"
[[package]]
name = "gitpython"
version = "3.1.40"
description = "GitPython is a Python library used to interact with Git repositories"
optional = false
python-versions = ">=3.7"
files = [
{file = "GitPython-3.1.40-py3-none-any.whl", hash = "sha256:cf14627d5a8049ffbf49915732e5eddbe8134c3bdb9d476e6182b676fc573f8a"},
{file = "GitPython-3.1.40.tar.gz", hash = "sha256:22b126e9ffb671fdd0c129796343a02bf67bf2994b35449ffc9321aa755e18a4"},
]
[package.dependencies]
gitdb = ">=4.0.1,<5"
[package.extras]
test = ["black", "coverage[toml]", "ddt (>=1.1.1,!=1.4.3)", "mock", "mypy", "pre-commit", "pytest", "pytest-cov", "pytest-instafail", "pytest-subtests", "pytest-sugar"]
[[package]]
name = "greenlet"
version = "3.0.0"
@@ -687,17 +636,6 @@ cli = ["click (==8.*)", "pygments (==2.*)", "rich (>=10,<14)"]
http2 = ["h2 (>=3,<5)"]
socks = ["socksio (==1.*)"]
[[package]]
name = "httpx-sse"
version = "0.3.1"
description = "Consume Server-Sent Event (SSE) messages with HTTPX."
optional = false
python-versions = ">=3.7"
files = [
{file = "httpx-sse-0.3.1.tar.gz", hash = "sha256:3bb3289b2867f50cbdb2fee3eeeefecb1e86653122e164faac0023f1ffc88aea"},
{file = "httpx_sse-0.3.1-py3-none-any.whl", hash = "sha256:7376dd88732892f9b6b549ac0ad05a8e2341172fe7dcf9f8f9c8050934297316"},
]
[[package]]
name = "huggingface-hub"
version = "0.17.3"
@@ -807,52 +745,6 @@ openai = ["openai (>=0,<1)", "tiktoken (>=0.3.2,<0.6.0)"]
qdrant = ["qdrant-client (>=1.3.1,<2.0.0)"]
text-helpers = ["chardet (>=5.1.0,<6.0.0)"]
[[package]]
name = "langchain-cli"
version = "0.0.13"
description = "CLI for interacting with LangChain"
optional = false
python-versions = ">=3.8.1,<4.0"
files = [
{file = "langchain_cli-0.0.13-py3-none-any.whl", hash = "sha256:7f9bc2178fcfa042180f4f2597c4a8a3de7c1a75a7cead99b52b943ac54f1649"},
{file = "langchain_cli-0.0.13.tar.gz", hash = "sha256:2ce9febfb312aad6a70a12f121644ca4695bb3758992cd4fcb13bc22a3803261"},
]
[package.dependencies]
fastapi = ">=0.104.0,<0.105.0"
gitpython = ">=3.1.40,<4.0.0"
langserve = {version = ">=0.0.16", extras = ["all"], optional = true, markers = "extra == \"serve\""}
tomli = ">=2.0.1,<3.0.0"
typer = {version = ">=0.9.0,<0.10.0", extras = ["all"]}
uvicorn = ">=0.23.2,<0.24.0"
[package.extras]
serve = ["langserve[all] (>=0.0.16)"]
[[package]]
name = "langserve"
version = "0.0.22"
description = ""
optional = false
python-versions = ">=3.8.1,<4.0.0"
files = [
{file = "langserve-0.0.22-py3-none-any.whl", hash = "sha256:908239209959fc23202a09113b42c0e5838d046404a4e725602fe56af96bf340"},
{file = "langserve-0.0.22.tar.gz", hash = "sha256:14a33986668c8d36aa2e58dc66307c021eaac18019d2b99e7fae30f6937650d1"},
]
[package.dependencies]
fastapi = {version = ">=0.90.1", optional = true, markers = "extra == \"server\" or extra == \"all\""}
httpx = ">=0.23.0"
httpx-sse = {version = ">=0.3.1", optional = true, markers = "extra == \"client\" or extra == \"all\""}
langchain = ">=0.0.322"
pydantic = ">=1,<2"
sse-starlette = {version = ">=1.3.0,<2.0.0", optional = true, markers = "extra == \"server\" or extra == \"all\""}
[package.extras]
all = ["fastapi (>=0.90.1)", "httpx-sse (>=0.3.1)", "sse-starlette (>=1.3.0,<2.0.0)"]
client = ["httpx-sse (>=0.3.1)"]
server = ["fastapi (>=0.90.1)", "sse-starlette (>=1.3.0,<2.0.0)"]
[[package]]
name = "langsmith"
version = "0.0.54"
@@ -868,30 +760,6 @@ files = [
pydantic = ">=1,<3"
requests = ">=2,<3"
[[package]]
name = "markdown-it-py"
version = "3.0.0"
description = "Python port of markdown-it. Markdown parsing, done right!"
optional = false
python-versions = ">=3.8"
files = [
{file = "markdown-it-py-3.0.0.tar.gz", hash = "sha256:e3f60a94fa066dc52ec76661e37c851cb232d92f9886b15cb560aaada2df8feb"},
{file = "markdown_it_py-3.0.0-py3-none-any.whl", hash = "sha256:355216845c60bd96232cd8d8c40e8f9765cc86f46880e43a8fd22dc1a1a8cab1"},
]
[package.dependencies]
mdurl = ">=0.1,<1.0"
[package.extras]
benchmarking = ["psutil", "pytest", "pytest-benchmark"]
code-style = ["pre-commit (>=3.0,<4.0)"]
compare = ["commonmark (>=0.9,<1.0)", "markdown (>=3.4,<4.0)", "mistletoe (>=1.0,<2.0)", "mistune (>=2.0,<3.0)", "panflute (>=2.3,<3.0)"]
linkify = ["linkify-it-py (>=1,<3)"]
plugins = ["mdit-py-plugins"]
profiling = ["gprof2dot"]
rtd = ["jupyter_sphinx", "mdit-py-plugins", "myst-parser", "pyyaml", "sphinx", "sphinx-copybutton", "sphinx-design", "sphinx_book_theme"]
testing = ["coverage", "pytest", "pytest-cov", "pytest-regressions"]
[[package]]
name = "marshmallow"
version = "3.20.1"
@@ -912,17 +780,6 @@ docs = ["alabaster (==0.7.13)", "autodocsumm (==0.2.11)", "sphinx (==7.0.1)", "s
lint = ["flake8 (==6.0.0)", "flake8-bugbear (==23.7.10)", "mypy (==1.4.1)", "pre-commit (>=2.4,<4.0)"]
tests = ["pytest", "pytz", "simplejson"]
[[package]]
name = "mdurl"
version = "0.1.2"
description = "Markdown URL utilities"
optional = false
python-versions = ">=3.7"
files = [
{file = "mdurl-0.1.2-py3-none-any.whl", hash = "sha256:84008a41e51615a49fc9966191ff91509e3c40b939176e643fd50a5c2196b8f8"},
{file = "mdurl-0.1.2.tar.gz", hash = "sha256:bb413d29f5eea38f31dd4754dd7377d4465116fb207585f97bf925588687c1ba"},
]
[[package]]
name = "multidict"
version = "6.0.4"
@@ -1067,69 +924,140 @@ files = [
[[package]]
name = "pydantic"
version = "1.10.13"
description = "Data validation and settings management using python type hints"
version = "2.4.2"
description = "Data validation using Python type hints"
optional = false
python-versions = ">=3.7"
files = [
{file = "pydantic-1.10.13-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:efff03cc7a4f29d9009d1c96ceb1e7a70a65cfe86e89d34e4a5f2ab1e5693737"},
{file = "pydantic-1.10.13-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:3ecea2b9d80e5333303eeb77e180b90e95eea8f765d08c3d278cd56b00345d01"},
{file = "pydantic-1.10.13-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1740068fd8e2ef6eb27a20e5651df000978edce6da6803c2bef0bc74540f9548"},
{file = "pydantic-1.10.13-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:84bafe2e60b5e78bc64a2941b4c071a4b7404c5c907f5f5a99b0139781e69ed8"},
{file = "pydantic-1.10.13-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:bc0898c12f8e9c97f6cd44c0ed70d55749eaf783716896960b4ecce2edfd2d69"},
{file = "pydantic-1.10.13-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:654db58ae399fe6434e55325a2c3e959836bd17a6f6a0b6ca8107ea0571d2e17"},
{file = "pydantic-1.10.13-cp310-cp310-win_amd64.whl", hash = "sha256:75ac15385a3534d887a99c713aa3da88a30fbd6204a5cd0dc4dab3d770b9bd2f"},
{file = "pydantic-1.10.13-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:c553f6a156deb868ba38a23cf0df886c63492e9257f60a79c0fd8e7173537653"},
{file = "pydantic-1.10.13-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:5e08865bc6464df8c7d61439ef4439829e3ab62ab1669cddea8dd00cd74b9ffe"},
{file = "pydantic-1.10.13-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e31647d85a2013d926ce60b84f9dd5300d44535a9941fe825dc349ae1f760df9"},
{file = "pydantic-1.10.13-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:210ce042e8f6f7c01168b2d84d4c9eb2b009fe7bf572c2266e235edf14bacd80"},
{file = "pydantic-1.10.13-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:8ae5dd6b721459bfa30805f4c25880e0dd78fc5b5879f9f7a692196ddcb5a580"},
{file = "pydantic-1.10.13-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:f8e81fc5fb17dae698f52bdd1c4f18b6ca674d7068242b2aff075f588301bbb0"},
{file = "pydantic-1.10.13-cp311-cp311-win_amd64.whl", hash = "sha256:61d9dce220447fb74f45e73d7ff3b530e25db30192ad8d425166d43c5deb6df0"},
{file = "pydantic-1.10.13-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:4b03e42ec20286f052490423682016fd80fda830d8e4119f8ab13ec7464c0132"},
{file = "pydantic-1.10.13-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f59ef915cac80275245824e9d771ee939133be38215555e9dc90c6cb148aaeb5"},
{file = "pydantic-1.10.13-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:5a1f9f747851338933942db7af7b6ee8268568ef2ed86c4185c6ef4402e80ba8"},
{file = "pydantic-1.10.13-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:97cce3ae7341f7620a0ba5ef6cf043975cd9d2b81f3aa5f4ea37928269bc1b87"},
{file = "pydantic-1.10.13-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:854223752ba81e3abf663d685f105c64150873cc6f5d0c01d3e3220bcff7d36f"},
{file = "pydantic-1.10.13-cp37-cp37m-win_amd64.whl", hash = "sha256:b97c1fac8c49be29486df85968682b0afa77e1b809aff74b83081cc115e52f33"},
{file = "pydantic-1.10.13-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:c958d053453a1c4b1c2062b05cd42d9d5c8eb67537b8d5a7e3c3032943ecd261"},
{file = "pydantic-1.10.13-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:4c5370a7edaac06daee3af1c8b1192e305bc102abcbf2a92374b5bc793818599"},
{file = "pydantic-1.10.13-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7d6f6e7305244bddb4414ba7094ce910560c907bdfa3501e9db1a7fd7eaea127"},
{file = "pydantic-1.10.13-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:d3a3c792a58e1622667a2837512099eac62490cdfd63bd407993aaf200a4cf1f"},
{file = "pydantic-1.10.13-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:c636925f38b8db208e09d344c7aa4f29a86bb9947495dd6b6d376ad10334fb78"},
{file = "pydantic-1.10.13-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:678bcf5591b63cc917100dc50ab6caebe597ac67e8c9ccb75e698f66038ea953"},
{file = "pydantic-1.10.13-cp38-cp38-win_amd64.whl", hash = "sha256:6cf25c1a65c27923a17b3da28a0bdb99f62ee04230c931d83e888012851f4e7f"},
{file = "pydantic-1.10.13-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:8ef467901d7a41fa0ca6db9ae3ec0021e3f657ce2c208e98cd511f3161c762c6"},
{file = "pydantic-1.10.13-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:968ac42970f57b8344ee08837b62f6ee6f53c33f603547a55571c954a4225691"},
{file = "pydantic-1.10.13-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9849f031cf8a2f0a928fe885e5a04b08006d6d41876b8bbd2fc68a18f9f2e3fd"},
{file = "pydantic-1.10.13-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:56e3ff861c3b9c6857579de282ce8baabf443f42ffba355bf070770ed63e11e1"},
{file = "pydantic-1.10.13-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:9f00790179497767aae6bcdc36355792c79e7bbb20b145ff449700eb076c5f96"},
{file = "pydantic-1.10.13-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:75b297827b59bc229cac1a23a2f7a4ac0031068e5be0ce385be1462e7e17a35d"},
{file = "pydantic-1.10.13-cp39-cp39-win_amd64.whl", hash = "sha256:e70ca129d2053fb8b728ee7d1af8e553a928d7e301a311094b8a0501adc8763d"},
{file = "pydantic-1.10.13-py3-none-any.whl", hash = "sha256:b87326822e71bd5f313e7d3bfdc77ac3247035ac10b0c0618bd99dcf95b1e687"},
{file = "pydantic-1.10.13.tar.gz", hash = "sha256:32c8b48dcd3b2ac4e78b0ba4af3a2c2eb6048cb75202f0ea7b34feb740efc340"},
{file = "pydantic-2.4.2-py3-none-any.whl", hash = "sha256:bc3ddf669d234f4220e6e1c4d96b061abe0998185a8d7855c0126782b7abc8c1"},
{file = "pydantic-2.4.2.tar.gz", hash = "sha256:94f336138093a5d7f426aac732dcfe7ab4eb4da243c88f891d65deb4a2556ee7"},
]
[package.dependencies]
typing-extensions = ">=4.2.0"
annotated-types = ">=0.4.0"
pydantic-core = "2.10.1"
typing-extensions = ">=4.6.1"
[package.extras]
dotenv = ["python-dotenv (>=0.10.4)"]
email = ["email-validator (>=1.0.3)"]
email = ["email-validator (>=2.0.0)"]
[[package]]
name = "pygments"
version = "2.16.1"
description = "Pygments is a syntax highlighting package written in Python."
name = "pydantic-core"
version = "2.10.1"
description = ""
optional = false
python-versions = ">=3.7"
files = [
{file = "Pygments-2.16.1-py3-none-any.whl", hash = "sha256:13fc09fa63bc8d8671a6d247e1eb303c4b343eaee81d861f3404db2935653692"},
{file = "Pygments-2.16.1.tar.gz", hash = "sha256:1daff0494820c69bc8941e407aa20f577374ee88364ee10a98fdbe0aece96e29"},
{file = "pydantic_core-2.10.1-cp310-cp310-macosx_10_7_x86_64.whl", hash = "sha256:d64728ee14e667ba27c66314b7d880b8eeb050e58ffc5fec3b7a109f8cddbd63"},
{file = "pydantic_core-2.10.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:48525933fea744a3e7464c19bfede85df4aba79ce90c60b94d8b6e1eddd67096"},
{file = "pydantic_core-2.10.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ef337945bbd76cce390d1b2496ccf9f90b1c1242a3a7bc242ca4a9fc5993427a"},
{file = "pydantic_core-2.10.1-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:a1392e0638af203cee360495fd2cfdd6054711f2db5175b6e9c3c461b76f5175"},
{file = "pydantic_core-2.10.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:0675ba5d22de54d07bccde38997e780044dcfa9a71aac9fd7d4d7a1d2e3e65f7"},
{file = "pydantic_core-2.10.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:128552af70a64660f21cb0eb4876cbdadf1a1f9d5de820fed6421fa8de07c893"},
{file = "pydantic_core-2.10.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8f6e6aed5818c264412ac0598b581a002a9f050cb2637a84979859e70197aa9e"},
{file = "pydantic_core-2.10.1-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:ecaac27da855b8d73f92123e5f03612b04c5632fd0a476e469dfc47cd37d6b2e"},
{file = "pydantic_core-2.10.1-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:b3c01c2fb081fced3bbb3da78510693dc7121bb893a1f0f5f4b48013201f362e"},
{file = "pydantic_core-2.10.1-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:92f675fefa977625105708492850bcbc1182bfc3e997f8eecb866d1927c98ae6"},
{file = "pydantic_core-2.10.1-cp310-none-win32.whl", hash = "sha256:420a692b547736a8d8703c39ea935ab5d8f0d2573f8f123b0a294e49a73f214b"},
{file = "pydantic_core-2.10.1-cp310-none-win_amd64.whl", hash = "sha256:0880e239827b4b5b3e2ce05e6b766a7414e5f5aedc4523be6b68cfbc7f61c5d0"},
{file = "pydantic_core-2.10.1-cp311-cp311-macosx_10_7_x86_64.whl", hash = "sha256:073d4a470b195d2b2245d0343569aac7e979d3a0dcce6c7d2af6d8a920ad0bea"},
{file = "pydantic_core-2.10.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:600d04a7b342363058b9190d4e929a8e2e715c5682a70cc37d5ded1e0dd370b4"},
{file = "pydantic_core-2.10.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:39215d809470f4c8d1881758575b2abfb80174a9e8daf8f33b1d4379357e417c"},
{file = "pydantic_core-2.10.1-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:eeb3d3d6b399ffe55f9a04e09e635554012f1980696d6b0aca3e6cf42a17a03b"},
{file = "pydantic_core-2.10.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:a7a7902bf75779bc12ccfc508bfb7a4c47063f748ea3de87135d433a4cca7a2f"},
{file = "pydantic_core-2.10.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:3625578b6010c65964d177626fde80cf60d7f2e297d56b925cb5cdeda6e9925a"},
{file = "pydantic_core-2.10.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:caa48fc31fc7243e50188197b5f0c4228956f97b954f76da157aae7f67269ae8"},
{file = "pydantic_core-2.10.1-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:07ec6d7d929ae9c68f716195ce15e745b3e8fa122fc67698ac6498d802ed0fa4"},
{file = "pydantic_core-2.10.1-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:e6f31a17acede6a8cd1ae2d123ce04d8cca74056c9d456075f4f6f85de055607"},
{file = "pydantic_core-2.10.1-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:d8f1ebca515a03e5654f88411420fea6380fc841d1bea08effb28184e3d4899f"},
{file = "pydantic_core-2.10.1-cp311-none-win32.whl", hash = "sha256:6db2eb9654a85ada248afa5a6db5ff1cf0f7b16043a6b070adc4a5be68c716d6"},
{file = "pydantic_core-2.10.1-cp311-none-win_amd64.whl", hash = "sha256:4a5be350f922430997f240d25f8219f93b0c81e15f7b30b868b2fddfc2d05f27"},
{file = "pydantic_core-2.10.1-cp311-none-win_arm64.whl", hash = "sha256:5fdb39f67c779b183b0c853cd6b45f7db84b84e0571b3ef1c89cdb1dfc367325"},
{file = "pydantic_core-2.10.1-cp312-cp312-macosx_10_7_x86_64.whl", hash = "sha256:b1f22a9ab44de5f082216270552aa54259db20189e68fc12484873d926426921"},
{file = "pydantic_core-2.10.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:8572cadbf4cfa95fb4187775b5ade2eaa93511f07947b38f4cd67cf10783b118"},
{file = "pydantic_core-2.10.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:db9a28c063c7c00844ae42a80203eb6d2d6bbb97070cfa00194dff40e6f545ab"},
{file = "pydantic_core-2.10.1-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:0e2a35baa428181cb2270a15864ec6286822d3576f2ed0f4cd7f0c1708472aff"},
{file = "pydantic_core-2.10.1-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:05560ab976012bf40f25d5225a58bfa649bb897b87192a36c6fef1ab132540d7"},
{file = "pydantic_core-2.10.1-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:d6495008733c7521a89422d7a68efa0a0122c99a5861f06020ef5b1f51f9ba7c"},
{file = "pydantic_core-2.10.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:14ac492c686defc8e6133e3a2d9eaf5261b3df26b8ae97450c1647286750b901"},
{file = "pydantic_core-2.10.1-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:8282bab177a9a3081fd3d0a0175a07a1e2bfb7fcbbd949519ea0980f8a07144d"},
{file = "pydantic_core-2.10.1-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:aafdb89fdeb5fe165043896817eccd6434aee124d5ee9b354f92cd574ba5e78f"},
{file = "pydantic_core-2.10.1-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:f6defd966ca3b187ec6c366604e9296f585021d922e666b99c47e78738b5666c"},
{file = "pydantic_core-2.10.1-cp312-none-win32.whl", hash = "sha256:7c4d1894fe112b0864c1fa75dffa045720a194b227bed12f4be7f6045b25209f"},
{file = "pydantic_core-2.10.1-cp312-none-win_amd64.whl", hash = "sha256:5994985da903d0b8a08e4935c46ed8daf5be1cf217489e673910951dc533d430"},
{file = "pydantic_core-2.10.1-cp312-none-win_arm64.whl", hash = "sha256:0d8a8adef23d86d8eceed3e32e9cca8879c7481c183f84ed1a8edc7df073af94"},
{file = "pydantic_core-2.10.1-cp37-cp37m-macosx_10_7_x86_64.whl", hash = "sha256:9badf8d45171d92387410b04639d73811b785b5161ecadabf056ea14d62d4ede"},
{file = "pydantic_core-2.10.1-cp37-cp37m-macosx_11_0_arm64.whl", hash = "sha256:ebedb45b9feb7258fac0a268a3f6bec0a2ea4d9558f3d6f813f02ff3a6dc6698"},
{file = "pydantic_core-2.10.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:cfe1090245c078720d250d19cb05d67e21a9cd7c257698ef139bc41cf6c27b4f"},
{file = "pydantic_core-2.10.1-cp37-cp37m-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:e357571bb0efd65fd55f18db0a2fb0ed89d0bb1d41d906b138f088933ae618bb"},
{file = "pydantic_core-2.10.1-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:b3dcd587b69bbf54fc04ca157c2323b8911033e827fffaecf0cafa5a892a0904"},
{file = "pydantic_core-2.10.1-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:9c120c9ce3b163b985a3b966bb701114beb1da4b0468b9b236fc754783d85aa3"},
{file = "pydantic_core-2.10.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:15d6bca84ffc966cc9976b09a18cf9543ed4d4ecbd97e7086f9ce9327ea48891"},
{file = "pydantic_core-2.10.1-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:5cabb9710f09d5d2e9e2748c3e3e20d991a4c5f96ed8f1132518f54ab2967221"},
{file = "pydantic_core-2.10.1-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:82f55187a5bebae7d81d35b1e9aaea5e169d44819789837cdd4720d768c55d15"},
{file = "pydantic_core-2.10.1-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:1d40f55222b233e98e3921df7811c27567f0e1a4411b93d4c5c0f4ce131bc42f"},
{file = "pydantic_core-2.10.1-cp37-none-win32.whl", hash = "sha256:14e09ff0b8fe6e46b93d36a878f6e4a3a98ba5303c76bb8e716f4878a3bee92c"},
{file = "pydantic_core-2.10.1-cp37-none-win_amd64.whl", hash = "sha256:1396e81b83516b9d5c9e26a924fa69164156c148c717131f54f586485ac3c15e"},
{file = "pydantic_core-2.10.1-cp38-cp38-macosx_10_7_x86_64.whl", hash = "sha256:6835451b57c1b467b95ffb03a38bb75b52fb4dc2762bb1d9dbed8de31ea7d0fc"},
{file = "pydantic_core-2.10.1-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:b00bc4619f60c853556b35f83731bd817f989cba3e97dc792bb8c97941b8053a"},
{file = "pydantic_core-2.10.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0fa467fd300a6f046bdb248d40cd015b21b7576c168a6bb20aa22e595c8ffcdd"},
{file = "pydantic_core-2.10.1-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:d99277877daf2efe074eae6338453a4ed54a2d93fb4678ddfe1209a0c93a2468"},
{file = "pydantic_core-2.10.1-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:fa7db7558607afeccb33c0e4bf1c9a9a835e26599e76af6fe2fcea45904083a6"},
{file = "pydantic_core-2.10.1-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:aad7bd686363d1ce4ee930ad39f14e1673248373f4a9d74d2b9554f06199fb58"},
{file = "pydantic_core-2.10.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:443fed67d33aa85357464f297e3d26e570267d1af6fef1c21ca50921d2976302"},
{file = "pydantic_core-2.10.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:042462d8d6ba707fd3ce9649e7bf268633a41018d6a998fb5fbacb7e928a183e"},
{file = "pydantic_core-2.10.1-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:ecdbde46235f3d560b18be0cb706c8e8ad1b965e5c13bbba7450c86064e96561"},
{file = "pydantic_core-2.10.1-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:ed550ed05540c03f0e69e6d74ad58d026de61b9eaebebbaaf8873e585cbb18de"},
{file = "pydantic_core-2.10.1-cp38-none-win32.whl", hash = "sha256:8cdbbd92154db2fec4ec973d45c565e767ddc20aa6dbaf50142676484cbff8ee"},
{file = "pydantic_core-2.10.1-cp38-none-win_amd64.whl", hash = "sha256:9f6f3e2598604956480f6c8aa24a3384dbf6509fe995d97f6ca6103bb8c2534e"},
{file = "pydantic_core-2.10.1-cp39-cp39-macosx_10_7_x86_64.whl", hash = "sha256:655f8f4c8d6a5963c9a0687793da37b9b681d9ad06f29438a3b2326d4e6b7970"},
{file = "pydantic_core-2.10.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:e570ffeb2170e116a5b17e83f19911020ac79d19c96f320cbfa1fa96b470185b"},
{file = "pydantic_core-2.10.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:64322bfa13e44c6c30c518729ef08fda6026b96d5c0be724b3c4ae4da939f875"},
{file = "pydantic_core-2.10.1-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:485a91abe3a07c3a8d1e082ba29254eea3e2bb13cbbd4351ea4e5a21912cc9b0"},
{file = "pydantic_core-2.10.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:f7c2b8eb9fc872e68b46eeaf835e86bccc3a58ba57d0eedc109cbb14177be531"},
{file = "pydantic_core-2.10.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:a5cb87bdc2e5f620693148b5f8f842d293cae46c5f15a1b1bf7ceeed324a740c"},
{file = "pydantic_core-2.10.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:25bd966103890ccfa028841a8f30cebcf5875eeac8c4bde4fe221364c92f0c9a"},
{file = "pydantic_core-2.10.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:f323306d0556351735b54acbf82904fe30a27b6a7147153cbe6e19aaaa2aa429"},
{file = "pydantic_core-2.10.1-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:0c27f38dc4fbf07b358b2bc90edf35e82d1703e22ff2efa4af4ad5de1b3833e7"},
{file = "pydantic_core-2.10.1-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:f1365e032a477c1430cfe0cf2856679529a2331426f8081172c4a74186f1d595"},
{file = "pydantic_core-2.10.1-cp39-none-win32.whl", hash = "sha256:a1c311fd06ab3b10805abb72109f01a134019739bd3286b8ae1bc2fc4e50c07a"},
{file = "pydantic_core-2.10.1-cp39-none-win_amd64.whl", hash = "sha256:ae8a8843b11dc0b03b57b52793e391f0122e740de3df1474814c700d2622950a"},
{file = "pydantic_core-2.10.1-pp310-pypy310_pp73-macosx_10_7_x86_64.whl", hash = "sha256:d43002441932f9a9ea5d6f9efaa2e21458221a3a4b417a14027a1d530201ef1b"},
{file = "pydantic_core-2.10.1-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:fcb83175cc4936a5425dde3356f079ae03c0802bbdf8ff82c035f8a54b333521"},
{file = "pydantic_core-2.10.1-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:962ed72424bf1f72334e2f1e61b68f16c0e596f024ca7ac5daf229f7c26e4208"},
{file = "pydantic_core-2.10.1-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2cf5bb4dd67f20f3bbc1209ef572a259027c49e5ff694fa56bed62959b41e1f9"},
{file = "pydantic_core-2.10.1-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:e544246b859f17373bed915182ab841b80849ed9cf23f1f07b73b7c58baee5fb"},
{file = "pydantic_core-2.10.1-pp310-pypy310_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:c0877239307b7e69d025b73774e88e86ce82f6ba6adf98f41069d5b0b78bd1bf"},
{file = "pydantic_core-2.10.1-pp310-pypy310_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:53df009d1e1ba40f696f8995683e067e3967101d4bb4ea6f667931b7d4a01357"},
{file = "pydantic_core-2.10.1-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:a1254357f7e4c82e77c348dabf2d55f1d14d19d91ff025004775e70a6ef40ada"},
{file = "pydantic_core-2.10.1-pp37-pypy37_pp73-macosx_10_7_x86_64.whl", hash = "sha256:524ff0ca3baea164d6d93a32c58ac79eca9f6cf713586fdc0adb66a8cdeab96a"},
{file = "pydantic_core-2.10.1-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3f0ac9fb8608dbc6eaf17956bf623c9119b4db7dbb511650910a82e261e6600f"},
{file = "pydantic_core-2.10.1-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:320f14bd4542a04ab23747ff2c8a778bde727158b606e2661349557f0770711e"},
{file = "pydantic_core-2.10.1-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:63974d168b6233b4ed6a0046296803cb13c56637a7b8106564ab575926572a55"},
{file = "pydantic_core-2.10.1-pp37-pypy37_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:417243bf599ba1f1fef2bb8c543ceb918676954734e2dcb82bf162ae9d7bd514"},
{file = "pydantic_core-2.10.1-pp37-pypy37_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:dda81e5ec82485155a19d9624cfcca9be88a405e2857354e5b089c2a982144b2"},
{file = "pydantic_core-2.10.1-pp37-pypy37_pp73-win_amd64.whl", hash = "sha256:14cfbb00959259e15d684505263d5a21732b31248a5dd4941f73a3be233865b9"},
{file = "pydantic_core-2.10.1-pp38-pypy38_pp73-macosx_10_7_x86_64.whl", hash = "sha256:631cb7415225954fdcc2a024119101946793e5923f6c4d73a5914d27eb3d3a05"},
{file = "pydantic_core-2.10.1-pp38-pypy38_pp73-macosx_11_0_arm64.whl", hash = "sha256:bec7dd208a4182e99c5b6c501ce0b1f49de2802448d4056091f8e630b28e9a52"},
{file = "pydantic_core-2.10.1-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:149b8a07712f45b332faee1a2258d8ef1fb4a36f88c0c17cb687f205c5dc6e7d"},
{file = "pydantic_core-2.10.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4d966c47f9dd73c2d32a809d2be529112d509321c5310ebf54076812e6ecd884"},
{file = "pydantic_core-2.10.1-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:7eb037106f5c6b3b0b864ad226b0b7ab58157124161d48e4b30c4a43fef8bc4b"},
{file = "pydantic_core-2.10.1-pp38-pypy38_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:154ea7c52e32dce13065dbb20a4a6f0cc012b4f667ac90d648d36b12007fa9f7"},
{file = "pydantic_core-2.10.1-pp38-pypy38_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:e562617a45b5a9da5be4abe72b971d4f00bf8555eb29bb91ec2ef2be348cd132"},
{file = "pydantic_core-2.10.1-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:f23b55eb5464468f9e0e9a9935ce3ed2a870608d5f534025cd5536bca25b1402"},
{file = "pydantic_core-2.10.1-pp39-pypy39_pp73-macosx_10_7_x86_64.whl", hash = "sha256:e9121b4009339b0f751955baf4543a0bfd6bc3f8188f8056b1a25a2d45099934"},
{file = "pydantic_core-2.10.1-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:0523aeb76e03f753b58be33b26540880bac5aa54422e4462404c432230543f33"},
{file = "pydantic_core-2.10.1-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2e0e2959ef5d5b8dc9ef21e1a305a21a36e254e6a34432d00c72a92fdc5ecda5"},
{file = "pydantic_core-2.10.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:da01bec0a26befab4898ed83b362993c844b9a607a86add78604186297eb047e"},
{file = "pydantic_core-2.10.1-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:f2e9072d71c1f6cfc79a36d4484c82823c560e6f5599c43c1ca6b5cdbd54f881"},
{file = "pydantic_core-2.10.1-pp39-pypy39_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:f36a3489d9e28fe4b67be9992a23029c3cec0babc3bd9afb39f49844a8c721c5"},
{file = "pydantic_core-2.10.1-pp39-pypy39_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:f64f82cc3443149292b32387086d02a6c7fb39b8781563e0ca7b8d7d9cf72bd7"},
{file = "pydantic_core-2.10.1-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:b4a6db486ac8e99ae696e09efc8b2b9fea67b63c8f88ba7a1a16c24a057a0776"},
{file = "pydantic_core-2.10.1.tar.gz", hash = "sha256:0f8682dbdd2f67f8e1edddcbffcc29f60a6182b4901c367fc8c1c40d30bb0a82"},
]
[package.extras]
plugins = ["importlib-metadata"]
[package.dependencies]
typing-extensions = ">=4.6.0,<4.7.0 || >4.7.0"
[[package]]
name = "pyyaml"
@@ -1201,47 +1129,6 @@ urllib3 = ">=1.21.1,<3"
socks = ["PySocks (>=1.5.6,!=1.5.7)"]
use-chardet-on-py3 = ["chardet (>=3.0.2,<6)"]
[[package]]
name = "rich"
version = "13.6.0"
description = "Render rich text, tables, progress bars, syntax highlighting, markdown and more to the terminal"
optional = false
python-versions = ">=3.7.0"
files = [
{file = "rich-13.6.0-py3-none-any.whl", hash = "sha256:2b38e2fe9ca72c9a00170a1a2d20c63c790d0e10ef1fe35eba76e1e7b1d7d245"},
{file = "rich-13.6.0.tar.gz", hash = "sha256:5c14d22737e6d5084ef4771b62d5d4363165b403455a30a1c8ca39dc7b644bef"},
]
[package.dependencies]
markdown-it-py = ">=2.2.0"
pygments = ">=2.13.0,<3.0.0"
typing-extensions = {version = ">=4.0.0,<5.0", markers = "python_version < \"3.9\""}
[package.extras]
jupyter = ["ipywidgets (>=7.5.1,<9)"]
[[package]]
name = "shellingham"
version = "1.5.4"
description = "Tool to Detect Surrounding Shell"
optional = false
python-versions = ">=3.7"
files = [
{file = "shellingham-1.5.4-py2.py3-none-any.whl", hash = "sha256:7ecfff8f2fd72616f7481040475a65b2bf8af90a56c89140852d1120324e8686"},
{file = "shellingham-1.5.4.tar.gz", hash = "sha256:8dbca0739d487e5bd35ab3ca4b36e11c4078f3a234bfce294b0a0291363404de"},
]
[[package]]
name = "smmap"
version = "5.0.1"
description = "A pure Python implementation of a sliding window memory map manager"
optional = false
python-versions = ">=3.7"
files = [
{file = "smmap-5.0.1-py3-none-any.whl", hash = "sha256:e6d8668fa5f93e706934a62d7b4db19c8d9eb8cf2adbb75ef1b675aa332b69da"},
{file = "smmap-5.0.1.tar.gz", hash = "sha256:dceeb6c0028fdb6734471eb07c0cd2aae706ccaecab45965ee83f11c8d3b1f62"},
]
[[package]]
name = "sniffio"
version = "1.3.0"
@@ -1302,38 +1189,6 @@ postgresql-psycopgbinary = ["psycopg[binary] (>=3.0.7)"]
pymysql = ["pymysql"]
sqlcipher = ["sqlcipher3_binary"]
[[package]]
name = "sse-starlette"
version = "1.6.5"
description = "\"SSE plugin for Starlette\""
optional = false
python-versions = ">=3.8"
files = [
{file = "sse-starlette-1.6.5.tar.gz", hash = "sha256:819f2c421fb37067380fe3dcaba246c476b02651b7bb7601099a378ad802a0ac"},
{file = "sse_starlette-1.6.5-py3-none-any.whl", hash = "sha256:68b6b7eb49be0c72a2af80a055994c13afcaa4761b29226beb208f954c25a642"},
]
[package.dependencies]
starlette = "*"
[[package]]
name = "starlette"
version = "0.27.0"
description = "The little ASGI library that shines."
optional = false
python-versions = ">=3.7"
files = [
{file = "starlette-0.27.0-py3-none-any.whl", hash = "sha256:918416370e846586541235ccd38a474c08b80443ed31c578a418e2209b3eef91"},
{file = "starlette-0.27.0.tar.gz", hash = "sha256:6a6b0d042acb8d469a01eba54e9cda6cbd24ac602c4cd016723117d6a7e73b75"},
]
[package.dependencies]
anyio = ">=3.4.0,<5"
typing-extensions = {version = ">=3.10.0", markers = "python_version < \"3.10\""}
[package.extras]
full = ["httpx (>=0.22.0)", "itsdangerous", "jinja2", "python-multipart", "pyyaml"]
[[package]]
name = "tenacity"
version = "8.2.3"
@@ -1463,17 +1318,6 @@ dev = ["tokenizers[testing]"]
docs = ["setuptools_rust", "sphinx", "sphinx_rtd_theme"]
testing = ["black (==22.3)", "datasets", "numpy", "pytest", "requests"]
[[package]]
name = "tomli"
version = "2.0.1"
description = "A lil' TOML parser"
optional = false
python-versions = ">=3.7"
files = [
{file = "tomli-2.0.1-py3-none-any.whl", hash = "sha256:939de3e7a6161af0c887ef91b7d41a53e7c5a1ca976325f429cb46ea9bc30ecc"},
{file = "tomli-2.0.1.tar.gz", hash = "sha256:de526c12914f0c550d15924c62d72abc48d6fe7364aa87328337a31007fe8a4f"},
]
[[package]]
name = "tqdm"
version = "4.66.1"
@@ -1494,30 +1338,6 @@ notebook = ["ipywidgets (>=6)"]
slack = ["slack-sdk"]
telegram = ["requests"]
[[package]]
name = "typer"
version = "0.9.0"
description = "Typer, build great CLIs. Easy to code. Based on Python type hints."
optional = false
python-versions = ">=3.6"
files = [
{file = "typer-0.9.0-py3-none-any.whl", hash = "sha256:5d96d986a21493606a358cae4461bd8cdf83cbf33a5aa950ae629ca3b51467ee"},
{file = "typer-0.9.0.tar.gz", hash = "sha256:50922fd79aea2f4751a8e0408ff10d2662bd0c8bbfa84755a699f3bada2978b2"},
]
[package.dependencies]
click = ">=7.1.1,<9.0.0"
colorama = {version = ">=0.4.3,<0.5.0", optional = true, markers = "extra == \"all\""}
rich = {version = ">=10.11.0,<14.0.0", optional = true, markers = "extra == \"all\""}
shellingham = {version = ">=1.3.0,<2.0.0", optional = true, markers = "extra == \"all\""}
typing-extensions = ">=3.7.4.3"
[package.extras]
all = ["colorama (>=0.4.3,<0.5.0)", "rich (>=10.11.0,<14.0.0)", "shellingham (>=1.3.0,<2.0.0)"]
dev = ["autoflake (>=1.3.1,<2.0.0)", "flake8 (>=3.8.3,<4.0.0)", "pre-commit (>=2.17.0,<3.0.0)"]
doc = ["cairosvg (>=2.5.2,<3.0.0)", "mdx-include (>=1.4.1,<2.0.0)", "mkdocs (>=1.1.2,<2.0.0)", "mkdocs-material (>=8.1.4,<9.0.0)", "pillow (>=9.3.0,<10.0.0)"]
test = ["black (>=22.3.0,<23.0.0)", "coverage (>=6.2,<7.0)", "isort (>=5.0.6,<6.0.0)", "mypy (==0.910)", "pytest (>=4.4.0,<8.0.0)", "pytest-cov (>=2.10.0,<5.0.0)", "pytest-sugar (>=0.9.4,<0.10.0)", "pytest-xdist (>=1.32.0,<4.0.0)", "rich (>=10.11.0,<14.0.0)", "shellingham (>=1.3.0,<2.0.0)"]
[[package]]
name = "typing-extensions"
version = "4.8.0"
@@ -1561,25 +1381,6 @@ secure = ["certifi", "cryptography (>=1.9)", "idna (>=2.0.0)", "pyopenssl (>=17.
socks = ["pysocks (>=1.5.6,!=1.5.7,<2.0)"]
zstd = ["zstandard (>=0.18.0)"]
[[package]]
name = "uvicorn"
version = "0.23.2"
description = "The lightning-fast ASGI server."
optional = false
python-versions = ">=3.8"
files = [
{file = "uvicorn-0.23.2-py3-none-any.whl", hash = "sha256:1f9be6558f01239d4fdf22ef8126c39cb1ad0addf76c40e760549d2c2f43ab53"},
{file = "uvicorn-0.23.2.tar.gz", hash = "sha256:4d3cc12d7727ba72b64d12d3cc7743124074c0a69f7b201512fc50c3e3f1569a"},
]
[package.dependencies]
click = ">=7.0"
h11 = ">=0.8"
typing-extensions = {version = ">=4.0", markers = "python_version < \"3.11\""}
[package.extras]
standard = ["colorama (>=0.4)", "httptools (>=0.5.0)", "python-dotenv (>=0.13)", "pyyaml (>=5.1)", "uvloop (>=0.14.0,!=0.15.0,!=0.15.1)", "watchfiles (>=0.13)", "websockets (>=10.4)"]
[[package]]
name = "wikipedia"
version = "1.4.0"
@@ -1684,4 +1485,4 @@ multidict = ">=4.0"
[metadata]
lock-version = "2.0"
python-versions = ">=3.8.1,<4.0"
content-hash = "1d48839e2c12303f8ad1656c3cfaac35f35c1380a48cd323eb00363c313c8473"
content-hash = "837dee2f056b7920c8746c8a1c0199b29e6e31dba358a37795895f7fed26e02d"

