Compare commits

..

8 Commits

Author SHA1 Message Date
Harrison Chase
ec65ca00c1 cr 2022-12-04 20:34:53 -08:00
Harrison Chase
64ea17bd21 Merge branch 'master' into harrison/fix_logging_api 2022-12-04 20:29:25 -08:00
Harrison Chase
ec842b7e7b fix logging in api chain 2022-12-04 20:29:19 -08:00
Harrison Chase
bf8bed493f wip logging 2022-12-04 19:31:57 -08:00
Harrison Chase
ad85f3bdbc Merge branch 'master' into harrison/logger 2022-12-04 18:52:10 -08:00
Harrison Chase
c2580cf401 stash 2022-12-04 16:35:13 -08:00
Harrison Chase
7ec210767a Merge branch 'master' into harrison/logger 2022-12-04 08:52:40 -08:00
Harrison Chase
2bef195a1f stash 2022-12-04 08:45:34 -08:00
2304 changed files with 10316 additions and 488999 deletions

View File

@@ -1,37 +0,0 @@
# Dev container
This project includes a [dev container](https://containers.dev/), which lets you use a container as a full-featured dev environment.
You can use the dev container configuration in this folder to build and run the app without needing to install any of its tools locally! You can use it in [GitHub Codespaces](https://github.com/features/codespaces) or the [VS Code Dev Containers extension](https://marketplace.visualstudio.com/items?itemName=ms-vscode-remote.remote-containers).
## GitHub Codespaces
[![Open in GitHub Codespaces](https://github.com/codespaces/badge.svg)](https://codespaces.new/hwchase17/langchain)
You may use the button above, or follow these steps to open this repo in a Codespace:
1. Click the **Code** drop-down menu at the top of https://github.com/hwchase17/langchain.
1. Click on the **Codespaces** tab.
1. Click **Create codespace on master** .
For more info, check out the [GitHub documentation](https://docs.github.com/en/free-pro-team@latest/github/developing-online-with-codespaces/creating-a-codespace#creating-a-codespace).
## VS Code Dev Containers
[![Open in Dev Containers](https://img.shields.io/static/v1?label=Dev%20Containers&message=Open&color=blue&logo=visualstudiocode)](https://vscode.dev/redirect?url=vscode://ms-vscode-remote.remote-containers/cloneInVolume?url=https://github.com/hwchase17/langchain)
If you already have VS Code and Docker installed, you can use the button above to get started. This will cause VS Code to automatically install the Dev Containers extension if needed, clone the source code into a container volume, and spin up a dev container for use.
You can also follow these steps to open this repo in a container using the VS Code Dev Containers extension:
1. If this is your first time using a development container, please ensure your system meets the pre-reqs (i.e. have Docker installed) in the [getting started steps](https://aka.ms/vscode-remote/containers/getting-started).
2. Open a locally cloned copy of the code:
- Clone this repository to your local filesystem.
- Press <kbd>F1</kbd> and select the **Dev Containers: Open Folder in Container...** command.
- Select the cloned copy of this folder, wait for the container to start, and try things out!
You can learn more in the [Dev Containers documentation](https://code.visualstudio.com/docs/devcontainers/containers).
## Tips and tricks
* If you are working with the same repository folder in a container and Windows, you'll want consistent line endings (otherwise you may see hundreds of changes in the SCM view). The `.gitattributes` file in the root of this repo will disable line ending conversion and should prevent this. See [tips and tricks](https://code.visualstudio.com/docs/devcontainers/tips-and-tricks#_resolving-git-line-ending-issues-in-containers-resulting-in-many-modified-files) for more info.
* If you'd like to review the contents of the image used in this dev container, you can check it out in the [devcontainers/images](https://github.com/devcontainers/images/tree/main/src/python) repo.

View File

@@ -1,36 +0,0 @@
// For format details, see https://aka.ms/devcontainer.json. For config options, see the
// README at: https://github.com/devcontainers/templates/tree/main/src/docker-existing-docker-compose
{
// Name for the dev container
"name": "langchain",
// Point to a Docker Compose file
"dockerComposeFile": "./docker-compose.yaml",
// Required when using Docker Compose. The name of the service to connect to once running
"service": "langchain",
// The optional 'workspaceFolder' property is the path VS Code should open by default when
// connected. This is typically a file mount in .devcontainer/docker-compose.yml
"workspaceFolder": "/workspaces/${localWorkspaceFolderBasename}",
// Prevent the container from shutting down
"overrideCommand": true
// Features to add to the dev container. More info: https://containers.dev/features
// "features": {
// "ghcr.io/devcontainers-contrib/features/poetry:2": {}
// }
// Use 'forwardPorts' to make a list of ports inside the container available locally.
// "forwardPorts": [],
// Uncomment the next line to run commands after the container is created.
// "postCreateCommand": "cat /etc/os-release",
// Configure tool-specific properties.
// "customizations": {},
// Uncomment to connect as root instead. More info: https://aka.ms/dev-containers-non-root.
// "remoteUser": "root"
}

View File

@@ -1,32 +0,0 @@
version: '3'
services:
langchain:
build:
dockerfile: dev.Dockerfile
context: ..
volumes:
# Update this to wherever you want VS Code to mount the folder of your project
- ..:/workspaces:cached
networks:
- langchain-network
# environment:
# MONGO_ROOT_USERNAME: root
# MONGO_ROOT_PASSWORD: example123
# depends_on:
# - mongo
# mongo:
# image: mongo
# restart: unless-stopped
# environment:
# MONGO_INITDB_ROOT_USERNAME: root
# MONGO_INITDB_ROOT_PASSWORD: example123
# ports:
# - "27017:27017"
# networks:
# - langchain-network
networks:
langchain-network:
driver: bridge

View File

@@ -1,6 +0,0 @@
.venv
.github
.git
.mypy_cache
.pytest_cache
Dockerfile

View File

@@ -1,6 +1,5 @@
[flake8]
exclude =
venv
.venv
__pycache__
notebooks

3
.gitattributes vendored
View File

@@ -1,3 +0,0 @@
* text=auto eol=lf
*.{cmd,[cC][mM][dD]} text eol=crlf
*.{bat,[bB][aA][tT]} text eol=crlf

View File

@@ -1,249 +0,0 @@
# Contributing to LangChain
Hi there! Thank you for even being interested in contributing to LangChain.
As an open source project in a rapidly developing field, we are extremely open
to contributions, whether they be in the form of new features, improved infra, better documentation, or bug fixes.
## 🗺️ Guidelines
### 👩‍💻 Contributing Code
To contribute to this project, please follow a ["fork and pull request"](https://docs.github.com/en/get-started/quickstart/contributing-to-projects) workflow.
Please do not try to push directly to this repo unless you are maintainer.
Please follow the checked-in pull request template when opening pull requests. Note related issues and tag relevant
maintainers.
Pull requests cannot land without passing the formatting, linting and testing checks first. See
[Common Tasks](#-common-tasks) for how to run these checks locally.
It's essential that we maintain great documentation and testing. If you:
- Fix a bug
- Add a relevant unit or integration test when possible. These live in `tests/unit_tests` and `tests/integration_tests`.
- Make an improvement
- Update any affected example notebooks and documentation. These lives in `docs`.
- Update unit and integration tests when relevant.
- Add a feature
- Add a demo notebook in `docs/modules`.
- Add unit and integration tests.
We're a small, building-oriented team. If there's something you'd like to add or change, opening a pull request is the
best way to get our attention.
### 🚩GitHub Issues
Our [issues](https://github.com/hwchase17/langchain/issues) page is kept up to date
with bugs, improvements, and feature requests.
There is a taxonomy of labels to help with sorting and discovery of issues of interest. Please use these to help
organize issues.
If you start working on an issue, please assign it to yourself.
If you are adding an issue, please try to keep it focused on a single, modular bug/improvement/feature.
If two issues are related, or blocking, please link them rather than combining them.
We will try to keep these issues as up to date as possible, though
with the rapid rate of develop in this field some may get out of date.
If you notice this happening, please let us know.
### 🙋Getting Help
Our goal is to have the simplest developer setup possible. Should you experience any difficulty getting setup, please
contact a maintainer! Not only do we want to help get you unblocked, but we also want to make sure that the process is
smooth for future contributors.
In a similar vein, we do enforce certain linting, formatting, and documentation standards in the codebase.
If you are finding these difficult (or even just annoying) to work with, feel free to contact a maintainer for help -
we do not want these to get in the way of getting good code into the codebase.
## 🚀 Quick Start
> **Note:** You can run this repository locally (which is described below) or in a [development container](https://containers.dev/) (which is described in the [.devcontainer folder](https://github.com/hwchase17/langchain/tree/master/.devcontainer)).
This project uses [Poetry](https://python-poetry.org/) as a dependency manager. Check out Poetry's [documentation on how to install it](https://python-poetry.org/docs/#installation) on your system before proceeding.
❗Note: If you use `Conda` or `Pyenv` as your environment / package manager, avoid dependency conflicts by doing the following first:
1. *Before installing Poetry*, create and activate a new Conda env (e.g. `conda create -n langchain python=3.9`)
2. Install Poetry (see above)
3. Tell Poetry to use the virtualenv python environment (`poetry config virtualenvs.prefer-active-python true`)
4. Continue with the following steps.
To install requirements:
```bash
poetry install -E all
```
This will install all requirements for running the package, examples, linting, formatting, tests, and coverage. Note the `-E all` flag will install all optional dependencies necessary for integration testing.
❗Note: If you're running Poetry 1.4.1 and receive a `WheelFileValidationError` for `debugpy` during installation, you can try either downgrading to Poetry 1.4.0 or disabling "modern installation" (`poetry config installer.modern-installation false`) and re-install requirements. See [this `debugpy` issue](https://github.com/microsoft/debugpy/issues/1246) for more details.
Now, you should be able to run the common tasks in the following section. To double check, run `make test`, all tests should pass. If they don't you may need to pip install additional dependencies, such as `numexpr` and `openapi_schema_pydantic`.
## ✅ Common Tasks
Type `make` for a list of common tasks.
### Code Formatting
Formatting for this project is done via a combination of [Black](https://black.readthedocs.io/en/stable/) and [isort](https://pycqa.github.io/isort/).
To run formatting for this project:
```bash
make format
```
### Linting
Linting for this project is done via a combination of [Black](https://black.readthedocs.io/en/stable/), [isort](https://pycqa.github.io/isort/), [flake8](https://flake8.pycqa.org/en/latest/), and [mypy](http://mypy-lang.org/).
To run linting for this project:
```bash
make lint
```
We recognize linting can be annoying - if you do not want to do it, please contact a project maintainer, and they can help you with it. We do not want this to be a blocker for good code getting contributed.
### Coverage
Code coverage (i.e. the amount of code that is covered by unit tests) helps identify areas of the code that are potentially more or less brittle.
To get a report of current coverage, run the following:
```bash
make coverage
```
### Working with Optional Dependencies
Langchain relies heavily on optional dependencies to keep the Langchain package lightweight.
If you're adding a new dependency to Langchain, assume that it will be an optional dependency, and
that most users won't have it installed.
Users that do not have the dependency installed should be able to **import** your code without
any side effects (no warnings, no errors, no exceptions).
To introduce the dependency to the pyproject.toml file correctly, please do the following:
1. Add the dependency to the main group as an optional dependency
```bash
poetry add --optional [package_name]
```
2. Open pyproject.toml and add the dependency to the `extended_testing` extra
3. Relock the poetry file to update the extra.
```bash
poetry lock --no-update
```
4. Add a unit test that the very least attempts to import the new code. Ideally the unit
test makes use of lightweight fixtures to test the logic of the code.
5. Please use the `@pytest.mark.requires(package_name)` decorator for any tests that require the dependency.
### Testing
See section about optional dependencies.
#### Unit Tests
Unit tests cover modular logic that does not require calls to outside APIs.
To run unit tests:
```bash
make test
```
To run unit tests in Docker:
```bash
make docker_tests
```
If you add new logic, please add a unit test.
#### Integration Tests
Integration tests cover logic that requires making calls to outside APIs (often integration with other services).
**warning** Almost no tests should be integration tests.
Tests that require making network connections make it difficult for other
developers to test the code.
Instead favor relying on `responses` library and/or mock.patch to mock
requests using small fixtures.
To run integration tests:
```bash
make integration_tests
```
If you add support for a new external API, please add a new integration test.
### Adding a Jupyter Notebook
If you are adding a Jupyter notebook example, you'll want to install the optional `dev` dependencies.
To install dev dependencies:
```bash
poetry install --with dev
```
Launch a notebook:
```bash
poetry run jupyter notebook
```
When you run `poetry install`, the `langchain` package is installed as editable in the virtualenv, so your new logic can be imported into the notebook.
## Documentation
### Contribute Documentation
Docs are largely autogenerated by [sphinx](https://www.sphinx-doc.org/en/master/) from the code.
For that reason, we ask that you add good documentation to all classes and methods.
Similar to linting, we recognize documentation can be annoying. If you do not want to do it, please contact a project maintainer, and they can help you with it. We do not want this to be a blocker for good code getting contributed.
### Build Documentation Locally
Before building the documentation, it is always a good idea to clean the build directory:
```bash
make docs_clean
```
Next, you can run the linkchecker to make sure all links are valid:
```bash
make docs_linkcheck
```
Finally, you can build the documentation as outlined below:
```bash
make docs_build
```
## 🏭 Release Process
As of now, LangChain has an ad hoc release process: releases are cut with high frequency by
a developer and published to [PyPI](https://pypi.org/project/langchain/).
LangChain follows the [semver](https://semver.org/) versioning standard. However, as pre-1.0 software,
even patch releases may contain [non-backwards-compatible changes](https://semver.org/#spec-item-4).
### 🌟 Recognition
If your contribution has made its way into a release, we will want to give you credit on Twitter (only if you want though)!
If you have a Twitter account you would like us to mention, please let us know in the PR or in another manner.

