This PR addresses the common issue where users struggle to pass custom parameters to OpenAI-compatible APIs like LM Studio, vLLM, and others. The problem occurs when users try to use `model_kwargs` for custom parameters, which causes API errors. ## Problem Users attempting to pass custom parameters (like LM Studio's `ttl` parameter) were getting errors: ```python # ❌ This approach fails llm = ChatOpenAI( base_url="http://localhost:1234/v1", model="mlx-community/QwQ-32B-4bit", model_kwargs={"ttl": 5} # Causes TypeError: unexpected keyword argument 'ttl' ) ``` ## Solution The `extra_body` parameter is the correct way to pass custom parameters to OpenAI-compatible APIs: ```python # ✅ This approach works correctly llm = ChatOpenAI( base_url="http://localhost:1234/v1", model="mlx-community/QwQ-32B-4bit", extra_body={"ttl": 5} # Custom parameters go in extra_body ) ``` ## Changes Made 1. **Enhanced Documentation**: Updated the `extra_body` parameter docstring with comprehensive examples for LM Studio, vLLM, and other providers 2. **Added Documentation Section**: Created a new "OpenAI-compatible APIs" section in the main class docstring with practical examples 3. **Unit Tests**: Added tests to verify `extra_body` functionality works correctly: - `test_extra_body_parameter()`: Verifies custom parameters are included in request payload - `test_extra_body_with_model_kwargs()`: Ensures `extra_body` and `model_kwargs` work together 4. **Clear Guidance**: Documented when to use `extra_body` vs `model_kwargs` ## Examples Added **LM Studio with TTL (auto-eviction):** ```python ChatOpenAI( base_url="http://localhost:1234/v1", api_key="lm-studio", model="mlx-community/QwQ-32B-4bit", extra_body={"ttl": 300} # Auto-evict after 5 minutes ) ``` **vLLM with custom sampling:** ```python ChatOpenAI( base_url="http://localhost:8000/v1", api_key="EMPTY", model="meta-llama/Llama-2-7b-chat-hf", extra_body={ "use_beam_search": True, "best_of": 4 } ) ``` ## Why This Works - `model_kwargs` parameters are passed directly to the OpenAI client's `create()` method, causing errors for non-standard parameters - `extra_body` parameters are included in the HTTP request body, which is exactly what OpenAI-compatible APIs expect for custom parameters Fixes #32115. <!-- START COPILOT CODING AGENT TIPS --> --- 💬 Share your feedback on Copilot coding agent for the chance to win a $200 gift card! Click [here](https://survey.alchemer.com/s3/8343779/Copilot-Coding-agent) to start the survey. --------- Co-authored-by: copilot-swe-agent[bot] <198982749+Copilot@users.noreply.github.com> Co-authored-by: mdrxy <61371264+mdrxy@users.noreply.github.com> Co-authored-by: Mason Daugherty <github@mdrxy.com> Co-authored-by: Mason Daugherty <mason@langchain.dev>
2.4 KiB
langchain-tests
This is a testing library for LangChain integrations. It contains the base classes for a standard set of tests.
Installation
We encourage pinning your version to a specific version in order to avoid breaking your CI when we publish new tests. We recommend upgrading to the latest version periodically to make sure you have the latest tests.
Not pinning your version will ensure you always have the latest tests, but it may also break your CI if we introduce tests that your integration doesn't pass.
Pip:
```bash
pip install -U langchain-tests
```
Poetry:
```bash
poetry add langchain-tests
```
Usage
To add standard tests to an integration package's e.g. ChatModel, you need to create
- A unit test class that inherits from ChatModelUnitTests
- An integration test class that inherits from ChatModelIntegrationTests
tests/unit_tests/test_standard.py
:
```python
"""Standard LangChain interface tests"""
from typing import Type
import pytest
from langchain_core.language_models import BaseChatModel
from langchain_tests.unit_tests import ChatModelUnitTests
from langchain_parrot_chain import ChatParrotChain
class TestParrotChainStandard(ChatModelUnitTests):
@pytest.fixture
def chat_model_class(self) -> Type[BaseChatModel]:
return ChatParrotChain
```
tests/integration_tests/test_standard.py
:
```python
"""Standard LangChain interface tests"""
from typing import Type
import pytest
from langchain_core.language_models import BaseChatModel
from langchain_tests.integration_tests import ChatModelIntegrationTests
from langchain_parrot_chain import ChatParrotChain
class TestParrotChainStandard(ChatModelIntegrationTests):
@pytest.fixture
def chat_model_class(self) -> Type[BaseChatModel]:
return ChatParrotChain
```
Reference
The following fixtures are configurable in the test classes. Anything not marked as required is optional.
chat_model_class
(required): The class of the chat model to be testedchat_model_params
: The keyword arguments to pass to the chat model constructorchat_model_has_tool_calling
: Whether the chat model can call tools. By default, this is set tohasattr(chat_model_class, 'bind_tools)
chat_model_has_structured_output
: Whether the chat model can structured output. By default, this is set tohasattr(chat_model_class, 'with_structured_output')