View File

@@ -11,12 +11,9 @@ langchain = ">=0.0.325"
anthropic = "^0.5.0"
wikipedia = "^1.4.0"
[tool.poetry.group.dev.dependencies]
langchain-cli = {extras = ["serve"], version = "^0.0.13"}
[tool.langserve]
export_module = "anthropic_iterative_search"
export_attr = "chain"
export_attr = "final_chain"
[build-system]
requires = [

View File

@@ -19,7 +19,7 @@ The connection parameters and secrets must be provided through environment varia
To use this package, you should first have the LangChain CLI installed:
```shell
pip install -U langchain-cli
pip install -U "langchain-cli[serve]"
```
To create a new LangChain project and install this as the only package, you can do:

View File

@@ -122,6 +122,20 @@ files = [
[package.dependencies]
frozenlist = ">=1.1.0"
[[package]]
name = "annotated-types"
version = "0.6.0"
description = "Reusable constraint types to use with typing.Annotated"
optional = false
python-versions = ">=3.8"
files = [
{file = "annotated_types-0.6.0-py3-none-any.whl", hash = "sha256:0641064de18ba7a25dee8f96403ebc39113d0cb953a01429249d5c7564666a43"},
{file = "annotated_types-0.6.0.tar.gz", hash = "sha256:563339e807e53ffd9c267e99fc6d9ea23eb8443c08f112651963e24e22f84a5d"},
]
[package.dependencies]
typing-extensions = {version = ">=4.0.0", markers = "python_version < \"3.9\""}
[[package]]
name = "anyio"
version = "3.7.1"
@@ -403,26 +417,6 @@ files = [
[package.extras]
test = ["pytest (>=6)"]
[[package]]
name = "fastapi"
version = "0.104.1"
description = "FastAPI framework, high performance, easy to learn, fast to code, ready for production"
optional = false
python-versions = ">=3.8"
files = [
{file = "fastapi-0.104.1-py3-none-any.whl", hash = "sha256:752dc31160cdbd0436bb93bad51560b57e525cbb1d4bbf6f4904ceee75548241"},
{file = "fastapi-0.104.1.tar.gz", hash = "sha256:e5e4540a7c5e1dcfbbcf5b903c234feddcdcd881f191977a1c5dfd917487e7ae"},
]
[package.dependencies]
anyio = ">=3.7.1,<4.0.0"
pydantic = ">=1.7.4,<1.8 || >1.8,<1.8.1 || >1.8.1,<2.0.0 || >2.0.0,<2.0.1 || >2.0.1,<2.1.0 || >2.1.0,<3.0.0"
starlette = ">=0.27.0,<0.28.0"
typing-extensions = ">=4.8.0"
[package.extras]
all = ["email-validator (>=2.0.0)", "httpx (>=0.23.0)", "itsdangerous (>=1.1.0)", "jinja2 (>=2.11.2)", "orjson (>=3.2.1)", "pydantic-extra-types (>=2.0.0)", "pydantic-settings (>=2.0.0)", "python-multipart (>=0.0.5)", "pyyaml (>=5.3.1)", "ujson (>=4.0.1,!=4.0.2,!=4.1.0,!=4.2.0,!=4.3.0,!=5.0.0,!=5.1.0)", "uvicorn[standard] (>=0.12.0)"]
[[package]]
name = "frozenlist"
version = "1.4.0"
@@ -508,37 +502,6 @@ files = [
click = "*"
six = "*"
[[package]]
name = "gitdb"
version = "4.0.11"
description = "Git Object Database"
optional = false
python-versions = ">=3.7"
files = [
{file = "gitdb-4.0.11-py3-none-any.whl", hash = "sha256:81a3407ddd2ee8df444cbacea00e2d038e40150acfa3001696fe0dcf1d3adfa4"},
{file = "gitdb-4.0.11.tar.gz", hash = "sha256:bf5421126136d6d0af55bc1e7c1af1c397a34f5b7bd79e776cd3e89785c2b04b"},
]
[package.dependencies]
smmap = ">=3.0.1,<6"
[[package]]
name = "gitpython"
version = "3.1.40"
description = "GitPython is a Python library used to interact with Git repositories"
optional = false
python-versions = ">=3.7"
files = [
{file = "GitPython-3.1.40-py3-none-any.whl", hash = "sha256:cf14627d5a8049ffbf49915732e5eddbe8134c3bdb9d476e6182b676fc573f8a"},
{file = "GitPython-3.1.40.tar.gz", hash = "sha256:22b126e9ffb671fdd0c129796343a02bf67bf2994b35449ffc9321aa755e18a4"},
]
[package.dependencies]
gitdb = ">=4.0.1,<5"
[package.extras]
test = ["black", "coverage[toml]", "ddt (>=1.1.1,!=1.4.3)", "mock", "mypy", "pre-commit", "pytest", "pytest-cov", "pytest-instafail", "pytest-subtests", "pytest-sugar"]
[[package]]
name = "greenlet"
version = "3.0.1"
@@ -609,73 +572,6 @@ files = [
docs = ["Sphinx"]
test = ["objgraph", "psutil"]
[[package]]
name = "h11"
version = "0.14.0"
description = "A pure-Python, bring-your-own-I/O implementation of HTTP/1.1"
optional = false
python-versions = ">=3.7"
files = [
{file = "h11-0.14.0-py3-none-any.whl", hash = "sha256:e3fe4ac4b851c468cc8363d500db52c2ead036020723024a109d37346efaa761"},
{file = "h11-0.14.0.tar.gz", hash = "sha256:8f19fbbe99e72420ff35c00b27a34cb9937e902a8b810e2c88300c6f0a3b699d"},
]
[[package]]
name = "httpcore"
version = "1.0.1"
description = "A minimal low-level HTTP client."
optional = false
python-versions = ">=3.8"
files = [
{file = "httpcore-1.0.1-py3-none-any.whl", hash = "sha256:c5e97ef177dca2023d0b9aad98e49507ef5423e9f1d94ffe2cfe250aa28e63b0"},
{file = "httpcore-1.0.1.tar.gz", hash = "sha256:fce1ddf9b606cfb98132ab58865c3728c52c8e4c3c46e2aabb3674464a186e92"},
]
[package.dependencies]
certifi = "*"
h11 = ">=0.13,<0.15"
[package.extras]
asyncio = ["anyio (>=4.0,<5.0)"]
http2 = ["h2 (>=3,<5)"]
socks = ["socksio (==1.*)"]
trio = ["trio (>=0.22.0,<0.23.0)"]
[[package]]
name = "httpx"
version = "0.25.1"
description = "The next generation HTTP client."
optional = false
python-versions = ">=3.8"
files = [
{file = "httpx-0.25.1-py3-none-any.whl", hash = "sha256:fec7d6cc5c27c578a391f7e87b9aa7d3d8fbcd034f6399f9f79b45bcc12a866a"},
{file = "httpx-0.25.1.tar.gz", hash = "sha256:ffd96d5cf901e63863d9f1b4b6807861dbea4d301613415d9e6e57ead15fc5d0"},
]
[package.dependencies]
anyio = "*"
certifi = "*"
httpcore = "*"
idna = "*"
sniffio = "*"
[package.extras]
brotli = ["brotli", "brotlicffi"]
cli = ["click (==8.*)", "pygments (==2.*)", "rich (>=10,<14)"]
http2 = ["h2 (>=3,<5)"]
socks = ["socksio (==1.*)"]
[[package]]
name = "httpx-sse"
version = "0.3.1"
description = "Consume Server-Sent Event (SSE) messages with HTTPX."
optional = false
python-versions = ">=3.7"
files = [
{file = "httpx-sse-0.3.1.tar.gz", hash = "sha256:3bb3289b2867f50cbdb2fee3eeeefecb1e86653122e164faac0023f1ffc88aea"},
{file = "httpx_sse-0.3.1-py3-none-any.whl", hash = "sha256:7376dd88732892f9b6b549ac0ad05a8e2341172fe7dcf9f8f9c8050934297316"},
]
[[package]]
name = "idna"
version = "3.4"
@@ -752,49 +648,6 @@ openai = ["openai (>=0,<1)", "tiktoken (>=0.3.2,<0.6.0)"]
qdrant = ["qdrant-client (>=1.3.1,<2.0.0)"]
text-helpers = ["chardet (>=5.1.0,<6.0.0)"]
[[package]]
name = "langchain-cli"
version = "0.0.15"
description = "CLI for interacting with LangChain"
optional = false
python-versions = ">=3.8.1,<4.0"
files = [
{file = "langchain_cli-0.0.15-py3-none-any.whl", hash = "sha256:88102d2bb9d7c9cc99a1da13302a7f95d60cb37b2dab264b808aa6e3887b046f"},
{file = "langchain_cli-0.0.15.tar.gz", hash = "sha256:b7ff1a8338922aadbc3b1a141ea92c0a33aaaa72124dfbfd12049fe9a4a95cec"},
]
[package.dependencies]
fastapi = ">=0.104.0,<0.105.0"
gitpython = ">=3.1.40,<4.0.0"
langserve = {version = ">=0.0.16", extras = ["all"]}
tomli = ">=2.0.1,<3.0.0"
typer = {version = ">=0.9.0,<0.10.0", extras = ["all"]}
uvicorn = ">=0.23.2,<0.24.0"
[[package]]
name = "langserve"
version = "0.0.22"
description = ""
optional = false
python-versions = ">=3.8.1,<4.0.0"
files = [
{file = "langserve-0.0.22-py3-none-any.whl", hash = "sha256:908239209959fc23202a09113b42c0e5838d046404a4e725602fe56af96bf340"},
{file = "langserve-0.0.22.tar.gz", hash = "sha256:14a33986668c8d36aa2e58dc66307c021eaac18019d2b99e7fae30f6937650d1"},
]
[package.dependencies]
fastapi = {version = ">=0.90.1", optional = true, markers = "extra == \"server\" or extra == \"all\""}
httpx = ">=0.23.0"
httpx-sse = {version = ">=0.3.1", optional = true, markers = "extra == \"client\" or extra == \"all\""}
langchain = ">=0.0.322"
pydantic = ">=1,<2"
sse-starlette = {version = ">=1.3.0,<2.0.0", optional = true, markers = "extra == \"server\" or extra == \"all\""}
[package.extras]
all = ["fastapi (>=0.90.1)", "httpx-sse (>=0.3.1)", "sse-starlette (>=1.3.0,<2.0.0)"]
client = ["httpx-sse (>=0.3.1)"]
server = ["fastapi (>=0.90.1)", "sse-starlette (>=1.3.0,<2.0.0)"]
[[package]]
name = "langsmith"
version = "0.0.54"
@@ -810,30 +663,6 @@ files = [
pydantic = ">=1,<3"
requests = ">=2,<3"
[[package]]
name = "markdown-it-py"
version = "3.0.0"
description = "Python port of markdown-it. Markdown parsing, done right!"
optional = false
python-versions = ">=3.8"
files = [
{file = "markdown-it-py-3.0.0.tar.gz", hash = "sha256:e3f60a94fa066dc52ec76661e37c851cb232d92f9886b15cb560aaada2df8feb"},
{file = "markdown_it_py-3.0.0-py3-none-any.whl", hash = "sha256:355216845c60bd96232cd8d8c40e8f9765cc86f46880e43a8fd22dc1a1a8cab1"},
]
[package.dependencies]
mdurl = ">=0.1,<1.0"
[package.extras]
benchmarking = ["psutil", "pytest", "pytest-benchmark"]
code-style = ["pre-commit (>=3.0,<4.0)"]
compare = ["commonmark (>=0.9,<1.0)", "markdown (>=3.4,<4.0)", "mistletoe (>=1.0,<2.0)", "mistune (>=2.0,<3.0)", "panflute (>=2.3,<3.0)"]
linkify = ["linkify-it-py (>=1,<3)"]
plugins = ["mdit-py-plugins"]
profiling = ["gprof2dot"]
rtd = ["jupyter_sphinx", "mdit-py-plugins", "myst-parser", "pyyaml", "sphinx", "sphinx-copybutton", "sphinx-design", "sphinx_book_theme"]
testing = ["coverage", "pytest", "pytest-cov", "pytest-regressions"]
[[package]]
name = "marshmallow"
version = "3.20.1"
@@ -854,17 +683,6 @@ docs = ["alabaster (==0.7.13)", "autodocsumm (==0.2.11)", "sphinx (==7.0.1)", "s
lint = ["flake8 (==6.0.0)", "flake8-bugbear (==23.7.10)", "mypy (==1.4.1)", "pre-commit (>=2.4,<4.0)"]
tests = ["pytest", "pytz", "simplejson"]
[[package]]
name = "mdurl"
version = "0.1.2"
description = "Markdown URL utilities"
optional = false
python-versions = ">=3.7"
files = [
{file = "mdurl-0.1.2-py3-none-any.whl", hash = "sha256:84008a41e51615a49fc9966191ff91509e3c40b939176e643fd50a5c2196b8f8"},
{file = "mdurl-0.1.2.tar.gz", hash = "sha256:bb413d29f5eea38f31dd4754dd7377d4465116fb207585f97bf925588687c1ba"},
]
[[package]]
name = "multidict"
version = "6.0.4"
@@ -1031,69 +849,140 @@ files = [
[[package]]
name = "pydantic"
version = "1.10.13"
description = "Data validation and settings management using python type hints"
version = "2.4.2"
description = "Data validation using Python type hints"
optional = false
python-versions = ">=3.7"
files = [
{file = "pydantic-1.10.13-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:efff03cc7a4f29d9009d1c96ceb1e7a70a65cfe86e89d34e4a5f2ab1e5693737"},
{file = "pydantic-1.10.13-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:3ecea2b9d80e5333303eeb77e180b90e95eea8f765d08c3d278cd56b00345d01"},
{file = "pydantic-1.10.13-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1740068fd8e2ef6eb27a20e5651df000978edce6da6803c2bef0bc74540f9548"},
{file = "pydantic-1.10.13-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:84bafe2e60b5e78bc64a2941b4c071a4b7404c5c907f5f5a99b0139781e69ed8"},
{file = "pydantic-1.10.13-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:bc0898c12f8e9c97f6cd44c0ed70d55749eaf783716896960b4ecce2edfd2d69"},
{file = "pydantic-1.10.13-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:654db58ae399fe6434e55325a2c3e959836bd17a6f6a0b6ca8107ea0571d2e17"},
{file = "pydantic-1.10.13-cp310-cp310-win_amd64.whl", hash = "sha256:75ac15385a3534d887a99c713aa3da88a30fbd6204a5cd0dc4dab3d770b9bd2f"},
{file = "pydantic-1.10.13-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:c553f6a156deb868ba38a23cf0df886c63492e9257f60a79c0fd8e7173537653"},
{file = "pydantic-1.10.13-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:5e08865bc6464df8c7d61439ef4439829e3ab62ab1669cddea8dd00cd74b9ffe"},
{file = "pydantic-1.10.13-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e31647d85a2013d926ce60b84f9dd5300d44535a9941fe825dc349ae1f760df9"},
{file = "pydantic-1.10.13-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:210ce042e8f6f7c01168b2d84d4c9eb2b009fe7bf572c2266e235edf14bacd80"},
{file = "pydantic-1.10.13-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:8ae5dd6b721459bfa30805f4c25880e0dd78fc5b5879f9f7a692196ddcb5a580"},
{file = "pydantic-1.10.13-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:f8e81fc5fb17dae698f52bdd1c4f18b6ca674d7068242b2aff075f588301bbb0"},
{file = "pydantic-1.10.13-cp311-cp311-win_amd64.whl", hash = "sha256:61d9dce220447fb74f45e73d7ff3b530e25db30192ad8d425166d43c5deb6df0"},
{file = "pydantic-1.10.13-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:4b03e42ec20286f052490423682016fd80fda830d8e4119f8ab13ec7464c0132"},
{file = "pydantic-1.10.13-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f59ef915cac80275245824e9d771ee939133be38215555e9dc90c6cb148aaeb5"},
{file = "pydantic-1.10.13-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:5a1f9f747851338933942db7af7b6ee8268568ef2ed86c4185c6ef4402e80ba8"},
{file = "pydantic-1.10.13-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:97cce3ae7341f7620a0ba5ef6cf043975cd9d2b81f3aa5f4ea37928269bc1b87"},
{file = "pydantic-1.10.13-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:854223752ba81e3abf663d685f105c64150873cc6f5d0c01d3e3220bcff7d36f"},
{file = "pydantic-1.10.13-cp37-cp37m-win_amd64.whl", hash = "sha256:b97c1fac8c49be29486df85968682b0afa77e1b809aff74b83081cc115e52f33"},
{file = "pydantic-1.10.13-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:c958d053453a1c4b1c2062b05cd42d9d5c8eb67537b8d5a7e3c3032943ecd261"},
{file = "pydantic-1.10.13-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:4c5370a7edaac06daee3af1c8b1192e305bc102abcbf2a92374b5bc793818599"},
{file = "pydantic-1.10.13-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7d6f6e7305244bddb4414ba7094ce910560c907bdfa3501e9db1a7fd7eaea127"},
{file = "pydantic-1.10.13-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:d3a3c792a58e1622667a2837512099eac62490cdfd63bd407993aaf200a4cf1f"},
{file = "pydantic-1.10.13-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:c636925f38b8db208e09d344c7aa4f29a86bb9947495dd6b6d376ad10334fb78"},
{file = "pydantic-1.10.13-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:678bcf5591b63cc917100dc50ab6caebe597ac67e8c9ccb75e698f66038ea953"},
{file = "pydantic-1.10.13-cp38-cp38-win_amd64.whl", hash = "sha256:6cf25c1a65c27923a17b3da28a0bdb99f62ee04230c931d83e888012851f4e7f"},
{file = "pydantic-1.10.13-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:8ef467901d7a41fa0ca6db9ae3ec0021e3f657ce2c208e98cd511f3161c762c6"},
{file = "pydantic-1.10.13-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:968ac42970f57b8344ee08837b62f6ee6f53c33f603547a55571c954a4225691"},
{file = "pydantic-1.10.13-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9849f031cf8a2f0a928fe885e5a04b08006d6d41876b8bbd2fc68a18f9f2e3fd"},
{file = "pydantic-1.10.13-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:56e3ff861c3b9c6857579de282ce8baabf443f42ffba355bf070770ed63e11e1"},
{file = "pydantic-1.10.13-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:9f00790179497767aae6bcdc36355792c79e7bbb20b145ff449700eb076c5f96"},
{file = "pydantic-1.10.13-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:75b297827b59bc229cac1a23a2f7a4ac0031068e5be0ce385be1462e7e17a35d"},
{file = "pydantic-1.10.13-cp39-cp39-win_amd64.whl", hash = "sha256:e70ca129d2053fb8b728ee7d1af8e553a928d7e301a311094b8a0501adc8763d"},
{file = "pydantic-1.10.13-py3-none-any.whl", hash = "sha256:b87326822e71bd5f313e7d3bfdc77ac3247035ac10b0c0618bd99dcf95b1e687"},
{file = "pydantic-1.10.13.tar.gz", hash = "sha256:32c8b48dcd3b2ac4e78b0ba4af3a2c2eb6048cb75202f0ea7b34feb740efc340"},
{file = "pydantic-2.4.2-py3-none-any.whl", hash = "sha256:bc3ddf669d234f4220e6e1c4d96b061abe0998185a8d7855c0126782b7abc8c1"},
{file = "pydantic-2.4.2.tar.gz", hash = "sha256:94f336138093a5d7f426aac732dcfe7ab4eb4da243c88f891d65deb4a2556ee7"},
]
[package.dependencies]
typing-extensions = ">=4.2.0"
annotated-types = ">=0.4.0"
pydantic-core = "2.10.1"
typing-extensions = ">=4.6.1"
[package.extras]
dotenv = ["python-dotenv (>=0.10.4)"]
email = ["email-validator (>=1.0.3)"]
email = ["email-validator (>=2.0.0)"]
[[package]]
name = "pygments"
version = "2.16.1"
description = "Pygments is a syntax highlighting package written in Python."
name = "pydantic-core"
version = "2.10.1"
description = ""
optional = false
python-versions = ">=3.7"
files = [
{file = "Pygments-2.16.1-py3-none-any.whl", hash = "sha256:13fc09fa63bc8d8671a6d247e1eb303c4b343eaee81d861f3404db2935653692"},
{file = "Pygments-2.16.1.tar.gz", hash = "sha256:1daff0494820c69bc8941e407aa20f577374ee88364ee10a98fdbe0aece96e29"},
{file = "pydantic_core-2.10.1-cp310-cp310-macosx_10_7_x86_64.whl", hash = "sha256:d64728ee14e667ba27c66314b7d880b8eeb050e58ffc5fec3b7a109f8cddbd63"},
{file = "pydantic_core-2.10.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:48525933fea744a3e7464c19bfede85df4aba79ce90c60b94d8b6e1eddd67096"},
{file = "pydantic_core-2.10.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ef337945bbd76cce390d1b2496ccf9f90b1c1242a3a7bc242ca4a9fc5993427a"},
{file = "pydantic_core-2.10.1-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:a1392e0638af203cee360495fd2cfdd6054711f2db5175b6e9c3c461b76f5175"},
{file = "pydantic_core-2.10.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:0675ba5d22de54d07bccde38997e780044dcfa9a71aac9fd7d4d7a1d2e3e65f7"},
{file = "pydantic_core-2.10.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:128552af70a64660f21cb0eb4876cbdadf1a1f9d5de820fed6421fa8de07c893"},
{file = "pydantic_core-2.10.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8f6e6aed5818c264412ac0598b581a002a9f050cb2637a84979859e70197aa9e"},
{file = "pydantic_core-2.10.1-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:ecaac27da855b8d73f92123e5f03612b04c5632fd0a476e469dfc47cd37d6b2e"},
{file = "pydantic_core-2.10.1-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:b3c01c2fb081fced3bbb3da78510693dc7121bb893a1f0f5f4b48013201f362e"},
{file = "pydantic_core-2.10.1-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:92f675fefa977625105708492850bcbc1182bfc3e997f8eecb866d1927c98ae6"},
{file = "pydantic_core-2.10.1-cp310-none-win32.whl", hash = "sha256:420a692b547736a8d8703c39ea935ab5d8f0d2573f8f123b0a294e49a73f214b"},
{file = "pydantic_core-2.10.1-cp310-none-win_amd64.whl", hash = "sha256:0880e239827b4b5b3e2ce05e6b766a7414e5f5aedc4523be6b68cfbc7f61c5d0"},
{file = "pydantic_core-2.10.1-cp311-cp311-macosx_10_7_x86_64.whl", hash = "sha256:073d4a470b195d2b2245d0343569aac7e979d3a0dcce6c7d2af6d8a920ad0bea"},
{file = "pydantic_core-2.10.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:600d04a7b342363058b9190d4e929a8e2e715c5682a70cc37d5ded1e0dd370b4"},
{file = "pydantic_core-2.10.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:39215d809470f4c8d1881758575b2abfb80174a9e8daf8f33b1d4379357e417c"},
{file = "pydantic_core-2.10.1-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:eeb3d3d6b399ffe55f9a04e09e635554012f1980696d6b0aca3e6cf42a17a03b"},
{file = "pydantic_core-2.10.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:a7a7902bf75779bc12ccfc508bfb7a4c47063f748ea3de87135d433a4cca7a2f"},
{file = "pydantic_core-2.10.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:3625578b6010c65964d177626fde80cf60d7f2e297d56b925cb5cdeda6e9925a"},
{file = "pydantic_core-2.10.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:caa48fc31fc7243e50188197b5f0c4228956f97b954f76da157aae7f67269ae8"},
{file = "pydantic_core-2.10.1-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:07ec6d7d929ae9c68f716195ce15e745b3e8fa122fc67698ac6498d802ed0fa4"},
{file = "pydantic_core-2.10.1-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:e6f31a17acede6a8cd1ae2d123ce04d8cca74056c9d456075f4f6f85de055607"},
{file = "pydantic_core-2.10.1-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:d8f1ebca515a03e5654f88411420fea6380fc841d1bea08effb28184e3d4899f"},
{file = "pydantic_core-2.10.1-cp311-none-win32.whl", hash = "sha256:6db2eb9654a85ada248afa5a6db5ff1cf0f7b16043a6b070adc4a5be68c716d6"},
{file = "pydantic_core-2.10.1-cp311-none-win_amd64.whl", hash = "sha256:4a5be350f922430997f240d25f8219f93b0c81e15f7b30b868b2fddfc2d05f27"},
{file = "pydantic_core-2.10.1-cp311-none-win_arm64.whl", hash = "sha256:5fdb39f67c779b183b0c853cd6b45f7db84b84e0571b3ef1c89cdb1dfc367325"},
{file = "pydantic_core-2.10.1-cp312-cp312-macosx_10_7_x86_64.whl", hash = "sha256:b1f22a9ab44de5f082216270552aa54259db20189e68fc12484873d926426921"},
{file = "pydantic_core-2.10.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:8572cadbf4cfa95fb4187775b5ade2eaa93511f07947b38f4cd67cf10783b118"},
{file = "pydantic_core-2.10.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:db9a28c063c7c00844ae42a80203eb6d2d6bbb97070cfa00194dff40e6f545ab"},
{file = "pydantic_core-2.10.1-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:0e2a35baa428181cb2270a15864ec6286822d3576f2ed0f4cd7f0c1708472aff"},
{file = "pydantic_core-2.10.1-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:05560ab976012bf40f25d5225a58bfa649bb897b87192a36c6fef1ab132540d7"},
{file = "pydantic_core-2.10.1-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:d6495008733c7521a89422d7a68efa0a0122c99a5861f06020ef5b1f51f9ba7c"},
{file = "pydantic_core-2.10.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:14ac492c686defc8e6133e3a2d9eaf5261b3df26b8ae97450c1647286750b901"},
{file = "pydantic_core-2.10.1-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:8282bab177a9a3081fd3d0a0175a07a1e2bfb7fcbbd949519ea0980f8a07144d"},
{file = "pydantic_core-2.10.1-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:aafdb89fdeb5fe165043896817eccd6434aee124d5ee9b354f92cd574ba5e78f"},
{file = "pydantic_core-2.10.1-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:f6defd966ca3b187ec6c366604e9296f585021d922e666b99c47e78738b5666c"},
{file = "pydantic_core-2.10.1-cp312-none-win32.whl", hash = "sha256:7c4d1894fe112b0864c1fa75dffa045720a194b227bed12f4be7f6045b25209f"},
{file = "pydantic_core-2.10.1-cp312-none-win_amd64.whl", hash = "sha256:5994985da903d0b8a08e4935c46ed8daf5be1cf217489e673910951dc533d430"},
{file = "pydantic_core-2.10.1-cp312-none-win_arm64.whl", hash = "sha256:0d8a8adef23d86d8eceed3e32e9cca8879c7481c183f84ed1a8edc7df073af94"},
{file = "pydantic_core-2.10.1-cp37-cp37m-macosx_10_7_x86_64.whl", hash = "sha256:9badf8d45171d92387410b04639d73811b785b5161ecadabf056ea14d62d4ede"},
{file = "pydantic_core-2.10.1-cp37-cp37m-macosx_11_0_arm64.whl", hash = "sha256:ebedb45b9feb7258fac0a268a3f6bec0a2ea4d9558f3d6f813f02ff3a6dc6698"},
{file = "pydantic_core-2.10.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:cfe1090245c078720d250d19cb05d67e21a9cd7c257698ef139bc41cf6c27b4f"},
{file = "pydantic_core-2.10.1-cp37-cp37m-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:e357571bb0efd65fd55f18db0a2fb0ed89d0bb1d41d906b138f088933ae618bb"},
{file = "pydantic_core-2.10.1-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:b3dcd587b69bbf54fc04ca157c2323b8911033e827fffaecf0cafa5a892a0904"},
{file = "pydantic_core-2.10.1-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:9c120c9ce3b163b985a3b966bb701114beb1da4b0468b9b236fc754783d85aa3"},
{file = "pydantic_core-2.10.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:15d6bca84ffc966cc9976b09a18cf9543ed4d4ecbd97e7086f9ce9327ea48891"},
{file = "pydantic_core-2.10.1-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:5cabb9710f09d5d2e9e2748c3e3e20d991a4c5f96ed8f1132518f54ab2967221"},
{file = "pydantic_core-2.10.1-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:82f55187a5bebae7d81d35b1e9aaea5e169d44819789837cdd4720d768c55d15"},
{file = "pydantic_core-2.10.1-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:1d40f55222b233e98e3921df7811c27567f0e1a4411b93d4c5c0f4ce131bc42f"},
{file = "pydantic_core-2.10.1-cp37-none-win32.whl", hash = "sha256:14e09ff0b8fe6e46b93d36a878f6e4a3a98ba5303c76bb8e716f4878a3bee92c"},
{file = "pydantic_core-2.10.1-cp37-none-win_amd64.whl", hash = "sha256:1396e81b83516b9d5c9e26a924fa69164156c148c717131f54f586485ac3c15e"},
{file = "pydantic_core-2.10.1-cp38-cp38-macosx_10_7_x86_64.whl", hash = "sha256:6835451b57c1b467b95ffb03a38bb75b52fb4dc2762bb1d9dbed8de31ea7d0fc"},
{file = "pydantic_core-2.10.1-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:b00bc4619f60c853556b35f83731bd817f989cba3e97dc792bb8c97941b8053a"},
{file = "pydantic_core-2.10.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0fa467fd300a6f046bdb248d40cd015b21b7576c168a6bb20aa22e595c8ffcdd"},
{file = "pydantic_core-2.10.1-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:d99277877daf2efe074eae6338453a4ed54a2d93fb4678ddfe1209a0c93a2468"},
{file = "pydantic_core-2.10.1-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:fa7db7558607afeccb33c0e4bf1c9a9a835e26599e76af6fe2fcea45904083a6"},
{file = "pydantic_core-2.10.1-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:aad7bd686363d1ce4ee930ad39f14e1673248373f4a9d74d2b9554f06199fb58"},
{file = "pydantic_core-2.10.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:443fed67d33aa85357464f297e3d26e570267d1af6fef1c21ca50921d2976302"},
{file = "pydantic_core-2.10.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:042462d8d6ba707fd3ce9649e7bf268633a41018d6a998fb5fbacb7e928a183e"},
{file = "pydantic_core-2.10.1-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:ecdbde46235f3d560b18be0cb706c8e8ad1b965e5c13bbba7450c86064e96561"},
{file = "pydantic_core-2.10.1-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:ed550ed05540c03f0e69e6d74ad58d026de61b9eaebebbaaf8873e585cbb18de"},
{file = "pydantic_core-2.10.1-cp38-none-win32.whl", hash = "sha256:8cdbbd92154db2fec4ec973d45c565e767ddc20aa6dbaf50142676484cbff8ee"},
{file = "pydantic_core-2.10.1-cp38-none-win_amd64.whl", hash = "sha256:9f6f3e2598604956480f6c8aa24a3384dbf6509fe995d97f6ca6103bb8c2534e"},
{file = "pydantic_core-2.10.1-cp39-cp39-macosx_10_7_x86_64.whl", hash = "sha256:655f8f4c8d6a5963c9a0687793da37b9b681d9ad06f29438a3b2326d4e6b7970"},
{file = "pydantic_core-2.10.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:e570ffeb2170e116a5b17e83f19911020ac79d19c96f320cbfa1fa96b470185b"},
{file = "pydantic_core-2.10.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:64322bfa13e44c6c30c518729ef08fda6026b96d5c0be724b3c4ae4da939f875"},
{file = "pydantic_core-2.10.1-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:485a91abe3a07c3a8d1e082ba29254eea3e2bb13cbbd4351ea4e5a21912cc9b0"},
{file = "pydantic_core-2.10.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:f7c2b8eb9fc872e68b46eeaf835e86bccc3a58ba57d0eedc109cbb14177be531"},
{file = "pydantic_core-2.10.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:a5cb87bdc2e5f620693148b5f8f842d293cae46c5f15a1b1bf7ceeed324a740c"},
{file = "pydantic_core-2.10.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:25bd966103890ccfa028841a8f30cebcf5875eeac8c4bde4fe221364c92f0c9a"},
{file = "pydantic_core-2.10.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:f323306d0556351735b54acbf82904fe30a27b6a7147153cbe6e19aaaa2aa429"},
{file = "pydantic_core-2.10.1-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:0c27f38dc4fbf07b358b2bc90edf35e82d1703e22ff2efa4af4ad5de1b3833e7"},
{file = "pydantic_core-2.10.1-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:f1365e032a477c1430cfe0cf2856679529a2331426f8081172c4a74186f1d595"},
{file = "pydantic_core-2.10.1-cp39-none-win32.whl", hash = "sha256:a1c311fd06ab3b10805abb72109f01a134019739bd3286b8ae1bc2fc4e50c07a"},
{file = "pydantic_core-2.10.1-cp39-none-win_amd64.whl", hash = "sha256:ae8a8843b11dc0b03b57b52793e391f0122e740de3df1474814c700d2622950a"},
{file = "pydantic_core-2.10.1-pp310-pypy310_pp73-macosx_10_7_x86_64.whl", hash = "sha256:d43002441932f9a9ea5d6f9efaa2e21458221a3a4b417a14027a1d530201ef1b"},
{file = "pydantic_core-2.10.1-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:fcb83175cc4936a5425dde3356f079ae03c0802bbdf8ff82c035f8a54b333521"},
{file = "pydantic_core-2.10.1-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:962ed72424bf1f72334e2f1e61b68f16c0e596f024ca7ac5daf229f7c26e4208"},
{file = "pydantic_core-2.10.1-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2cf5bb4dd67f20f3bbc1209ef572a259027c49e5ff694fa56bed62959b41e1f9"},
{file = "pydantic_core-2.10.1-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:e544246b859f17373bed915182ab841b80849ed9cf23f1f07b73b7c58baee5fb"},
{file = "pydantic_core-2.10.1-pp310-pypy310_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:c0877239307b7e69d025b73774e88e86ce82f6ba6adf98f41069d5b0b78bd1bf"},
{file = "pydantic_core-2.10.1-pp310-pypy310_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:53df009d1e1ba40f696f8995683e067e3967101d4bb4ea6f667931b7d4a01357"},
{file = "pydantic_core-2.10.1-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:a1254357f7e4c82e77c348dabf2d55f1d14d19d91ff025004775e70a6ef40ada"},
{file = "pydantic_core-2.10.1-pp37-pypy37_pp73-macosx_10_7_x86_64.whl", hash = "sha256:524ff0ca3baea164d6d93a32c58ac79eca9f6cf713586fdc0adb66a8cdeab96a"},
{file = "pydantic_core-2.10.1-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3f0ac9fb8608dbc6eaf17956bf623c9119b4db7dbb511650910a82e261e6600f"},
{file = "pydantic_core-2.10.1-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:320f14bd4542a04ab23747ff2c8a778bde727158b606e2661349557f0770711e"},
{file = "pydantic_core-2.10.1-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:63974d168b6233b4ed6a0046296803cb13c56637a7b8106564ab575926572a55"},
{file = "pydantic_core-2.10.1-pp37-pypy37_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:417243bf599ba1f1fef2bb8c543ceb918676954734e2dcb82bf162ae9d7bd514"},
{file = "pydantic_core-2.10.1-pp37-pypy37_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:dda81e5ec82485155a19d9624cfcca9be88a405e2857354e5b089c2a982144b2"},
{file = "pydantic_core-2.10.1-pp37-pypy37_pp73-win_amd64.whl", hash = "sha256:14cfbb00959259e15d684505263d5a21732b31248a5dd4941f73a3be233865b9"},
{file = "pydantic_core-2.10.1-pp38-pypy38_pp73-macosx_10_7_x86_64.whl", hash = "sha256:631cb7415225954fdcc2a024119101946793e5923f6c4d73a5914d27eb3d3a05"},
{file = "pydantic_core-2.10.1-pp38-pypy38_pp73-macosx_11_0_arm64.whl", hash = "sha256:bec7dd208a4182e99c5b6c501ce0b1f49de2802448d4056091f8e630b28e9a52"},
{file = "pydantic_core-2.10.1-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:149b8a07712f45b332faee1a2258d8ef1fb4a36f88c0c17cb687f205c5dc6e7d"},
{file = "pydantic_core-2.10.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4d966c47f9dd73c2d32a809d2be529112d509321c5310ebf54076812e6ecd884"},
{file = "pydantic_core-2.10.1-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:7eb037106f5c6b3b0b864ad226b0b7ab58157124161d48e4b30c4a43fef8bc4b"},
{file = "pydantic_core-2.10.1-pp38-pypy38_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:154ea7c52e32dce13065dbb20a4a6f0cc012b4f667ac90d648d36b12007fa9f7"},
{file = "pydantic_core-2.10.1-pp38-pypy38_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:e562617a45b5a9da5be4abe72b971d4f00bf8555eb29bb91ec2ef2be348cd132"},
{file = "pydantic_core-2.10.1-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:f23b55eb5464468f9e0e9a9935ce3ed2a870608d5f534025cd5536bca25b1402"},
{file = "pydantic_core-2.10.1-pp39-pypy39_pp73-macosx_10_7_x86_64.whl", hash = "sha256:e9121b4009339b0f751955baf4543a0bfd6bc3f8188f8056b1a25a2d45099934"},
{file = "pydantic_core-2.10.1-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:0523aeb76e03f753b58be33b26540880bac5aa54422e4462404c432230543f33"},
{file = "pydantic_core-2.10.1-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2e0e2959ef5d5b8dc9ef21e1a305a21a36e254e6a34432d00c72a92fdc5ecda5"},
{file = "pydantic_core-2.10.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:da01bec0a26befab4898ed83b362993c844b9a607a86add78604186297eb047e"},
{file = "pydantic_core-2.10.1-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:f2e9072d71c1f6cfc79a36d4484c82823c560e6f5599c43c1ca6b5cdbd54f881"},
{file = "pydantic_core-2.10.1-pp39-pypy39_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:f36a3489d9e28fe4b67be9992a23029c3cec0babc3bd9afb39f49844a8c721c5"},
{file = "pydantic_core-2.10.1-pp39-pypy39_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:f64f82cc3443149292b32387086d02a6c7fb39b8781563e0ca7b8d7d9cf72bd7"},
{file = "pydantic_core-2.10.1-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:b4a6db486ac8e99ae696e09efc8b2b9fea67b63c8f88ba7a1a16c24a057a0776"},
{file = "pydantic_core-2.10.1.tar.gz", hash = "sha256:0f8682dbdd2f67f8e1edddcbffcc29f60a6182b4901c367fc8c1c40d30bb0a82"},
]
[package.extras]
plugins = ["importlib-metadata"]
[package.dependencies]
typing-extensions = ">=4.6.0,<4.7.0 || >4.7.0"
[[package]]
name = "pyyaml"
@@ -1262,36 +1151,6 @@ urllib3 = ">=1.21.1,<3"
socks = ["PySocks (>=1.5.6,!=1.5.7)"]
use-chardet-on-py3 = ["chardet (>=3.0.2,<6)"]
[[package]]
name = "rich"
version = "13.6.0"
description = "Render rich text, tables, progress bars, syntax highlighting, markdown and more to the terminal"
optional = false
python-versions = ">=3.7.0"
files = [
{file = "rich-13.6.0-py3-none-any.whl", hash = "sha256:2b38e2fe9ca72c9a00170a1a2d20c63c790d0e10ef1fe35eba76e1e7b1d7d245"},
{file = "rich-13.6.0.tar.gz", hash = "sha256:5c14d22737e6d5084ef4771b62d5d4363165b403455a30a1c8ca39dc7b644bef"},
]
[package.dependencies]
markdown-it-py = ">=2.2.0"
pygments = ">=2.13.0,<3.0.0"
typing-extensions = {version = ">=4.0.0,<5.0", markers = "python_version < \"3.9\""}
[package.extras]
jupyter = ["ipywidgets (>=7.5.1,<9)"]
[[package]]
name = "shellingham"
version = "1.5.4"
description = "Tool to Detect Surrounding Shell"
optional = false
python-versions = ">=3.7"
files = [
{file = "shellingham-1.5.4-py2.py3-none-any.whl", hash = "sha256:7ecfff8f2fd72616f7481040475a65b2bf8af90a56c89140852d1120324e8686"},
{file = "shellingham-1.5.4.tar.gz", hash = "sha256:8dbca0739d487e5bd35ab3ca4b36e11c4078f3a234bfce294b0a0291363404de"},
]
[[package]]
name = "six"
version = "1.16.0"
@@ -1303,17 +1162,6 @@ files = [
{file = "six-1.16.0.tar.gz", hash = "sha256:1e61c37477a1626458e36f7b1d82aa5c9b094fa4802892072e49de9c60c4c926"},
]
[[package]]
name = "smmap"
version = "5.0.1"
description = "A pure Python implementation of a sliding window memory map manager"
optional = false
python-versions = ">=3.7"
files = [
{file = "smmap-5.0.1-py3-none-any.whl", hash = "sha256:e6d8668fa5f93e706934a62d7b4db19c8d9eb8cf2adbb75ef1b675aa332b69da"},
{file = "smmap-5.0.1.tar.gz", hash = "sha256:dceeb6c0028fdb6734471eb07c0cd2aae706ccaecab45965ee83f11c8d3b1f62"},
]
[[package]]
name = "sniffio"
version = "1.3.0"
@@ -1363,38 +1211,6 @@ postgresql-psycopgbinary = ["psycopg[binary] (>=3.0.7)"]
pymysql = ["pymysql"]
sqlcipher = ["sqlcipher3_binary"]
[[package]]
name = "sse-starlette"
version = "1.6.5"
description = "\"SSE plugin for Starlette\""
optional = false
python-versions = ">=3.8"
files = [
{file = "sse-starlette-1.6.5.tar.gz", hash = "sha256:819f2c421fb37067380fe3dcaba246c476b02651b7bb7601099a378ad802a0ac"},
{file = "sse_starlette-1.6.5-py3-none-any.whl", hash = "sha256:68b6b7eb49be0c72a2af80a055994c13afcaa4761b29226beb208f954c25a642"},
]
[package.dependencies]
starlette = "*"
[[package]]
name = "starlette"
version = "0.27.0"
description = "The little ASGI library that shines."
optional = false
python-versions = ">=3.7"
files = [
{file = "starlette-0.27.0-py3-none-any.whl", hash = "sha256:918416370e846586541235ccd38a474c08b80443ed31c578a418e2209b3eef91"},
{file = "starlette-0.27.0.tar.gz", hash = "sha256:6a6b0d042acb8d469a01eba54e9cda6cbd24ac602c4cd016723117d6a7e73b75"},
]
[package.dependencies]
anyio = ">=3.4.0,<5"
typing-extensions = {version = ">=3.10.0", markers = "python_version < \"3.10\""}
[package.extras]
full = ["httpx (>=0.22.0)", "itsdangerous", "jinja2", "python-multipart", "pyyaml"]
[[package]]
name = "tenacity"
version = "8.2.3"
@@ -1454,17 +1270,6 @@ requests = ">=2.26.0"
[package.extras]
blobfile = ["blobfile (>=2)"]
[[package]]
name = "tomli"
version = "2.0.1"
description = "A lil' TOML parser"
optional = false
python-versions = ">=3.7"
files = [
{file = "tomli-2.0.1-py3-none-any.whl", hash = "sha256:939de3e7a6161af0c887ef91b7d41a53e7c5a1ca976325f429cb46ea9bc30ecc"},
{file = "tomli-2.0.1.tar.gz", hash = "sha256:de526c12914f0c550d15924c62d72abc48d6fe7364aa87328337a31007fe8a4f"},
]
[[package]]
name = "tqdm"
version = "4.66.1"
@@ -1485,30 +1290,6 @@ notebook = ["ipywidgets (>=6)"]
slack = ["slack-sdk"]
telegram = ["requests"]
[[package]]
name = "typer"
version = "0.9.0"
description = "Typer, build great CLIs. Easy to code. Based on Python type hints."
optional = false
python-versions = ">=3.6"
files = [
{file = "typer-0.9.0-py3-none-any.whl", hash = "sha256:5d96d986a21493606a358cae4461bd8cdf83cbf33a5aa950ae629ca3b51467ee"},
{file = "typer-0.9.0.tar.gz", hash = "sha256:50922fd79aea2f4751a8e0408ff10d2662bd0c8bbfa84755a699f3bada2978b2"},
]
[package.dependencies]
click = ">=7.1.1,<9.0.0"
colorama = {version = ">=0.4.3,<0.5.0", optional = true, markers = "extra == \"all\""}
rich = {version = ">=10.11.0,<14.0.0", optional = true, markers = "extra == \"all\""}
shellingham = {version = ">=1.3.0,<2.0.0", optional = true, markers = "extra == \"all\""}
typing-extensions = ">=3.7.4.3"
[package.extras]
all = ["colorama (>=0.4.3,<0.5.0)", "rich (>=10.11.0,<14.0.0)", "shellingham (>=1.3.0,<2.0.0)"]
dev = ["autoflake (>=1.3.1,<2.0.0)", "flake8 (>=3.8.3,<4.0.0)", "pre-commit (>=2.17.0,<3.0.0)"]
doc = ["cairosvg (>=2.5.2,<3.0.0)", "mdx-include (>=1.4.1,<2.0.0)", "mkdocs (>=1.1.2,<2.0.0)", "mkdocs-material (>=8.1.4,<9.0.0)", "pillow (>=9.3.0,<10.0.0)"]
test = ["black (>=22.3.0,<23.0.0)", "coverage (>=6.2,<7.0)", "isort (>=5.0.6,<6.0.0)", "mypy (==0.910)", "pytest (>=4.4.0,<8.0.0)", "pytest-cov (>=2.10.0,<5.0.0)", "pytest-sugar (>=0.9.4,<0.10.0)", "pytest-xdist (>=1.32.0,<4.0.0)", "rich (>=10.11.0,<14.0.0)", "shellingham (>=1.3.0,<2.0.0)"]
[[package]]
name = "typing-extensions"
version = "4.8.0"
@@ -1552,25 +1333,6 @@ secure = ["certifi", "cryptography (>=1.9)", "idna (>=2.0.0)", "pyopenssl (>=17.
socks = ["pysocks (>=1.5.6,!=1.5.7,<2.0)"]
zstd = ["zstandard (>=0.18.0)"]
[[package]]
name = "uvicorn"
version = "0.23.2"
description = "The lightning-fast ASGI server."
optional = false
python-versions = ">=3.8"
files = [
{file = "uvicorn-0.23.2-py3-none-any.whl", hash = "sha256:1f9be6558f01239d4fdf22ef8126c39cb1ad0addf76c40e760549d2c2f43ab53"},
{file = "uvicorn-0.23.2.tar.gz", hash = "sha256:4d3cc12d7727ba72b64d12d3cc7743124074c0a69f7b201512fc50c3e3f1569a"},
]
[package.dependencies]
click = ">=7.0"
h11 = ">=0.8"
typing-extensions = {version = ">=4.0", markers = "python_version < \"3.11\""}
[package.extras]
standard = ["colorama (>=0.4)", "httptools (>=0.5.0)", "python-dotenv (>=0.13)", "pyyaml (>=5.1)", "uvloop (>=0.14.0,!=0.15.0,!=0.15.1)", "watchfiles (>=0.13)", "websockets (>=10.4)"]
[[package]]
name = "yarl"
version = "1.9.2"
@@ -1661,4 +1423,4 @@ multidict = ">=4.0"
[metadata]
lock-version = "2.0"
python-versions = ">=3.8.1,<4.0"
content-hash = "2bbb41d6a2b203cdef7902704f626c0b0006d12a660d4f85b91a48d44db7d5b9"
content-hash = "4d134640788fa0dcafd1926605a44fa2b6b22fcc409ddbc25254981713d4b980"