View File

@@ -1,106 +0,0 @@
name: "\U0001F41B Bug Report"
description: Submit a bug report to help us improve LangChain
labels: ["02 Bug Report"]
body:
- type: markdown
attributes:
value: >
Thank you for taking the time to file a bug report. Before creating a new
issue, please make sure to take a few moments to check the issue tracker
for existing issues about the bug.
- type: textarea
id: system-info
attributes:
label: System Info
description: Please share your system info with us.
placeholder: LangChain version, platform, python version, ...
validations:
required: true
- type: textarea
id: who-can-help
attributes:
label: Who can help?
description: |
Your issue will be replied to more quickly if you can figure out the right person to tag with @
If you know how to use git blame, that is the easiest way, otherwise, here is a rough guide of **who to tag**.
The core maintainers strive to read all issues, but tagging them will help them prioritize.
Please tag fewer than 3 people.
@hwchase17 - project lead
Tracing / Callbacks
- @agola11
Async
- @agola11
DataLoader Abstractions
- @eyurtsev
LLM/Chat Wrappers
- @hwchase17
- @agola11
Tools / Toolkits
- ...
placeholder: "@Username ..."
- type: checkboxes
id: information-scripts-examples
attributes:
label: Information
description: "The problem arises when using:"
options:
- label: "The official example notebooks/scripts"
- label: "My own modified scripts"
- type: checkboxes
id: related-components
attributes:
label: Related Components
description: "Select the components related to the issue (if applicable):"
options:
- label: "LLMs/Chat Models"
- label: "Embedding Models"
- label: "Prompts / Prompt Templates / Prompt Selectors"
- label: "Output Parsers"
- label: "Document Loaders"
- label: "Vector Stores / Retrievers"
- label: "Memory"
- label: "Agents / Agent Executors"
- label: "Tools / Toolkits"
- label: "Chains"
- label: "Callbacks/Tracing"
- label: "Async"
- type: textarea
id: reproduction
validations:
required: true
attributes:
label: Reproduction
description: |
Please provide a [code sample](https://stackoverflow.com/help/minimal-reproducible-example) that reproduces the problem you ran into. It can be a Colab link or just a code snippet.
If you have code snippets, error messages, stack traces please provide them here as well.
Important! Use code tags to correctly format your code. See https://help.github.com/en/github/writing-on-github/creating-and-highlighting-code-blocks#syntax-highlighting
Avoid screenshots when possible, as they are hard to read and (more importantly) don't allow others to copy-and-paste your code.
placeholder: |
Steps to reproduce the behavior:
1.
2.
3.
- type: textarea
id: expected-behavior
validations:
required: true
attributes:
label: Expected behavior
description: "A clear and concise description of what you would expect to happen."

View File

@@ -1,6 +0,0 @@
blank_issues_enabled: true
version: 2.1
contact_links:
- name: Discord
url: https://discord.gg/6adMQxSpJS
about: General community discussions

View File

@@ -1,19 +0,0 @@
name: Documentation
description: Report an issue related to the LangChain documentation.
title: "DOC: <Please write a comprehensive title after the 'DOC: ' prefix>"
labels: [03 - Documentation]
body:
- type: textarea
attributes:
label: "Issue with current documentation:"
description: >
Please make sure to leave a reference to the document/code you're
referring to.
- type: textarea
attributes:
label: "Idea or request for content:"
description: >
Please describe as clearly as possible what topics you think are missing
from the current documentation.

View File

@@ -1,30 +0,0 @@
name: "\U0001F680 Feature request"
description: Submit a proposal/request for a new LangChain feature
labels: ["02 Feature Request"]
body:
- type: textarea
id: feature-request
validations:
required: true
attributes:
label: Feature request
description: |
A clear and concise description of the feature proposal. Please provide links to any relevant GitHub repos, papers, or other resources if relevant.
- type: textarea
id: motivation
validations:
required: true
attributes:
label: Motivation
description: |
Please outline the motivation for the proposal. Is your feature request related to a problem? e.g., I'm always frustrated when [...]. If this is related to another GitHub issue, please link here too.
- type: textarea
id: contribution
validations:
required: true
attributes:
label: Your contribution
description: |
Is there any way that you could help, e.g. by submitting a PR? Make sure to read the CONTRIBUTING.MD [readme](https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md)

View File

@@ -1,18 +0,0 @@
name: Other Issue
description: Raise an issue that wouldn't be covered by the other templates.
title: "Issue: <Please write a comprehensive title after the 'Issue: ' prefix>"
labels: [04 - Other]
body:
- type: textarea
attributes:
label: "Issue you'd like to raise."
description: >
Please describe the issue you'd like to raise as clearly as possible.
Make sure to include any relevant links or references.
- type: textarea
attributes:
label: "Suggestion:"
description: >
Please outline a suggestion to improve the issue here.

View File

@@ -1,26 +0,0 @@
<!-- Thank you for contributing to LangChain!
Replace this comment with:
- Description: a description of the change,
- Issue: the issue # it fixes (if applicable),
- Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer (see below),
- Twitter handle: we announce bigger features on Twitter. If your PR gets announced and you'd like a mention, we'll gladly shout you out!
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on network access,
2. an example notebook showing its use.
Maintainer responsibilities:
- General / Misc / if you don't know who to tag: @dev2049
- DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
- Models / Prompts: @hwchase17, @dev2049
- Memory: @hwchase17
- Agents / Tools / Toolkits: @vowelparrot
- Tracing / Callbacks: @agola11
- Async: @agola11
If no one reviews your PR within a few days, feel free to @-mention the same people again.
See contribution guidelines for more information on how to write/run tests, lint, etc: https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
-->

View File

@@ -1,76 +0,0 @@
# An action for setting up poetry install with caching.
# Using a custom action since the default action does not
# take poetry install groups into account.
# Action code from:
# https://github.com/actions/setup-python/issues/505#issuecomment-1273013236
name: poetry-install-with-caching
description: Poetry install with support for caching of dependency groups.
inputs:
python-version:
description: Python version, supporting MAJOR.MINOR only
required: true
poetry-version:
description: Poetry version
required: true
install-command:
description: Command run for installing dependencies
required: false
default: poetry install
cache-key:
description: Cache key to use for manual handling of caching
required: true
working-directory:
description: Directory to run install-command in
required: false
default: ""
runs:
using: composite
steps:
- uses: actions/setup-python@v4
name: Setup python $${ inputs.python-version }}
with:
python-version: ${{ inputs.python-version }}
- uses: actions/cache@v3
id: cache-pip
name: Cache Pip ${{ inputs.python-version }}
env:
SEGMENT_DOWNLOAD_TIMEOUT_MIN: "15"
with:
path: |
~/.cache/pip
key: pip-${{ runner.os }}-${{ runner.arch }}-py-${{ inputs.python-version }}
- run: pipx install poetry==${{ inputs.poetry-version }} --python python${{ inputs.python-version }}
shell: bash
- name: Check Poetry File
shell: bash
run: |
poetry check
- name: Check lock file
shell: bash
run: |
poetry lock --check
- uses: actions/cache@v3
id: cache-poetry
env:
SEGMENT_DOWNLOAD_TIMEOUT_MIN: "15"
with:
path: |
~/.cache/pypoetry/virtualenvs
~/.cache/pypoetry/cache
~/.cache/pypoetry/artifacts
key: poetry-${{ runner.os }}-${{ runner.arch }}-py-${{ inputs.python-version }}-poetry-${{ inputs.poetry-version }}-${{ inputs.cache-key }}-${{ hashFiles('poetry.lock') }}
- run: ${{ inputs.install-command }}
working-directory: ${{ inputs.working-directory }}
shell: bash

