langchain/docs/ecosystem/huggingface.md
Harrison Chase 985496f4be
Docs refactor (#480)
Big docs refactor! Motivation is to make it easier for people to find
resources they are looking for. To accomplish this, there are now three
main sections:

- Getting Started: steps for getting started, walking through most core
functionality
- Modules: these are different modules of functionality that langchain
provides. Each part here has a "getting started", "how to", "key
concepts" and "reference" section (except in a few select cases where it
didnt easily fit).
- Use Cases: this is to separate use cases (like summarization, question
answering, evaluation, etc) from the modules, and provide a different
entry point to the code base.

There is also a full reference section, as well as extra resources
(glossary, gallery, etc)

Co-authored-by: Shreya Rajpal <ShreyaR@users.noreply.github.com>
2023-01-02 08:24:09 -08:00

2.5 KiB

Hugging Face

This page covers how to use the Hugging Face ecosystem (including the Hugging Face Hub) within LangChain. It is broken into two parts: installation and setup, and then references to specific Hugging Face wrappers.

Installation and Setup

If you want to work with the Hugging Face Hub:

  • Install the Python SDK with pip install huggingface_hub
  • Get an OpenAI api key and set it as an environment variable (HUGGINGFACEHUB_API_TOKEN)

If you want work with Hugging Face python libraries:

  • Install pip install transformers for working with models and tokenizers
  • Install pip install datasets for working with datasets

Wrappers

LLM

There exists two Hugging Face LLM wrappers, one for a local pipeline and one for a model hosted on Hugging Face Hub. Note that these wrappers only work for the following tasks: text2text-generation, text-generation

To use the local pipeline wrapper:

from langchain.llms import HuggingFacePipeline

To use a the wrapper for a model hosted on Hugging Face Hub:

from langchain.llms import HuggingFaceHub

For a more detailed walkthrough of the Hugging Face Hub wrapper, see this notebook

Embeddings

There exists two Hugging Face Embeddings wrappers, one for a local model and one for a model hosted on Hugging Face Hub. Note that these wrappers only work for sentence-transformers models.

To use the local pipeline wrapper:

from langchain.embeddings import HuggingFaceEmbeddings

To use a the wrapper for a model hosted on Hugging Face Hub:

from langchain.embeddings import HuggingFaceHubEmbeddings

For a more detailed walkthrough of this, see this notebook

Tokenizer

There are several places you can use tokenizers available through the transformers package. By default, it is used to count tokens for all LLMs.

You can also use it to count tokens when splitting documents with

from langchain.text_splitter import CharacterTextSplitter
CharacterTextSplitter.from_huggingface_tokenizer(...)

For a more detailed walkthrough of this, see this notebook

Datasets

Hugging Face has lots of great datasets that can be used to evaluate your LLM chains.

For a detailed walkthrough of how to use them to do so, see this notebook