View File

@@ -14,9 +14,6 @@ openai = "^0.28.1"
tiktoken = "^0.5.1"
cassio = "^0.1.3"
[tool.poetry.group.dev.dependencies]
langchain-cli = ">=0.0.15"
[tool.langserve]
export_module = "cassandra_entomology_rag"
export_attr = "chain"

View File

@@ -18,7 +18,7 @@ _Note:_ you can alternatively use a regular Cassandra cluster: to do so, make su
To use this package, you should first have the LangChain CLI installed:
```shell
pip install -U langchain-cli
pip install -U "langchain-cli[serve]"
```
To create a new LangChain project and install this as the only package, you can do:

View File

@@ -122,6 +122,20 @@ files = [
[package.dependencies]
frozenlist = ">=1.1.0"
[[package]]
name = "annotated-types"
version = "0.6.0"
description = "Reusable constraint types to use with typing.Annotated"
optional = false
python-versions = ">=3.8"
files = [
{file = "annotated_types-0.6.0-py3-none-any.whl", hash = "sha256:0641064de18ba7a25dee8f96403ebc39113d0cb953a01429249d5c7564666a43"},
{file = "annotated_types-0.6.0.tar.gz", hash = "sha256:563339e807e53ffd9c267e99fc6d9ea23eb8443c08f112651963e24e22f84a5d"},
]
[package.dependencies]
typing-extensions = {version = ">=4.0.0", markers = "python_version < \"3.9\""}
[[package]]
name = "anyio"
version = "3.7.1"
@@ -403,26 +417,6 @@ files = [
[package.extras]
test = ["pytest (>=6)"]
[[package]]
name = "fastapi"
version = "0.104.1"
description = "FastAPI framework, high performance, easy to learn, fast to code, ready for production"
optional = false
python-versions = ">=3.8"
files = [
{file = "fastapi-0.104.1-py3-none-any.whl", hash = "sha256:752dc31160cdbd0436bb93bad51560b57e525cbb1d4bbf6f4904ceee75548241"},
{file = "fastapi-0.104.1.tar.gz", hash = "sha256:e5e4540a7c5e1dcfbbcf5b903c234feddcdcd881f191977a1c5dfd917487e7ae"},
]
[package.dependencies]
anyio = ">=3.7.1,<4.0.0"
pydantic = ">=1.7.4,<1.8 || >1.8,<1.8.1 || >1.8.1,<2.0.0 || >2.0.0,<2.0.1 || >2.0.1,<2.1.0 || >2.1.0,<3.0.0"
starlette = ">=0.27.0,<0.28.0"
typing-extensions = ">=4.8.0"
[package.extras]
all = ["email-validator (>=2.0.0)", "httpx (>=0.23.0)", "itsdangerous (>=1.1.0)", "jinja2 (>=2.11.2)", "orjson (>=3.2.1)", "pydantic-extra-types (>=2.0.0)", "pydantic-settings (>=2.0.0)", "python-multipart (>=0.0.5)", "pyyaml (>=5.3.1)", "ujson (>=4.0.1,!=4.0.2,!=4.1.0,!=4.2.0,!=4.3.0,!=5.0.0,!=5.1.0)", "uvicorn[standard] (>=0.12.0)"]
[[package]]
name = "frozenlist"
version = "1.4.0"
@@ -508,37 +502,6 @@ files = [
click = "*"
six = "*"
[[package]]
name = "gitdb"
version = "4.0.11"
description = "Git Object Database"
optional = false
python-versions = ">=3.7"
files = [
{file = "gitdb-4.0.11-py3-none-any.whl", hash = "sha256:81a3407ddd2ee8df444cbacea00e2d038e40150acfa3001696fe0dcf1d3adfa4"},
{file = "gitdb-4.0.11.tar.gz", hash = "sha256:bf5421126136d6d0af55bc1e7c1af1c397a34f5b7bd79e776cd3e89785c2b04b"},
]
[package.dependencies]
smmap = ">=3.0.1,<6"
[[package]]
name = "gitpython"
version = "3.1.40"
description = "GitPython is a Python library used to interact with Git repositories"
optional = false
python-versions = ">=3.7"
files = [
{file = "GitPython-3.1.40-py3-none-any.whl", hash = "sha256:cf14627d5a8049ffbf49915732e5eddbe8134c3bdb9d476e6182b676fc573f8a"},
{file = "GitPython-3.1.40.tar.gz", hash = "sha256:22b126e9ffb671fdd0c129796343a02bf67bf2994b35449ffc9321aa755e18a4"},
]
[package.dependencies]
gitdb = ">=4.0.1,<5"
[package.extras]
test = ["black", "coverage[toml]", "ddt (>=1.1.1,!=1.4.3)", "mock", "mypy", "pre-commit", "pytest", "pytest-cov", "pytest-instafail", "pytest-subtests", "pytest-sugar"]
[[package]]
name = "greenlet"
version = "3.0.1"
@@ -609,73 +572,6 @@ files = [
docs = ["Sphinx"]
test = ["objgraph", "psutil"]
[[package]]
name = "h11"
version = "0.14.0"
description = "A pure-Python, bring-your-own-I/O implementation of HTTP/1.1"
optional = false
python-versions = ">=3.7"
files = [
{file = "h11-0.14.0-py3-none-any.whl", hash = "sha256:e3fe4ac4b851c468cc8363d500db52c2ead036020723024a109d37346efaa761"},
{file = "h11-0.14.0.tar.gz", hash = "sha256:8f19fbbe99e72420ff35c00b27a34cb9937e902a8b810e2c88300c6f0a3b699d"},
]
[[package]]
name = "httpcore"
version = "1.0.1"
description = "A minimal low-level HTTP client."
optional = false
python-versions = ">=3.8"
files = [
{file = "httpcore-1.0.1-py3-none-any.whl", hash = "sha256:c5e97ef177dca2023d0b9aad98e49507ef5423e9f1d94ffe2cfe250aa28e63b0"},
{file = "httpcore-1.0.1.tar.gz", hash = "sha256:fce1ddf9b606cfb98132ab58865c3728c52c8e4c3c46e2aabb3674464a186e92"},
]
[package.dependencies]
certifi = "*"
h11 = ">=0.13,<0.15"
[package.extras]
asyncio = ["anyio (>=4.0,<5.0)"]
http2 = ["h2 (>=3,<5)"]
socks = ["socksio (==1.*)"]
trio = ["trio (>=0.22.0,<0.23.0)"]
[[package]]
name = "httpx"
version = "0.25.1"
description = "The next generation HTTP client."
optional = false
python-versions = ">=3.8"
files = [
{file = "httpx-0.25.1-py3-none-any.whl", hash = "sha256:fec7d6cc5c27c578a391f7e87b9aa7d3d8fbcd034f6399f9f79b45bcc12a866a"},
{file = "httpx-0.25.1.tar.gz", hash = "sha256:ffd96d5cf901e63863d9f1b4b6807861dbea4d301613415d9e6e57ead15fc5d0"},
]
[package.dependencies]
anyio = "*"
certifi = "*"
httpcore = "*"
idna = "*"
sniffio = "*"
[package.extras]
brotli = ["brotli", "brotlicffi"]
cli = ["click (==8.*)", "pygments (==2.*)", "rich (>=10,<14)"]
http2 = ["h2 (>=3,<5)"]
socks = ["socksio (==1.*)"]
[[package]]
name = "httpx-sse"
version = "0.3.1"
description = "Consume Server-Sent Event (SSE) messages with HTTPX."
optional = false
python-versions = ">=3.7"
files = [
{file = "httpx-sse-0.3.1.tar.gz", hash = "sha256:3bb3289b2867f50cbdb2fee3eeeefecb1e86653122e164faac0023f1ffc88aea"},
{file = "httpx_sse-0.3.1-py3-none-any.whl", hash = "sha256:7376dd88732892f9b6b549ac0ad05a8e2341172fe7dcf9f8f9c8050934297316"},
]
[[package]]
name = "idna"
version = "3.4"
@@ -752,49 +648,6 @@ openai = ["openai (>=0,<1)", "tiktoken (>=0.3.2,<0.6.0)"]
qdrant = ["qdrant-client (>=1.3.1,<2.0.0)"]
text-helpers = ["chardet (>=5.1.0,<6.0.0)"]
[[package]]
name = "langchain-cli"
version = "0.0.15"
description = "CLI for interacting with LangChain"
optional = false
python-versions = ">=3.8.1,<4.0"
files = [
{file = "langchain_cli-0.0.15-py3-none-any.whl", hash = "sha256:88102d2bb9d7c9cc99a1da13302a7f95d60cb37b2dab264b808aa6e3887b046f"},
{file = "langchain_cli-0.0.15.tar.gz", hash = "sha256:b7ff1a8338922aadbc3b1a141ea92c0a33aaaa72124dfbfd12049fe9a4a95cec"},
]
[package.dependencies]
fastapi = ">=0.104.0,<0.105.0"
gitpython = ">=3.1.40,<4.0.0"
langserve = {version = ">=0.0.16", extras = ["all"]}
tomli = ">=2.0.1,<3.0.0"
typer = {version = ">=0.9.0,<0.10.0", extras = ["all"]}
uvicorn = ">=0.23.2,<0.24.0"
[[package]]
name = "langserve"
version = "0.0.22"
description = ""
optional = false
python-versions = ">=3.8.1,<4.0.0"
files = [
{file = "langserve-0.0.22-py3-none-any.whl", hash = "sha256:908239209959fc23202a09113b42c0e5838d046404a4e725602fe56af96bf340"},
{file = "langserve-0.0.22.tar.gz", hash = "sha256:14a33986668c8d36aa2e58dc66307c021eaac18019d2b99e7fae30f6937650d1"},
]
[package.dependencies]
fastapi = {version = ">=0.90.1", optional = true, markers = "extra == \"server\" or extra == \"all\""}
httpx = ">=0.23.0"
httpx-sse = {version = ">=0.3.1", optional = true, markers = "extra == \"client\" or extra == \"all\""}
langchain = ">=0.0.322"
pydantic = ">=1,<2"
sse-starlette = {version = ">=1.3.0,<2.0.0", optional = true, markers = "extra == \"server\" or extra == \"all\""}
[package.extras]
all = ["fastapi (>=0.90.1)", "httpx-sse (>=0.3.1)", "sse-starlette (>=1.3.0,<2.0.0)"]
client = ["httpx-sse (>=0.3.1)"]
server = ["fastapi (>=0.90.1)", "sse-starlette (>=1.3.0,<2.0.0)"]
[[package]]
name = "langsmith"
version = "0.0.54"
@@ -810,30 +663,6 @@ files = [
pydantic = ">=1,<3"
requests = ">=2,<3"
[[package]]
name = "markdown-it-py"
version = "3.0.0"
description = "Python port of markdown-it. Markdown parsing, done right!"
optional = false
python-versions = ">=3.8"
files = [
{file = "markdown-it-py-3.0.0.tar.gz", hash = "sha256:e3f60a94fa066dc52ec76661e37c851cb232d92f9886b15cb560aaada2df8feb"},
{file = "markdown_it_py-3.0.0-py3-none-any.whl", hash = "sha256:355216845c60bd96232cd8d8c40e8f9765cc86f46880e43a8fd22dc1a1a8cab1"},
]
[package.dependencies]
mdurl = ">=0.1,<1.0"
[package.extras]
benchmarking = ["psutil", "pytest", "pytest-benchmark"]
code-style = ["pre-commit (>=3.0,<4.0)"]
compare = ["commonmark (>=0.9,<1.0)", "markdown (>=3.4,<4.0)", "mistletoe (>=1.0,<2.0)", "mistune (>=2.0,<3.0)", "panflute (>=2.3,<3.0)"]
linkify = ["linkify-it-py (>=1,<3)"]
plugins = ["mdit-py-plugins"]
profiling = ["gprof2dot"]
rtd = ["jupyter_sphinx", "mdit-py-plugins", "myst-parser", "pyyaml", "sphinx", "sphinx-copybutton", "sphinx-design", "sphinx_book_theme"]
testing = ["coverage", "pytest", "pytest-cov", "pytest-regressions"]
[[package]]
name = "marshmallow"
version = "3.20.1"
@@ -854,17 +683,6 @@ docs = ["alabaster (==0.7.13)", "autodocsumm (==0.2.11)", "sphinx (==7.0.1)", "s
lint = ["flake8 (==6.0.0)", "flake8-bugbear (==23.7.10)", "mypy (==1.4.1)", "pre-commit (>=2.4,<4.0)"]
tests = ["pytest", "pytz", "simplejson"]
[[package]]
name = "mdurl"
version = "0.1.2"
description = "Markdown URL utilities"
optional = false
python-versions = ">=3.7"
files = [
{file = "mdurl-0.1.2-py3-none-any.whl", hash = "sha256:84008a41e51615a49fc9966191ff91509e3c40b939176e643fd50a5c2196b8f8"},
{file = "mdurl-0.1.2.tar.gz", hash = "sha256:bb413d29f5eea38f31dd4754dd7377d4465116fb207585f97bf925588687c1ba"},
]
[[package]]
name = "multidict"
version = "6.0.4"
@@ -1031,69 +849,140 @@ files = [
[[package]]
name = "pydantic"
version = "1.10.13"
description = "Data validation and settings management using python type hints"
version = "2.4.2"
description = "Data validation using Python type hints"
optional = false
python-versions = ">=3.7"
files = [
{file = "pydantic-1.10.13-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:efff03cc7a4f29d9009d1c96ceb1e7a70a65cfe86e89d34e4a5f2ab1e5693737"},
{file = "pydantic-1.10.13-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:3ecea2b9d80e5333303eeb77e180b90e95eea8f765d08c3d278cd56b00345d01"},
{file = "pydantic-1.10.13-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1740068fd8e2ef6eb27a20e5651df000978edce6da6803c2bef0bc74540f9548"},
{file = "pydantic-1.10.13-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:84bafe2e60b5e78bc64a2941b4c071a4b7404c5c907f5f5a99b0139781e69ed8"},
{file = "pydantic-1.10.13-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:bc0898c12f8e9c97f6cd44c0ed70d55749eaf783716896960b4ecce2edfd2d69"},
{file = "pydantic-1.10.13-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:654db58ae399fe6434e55325a2c3e959836bd17a6f6a0b6ca8107ea0571d2e17"},
{file = "pydantic-1.10.13-cp310-cp310-win_amd64.whl", hash = "sha256:75ac15385a3534d887a99c713aa3da88a30fbd6204a5cd0dc4dab3d770b9bd2f"},
{file = "pydantic-1.10.13-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:c553f6a156deb868ba38a23cf0df886c63492e9257f60a79c0fd8e7173537653"},
{file = "pydantic-1.10.13-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:5e08865bc6464df8c7d61439ef4439829e3ab62ab1669cddea8dd00cd74b9ffe"},
{file = "pydantic-1.10.13-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e31647d85a2013d926ce60b84f9dd5300d44535a9941fe825dc349ae1f760df9"},
{file = "pydantic-1.10.13-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:210ce042e8f6f7c01168b2d84d4c9eb2b009fe7bf572c2266e235edf14bacd80"},
{file = "pydantic-1.10.13-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:8ae5dd6b721459bfa30805f4c25880e0dd78fc5b5879f9f7a692196ddcb5a580"},
{file = "pydantic-1.10.13-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:f8e81fc5fb17dae698f52bdd1c4f18b6ca674d7068242b2aff075f588301bbb0"},
{file = "pydantic-1.10.13-cp311-cp311-win_amd64.whl", hash = "sha256:61d9dce220447fb74f45e73d7ff3b530e25db30192ad8d425166d43c5deb6df0"},
{file = "pydantic-1.10.13-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:4b03e42ec20286f052490423682016fd80fda830d8e4119f8ab13ec7464c0132"},
{file = "pydantic-1.10.13-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f59ef915cac80275245824e9d771ee939133be38215555e9dc90c6cb148aaeb5"},
{file = "pydantic-1.10.13-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:5a1f9f747851338933942db7af7b6ee8268568ef2ed86c4185c6ef4402e80ba8"},
{file = "pydantic-1.10.13-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:97cce3ae7341f7620a0ba5ef6cf043975cd9d2b81f3aa5f4ea37928269bc1b87"},
{file = "pydantic-1.10.13-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:854223752ba81e3abf663d685f105c64150873cc6f5d0c01d3e3220bcff7d36f"},
{file = "pydantic-1.10.13-cp37-cp37m-win_amd64.whl", hash = "sha256:b97c1fac8c49be29486df85968682b0afa77e1b809aff74b83081cc115e52f33"},
{file = "pydantic-1.10.13-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:c958d053453a1c4b1c2062b05cd42d9d5c8eb67537b8d5a7e3c3032943ecd261"},
{file = "pydantic-1.10.13-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:4c5370a7edaac06daee3af1c8b1192e305bc102abcbf2a92374b5bc793818599"},
{file = "pydantic-1.10.13-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7d6f6e7305244bddb4414ba7094ce910560c907bdfa3501e9db1a7fd7eaea127"},
{file = "pydantic-1.10.13-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:d3a3c792a58e1622667a2837512099eac62490cdfd63bd407993aaf200a4cf1f"},
{file = "pydantic-1.10.13-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:c636925f38b8db208e09d344c7aa4f29a86bb9947495dd6b6d376ad10334fb78"},
{file = "pydantic-1.10.13-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:678bcf5591b63cc917100dc50ab6caebe597ac67e8c9ccb75e698f66038ea953"},
{file = "pydantic-1.10.13-cp38-cp38-win_amd64.whl", hash = "sha256:6cf25c1a65c27923a17b3da28a0bdb99f62ee04230c931d83e888012851f4e7f"},
{file = "pydantic-1.10.13-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:8ef467901d7a41fa0ca6db9ae3ec0021e3f657ce2c208e98cd511f3161c762c6"},
{file = "pydantic-1.10.13-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:968ac42970f57b8344ee08837b62f6ee6f53c33f603547a55571c954a4225691"},
{file = "pydantic-1.10.13-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9849f031cf8a2f0a928fe885e5a04b08006d6d41876b8bbd2fc68a18f9f2e3fd"},
{file = "pydantic-1.10.13-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:56e3ff861c3b9c6857579de282ce8baabf443f42ffba355bf070770ed63e11e1"},
{file = "pydantic-1.10.13-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:9f00790179497767aae6bcdc36355792c79e7bbb20b145ff449700eb076c5f96"},
{file = "pydantic-1.10.13-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:75b297827b59bc229cac1a23a2f7a4ac0031068e5be0ce385be1462e7e17a35d"},
{file = "pydantic-1.10.13-cp39-cp39-win_amd64.whl", hash = "sha256:e70ca129d2053fb8b728ee7d1af8e553a928d7e301a311094b8a0501adc8763d"},
{file = "pydantic-1.10.13-py3-none-any.whl", hash = "sha256:b87326822e71bd5f313e7d3bfdc77ac3247035ac10b0c0618bd99dcf95b1e687"},
{file = "pydantic-1.10.13.tar.gz", hash = "sha256:32c8b48dcd3b2ac4e78b0ba4af3a2c2eb6048cb75202f0ea7b34feb740efc340"},
{file = "pydantic-2.4.2-py3-none-any.whl", hash = "sha256:bc3ddf669d234f4220e6e1c4d96b061abe0998185a8d7855c0126782b7abc8c1"},
{file = "pydantic-2.4.2.tar.gz", hash = "sha256:94f336138093a5d7f426aac732dcfe7ab4eb4da243c88f891d65deb4a2556ee7"},
]
[package.dependencies]
typing-extensions = ">=4.2.0"
annotated-types = ">=0.4.0"
pydantic-core = "2.10.1"
typing-extensions = ">=4.6.1"
[package.extras]
dotenv = ["python-dotenv (>=0.10.4)"]
email = ["email-validator (>=1.0.3)"]
email = ["email-validator (>=2.0.0)"]
[[package]]
name = "pygments"
version = "2.16.1"
description = "Pygments is a syntax highlighting package written in Python."
name = "pydantic-core"
version = "2.10.1"
description = ""
optional = false
python-versions = ">=3.7"
files = [
{file = "Pygments-2.16.1-py3-none-any.whl", hash = "sha256:13fc09fa63bc8d8671a6d247e1eb303c4b343eaee81d861f3404db2935653692"},
{file = "Pygments-2.16.1.tar.gz", hash = "sha256:1daff0494820c69bc8941e407aa20f577374ee88364ee10a98fdbe0aece96e29"},
{file = "pydantic_core-2.10.1-cp310-cp310-macosx_10_7_x86_64.whl", hash = "sha256:d64728ee14e667ba27c66314b7d880b8eeb050e58ffc5fec3b7a109f8cddbd63"},
{file = "pydantic_core-2.10.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:48525933fea744a3e7464c19bfede85df4aba79ce90c60b94d8b6e1eddd67096"},
{file = "pydantic_core-2.10.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ef337945bbd76cce390d1b2496ccf9f90b1c1242a3a7bc242ca4a9fc5993427a"},
{file = "pydantic_core-2.10.1-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:a1392e0638af203cee360495fd2cfdd6054711f2db5175b6e9c3c461b76f5175"},
{file = "pydantic_core-2.10.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:0675ba5d22de54d07bccde38997e780044dcfa9a71aac9fd7d4d7a1d2e3e65f7"},
{file = "pydantic_core-2.10.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:128552af70a64660f21cb0eb4876cbdadf1a1f9d5de820fed6421fa8de07c893"},
{file = "pydantic_core-2.10.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8f6e6aed5818c264412ac0598b581a002a9f050cb2637a84979859e70197aa9e"},
{file = "pydantic_core-2.10.1-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:ecaac27da855b8d73f92123e5f03612b04c5632fd0a476e469dfc47cd37d6b2e"},
{file = "pydantic_core-2.10.1-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:b3c01c2fb081fced3bbb3da78510693dc7121bb893a1f0f5f4b48013201f362e"},
{file = "pydantic_core-2.10.1-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:92f675fefa977625105708492850bcbc1182bfc3e997f8eecb866d1927c98ae6"},
{file = "pydantic_core-2.10.1-cp310-none-win32.whl", hash = "sha256:420a692b547736a8d8703c39ea935ab5d8f0d2573f8f123b0a294e49a73f214b"},
{file = "pydantic_core-2.10.1-cp310-none-win_amd64.whl", hash = "sha256:0880e239827b4b5b3e2ce05e6b766a7414e5f5aedc4523be6b68cfbc7f61c5d0"},
{file = "pydantic_core-2.10.1-cp311-cp311-macosx_10_7_x86_64.whl", hash = "sha256:073d4a470b195d2b2245d0343569aac7e979d3a0dcce6c7d2af6d8a920ad0bea"},
{file = "pydantic_core-2.10.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:600d04a7b342363058b9190d4e929a8e2e715c5682a70cc37d5ded1e0dd370b4"},
{file = "pydantic_core-2.10.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:39215d809470f4c8d1881758575b2abfb80174a9e8daf8f33b1d4379357e417c"},
{file = "pydantic_core-2.10.1-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:eeb3d3d6b399ffe55f9a04e09e635554012f1980696d6b0aca3e6cf42a17a03b"},
{file = "pydantic_core-2.10.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:a7a7902bf75779bc12ccfc508bfb7a4c47063f748ea3de87135d433a4cca7a2f"},
{file = "pydantic_core-2.10.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:3625578b6010c65964d177626fde80cf60d7f2e297d56b925cb5cdeda6e9925a"},
{file = "pydantic_core-2.10.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:caa48fc31fc7243e50188197b5f0c4228956f97b954f76da157aae7f67269ae8"},
{file = "pydantic_core-2.10.1-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:07ec6d7d929ae9c68f716195ce15e745b3e8fa122fc67698ac6498d802ed0fa4"},
{file = "pydantic_core-2.10.1-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:e6f31a17acede6a8cd1ae2d123ce04d8cca74056c9d456075f4f6f85de055607"},
{file = "pydantic_core-2.10.1-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:d8f1ebca515a03e5654f88411420fea6380fc841d1bea08effb28184e3d4899f"},
{file = "pydantic_core-2.10.1-cp311-none-win32.whl", hash = "sha256:6db2eb9654a85ada248afa5a6db5ff1cf0f7b16043a6b070adc4a5be68c716d6"},
{file = "pydantic_core-2.10.1-cp311-none-win_amd64.whl", hash = "sha256:4a5be350f922430997f240d25f8219f93b0c81e15f7b30b868b2fddfc2d05f27"},
{file = "pydantic_core-2.10.1-cp311-none-win_arm64.whl", hash = "sha256:5fdb39f67c779b183b0c853cd6b45f7db84b84e0571b3ef1c89cdb1dfc367325"},
{file = "pydantic_core-2.10.1-cp312-cp312-macosx_10_7_x86_64.whl", hash = "sha256:b1f22a9ab44de5f082216270552aa54259db20189e68fc12484873d926426921"},
{file = "pydantic_core-2.10.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:8572cadbf4cfa95fb4187775b5ade2eaa93511f07947b38f4cd67cf10783b118"},
{file = "pydantic_core-2.10.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:db9a28c063c7c00844ae42a80203eb6d2d6bbb97070cfa00194dff40e6f545ab"},
{file = "pydantic_core-2.10.1-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:0e2a35baa428181cb2270a15864ec6286822d3576f2ed0f4cd7f0c1708472aff"},
{file = "pydantic_core-2.10.1-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:05560ab976012bf40f25d5225a58bfa649bb897b87192a36c6fef1ab132540d7"},
{file = "pydantic_core-2.10.1-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:d6495008733c7521a89422d7a68efa0a0122c99a5861f06020ef5b1f51f9ba7c"},
{file = "pydantic_core-2.10.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:14ac492c686defc8e6133e3a2d9eaf5261b3df26b8ae97450c1647286750b901"},
{file = "pydantic_core-2.10.1-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:8282bab177a9a3081fd3d0a0175a07a1e2bfb7fcbbd949519ea0980f8a07144d"},
{file = "pydantic_core-2.10.1-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:aafdb89fdeb5fe165043896817eccd6434aee124d5ee9b354f92cd574ba5e78f"},
{file = "pydantic_core-2.10.1-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:f6defd966ca3b187ec6c366604e9296f585021d922e666b99c47e78738b5666c"},
{file = "pydantic_core-2.10.1-cp312-none-win32.whl", hash = "sha256:7c4d1894fe112b0864c1fa75dffa045720a194b227bed12f4be7f6045b25209f"},
{file = "pydantic_core-2.10.1-cp312-none-win_amd64.whl", hash = "sha256:5994985da903d0b8a08e4935c46ed8daf5be1cf217489e673910951dc533d430"},
{file = "pydantic_core-2.10.1-cp312-none-win_arm64.whl", hash = "sha256:0d8a8adef23d86d8eceed3e32e9cca8879c7481c183f84ed1a8edc7df073af94"},
{file = "pydantic_core-2.10.1-cp37-cp37m-macosx_10_7_x86_64.whl", hash = "sha256:9badf8d45171d92387410b04639d73811b785b5161ecadabf056ea14d62d4ede"},
{file = "pydantic_core-2.10.1-cp37-cp37m-macosx_11_0_arm64.whl", hash = "sha256:ebedb45b9feb7258fac0a268a3f6bec0a2ea4d9558f3d6f813f02ff3a6dc6698"},
{file = "pydantic_core-2.10.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:cfe1090245c078720d250d19cb05d67e21a9cd7c257698ef139bc41cf6c27b4f"},
{file = "pydantic_core-2.10.1-cp37-cp37m-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:e357571bb0efd65fd55f18db0a2fb0ed89d0bb1d41d906b138f088933ae618bb"},
{file = "pydantic_core-2.10.1-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:b3dcd587b69bbf54fc04ca157c2323b8911033e827fffaecf0cafa5a892a0904"},
{file = "pydantic_core-2.10.1-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:9c120c9ce3b163b985a3b966bb701114beb1da4b0468b9b236fc754783d85aa3"},
{file = "pydantic_core-2.10.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:15d6bca84ffc966cc9976b09a18cf9543ed4d4ecbd97e7086f9ce9327ea48891"},
{file = "pydantic_core-2.10.1-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:5cabb9710f09d5d2e9e2748c3e3e20d991a4c5f96ed8f1132518f54ab2967221"},
{file = "pydantic_core-2.10.1-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:82f55187a5bebae7d81d35b1e9aaea5e169d44819789837cdd4720d768c55d15"},
{file = "pydantic_core-2.10.1-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:1d40f55222b233e98e3921df7811c27567f0e1a4411b93d4c5c0f4ce131bc42f"},
{file = "pydantic_core-2.10.1-cp37-none-win32.whl", hash = "sha256:14e09ff0b8fe6e46b93d36a878f6e4a3a98ba5303c76bb8e716f4878a3bee92c"},
{file = "pydantic_core-2.10.1-cp37-none-win_amd64.whl", hash = "sha256:1396e81b83516b9d5c9e26a924fa69164156c148c717131f54f586485ac3c15e"},
{file = "pydantic_core-2.10.1-cp38-cp38-macosx_10_7_x86_64.whl", hash = "sha256:6835451b57c1b467b95ffb03a38bb75b52fb4dc2762bb1d9dbed8de31ea7d0fc"},
{file = "pydantic_core-2.10.1-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:b00bc4619f60c853556b35f83731bd817f989cba3e97dc792bb8c97941b8053a"},
{file = "pydantic_core-2.10.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0fa467fd300a6f046bdb248d40cd015b21b7576c168a6bb20aa22e595c8ffcdd"},
{file = "pydantic_core-2.10.1-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:d99277877daf2efe074eae6338453a4ed54a2d93fb4678ddfe1209a0c93a2468"},
{file = "pydantic_core-2.10.1-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:fa7db7558607afeccb33c0e4bf1c9a9a835e26599e76af6fe2fcea45904083a6"},
{file = "pydantic_core-2.10.1-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:aad7bd686363d1ce4ee930ad39f14e1673248373f4a9d74d2b9554f06199fb58"},
{file = "pydantic_core-2.10.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:443fed67d33aa85357464f297e3d26e570267d1af6fef1c21ca50921d2976302"},
{file = "pydantic_core-2.10.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:042462d8d6ba707fd3ce9649e7bf268633a41018d6a998fb5fbacb7e928a183e"},
{file = "pydantic_core-2.10.1-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:ecdbde46235f3d560b18be0cb706c8e8ad1b965e5c13bbba7450c86064e96561"},
{file = "pydantic_core-2.10.1-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:ed550ed05540c03f0e69e6d74ad58d026de61b9eaebebbaaf8873e585cbb18de"},
{file = "pydantic_core-2.10.1-cp38-none-win32.whl", hash = "sha256:8cdbbd92154db2fec4ec973d45c565e767ddc20aa6dbaf50142676484cbff8ee"},
{file = "pydantic_core-2.10.1-cp38-none-win_amd64.whl", hash = "sha256:9f6f3e2598604956480f6c8aa24a3384dbf6509fe995d97f6ca6103bb8c2534e"},
{file = "pydantic_core-2.10.1-cp39-cp39-macosx_10_7_x86_64.whl", hash = "sha256:655f8f4c8d6a5963c9a0687793da37b9b681d9ad06f29438a3b2326d4e6b7970"},
{file = "pydantic_core-2.10.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:e570ffeb2170e116a5b17e83f19911020ac79d19c96f320cbfa1fa96b470185b"},
{file = "pydantic_core-2.10.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:64322bfa13e44c6c30c518729ef08fda6026b96d5c0be724b3c4ae4da939f875"},
{file = "pydantic_core-2.10.1-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:485a91abe3a07c3a8d1e082ba29254eea3e2bb13cbbd4351ea4e5a21912cc9b0"},
{file = "pydantic_core-2.10.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:f7c2b8eb9fc872e68b46eeaf835e86bccc3a58ba57d0eedc109cbb14177be531"},
{file = "pydantic_core-2.10.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:a5cb87bdc2e5f620693148b5f8f842d293cae46c5f15a1b1bf7ceeed324a740c"},
{file = "pydantic_core-2.10.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:25bd966103890ccfa028841a8f30cebcf5875eeac8c4bde4fe221364c92f0c9a"},
{file = "pydantic_core-2.10.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:f323306d0556351735b54acbf82904fe30a27b6a7147153cbe6e19aaaa2aa429"},
{file = "pydantic_core-2.10.1-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:0c27f38dc4fbf07b358b2bc90edf35e82d1703e22ff2efa4af4ad5de1b3833e7"},
{file = "pydantic_core-2.10.1-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:f1365e032a477c1430cfe0cf2856679529a2331426f8081172c4a74186f1d595"},
{file = "pydantic_core-2.10.1-cp39-none-win32.whl", hash = "sha256:a1c311fd06ab3b10805abb72109f01a134019739bd3286b8ae1bc2fc4e50c07a"},
{file = "pydantic_core-2.10.1-cp39-none-win_amd64.whl", hash = "sha256:ae8a8843b11dc0b03b57b52793e391f0122e740de3df1474814c700d2622950a"},
{file = "pydantic_core-2.10.1-pp310-pypy310_pp73-macosx_10_7_x86_64.whl", hash = "sha256:d43002441932f9a9ea5d6f9efaa2e21458221a3a4b417a14027a1d530201ef1b"},
{file = "pydantic_core-2.10.1-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:fcb83175cc4936a5425dde3356f079ae03c0802bbdf8ff82c035f8a54b333521"},
{file = "pydantic_core-2.10.1-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:962ed72424bf1f72334e2f1e61b68f16c0e596f024ca7ac5daf229f7c26e4208"},
{file = "pydantic_core-2.10.1-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2cf5bb4dd67f20f3bbc1209ef572a259027c49e5ff694fa56bed62959b41e1f9"},
{file = "pydantic_core-2.10.1-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:e544246b859f17373bed915182ab841b80849ed9cf23f1f07b73b7c58baee5fb"},
{file = "pydantic_core-2.10.1-pp310-pypy310_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:c0877239307b7e69d025b73774e88e86ce82f6ba6adf98f41069d5b0b78bd1bf"},
{file = "pydantic_core-2.10.1-pp310-pypy310_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:53df009d1e1ba40f696f8995683e067e3967101d4bb4ea6f667931b7d4a01357"},
{file = "pydantic_core-2.10.1-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:a1254357f7e4c82e77c348dabf2d55f1d14d19d91ff025004775e70a6ef40ada"},
{file = "pydantic_core-2.10.1-pp37-pypy37_pp73-macosx_10_7_x86_64.whl", hash = "sha256:524ff0ca3baea164d6d93a32c58ac79eca9f6cf713586fdc0adb66a8cdeab96a"},
{file = "pydantic_core-2.10.1-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3f0ac9fb8608dbc6eaf17956bf623c9119b4db7dbb511650910a82e261e6600f"},
{file = "pydantic_core-2.10.1-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:320f14bd4542a04ab23747ff2c8a778bde727158b606e2661349557f0770711e"},
{file = "pydantic_core-2.10.1-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:63974d168b6233b4ed6a0046296803cb13c56637a7b8106564ab575926572a55"},
{file = "pydantic_core-2.10.1-pp37-pypy37_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:417243bf599ba1f1fef2bb8c543ceb918676954734e2dcb82bf162ae9d7bd514"},
{file = "pydantic_core-2.10.1-pp37-pypy37_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:dda81e5ec82485155a19d9624cfcca9be88a405e2857354e5b089c2a982144b2"},
{file = "pydantic_core-2.10.1-pp37-pypy37_pp73-win_amd64.whl", hash = "sha256:14cfbb00959259e15d684505263d5a21732b31248a5dd4941f73a3be233865b9"},
{file = "pydantic_core-2.10.1-pp38-pypy38_pp73-macosx_10_7_x86_64.whl", hash = "sha256:631cb7415225954fdcc2a024119101946793e5923f6c4d73a5914d27eb3d3a05"},
{file = "pydantic_core-2.10.1-pp38-pypy38_pp73-macosx_11_0_arm64.whl", hash = "sha256:bec7dd208a4182e99c5b6c501ce0b1f49de2802448d4056091f8e630b28e9a52"},
{file = "pydantic_core-2.10.1-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:149b8a07712f45b332faee1a2258d8ef1fb4a36f88c0c17cb687f205c5dc6e7d"},
{file = "pydantic_core-2.10.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4d966c47f9dd73c2d32a809d2be529112d509321c5310ebf54076812e6ecd884"},
{file = "pydantic_core-2.10.1-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:7eb037106f5c6b3b0b864ad226b0b7ab58157124161d48e4b30c4a43fef8bc4b"},
{file = "pydantic_core-2.10.1-pp38-pypy38_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:154ea7c52e32dce13065dbb20a4a6f0cc012b4f667ac90d648d36b12007fa9f7"},
{file = "pydantic_core-2.10.1-pp38-pypy38_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:e562617a45b5a9da5be4abe72b971d4f00bf8555eb29bb91ec2ef2be348cd132"},
{file = "pydantic_core-2.10.1-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:f23b55eb5464468f9e0e9a9935ce3ed2a870608d5f534025cd5536bca25b1402"},
{file = "pydantic_core-2.10.1-pp39-pypy39_pp73-macosx_10_7_x86_64.whl", hash = "sha256:e9121b4009339b0f751955baf4543a0bfd6bc3f8188f8056b1a25a2d45099934"},
{file = "pydantic_core-2.10.1-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:0523aeb76e03f753b58be33b26540880bac5aa54422e4462404c432230543f33"},
{file = "pydantic_core-2.10.1-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2e0e2959ef5d5b8dc9ef21e1a305a21a36e254e6a34432d00c72a92fdc5ecda5"},
{file = "pydantic_core-2.10.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:da01bec0a26befab4898ed83b362993c844b9a607a86add78604186297eb047e"},
{file = "pydantic_core-2.10.1-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:f2e9072d71c1f6cfc79a36d4484c82823c560e6f5599c43c1ca6b5cdbd54f881"},
{file = "pydantic_core-2.10.1-pp39-pypy39_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:f36a3489d9e28fe4b67be9992a23029c3cec0babc3bd9afb39f49844a8c721c5"},
{file = "pydantic_core-2.10.1-pp39-pypy39_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:f64f82cc3443149292b32387086d02a6c7fb39b8781563e0ca7b8d7d9cf72bd7"},
{file = "pydantic_core-2.10.1-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:b4a6db486ac8e99ae696e09efc8b2b9fea67b63c8f88ba7a1a16c24a057a0776"},
{file = "pydantic_core-2.10.1.tar.gz", hash = "sha256:0f8682dbdd2f67f8e1edddcbffcc29f60a6182b4901c367fc8c1c40d30bb0a82"},
]
[package.extras]
plugins = ["importlib-metadata"]
[package.dependencies]
typing-extensions = ">=4.6.0,<4.7.0 || >4.7.0"
[[package]]
name = "pyyaml"
@@ -1262,36 +1151,6 @@ urllib3 = ">=1.21.1,<3"
socks = ["PySocks (>=1.5.6,!=1.5.7)"]
use-chardet-on-py3 = ["chardet (>=3.0.2,<6)"]
[[package]]
name = "rich"
version = "13.6.0"
description = "Render rich text, tables, progress bars, syntax highlighting, markdown and more to the terminal"
optional = false
python-versions = ">=3.7.0"
files = [
{file = "rich-13.6.0-py3-none-any.whl", hash = "sha256:2b38e2fe9ca72c9a00170a1a2d20c63c790d0e10ef1fe35eba76e1e7b1d7d245"},
{file = "rich-13.6.0.tar.gz", hash = "sha256:5c14d22737e6d5084ef4771b62d5d4363165b403455a30a1c8ca39dc7b644bef"},
]
[package.dependencies]
markdown-it-py = ">=2.2.0"
pygments = ">=2.13.0,<3.0.0"
typing-extensions = {version = ">=4.0.0,<5.0", markers = "python_version < \"3.9\""}
[package.extras]
jupyter = ["ipywidgets (>=7.5.1,<9)"]
[[package]]
name = "shellingham"
version = "1.5.4"
description = "Tool to Detect Surrounding Shell"
optional = false
python-versions = ">=3.7"
files = [
{file = "shellingham-1.5.4-py2.py3-none-any.whl", hash = "sha256:7ecfff8f2fd72616f7481040475a65b2bf8af90a56c89140852d1120324e8686"},
{file = "shellingham-1.5.4.tar.gz", hash = "sha256:8dbca0739d487e5bd35ab3ca4b36e11c4078f3a234bfce294b0a0291363404de"},
]
[[package]]
name = "six"
version = "1.16.0"
@@ -1303,17 +1162,6 @@ files = [
{file = "six-1.16.0.tar.gz", hash = "sha256:1e61c37477a1626458e36f7b1d82aa5c9b094fa4802892072e49de9c60c4c926"},
]
[[package]]
name = "smmap"
version = "5.0.1"
description = "A pure Python implementation of a sliding window memory map manager"
optional = false
python-versions = ">=3.7"
files = [
{file = "smmap-5.0.1-py3-none-any.whl", hash = "sha256:e6d8668fa5f93e706934a62d7b4db19c8d9eb8cf2adbb75ef1b675aa332b69da"},
{file = "smmap-5.0.1.tar.gz", hash = "sha256:dceeb6c0028fdb6734471eb07c0cd2aae706ccaecab45965ee83f11c8d3b1f62"},
]
[[package]]
name = "sniffio"
version = "1.3.0"
@@ -1363,38 +1211,6 @@ postgresql-psycopgbinary = ["psycopg[binary] (>=3.0.7)"]
pymysql = ["pymysql"]
sqlcipher = ["sqlcipher3_binary"]
[[package]]
name = "sse-starlette"
version = "1.6.5"
description = "\"SSE plugin for Starlette\""
optional = false
python-versions = ">=3.8"
files = [
{file = "sse-starlette-1.6.5.tar.gz", hash = "sha256:819f2c421fb37067380fe3dcaba246c476b02651b7bb7601099a378ad802a0ac"},
{file = "sse_starlette-1.6.5-py3-none-any.whl", hash = "sha256:68b6b7eb49be0c72a2af80a055994c13afcaa4761b29226beb208f954c25a642"},
]
[package.dependencies]
starlette = "*"
[[package]]
name = "starlette"
version = "0.27.0"
description = "The little ASGI library that shines."
optional = false
python-versions = ">=3.7"
files = [
{file = "starlette-0.27.0-py3-none-any.whl", hash = "sha256:918416370e846586541235ccd38a474c08b80443ed31c578a418e2209b3eef91"},
{file = "starlette-0.27.0.tar.gz", hash = "sha256:6a6b0d042acb8d469a01eba54e9cda6cbd24ac602c4cd016723117d6a7e73b75"},
]
[package.dependencies]
anyio = ">=3.4.0,<5"
typing-extensions = {version = ">=3.10.0", markers = "python_version < \"3.10\""}
[package.extras]
full = ["httpx (>=0.22.0)", "itsdangerous", "jinja2", "python-multipart", "pyyaml"]
[[package]]
name = "tenacity"
version = "8.2.3"
@@ -1454,17 +1270,6 @@ requests = ">=2.26.0"
[package.extras]
blobfile = ["blobfile (>=2)"]
[[package]]
name = "tomli"
version = "2.0.1"
description = "A lil' TOML parser"
optional = false
python-versions = ">=3.7"
files = [
{file = "tomli-2.0.1-py3-none-any.whl", hash = "sha256:939de3e7a6161af0c887ef91b7d41a53e7c5a1ca976325f429cb46ea9bc30ecc"},
{file = "tomli-2.0.1.tar.gz", hash = "sha256:de526c12914f0c550d15924c62d72abc48d6fe7364aa87328337a31007fe8a4f"},
]
[[package]]
name = "tqdm"
version = "4.66.1"
@@ -1485,30 +1290,6 @@ notebook = ["ipywidgets (>=6)"]
slack = ["slack-sdk"]
telegram = ["requests"]
[[package]]
name = "typer"
version = "0.9.0"
description = "Typer, build great CLIs. Easy to code. Based on Python type hints."
optional = false
python-versions = ">=3.6"
files = [
{file = "typer-0.9.0-py3-none-any.whl", hash = "sha256:5d96d986a21493606a358cae4461bd8cdf83cbf33a5aa950ae629ca3b51467ee"},
{file = "typer-0.9.0.tar.gz", hash = "sha256:50922fd79aea2f4751a8e0408ff10d2662bd0c8bbfa84755a699f3bada2978b2"},
]
[package.dependencies]
click = ">=7.1.1,<9.0.0"
colorama = {version = ">=0.4.3,<0.5.0", optional = true, markers = "extra == \"all\""}
rich = {version = ">=10.11.0,<14.0.0", optional = true, markers = "extra == \"all\""}
shellingham = {version = ">=1.3.0,<2.0.0", optional = true, markers = "extra == \"all\""}
typing-extensions = ">=3.7.4.3"
[package.extras]
all = ["colorama (>=0.4.3,<0.5.0)", "rich (>=10.11.0,<14.0.0)", "shellingham (>=1.3.0,<2.0.0)"]
dev = ["autoflake (>=1.3.1,<2.0.0)", "flake8 (>=3.8.3,<4.0.0)", "pre-commit (>=2.17.0,<3.0.0)"]
doc = ["cairosvg (>=2.5.2,<3.0.0)", "mdx-include (>=1.4.1,<2.0.0)", "mkdocs (>=1.1.2,<2.0.0)", "mkdocs-material (>=8.1.4,<9.0.0)", "pillow (>=9.3.0,<10.0.0)"]
test = ["black (>=22.3.0,<23.0.0)", "coverage (>=6.2,<7.0)", "isort (>=5.0.6,<6.0.0)", "mypy (==0.910)", "pytest (>=4.4.0,<8.0.0)", "pytest-cov (>=2.10.0,<5.0.0)", "pytest-sugar (>=0.9.4,<0.10.0)", "pytest-xdist (>=1.32.0,<4.0.0)", "rich (>=10.11.0,<14.0.0)", "shellingham (>=1.3.0,<2.0.0)"]
[[package]]
name = "typing-extensions"
version = "4.8.0"
@@ -1552,25 +1333,6 @@ secure = ["certifi", "cryptography (>=1.9)", "idna (>=2.0.0)", "pyopenssl (>=17.
socks = ["pysocks (>=1.5.6,!=1.5.7,<2.0)"]
zstd = ["zstandard (>=0.18.0)"]
[[package]]
name = "uvicorn"
version = "0.23.2"
description = "The lightning-fast ASGI server."
optional = false
python-versions = ">=3.8"
files = [
{file = "uvicorn-0.23.2-py3-none-any.whl", hash = "sha256:1f9be6558f01239d4fdf22ef8126c39cb1ad0addf76c40e760549d2c2f43ab53"},
{file = "uvicorn-0.23.2.tar.gz", hash = "sha256:4d3cc12d7727ba72b64d12d3cc7743124074c0a69f7b201512fc50c3e3f1569a"},
]
[package.dependencies]
click = ">=7.0"
h11 = ">=0.8"
typing-extensions = {version = ">=4.0", markers = "python_version < \"3.11\""}
[package.extras]
standard = ["colorama (>=0.4)", "httptools (>=0.5.0)", "python-dotenv (>=0.13)", "pyyaml (>=5.1)", "uvloop (>=0.14.0,!=0.15.0,!=0.15.1)", "watchfiles (>=0.13)", "websockets (>=10.4)"]
[[package]]
name = "yarl"
version = "1.9.2"
@@ -1661,4 +1423,4 @@ multidict = ">=4.0"
[metadata]
lock-version = "2.0"
python-versions = ">=3.8.1,<4.0"
content-hash = "2bbb41d6a2b203cdef7902704f626c0b0006d12a660d4f85b91a48d44db7d5b9"
content-hash = "4d134640788fa0dcafd1926605a44fa2b6b22fcc409ddbc25254981713d4b980"

View File

@@ -14,9 +14,6 @@ openai = "^0.28.1"
tiktoken = "^0.5.1"
cassio = "^0.1.3"
[tool.poetry.group.dev.dependencies]
langchain-cli = ">=0.0.15"
[tool.langserve]
export_module = "cassandra_synonym_caching"
export_attr = "chain"