View File

@@ -2,35 +2,34 @@ name: lint
on:
push:
branches: [master]
branches: [main]
pull_request:
env:
POETRY_VERSION: "1.4.2"
POETRY_VERSION: "1.2.0"
jobs:
build:
runs-on: ubuntu-latest
strategy:
matrix:
python-version:
- "3.8"
- "3.9"
- "3.10"
- "3.11"
python-version:
- "3.8"
- "3.9"
- "3.10"
steps:
- uses: actions/checkout@v3
- name: Install poetry
run: |
pipx install poetry==$POETRY_VERSION
- name: Set up Python ${{ matrix.python-version }}
uses: actions/setup-python@v4
with:
python-version: ${{ matrix.python-version }}
cache: poetry
- name: Install dependencies
run: |
poetry install
- name: Analysing the code with our lint
run: |
make lint
- uses: actions/checkout@v3
- name: Install poetry
run: |
pipx install poetry==$POETRY_VERSION
- name: Set up Python ${{ matrix.python-version }}
uses: actions/setup-python@v4
with:
python-version: ${{ matrix.python-version }}
cache: poetry
- name: Install dependencies
run: |
poetry install
- name: Analysing the code with our lint
run: |
make lint

View File

@@ -1,49 +0,0 @@
name: release
on:
pull_request:
types:
- closed
branches:
- master
paths:
- 'pyproject.toml'
env:
POETRY_VERSION: "1.4.2"
jobs:
if_release:
if: |
${{ github.event.pull_request.merged == true }}
&& ${{ contains(github.event.pull_request.labels.*.name, 'release') }}
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v3
- name: Install poetry
run: pipx install poetry==$POETRY_VERSION
- name: Set up Python 3.10
uses: actions/setup-python@v4
with:
python-version: "3.10"
cache: "poetry"
- name: Build project for distribution
run: poetry build
- name: Check Version
id: check-version
run: |
echo version=$(poetry version --short) >> $GITHUB_OUTPUT
- name: Create Release
uses: ncipollo/release-action@v1
with:
artifacts: "dist/*"
token: ${{ secrets.GITHUB_TOKEN }}
draft: false
generateReleaseNotes: true
tag: v${{ steps.check-version.outputs.version }}
commit: master
- name: Publish to PyPI
env:
POETRY_PYPI_TOKEN_PYPI: ${{ secrets.PYPI_API_TOKEN }}
run: |
poetry publish

View File

@@ -2,12 +2,11 @@ name: test
on:
push:
branches: [master]
branches: [main]
pull_request:
workflow_dispatch:
env:
POETRY_VERSION: "1.4.2"
POETRY_VERSION: "1.2.0"
jobs:
build:
@@ -15,35 +14,20 @@ jobs:
strategy:
matrix:
python-version:
- "3.8"
- "3.9"
- "3.10"
- "3.11"
test_type:
- "core"
- "extended"
name: Python ${{ matrix.python-version }} ${{ matrix.test_type }}
- "3.8"
- "3.9"
- "3.10"
steps:
- uses: actions/checkout@v3
- name: Set up Python ${{ matrix.python-version }}
uses: "./.github/actions/poetry_setup"
with:
python-version: ${{ matrix.python-version }}
poetry-version: "1.4.2"
cache-key: ${{ matrix.test_type }}
install-command: |
if [ "${{ matrix.test_type }}" == "core" ]; then
echo "Running core tests, installing dependencies with poetry..."
poetry install
else
echo "Running extended tests, installing dependencies with poetry..."
poetry install -E extended_testing
fi
- name: Run ${{matrix.test_type}} tests
run: |
if [ "${{ matrix.test_type }}" == "core" ]; then
make test
else
make extended_tests
fi
shell: bash
- uses: actions/checkout@v3
- name: Install poetry
run: pipx install poetry==$POETRY_VERSION
- name: Set up Python ${{ matrix.python-version }}
uses: actions/setup-python@v4
with:
python-version: ${{ matrix.python-version }}
cache: 'poetry'
- name: Install dependencies
run: poetry install
- name: Run unit tests
run: |
make tests

36
.gitignore vendored
View File

@@ -1,6 +1,4 @@
.vs/
.vscode/
.idea/
# Byte-compiled / optimized / DLL files
__pycache__/
*.py[cod]
@@ -73,7 +71,6 @@ instance/
# Sphinx documentation
docs/_build/
docs/docs/_build/
# PyBuilder
target/
@@ -108,9 +105,7 @@ celerybeat.pid
# Environments
.env
.envrc
.venv
.venvs
env/
venv/
ENV/
@@ -134,34 +129,3 @@ dmypy.json
# Pyre type checker
.pyre/
# macOS display setting files
.DS_Store
# Wandb directory
wandb/
# asdf tool versions
.tool-versions
/.ruff_cache/
*.pkl
*.bin
# integration test artifacts
data_map*
\[('_type', 'fake'), ('stop', None)]
# Replit files
*replit*
node_modules
docs/.yarn/
docs/node_modules/
docs/.docusaurus/
docs/.cache-loader/
docs/_dist
docs/api_reference/_build
docs/docs_skeleton/build
docs/docs_skeleton/node_modules
docs/docs_skeleton/yarn.lock

4
.gitmodules vendored
View File

@@ -1,4 +0,0 @@
[submodule "docs/_docs_skeleton"]
path = docs/_docs_skeleton
url = https://github.com/langchain-ai/langchain-shared-docs
branch = main

View File

@@ -1,26 +0,0 @@
# Read the Docs configuration file
# See https://docs.readthedocs.io/en/stable/config-file/v2.html for details
# Required
version: 2
# Set the version of Python and other tools you might need
build:
os: ubuntu-22.04
tools:
python: "3.11"
# Build documentation in the docs/ directory with Sphinx
sphinx:
configuration: docs/api_reference/conf.py
# If using Sphinx, optionally build your docs in additional formats such as PDF
# formats:
# - pdf
# Optionally declare the Python requirements required to build your docs
python:
install:
- requirements: docs/requirements.txt
- method: pip
path: .

View File

@@ -1,8 +0,0 @@
cff-version: 1.2.0
message: "If you use this software, please cite it as below."
authors:
- family-names: "Chase"
given-names: "Harrison"
title: "LangChain"
date-released: 2022-10-17
url: "https://github.com/hwchase17/langchain"

View File

@@ -1,48 +0,0 @@
# This is a Dockerfile for running unit tests
ARG POETRY_HOME=/opt/poetry
# Use the Python base image
FROM python:3.11.2-bullseye AS builder
# Define the version of Poetry to install (default is 1.4.2)
ARG POETRY_VERSION=1.4.2
# Define the directory to install Poetry to (default is /opt/poetry)
ARG POETRY_HOME
# Create a Python virtual environment for Poetry and install it
RUN python3 -m venv ${POETRY_HOME} && \
$POETRY_HOME/bin/pip install --upgrade pip && \
$POETRY_HOME/bin/pip install poetry==${POETRY_VERSION}
# Test if Poetry is installed in the expected path
RUN echo "Poetry version:" && $POETRY_HOME/bin/poetry --version
# Set the working directory for the app
WORKDIR /app
# Use a multi-stage build to install dependencies
FROM builder AS dependencies
ARG POETRY_HOME
# Copy only the dependency files for installation
COPY pyproject.toml poetry.lock poetry.toml ./
# Install the Poetry dependencies (this layer will be cached as long as the dependencies don't change)
RUN $POETRY_HOME/bin/poetry install --no-interaction --no-ansi --with test
# Use a multi-stage build to run tests
FROM dependencies AS tests
# Copy the rest of the app source code (this layer will be invalidated and rebuilt whenever the source code changes)
COPY . .
RUN /opt/poetry/bin/poetry install --no-interaction --no-ansi --with test
# Set the entrypoint to run tests using Poetry
ENTRYPOINT ["/opt/poetry/bin/poetry", "run", "pytest"]
# Set the default command to run all unit tests
CMD ["tests/unit_tests"]

View File

@@ -1,73 +1,17 @@
.PHONY: all clean format lint test tests test_watch integration_tests docker_tests help extended_tests
all: help
coverage:
poetry run pytest --cov \
--cov-config=.coveragerc \
--cov-report xml \
--cov-report term-missing:skip-covered
clean: docs_clean
docs_compile:
poetry run nbdoc_build --srcdir $(srcdir)
docs_build:
cd docs && poetry run make html
docs_clean:
cd docs && poetry run make clean
docs_linkcheck:
poetry run linkchecker docs/_build/html/index.html
.PHONY: format lint tests integration_tests
format:
poetry run black .
poetry run ruff --select I --fix .
poetry run isort .
PYTHON_FILES=.
lint: PYTHON_FILES=.
lint_diff: PYTHON_FILES=$(shell git diff --name-only --diff-filter=d master | grep -E '\.py$$')
lint:
poetry run mypy .
poetry run black . --check
poetry run isort . --check
poetry run flake8 .
lint lint_diff:
poetry run mypy $(PYTHON_FILES)
poetry run black $(PYTHON_FILES) --check
poetry run ruff .
TEST_FILE ?= tests/unit_tests/
test:
poetry run pytest --disable-socket --allow-unix-socket $(TEST_FILE)
tests:
poetry run pytest --disable-socket --allow-unix-socket $(TEST_FILE)
extended_tests:
poetry run pytest --disable-socket --allow-unix-socket --only-extended tests/unit_tests
test_watch:
poetry run ptw --now . -- tests/unit_tests
tests:
poetry run pytest tests/unit_tests
integration_tests:
poetry run pytest tests/integration_tests
docker_tests:
docker build -t my-langchain-image:test .
docker run --rm my-langchain-image:test
help:
@echo '----'
@echo 'coverage - run unit tests and generate coverage report'
@echo 'docs_build - build the documentation'
@echo 'docs_clean - clean the documentation build artifacts'
@echo 'docs_linkcheck - run linkchecker on the documentation'
@echo 'format - run code formatters'
@echo 'lint - run linters'
@echo 'test - run unit tests'
@echo 'tests - run unit tests'
@echo 'test TEST_FILE=<test_file> - run all tests in file'
@echo 'extended_tests - run only extended unit tests'
@echo 'test_watch - run unit tests in watch mode'
@echo 'integration_tests - run integration tests'
@echo 'docker_tests - run unit tests in docker'