View File

@@ -122,6 +122,20 @@ files = [
[package.dependencies]
frozenlist = ">=1.1.0"
[[package]]
name = "annotated-types"
version = "0.6.0"
description = "Reusable constraint types to use with typing.Annotated"
optional = false
python-versions = ">=3.8"
files = [
{file = "annotated_types-0.6.0-py3-none-any.whl", hash = "sha256:0641064de18ba7a25dee8f96403ebc39113d0cb953a01429249d5c7564666a43"},
{file = "annotated_types-0.6.0.tar.gz", hash = "sha256:563339e807e53ffd9c267e99fc6d9ea23eb8443c08f112651963e24e22f84a5d"},
]
[package.dependencies]
typing-extensions = {version = ">=4.0.0", markers = "python_version < \"3.9\""}
[[package]]
name = "anyio"
version = "3.7.1"
@@ -538,62 +552,6 @@ files = [
{file = "h11-0.14.0.tar.gz", hash = "sha256:8f19fbbe99e72420ff35c00b27a34cb9937e902a8b810e2c88300c6f0a3b699d"},
]
[[package]]
name = "httpcore"
version = "1.0.1"
description = "A minimal low-level HTTP client."
optional = false
python-versions = ">=3.8"
files = [
{file = "httpcore-1.0.1-py3-none-any.whl", hash = "sha256:c5e97ef177dca2023d0b9aad98e49507ef5423e9f1d94ffe2cfe250aa28e63b0"},
{file = "httpcore-1.0.1.tar.gz", hash = "sha256:fce1ddf9b606cfb98132ab58865c3728c52c8e4c3c46e2aabb3674464a186e92"},
]
[package.dependencies]
certifi = "*"
h11 = ">=0.13,<0.15"
[package.extras]
asyncio = ["anyio (>=4.0,<5.0)"]
http2 = ["h2 (>=3,<5)"]
socks = ["socksio (==1.*)"]
trio = ["trio (>=0.22.0,<0.23.0)"]
[[package]]
name = "httpx"
version = "0.25.1"
description = "The next generation HTTP client."
optional = false
python-versions = ">=3.8"
files = [
{file = "httpx-0.25.1-py3-none-any.whl", hash = "sha256:fec7d6cc5c27c578a391f7e87b9aa7d3d8fbcd034f6399f9f79b45bcc12a866a"},
{file = "httpx-0.25.1.tar.gz", hash = "sha256:ffd96d5cf901e63863d9f1b4b6807861dbea4d301613415d9e6e57ead15fc5d0"},
]
[package.dependencies]
anyio = "*"
certifi = "*"
httpcore = "*"
idna = "*"
sniffio = "*"
[package.extras]
brotli = ["brotli", "brotlicffi"]
cli = ["click (==8.*)", "pygments (==2.*)", "rich (>=10,<14)"]
http2 = ["h2 (>=3,<5)"]
socks = ["socksio (==1.*)"]
[[package]]
name = "httpx-sse"
version = "0.3.1"
description = "Consume Server-Sent Event (SSE) messages with HTTPX."
optional = false
python-versions = ">=3.7"
files = [
{file = "httpx-sse-0.3.1.tar.gz", hash = "sha256:3bb3289b2867f50cbdb2fee3eeeefecb1e86653122e164faac0023f1ffc88aea"},
{file = "httpx_sse-0.3.1-py3-none-any.whl", hash = "sha256:7376dd88732892f9b6b549ac0ad05a8e2341172fe7dcf9f8f9c8050934297316"},
]
[[package]]
name = "idna"
version = "3.4"
@@ -632,13 +590,13 @@ files = [
[[package]]
name = "langchain"
version = "0.0.329"
version = "0.0.327"
description = "Building applications with LLMs through composability"
optional = false
python-versions = ">=3.8.1,<4.0"
files = [
{file = "langchain-0.0.329-py3-none-any.whl", hash = "sha256:5f3e884991271e8b55eda4c63a11105dcd7da119682ce0e3d5d1385b3a4103d2"},
{file = "langchain-0.0.329.tar.gz", hash = "sha256:488f3cb68a587696f136d4f01f97df8d8270e295b3cc56158057dab0f61f4166"},
{file = "langchain-0.0.327-py3-none-any.whl", hash = "sha256:21835600e1ab11e2a939d9e473c13ed51402a3b75418ca02689877a5764da398"},
{file = "langchain-0.0.327.tar.gz", hash = "sha256:2710fba0c0735d1a63327cad83387571adc457fe75075c70335e8ea628f0a8a2"},
]
[package.dependencies]
@@ -672,23 +630,25 @@ text-helpers = ["chardet (>=5.1.0,<6.0.0)"]
[[package]]
name = "langchain-cli"
version = "0.0.15"
version = "0.0.8"
description = "CLI for interacting with LangChain"
optional = false
python-versions = ">=3.8.1,<4.0"
files = [
{file = "langchain_cli-0.0.15-py3-none-any.whl", hash = "sha256:88102d2bb9d7c9cc99a1da13302a7f95d60cb37b2dab264b808aa6e3887b046f"},
{file = "langchain_cli-0.0.15.tar.gz", hash = "sha256:b7ff1a8338922aadbc3b1a141ea92c0a33aaaa72124dfbfd12049fe9a4a95cec"},
{file = "langchain_cli-0.0.8-py3-none-any.whl", hash = "sha256:d3b81453602acd3061524b512d2b9d25a5c51790249c00780129201afbdc8034"},
{file = "langchain_cli-0.0.8.tar.gz", hash = "sha256:a6b63045816ec2d120d86987b85f8fe689ffe0b957ffa5c01fa8baa84e0d3c44"},
]
[package.dependencies]
fastapi = ">=0.104.0,<0.105.0"
gitpython = ">=3.1.40,<4.0.0"
langserve = {version = ">=0.0.16", extras = ["all"]}
tomli = ">=2.0.1,<3.0.0"
typer = {version = ">=0.9.0,<0.10.0", extras = ["all"]}
uvicorn = ">=0.23.2,<0.24.0"
[package.extras]
serve = ["langserve[all] (>=0.0.16)"]
[[package]]
name = "langchainhub"
version = "0.1.13"
@@ -704,30 +664,6 @@ files = [
requests = ">=2,<3"
types-requests = ">=2.31.0.2,<3.0.0.0"
[[package]]
name = "langserve"
version = "0.0.22"
description = ""
optional = false
python-versions = ">=3.8.1,<4.0.0"
files = [
{file = "langserve-0.0.22-py3-none-any.whl", hash = "sha256:908239209959fc23202a09113b42c0e5838d046404a4e725602fe56af96bf340"},
{file = "langserve-0.0.22.tar.gz", hash = "sha256:14a33986668c8d36aa2e58dc66307c021eaac18019d2b99e7fae30f6937650d1"},
]
[package.dependencies]
fastapi = {version = ">=0.90.1", optional = true, markers = "extra == \"server\" or extra == \"all\""}
httpx = ">=0.23.0"
httpx-sse = {version = ">=0.3.1", optional = true, markers = "extra == \"client\" or extra == \"all\""}
langchain = ">=0.0.322"
pydantic = ">=1,<2"
sse-starlette = {version = ">=1.3.0,<2.0.0", optional = true, markers = "extra == \"server\" or extra == \"all\""}
[package.extras]
all = ["fastapi (>=0.90.1)", "httpx-sse (>=0.3.1)", "sse-starlette (>=1.3.0,<2.0.0)"]
client = ["httpx-sse (>=0.3.1)"]
server = ["fastapi (>=0.90.1)", "sse-starlette (>=1.3.0,<2.0.0)"]
[[package]]
name = "langsmith"
version = "0.0.54"
@@ -964,55 +900,140 @@ files = [
[[package]]
name = "pydantic"
version = "1.10.13"
description = "Data validation and settings management using python type hints"
version = "2.4.2"
description = "Data validation using Python type hints"
optional = false
python-versions = ">=3.7"
files = [
{file = "pydantic-1.10.13-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:efff03cc7a4f29d9009d1c96ceb1e7a70a65cfe86e89d34e4a5f2ab1e5693737"},
{file = "pydantic-1.10.13-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:3ecea2b9d80e5333303eeb77e180b90e95eea8f765d08c3d278cd56b00345d01"},
{file = "pydantic-1.10.13-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1740068fd8e2ef6eb27a20e5651df000978edce6da6803c2bef0bc74540f9548"},
{file = "pydantic-1.10.13-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:84bafe2e60b5e78bc64a2941b4c071a4b7404c5c907f5f5a99b0139781e69ed8"},
{file = "pydantic-1.10.13-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:bc0898c12f8e9c97f6cd44c0ed70d55749eaf783716896960b4ecce2edfd2d69"},
{file = "pydantic-1.10.13-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:654db58ae399fe6434e55325a2c3e959836bd17a6f6a0b6ca8107ea0571d2e17"},
{file = "pydantic-1.10.13-cp310-cp310-win_amd64.whl", hash = "sha256:75ac15385a3534d887a99c713aa3da88a30fbd6204a5cd0dc4dab3d770b9bd2f"},
{file = "pydantic-1.10.13-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:c553f6a156deb868ba38a23cf0df886c63492e9257f60a79c0fd8e7173537653"},
{file = "pydantic-1.10.13-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:5e08865bc6464df8c7d61439ef4439829e3ab62ab1669cddea8dd00cd74b9ffe"},
{file = "pydantic-1.10.13-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e31647d85a2013d926ce60b84f9dd5300d44535a9941fe825dc349ae1f760df9"},
{file = "pydantic-1.10.13-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:210ce042e8f6f7c01168b2d84d4c9eb2b009fe7bf572c2266e235edf14bacd80"},
{file = "pydantic-1.10.13-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:8ae5dd6b721459bfa30805f4c25880e0dd78fc5b5879f9f7a692196ddcb5a580"},
{file = "pydantic-1.10.13-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:f8e81fc5fb17dae698f52bdd1c4f18b6ca674d7068242b2aff075f588301bbb0"},
{file = "pydantic-1.10.13-cp311-cp311-win_amd64.whl", hash = "sha256:61d9dce220447fb74f45e73d7ff3b530e25db30192ad8d425166d43c5deb6df0"},
{file = "pydantic-1.10.13-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:4b03e42ec20286f052490423682016fd80fda830d8e4119f8ab13ec7464c0132"},
{file = "pydantic-1.10.13-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f59ef915cac80275245824e9d771ee939133be38215555e9dc90c6cb148aaeb5"},
{file = "pydantic-1.10.13-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:5a1f9f747851338933942db7af7b6ee8268568ef2ed86c4185c6ef4402e80ba8"},
{file = "pydantic-1.10.13-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:97cce3ae7341f7620a0ba5ef6cf043975cd9d2b81f3aa5f4ea37928269bc1b87"},
{file = "pydantic-1.10.13-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:854223752ba81e3abf663d685f105c64150873cc6f5d0c01d3e3220bcff7d36f"},
{file = "pydantic-1.10.13-cp37-cp37m-win_amd64.whl", hash = "sha256:b97c1fac8c49be29486df85968682b0afa77e1b809aff74b83081cc115e52f33"},
{file = "pydantic-1.10.13-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:c958d053453a1c4b1c2062b05cd42d9d5c8eb67537b8d5a7e3c3032943ecd261"},
{file = "pydantic-1.10.13-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:4c5370a7edaac06daee3af1c8b1192e305bc102abcbf2a92374b5bc793818599"},
{file = "pydantic-1.10.13-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7d6f6e7305244bddb4414ba7094ce910560c907bdfa3501e9db1a7fd7eaea127"},
{file = "pydantic-1.10.13-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:d3a3c792a58e1622667a2837512099eac62490cdfd63bd407993aaf200a4cf1f"},
{file = "pydantic-1.10.13-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:c636925f38b8db208e09d344c7aa4f29a86bb9947495dd6b6d376ad10334fb78"},
{file = "pydantic-1.10.13-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:678bcf5591b63cc917100dc50ab6caebe597ac67e8c9ccb75e698f66038ea953"},
{file = "pydantic-1.10.13-cp38-cp38-win_amd64.whl", hash = "sha256:6cf25c1a65c27923a17b3da28a0bdb99f62ee04230c931d83e888012851f4e7f"},
{file = "pydantic-1.10.13-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:8ef467901d7a41fa0ca6db9ae3ec0021e3f657ce2c208e98cd511f3161c762c6"},
{file = "pydantic-1.10.13-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:968ac42970f57b8344ee08837b62f6ee6f53c33f603547a55571c954a4225691"},
{file = "pydantic-1.10.13-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9849f031cf8a2f0a928fe885e5a04b08006d6d41876b8bbd2fc68a18f9f2e3fd"},
{file = "pydantic-1.10.13-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:56e3ff861c3b9c6857579de282ce8baabf443f42ffba355bf070770ed63e11e1"},
{file = "pydantic-1.10.13-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:9f00790179497767aae6bcdc36355792c79e7bbb20b145ff449700eb076c5f96"},
{file = "pydantic-1.10.13-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:75b297827b59bc229cac1a23a2f7a4ac0031068e5be0ce385be1462e7e17a35d"},
{file = "pydantic-1.10.13-cp39-cp39-win_amd64.whl", hash = "sha256:e70ca129d2053fb8b728ee7d1af8e553a928d7e301a311094b8a0501adc8763d"},
{file = "pydantic-1.10.13-py3-none-any.whl", hash = "sha256:b87326822e71bd5f313e7d3bfdc77ac3247035ac10b0c0618bd99dcf95b1e687"},
{file = "pydantic-1.10.13.tar.gz", hash = "sha256:32c8b48dcd3b2ac4e78b0ba4af3a2c2eb6048cb75202f0ea7b34feb740efc340"},
{file = "pydantic-2.4.2-py3-none-any.whl", hash = "sha256:bc3ddf669d234f4220e6e1c4d96b061abe0998185a8d7855c0126782b7abc8c1"},
{file = "pydantic-2.4.2.tar.gz", hash = "sha256:94f336138093a5d7f426aac732dcfe7ab4eb4da243c88f891d65deb4a2556ee7"},
]
[package.dependencies]
typing-extensions = ">=4.2.0"
annotated-types = ">=0.4.0"
pydantic-core = "2.10.1"
typing-extensions = ">=4.6.1"
[package.extras]
dotenv = ["python-dotenv (>=0.10.4)"]
email = ["email-validator (>=1.0.3)"]
email = ["email-validator (>=2.0.0)"]
[[package]]
name = "pydantic-core"
version = "2.10.1"
description = ""
optional = false
python-versions = ">=3.7"
files = [
{file = "pydantic_core-2.10.1-cp310-cp310-macosx_10_7_x86_64.whl", hash = "sha256:d64728ee14e667ba27c66314b7d880b8eeb050e58ffc5fec3b7a109f8cddbd63"},
{file = "pydantic_core-2.10.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:48525933fea744a3e7464c19bfede85df4aba79ce90c60b94d8b6e1eddd67096"},
{file = "pydantic_core-2.10.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ef337945bbd76cce390d1b2496ccf9f90b1c1242a3a7bc242ca4a9fc5993427a"},
{file = "pydantic_core-2.10.1-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:a1392e0638af203cee360495fd2cfdd6054711f2db5175b6e9c3c461b76f5175"},
{file = "pydantic_core-2.10.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:0675ba5d22de54d07bccde38997e780044dcfa9a71aac9fd7d4d7a1d2e3e65f7"},
{file = "pydantic_core-2.10.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:128552af70a64660f21cb0eb4876cbdadf1a1f9d5de820fed6421fa8de07c893"},
{file = "pydantic_core-2.10.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8f6e6aed5818c264412ac0598b581a002a9f050cb2637a84979859e70197aa9e"},
{file = "pydantic_core-2.10.1-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:ecaac27da855b8d73f92123e5f03612b04c5632fd0a476e469dfc47cd37d6b2e"},
{file = "pydantic_core-2.10.1-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:b3c01c2fb081fced3bbb3da78510693dc7121bb893a1f0f5f4b48013201f362e"},
{file = "pydantic_core-2.10.1-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:92f675fefa977625105708492850bcbc1182bfc3e997f8eecb866d1927c98ae6"},
{file = "pydantic_core-2.10.1-cp310-none-win32.whl", hash = "sha256:420a692b547736a8d8703c39ea935ab5d8f0d2573f8f123b0a294e49a73f214b"},
{file = "pydantic_core-2.10.1-cp310-none-win_amd64.whl", hash = "sha256:0880e239827b4b5b3e2ce05e6b766a7414e5f5aedc4523be6b68cfbc7f61c5d0"},
{file = "pydantic_core-2.10.1-cp311-cp311-macosx_10_7_x86_64.whl", hash = "sha256:073d4a470b195d2b2245d0343569aac7e979d3a0dcce6c7d2af6d8a920ad0bea"},
{file = "pydantic_core-2.10.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:600d04a7b342363058b9190d4e929a8e2e715c5682a70cc37d5ded1e0dd370b4"},
{file = "pydantic_core-2.10.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:39215d809470f4c8d1881758575b2abfb80174a9e8daf8f33b1d4379357e417c"},
{file = "pydantic_core-2.10.1-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:eeb3d3d6b399ffe55f9a04e09e635554012f1980696d6b0aca3e6cf42a17a03b"},
{file = "pydantic_core-2.10.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:a7a7902bf75779bc12ccfc508bfb7a4c47063f748ea3de87135d433a4cca7a2f"},
{file = "pydantic_core-2.10.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:3625578b6010c65964d177626fde80cf60d7f2e297d56b925cb5cdeda6e9925a"},
{file = "pydantic_core-2.10.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:caa48fc31fc7243e50188197b5f0c4228956f97b954f76da157aae7f67269ae8"},
{file = "pydantic_core-2.10.1-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:07ec6d7d929ae9c68f716195ce15e745b3e8fa122fc67698ac6498d802ed0fa4"},
{file = "pydantic_core-2.10.1-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:e6f31a17acede6a8cd1ae2d123ce04d8cca74056c9d456075f4f6f85de055607"},
{file = "pydantic_core-2.10.1-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:d8f1ebca515a03e5654f88411420fea6380fc841d1bea08effb28184e3d4899f"},
{file = "pydantic_core-2.10.1-cp311-none-win32.whl", hash = "sha256:6db2eb9654a85ada248afa5a6db5ff1cf0f7b16043a6b070adc4a5be68c716d6"},
{file = "pydantic_core-2.10.1-cp311-none-win_amd64.whl", hash = "sha256:4a5be350f922430997f240d25f8219f93b0c81e15f7b30b868b2fddfc2d05f27"},
{file = "pydantic_core-2.10.1-cp311-none-win_arm64.whl", hash = "sha256:5fdb39f67c779b183b0c853cd6b45f7db84b84e0571b3ef1c89cdb1dfc367325"},
{file = "pydantic_core-2.10.1-cp312-cp312-macosx_10_7_x86_64.whl", hash = "sha256:b1f22a9ab44de5f082216270552aa54259db20189e68fc12484873d926426921"},
{file = "pydantic_core-2.10.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:8572cadbf4cfa95fb4187775b5ade2eaa93511f07947b38f4cd67cf10783b118"},
{file = "pydantic_core-2.10.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:db9a28c063c7c00844ae42a80203eb6d2d6bbb97070cfa00194dff40e6f545ab"},
{file = "pydantic_core-2.10.1-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:0e2a35baa428181cb2270a15864ec6286822d3576f2ed0f4cd7f0c1708472aff"},
{file = "pydantic_core-2.10.1-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:05560ab976012bf40f25d5225a58bfa649bb897b87192a36c6fef1ab132540d7"},
{file = "pydantic_core-2.10.1-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:d6495008733c7521a89422d7a68efa0a0122c99a5861f06020ef5b1f51f9ba7c"},
{file = "pydantic_core-2.10.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:14ac492c686defc8e6133e3a2d9eaf5261b3df26b8ae97450c1647286750b901"},
{file = "pydantic_core-2.10.1-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:8282bab177a9a3081fd3d0a0175a07a1e2bfb7fcbbd949519ea0980f8a07144d"},
{file = "pydantic_core-2.10.1-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:aafdb89fdeb5fe165043896817eccd6434aee124d5ee9b354f92cd574ba5e78f"},
{file = "pydantic_core-2.10.1-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:f6defd966ca3b187ec6c366604e9296f585021d922e666b99c47e78738b5666c"},
{file = "pydantic_core-2.10.1-cp312-none-win32.whl", hash = "sha256:7c4d1894fe112b0864c1fa75dffa045720a194b227bed12f4be7f6045b25209f"},
{file = "pydantic_core-2.10.1-cp312-none-win_amd64.whl", hash = "sha256:5994985da903d0b8a08e4935c46ed8daf5be1cf217489e673910951dc533d430"},
{file = "pydantic_core-2.10.1-cp312-none-win_arm64.whl", hash = "sha256:0d8a8adef23d86d8eceed3e32e9cca8879c7481c183f84ed1a8edc7df073af94"},
{file = "pydantic_core-2.10.1-cp37-cp37m-macosx_10_7_x86_64.whl", hash = "sha256:9badf8d45171d92387410b04639d73811b785b5161ecadabf056ea14d62d4ede"},
{file = "pydantic_core-2.10.1-cp37-cp37m-macosx_11_0_arm64.whl", hash = "sha256:ebedb45b9feb7258fac0a268a3f6bec0a2ea4d9558f3d6f813f02ff3a6dc6698"},
{file = "pydantic_core-2.10.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:cfe1090245c078720d250d19cb05d67e21a9cd7c257698ef139bc41cf6c27b4f"},
{file = "pydantic_core-2.10.1-cp37-cp37m-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:e357571bb0efd65fd55f18db0a2fb0ed89d0bb1d41d906b138f088933ae618bb"},
{file = "pydantic_core-2.10.1-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:b3dcd587b69bbf54fc04ca157c2323b8911033e827fffaecf0cafa5a892a0904"},
{file = "pydantic_core-2.10.1-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:9c120c9ce3b163b985a3b966bb701114beb1da4b0468b9b236fc754783d85aa3"},
{file = "pydantic_core-2.10.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:15d6bca84ffc966cc9976b09a18cf9543ed4d4ecbd97e7086f9ce9327ea48891"},
{file = "pydantic_core-2.10.1-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:5cabb9710f09d5d2e9e2748c3e3e20d991a4c5f96ed8f1132518f54ab2967221"},
{file = "pydantic_core-2.10.1-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:82f55187a5bebae7d81d35b1e9aaea5e169d44819789837cdd4720d768c55d15"},
{file = "pydantic_core-2.10.1-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:1d40f55222b233e98e3921df7811c27567f0e1a4411b93d4c5c0f4ce131bc42f"},
{file = "pydantic_core-2.10.1-cp37-none-win32.whl", hash = "sha256:14e09ff0b8fe6e46b93d36a878f6e4a3a98ba5303c76bb8e716f4878a3bee92c"},
{file = "pydantic_core-2.10.1-cp37-none-win_amd64.whl", hash = "sha256:1396e81b83516b9d5c9e26a924fa69164156c148c717131f54f586485ac3c15e"},
{file = "pydantic_core-2.10.1-cp38-cp38-macosx_10_7_x86_64.whl", hash = "sha256:6835451b57c1b467b95ffb03a38bb75b52fb4dc2762bb1d9dbed8de31ea7d0fc"},
{file = "pydantic_core-2.10.1-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:b00bc4619f60c853556b35f83731bd817f989cba3e97dc792bb8c97941b8053a"},
{file = "pydantic_core-2.10.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0fa467fd300a6f046bdb248d40cd015b21b7576c168a6bb20aa22e595c8ffcdd"},
{file = "pydantic_core-2.10.1-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:d99277877daf2efe074eae6338453a4ed54a2d93fb4678ddfe1209a0c93a2468"},
{file = "pydantic_core-2.10.1-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:fa7db7558607afeccb33c0e4bf1c9a9a835e26599e76af6fe2fcea45904083a6"},
{file = "pydantic_core-2.10.1-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:aad7bd686363d1ce4ee930ad39f14e1673248373f4a9d74d2b9554f06199fb58"},
{file = "pydantic_core-2.10.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:443fed67d33aa85357464f297e3d26e570267d1af6fef1c21ca50921d2976302"},
{file = "pydantic_core-2.10.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:042462d8d6ba707fd3ce9649e7bf268633a41018d6a998fb5fbacb7e928a183e"},
{file = "pydantic_core-2.10.1-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:ecdbde46235f3d560b18be0cb706c8e8ad1b965e5c13bbba7450c86064e96561"},
{file = "pydantic_core-2.10.1-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:ed550ed05540c03f0e69e6d74ad58d026de61b9eaebebbaaf8873e585cbb18de"},
{file = "pydantic_core-2.10.1-cp38-none-win32.whl", hash = "sha256:8cdbbd92154db2fec4ec973d45c565e767ddc20aa6dbaf50142676484cbff8ee"},
{file = "pydantic_core-2.10.1-cp38-none-win_amd64.whl", hash = "sha256:9f6f3e2598604956480f6c8aa24a3384dbf6509fe995d97f6ca6103bb8c2534e"},
{file = "pydantic_core-2.10.1-cp39-cp39-macosx_10_7_x86_64.whl", hash = "sha256:655f8f4c8d6a5963c9a0687793da37b9b681d9ad06f29438a3b2326d4e6b7970"},
{file = "pydantic_core-2.10.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:e570ffeb2170e116a5b17e83f19911020ac79d19c96f320cbfa1fa96b470185b"},
{file = "pydantic_core-2.10.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:64322bfa13e44c6c30c518729ef08fda6026b96d5c0be724b3c4ae4da939f875"},
{file = "pydantic_core-2.10.1-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:485a91abe3a07c3a8d1e082ba29254eea3e2bb13cbbd4351ea4e5a21912cc9b0"},
{file = "pydantic_core-2.10.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:f7c2b8eb9fc872e68b46eeaf835e86bccc3a58ba57d0eedc109cbb14177be531"},
{file = "pydantic_core-2.10.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:a5cb87bdc2e5f620693148b5f8f842d293cae46c5f15a1b1bf7ceeed324a740c"},
{file = "pydantic_core-2.10.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:25bd966103890ccfa028841a8f30cebcf5875eeac8c4bde4fe221364c92f0c9a"},
{file = "pydantic_core-2.10.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:f323306d0556351735b54acbf82904fe30a27b6a7147153cbe6e19aaaa2aa429"},
{file = "pydantic_core-2.10.1-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:0c27f38dc4fbf07b358b2bc90edf35e82d1703e22ff2efa4af4ad5de1b3833e7"},
{file = "pydantic_core-2.10.1-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:f1365e032a477c1430cfe0cf2856679529a2331426f8081172c4a74186f1d595"},
{file = "pydantic_core-2.10.1-cp39-none-win32.whl", hash = "sha256:a1c311fd06ab3b10805abb72109f01a134019739bd3286b8ae1bc2fc4e50c07a"},
{file = "pydantic_core-2.10.1-cp39-none-win_amd64.whl", hash = "sha256:ae8a8843b11dc0b03b57b52793e391f0122e740de3df1474814c700d2622950a"},
{file = "pydantic_core-2.10.1-pp310-pypy310_pp73-macosx_10_7_x86_64.whl", hash = "sha256:d43002441932f9a9ea5d6f9efaa2e21458221a3a4b417a14027a1d530201ef1b"},
{file = "pydantic_core-2.10.1-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:fcb83175cc4936a5425dde3356f079ae03c0802bbdf8ff82c035f8a54b333521"},
{file = "pydantic_core-2.10.1-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:962ed72424bf1f72334e2f1e61b68f16c0e596f024ca7ac5daf229f7c26e4208"},
{file = "pydantic_core-2.10.1-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2cf5bb4dd67f20f3bbc1209ef572a259027c49e5ff694fa56bed62959b41e1f9"},
{file = "pydantic_core-2.10.1-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:e544246b859f17373bed915182ab841b80849ed9cf23f1f07b73b7c58baee5fb"},
{file = "pydantic_core-2.10.1-pp310-pypy310_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:c0877239307b7e69d025b73774e88e86ce82f6ba6adf98f41069d5b0b78bd1bf"},
{file = "pydantic_core-2.10.1-pp310-pypy310_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:53df009d1e1ba40f696f8995683e067e3967101d4bb4ea6f667931b7d4a01357"},
{file = "pydantic_core-2.10.1-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:a1254357f7e4c82e77c348dabf2d55f1d14d19d91ff025004775e70a6ef40ada"},
{file = "pydantic_core-2.10.1-pp37-pypy37_pp73-macosx_10_7_x86_64.whl", hash = "sha256:524ff0ca3baea164d6d93a32c58ac79eca9f6cf713586fdc0adb66a8cdeab96a"},
{file = "pydantic_core-2.10.1-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3f0ac9fb8608dbc6eaf17956bf623c9119b4db7dbb511650910a82e261e6600f"},
{file = "pydantic_core-2.10.1-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:320f14bd4542a04ab23747ff2c8a778bde727158b606e2661349557f0770711e"},
{file = "pydantic_core-2.10.1-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:63974d168b6233b4ed6a0046296803cb13c56637a7b8106564ab575926572a55"},
{file = "pydantic_core-2.10.1-pp37-pypy37_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:417243bf599ba1f1fef2bb8c543ceb918676954734e2dcb82bf162ae9d7bd514"},
{file = "pydantic_core-2.10.1-pp37-pypy37_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:dda81e5ec82485155a19d9624cfcca9be88a405e2857354e5b089c2a982144b2"},
{file = "pydantic_core-2.10.1-pp37-pypy37_pp73-win_amd64.whl", hash = "sha256:14cfbb00959259e15d684505263d5a21732b31248a5dd4941f73a3be233865b9"},
{file = "pydantic_core-2.10.1-pp38-pypy38_pp73-macosx_10_7_x86_64.whl", hash = "sha256:631cb7415225954fdcc2a024119101946793e5923f6c4d73a5914d27eb3d3a05"},
{file = "pydantic_core-2.10.1-pp38-pypy38_pp73-macosx_11_0_arm64.whl", hash = "sha256:bec7dd208a4182e99c5b6c501ce0b1f49de2802448d4056091f8e630b28e9a52"},
{file = "pydantic_core-2.10.1-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:149b8a07712f45b332faee1a2258d8ef1fb4a36f88c0c17cb687f205c5dc6e7d"},
{file = "pydantic_core-2.10.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4d966c47f9dd73c2d32a809d2be529112d509321c5310ebf54076812e6ecd884"},
{file = "pydantic_core-2.10.1-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:7eb037106f5c6b3b0b864ad226b0b7ab58157124161d48e4b30c4a43fef8bc4b"},
{file = "pydantic_core-2.10.1-pp38-pypy38_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:154ea7c52e32dce13065dbb20a4a6f0cc012b4f667ac90d648d36b12007fa9f7"},
{file = "pydantic_core-2.10.1-pp38-pypy38_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:e562617a45b5a9da5be4abe72b971d4f00bf8555eb29bb91ec2ef2be348cd132"},
{file = "pydantic_core-2.10.1-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:f23b55eb5464468f9e0e9a9935ce3ed2a870608d5f534025cd5536bca25b1402"},
{file = "pydantic_core-2.10.1-pp39-pypy39_pp73-macosx_10_7_x86_64.whl", hash = "sha256:e9121b4009339b0f751955baf4543a0bfd6bc3f8188f8056b1a25a2d45099934"},
{file = "pydantic_core-2.10.1-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:0523aeb76e03f753b58be33b26540880bac5aa54422e4462404c432230543f33"},
{file = "pydantic_core-2.10.1-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2e0e2959ef5d5b8dc9ef21e1a305a21a36e254e6a34432d00c72a92fdc5ecda5"},
{file = "pydantic_core-2.10.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:da01bec0a26befab4898ed83b362993c844b9a607a86add78604186297eb047e"},
{file = "pydantic_core-2.10.1-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:f2e9072d71c1f6cfc79a36d4484c82823c560e6f5599c43c1ca6b5cdbd54f881"},
{file = "pydantic_core-2.10.1-pp39-pypy39_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:f36a3489d9e28fe4b67be9992a23029c3cec0babc3bd9afb39f49844a8c721c5"},
{file = "pydantic_core-2.10.1-pp39-pypy39_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:f64f82cc3443149292b32387086d02a6c7fb39b8781563e0ca7b8d7d9cf72bd7"},
{file = "pydantic_core-2.10.1-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:b4a6db486ac8e99ae696e09efc8b2b9fea67b63c8f88ba7a1a16c24a057a0776"},
{file = "pydantic_core-2.10.1.tar.gz", hash = "sha256:0f8682dbdd2f67f8e1edddcbffcc29f60a6182b4901c367fc8c1c40d30bb0a82"},
]
[package.dependencies]
typing-extensions = ">=4.6.0,<4.7.0 || >4.7.0"
[[package]]
name = "pygments"
@@ -1455,4 +1476,4 @@ multidict = ">=4.0"
[metadata]
lock-version = "2.0"
python-versions = ">=3.8.1,<4.0"
content-hash = "536a72497d55ee3cc035134264552d8b0d210bb149927e9d2013564e4b57e6e7"
content-hash = "9a7f7b20104ca7eb575b5b2d49828eafe89430583a88fbec455cdec18e166b97"

View File

@@ -1,5 +1,5 @@
[tool.poetry]
name = "chat-bot-feedback"
name = "chat_bot_feedback"
version = "0.0.1"
description = ""
authors = []
@@ -7,13 +7,13 @@ readme = "README.md"
[tool.poetry.dependencies]
python = ">=3.8.1,<4.0"
langchain = ">=0.0.329"
langchain = ">=0.0.325"
openai = "^0.28.1"
langsmith = ">=0.0.54"
langchainhub = ">=0.1.13"
[tool.poetry.group.dev.dependencies]
langchain-cli = ">=0.0.15"
langchain-cli = ">=0.0.4"
fastapi = "^0.104.0"
sse-starlette = "^1.6.5"

View File

@@ -14,7 +14,7 @@ To set up the environment, the `ingest.py` script should be run to handle the in
To use this package, you should first have the LangChain CLI installed:
```shell
pip install -U langchain-cli
pip install -U "langchain-cli[serve]"
```
To create a new LangChain project and install this as the only package, you can do:
@@ -31,7 +31,7 @@ langchain app add csv-agent
And add the following code to your `server.py` file:
```python
from csv_agent.agent import agent_executor as csv_agent_chain
from csv_agent.agent import chain as csv_agent_chain
add_routes(app, csv_agent_chain, path="/csv-agent")
```

View File

@@ -1,3 +0,0 @@
from csv_agent.agent import agent_executor
__all__ = ["agent_executor"]

View File

@@ -282,20 +282,6 @@ files = [
{file = "charset_normalizer-3.3.0-py3-none-any.whl", hash = "sha256:e46cd37076971c1040fc8c41273a8b3e2c624ce4f2be3f5dfcb7a430c1d3acc2"},
]
[[package]]
name = "click"
version = "8.1.7"
description = "Composable command line interface toolkit"
optional = false
python-versions = ">=3.7"
files = [
{file = "click-8.1.7-py3-none-any.whl", hash = "sha256:ae74fb96c20a0277a1d615f1e4d73c8414f5a98db8b799a7931d1582f3390c28"},
{file = "click-8.1.7.tar.gz", hash = "sha256:ca9853ad459e787e2192211578cc907e7594e294c7ccc834310722b41b9ca6de"},
]
[package.dependencies]
colorama = {version = "*", markers = "platform_system == \"Windows\""}
[[package]]
name = "colorama"
version = "0.4.6"
@@ -370,26 +356,6 @@ files = [
{file = "faiss_cpu-1.7.4-cp39-cp39-win_amd64.whl", hash = "sha256:98459ceeeb735b9df1a5b94572106ffe0a6ce740eb7e4626715dd218657bb4dc"},
]
[[package]]
name = "fastapi"
version = "0.104.1"
description = "FastAPI framework, high performance, easy to learn, fast to code, ready for production"
optional = false
python-versions = ">=3.8"
files = [
{file = "fastapi-0.104.1-py3-none-any.whl", hash = "sha256:752dc31160cdbd0436bb93bad51560b57e525cbb1d4bbf6f4904ceee75548241"},
{file = "fastapi-0.104.1.tar.gz", hash = "sha256:e5e4540a7c5e1dcfbbcf5b903c234feddcdcd881f191977a1c5dfd917487e7ae"},
]
[package.dependencies]
anyio = ">=3.7.1,<4.0.0"
pydantic = ">=1.7.4,<1.8 || >1.8,<1.8.1 || >1.8.1,<2.0.0 || >2.0.0,<2.0.1 || >2.0.1,<2.1.0 || >2.1.0,<3.0.0"
starlette = ">=0.27.0,<0.28.0"
typing-extensions = ">=4.8.0"
[package.extras]
all = ["email-validator (>=2.0.0)", "httpx (>=0.23.0)", "itsdangerous (>=1.1.0)", "jinja2 (>=2.11.2)", "orjson (>=3.2.1)", "pydantic-extra-types (>=2.0.0)", "pydantic-settings (>=2.0.0)", "python-multipart (>=0.0.5)", "pyyaml (>=5.3.1)", "ujson (>=4.0.1,!=4.0.2,!=4.1.0,!=4.2.0,!=4.3.0,!=5.0.0,!=5.1.0)", "uvicorn[standard] (>=0.12.0)"]
[[package]]
name = "frozenlist"
version = "1.4.0"
@@ -460,37 +426,6 @@ files = [
{file = "frozenlist-1.4.0.tar.gz", hash = "sha256:09163bdf0b2907454042edb19f887c6d33806adc71fbd54afc14908bfdc22251"},
]
[[package]]
name = "gitdb"
version = "4.0.11"
description = "Git Object Database"
optional = false
python-versions = ">=3.7"
files = [
{file = "gitdb-4.0.11-py3-none-any.whl", hash = "sha256:81a3407ddd2ee8df444cbacea00e2d038e40150acfa3001696fe0dcf1d3adfa4"},
{file = "gitdb-4.0.11.tar.gz", hash = "sha256:bf5421126136d6d0af55bc1e7c1af1c397a34f5b7bd79e776cd3e89785c2b04b"},
]
[package.dependencies]
smmap = ">=3.0.1,<6"
[[package]]
name = "gitpython"
version = "3.1.40"
description = "GitPython is a Python library used to interact with Git repositories"
optional = false
python-versions = ">=3.7"
files = [
{file = "GitPython-3.1.40-py3-none-any.whl", hash = "sha256:cf14627d5a8049ffbf49915732e5eddbe8134c3bdb9d476e6182b676fc573f8a"},
{file = "GitPython-3.1.40.tar.gz", hash = "sha256:22b126e9ffb671fdd0c129796343a02bf67bf2994b35449ffc9321aa755e18a4"},
]
[package.dependencies]
gitdb = ">=4.0.1,<5"
[package.extras]
test = ["black", "coverage[toml]", "ddt (>=1.1.1,!=1.4.3)", "mock", "mypy", "pre-commit", "pytest", "pytest-cov", "pytest-instafail", "pytest-subtests", "pytest-sugar"]
[[package]]
name = "greenlet"
version = "3.0.0"
@@ -567,73 +502,6 @@ files = [
docs = ["Sphinx"]
test = ["objgraph", "psutil"]
[[package]]
name = "h11"
version = "0.14.0"
description = "A pure-Python, bring-your-own-I/O implementation of HTTP/1.1"
optional = false
python-versions = ">=3.7"
files = [
{file = "h11-0.14.0-py3-none-any.whl", hash = "sha256:e3fe4ac4b851c468cc8363d500db52c2ead036020723024a109d37346efaa761"},
{file = "h11-0.14.0.tar.gz", hash = "sha256:8f19fbbe99e72420ff35c00b27a34cb9937e902a8b810e2c88300c6f0a3b699d"},
]
[[package]]
name = "httpcore"
version = "1.0.1"
description = "A minimal low-level HTTP client."
optional = false
python-versions = ">=3.8"
files = [
{file = "httpcore-1.0.1-py3-none-any.whl", hash = "sha256:c5e97ef177dca2023d0b9aad98e49507ef5423e9f1d94ffe2cfe250aa28e63b0"},
{file = "httpcore-1.0.1.tar.gz", hash = "sha256:fce1ddf9b606cfb98132ab58865c3728c52c8e4c3c46e2aabb3674464a186e92"},
]
[package.dependencies]
certifi = "*"
h11 = ">=0.13,<0.15"
[package.extras]
asyncio = ["anyio (>=4.0,<5.0)"]
http2 = ["h2 (>=3,<5)"]
socks = ["socksio (==1.*)"]
trio = ["trio (>=0.22.0,<0.23.0)"]
[[package]]
name = "httpx"
version = "0.25.1"
description = "The next generation HTTP client."
optional = false
python-versions = ">=3.8"
files = [
{file = "httpx-0.25.1-py3-none-any.whl", hash = "sha256:fec7d6cc5c27c578a391f7e87b9aa7d3d8fbcd034f6399f9f79b45bcc12a866a"},
{file = "httpx-0.25.1.tar.gz", hash = "sha256:ffd96d5cf901e63863d9f1b4b6807861dbea4d301613415d9e6e57ead15fc5d0"},
]
[package.dependencies]
anyio = "*"
certifi = "*"
httpcore = "*"
idna = "*"
sniffio = "*"
[package.extras]
brotli = ["brotli", "brotlicffi"]
cli = ["click (==8.*)", "pygments (==2.*)", "rich (>=10,<14)"]
http2 = ["h2 (>=3,<5)"]
socks = ["socksio (==1.*)"]
[[package]]
name = "httpx-sse"
version = "0.3.1"
description = "Consume Server-Sent Event (SSE) messages with HTTPX."
optional = false
python-versions = ">=3.7"
files = [
{file = "httpx-sse-0.3.1.tar.gz", hash = "sha256:3bb3289b2867f50cbdb2fee3eeeefecb1e86653122e164faac0023f1ffc88aea"},
{file = "httpx_sse-0.3.1-py3-none-any.whl", hash = "sha256:7376dd88732892f9b6b549ac0ad05a8e2341172fe7dcf9f8f9c8050934297316"},
]
[[package]]
name = "idna"
version = "3.4"
@@ -710,34 +578,15 @@ openai = ["openai (>=0,<1)", "tiktoken (>=0.3.2,<0.6.0)"]
qdrant = ["qdrant-client (>=1.3.1,<2.0.0)"]
text-helpers = ["chardet (>=5.1.0,<6.0.0)"]
[[package]]
name = "langchain-cli"
version = "0.0.15"
description = "CLI for interacting with LangChain"
optional = false
python-versions = ">=3.8.1,<4.0"
files = [
{file = "langchain_cli-0.0.15-py3-none-any.whl", hash = "sha256:88102d2bb9d7c9cc99a1da13302a7f95d60cb37b2dab264b808aa6e3887b046f"},
{file = "langchain_cli-0.0.15.tar.gz", hash = "sha256:b7ff1a8338922aadbc3b1a141ea92c0a33aaaa72124dfbfd12049fe9a4a95cec"},
]
[package.dependencies]
fastapi = ">=0.104.0,<0.105.0"
gitpython = ">=3.1.40,<4.0.0"
langserve = {version = ">=0.0.16", extras = ["all"]}
tomli = ">=2.0.1,<3.0.0"
typer = {version = ">=0.9.0,<0.10.0", extras = ["all"]}
uvicorn = ">=0.23.2,<0.24.0"
[[package]]
name = "langchain-experimental"
version = "0.0.37"
version = "0.0.36"
description = "Building applications with LLMs through composability"
optional = false
python-versions = ">=3.8.1,<4.0"
files = [
{file = "langchain_experimental-0.0.37-py3-none-any.whl", hash = "sha256:5cf5b26f142766596a1e313cabbfceb9cbd5cd2cf46f4a21e92c66ed11466dac"},
{file = "langchain_experimental-0.0.37.tar.gz", hash = "sha256:c30fae03702ab071b7040ff6a0fdedd4b4d1028c6c2d8481db0921d7a216e078"},
{file = "langchain_experimental-0.0.36-py3-none-any.whl", hash = "sha256:1d683c63849408594ca9a641bdbaa954a8cbfaa1aa0a17feeb10ea77dd122fa0"},
{file = "langchain_experimental-0.0.36.tar.gz", hash = "sha256:c0b84334b42b67e7d6d2653afdefafb562993daf61abaa34cb75154931fdd3c1"},
]
[package.dependencies]
@@ -746,30 +595,6 @@ langchain = ">=0.0.308"
[package.extras]
extended-testing = ["faker (>=19.3.1,<20.0.0)", "presidio-analyzer (>=2.2.33,<3.0.0)", "presidio-anonymizer (>=2.2.33,<3.0.0)", "sentence-transformers (>=2,<3)", "vowpal-wabbit-next (==0.6.0)"]
[[package]]
name = "langserve"
version = "0.0.22"
description = ""
optional = false
python-versions = ">=3.8.1,<4.0.0"
files = [
{file = "langserve-0.0.22-py3-none-any.whl", hash = "sha256:908239209959fc23202a09113b42c0e5838d046404a4e725602fe56af96bf340"},
{file = "langserve-0.0.22.tar.gz", hash = "sha256:14a33986668c8d36aa2e58dc66307c021eaac18019d2b99e7fae30f6937650d1"},
]
[package.dependencies]
fastapi = {version = ">=0.90.1", optional = true, markers = "extra == \"server\" or extra == \"all\""}
httpx = ">=0.23.0"
httpx-sse = {version = ">=0.3.1", optional = true, markers = "extra == \"client\" or extra == \"all\""}
langchain = ">=0.0.322"
pydantic = ">=1,<2"
sse-starlette = {version = ">=1.3.0,<2.0.0", optional = true, markers = "extra == \"server\" or extra == \"all\""}
[package.extras]
all = ["fastapi (>=0.90.1)", "httpx-sse (>=0.3.1)", "sse-starlette (>=1.3.0,<2.0.0)"]
client = ["httpx-sse (>=0.3.1)"]
server = ["fastapi (>=0.90.1)", "sse-starlette (>=1.3.0,<2.0.0)"]
[[package]]
name = "langsmith"
version = "0.0.54"
@@ -785,30 +610,6 @@ files = [
pydantic = ">=1,<3"
requests = ">=2,<3"
[[package]]
name = "markdown-it-py"
version = "3.0.0"
description = "Python port of markdown-it. Markdown parsing, done right!"
optional = false
python-versions = ">=3.8"
files = [
{file = "markdown-it-py-3.0.0.tar.gz", hash = "sha256:e3f60a94fa066dc52ec76661e37c851cb232d92f9886b15cb560aaada2df8feb"},
{file = "markdown_it_py-3.0.0-py3-none-any.whl", hash = "sha256:355216845c60bd96232cd8d8c40e8f9765cc86f46880e43a8fd22dc1a1a8cab1"},
]
[package.dependencies]
mdurl = ">=0.1,<1.0"
[package.extras]
benchmarking = ["psutil", "pytest", "pytest-benchmark"]
code-style = ["pre-commit (>=3.0,<4.0)"]
compare = ["commonmark (>=0.9,<1.0)", "markdown (>=3.4,<4.0)", "mistletoe (>=1.0,<2.0)", "mistune (>=2.0,<3.0)", "panflute (>=2.3,<3.0)"]
linkify = ["linkify-it-py (>=1,<3)"]
plugins = ["mdit-py-plugins"]
profiling = ["gprof2dot"]
rtd = ["jupyter_sphinx", "mdit-py-plugins", "myst-parser", "pyyaml", "sphinx", "sphinx-copybutton", "sphinx-design", "sphinx_book_theme"]
testing = ["coverage", "pytest", "pytest-cov", "pytest-regressions"]
[[package]]
name = "marshmallow"
version = "3.20.1"
@@ -829,17 +630,6 @@ docs = ["alabaster (==0.7.13)", "autodocsumm (==0.2.11)", "sphinx (==7.0.1)", "s
lint = ["flake8 (==6.0.0)", "flake8-bugbear (==23.7.10)", "mypy (==1.4.1)", "pre-commit (>=2.4,<4.0)"]
tests = ["pytest", "pytz", "simplejson"]
[[package]]
name = "mdurl"
version = "0.1.2"
description = "Markdown URL utilities"
optional = false
python-versions = ">=3.7"
files = [
{file = "mdurl-0.1.2-py3-none-any.whl", hash = "sha256:84008a41e51615a49fc9966191ff91509e3c40b939176e643fd50a5c2196b8f8"},
{file = "mdurl-0.1.2.tar.gz", hash = "sha256:bb413d29f5eea38f31dd4754dd7377d4465116fb207585f97bf925588687c1ba"},
]
[[package]]
name = "multidict"
version = "6.0.4"
@@ -1128,20 +918,6 @@ typing-extensions = ">=4.2.0"
dotenv = ["python-dotenv (>=0.10.4)"]
email = ["email-validator (>=1.0.3)"]
[[package]]
name = "pygments"
version = "2.16.1"
description = "Pygments is a syntax highlighting package written in Python."
optional = false
python-versions = ">=3.7"
files = [
{file = "Pygments-2.16.1-py3-none-any.whl", hash = "sha256:13fc09fa63bc8d8671a6d247e1eb303c4b343eaee81d861f3404db2935653692"},
{file = "Pygments-2.16.1.tar.gz", hash = "sha256:1daff0494820c69bc8941e407aa20f577374ee88364ee10a98fdbe0aece96e29"},
]
[package.extras]
plugins = ["importlib-metadata"]
[[package]]
name = "python-dateutil"
version = "2.8.2"
@@ -1334,24 +1110,6 @@ urllib3 = ">=1.21.1,<3"
socks = ["PySocks (>=1.5.6,!=1.5.7)"]
use-chardet-on-py3 = ["chardet (>=3.0.2,<6)"]
[[package]]
name = "rich"
version = "13.6.0"
description = "Render rich text, tables, progress bars, syntax highlighting, markdown and more to the terminal"
optional = false
python-versions = ">=3.7.0"
files = [
{file = "rich-13.6.0-py3-none-any.whl", hash = "sha256:2b38e2fe9ca72c9a00170a1a2d20c63c790d0e10ef1fe35eba76e1e7b1d7d245"},
{file = "rich-13.6.0.tar.gz", hash = "sha256:5c14d22737e6d5084ef4771b62d5d4363165b403455a30a1c8ca39dc7b644bef"},
]
[package.dependencies]
markdown-it-py = ">=2.2.0"
pygments = ">=2.13.0,<3.0.0"
[package.extras]
jupyter = ["ipywidgets (>=7.5.1,<9)"]
[[package]]
name = "setuptools"
version = "68.2.2"
@@ -1368,17 +1126,6 @@ docs = ["furo", "jaraco.packaging (>=9.3)", "jaraco.tidelift (>=1.4)", "pygments
testing = ["build[virtualenv]", "filelock (>=3.4.0)", "flake8-2020", "ini2toml[lite] (>=0.9)", "jaraco.develop (>=7.21)", "jaraco.envs (>=2.2)", "jaraco.path (>=3.2.0)", "pip (>=19.1)", "pytest (>=6)", "pytest-black (>=0.3.7)", "pytest-checkdocs (>=2.4)", "pytest-cov", "pytest-enabler (>=2.2)", "pytest-mypy (>=0.9.1)", "pytest-perf", "pytest-ruff", "pytest-timeout", "pytest-xdist", "tomli-w (>=1.0.0)", "virtualenv (>=13.0.0)", "wheel"]
testing-integration = ["build[virtualenv] (>=1.0.3)", "filelock (>=3.4.0)", "jaraco.envs (>=2.2)", "jaraco.path (>=3.2.0)", "packaging (>=23.1)", "pytest", "pytest-enabler", "pytest-xdist", "tomli", "virtualenv (>=13.0.0)", "wheel"]
[[package]]
name = "shellingham"
version = "1.5.4"
description = "Tool to Detect Surrounding Shell"
optional = false
python-versions = ">=3.7"
files = [
{file = "shellingham-1.5.4-py2.py3-none-any.whl", hash = "sha256:7ecfff8f2fd72616f7481040475a65b2bf8af90a56c89140852d1120324e8686"},
{file = "shellingham-1.5.4.tar.gz", hash = "sha256:8dbca0739d487e5bd35ab3ca4b36e11c4078f3a234bfce294b0a0291363404de"},
]
[[package]]
name = "six"
version = "1.16.0"
@@ -1390,17 +1137,6 @@ files = [
{file = "six-1.16.0.tar.gz", hash = "sha256:1e61c37477a1626458e36f7b1d82aa5c9b094fa4802892072e49de9c60c4c926"},
]
[[package]]
name = "smmap"
version = "5.0.1"
description = "A pure Python implementation of a sliding window memory map manager"
optional = false
python-versions = ">=3.7"
files = [
{file = "smmap-5.0.1-py3-none-any.whl", hash = "sha256:e6d8668fa5f93e706934a62d7b4db19c8d9eb8cf2adbb75ef1b675aa332b69da"},
{file = "smmap-5.0.1.tar.gz", hash = "sha256:dceeb6c0028fdb6734471eb07c0cd2aae706ccaecab45965ee83f11c8d3b1f62"},
]
[[package]]
name = "sniffio"
version = "1.3.0"
@@ -1450,38 +1186,6 @@ postgresql-psycopgbinary = ["psycopg[binary] (>=3.0.7)"]
pymysql = ["pymysql"]
sqlcipher = ["sqlcipher3_binary"]
[[package]]
name = "sse-starlette"
version = "1.6.5"
description = "\"SSE plugin for Starlette\""
optional = false
python-versions = ">=3.8"
files = [
{file = "sse-starlette-1.6.5.tar.gz", hash = "sha256:819f2c421fb37067380fe3dcaba246c476b02651b7bb7601099a378ad802a0ac"},
{file = "sse_starlette-1.6.5-py3-none-any.whl", hash = "sha256:68b6b7eb49be0c72a2af80a055994c13afcaa4761b29226beb208f954c25a642"},
]
[package.dependencies]
starlette = "*"
[[package]]
name = "starlette"
version = "0.27.0"
description = "The little ASGI library that shines."
optional = false
python-versions = ">=3.7"
files = [
{file = "starlette-0.27.0-py3-none-any.whl", hash = "sha256:918416370e846586541235ccd38a474c08b80443ed31c578a418e2209b3eef91"},
{file = "starlette-0.27.0.tar.gz", hash = "sha256:6a6b0d042acb8d469a01eba54e9cda6cbd24ac602c4cd016723117d6a7e73b75"},
]
[package.dependencies]
anyio = ">=3.4.0,<5"
typing-extensions = {version = ">=3.10.0", markers = "python_version < \"3.10\""}
[package.extras]
full = ["httpx (>=0.22.0)", "itsdangerous", "jinja2", "python-multipart", "pyyaml"]
[[package]]
name = "tabulate"
version = "0.9.0"
@@ -1555,17 +1259,6 @@ requests = ">=2.26.0"
[package.extras]
blobfile = ["blobfile (>=2)"]
[[package]]
name = "tomli"
version = "2.0.1"
description = "A lil' TOML parser"
optional = false
python-versions = ">=3.7"
files = [
{file = "tomli-2.0.1-py3-none-any.whl", hash = "sha256:939de3e7a6161af0c887ef91b7d41a53e7c5a1ca976325f429cb46ea9bc30ecc"},
{file = "tomli-2.0.1.tar.gz", hash = "sha256:de526c12914f0c550d15924c62d72abc48d6fe7364aa87328337a31007fe8a4f"},
]
[[package]]
name = "tqdm"
version = "4.66.1"
@@ -1586,30 +1279,6 @@ notebook = ["ipywidgets (>=6)"]
slack = ["slack-sdk"]
telegram = ["requests"]
[[package]]
name = "typer"
version = "0.9.0"
description = "Typer, build great CLIs. Easy to code. Based on Python type hints."
optional = false
python-versions = ">=3.6"
files = [
{file = "typer-0.9.0-py3-none-any.whl", hash = "sha256:5d96d986a21493606a358cae4461bd8cdf83cbf33a5aa950ae629ca3b51467ee"},
{file = "typer-0.9.0.tar.gz", hash = "sha256:50922fd79aea2f4751a8e0408ff10d2662bd0c8bbfa84755a699f3bada2978b2"},
]
[package.dependencies]
click = ">=7.1.1,<9.0.0"
colorama = {version = ">=0.4.3,<0.5.0", optional = true, markers = "extra == \"all\""}
rich = {version = ">=10.11.0,<14.0.0", optional = true, markers = "extra == \"all\""}
shellingham = {version = ">=1.3.0,<2.0.0", optional = true, markers = "extra == \"all\""}
typing-extensions = ">=3.7.4.3"
[package.extras]
all = ["colorama (>=0.4.3,<0.5.0)", "rich (>=10.11.0,<14.0.0)", "shellingham (>=1.3.0,<2.0.0)"]
dev = ["autoflake (>=1.3.1,<2.0.0)", "flake8 (>=3.8.3,<4.0.0)", "pre-commit (>=2.17.0,<3.0.0)"]
doc = ["cairosvg (>=2.5.2,<3.0.0)", "mdx-include (>=1.4.1,<2.0.0)", "mkdocs (>=1.1.2,<2.0.0)", "mkdocs-material (>=8.1.4,<9.0.0)", "pillow (>=9.3.0,<10.0.0)"]
test = ["black (>=22.3.0,<23.0.0)", "coverage (>=6.2,<7.0)", "isort (>=5.0.6,<6.0.0)", "mypy (==0.910)", "pytest (>=4.4.0,<8.0.0)", "pytest-cov (>=2.10.0,<5.0.0)", "pytest-sugar (>=0.9.4,<0.10.0)", "pytest-xdist (>=1.32.0,<4.0.0)", "rich (>=10.11.0,<14.0.0)", "shellingham (>=1.3.0,<2.0.0)"]
[[package]]
name = "typing-extensions"
version = "4.8.0"
@@ -1664,25 +1333,6 @@ secure = ["certifi", "cryptography (>=1.9)", "idna (>=2.0.0)", "pyopenssl (>=17.
socks = ["pysocks (>=1.5.6,!=1.5.7,<2.0)"]
zstd = ["zstandard (>=0.18.0)"]
[[package]]
name = "uvicorn"
version = "0.23.2"
description = "The lightning-fast ASGI server."
optional = false
python-versions = ">=3.8"
files = [
{file = "uvicorn-0.23.2-py3-none-any.whl", hash = "sha256:1f9be6558f01239d4fdf22ef8126c39cb1ad0addf76c40e760549d2c2f43ab53"},
{file = "uvicorn-0.23.2.tar.gz", hash = "sha256:4d3cc12d7727ba72b64d12d3cc7743124074c0a69f7b201512fc50c3e3f1569a"},
]
[package.dependencies]
click = ">=7.0"
h11 = ">=0.8"
typing-extensions = {version = ">=4.0", markers = "python_version < \"3.11\""}
[package.extras]
standard = ["colorama (>=0.4)", "httptools (>=0.5.0)", "python-dotenv (>=0.13)", "pyyaml (>=5.1)", "uvloop (>=0.14.0,!=0.15.0,!=0.15.1)", "watchfiles (>=0.13)", "websockets (>=10.4)"]
[[package]]
name = "yarl"
version = "1.9.2"
@@ -1773,4 +1423,4 @@ multidict = ">=4.0"
[metadata]
lock-version = "2.0"
python-versions = ">=3.9,<3.13"
content-hash = "5109be7be4a1228d6d85e94ca16ebdb31b791fb97bb764a10d564b6ddbfb00c9"
content-hash = "921a657b2465c2377ebb06764b71e1b5eebca35a18c0d25481f43848445c4b1f"

View File

@@ -15,13 +15,10 @@ pandas = "^2.1.1"
setuptools = "^68.2.2"
tabulate = "^0.9.0"
pydantic = "<2"
langchain-experimental = ">=0.0.37"
[tool.poetry.group.dev.dependencies]
langchain-cli = ">=0.0.15"
langchain-experimental = "^0.0.36"
[tool.langserve]
export_module = "csv_agent"
export_module = "csv_agent.agent"
export_attr = "agent_executor"
[build-system]

View File

@@ -11,7 +11,7 @@ Set up an appropriate dev environment, and make sure you are in this `templates`
Make sure you have `langchain-cli` installed.
```shell
pip install -U langchain-cli
pip install -U "langchain-cli[serve]"
```
You can then run the following command to create a new skeleton of a package.

View File

@@ -26,7 +26,7 @@ This information can be used to launch a LangServe instance automatically.
In order to do this, first make sure the CLI is installed:
```shell
pip install -U langchain-cli
pip install -U "langchain-cli[serve]"
```
You can then run:

View File

@@ -32,7 +32,7 @@ This will create a `customers` index. In this package, we specify indexes to gen
To use this package, you should first have the LangChain CLI installed:
```shell
pip install -U langchain-cli
pip install -U "langchain-cli[serve]"
```
To create a new LangChain project and install this as the only package, you can do:

View File

@@ -1,5 +0,0 @@
from elastic_query_generator.chain import chain
__all__ = [
"chain",
]