209
README.md
View File

@@ -2,94 +2,187 @@
⚡ Building applications with LLMs through composability ⚡
[![Release Notes](https://img.shields.io/github/release/hwchase17/langchain)](https://github.com/hwchase17/langchain/releases)
[![lint](https://github.com/hwchase17/langchain/actions/workflows/lint.yml/badge.svg)](https://github.com/hwchase17/langchain/actions/workflows/lint.yml)
[![test](https://github.com/hwchase17/langchain/actions/workflows/test.yml/badge.svg)](https://github.com/hwchase17/langchain/actions/workflows/test.yml)
[![Downloads](https://static.pepy.tech/badge/langchain/month)](https://pepy.tech/project/langchain)
[![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT)
[![Twitter](https://img.shields.io/twitter/url/https/twitter.com/langchainai.svg?style=social&label=Follow%20%40LangChainAI)](https://twitter.com/langchainai)
[![](https://dcbadge.vercel.app/api/server/6adMQxSpJS?compact=true&style=flat)](https://discord.gg/6adMQxSpJS)
[![Open in Dev Containers](https://img.shields.io/static/v1?label=Dev%20Containers&message=Open&color=blue&logo=visualstudiocode)](https://vscode.dev/redirect?url=vscode://ms-vscode-remote.remote-containers/cloneInVolume?url=https://github.com/hwchase17/langchain)
[![Open in GitHub Codespaces](https://github.com/codespaces/badge.svg)](https://codespaces.new/hwchase17/langchain)
[![GitHub star chart](https://img.shields.io/github/stars/hwchase17/langchain?style=social)](https://star-history.com/#hwchase17/langchain)
[![Dependency Status](https://img.shields.io/librariesio/github/hwchase17/langchain)](https://libraries.io/github/hwchase17/langchain)
[![Open Issues](https://img.shields.io/github/issues-raw/hwchase17/langchain)](https://github.com/hwchase17/langchain/issues)
Looking for the JS/TS version? Check out [LangChain.js](https://github.com/hwchase17/langchainjs).
**Production Support:** As you move your LangChains into production, we'd love to offer more comprehensive support.
Please fill out [this form](https://forms.gle/57d8AmXBYp8PP8tZA) and we'll set up a dedicated support Slack channel.
[![lint](https://github.com/hwchase17/langchain/actions/workflows/lint.yml/badge.svg)](https://github.com/hwchase17/langchain/actions/workflows/lint.yml) [![test](https://github.com/hwchase17/langchain/actions/workflows/test.yml/badge.svg)](https://github.com/hwchase17/langchain/actions/workflows/test.yml) [![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT) [![Twitter](https://img.shields.io/twitter/url/https/twitter.com/langchainai.svg?style=social&label=Follow%20%40LangChainAI)](https://twitter.com/langchainai) [![](https://dcbadge.vercel.app/api/server/6adMQxSpJS?compact=true&style=flat)](https://discord.gg/6adMQxSpJS)
## Quick Install
`pip install langchain`
or
`conda install langchain -c conda-forge`
## 🤔 What is this?
Large language models (LLMs) are emerging as a transformative technology, enabling developers to build applications that they previously could not. However, using these LLMs in isolation is often insufficient for creating a truly powerful app - the real power comes when you can combine them with other sources of computation or knowledge.
Large language models (LLMs) are emerging as a transformative technology, enabling
developers to build applications that they previously could not.
But using these LLMs in isolation is often not enough to
create a truly powerful app - the real power comes when you are able to
combine them with other sources of computation or knowledge.
This library aims to assist in the development of those types of applications. Common examples of these applications include:
**❓ Question Answering over specific documents**
- [Documentation](https://python.langchain.com/docs/use_cases/question_answering/)
- End-to-end Example: [Question Answering over Notion Database](https://github.com/hwchase17/notion-qa)
**💬 Chatbots**
- [Documentation](https://python.langchain.com/docs/use_cases/chatbots/)
- End-to-end Example: [Chat-LangChain](https://github.com/hwchase17/chat-langchain)
**🤖 Agents**
- [Documentation](https://python.langchain.com/docs/modules/agents/)
- End-to-end Example: [GPT+WolframAlpha](https://huggingface.co/spaces/JavaFXpert/Chat-GPT-LangChain)
This library is aimed at assisting in the development of those types of applications.
## 📖 Documentation
Please see [here](https://python.langchain.com) for full documentation on:
- Getting started (installation, setting up the environment, simple examples)
Please see [here](https://langchain.readthedocs.io/en/latest/?) for full documentation on:
- Getting started (installation, setting up environment, simple examples)
- How-To examples (demos, integrations, helper functions)
- Reference (full API docs)
- Resources (high-level explanation of core concepts)
- Resources (high level explanation of core concepts)
## 🚀 What can this help with?
There are six main areas that LangChain is designed to help with.
There are three main areas (with a forth coming soon) that LangChain is designed to help with.
These are, in increasing order of complexity:
1. LLM and Prompts
2. Chains
3. Agents
4. Memory
**📃 LLMs and Prompts:**
Let's go through these categories and for each one identify key concepts (to clarify terminology) as well as the problems in this area LangChain helps solve.
This includes prompt management, prompt optimization, a generic interface for all LLMs, and common utilities for working with LLMs.
### LLMs and Prompts
Calling out to an LLM once is pretty easy, with most of them being behind well documented APIs.
However, there are still some challenges going from that to an application running in production that LangChain attempts to address.
**🔗 Chains:**
**Key Concepts**
- LLM: A large language model, in particular a text-to-text model.
- Prompt: The input to a language model. Typically this is not simply a hardcoded string but rather a combination of a template, some examples, and user input.
- Prompt Template: An object responsible for constructing the final prompt to pass to a LLM.
- Examples: Datapoints that can be included in the prompt in order to give the model more context what to do.
- Few Shot Prompt Template: A subclass of the PromptTemplate class that uses examples.
- Example Selector: A class responsible to selecting examples to use dynamically (depending on user input) in a few shot prompt.
Chains go beyond a single LLM call and involve sequences of calls (whether to an LLM or a different utility). LangChain provides a standard interface for chains, lots of integrations with other tools, and end-to-end chains for common applications.
**Problems Solved**
- Switching costs: by exposing a standard interface for all the top LLM providers, LangChain makes it easy to switch from one provider to another, whether it be for production use cases or just for testing stuff out.
- Prompt management: managing your prompts is easy when you only have one simple one, but can get tricky when you have a bunch or when they start to get more complex. LangChain provides a standard way for storing, constructing, and referencing prompts.
- Prompt optimization: despite the underlying models getting better and better, there is still currently a need for carefully constructing prompts.
**📚 Data Augmented Generation:**
### Chains
Using an LLM in isolation is fine for some simple applications, but many more complex ones require chaining LLMs - either with eachother or with other experts.
LangChain provides several parts to help with that.
Data Augmented Generation involves specific types of chains that first interact with an external data source to fetch data for use in the generation step. Examples include summarization of long pieces of text and question/answering over specific data sources.
**Key Concepts**
- Tools: APIs designed for assisting with a particular use case (search, databases, Python REPL, etc). Prompt templates, LLMs, and chains can also be considered tools.
- Chains: A combination of multiple tools in a deterministic manner.
**🤖 Agents:**
**Problems Solved**
- Standard interface for working with Chains
- Easy way to construct chains of LLMs
- Lots of integrations with other tools that you may want to use in conjunction with LLMs
- End-to-end chains for common workflows (database question/answer, recursive summarization, etc)
Agents involve an LLM making decisions about which Actions to take, taking that Action, seeing an Observation, and repeating that until done. LangChain provides a standard interface for agents, a selection of agents to choose from, and examples of end-to-end agents.
### Agents
Some applications will require not just a predetermined chain of calls to LLMs/other tools, but potentially an unknown chain that depends on the user input.
In these types of chains, there is a “agent” which has access to a suite of tools.
Depending on the user input, the agent can then decide which, if any, of these tools to call.
**🧠 Memory:**
**Key Concepts**
- Tools: same as above.
- Agent: An LLM-powered class responsible for determining which tools to use and in what order.
Memory refers to persisting state between calls of a chain/agent. LangChain provides a standard interface for memory, a collection of memory implementations, and examples of chains/agents that use memory.
**🧐 Evaluation:**
**Problems Solved**
- Standard agent interfaces
- A selection of powerful agents to choose from
- Common chains that can be used as tools
[BETA] Generative models are notoriously hard to evaluate with traditional metrics. One new way of evaluating them is using language models themselves to do the evaluation. LangChain provides some prompts/chains for assisting in this.
### Memory
By default, Chains and Agents are stateless, meaning that they treat each incoming query independently.
In some applications (chatbots being a GREAT example) it is highly important to remember previous interactions,
both at a short term but also at a long term level. The concept of "Memory" exists to do exactly that.
For more information on these concepts, please see our [full documentation](https://python.langchain.com).
**Key Concepts**
- Memory: A class that can be added to an Agent or Chain to (1) pull in memory variables before calling that chain/agent, and (2) create new memories after the chain/agent finishes.
- Memory Variables: Variables returned from a Memory class, to be passed into the chain/agent along with the user input.
## 💁 Contributing
**Problems Solved**
- Standard memory interfaces
- A collection of common memory implementations to choose from
- Common chains/agents that use memory (e.g. chatbots)
As an open-source project in a rapidly developing field, we are extremely open to contributions, whether it be in the form of a new feature, improved infrastructure, or better documentation.
## 🤖 Developer Guide
For detailed information on how to contribute, see [here](.github/CONTRIBUTING.md).
To begin developing on this project, first clone the repo locally.
### Quick Start
This project uses [Poetry](https://python-poetry.org/) as a dependency manager. Check out Poetry's own [documentation on how to install it](https://python-poetry.org/docs/#installation) on your system before proceeding.
To install requirements:
```bash
poetry install -E all
```
This will install all requirements for running the package, examples, linting, formatting, and tests. Note the `-E all` flag will install all optional dependencies necessary for integration testing.
Now, you should be able to run the common tasks in the following section.
### Common Tasks
#### Code Formatting
Formatting for this project is a combination of [Black](https://black.readthedocs.io/en/stable/) and [isort](https://pycqa.github.io/isort/).
To run formatting for this project:
```bash
make format
```
#### Linting
Linting for this project is a combination of [Black](https://black.readthedocs.io/en/stable/), [isort](https://pycqa.github.io/isort/), [flake8](https://flake8.pycqa.org/en/latest/), and [mypy](http://mypy-lang.org/).
To run linting for this project:
```bash
make lint
```
We recognize linting can be annoying - if you do not want to do it, please contact a project maintainer and they can help you with it. We do not want this to be a blocker for good code getting contributed.
#### Testing
Unit tests cover modular logic that does not require calls to outside apis.
To run unit tests:
```bash
make tests
```
If you add new logic, please add a unit test.
Integration tests cover logic that requires making calls to outside APIs (often integration with other services).
To run integration tests:
```bash
make integration_tests
```
If you add support for a new external API, please add a new integration test.
#### Adding a Jupyter Notebook
If you are adding a Jupyter notebook example, you'll want to install the optional `dev` dependencies.
To install dev dependencies:
```bash
poetry install --with dev
```
Launch a notebook:
```bash
poetry run jupyter notebook
```
When you run `poetry install`, the `langchain` package is installed as editable in the virtualenv, so your new logic can be imported into the notebook.
#### Contribute Documentation
Docs are largely autogenerated by [sphinx](https://www.sphinx-doc.org/en/master/) from the code.
For that reason, we ask that you add good documentation to all classes and methods.
Similar to linting, we recognize documentation can be annoying - if you do not want to do it, please contact a project maintainer and they can help you with it. We do not want this to be a blocker for good code getting contributed.

View File

@@ -1,41 +0,0 @@
# This is a Dockerfile for the Development Container
# Use the Python base image
ARG VARIANT="3.11-bullseye"
FROM mcr.microsoft.com/devcontainers/python:0-${VARIANT} AS langchain-dev-base
USER vscode
# Define the version of Poetry to install (default is 1.4.2)
# Define the directory of python virtual environment
ARG PYTHON_VIRTUALENV_HOME=/home/vscode/langchain-py-env \
POETRY_VERSION=1.3.2
ENV POETRY_VIRTUALENVS_IN_PROJECT=false \
POETRY_NO_INTERACTION=true
# Create a Python virtual environment for Poetry and install it
RUN python3 -m venv ${PYTHON_VIRTUALENV_HOME} && \
$PYTHON_VIRTUALENV_HOME/bin/pip install --upgrade pip && \
$PYTHON_VIRTUALENV_HOME/bin/pip install poetry==${POETRY_VERSION}
ENV PATH="$PYTHON_VIRTUALENV_HOME/bin:$PATH" \
VIRTUAL_ENV=$PYTHON_VIRTUALENV_HOME
# Setup for bash
RUN poetry completions bash >> /home/vscode/.bash_completion && \
echo "export PATH=$PYTHON_VIRTUALENV_HOME/bin:$PATH" >> ~/.bashrc
# Set the working directory for the app
WORKDIR /workspaces/langchain
# Use a multi-stage build to install dependencies
FROM langchain-dev-base AS langchain-dev-dependencies
ARG PYTHON_VIRTUALENV_HOME
# Copy only the dependency files for installation
COPY pyproject.toml poetry.toml ./
# Install the Poetry dependencies (this layer will be cached as long as the dependencies don't change)
RUN poetry install --no-interaction --no-ansi --with dev,test,docs

View File

@@ -1,12 +0,0 @@
mkdir _dist
cp -r {docs_skeleton,snippets} _dist
mkdir -p _dist/docs_skeleton/static/api_reference
cd api_reference
poetry run make html
cp -r _build/* ../_dist/docs_skeleton/static/api_reference
cd ..
cp -r extras/* _dist/docs_skeleton/docs
cd _dist/docs_skeleton
poetry run nbdoc_build
yarn install
yarn start

View File

@@ -3,7 +3,7 @@
# You can set these variables from the command line, and also
# from the environment for the first two.
SPHINXOPTS ?=
SPHINXOPTS ?=
SPHINXBUILD ?= sphinx-build
SPHINXAUTOBUILD ?= sphinx-autobuild
SOURCEDIR = .

View File

@@ -1,17 +0,0 @@
pre {
white-space: break-spaces;
}
@media (min-width: 1200px) {
.container,
.container-lg,
.container-md,
.container-sm,
.container-xl {
max-width: 2560px !important;
}
}
#my-component-root *, #headlessui-portal-root * {
z-index: 10000;
}

View File

@@ -1,57 +0,0 @@
document.addEventListener('DOMContentLoaded', () => {
// Load the external dependencies
function loadScript(src, onLoadCallback) {
const script = document.createElement('script');
script.src = src;
script.onload = onLoadCallback;
document.head.appendChild(script);
}
function createRootElement() {
const rootElement = document.createElement('div');
rootElement.id = 'my-component-root';
document.body.appendChild(rootElement);
return rootElement;
}
function initializeMendable() {
const rootElement = createRootElement();
const { MendableFloatingButton } = Mendable;
const iconSpan1 = React.createElement('span', {
}, '🦜');
const iconSpan2 = React.createElement('span', {
}, '🔗');
const icon = React.createElement('p', {
style: { color: '#ffffff', fontSize: '22px',width: '48px', height: '48px', margin: '0px', padding: '0px', display: 'flex', alignItems: 'center', justifyContent: 'center', textAlign: 'center' },
}, [iconSpan1, iconSpan2]);
const mendableFloatingButton = React.createElement(
MendableFloatingButton,
{
style: { darkMode: false, accentColor: '#010810' },
floatingButtonStyle: { color: '#ffffff', backgroundColor: '#010810' },
anon_key: '82842b36-3ea6-49b2-9fb8-52cfc4bde6bf', // Mendable Search Public ANON key, ok to be public
cmdShortcutKey:'j',
messageSettings: {
openSourcesInNewTab: false,
prettySources: true // Prettify the sources displayed now
},
icon: icon,
}
);
ReactDOM.render(mendableFloatingButton, rootElement);
}
loadScript('https://unpkg.com/react@17/umd/react.production.min.js', () => {
loadScript('https://unpkg.com/react-dom@17/umd/react-dom.production.min.js', () => {
loadScript('https://unpkg.com/@mendable/search@0.0.102/dist/umd/mendable.min.js', initializeMendable);
});
});
});

View File

@@ -1,12 +0,0 @@
Agents
==============
Reference guide for Agents and associated abstractions.
.. toctree::
:maxdepth: 1
:glob:
modules/agents
modules/tools
modules/agent_toolkits

View File

@@ -1,13 +0,0 @@
Data connection
==============
LangChain has a number of modules that help you load, structure, store, and retrieve documents.
.. toctree::
:maxdepth: 1
:glob:
modules/document_loaders
modules/document_transformers
modules/embeddings
modules/vectorstores
modules/retrievers

View File

@@ -1,29 +0,0 @@
API Reference
==========================
| Full documentation on all methods, classes, and APIs in the LangChain Python package.
.. toctree::
:maxdepth: 1
:caption: Abstractions
./modules/base_classes.rst
.. toctree::
:maxdepth: 1
:caption: Core
./model_io.rst
./data_connection.rst
./modules/chains.rst
./agents.rst
./modules/memory.rst
./modules/callbacks.rst
.. toctree::
:maxdepth: 1
:caption: Additional
./modules/utilities.rst
./modules/experimental.rst

View File

@@ -1,12 +0,0 @@
Model I/O
==============
LangChain provides interfaces and integrations for working with language models.
.. toctree::
:maxdepth: 1
:glob:
./prompts.rst
./models.rst
./modules/output_parsers.rst

View File

@@ -1,11 +0,0 @@
Models
==============
LangChain provides interfaces and integrations for a number of different types of models.
.. toctree::
:maxdepth: 1
:glob:
modules/llms
modules/chat_models

View File

@@ -1,7 +0,0 @@
Agent Toolkits
===============================
.. automodule:: langchain.agents.agent_toolkits
:members:
:undoc-members:

View File

@@ -1,5 +0,0 @@
Base classes
========================
.. automodule:: langchain.schema
:inherited-members:

View File

@@ -1,7 +0,0 @@
Callbacks
=======================
.. automodule:: langchain.callbacks
:members:
:undoc-members:

View File

@@ -1,7 +0,0 @@
Chat Models
===============================
.. automodule:: langchain.chat_models
:members:
:undoc-members:

View File

@@ -1,7 +0,0 @@
Document Loaders
===============================
.. automodule:: langchain.document_loaders
:members:
:undoc-members:

View File

@@ -1,13 +0,0 @@
Document Transformers
===============================
.. automodule:: langchain.document_transformers
:members:
:undoc-members:
Text Splitters
------------------------------
.. automodule:: langchain.text_splitter
:members:
:undoc-members:

View File

@@ -1,28 +0,0 @@
====================
Experimental
====================
This module contains experimental modules and reproductions of existing work using LangChain primitives.
Autonomous agents
------------------
Here, we document the BabyAGI and AutoGPT classes from the langchain.experimental module.
.. autoclass:: langchain.experimental.BabyAGI
:members:
.. autoclass:: langchain.experimental.AutoGPT
:members:
Generative agents
------------------
Here, we document the GenerativeAgent and GenerativeAgentMemory classes from the langchain.experimental module.
.. autoclass:: langchain.experimental.GenerativeAgent
:members:
.. autoclass:: langchain.experimental.GenerativeAgentMemory
:members:

View File

@@ -1,7 +0,0 @@
Memory
===============================
.. automodule:: langchain.memory
:members:
:undoc-members:

View File

@@ -1,7 +0,0 @@
Output Parsers
===============================
.. automodule:: langchain.output_parsers
:members:
:undoc-members:

View File

@@ -1,14 +0,0 @@
Retrievers
===============================
.. automodule:: langchain.retrievers
:members:
:undoc-members:
Document compressors
-------------------------------
.. automodule:: langchain.retrievers.document_compressors
:members:
:undoc-members:

View File

@@ -1,7 +0,0 @@
Tools
===============================
.. automodule:: langchain.tools
:members:
:undoc-members:

View File

@@ -1,7 +0,0 @@
Utilities
===============================
.. automodule:: langchain.utilities
:members:
:undoc-members:

View File

@@ -1,11 +0,0 @@
Prompts
==============
The reference guides here all relate to objects for working with Prompts.
.. toctree::
:maxdepth: 1
:glob:
modules/prompts
modules/example_selector

View File

@@ -17,21 +17,18 @@
import toml
with open("../../pyproject.toml") as f:
with open("../pyproject.toml") as f:
data = toml.load(f)
# -- Project information -----------------------------------------------------
project = "🦜🔗 LangChain"
copyright = "2023, Harrison Chase"
project = "LangChain"
copyright = "2022, Harrison Chase"
author = "Harrison Chase"
version = data["tool"]["poetry"]["version"]
release = version
html_title = project + " " + version
html_last_updated_fmt = "%b %d, %Y"
# -- General configuration ---------------------------------------------------
@@ -45,35 +42,22 @@ extensions = [
"sphinx.ext.napoleon",
"sphinx.ext.viewcode",
"sphinxcontrib.autodoc_pydantic",
"myst_nb",
"sphinx_copybutton",
"myst_parser",
"nbsphinx",
"sphinx_panels",
"IPython.sphinxext.ipython_console_highlighting",
"sphinx_tabs.tabs",
]
source_suffix = [".rst"]
autodoc_pydantic_model_show_json = False
autodoc_pydantic_field_list_validators = False
autodoc_pydantic_config_members = False
autodoc_pydantic_model_show_config_summary = False
autodoc_pydantic_model_show_validator_members = False
autodoc_pydantic_model_show_validator_summary = False
autodoc_pydantic_model_show_field_summary = False
autodoc_pydantic_model_members = False
autodoc_pydantic_model_undoc_members = False
autodoc_pydantic_model_hide_paramlist = False
autodoc_pydantic_model_signature_prefix = "class"
autodoc_pydantic_field_signature_prefix = "attribute"
autodoc_pydantic_model_summary_list_order = "bysource"
autodoc_member_order = "bysource"
autodoc_default_options = {
"members": True,
"show-inheritance": True,
"undoc_members": True,
"inherited_members": "BaseModel",
}
autodoc_typehints = "description"
# autodoc_typehints = "signature"
# autodoc_typehints = "description"
# Add any paths that contain templates here, relative to this directory.
templates_path = ["_templates"]
@@ -90,36 +74,17 @@ exclude_patterns = ["_build", "Thumbs.db", ".DS_Store"]
# a list of builtin themes.
#
html_theme = "sphinx_rtd_theme"
html_theme_options = {
"path_to_docs": "docs",
"repository_url": "https://github.com/hwchase17/langchain",
"use_repository_button": True,
# "style_nav_header_background": "white"
}
# html_theme = "sphinx_typlog_theme"
html_context = {
"display_github": True, # Integrate GitHub
"github_user": "hwchase17", # Username
"github_repo": "langchain", # Repo name
"github_version": "master", # Version
"conf_py_path": "/docs/api_reference", # Path in the checkout to the docs root
"conf_py_path": "/docs/", # Path in the checkout to the docs root
}
# Add any paths that contain custom static files (such as style sheets) here,
# relative to this directory. They are copied after the builtin static files,
# so a file named "default.css" will overwrite the builtin "default.css".
html_static_path = ["_static"]
# These paths are either relative to html_static_path
# or fully qualified paths (eg. https://...)
html_css_files = [
"css/custom.css",
]
html_js_files = [
"js/mendablesearch.js",
]
nb_execution_mode = "off"
myst_enable_extensions = ["colon_fence"]
html_static_path: list = []