View File

@@ -122,6 +122,20 @@ files = [
[package.dependencies]
frozenlist = ">=1.1.0"
[[package]]
name = "annotated-types"
version = "0.6.0"
description = "Reusable constraint types to use with typing.Annotated"
optional = false
python-versions = ">=3.8"
files = [
{file = "annotated_types-0.6.0-py3-none-any.whl", hash = "sha256:0641064de18ba7a25dee8f96403ebc39113d0cb953a01429249d5c7564666a43"},
{file = "annotated_types-0.6.0.tar.gz", hash = "sha256:563339e807e53ffd9c267e99fc6d9ea23eb8443c08f112651963e24e22f84a5d"},
]
[package.dependencies]
typing-extensions = {version = ">=4.0.0", markers = "python_version < \"3.9\""}
[[package]]
name = "anyio"
version = "3.7.1"
@@ -282,20 +296,6 @@ files = [
{file = "charset_normalizer-3.3.0-py3-none-any.whl", hash = "sha256:e46cd37076971c1040fc8c41273a8b3e2c624ce4f2be3f5dfcb7a430c1d3acc2"},
]
[[package]]
name = "click"
version = "8.1.7"
description = "Composable command line interface toolkit"
optional = false
python-versions = ">=3.7"
files = [
{file = "click-8.1.7-py3-none-any.whl", hash = "sha256:ae74fb96c20a0277a1d615f1e4d73c8414f5a98db8b799a7931d1582f3390c28"},
{file = "click-8.1.7.tar.gz", hash = "sha256:ca9853ad459e787e2192211578cc907e7594e294c7ccc834310722b41b9ca6de"},
]
[package.dependencies]
colorama = {version = "*", markers = "platform_system == \"Windows\""}
[[package]]
name = "colorama"
version = "0.4.6"
@@ -372,26 +372,6 @@ files = [
[package.extras]
test = ["pytest (>=6)"]
[[package]]
name = "fastapi"
version = "0.104.1"
description = "FastAPI framework, high performance, easy to learn, fast to code, ready for production"
optional = false
python-versions = ">=3.8"
files = [
{file = "fastapi-0.104.1-py3-none-any.whl", hash = "sha256:752dc31160cdbd0436bb93bad51560b57e525cbb1d4bbf6f4904ceee75548241"},
{file = "fastapi-0.104.1.tar.gz", hash = "sha256:e5e4540a7c5e1dcfbbcf5b903c234feddcdcd881f191977a1c5dfd917487e7ae"},
]
[package.dependencies]
anyio = ">=3.7.1,<4.0.0"
pydantic = ">=1.7.4,<1.8 || >1.8,<1.8.1 || >1.8.1,<2.0.0 || >2.0.0,<2.0.1 || >2.0.1,<2.1.0 || >2.1.0,<3.0.0"
starlette = ">=0.27.0,<0.28.0"
typing-extensions = ">=4.8.0"
[package.extras]
all = ["email-validator (>=2.0.0)", "httpx (>=0.23.0)", "itsdangerous (>=1.1.0)", "jinja2 (>=2.11.2)", "orjson (>=3.2.1)", "pydantic-extra-types (>=2.0.0)", "pydantic-settings (>=2.0.0)", "python-multipart (>=0.0.5)", "pyyaml (>=5.3.1)", "ujson (>=4.0.1,!=4.0.2,!=4.1.0,!=4.2.0,!=4.3.0,!=5.0.0,!=5.1.0)", "uvicorn[standard] (>=0.12.0)"]
[[package]]
name = "frozenlist"
version = "1.4.0"
@@ -462,37 +442,6 @@ files = [
{file = "frozenlist-1.4.0.tar.gz", hash = "sha256:09163bdf0b2907454042edb19f887c6d33806adc71fbd54afc14908bfdc22251"},
]
[[package]]
name = "gitdb"
version = "4.0.11"
description = "Git Object Database"
optional = false
python-versions = ">=3.7"
files = [
{file = "gitdb-4.0.11-py3-none-any.whl", hash = "sha256:81a3407ddd2ee8df444cbacea00e2d038e40150acfa3001696fe0dcf1d3adfa4"},
{file = "gitdb-4.0.11.tar.gz", hash = "sha256:bf5421126136d6d0af55bc1e7c1af1c397a34f5b7bd79e776cd3e89785c2b04b"},
]
[package.dependencies]
smmap = ">=3.0.1,<6"
[[package]]
name = "gitpython"
version = "3.1.40"
description = "GitPython is a Python library used to interact with Git repositories"
optional = false
python-versions = ">=3.7"
files = [
{file = "GitPython-3.1.40-py3-none-any.whl", hash = "sha256:cf14627d5a8049ffbf49915732e5eddbe8134c3bdb9d476e6182b676fc573f8a"},
{file = "GitPython-3.1.40.tar.gz", hash = "sha256:22b126e9ffb671fdd0c129796343a02bf67bf2994b35449ffc9321aa755e18a4"},
]
[package.dependencies]
gitdb = ">=4.0.1,<5"
[package.extras]
test = ["black", "coverage[toml]", "ddt (>=1.1.1,!=1.4.3)", "mock", "mypy", "pre-commit", "pytest", "pytest-cov", "pytest-instafail", "pytest-subtests", "pytest-sugar"]
[[package]]
name = "greenlet"
version = "3.0.0"
@@ -569,73 +518,6 @@ files = [
docs = ["Sphinx"]
test = ["objgraph", "psutil"]
[[package]]
name = "h11"
version = "0.14.0"
description = "A pure-Python, bring-your-own-I/O implementation of HTTP/1.1"
optional = false
python-versions = ">=3.7"
files = [
{file = "h11-0.14.0-py3-none-any.whl", hash = "sha256:e3fe4ac4b851c468cc8363d500db52c2ead036020723024a109d37346efaa761"},
{file = "h11-0.14.0.tar.gz", hash = "sha256:8f19fbbe99e72420ff35c00b27a34cb9937e902a8b810e2c88300c6f0a3b699d"},
]
[[package]]
name = "httpcore"
version = "1.0.1"
description = "A minimal low-level HTTP client."
optional = false
python-versions = ">=3.8"
files = [
{file = "httpcore-1.0.1-py3-none-any.whl", hash = "sha256:c5e97ef177dca2023d0b9aad98e49507ef5423e9f1d94ffe2cfe250aa28e63b0"},
{file = "httpcore-1.0.1.tar.gz", hash = "sha256:fce1ddf9b606cfb98132ab58865c3728c52c8e4c3c46e2aabb3674464a186e92"},
]
[package.dependencies]
certifi = "*"
h11 = ">=0.13,<0.15"
[package.extras]
asyncio = ["anyio (>=4.0,<5.0)"]
http2 = ["h2 (>=3,<5)"]
socks = ["socksio (==1.*)"]
trio = ["trio (>=0.22.0,<0.23.0)"]
[[package]]
name = "httpx"
version = "0.25.1"
description = "The next generation HTTP client."
optional = false
python-versions = ">=3.8"
files = [
{file = "httpx-0.25.1-py3-none-any.whl", hash = "sha256:fec7d6cc5c27c578a391f7e87b9aa7d3d8fbcd034f6399f9f79b45bcc12a866a"},
{file = "httpx-0.25.1.tar.gz", hash = "sha256:ffd96d5cf901e63863d9f1b4b6807861dbea4d301613415d9e6e57ead15fc5d0"},
]
[package.dependencies]
anyio = "*"
certifi = "*"
httpcore = "*"
idna = "*"
sniffio = "*"
[package.extras]
brotli = ["brotli", "brotlicffi"]
cli = ["click (==8.*)", "pygments (==2.*)", "rich (>=10,<14)"]
http2 = ["h2 (>=3,<5)"]
socks = ["socksio (==1.*)"]
[[package]]
name = "httpx-sse"
version = "0.3.1"
description = "Consume Server-Sent Event (SSE) messages with HTTPX."
optional = false
python-versions = ">=3.7"
files = [
{file = "httpx-sse-0.3.1.tar.gz", hash = "sha256:3bb3289b2867f50cbdb2fee3eeeefecb1e86653122e164faac0023f1ffc88aea"},
{file = "httpx_sse-0.3.1-py3-none-any.whl", hash = "sha256:7376dd88732892f9b6b549ac0ad05a8e2341172fe7dcf9f8f9c8050934297316"},
]
[[package]]
name = "idna"
version = "3.4"
@@ -712,49 +594,6 @@ openai = ["openai (>=0,<1)", "tiktoken (>=0.3.2,<0.6.0)"]
qdrant = ["qdrant-client (>=1.3.1,<2.0.0)"]
text-helpers = ["chardet (>=5.1.0,<6.0.0)"]
[[package]]
name = "langchain-cli"
version = "0.0.15"
description = "CLI for interacting with LangChain"
optional = false
python-versions = ">=3.8.1,<4.0"
files = [
{file = "langchain_cli-0.0.15-py3-none-any.whl", hash = "sha256:88102d2bb9d7c9cc99a1da13302a7f95d60cb37b2dab264b808aa6e3887b046f"},
{file = "langchain_cli-0.0.15.tar.gz", hash = "sha256:b7ff1a8338922aadbc3b1a141ea92c0a33aaaa72124dfbfd12049fe9a4a95cec"},
]
[package.dependencies]
fastapi = ">=0.104.0,<0.105.0"
gitpython = ">=3.1.40,<4.0.0"
langserve = {version = ">=0.0.16", extras = ["all"]}
tomli = ">=2.0.1,<3.0.0"
typer = {version = ">=0.9.0,<0.10.0", extras = ["all"]}
uvicorn = ">=0.23.2,<0.24.0"
[[package]]
name = "langserve"
version = "0.0.22"
description = ""
optional = false
python-versions = ">=3.8.1,<4.0.0"
files = [
{file = "langserve-0.0.22-py3-none-any.whl", hash = "sha256:908239209959fc23202a09113b42c0e5838d046404a4e725602fe56af96bf340"},
{file = "langserve-0.0.22.tar.gz", hash = "sha256:14a33986668c8d36aa2e58dc66307c021eaac18019d2b99e7fae30f6937650d1"},
]
[package.dependencies]
fastapi = {version = ">=0.90.1", optional = true, markers = "extra == \"server\" or extra == \"all\""}
httpx = ">=0.23.0"
httpx-sse = {version = ">=0.3.1", optional = true, markers = "extra == \"client\" or extra == \"all\""}
langchain = ">=0.0.322"
pydantic = ">=1,<2"
sse-starlette = {version = ">=1.3.0,<2.0.0", optional = true, markers = "extra == \"server\" or extra == \"all\""}
[package.extras]
all = ["fastapi (>=0.90.1)", "httpx-sse (>=0.3.1)", "sse-starlette (>=1.3.0,<2.0.0)"]
client = ["httpx-sse (>=0.3.1)"]
server = ["fastapi (>=0.90.1)", "sse-starlette (>=1.3.0,<2.0.0)"]
[[package]]
name = "langsmith"
version = "0.0.54"
@@ -770,30 +609,6 @@ files = [
pydantic = ">=1,<3"
requests = ">=2,<3"
[[package]]
name = "markdown-it-py"
version = "3.0.0"
description = "Python port of markdown-it. Markdown parsing, done right!"
optional = false
python-versions = ">=3.8"
files = [
{file = "markdown-it-py-3.0.0.tar.gz", hash = "sha256:e3f60a94fa066dc52ec76661e37c851cb232d92f9886b15cb560aaada2df8feb"},
{file = "markdown_it_py-3.0.0-py3-none-any.whl", hash = "sha256:355216845c60bd96232cd8d8c40e8f9765cc86f46880e43a8fd22dc1a1a8cab1"},
]
[package.dependencies]
mdurl = ">=0.1,<1.0"
[package.extras]
benchmarking = ["psutil", "pytest", "pytest-benchmark"]
code-style = ["pre-commit (>=3.0,<4.0)"]
compare = ["commonmark (>=0.9,<1.0)", "markdown (>=3.4,<4.0)", "mistletoe (>=1.0,<2.0)", "mistune (>=2.0,<3.0)", "panflute (>=2.3,<3.0)"]
linkify = ["linkify-it-py (>=1,<3)"]
plugins = ["mdit-py-plugins"]
profiling = ["gprof2dot"]
rtd = ["jupyter_sphinx", "mdit-py-plugins", "myst-parser", "pyyaml", "sphinx", "sphinx-copybutton", "sphinx-design", "sphinx_book_theme"]
testing = ["coverage", "pytest", "pytest-cov", "pytest-regressions"]
[[package]]
name = "marshmallow"
version = "3.20.1"
@@ -814,17 +629,6 @@ docs = ["alabaster (==0.7.13)", "autodocsumm (==0.2.11)", "sphinx (==7.0.1)", "s
lint = ["flake8 (==6.0.0)", "flake8-bugbear (==23.7.10)", "mypy (==1.4.1)", "pre-commit (>=2.4,<4.0)"]
tests = ["pytest", "pytz", "simplejson"]
[[package]]
name = "mdurl"
version = "0.1.2"
description = "Markdown URL utilities"
optional = false
python-versions = ">=3.7"
files = [
{file = "mdurl-0.1.2-py3-none-any.whl", hash = "sha256:84008a41e51615a49fc9966191ff91509e3c40b939176e643fd50a5c2196b8f8"},
{file = "mdurl-0.1.2.tar.gz", hash = "sha256:bb413d29f5eea38f31dd4754dd7377d4465116fb207585f97bf925588687c1ba"},
]
[[package]]
name = "multidict"
version = "6.0.4"
@@ -991,69 +795,140 @@ files = [
[[package]]
name = "pydantic"
version = "1.10.13"
description = "Data validation and settings management using python type hints"
version = "2.4.2"
description = "Data validation using Python type hints"
optional = false
python-versions = ">=3.7"
files = [
{file = "pydantic-1.10.13-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:efff03cc7a4f29d9009d1c96ceb1e7a70a65cfe86e89d34e4a5f2ab1e5693737"},
{file = "pydantic-1.10.13-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:3ecea2b9d80e5333303eeb77e180b90e95eea8f765d08c3d278cd56b00345d01"},
{file = "pydantic-1.10.13-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1740068fd8e2ef6eb27a20e5651df000978edce6da6803c2bef0bc74540f9548"},
{file = "pydantic-1.10.13-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:84bafe2e60b5e78bc64a2941b4c071a4b7404c5c907f5f5a99b0139781e69ed8"},
{file = "pydantic-1.10.13-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:bc0898c12f8e9c97f6cd44c0ed70d55749eaf783716896960b4ecce2edfd2d69"},
{file = "pydantic-1.10.13-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:654db58ae399fe6434e55325a2c3e959836bd17a6f6a0b6ca8107ea0571d2e17"},
{file = "pydantic-1.10.13-cp310-cp310-win_amd64.whl", hash = "sha256:75ac15385a3534d887a99c713aa3da88a30fbd6204a5cd0dc4dab3d770b9bd2f"},
{file = "pydantic-1.10.13-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:c553f6a156deb868ba38a23cf0df886c63492e9257f60a79c0fd8e7173537653"},
{file = "pydantic-1.10.13-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:5e08865bc6464df8c7d61439ef4439829e3ab62ab1669cddea8dd00cd74b9ffe"},
{file = "pydantic-1.10.13-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e31647d85a2013d926ce60b84f9dd5300d44535a9941fe825dc349ae1f760df9"},
{file = "pydantic-1.10.13-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:210ce042e8f6f7c01168b2d84d4c9eb2b009fe7bf572c2266e235edf14bacd80"},
{file = "pydantic-1.10.13-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:8ae5dd6b721459bfa30805f4c25880e0dd78fc5b5879f9f7a692196ddcb5a580"},
{file = "pydantic-1.10.13-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:f8e81fc5fb17dae698f52bdd1c4f18b6ca674d7068242b2aff075f588301bbb0"},
{file = "pydantic-1.10.13-cp311-cp311-win_amd64.whl", hash = "sha256:61d9dce220447fb74f45e73d7ff3b530e25db30192ad8d425166d43c5deb6df0"},
{file = "pydantic-1.10.13-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:4b03e42ec20286f052490423682016fd80fda830d8e4119f8ab13ec7464c0132"},
{file = "pydantic-1.10.13-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f59ef915cac80275245824e9d771ee939133be38215555e9dc90c6cb148aaeb5"},
{file = "pydantic-1.10.13-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:5a1f9f747851338933942db7af7b6ee8268568ef2ed86c4185c6ef4402e80ba8"},
{file = "pydantic-1.10.13-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:97cce3ae7341f7620a0ba5ef6cf043975cd9d2b81f3aa5f4ea37928269bc1b87"},
{file = "pydantic-1.10.13-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:854223752ba81e3abf663d685f105c64150873cc6f5d0c01d3e3220bcff7d36f"},
{file = "pydantic-1.10.13-cp37-cp37m-win_amd64.whl", hash = "sha256:b97c1fac8c49be29486df85968682b0afa77e1b809aff74b83081cc115e52f33"},
{file = "pydantic-1.10.13-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:c958d053453a1c4b1c2062b05cd42d9d5c8eb67537b8d5a7e3c3032943ecd261"},
{file = "pydantic-1.10.13-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:4c5370a7edaac06daee3af1c8b1192e305bc102abcbf2a92374b5bc793818599"},
{file = "pydantic-1.10.13-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7d6f6e7305244bddb4414ba7094ce910560c907bdfa3501e9db1a7fd7eaea127"},
{file = "pydantic-1.10.13-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:d3a3c792a58e1622667a2837512099eac62490cdfd63bd407993aaf200a4cf1f"},
{file = "pydantic-1.10.13-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:c636925f38b8db208e09d344c7aa4f29a86bb9947495dd6b6d376ad10334fb78"},
{file = "pydantic-1.10.13-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:678bcf5591b63cc917100dc50ab6caebe597ac67e8c9ccb75e698f66038ea953"},
{file = "pydantic-1.10.13-cp38-cp38-win_amd64.whl", hash = "sha256:6cf25c1a65c27923a17b3da28a0bdb99f62ee04230c931d83e888012851f4e7f"},
{file = "pydantic-1.10.13-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:8ef467901d7a41fa0ca6db9ae3ec0021e3f657ce2c208e98cd511f3161c762c6"},
{file = "pydantic-1.10.13-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:968ac42970f57b8344ee08837b62f6ee6f53c33f603547a55571c954a4225691"},
{file = "pydantic-1.10.13-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9849f031cf8a2f0a928fe885e5a04b08006d6d41876b8bbd2fc68a18f9f2e3fd"},
{file = "pydantic-1.10.13-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:56e3ff861c3b9c6857579de282ce8baabf443f42ffba355bf070770ed63e11e1"},
{file = "pydantic-1.10.13-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:9f00790179497767aae6bcdc36355792c79e7bbb20b145ff449700eb076c5f96"},
{file = "pydantic-1.10.13-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:75b297827b59bc229cac1a23a2f7a4ac0031068e5be0ce385be1462e7e17a35d"},
{file = "pydantic-1.10.13-cp39-cp39-win_amd64.whl", hash = "sha256:e70ca129d2053fb8b728ee7d1af8e553a928d7e301a311094b8a0501adc8763d"},
{file = "pydantic-1.10.13-py3-none-any.whl", hash = "sha256:b87326822e71bd5f313e7d3bfdc77ac3247035ac10b0c0618bd99dcf95b1e687"},
{file = "pydantic-1.10.13.tar.gz", hash = "sha256:32c8b48dcd3b2ac4e78b0ba4af3a2c2eb6048cb75202f0ea7b34feb740efc340"},
{file = "pydantic-2.4.2-py3-none-any.whl", hash = "sha256:bc3ddf669d234f4220e6e1c4d96b061abe0998185a8d7855c0126782b7abc8c1"},
{file = "pydantic-2.4.2.tar.gz", hash = "sha256:94f336138093a5d7f426aac732dcfe7ab4eb4da243c88f891d65deb4a2556ee7"},
]
[package.dependencies]
typing-extensions = ">=4.2.0"
annotated-types = ">=0.4.0"
pydantic-core = "2.10.1"
typing-extensions = ">=4.6.1"
[package.extras]
dotenv = ["python-dotenv (>=0.10.4)"]
email = ["email-validator (>=1.0.3)"]
email = ["email-validator (>=2.0.0)"]
[[package]]
name = "pygments"
version = "2.16.1"
description = "Pygments is a syntax highlighting package written in Python."
name = "pydantic-core"
version = "2.10.1"
description = ""
optional = false
python-versions = ">=3.7"
files = [
{file = "Pygments-2.16.1-py3-none-any.whl", hash = "sha256:13fc09fa63bc8d8671a6d247e1eb303c4b343eaee81d861f3404db2935653692"},
{file = "Pygments-2.16.1.tar.gz", hash = "sha256:1daff0494820c69bc8941e407aa20f577374ee88364ee10a98fdbe0aece96e29"},
{file = "pydantic_core-2.10.1-cp310-cp310-macosx_10_7_x86_64.whl", hash = "sha256:d64728ee14e667ba27c66314b7d880b8eeb050e58ffc5fec3b7a109f8cddbd63"},
{file = "pydantic_core-2.10.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:48525933fea744a3e7464c19bfede85df4aba79ce90c60b94d8b6e1eddd67096"},
{file = "pydantic_core-2.10.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ef337945bbd76cce390d1b2496ccf9f90b1c1242a3a7bc242ca4a9fc5993427a"},
{file = "pydantic_core-2.10.1-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:a1392e0638af203cee360495fd2cfdd6054711f2db5175b6e9c3c461b76f5175"},
{file = "pydantic_core-2.10.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:0675ba5d22de54d07bccde38997e780044dcfa9a71aac9fd7d4d7a1d2e3e65f7"},
{file = "pydantic_core-2.10.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:128552af70a64660f21cb0eb4876cbdadf1a1f9d5de820fed6421fa8de07c893"},
{file = "pydantic_core-2.10.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8f6e6aed5818c264412ac0598b581a002a9f050cb2637a84979859e70197aa9e"},
{file = "pydantic_core-2.10.1-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:ecaac27da855b8d73f92123e5f03612b04c5632fd0a476e469dfc47cd37d6b2e"},
{file = "pydantic_core-2.10.1-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:b3c01c2fb081fced3bbb3da78510693dc7121bb893a1f0f5f4b48013201f362e"},
{file = "pydantic_core-2.10.1-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:92f675fefa977625105708492850bcbc1182bfc3e997f8eecb866d1927c98ae6"},
{file = "pydantic_core-2.10.1-cp310-none-win32.whl", hash = "sha256:420a692b547736a8d8703c39ea935ab5d8f0d2573f8f123b0a294e49a73f214b"},
{file = "pydantic_core-2.10.1-cp310-none-win_amd64.whl", hash = "sha256:0880e239827b4b5b3e2ce05e6b766a7414e5f5aedc4523be6b68cfbc7f61c5d0"},
{file = "pydantic_core-2.10.1-cp311-cp311-macosx_10_7_x86_64.whl", hash = "sha256:073d4a470b195d2b2245d0343569aac7e979d3a0dcce6c7d2af6d8a920ad0bea"},
{file = "pydantic_core-2.10.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:600d04a7b342363058b9190d4e929a8e2e715c5682a70cc37d5ded1e0dd370b4"},
{file = "pydantic_core-2.10.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:39215d809470f4c8d1881758575b2abfb80174a9e8daf8f33b1d4379357e417c"},
{file = "pydantic_core-2.10.1-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:eeb3d3d6b399ffe55f9a04e09e635554012f1980696d6b0aca3e6cf42a17a03b"},
{file = "pydantic_core-2.10.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:a7a7902bf75779bc12ccfc508bfb7a4c47063f748ea3de87135d433a4cca7a2f"},
{file = "pydantic_core-2.10.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:3625578b6010c65964d177626fde80cf60d7f2e297d56b925cb5cdeda6e9925a"},
{file = "pydantic_core-2.10.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:caa48fc31fc7243e50188197b5f0c4228956f97b954f76da157aae7f67269ae8"},
{file = "pydantic_core-2.10.1-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:07ec6d7d929ae9c68f716195ce15e745b3e8fa122fc67698ac6498d802ed0fa4"},
{file = "pydantic_core-2.10.1-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:e6f31a17acede6a8cd1ae2d123ce04d8cca74056c9d456075f4f6f85de055607"},
{file = "pydantic_core-2.10.1-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:d8f1ebca515a03e5654f88411420fea6380fc841d1bea08effb28184e3d4899f"},
{file = "pydantic_core-2.10.1-cp311-none-win32.whl", hash = "sha256:6db2eb9654a85ada248afa5a6db5ff1cf0f7b16043a6b070adc4a5be68c716d6"},