View File

@@ -1,7 +0,0 @@
.yarn/
node_modules/
.docusaurus
.cache-loader
docs/api

View File

@@ -1,49 +0,0 @@
# Website
This website is built using [Docusaurus 2](https://docusaurus.io/), a modern static website generator.
### Installation
```
$ yarn
```
### Local Development
```
$ yarn start
```
This command starts a local development server and opens up a browser window. Most changes are reflected live without having to restart the server.
### Build
```
$ yarn build
```
This command generates static content into the `build` directory and can be served using any static contents hosting service.
### Deployment
Using SSH:
```
$ USE_SSH=true yarn deploy
```
Not using SSH:
```
$ GIT_USER=<Your GitHub username> yarn deploy
```
If you are using GitHub pages for hosting, this command is a convenient way to build the website and push to the `gh-pages` branch.
### Continuous Integration
Some common defaults for linting/formatting have been set for you. If you integrate your project with an open source Continuous Integration system (e.g. Travis CI, CircleCI), you may check for issues using the following command.
```
$ yarn ci
```

View File

@@ -1,12 +0,0 @@
/**
* Copyright (c) Meta Platforms, Inc. and affiliates.
*
* This source code is licensed under the MIT license found in the
* LICENSE file in the root directory of this source tree.
*
* @format
*/
module.exports = {
presets: [require.resolve("@docusaurus/core/lib/babel/preset")],
};

View File

@@ -1,76 +0,0 @@
/* eslint-disable prefer-template */
/* eslint-disable no-param-reassign */
// eslint-disable-next-line import/no-extraneous-dependencies
const babel = require("@babel/core");
const path = require("path");
const fs = require("fs");
/**
*
* @param {string|Buffer} content Content of the resource file
* @param {object} [map] SourceMap data consumable by https://github.com/mozilla/source-map
* @param {any} [meta] Meta data, could be anything
*/
async function webpackLoader(content, map, meta) {
const cb = this.async();
if (!this.resourcePath.endsWith(".ts")) {
cb(null, JSON.stringify({ content, imports: [] }), map, meta);
return;
}
try {
const result = await babel.parseAsync(content, {
sourceType: "module",
filename: this.resourcePath,
});
const imports = [];
result.program.body.forEach((node) => {
if (node.type === "ImportDeclaration") {
const source = node.source.value;
if (!source.startsWith("langchain")) {
return;
}
node.specifiers.forEach((specifier) => {
if (specifier.type === "ImportSpecifier") {
const local = specifier.local.name;
const imported = specifier.imported.name;
imports.push({ local, imported, source });
} else {
throw new Error("Unsupported import type");
}
});
}
});
imports.forEach((imp) => {
const { imported, source } = imp;
const moduleName = source.split("/").slice(1).join("_");
const docsPath = path.resolve(__dirname, "docs", "api", moduleName);
const available = fs.readdirSync(docsPath, { withFileTypes: true });
const found = available.find(
(dirent) =>
dirent.isDirectory() &&
fs.existsSync(path.resolve(docsPath, dirent.name, imported + ".md"))
);
if (found) {
imp.docs =
"/" + path.join("docs", "api", moduleName, found.name, imported);
} else {
throw new Error(
`Could not find docs for ${source}.${imported} in docs/api/`
);
}
});
cb(null, JSON.stringify({ content, imports }), map, meta);
} catch (err) {
cb(err);
}
}
module.exports = webpackLoader;

Binary file not shown.

Before

Width:  |  Height:  |  Size: 559 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 157 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 235 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 148 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 3.5 MiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 18 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 85 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 16 KiB

View File

@@ -1,21 +0,0 @@
pre {
white-space: break-spaces;
}
@media (min-width: 1200px) {
.container,
.container-lg,
.container-md,
.container-sm,
.container-xl {
max-width: 2560px !important;
}
}
#my-component-root *, #headlessui-portal-root * {
z-index: 10000;
}
.content-container p {
margin: revert;
}

Binary file not shown.

Before

Width:  |  Height:  |  Size: 542 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 1.2 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 15 KiB

View File

@@ -1,56 +0,0 @@
document.addEventListener('DOMContentLoaded', () => {
// Load the external dependencies
function loadScript(src, onLoadCallback) {
const script = document.createElement('script');
script.src = src;
script.onload = onLoadCallback;
document.head.appendChild(script);
}
function createRootElement() {
const rootElement = document.createElement('div');
rootElement.id = 'my-component-root';
document.body.appendChild(rootElement);
return rootElement;
}
function initializeMendable() {
const rootElement = createRootElement();
const { MendableFloatingButton } = Mendable;
const iconSpan1 = React.createElement('span', {
}, '🦜');
const iconSpan2 = React.createElement('span', {
}, '🔗');
const icon = React.createElement('p', {
style: { color: '#ffffff', fontSize: '22px',width: '48px', height: '48px', margin: '0px', padding: '0px', display: 'flex', alignItems: 'center', justifyContent: 'center', textAlign: 'center' },
}, [iconSpan1, iconSpan2]);
const mendableFloatingButton = React.createElement(
MendableFloatingButton,
{
style: { darkMode: false, accentColor: '#010810' },
floatingButtonStyle: { color: '#ffffff', backgroundColor: '#010810' },
anon_key: '82842b36-3ea6-49b2-9fb8-52cfc4bde6bf', // Mendable Search Public ANON key, ok to be public
messageSettings: {
openSourcesInNewTab: false,
prettySources: true // Prettify the sources displayed now
},
icon: icon,
}
);
ReactDOM.render(mendableFloatingButton, rootElement);
}
loadScript('https://unpkg.com/react@17/umd/react.production.min.js', () => {
loadScript('https://unpkg.com/react-dom@17/umd/react-dom.production.min.js', () => {
loadScript('https://unpkg.com/@mendable/search@0.0.102/dist/umd/mendable.min.js', initializeMendable);
});
});
});

Binary file not shown.

Before

Width:  |  Height:  |  Size: 103 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 136 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 34 KiB

View File

@@ -1,8 +0,0 @@
---
sidebar_position: 0
---
# Integrations
import DocCardList from "@theme/DocCardList";
<DocCardList />

View File

@@ -1,5 +0,0 @@
# Installation
import Installation from "@snippets/get_started/installation.mdx"
<Installation/>

View File

@@ -1,65 +0,0 @@
---
sidebar_position: 0
---
# Introduction
**LangChain** is a framework for developing applications powered by language models. It enables applications that are:
- **Data-aware**: connect a language model to other sources of data
- **Agentic**: allow a language model to interact with its environment
The main value props of LangChain are:
1. **Components**: abstractions for working with language models, along with a collection of implementations for each abstraction. Components are modular and easy-to-use, whether you are using the rest of the LangChain framework or not
2. **Off-the-shelf chains**: a structured assembly of components for accomplishing specific higher-level tasks
Off-the-shelf chains make it easy to get started. For more complex applications and nuanced use-cases, components make it easy to customize existing chains or build new ones.
## Get started
[Heres](/docs/get_started/installation.html) how to install LangChain, set up your environment, and start building.
We recommend following our [Quickstart](/docs/get_started/quickstart.html) guide to familiarize yourself with the framework by building your first LangChain application.
_**Note**: These docs are for the LangChain [Python package](https://github.com/hwchase17/langchain). For documentation on [LangChain.js](https://github.com/hwchase17/langchainjs), the JS/TS version, [head here](https://js.langchain.com/docs)._
## Modules
LangChain provides standard, extendable interfaces and external integrations for the following modules, listed from least to most complex:
#### [Model I/O](/docs/modules/model_io/)
Interface with language models
#### [Data connection](/docs/modules/data_connection/)
Interface with application-specific data
#### [Chains](/docs/modules/chains/)
Construct sequences of calls
#### [Agents](/docs/modules/agents/)
Let chains choose which tools to use given high-level directives
#### [Memory](/docs/modules/memory/)
Persist application state between runs of a chain
#### [Callbacks](/docs/modules/callbacks/)
Log and stream intermediate steps of any chain
## Examples, ecosystem, and resources
### [Use cases](/docs/use_cases/)
Walkthroughs and best-practices for common end-to-end use cases, like:
- [Chatbots](/docs/use_cases/chatbots/)
- [Answering questions using sources](/docs/use_cases/question_answering/)
- [Analyzing structured data](/docs/use_cases/tabular.html)
- and much more...
### [Guides](/docs/guides/)
Learn best practices for developing with LangChain.
### [Ecosystem](/docs/ecosystem/)
LangChain is part of a rich ecosystem of tools that integrate with our framework and build on top of it. Check out our growing list of [integrations](/docs/ecosystem/integrations/) and [dependent repos](/docs/ecosystem/dependents.html).
### [Additional resources](/docs/additional_resources/)
Our community is full of prolific developers, creative builders, and fantastic teachers. Check out [YouTube tutorials](/docs/additional_resources/youtube.html) for great tutorials from folks in the community, and [Gallery](https://github.com/kyrolabs/awesome-langchain) for a list of awesome LangChain projects, compiled by the folks at [KyroLabs](https://kyrolabs.com).
<h3><span style={{color:"#2e8555"}}> Support </span></h3>
Join us on [GitHub](https://github.com/hwchase17/langchain) or [Discord](https://discord.gg/6adMQxSpJS) to ask questions, share feedback, meet other developers building with LangChain, and dream about the future of LLMs.
## API reference
Head to the [reference](https://api.python.langchain.com) section for full documentation of all classes and methods in the LangChain Python package.

View File

@@ -1,158 +0,0 @@
# Quickstart
## Installation
To install LangChain run:
import Tabs from '@theme/Tabs';
import TabItem from '@theme/TabItem';
import Install from "@snippets/get_started/quickstart/installation.mdx"
<Install/>
For more details, see our [Installation guide](/docs/get_started/installation.html).
## Environment setup
Using LangChain will usually require integrations with one or more model providers, data stores, APIs, etc. For this example, we'll use OpenAI's model APIs.
import OpenAISetup from "@snippets/get_started/quickstart/openai_setup.mdx"
<OpenAISetup/>
## Building an application
Now we can start building our language model application. LangChain provides many modules that can be used to build language model applications. Modules can be used as stand-alones in simple applications and they can be combined for more complex use cases.
## LLMs
#### Get predictions from a language model
The basic building block of LangChain is the LLM, which takes in text and generates more text.
As an example, suppose we're building an application that generates a company name based on a company description. In order to do this, we need to initialize an OpenAI model wrapper. In this case, since we want the outputs to be MORE random, we'll initialize our model with a HIGH temperature.
import LLM from "@snippets/get_started/quickstart/llm.mdx"
<LLM/>
## Chat models
Chat models are a variation on language models. While chat models use language models under the hood, the interface they expose is a bit different: rather than expose a "text in, text out" API, they expose an interface where "chat messages" are the inputs and outputs.
You can get chat completions by passing one or more messages to the chat model. The response will be a message. The types of messages currently supported in LangChain are `AIMessage`, `HumanMessage`, `SystemMessage`, and `ChatMessage` -- `ChatMessage` takes in an arbitrary role parameter. Most of the time, you'll just be dealing with `HumanMessage`, `AIMessage`, and `SystemMessage`.
import ChatModel from "@snippets/get_started/quickstart/chat_model.mdx"
<ChatModel/>
## Prompt templates
Most LLM applications do not pass user input directly into to an LLM. Usually they will add the user input to a larger piece of text, called a prompt template, that provides additional context on the specific task at hand.
In the previous example, the text we passed to the model contained instructions to generate a company name. For our application, it'd be great if the user only had to provide the description of a company/product, without having to worry about giving the model instructions.
import PromptTemplateLLM from "@snippets/get_started/quickstart/prompt_templates_llms.mdx"
import PromptTemplateChatModel from "@snippets/get_started/quickstart/prompt_templates_chat_models.mdx"
<Tabs>
<TabItem value="llms" label="LLMs" default>
With PromptTemplates this is easy! In this case our template would be very simple:
<PromptTemplateLLM/>
</TabItem>
<TabItem value="chat_models" label="Chat models">
Similar to LLMs, you can make use of templating by using a `MessagePromptTemplate`. You can build a `ChatPromptTemplate` from one or more `MessagePromptTemplate`s. You can use `ChatPromptTemplate`'s `format_messages` method to generate the formatted messages.
Because this is generating a list of messages, it is slightly more complex than the normal prompt template which is generating only a string. Please see the detailed guides on prompts to understand more options available to you here.
<PromptTemplateChatModel/>
</TabItem>
</Tabs>
## Chains
Now that we've got a model and a prompt template, we'll want to combine the two. Chains give us a way to link (or chain) together multiple primitives, like models, prompts, and other chains.
import ChainLLM from "@snippets/get_started/quickstart/chains_llms.mdx"
import ChainChatModel from "@snippets/get_started/quickstart/chains_chat_models.mdx"
<Tabs>
<TabItem value="llms" label="LLMs" default>
The simplest and most common type of chain is an LLMChain, which passes an input first to a PromptTemplate and then to an LLM. We can construct an LLM chain from our existing model and prompt template.
<ChainLLM/>
There we go, our first chain! Understanding how this simple chain works will set you up well for working with more complex chains.
</TabItem>
<TabItem value="chat_models" label="Chat models">
The `LLMChain` can be used with chat models as well:
<ChainChatModel/>
</TabItem>
</Tabs>
## Agents
import AgentLLM from "@snippets/get_started/quickstart/agents_llms.mdx"
import AgentChatModel from "@snippets/get_started/quickstart/agents_chat_models.mdx"
Our first chain ran a pre-determined sequence of steps. To handle complex workflows, we need to be able to dynamically choose actions based on inputs.
Agents do just this: they use a language model to determine which actions to take and in what order. Agents are given access to tools, and they repeatedly choose a tool, run the tool, and observe the output until they come up with a final answer.
To load an agent, you need to choose a(n):
- LLM/Chat model: The language model powering the agent.
- Tool(s): A function that performs a specific duty. This can be things like: Google Search, Database lookup, Python REPL, other chains. For a list of predefined tools and their specifications, see the [Tools documentation](/docs/modules/agents/tools/).
- Agent name: A string that references a supported agent class. An agent class is largely parameterized by the prompt the language model uses to determine which action to take. Because this notebook focuses on the simplest, highest level API, this only covers using the standard supported agents. If you want to implement a custom agent, see [here](/docs/modules/agents/how_to/custom_agent.html). For a list of supported agents and their specifications, see [here](/docs/modules/agents/agent_types/).
For this example, we'll be using SerpAPI to query a search engine.
You'll need to install the SerpAPI Python package:
```bash
pip install google-search-results
```
And set the `SERPAPI_API_KEY` environment variable.
<Tabs>
<TabItem value="llms" label="LLMs" default>
<AgentLLM/>
</TabItem>
<TabItem value="chat_models" label="Chat models">
Agents can also be used with chat models, you can initialize one using `AgentType.CHAT_ZERO_SHOT_REACT_DESCRIPTION` as the agent type.
<AgentChatModel/>
</TabItem>
</Tabs>
## Memory
The chains and agents we've looked at so far have been stateless, but for many applications it's necessary to reference past interactions. This is clearly the case with a chatbot for example, where you want it to understand new messages in the context of past messages.
The Memory module gives you a way to maintain application state. The base Memory interface is simple: it lets you update state given the latest run inputs and outputs and it lets you modify (or contextualize) the next input using the stored state.
There are a number of built-in memory systems. The simplest of these are is a buffer memory which just prepends the last few inputs/outputs to the current input - we will use this in the example below.
import MemoryLLM from "@snippets/get_started/quickstart/memory_llms.mdx"
import MemoryChatModel from "@snippets/get_started/quickstart/memory_chat_models.mdx"
<Tabs>
<TabItem value="llms" label="LLMs" default>
<MemoryLLM/>
</TabItem>
<TabItem value="chat_models" label="Chat models">
You can use Memory with chains and agents initialized with chat models. The main difference between this and Memory for LLMs is that rather than trying to condense all previous messages into a string, we can keep them as their own unique memory object.
<MemoryChatModel/>
</TabItem>
</Tabs>

View File

@@ -1,13 +0,0 @@
# Conversational
This walkthrough demonstrates how to use an agent optimized for conversation. Other agents are often optimized for using tools to figure out the best response, which is not ideal in a conversational setting where you may want the agent to be able to chat with the user as well.
import Example from "@snippets/modules/agents/agent_types/conversational_agent.mdx"
<Example/>
import ChatExample from "@snippets/modules/agents/agent_types/chat_conversation_agent.mdx"
## Using a chat model
<ChatExample/>

View File

@@ -1,57 +0,0 @@
---
sidebar_position: 0
---
# Agent types
## Action agents
Agents use an LLM to determine which actions to take and in what order.
An action can either be using a tool and observing its output, or returning a response to the user.
Here are the agents available in LangChain.
### [Zero-shot ReAct](/docs/modules/agents/agent_types/react.html)
This agent uses the [ReAct](https://arxiv.org/pdf/2205.00445.pdf) framework to determine which tool to use
based solely on the tool's description. Any number of tools can be provided.
This agent requires that a description is provided for each tool.
**Note**: This is the most general purpose action agent.
### [Structured input ReAct](/docs/modules/agents/agent_types/structured_chat.html)
The structured tool chat agent is capable of using multi-input tools.
Older agents are configured to specify an action input as a single string, but this agent can use a tools' argument
schema to create a structured action input. This is useful for more complex tool usage, like precisely
navigating around a browser.
### [OpenAI Functions](/docs/modules/agents/agent_types/openai_functions_agent.html)
Certain OpenAI models (like gpt-3.5-turbo-0613 and gpt-4-0613) have been explicitly fine-tuned to detect when a
function should to be called and respond with the inputs that should be passed to the function.
The OpenAI Functions Agent is designed to work with these models.
### [Conversational](/docs/modules/agents/agent_types/chat_conversation_agent.html)
This agent is designed to be used in conversational settings.
The prompt is designed to make the agent helpful and conversational.
It uses the ReAct framework to decide which tool to use, and uses memory to remember the previous conversation interactions.
### [Self ask with search](/docs/modules/agents/agent_types/self_ask_with_search.html)
This agent utilizes a single tool that should be named `Intermediate Answer`.
This tool should be able to lookup factual answers to questions. This agent
is equivalent to the original [self ask with search paper](https://ofir.io/self-ask.pdf),
where a Google search API was provided as the tool.
### [ReAct document store](/docs/modules/agents/agent_types/react_docstore.html)
This agent uses the ReAct framework to interact with a docstore. Two tools must
be provided: a `Search` tool and a `Lookup` tool (they must be named exactly as so).
The `Search` tool should search for a document, while the `Lookup` tool should lookup
a term in the most recently found document.
This agent is equivalent to the
original [ReAct paper](https://arxiv.org/pdf/2210.03629.pdf), specifically the Wikipedia example.
## [Plan-and-execute agents](/docs/modules/agents/agent_types/plan_and_execute.html)
Plan and execute agents accomplish an objective by first planning what to do, then executing the sub tasks. This idea is largely inspired by [BabyAGI](https://github.com/yoheinakajima/babyagi) and then the ["Plan-and-Solve" paper](https://arxiv.org/abs/2305.04091).