{file = "pydantic_core-2.10.1-cp311-none-win_amd64.whl", hash = "sha256:4a5be350f922430997f240d25f8219f93b0c81e15f7b30b868b2fddfc2d05f27"},
{file = "pydantic_core-2.10.1-cp311-none-win_arm64.whl", hash = "sha256:5fdb39f67c779b183b0c853cd6b45f7db84b84e0571b3ef1c89cdb1dfc367325"},
{file = "pydantic_core-2.10.1-cp312-cp312-macosx_10_7_x86_64.whl", hash = "sha256:b1f22a9ab44de5f082216270552aa54259db20189e68fc12484873d926426921"},
{file = "pydantic_core-2.10.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:8572cadbf4cfa95fb4187775b5ade2eaa93511f07947b38f4cd67cf10783b118"},
{file = "pydantic_core-2.10.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:db9a28c063c7c00844ae42a80203eb6d2d6bbb97070cfa00194dff40e6f545ab"},
{file = "pydantic_core-2.10.1-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:0e2a35baa428181cb2270a15864ec6286822d3576f2ed0f4cd7f0c1708472aff"},
{file = "pydantic_core-2.10.1-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:05560ab976012bf40f25d5225a58bfa649bb897b87192a36c6fef1ab132540d7"},
{file = "pydantic_core-2.10.1-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:d6495008733c7521a89422d7a68efa0a0122c99a5861f06020ef5b1f51f9ba7c"},
{file = "pydantic_core-2.10.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:14ac492c686defc8e6133e3a2d9eaf5261b3df26b8ae97450c1647286750b901"},
{file = "pydantic_core-2.10.1-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:8282bab177a9a3081fd3d0a0175a07a1e2bfb7fcbbd949519ea0980f8a07144d"},
{file = "pydantic_core-2.10.1-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:aafdb89fdeb5fe165043896817eccd6434aee124d5ee9b354f92cd574ba5e78f"},
{file = "pydantic_core-2.10.1-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:f6defd966ca3b187ec6c366604e9296f585021d922e666b99c47e78738b5666c"},
{file = "pydantic_core-2.10.1-cp312-none-win32.whl", hash = "sha256:7c4d1894fe112b0864c1fa75dffa045720a194b227bed12f4be7f6045b25209f"},
{file = "pydantic_core-2.10.1-cp312-none-win_amd64.whl", hash = "sha256:5994985da903d0b8a08e4935c46ed8daf5be1cf217489e673910951dc533d430"},
{file = "pydantic_core-2.10.1-cp312-none-win_arm64.whl", hash = "sha256:0d8a8adef23d86d8eceed3e32e9cca8879c7481c183f84ed1a8edc7df073af94"},
{file = "pydantic_core-2.10.1-cp37-cp37m-macosx_10_7_x86_64.whl", hash = "sha256:9badf8d45171d92387410b04639d73811b785b5161ecadabf056ea14d62d4ede"},
{file = "pydantic_core-2.10.1-cp37-cp37m-macosx_11_0_arm64.whl", hash = "sha256:ebedb45b9feb7258fac0a268a3f6bec0a2ea4d9558f3d6f813f02ff3a6dc6698"},
{file = "pydantic_core-2.10.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:cfe1090245c078720d250d19cb05d67e21a9cd7c257698ef139bc41cf6c27b4f"},
{file = "pydantic_core-2.10.1-cp37-cp37m-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:e357571bb0efd65fd55f18db0a2fb0ed89d0bb1d41d906b138f088933ae618bb"},
{file = "pydantic_core-2.10.1-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:b3dcd587b69bbf54fc04ca157c2323b8911033e827fffaecf0cafa5a892a0904"},
{file = "pydantic_core-2.10.1-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:9c120c9ce3b163b985a3b966bb701114beb1da4b0468b9b236fc754783d85aa3"},
{file = "pydantic_core-2.10.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:15d6bca84ffc966cc9976b09a18cf9543ed4d4ecbd97e7086f9ce9327ea48891"},
{file = "pydantic_core-2.10.1-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:5cabb9710f09d5d2e9e2748c3e3e20d991a4c5f96ed8f1132518f54ab2967221"},
{file = "pydantic_core-2.10.1-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:82f55187a5bebae7d81d35b1e9aaea5e169d44819789837cdd4720d768c55d15"},
{file = "pydantic_core-2.10.1-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:1d40f55222b233e98e3921df7811c27567f0e1a4411b93d4c5c0f4ce131bc42f"},
{file = "pydantic_core-2.10.1-cp37-none-win32.whl", hash = "sha256:14e09ff0b8fe6e46b93d36a878f6e4a3a98ba5303c76bb8e716f4878a3bee92c"},
{file = "pydantic_core-2.10.1-cp37-none-win_amd64.whl", hash = "sha256:1396e81b83516b9d5c9e26a924fa69164156c148c717131f54f586485ac3c15e"},
{file = "pydantic_core-2.10.1-cp38-cp38-macosx_10_7_x86_64.whl", hash = "sha256:6835451b57c1b467b95ffb03a38bb75b52fb4dc2762bb1d9dbed8de31ea7d0fc"},
{file = "pydantic_core-2.10.1-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:b00bc4619f60c853556b35f83731bd817f989cba3e97dc792bb8c97941b8053a"},
{file = "pydantic_core-2.10.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0fa467fd300a6f046bdb248d40cd015b21b7576c168a6bb20aa22e595c8ffcdd"},
{file = "pydantic_core-2.10.1-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:d99277877daf2efe074eae6338453a4ed54a2d93fb4678ddfe1209a0c93a2468"},
{file = "pydantic_core-2.10.1-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:fa7db7558607afeccb33c0e4bf1c9a9a835e26599e76af6fe2fcea45904083a6"},
{file = "pydantic_core-2.10.1-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:aad7bd686363d1ce4ee930ad39f14e1673248373f4a9d74d2b9554f06199fb58"},
{file = "pydantic_core-2.10.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:443fed67d33aa85357464f297e3d26e570267d1af6fef1c21ca50921d2976302"},
{file = "pydantic_core-2.10.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:042462d8d6ba707fd3ce9649e7bf268633a41018d6a998fb5fbacb7e928a183e"},
{file = "pydantic_core-2.10.1-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:ecdbde46235f3d560b18be0cb706c8e8ad1b965e5c13bbba7450c86064e96561"},
{file = "pydantic_core-2.10.1-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:ed550ed05540c03f0e69e6d74ad58d026de61b9eaebebbaaf8873e585cbb18de"},
{file = "pydantic_core-2.10.1-cp38-none-win32.whl", hash = "sha256:8cdbbd92154db2fec4ec973d45c565e767ddc20aa6dbaf50142676484cbff8ee"},
{file = "pydantic_core-2.10.1-cp38-none-win_amd64.whl", hash = "sha256:9f6f3e2598604956480f6c8aa24a3384dbf6509fe995d97f6ca6103bb8c2534e"},
{file = "pydantic_core-2.10.1-cp39-cp39-macosx_10_7_x86_64.whl", hash = "sha256:655f8f4c8d6a5963c9a0687793da37b9b681d9ad06f29438a3b2326d4e6b7970"},
{file = "pydantic_core-2.10.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:e570ffeb2170e116a5b17e83f19911020ac79d19c96f320cbfa1fa96b470185b"},
{file = "pydantic_core-2.10.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:64322bfa13e44c6c30c518729ef08fda6026b96d5c0be724b3c4ae4da939f875"},
{file = "pydantic_core-2.10.1-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:485a91abe3a07c3a8d1e082ba29254eea3e2bb13cbbd4351ea4e5a21912cc9b0"},
{file = "pydantic_core-2.10.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:f7c2b8eb9fc872e68b46eeaf835e86bccc3a58ba57d0eedc109cbb14177be531"},
{file = "pydantic_core-2.10.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:a5cb87bdc2e5f620693148b5f8f842d293cae46c5f15a1b1bf7ceeed324a740c"},
{file = "pydantic_core-2.10.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:25bd966103890ccfa028841a8f30cebcf5875eeac8c4bde4fe221364c92f0c9a"},
{file = "pydantic_core-2.10.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:f323306d0556351735b54acbf82904fe30a27b6a7147153cbe6e19aaaa2aa429"},
{file = "pydantic_core-2.10.1-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:0c27f38dc4fbf07b358b2bc90edf35e82d1703e22ff2efa4af4ad5de1b3833e7"},
{file = "pydantic_core-2.10.1-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:f1365e032a477c1430cfe0cf2856679529a2331426f8081172c4a74186f1d595"},
{file = "pydantic_core-2.10.1-cp39-none-win32.whl", hash = "sha256:a1c311fd06ab3b10805abb72109f01a134019739bd3286b8ae1bc2fc4e50c07a"},
{file = "pydantic_core-2.10.1-cp39-none-win_amd64.whl", hash = "sha256:ae8a8843b11dc0b03b57b52793e391f0122e740de3df1474814c700d2622950a"},
{file = "pydantic_core-2.10.1-pp310-pypy310_pp73-macosx_10_7_x86_64.whl", hash = "sha256:d43002441932f9a9ea5d6f9efaa2e21458221a3a4b417a14027a1d530201ef1b"},
{file = "pydantic_core-2.10.1-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:fcb83175cc4936a5425dde3356f079ae03c0802bbdf8ff82c035f8a54b333521"},
{file = "pydantic_core-2.10.1-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:962ed72424bf1f72334e2f1e61b68f16c0e596f024ca7ac5daf229f7c26e4208"},
{file = "pydantic_core-2.10.1-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2cf5bb4dd67f20f3bbc1209ef572a259027c49e5ff694fa56bed62959b41e1f9"},
{file = "pydantic_core-2.10.1-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:e544246b859f17373bed915182ab841b80849ed9cf23f1f07b73b7c58baee5fb"},
{file = "pydantic_core-2.10.1-pp310-pypy310_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:c0877239307b7e69d025b73774e88e86ce82f6ba6adf98f41069d5b0b78bd1bf"},
{file = "pydantic_core-2.10.1-pp310-pypy310_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:53df009d1e1ba40f696f8995683e067e3967101d4bb4ea6f667931b7d4a01357"},
{file = "pydantic_core-2.10.1-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:a1254357f7e4c82e77c348dabf2d55f1d14d19d91ff025004775e70a6ef40ada"},
{file = "pydantic_core-2.10.1-pp37-pypy37_pp73-macosx_10_7_x86_64.whl", hash = "sha256:524ff0ca3baea164d6d93a32c58ac79eca9f6cf713586fdc0adb66a8cdeab96a"},
{file = "pydantic_core-2.10.1-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3f0ac9fb8608dbc6eaf17956bf623c9119b4db7dbb511650910a82e261e6600f"},
{file = "pydantic_core-2.10.1-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:320f14bd4542a04ab23747ff2c8a778bde727158b606e2661349557f0770711e"},
{file = "pydantic_core-2.10.1-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:63974d168b6233b4ed6a0046296803cb13c56637a7b8106564ab575926572a55"},
{file = "pydantic_core-2.10.1-pp37-pypy37_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:417243bf599ba1f1fef2bb8c543ceb918676954734e2dcb82bf162ae9d7bd514"},
{file = "pydantic_core-2.10.1-pp37-pypy37_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:dda81e5ec82485155a19d9624cfcca9be88a405e2857354e5b089c2a982144b2"},
{file = "pydantic_core-2.10.1-pp37-pypy37_pp73-win_amd64.whl", hash = "sha256:14cfbb00959259e15d684505263d5a21732b31248a5dd4941f73a3be233865b9"},
{file = "pydantic_core-2.10.1-pp38-pypy38_pp73-macosx_10_7_x86_64.whl", hash = "sha256:631cb7415225954fdcc2a024119101946793e5923f6c4d73a5914d27eb3d3a05"},
{file = "pydantic_core-2.10.1-pp38-pypy38_pp73-macosx_11_0_arm64.whl", hash = "sha256:bec7dd208a4182e99c5b6c501ce0b1f49de2802448d4056091f8e630b28e9a52"},
{file = "pydantic_core-2.10.1-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:149b8a07712f45b332faee1a2258d8ef1fb4a36f88c0c17cb687f205c5dc6e7d"},
{file = "pydantic_core-2.10.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4d966c47f9dd73c2d32a809d2be529112d509321c5310ebf54076812e6ecd884"},
{file = "pydantic_core-2.10.1-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:7eb037106f5c6b3b0b864ad226b0b7ab58157124161d48e4b30c4a43fef8bc4b"},
{file = "pydantic_core-2.10.1-pp38-pypy38_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:154ea7c52e32dce13065dbb20a4a6f0cc012b4f667ac90d648d36b12007fa9f7"},
{file = "pydantic_core-2.10.1-pp38-pypy38_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:e562617a45b5a9da5be4abe72b971d4f00bf8555eb29bb91ec2ef2be348cd132"},
{file = "pydantic_core-2.10.1-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:f23b55eb5464468f9e0e9a9935ce3ed2a870608d5f534025cd5536bca25b1402"},
{file = "pydantic_core-2.10.1-pp39-pypy39_pp73-macosx_10_7_x86_64.whl", hash = "sha256:e9121b4009339b0f751955baf4543a0bfd6bc3f8188f8056b1a25a2d45099934"},
{file = "pydantic_core-2.10.1-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:0523aeb76e03f753b58be33b26540880bac5aa54422e4462404c432230543f33"},
{file = "pydantic_core-2.10.1-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2e0e2959ef5d5b8dc9ef21e1a305a21a36e254e6a34432d00c72a92fdc5ecda5"},
{file = "pydantic_core-2.10.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:da01bec0a26befab4898ed83b362993c844b9a607a86add78604186297eb047e"},
{file = "pydantic_core-2.10.1-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:f2e9072d71c1f6cfc79a36d4484c82823c560e6f5599c43c1ca6b5cdbd54f881"},
{file = "pydantic_core-2.10.1-pp39-pypy39_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:f36a3489d9e28fe4b67be9992a23029c3cec0babc3bd9afb39f49844a8c721c5"},
{file = "pydantic_core-2.10.1-pp39-pypy39_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:f64f82cc3443149292b32387086d02a6c7fb39b8781563e0ca7b8d7d9cf72bd7"},
{file = "pydantic_core-2.10.1-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:b4a6db486ac8e99ae696e09efc8b2b9fea67b63c8f88ba7a1a16c24a057a0776"},
{file = "pydantic_core-2.10.1.tar.gz", hash = "sha256:0f8682dbdd2f67f8e1edddcbffcc29f60a6182b4901c367fc8c1c40d30bb0a82"},
]
[package.extras]
plugins = ["importlib-metadata"]
[package.dependencies]
typing-extensions = ">=4.6.0,<4.7.0 || >4.7.0"
[[package]]
name = "pyyaml"
@@ -1125,47 +1000,6 @@ urllib3 = ">=1.21.1,<3"
socks = ["PySocks (>=1.5.6,!=1.5.7)"]
use-chardet-on-py3 = ["chardet (>=3.0.2,<6)"]
[[package]]
name = "rich"
version = "13.6.0"
description = "Render rich text, tables, progress bars, syntax highlighting, markdown and more to the terminal"
optional = false
python-versions = ">=3.7.0"
files = [
{file = "rich-13.6.0-py3-none-any.whl", hash = "sha256:2b38e2fe9ca72c9a00170a1a2d20c63c790d0e10ef1fe35eba76e1e7b1d7d245"},
{file = "rich-13.6.0.tar.gz", hash = "sha256:5c14d22737e6d5084ef4771b62d5d4363165b403455a30a1c8ca39dc7b644bef"},
]
[package.dependencies]
markdown-it-py = ">=2.2.0"
pygments = ">=2.13.0,<3.0.0"
typing-extensions = {version = ">=4.0.0,<5.0", markers = "python_version < \"3.9\""}
[package.extras]
jupyter = ["ipywidgets (>=7.5.1,<9)"]
[[package]]
name = "shellingham"
version = "1.5.4"
description = "Tool to Detect Surrounding Shell"
optional = false
python-versions = ">=3.7"
files = [
{file = "shellingham-1.5.4-py2.py3-none-any.whl", hash = "sha256:7ecfff8f2fd72616f7481040475a65b2bf8af90a56c89140852d1120324e8686"},
{file = "shellingham-1.5.4.tar.gz", hash = "sha256:8dbca0739d487e5bd35ab3ca4b36e11c4078f3a234bfce294b0a0291363404de"},
]
[[package]]
name = "smmap"
version = "5.0.1"
description = "A pure Python implementation of a sliding window memory map manager"
optional = false
python-versions = ">=3.7"
files = [
{file = "smmap-5.0.1-py3-none-any.whl", hash = "sha256:e6d8668fa5f93e706934a62d7b4db19c8d9eb8cf2adbb75ef1b675aa332b69da"},
{file = "smmap-5.0.1.tar.gz", hash = "sha256:dceeb6c0028fdb6734471eb07c0cd2aae706ccaecab45965ee83f11c8d3b1f62"},
]
[[package]]
name = "sniffio"
version = "1.3.0"
@@ -1215,38 +1049,6 @@ postgresql-psycopgbinary = ["psycopg[binary] (>=3.0.7)"]
pymysql = ["pymysql"]
sqlcipher = ["sqlcipher3_binary"]
[[package]]
name = "sse-starlette"
version = "1.6.5"
description = "\"SSE plugin for Starlette\""
optional = false
python-versions = ">=3.8"
files = [
{file = "sse-starlette-1.6.5.tar.gz", hash = "sha256:819f2c421fb37067380fe3dcaba246c476b02651b7bb7601099a378ad802a0ac"},
{file = "sse_starlette-1.6.5-py3-none-any.whl", hash = "sha256:68b6b7eb49be0c72a2af80a055994c13afcaa4761b29226beb208f954c25a642"},
]
[package.dependencies]
starlette = "*"
[[package]]
name = "starlette"
version = "0.27.0"
description = "The little ASGI library that shines."
optional = false
python-versions = ">=3.7"
files = [
{file = "starlette-0.27.0-py3-none-any.whl", hash = "sha256:918416370e846586541235ccd38a474c08b80443ed31c578a418e2209b3eef91"},
{file = "starlette-0.27.0.tar.gz", hash = "sha256:6a6b0d042acb8d469a01eba54e9cda6cbd24ac602c4cd016723117d6a7e73b75"},
]
[package.dependencies]
anyio = ">=3.4.0,<5"
typing-extensions = {version = ">=3.10.0", markers = "python_version < \"3.10\""}
[package.extras]
full = ["httpx (>=0.22.0)", "itsdangerous", "jinja2", "python-multipart", "pyyaml"]
[[package]]
name = "tenacity"
version = "8.2.3"
@@ -1261,17 +1063,6 @@ files = [
[package.extras]
doc = ["reno", "sphinx", "tornado (>=4.5)"]
[[package]]
name = "tomli"
version = "2.0.1"
description = "A lil' TOML parser"
optional = false
python-versions = ">=3.7"
files = [
{file = "tomli-2.0.1-py3-none-any.whl", hash = "sha256:939de3e7a6161af0c887ef91b7d41a53e7c5a1ca976325f429cb46ea9bc30ecc"},
{file = "tomli-2.0.1.tar.gz", hash = "sha256:de526c12914f0c550d15924c62d72abc48d6fe7364aa87328337a31007fe8a4f"},
]
[[package]]
name = "tqdm"
version = "4.66.1"
@@ -1292,30 +1083,6 @@ notebook = ["ipywidgets (>=6)"]
slack = ["slack-sdk"]
telegram = ["requests"]
[[package]]
name = "typer"
version = "0.9.0"
description = "Typer, build great CLIs. Easy to code. Based on Python type hints."
optional = false
python-versions = ">=3.6"
files = [
{file = "typer-0.9.0-py3-none-any.whl", hash = "sha256:5d96d986a21493606a358cae4461bd8cdf83cbf33a5aa950ae629ca3b51467ee"},
{file = "typer-0.9.0.tar.gz", hash = "sha256:50922fd79aea2f4751a8e0408ff10d2662bd0c8bbfa84755a699f3bada2978b2"},
]
[package.dependencies]
click = ">=7.1.1,<9.0.0"
colorama = {version = ">=0.4.3,<0.5.0", optional = true, markers = "extra == \"all\""}
rich = {version = ">=10.11.0,<14.0.0", optional = true, markers = "extra == \"all\""}
shellingham = {version = ">=1.3.0,<2.0.0", optional = true, markers = "extra == \"all\""}
typing-extensions = ">=3.7.4.3"
[package.extras]
all = ["colorama (>=0.4.3,<0.5.0)", "rich (>=10.11.0,<14.0.0)", "shellingham (>=1.3.0,<2.0.0)"]
dev = ["autoflake (>=1.3.1,<2.0.0)", "flake8 (>=3.8.3,<4.0.0)", "pre-commit (>=2.17.0,<3.0.0)"]
doc = ["cairosvg (>=2.5.2,<3.0.0)", "mdx-include (>=1.4.1,<2.0.0)", "mkdocs (>=1.1.2,<2.0.0)", "mkdocs-material (>=8.1.4,<9.0.0)", "pillow (>=9.3.0,<10.0.0)"]
test = ["black (>=22.3.0,<23.0.0)", "coverage (>=6.2,<7.0)", "isort (>=5.0.6,<6.0.0)", "mypy (==0.910)", "pytest (>=4.4.0,<8.0.0)", "pytest-cov (>=2.10.0,<5.0.0)", "pytest-sugar (>=0.9.4,<0.10.0)", "pytest-xdist (>=1.32.0,<4.0.0)", "rich (>=10.11.0,<14.0.0)", "shellingham (>=1.3.0,<2.0.0)"]
[[package]]
name = "typing-extensions"
version = "4.8.0"
@@ -1358,25 +1125,6 @@ brotli = ["brotli (==1.0.9)", "brotli (>=1.0.9)", "brotlicffi (>=0.8.0)", "brotl
secure = ["certifi", "cryptography (>=1.3.4)", "idna (>=2.0.0)", "ipaddress", "pyOpenSSL (>=0.14)", "urllib3-secure-extra"]
socks = ["PySocks (>=1.5.6,!=1.5.7,<2.0)"]
[[package]]
name = "uvicorn"
version = "0.23.2"
description = "The lightning-fast ASGI server."
optional = false
python-versions = ">=3.8"
files = [
{file = "uvicorn-0.23.2-py3-none-any.whl", hash = "sha256:1f9be6558f01239d4fdf22ef8126c39cb1ad0addf76c40e760549d2c2f43ab53"},
{file = "uvicorn-0.23.2.tar.gz", hash = "sha256:4d3cc12d7727ba72b64d12d3cc7743124074c0a69f7b201512fc50c3e3f1569a"},
]
[package.dependencies]
click = ">=7.0"
h11 = ">=0.8"
typing-extensions = {version = ">=4.0", markers = "python_version < \"3.11\""}
[package.extras]
standard = ["colorama (>=0.4)", "httptools (>=0.5.0)", "python-dotenv (>=0.13)", "pyyaml (>=5.1)", "uvloop (>=0.14.0,!=0.15.0,!=0.15.1)", "watchfiles (>=0.13)", "websockets (>=10.4)"]
[[package]]
name = "yarl"
version = "1.9.2"
@@ -1467,4 +1215,4 @@ multidict = ">=4.0"
[metadata]
lock-version = "2.0"
python-versions = ">=3.8.1,<4.0"
content-hash = "a85f833d9c66b3ad3d3736c4211bca9d79e1d09f6cd8f696fb65a9393dec7312"
content-hash = "05fce3851c0cf59d703ca554fe9ad4e629e690223c1f09e6de2de8e41261b4c8"

View File

@@ -11,11 +11,8 @@ langchain = ">=0.0.325"
elasticsearch = "^8.10.1"
openai = ">=0.27.9"
[tool.poetry.group.dev.dependencies]
langchain-cli = ">=0.0.15"
[tool.langserve]
export_module = "elastic_query_generator"
export_module = "elastic_query_generator.chain"
export_attr = "chain"
[build-system]

View File

@@ -16,7 +16,7 @@ Set the `ANTHROPIC_API_KEY` environment variable to access the Anthropic models.
To use this package, you should first have the LangChain CLI installed:
```shell
pip install -U langchain-cli
pip install -U "langchain-cli[serve]"
```
To create a new LangChain project and install this as the only package, you can do:

View File

@@ -122,6 +122,20 @@ files = [
[package.dependencies]
frozenlist = ">=1.1.0"
[[package]]
name = "annotated-types"
version = "0.6.0"
description = "Reusable constraint types to use with typing.Annotated"
optional = false
python-versions = ">=3.8"
files = [
{file = "annotated_types-0.6.0-py3-none-any.whl", hash = "sha256:0641064de18ba7a25dee8f96403ebc39113d0cb953a01429249d5c7564666a43"},
{file = "annotated_types-0.6.0.tar.gz", hash = "sha256:563339e807e53ffd9c267e99fc6d9ea23eb8443c08f112651963e24e22f84a5d"},
]
[package.dependencies]
typing-extensions = {version = ">=4.0.0", markers = "python_version < \"3.9\""}
[[package]]
name = "anthropic"
version = "0.5.0"
@@ -301,20 +315,6 @@ files = [
{file = "charset_normalizer-3.3.0-py3-none-any.whl", hash = "sha256:e46cd37076971c1040fc8c41273a8b3e2c624ce4f2be3f5dfcb7a430c1d3acc2"},
]
[[package]]
name = "click"
version = "8.1.7"
description = "Composable command line interface toolkit"
optional = false
python-versions = ">=3.7"
files = [
{file = "click-8.1.7-py3-none-any.whl", hash = "sha256:ae74fb96c20a0277a1d615f1e4d73c8414f5a98db8b799a7931d1582f3390c28"},
{file = "click-8.1.7.tar.gz", hash = "sha256:ca9853ad459e787e2192211578cc907e7594e294c7ccc834310722b41b9ca6de"},
]
[package.dependencies]
colorama = {version = "*", markers = "platform_system == \"Windows\""}
[[package]]
name = "colorama"
version = "0.4.6"
@@ -366,26 +366,6 @@ files = [
[package.extras]
test = ["pytest (>=6)"]
[[package]]
name = "fastapi"
version = "0.104.1"
description = "FastAPI framework, high performance, easy to learn, fast to code, ready for production"
optional = false
python-versions = ">=3.8"
files = [
{file = "fastapi-0.104.1-py3-none-any.whl", hash = "sha256:752dc31160cdbd0436bb93bad51560b57e525cbb1d4bbf6f4904ceee75548241"},
{file = "fastapi-0.104.1.tar.gz", hash = "sha256:e5e4540a7c5e1dcfbbcf5b903c234feddcdcd881f191977a1c5dfd917487e7ae"},
]
[package.dependencies]
anyio = ">=3.7.1,<4.0.0"
pydantic = ">=1.7.4,<1.8 || >1.8,<1.8.1 || >1.8.1,<2.0.0 || >2.0.0,<2.0.1 || >2.0.1,<2.1.0 || >2.1.0,<3.0.0"
starlette = ">=0.27.0,<0.28.0"
typing-extensions = ">=4.8.0"
[package.extras]
all = ["email-validator (>=2.0.0)", "httpx (>=0.23.0)", "itsdangerous (>=1.1.0)", "jinja2 (>=2.11.2)", "orjson (>=3.2.1)", "pydantic-extra-types (>=2.0.0)", "pydantic-settings (>=2.0.0)", "python-multipart (>=0.0.5)", "pyyaml (>=5.3.1)", "ujson (>=4.0.1,!=4.0.2,!=4.1.0,!=4.2.0,!=4.3.0,!=5.0.0,!=5.1.0)", "uvicorn[standard] (>=0.12.0)"]
[[package]]
name = "filelock"
version = "3.12.4"
@@ -507,37 +487,6 @@ smb = ["smbprotocol"]
ssh = ["paramiko"]
tqdm = ["tqdm"]
[[package]]
name = "gitdb"
version = "4.0.11"
description = "Git Object Database"
optional = false
python-versions = ">=3.7"
files = [
{file = "gitdb-4.0.11-py3-none-any.whl", hash = "sha256:81a3407ddd2ee8df444cbacea00e2d038e40150acfa3001696fe0dcf1d3adfa4"},
{file = "gitdb-4.0.11.tar.gz", hash = "sha256:bf5421126136d6d0af55bc1e7c1af1c397a34f5b7bd79e776cd3e89785c2b04b"},
]
[package.dependencies]
smmap = ">=3.0.1,<6"
[[package]]
name = "gitpython"
version = "3.1.40"
description = "GitPython is a Python library used to interact with Git repositories"
optional = false
python-versions = ">=3.7"
files = [
{file = "GitPython-3.1.40-py3-none-any.whl", hash = "sha256:cf14627d5a8049ffbf49915732e5eddbe8134c3bdb9d476e6182b676fc573f8a"},
{file = "GitPython-3.1.40.tar.gz", hash = "sha256:22b126e9ffb671fdd0c129796343a02bf67bf2994b35449ffc9321aa755e18a4"},
]
[package.dependencies]
gitdb = ">=4.0.1,<5"
[package.extras]
test = ["black", "coverage[toml]", "ddt (>=1.1.1,!=1.4.3)", "mock", "mypy", "pre-commit", "pytest", "pytest-cov", "pytest-instafail", "pytest-subtests", "pytest-sugar"]
[[package]]
name = "greenlet"
version = "3.0.0"
@@ -669,17 +618,6 @@ cli = ["click (==8.*)", "pygments (==2.*)", "rich (>=10,<14)"]
http2 = ["h2 (>=3,<5)"]
socks = ["socksio (==1.*)"]
[[package]]
name = "httpx-sse"
version = "0.3.1"
description = "Consume Server-Sent Event (SSE) messages with HTTPX."
optional = false
python-versions = ">=3.7"
files = [
{file = "httpx-sse-0.3.1.tar.gz", hash = "sha256:3bb3289b2867f50cbdb2fee3eeeefecb1e86653122e164faac0023f1ffc88aea"},
{file = "httpx_sse-0.3.1-py3-none-any.whl", hash = "sha256:7376dd88732892f9b6b549ac0ad05a8e2341172fe7dcf9f8f9c8050934297316"},
]
[[package]]
name = "huggingface-hub"
version = "0.17.3"
@@ -789,25 +727,6 @@ openai = ["openai (>=0,<1)", "tiktoken (>=0.3.2,<0.6.0)"]
qdrant = ["qdrant-client (>=1.3.1,<2.0.0)"]
text-helpers = ["chardet (>=5.1.0,<6.0.0)"]
[[package]]
name = "langchain-cli"
version = "0.0.15"
description = "CLI for interacting with LangChain"
optional = false
python-versions = ">=3.8.1,<4.0"
files = [
{file = "langchain_cli-0.0.15-py3-none-any.whl", hash = "sha256:88102d2bb9d7c9cc99a1da13302a7f95d60cb37b2dab264b808aa6e3887b046f"},
{file = "langchain_cli-0.0.15.tar.gz", hash = "sha256:b7ff1a8338922aadbc3b1a141ea92c0a33aaaa72124dfbfd12049fe9a4a95cec"},
]
[package.dependencies]
fastapi = ">=0.104.0,<0.105.0"
gitpython = ">=3.1.40,<4.0.0"
langserve = {version = ">=0.0.16", extras = ["all"]}
tomli = ">=2.0.1,<3.0.0"
typer = {version = ">=0.9.0,<0.10.0", extras = ["all"]}
uvicorn = ">=0.23.2,<0.24.0"
[[package]]
name = "langchain-experimental"
version = "0.0.36"
@@ -840,30 +759,6 @@ files = [
requests = ">=2,<3"
types-requests = ">=2.31.0.2,<3.0.0.0"
[[package]]
name = "langserve"
version = "0.0.22"
description = ""
optional = false
python-versions = ">=3.8.1,<4.0.0"
files = [
{file = "langserve-0.0.22-py3-none-any.whl", hash = "sha256:908239209959fc23202a09113b42c0e5838d046404a4e725602fe56af96bf340"},
{file = "langserve-0.0.22.tar.gz", hash = "sha256:14a33986668c8d36aa2e58dc66307c021eaac18019d2b99e7fae30f6937650d1"},
]
[package.dependencies]
fastapi = {version = ">=0.90.1", optional = true, markers = "extra == \"server\" or extra == \"all\""}
httpx = ">=0.23.0"
httpx-sse = {version = ">=0.3.1", optional = true, markers = "extra == \"client\" or extra == \"all\""}
langchain = ">=0.0.322"
pydantic = ">=1,<2"
sse-starlette = {version = ">=1.3.0,<2.0.0", optional = true, markers = "extra == \"server\" or extra == \"all\""}
[package.extras]
all = ["fastapi (>=0.90.1)", "httpx-sse (>=0.3.1)", "sse-starlette (>=1.3.0,<2.0.0)"]
client = ["httpx-sse (>=0.3.1)"]
server = ["fastapi (>=0.90.1)", "sse-starlette (>=1.3.0,<2.0.0)"]
[[package]]
name = "langsmith"
version = "0.0.53"
@@ -879,30 +774,6 @@ files = [
pydantic = ">=1,<3"
requests = ">=2,<3"
[[package]]
name = "markdown-it-py"
version = "3.0.0"
description = "Python port of markdown-it. Markdown parsing, done right!"
optional = false
python-versions = ">=3.8"
files = [
{file = "markdown-it-py-3.0.0.tar.gz", hash = "sha256:e3f60a94fa066dc52ec76661e37c851cb232d92f9886b15cb560aaada2df8feb"},
{file = "markdown_it_py-3.0.0-py3-none-any.whl", hash = "sha256:355216845c60bd96232cd8d8c40e8f9765cc86f46880e43a8fd22dc1a1a8cab1"},
]
[package.dependencies]
mdurl = ">=0.1,<1.0"
[package.extras]
benchmarking = ["psutil", "pytest", "pytest-benchmark"]
code-style = ["pre-commit (>=3.0,<4.0)"]
compare = ["commonmark (>=0.9,<1.0)", "markdown (>=3.4,<4.0)", "mistletoe (>=1.0,<2.0)", "mistune (>=2.0,<3.0)", "panflute (>=2.3,<3.0)"]
linkify = ["linkify-it-py (>=1,<3)"]
plugins = ["mdit-py-plugins"]
profiling = ["gprof2dot"]
rtd = ["jupyter_sphinx", "mdit-py-plugins", "myst-parser", "pyyaml", "sphinx", "sphinx-copybutton", "sphinx-design", "sphinx_book_theme"]
testing = ["coverage", "pytest", "pytest-cov", "pytest-regressions"]
[[package]]
name = "marshmallow"
version = "3.20.1"
@@ -923,17 +794,6 @@ docs = ["alabaster (==0.7.13)", "autodocsumm (==0.2.11)", "sphinx (==7.0.1)", "s
lint = ["flake8 (==6.0.0)", "flake8-bugbear (==23.7.10)", "mypy (==1.4.1)", "pre-commit (>=2.4,<4.0)"]
tests = ["pytest", "pytz", "simplejson"]
[[package]]
name = "mdurl"
version = "0.1.2"
description = "Markdown URL utilities"
optional = false
python-versions = ">=3.7"
files = [
{file = "mdurl-0.1.2-py3-none-any.whl", hash = "sha256:84008a41e51615a49fc9966191ff91509e3c40b939176e643fd50a5c2196b8f8"},
{file = "mdurl-0.1.2.tar.gz", hash = "sha256:bb413d29f5eea38f31dd4754dd7377d4465116fb207585f97bf925588687c1ba"},
]
[[package]]
name = "multidict"
version = "6.0.4"
@@ -1078,69 +938,140 @@ files = [
[[package]]
name = "pydantic"
version = "1.10.13"
description = "Data validation and settings management using python type hints"
version = "2.4.2"
description = "Data validation using Python type hints"
optional = false
python-versions = ">=3.7"
files = [
{file = "pydantic-1.10.13-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:efff03cc7a4f29d9009d1c96ceb1e7a70a65cfe86e89d34e4a5f2ab1e5693737"},
{file = "pydantic-1.10.13-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:3ecea2b9d80e5333303eeb77e180b90e95eea8f765d08c3d278cd56b00345d01"},
{file = "pydantic-1.10.13-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1740068fd8e2ef6eb27a20e5651df000978edce6da6803c2bef0bc74540f9548"},
{file = "pydantic-1.10.13-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:84bafe2e60b5e78bc64a2941b4c071a4b7404c5c907f5f5a99b0139781e69ed8"},
{file = "pydantic-1.10.13-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:bc0898c12f8e9c97f6cd44c0ed70d55749eaf783716896960b4ecce2edfd2d69"},
{file = "pydantic-1.10.13-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:654db58ae399fe6434e55325a2c3e959836bd17a6f6a0b6ca8107ea0571d2e17"},
{file = "pydantic-1.10.13-cp310-cp310-win_amd64.whl", hash = "sha256:75ac15385a3534d887a99c713aa3da88a30fbd6204a5cd0dc4dab3d770b9bd2f"},
{file = "pydantic-1.10.13-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:c553f6a156deb868ba38a23cf0df886c63492e9257f60a79c0fd8e7173537653"},
{file = "pydantic-1.10.13-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:5e08865bc6464df8c7d61439ef4439829e3ab62ab1669cddea8dd00cd74b9ffe"},
{file = "pydantic-1.10.13-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e31647d85a2013d926ce60b84f9dd5300d44535a9941fe825dc349ae1f760df9"},
{file = "pydantic-1.10.13-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:210ce042e8f6f7c01168b2d84d4c9eb2b009fe7bf572c2266e235edf14bacd80"},
{file = "pydantic-1.10.13-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:8ae5dd6b721459bfa30805f4c25880e0dd78fc5b5879f9f7a692196ddcb5a580"},
{file = "pydantic-1.10.13-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:f8e81fc5fb17dae698f52bdd1c4f18b6ca674d7068242b2aff075f588301bbb0"},
{file = "pydantic-1.10.13-cp311-cp311-win_amd64.whl", hash = "sha256:61d9dce220447fb74f45e73d7ff3b530e25db30192ad8d425166d43c5deb6df0"},
{file = "pydantic-1.10.13-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:4b03e42ec20286f052490423682016fd80fda830d8e4119f8ab13ec7464c0132"},
{file = "pydantic-1.10.13-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f59ef915cac80275245824e9d771ee939133be38215555e9dc90c6cb148aaeb5"},
{file = "pydantic-1.10.13-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:5a1f9f747851338933942db7af7b6ee8268568ef2ed86c4185c6ef4402e80ba8"},
{file = "pydantic-1.10.13-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:97cce3ae7341f7620a0ba5ef6cf043975cd9d2b81f3aa5f4ea37928269bc1b87"},
{file = "pydantic-1.10.13-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:854223752ba81e3abf663d685f105c64150873cc6f5d0c01d3e3220bcff7d36f"},
{file = "pydantic-1.10.13-cp37-cp37m-win_amd64.whl", hash = "sha256:b97c1fac8c49be29486df85968682b0afa77e1b809aff74b83081cc115e52f33"},
{file = "pydantic-1.10.13-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:c958d053453a1c4b1c2062b05cd42d9d5c8eb67537b8d5a7e3c3032943ecd261"},
{file = "pydantic-1.10.13-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:4c5370a7edaac06daee3af1c8b1192e305bc102abcbf2a92374b5bc793818599"},
{file = "pydantic-1.10.13-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7d6f6e7305244bddb4414ba7094ce910560c907bdfa3501e9db1a7fd7eaea127"},
{file = "pydantic-1.10.13-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:d3a3c792a58e1622667a2837512099eac62490cdfd63bd407993aaf200a4cf1f"},
{file = "pydantic-1.10.13-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:c636925f38b8db208e09d344c7aa4f29a86bb9947495dd6b6d376ad10334fb78"},
{file = "pydantic-1.10.13-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:678bcf5591b63cc917100dc50ab6caebe597ac67e8c9ccb75e698f66038ea953"},
{file = "pydantic-1.10.13-cp38-cp38-win_amd64.whl", hash = "sha256:6cf25c1a65c27923a17b3da28a0bdb99f62ee04230c931d83e888012851f4e7f"},
{file = "pydantic-1.10.13-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:8ef467901d7a41fa0ca6db9ae3ec0021e3f657ce2c208e98cd511f3161c762c6"},
{file = "pydantic-1.10.13-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:968ac42970f57b8344ee08837b62f6ee6f53c33f603547a55571c954a4225691"},
{file = "pydantic-1.10.13-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9849f031cf8a2f0a928fe885e5a04b08006d6d41876b8bbd2fc68a18f9f2e3fd"},
{file = "pydantic-1.10.13-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:56e3ff861c3b9c6857579de282ce8baabf443f42ffba355bf070770ed63e11e1"},
{file = "pydantic-1.10.13-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:9f00790179497767aae6bcdc36355792c79e7bbb20b145ff449700eb076c5f96"},
{file = "pydantic-1.10.13-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:75b297827b59bc229cac1a23a2f7a4ac0031068e5be0ce385be1462e7e17a35d"},
{file = "pydantic-1.10.13-cp39-cp39-win_amd64.whl", hash = "sha256:e70ca129d2053fb8b728ee7d1af8e553a928d7e301a311094b8a0501adc8763d"},
{file = "pydantic-1.10.13-py3-none-any.whl", hash = "sha256:b87326822e71bd5f313e7d3bfdc77ac3247035ac10b0c0618bd99dcf95b1e687"},
{file = "pydantic-1.10.13.tar.gz", hash = "sha256:32c8b48dcd3b2ac4e78b0ba4af3a2c2eb6048cb75202f0ea7b34feb740efc340"},
{file = "pydantic-2.4.2-py3-none-any.whl", hash = "sha256:bc3ddf669d234f4220e6e1c4d96b061abe0998185a8d7855c0126782b7abc8c1"},
{file = "pydantic-2.4.2.tar.gz", hash = "sha256:94f336138093a5d7f426aac732dcfe7ab4eb4da243c88f891d65deb4a2556ee7"},
]
[package.dependencies]
typing-extensions = ">=4.2.0"
annotated-types = ">=0.4.0"
pydantic-core = "2.10.1"
typing-extensions = ">=4.6.1"
[package.extras]
dotenv = ["python-dotenv (>=0.10.4)"]
email = ["email-validator (>=1.0.3)"]
email = ["email-validator (>=2.0.0)"]
[[package]]
name = "pygments"
version = "2.16.1"
description = "Pygments is a syntax highlighting package written in Python."
name = "pydantic-core"
version = "2.10.1"
description = ""
optional = false
python-versions = ">=3.7"
files = [
{file = "Pygments-2.16.1-py3-none-any.whl", hash = "sha256:13fc09fa63bc8d8671a6d247e1eb303c4b343eaee81d861f3404db2935653692"},
{file = "Pygments-2.16.1.tar.gz", hash = "sha256:1daff0494820c69bc8941e407aa20f577374ee88364ee10a98fdbe0aece96e29"},
{file = "pydantic_core-2.10.1-cp310-cp310-macosx_10_7_x86_64.whl", hash = "sha256:d64728ee14e667ba27c66314b7d880b8eeb050e58ffc5fec3b7a109f8cddbd63"},
{file = "pydantic_core-2.10.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:48525933fea744a3e7464c19bfede85df4aba79ce90c60b94d8b6e1eddd67096"},
{file = "pydantic_core-2.10.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ef337945bbd76cce390d1b2496ccf9f90b1c1242a3a7bc242ca4a9fc5993427a"},
{file = "pydantic_core-2.10.1-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:a1392e0638af203cee360495fd2cfdd6054711f2db5175b6e9c3c461b76f5175"},
{file = "pydantic_core-2.10.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:0675ba5d22de54d07bccde38997e780044dcfa9a71aac9fd7d4d7a1d2e3e65f7"},
{file = "pydantic_core-2.10.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:128552af70a64660f21cb0eb4876cbdadf1a1f9d5de820fed6421fa8de07c893"},
{file = "pydantic_core-2.10.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8f6e6aed5818c264412ac0598b581a002a9f050cb2637a84979859e70197aa9e"},
{file = "pydantic_core-2.10.1-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:ecaac27da855b8d73f92123e5f03612b04c5632fd0a476e469dfc47cd37d6b2e"},
{file = "pydantic_core-2.10.1-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:b3c01c2fb081fced3bbb3da78510693dc7121bb893a1f0f5f4b48013201f362e"},
{file = "pydantic_core-2.10.1-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:92f675fefa977625105708492850bcbc1182bfc3e997f8eecb866d1927c98ae6"},
{file = "pydantic_core-2.10.1-cp310-none-win32.whl", hash = "sha256:420a692b547736a8d8703c39ea935ab5d8f0d2573f8f123b0a294e49a73f214b"},
{file = "pydantic_core-2.10.1-cp310-none-win_amd64.whl", hash = "sha256:0880e239827b4b5b3e2ce05e6b766a7414e5f5aedc4523be6b68cfbc7f61c5d0"},
{file = "pydantic_core-2.10.1-cp311-cp311-macosx_10_7_x86_64.whl", hash = "sha256:073d4a470b195d2b2245d0343569aac7e979d3a0dcce6c7d2af6d8a920ad0bea"},
{file = "pydantic_core-2.10.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:600d04a7b342363058b9190d4e929a8e2e715c5682a70cc37d5ded1e0dd370b4"},
{file = "pydantic_core-2.10.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:39215d809470f4c8d1881758575b2abfb80174a9e8daf8f33b1d4379357e417c"},
{file = "pydantic_core-2.10.1-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:eeb3d3d6b399ffe55f9a04e09e635554012f1980696d6b0aca3e6cf42a17a03b"},
{file = "pydantic_core-2.10.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:a7a7902bf75779bc12ccfc508bfb7a4c47063f748ea3de87135d433a4cca7a2f"},
{file = "pydantic_core-2.10.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:3625578b6010c65964d177626fde80cf60d7f2e297d56b925cb5cdeda6e9925a"},
{file = "pydantic_core-2.10.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:caa48fc31fc7243e50188197b5f0c4228956f97b954f76da157aae7f67269ae8"},
{file = "pydantic_core-2.10.1-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:07ec6d7d929ae9c68f716195ce15e745b3e8fa122fc67698ac6498d802ed0fa4"},
{file = "pydantic_core-2.10.1-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:e6f31a17acede6a8cd1ae2d123ce04d8cca74056c9d456075f4f6f85de055607"},
{file = "pydantic_core-2.10.1-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:d8f1ebca515a03e5654f88411420fea6380fc841d1bea08effb28184e3d4899f"},
{file = "pydantic_core-2.10.1-cp311-none-win32.whl", hash = "sha256:6db2eb9654a85ada248afa5a6db5ff1cf0f7b16043a6b070adc4a5be68c716d6"},
{file = "pydantic_core-2.10.1-cp311-none-win_amd64.whl", hash = "sha256:4a5be350f922430997f240d25f8219f93b0c81e15f7b30b868b2fddfc2d05f27"},
{file = "pydantic_core-2.10.1-cp311-none-win_arm64.whl", hash = "sha256:5fdb39f67c779b183b0c853cd6b45f7db84b84e0571b3ef1c89cdb1dfc367325"},
{file = "pydantic_core-2.10.1-cp312-cp312-macosx_10_7_x86_64.whl", hash = "sha256:b1f22a9ab44de5f082216270552aa54259db20189e68fc12484873d926426921"},
{file = "pydantic_core-2.10.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:8572cadbf4cfa95fb4187775b5ade2eaa93511f07947b38f4cd67cf10783b118"},
{file = "pydantic_core-2.10.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:db9a28c063c7c00844ae42a80203eb6d2d6bbb97070cfa00194dff40e6f545ab"},
{file = "pydantic_core-2.10.1-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:0e2a35baa428181cb2270a15864ec6286822d3576f2ed0f4cd7f0c1708472aff"},
{file = "pydantic_core-2.10.1-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:05560ab976012bf40f25d5225a58bfa649bb897b87192a36c6fef1ab132540d7"},
{file = "pydantic_core-2.10.1-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:d6495008733c7521a89422d7a68efa0a0122c99a5861f06020ef5b1f51f9ba7c"},
{file = "pydantic_core-2.10.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:14ac492c686defc8e6133e3a2d9eaf5261b3df26b8ae97450c1647286750b901"},
{file = "pydantic_core-2.10.1-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:8282bab177a9a3081fd3d0a0175a07a1e2bfb7fcbbd949519ea0980f8a07144d"},
{file = "pydantic_core-2.10.1-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:aafdb89fdeb5fe165043896817eccd6434aee124d5ee9b354f92cd574ba5e78f"},
{file = "pydantic_core-2.10.1-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:f6defd966ca3b187ec6c366604e9296f585021d922e666b99c47e78738b5666c"},
{file = "pydantic_core-2.10.1-cp312-none-win32.whl", hash = "sha256:7c4d1894fe112b0864c1fa75dffa045720a194b227bed12f4be7f6045b25209f"},
{file = "pydantic_core-2.10.1-cp312-none-win_amd64.whl", hash = "sha256:5994985da903d0b8a08e4935c46ed8daf5be1cf217489e673910951dc533d430"},
{file = "pydantic_core-2.10.1-cp312-none-win_arm64.whl", hash = "sha256:0d8a8adef23d86d8eceed3e32e9cca8879c7481c183f84ed1a8edc7df073af94"},
{file = "pydantic_core-2.10.1-cp37-cp37m-macosx_10_7_x86_64.whl", hash = "sha256:9badf8d45171d92387410b04639d73811b785b5161ecadabf056ea14d62d4ede"},
{file = "pydantic_core-2.10.1-cp37-cp37m-macosx_11_0_arm64.whl", hash = "sha256:ebedb45b9feb7258fac0a268a3f6bec0a2ea4d9558f3d6f813f02ff3a6dc6698"},
{file = "pydantic_core-2.10.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:cfe1090245c078720d250d19cb05d67e21a9cd7c257698ef139bc41cf6c27b4f"},
{file = "pydantic_core-2.10.1-cp37-cp37m-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:e357571bb0efd65fd55f18db0a2fb0ed89d0bb1d41d906b138f088933ae618bb"},
{file = "pydantic_core-2.10.1-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:b3dcd587b69bbf54fc04ca157c2323b8911033e827fffaecf0cafa5a892a0904"},
{file = "pydantic_core-2.10.1-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:9c120c9ce3b163b985a3b966bb701114beb1da4b0468b9b236fc754783d85aa3"},
{file = "pydantic_core-2.10.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:15d6bca84ffc966cc9976b09a18cf9543ed4d4ecbd97e7086f9ce9327ea48891"},
{file = "pydantic_core-2.10.1-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:5cabb9710f09d5d2e9e2748c3e3e20d991a4c5f96ed8f1132518f54ab2967221"},
{file = "pydantic_core-2.10.1-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:82f55187a5bebae7d81d35b1e9aaea5e169d44819789837cdd4720d768c55d15"},
{file = "pydantic_core-2.10.1-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:1d40f55222b233e98e3921df7811c27567f0e1a4411b93d4c5c0f4ce131bc42f"},
{file = "pydantic_core-2.10.1-cp37-none-win32.whl", hash = "sha256:14e09ff0b8fe6e46b93d36a878f6e4a3a98ba5303c76bb8e716f4878a3bee92c"},
{file = "pydantic_core-2.10.1-cp37-none-win_amd64.whl", hash = "sha256:1396e81b83516b9d5c9e26a924fa69164156c148c717131f54f586485ac3c15e"},
{file = "pydantic_core-2.10.1-cp38-cp38-macosx_10_7_x86_64.whl", hash = "sha256:6835451b57c1b467b95ffb03a38bb75b52fb4dc2762bb1d9dbed8de31ea7d0fc"},
{file = "pydantic_core-2.10.1-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:b00bc4619f60c853556b35f83731bd817f989cba3e97dc792bb8c97941b8053a"},
{file = "pydantic_core-2.10.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0fa467fd300a6f046bdb248d40cd015b21b7576c168a6bb20aa22e595c8ffcdd"},
{file = "pydantic_core-2.10.1-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:d99277877daf2efe074eae6338453a4ed54a2d93fb4678ddfe1209a0c93a2468"},
{file = "pydantic_core-2.10.1-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:fa7db7558607afeccb33c0e4bf1c9a9a835e26599e76af6fe2fcea45904083a6"},
{file = "pydantic_core-2.10.1-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:aad7bd686363d1ce4ee930ad39f14e1673248373f4a9d74d2b9554f06199fb58"},
{file = "pydantic_core-2.10.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:443fed67d33aa85357464f297e3d26e570267d1af6fef1c21ca50921d2976302"},
{file = "pydantic_core-2.10.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:042462d8d6ba707fd3ce9649e7bf268633a41018d6a998fb5fbacb7e928a183e"},
{file = "pydantic_core-2.10.1-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:ecdbde46235f3d560b18be0cb706c8e8ad1b965e5c13bbba7450c86064e96561"},
{file = "pydantic_core-2.10.1-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:ed550ed05540c03f0e69e6d74ad58d026de61b9eaebebbaaf8873e585cbb18de"},
{file = "pydantic_core-2.10.1-cp38-none-win32.whl", hash = "sha256:8cdbbd92154db2fec4ec973d45c565e767ddc20aa6dbaf50142676484cbff8ee"},
{file = "pydantic_core-2.10.1-cp38-none-win_amd64.whl", hash = "sha256:9f6f3e2598604956480f6c8aa24a3384dbf6509fe995d97f6ca6103bb8c2534e"},
{file = "pydantic_core-2.10.1-cp39-cp39-macosx_10_7_x86_64.whl", hash = "sha256:655f8f4c8d6a5963c9a0687793da37b9b681d9ad06f29438a3b2326d4e6b7970"},
{file = "pydantic_core-2.10.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:e570ffeb2170e116a5b17e83f19911020ac79d19c96f320cbfa1fa96b470185b"},
{file = "pydantic_core-2.10.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:64322bfa13e44c6c30c518729ef08fda6026b96d5c0be724b3c4ae4da939f875"},
{file = "pydantic_core-2.10.1-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:485a91abe3a07c3a8d1e082ba29254eea3e2bb13cbbd4351ea4e5a21912cc9b0"},
{file = "pydantic_core-2.10.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:f7c2b8eb9fc872e68b46eeaf835e86bccc3a58ba57d0eedc109cbb14177be531"},
{file = "pydantic_core-2.10.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:a5cb87bdc2e5f620693148b5f8f842d293cae46c5f15a1b1bf7ceeed324a740c"},
{file = "pydantic_core-2.10.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:25bd966103890ccfa028841a8f30cebcf5875eeac8c4bde4fe221364c92f0c9a"},
{file = "pydantic_core-2.10.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:f323306d0556351735b54acbf82904fe30a27b6a7147153cbe6e19aaaa2aa429"},
{file = "pydantic_core-2.10.1-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:0c27f38dc4fbf07b358b2bc90edf35e82d1703e22ff2efa4af4ad5de1b3833e7"},
{file = "pydantic_core-2.10.1-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:f1365e032a477c1430cfe0cf2856679529a2331426f8081172c4a74186f1d595"},
{file = "pydantic_core-2.10.1-cp39-none-win32.whl", hash = "sha256:a1c311fd06ab3b10805abb72109f01a134019739bd3286b8ae1bc2fc4e50c07a"},
{file = "pydantic_core-2.10.1-cp39-none-win_amd64.whl", hash = "sha256:ae8a8843b11dc0b03b57b52793e391f0122e740de3df1474814c700d2622950a"},
{file = "pydantic_core-2.10.1-pp310-pypy310_pp73-macosx_10_7_x86_64.whl", hash = "sha256:d43002441932f9a9ea5d6f9efaa2e21458221a3a4b417a14027a1d530201ef1b"},
{file = "pydantic_core-2.10.1-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:fcb83175cc4936a5425dde3356f079ae03c0802bbdf8ff82c035f8a54b333521"},
{file = "pydantic_core-2.10.1-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:962ed72424bf1f72334e2f1e61b68f16c0e596f024ca7ac5daf229f7c26e4208"},
{file = "pydantic_core-2.10.1-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2cf5bb4dd67f20f3bbc1209ef572a259027c49e5ff694fa56bed62959b41e1f9"},
{file = "pydantic_core-2.10.1-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:e544246b859f17373bed915182ab841b80849ed9cf23f1f07b73b7c58baee5fb"},
{file = "pydantic_core-2.10.1-pp310-pypy310_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:c0877239307b7e69d025b73774e88e86ce82f6ba6adf98f41069d5b0b78bd1bf"},
{file = "pydantic_core-2.10.1-pp310-pypy310_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:53df009d1e1ba40f696f8995683e067e3967101d4bb4ea6f667931b7d4a01357"},
{file = "pydantic_core-2.10.1-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:a1254357f7e4c82e77c348dabf2d55f1d14d19d91ff025004775e70a6ef40ada"},
{file = "pydantic_core-2.10.1-pp37-pypy37_pp73-macosx_10_7_x86_64.whl", hash = "sha256:524ff0ca3baea164d6d93a32c58ac79eca9f6cf713586fdc0adb66a8cdeab96a"},
{file = "pydantic_core-2.10.1-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3f0ac9fb8608dbc6eaf17956bf623c9119b4db7dbb511650910a82e261e6600f"},
{file = "pydantic_core-2.10.1-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:320f14bd4542a04ab23747ff2c8a778bde727158b606e2661349557f0770711e"},
{file = "pydantic_core-2.10.1-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:63974d168b6233b4ed6a0046296803cb13c56637a7b8106564ab575926572a55"},
{file = "pydantic_core-2.10.1-pp37-pypy37_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:417243bf599ba1f1fef2bb8c543ceb918676954734e2dcb82bf162ae9d7bd514"},
{file = "pydantic_core-2.10.1-pp37-pypy37_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:dda81e5ec82485155a19d9624cfcca9be88a405e2857354e5b089c2a982144b2"},
{file = "pydantic_core-2.10.1-pp37-pypy37_pp73-win_amd64.whl", hash = "sha256:14cfbb00959259e15d684505263d5a21732b31248a5dd4941f73a3be233865b9"},
{file = "pydantic_core-2.10.1-pp38-pypy38_pp73-macosx_10_7_x86_64.whl", hash = "sha256:631cb7415225954fdcc2a024119101946793e5923f6c4d73a5914d27eb3d3a05"},
{file = "pydantic_core-2.10.1-pp38-pypy38_pp73-macosx_11_0_arm64.whl", hash = "sha256:bec7dd208a4182e99c5b6c501ce0b1f49de2802448d4056091f8e630b28e9a52"},
{file = "pydantic_core-2.10.1-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:149b8a07712f45b332faee1a2258d8ef1fb4a36f88c0c17cb687f205c5dc6e7d"},
{file = "pydantic_core-2.10.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4d966c47f9dd73c2d32a809d2be529112d509321c5310ebf54076812e6ecd884"},
{file = "pydantic_core-2.10.1-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:7eb037106f5c6b3b0b864ad226b0b7ab58157124161d48e4b30c4a43fef8bc4b"},
{file = "pydantic_core-2.10.1-pp38-pypy38_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:154ea7c52e32dce13065dbb20a4a6f0cc012b4f667ac90d648d36b12007fa9f7"},
{file = "pydantic_core-2.10.1-pp38-pypy38_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:e562617a45b5a9da5be4abe72b971d4f00bf8555eb29bb91ec2ef2be348cd132"},
{file = "pydantic_core-2.10.1-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:f23b55eb5464468f9e0e9a9935ce3ed2a870608d5f534025cd5536bca25b1402"},
{file = "pydantic_core-2.10.1-pp39-pypy39_pp73-macosx_10_7_x86_64.whl", hash = "sha256:e9121b4009339b0f751955baf4543a0bfd6bc3f8188f8056b1a25a2d45099934"},
{file = "pydantic_core-2.10.1-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:0523aeb76e03f753b58be33b26540880bac5aa54422e4462404c432230543f33"},
{file = "pydantic_core-2.10.1-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2e0e2959ef5d5b8dc9ef21e1a305a21a36e254e6a34432d00c72a92fdc5ecda5"},
{file = "pydantic_core-2.10.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:da01bec0a26befab4898ed83b362993c844b9a607a86add78604186297eb047e"},
{file = "pydantic_core-2.10.1-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:f2e9072d71c1f6cfc79a36d4484c82823c560e6f5599c43c1ca6b5cdbd54f881"},
{file = "pydantic_core-2.10.1-pp39-pypy39_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:f36a3489d9e28fe4b67be9992a23029c3cec0babc3bd9afb39f49844a8c721c5"},
{file = "pydantic_core-2.10.1-pp39-pypy39_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:f64f82cc3443149292b32387086d02a6c7fb39b8781563e0ca7b8d7d9cf72bd7"},
{file = "pydantic_core-2.10.1-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:b4a6db486ac8e99ae696e09efc8b2b9fea67b63c8f88ba7a1a16c24a057a0776"},
{file = "pydantic_core-2.10.1.tar.gz", hash = "sha256:0f8682dbdd2f67f8e1edddcbffcc29f60a6182b4901c367fc8c1c40d30bb0a82"},
]
[package.extras]
plugins = ["importlib-metadata"]
[package.dependencies]
typing-extensions = ">=4.6.0,<4.7.0 || >4.7.0"
[[package]]
name = "pyyaml"
@@ -1212,47 +1143,6 @@ urllib3 = ">=1.21.1,<3"
socks = ["PySocks (>=1.5.6,!=1.5.7)"]
use-chardet-on-py3 = ["chardet (>=3.0.2,<6)"]
[[package]]
name = "rich"
version = "13.6.0"
description = "Render rich text, tables, progress bars, syntax highlighting, markdown and more to the terminal"
optional = false
python-versions = ">=3.7.0"
files = [
{file = "rich-13.6.0-py3-none-any.whl", hash = "sha256:2b38e2fe9ca72c9a00170a1a2d20c63c790d0e10ef1fe35eba76e1e7b1d7d245"},
{file = "rich-13.6.0.tar.gz", hash = "sha256:5c14d22737e6d5084ef4771b62d5d4363165b403455a30a1c8ca39dc7b644bef"},
]
[package.dependencies]
markdown-it-py = ">=2.2.0"
pygments = ">=2.13.0,<3.0.0"
typing-extensions = {version = ">=4.0.0,<5.0", markers = "python_version < \"3.9\""}
[package.extras]
jupyter = ["ipywidgets (>=7.5.1,<9)"]
[[package]]
name = "shellingham"
version = "1.5.4"
description = "Tool to Detect Surrounding Shell"
optional = false
python-versions = ">=3.7"
files = [
{file = "shellingham-1.5.4-py2.py3-none-any.whl", hash = "sha256:7ecfff8f2fd72616f7481040475a65b2bf8af90a56c89140852d1120324e8686"},
{file = "shellingham-1.5.4.tar.gz", hash = "sha256:8dbca0739d487e5bd35ab3ca4b36e11c4078f3a234bfce294b0a0291363404de"},
]
[[package]]
name = "smmap"
version = "5.0.1"
description = "A pure Python implementation of a sliding window memory map manager"
optional = false
python-versions = ">=3.7"
files = [
{file = "smmap-5.0.1-py3-none-any.whl", hash = "sha256:e6d8668fa5f93e706934a62d7b4db19c8d9eb8cf2adbb75ef1b675aa332b69da"},
{file = "smmap-5.0.1.tar.gz", hash = "sha256:dceeb6c0028fdb6734471eb07c0cd2aae706ccaecab45965ee83f11c8d3b1f62"},
]
[[package]]
name = "sniffio"
version = "1.3.0"
@@ -1302,38 +1192,6 @@ postgresql-psycopgbinary = ["psycopg[binary] (>=3.0.7)"]
pymysql = ["pymysql"]
sqlcipher = ["sqlcipher3_binary"]
[[package]]
name = "sse-starlette"
version = "1.6.5"
description = "\"SSE plugin for Starlette\""
optional = false
python-versions = ">=3.8"
files = [
{file = "sse-starlette-1.6.5.tar.gz", hash = "sha256:819f2c421fb37067380fe3dcaba246c476b02651b7bb7601099a378ad802a0ac"},
{file = "sse_starlette-1.6.5-py3-none-any.whl", hash = "sha256:68b6b7eb49be0c72a2af80a055994c13afcaa4761b29226beb208f954c25a642"},
]
[package.dependencies]
starlette = "*"
[[package]]
name = "starlette"
version = "0.27.0"
description = "The little ASGI library that shines."
optional = false
python-versions = ">=3.7"
files = [
{file = "starlette-0.27.0-py3-none-any.whl", hash = "sha256:918416370e846586541235ccd38a474c08b80443ed31c578a418e2209b3eef91"},
{file = "starlette-0.27.0.tar.gz", hash = "sha256:6a6b0d042acb8d469a01eba54e9cda6cbd24ac602c4cd016723117d6a7e73b75"},
]
[package.dependencies]
anyio = ">=3.4.0,<5"
typing-extensions = {version = ">=3.10.0", markers = "python_version < \"3.10\""}
[package.extras]
full = ["httpx (>=0.22.0)", "itsdangerous", "jinja2", "python-multipart", "pyyaml"]
[[package]]
name = "tenacity"
version = "8.2.3"
@@ -1463,17 +1321,6 @@ dev = ["tokenizers[testing]"]
docs = ["setuptools_rust", "sphinx", "sphinx_rtd_theme"]
testing = ["black (==22.3)", "datasets", "numpy", "pytest", "requests"]
[[package]]
name = "tomli"
version = "2.0.1"
description = "A lil' TOML parser"
optional = false
python-versions = ">=3.7"
files = [
{file = "tomli-2.0.1-py3-none-any.whl", hash = "sha256:939de3e7a6161af0c887ef91b7d41a53e7c5a1ca976325f429cb46ea9bc30ecc"},
{file = "tomli-2.0.1.tar.gz", hash = "sha256:de526c12914f0c550d15924c62d72abc48d6fe7364aa87328337a31007fe8a4f"},
]
[[package]]
name = "tqdm"
version = "4.66.1"
@@ -1494,30 +1341,6 @@ notebook = ["ipywidgets (>=6)"]
slack = ["slack-sdk"]
telegram = ["requests"]
[[package]]
name = "typer"
version = "0.9.0"
description = "Typer, build great CLIs. Easy to code. Based on Python type hints."
optional = false
python-versions = ">=3.6"
files = [
{file = "typer-0.9.0-py3-none-any.whl", hash = "sha256:5d96d986a21493606a358cae4461bd8cdf83cbf33a5aa950ae629ca3b51467ee"},
{file = "typer-0.9.0.tar.gz", hash = "sha256:50922fd79aea2f4751a8e0408ff10d2662bd0c8bbfa84755a699f3bada2978b2"},
]
[package.dependencies]
click = ">=7.1.1,<9.0.0"
colorama = {version = ">=0.4.3,<0.5.0", optional = true, markers = "extra == \"all\""}
rich = {version = ">=10.11.0,<14.0.0", optional = true, markers = "extra == \"all\""}
shellingham = {version = ">=1.3.0,<2.0.0", optional = true, markers = "extra == \"all\""}
typing-extensions = ">=3.7.4.3"
[package.extras]
all = ["colorama (>=0.4.3,<0.5.0)", "rich (>=10.11.0,<14.0.0)", "shellingham (>=1.3.0,<2.0.0)"]
dev = ["autoflake (>=1.3.1,<2.0.0)", "flake8 (>=3.8.3,<4.0.0)", "pre-commit (>=2.17.0,<3.0.0)"]
doc = ["cairosvg (>=2.5.2,<3.0.0)", "mdx-include (>=1.4.1,<2.0.0)", "mkdocs (>=1.1.2,<2.0.0)", "mkdocs-material (>=8.1.4,<9.0.0)", "pillow (>=9.3.0,<10.0.0)"]
test = ["black (>=22.3.0,<23.0.0)", "coverage (>=6.2,<7.0)", "isort (>=5.0.6,<6.0.0)", "mypy (==0.910)", "pytest (>=4.4.0,<8.0.0)", "pytest-cov (>=2.10.0,<5.0.0)", "pytest-sugar (>=0.9.4,<0.10.0)", "pytest-xdist (>=1.32.0,<4.0.0)", "rich (>=10.11.0,<14.0.0)", "shellingham (>=1.3.0,<2.0.0)"]
[[package]]
name = "types-requests"
version = "2.31.0.10"
@@ -1575,25 +1398,6 @@ secure = ["certifi", "cryptography (>=1.9)", "idna (>=2.0.0)", "pyopenssl (>=17.
socks = ["pysocks (>=1.5.6,!=1.5.7,<2.0)"]
zstd = ["zstandard (>=0.18.0)"]
[[package]]
name = "uvicorn"
version = "0.23.2"
description = "The lightning-fast ASGI server."
optional = false
python-versions = ">=3.8"
files = [
{file = "uvicorn-0.23.2-py3-none-any.whl", hash = "sha256:1f9be6558f01239d4fdf22ef8126c39cb1ad0addf76c40e760549d2c2f43ab53"},
{file = "uvicorn-0.23.2.tar.gz", hash = "sha256:4d3cc12d7727ba72b64d12d3cc7743124074c0a69f7b201512fc50c3e3f1569a"},
]
[package.dependencies]
click = ">=7.0"
h11 = ">=0.8"
typing-extensions = {version = ">=4.0", markers = "python_version < \"3.11\""}
[package.extras]
standard = ["colorama (>=0.4)", "httptools (>=0.5.0)", "python-dotenv (>=0.13)", "pyyaml (>=5.1)", "uvloop (>=0.14.0,!=0.15.0,!=0.15.1)", "watchfiles (>=0.13)", "websockets (>=10.4)"]
[[package]]
name = "yarl"
version = "1.9.2"
@@ -1684,4 +1488,4 @@ multidict = ">=4.0"
[metadata]
lock-version = "2.0"
python-versions = ">=3.8.1,<4.0"
content-hash = "32425f4fb72d6ab52d341ec1a095ed74382a6245dc3e85cffcc0b24d192039e8"
content-hash = "a48cb894a83d627fbdc277beb79a81064f1e236854d3e214ca4f8762d44b91cd"

View File

@@ -14,9 +14,6 @@ anthropic = ">=0.5.0"
langchainhub = ">=0.1.13"
langchain-experimental = "^0.0.36"
[tool.poetry.group.dev.dependencies]
langchain-cli = ">=0.0.15"
[tool.langserve]
export_module = "extraction_anthropic_functions"
export_attr = "chain"

Some files were not shown because too many files have changed in this diff Show More