View File

@@ -1,11 +0,0 @@
# OpenAI functions
Certain OpenAI models (like gpt-3.5-turbo-0613 and gpt-4-0613) have been fine-tuned to detect when a function should to be called and respond with the inputs that should be passed to the function.
In an API call, you can describe functions and have the model intelligently choose to output a JSON object containing arguments to call those functions.
The goal of the OpenAI Function APIs is to more reliably return valid and useful function calls than a generic text completion or chat API.
The OpenAI Functions Agent is designed to work with these models.
import Example from "@snippets/modules/agents/agent_types/openai_functions_agent.mdx";
<Example/>

View File

@@ -1,11 +0,0 @@
# Plan and execute
Plan and execute agents accomplish an objective by first planning what to do, then executing the sub tasks. This idea is largely inspired by [BabyAGI](https://github.com/yoheinakajima/babyagi) and then the ["Plan-and-Solve" paper](https://arxiv.org/abs/2305.04091).
The planning is almost always done by an LLM.
The execution is usually done by a separate agent (equipped with tools).
import Example from "@snippets/modules/agents/agent_types/plan_and_execute.mdx"
<Example/>

View File

@@ -1,15 +0,0 @@
# ReAct
This walkthrough showcases using an agent to implement the [ReAct](https://react-lm.github.io/) logic.
import Example from "@snippets/modules/agents/agent_types/react.mdx"
<Example/>
## Using chat models
You can also create ReAct agents that use chat models instead of LLMs as the agent driver.
import ChatExample from "@snippets/modules/agents/agent_types/react_chat.mdx"
<ChatExample/>

View File

@@ -1,10 +0,0 @@
# Structured tool chat
The structured tool chat agent is capable of using multi-input tools.
Older agents are configured to specify an action input as a single string, but this agent can use the provided tools' `args_schema` to populate the action input.
import Example from "@snippets/modules/agents/agent_types/structured_chat.mdx"
<Example/>

View File

@@ -1,2 +0,0 @@
label: 'How-to'
position: 1

View File

@@ -1,14 +0,0 @@
# Custom LLM Agent
This notebook goes through how to create your own custom LLM agent.
An LLM agent consists of three parts:
- PromptTemplate: This is the prompt template that can be used to instruct the language model on what to do
- LLM: This is the language model that powers the agent
- `stop` sequence: Instructs the LLM to stop generating as soon as this string is found
- OutputParser: This determines how to parse the LLMOutput into an AgentAction or AgentFinish object
import Example from "@snippets/modules/agents/how_to/custom_llm_agent.mdx"
<Example/>

View File

@@ -1,14 +0,0 @@
# Custom LLM Agent (with a ChatModel)
This notebook goes through how to create your own custom agent based on a chat model.
An LLM chat agent consists of three parts:
- PromptTemplate: This is the prompt template that can be used to instruct the language model on what to do
- ChatModel: This is the language model that powers the agent
- `stop` sequence: Instructs the LLM to stop generating as soon as this string is found
- OutputParser: This determines how to parse the LLMOutput into an AgentAction or AgentFinish object
import Example from "@snippets/modules/agents/how_to/custom_llm_chat_agent.mdx"
<Example/>

View File

@@ -1,16 +0,0 @@
# Replicating MRKL
This walkthrough demonstrates how to replicate the [MRKL](https://arxiv.org/pdf/2205.00445.pdf) system using agents.
This uses the example Chinook database.
To set it up follow the instructions on https://database.guide/2-sample-databases-sqlite/, placing the `.db` file in a notebooks folder at the root of this repository.
import Example from "@snippets/modules/agents/how_to/mrkl.mdx"
<Example/>
## With a chat model
import ChatExample from "@snippets/modules/agents/how_to/mrkl_chat.mdx"
<ChatExample/>

View File

@@ -1,51 +0,0 @@
---
sidebar_position: 4
---
# Agents
Some applications require a flexible chain of calls to LLMs and other tools based on user input. The **Agent** interface provides the flexibility for such applications. An agent has access to a suite of tools, and determines which ones to use depending on the user input. Agents can use multiple tools, and use the output of one tool as the input to the next.
There are two main types of agents:
- **Action agents**: at each timestep, decide on the next action using the outputs of all previous actions
- **Plan-and-execute agents**: decide on the full sequence of actions up front, then execute them all without updating the plan
Action agents are suitable for small tasks, while plan-and-execute agents are better for complex or long-running tasks that require maintaining long-term objectives and focus. Often the best approach is to combine the dynamism of an action agent with the planning abilities of a plan-and-execute agent by letting the plan-and-execute agent use action agents to execute plans.
For a full list of agent types see [agent types](/docs/modules/agents/agent_types/). Additional abstractions involved in agents are:
- [**Tools**](/docs/modules/agents/tools/): the actions an agent can take. What tools you give an agent highly depend on what you want the agent to do
- [**Toolkits**](/docs/modules/agents/toolkits/): wrappers around collections of tools that can be used together a specific use case. For example, in order for an agent to
interact with a SQL database it will likely need one tool to execute queries and another to inspect tables
## Action agents
At a high-level an action agent:
1. Receives user input
2. Decides which tool, if any, to use and the tool input
3. Calls the tool and records the output (also known as an "observation")
4. Decides the next step using the history of tools, tool inputs, and observations
5. Repeats 3-4 until it determines it can respond directly to the user
Action agents are wrapped in **agent executors**, which are responsible for calling the agent, getting back an action and action input, calling the tool that the action references with the generated input, getting the output of the tool, and then passing all that information back into the agent to get the next action it should take.
Although an agent can be constructed in many ways, it typically involves these components:
- **Prompt template**: Responsible for taking the user input and previous steps and constructing a prompt
to send to the language model
- **Language model**: Takes the prompt with use input and action history and decides what to do next
- **Output parser**: Takes the output of the language model and parses it into the next action or a final answer
## Plan-and-execute agents
At a high-level a plan-and-execute agent:
1. Receives user input
2. Plans the full sequence of steps to take
3. Executes the steps in order, passing the outputs of past steps as inputs to future steps
The most typical implementation is to have the planner be a language model, and the executor be an action agent. Read more [here](/docs/modules/agents/agent_types/plan_and_execute.html).
## Get started
import GetStarted from "@snippets/modules/agents/get_started.mdx"
<GetStarted/>

View File

@@ -1,10 +0,0 @@
---
sidebar_position: 3
---
# Toolkits
Toolkits are collections of tools that are designed to be used together for specific tasks and have convenience loading methods.
import DocCardList from "@theme/DocCardList";
<DocCardList />

View File

@@ -1,2 +0,0 @@
label: 'How-to'
position: 0

View File

@@ -1,17 +0,0 @@
---
sidebar_position: 2
---
# Tools
Tools are interfaces that an agent can use to interact with the world.
## Get started
Tools are functions that agents can use to interact with the world.
These tools can be generic utilities (e.g. search), other chains, or even other agents.
Currently, tools can be loaded with the following snippet:
import GetStarted from "@snippets/modules/agents/tools/get_started.mdx"
<GetStarted/>

View File

@@ -1 +0,0 @@
label: 'Integrations'

View File

@@ -1,2 +0,0 @@
label: 'How-to'
position: 0

View File

@@ -1,10 +0,0 @@
---
sidebar_position: 5
---
# Callbacks
LangChain provides a callbacks system that allows you to hook into the various stages of your LLM application. This is useful for logging, monitoring, streaming, and other tasks.
import GetStarted from "@snippets/modules/callbacks/get_started.mdx"
<GetStarted/>

View File

@@ -1 +0,0 @@
label: 'Integrations'

View File

@@ -1,7 +0,0 @@
# Analyze Document
The AnalyzeDocumentChain can be used as an end-to-end to chain. This chain takes in a single document, splits it up, and then runs it through a CombineDocumentsChain.
import Example from "@snippets/modules/chains/additional/analyze_document.mdx"
<Example/>

View File

@@ -1,7 +0,0 @@
# Self-critique chain with constitutional AI
The ConstitutionalChain is a chain that ensures the output of a language model adheres to a predefined set of constitutional principles. By incorporating specific rules and guidelines, the ConstitutionalChain filters and modifies the generated content to align with these principles, thus providing more controlled, ethical, and contextually appropriate responses. This mechanism helps maintain the integrity of the output while minimizing the risk of generating content that may violate guidelines, be offensive, or deviate from the desired context.
import Example from "@snippets/modules/chains/additional/constitutional_chain.mdx"
<Example/>

View File

@@ -1,8 +0,0 @@
---
sidebar_position: 4
---
# Additional
import DocCardList from "@theme/DocCardList";
<DocCardList />

View File

@@ -1,8 +0,0 @@
# Moderation
This notebook walks through examples of how to use a moderation chain, and several common ways for doing so. Moderation chains are useful for detecting text that could be hateful, violent, etc. This can be useful to apply on both user input, but also on the output of a Language Model. Some API providers, like OpenAI, [specifically prohibit](https://beta.openai.com/docs/usage-policies/use-case-policy) you, or your end users, from generating some types of harmful content. To comply with this (and to just generally prevent your application from being harmful) you may often want to append a moderation chain to any LLMChains, in order to make sure any output the LLM generates is not harmful.
If the content passed into the moderation chain is harmful, there is not one best way to handle it, it probably depends on your application. Sometimes you may want to throw an error in the Chain (and have your application handle that). Other times, you may want to return something to the user explaining that the text was harmful. There could even be other ways to handle it! We will cover all these ways in this walkthrough.
import Example from "@snippets/modules/chains/additional/moderation.mdx"
<Example/>

View File

@@ -1,7 +0,0 @@
# Dynamically selecting from multiple prompts
This notebook demonstrates how to use the `RouterChain` paradigm to create a chain that dynamically selects the prompt to use for a given input. Specifically we show how to use the `MultiPromptChain` to create a question-answering chain that selects the prompt which is most relevant for a given question, and then answers the question using that prompt.
import Example from "@snippets/modules/chains/additional/multi_prompt_router.mdx"
<Example/>

View File

@@ -1,7 +0,0 @@
# Dynamically selecting from multiple retrievers
This notebook demonstrates how to use the `RouterChain` paradigm to create a chain that dynamically selects which Retrieval system to use. Specifically we show how to use the `MultiRetrievalQAChain` to create a question-answering chain that selects the retrieval QA chain which is most relevant for a given question, and then answers the question using it.
import Example from "@snippets/modules/chains/additional/multi_retrieval_qa_router.mdx"
<Example/>

View File

@@ -1,13 +0,0 @@
# Document QA
Here we walk through how to use LangChain for question answering over a list of documents. Under the hood we'll be using our [Document chains](/docs/modules/chains/document/).
import Example from "@snippets/modules/chains/additional/question_answering.mdx"
<Example/>
## Document QA with sources
import ExampleWithSources from "@snippets/modules/chains/additional/qa_with_sources.mdx"
<ExampleWithSources/>

View File

@@ -1,16 +0,0 @@
---
sidebar_position: 2
---
# Documents
These are the core chains for working with Documents. They are useful for summarizing documents, answering questions over documents, extracting information from documents, and more.
These chains all implement a common interface:
import Interface from "@snippets/modules/chains/document/combine_docs.mdx"
<Interface/>
import DocCardList from "@theme/DocCardList";
<DocCardList />

View File

@@ -1,5 +0,0 @@
# Map reduce
The map reduce documents chain first applies an LLM chain to each document individually (the Map step), treating the chain output as a new document. It then passes all the new documents to a separate combine documents chain to get a single output (the Reduce step). It can optionally first compress, or collapse, the mapped documents to make sure that they fit in the combine documents chain (which will often pass them to an LLM). This compression step is performed recursively if necessary.
![map_reduce_diagram](/img/map_reduce.jpg)

View File

@@ -1,5 +0,0 @@
# Map re-rank
The map re-rank documents chain runs an initial prompt on each document, that not only tries to complete a task but also gives a score for how certain it is in its answer. The highest scoring response is returned.
![map_rerank_diagram](/img/map_rerank.jpg)

Some files were not shown because too many files have changed in this diff Show More