langchain/libs/partners/openai/tests/unit_tests/embeddings/test_base.py
Chaymae El Aattabi 4b08a7e8e8
Fix #29759: Use local chunk_size_ for looping in embed_documents (#29761)
This fix ensures that the chunk size is correctly determined when
processing text embeddings. Previously, the code did not properly handle
cases where chunk_size was None, potentially leading to incorrect
chunking behavior.

Now, chunk_size_ is explicitly set to either the provided chunk_size or
the default self.chunk_size, ensuring consistent chunking. This update
improves reliability when processing large text inputs in batches and
prevents unintended behavior when chunk_size is not specified.

---------

Co-authored-by: Chester Curme <chester.curme@gmail.com>
2025-02-13 01:28:26 +00:00

40 lines
1.3 KiB
Python

import os
from unittest.mock import patch
import pytest
from langchain_openai import OpenAIEmbeddings
os.environ["OPENAI_API_KEY"] = "foo"
def test_openai_invalid_model_kwargs() -> None:
with pytest.raises(ValueError):
OpenAIEmbeddings(model_kwargs={"model": "foo"})
def test_openai_incorrect_field() -> None:
with pytest.warns(match="not default parameter"):
llm = OpenAIEmbeddings(foo="bar") # type: ignore[call-arg]
assert llm.model_kwargs == {"foo": "bar"}
def test_embed_documents_with_custom_chunk_size() -> None:
embeddings = OpenAIEmbeddings(chunk_size=2, check_embedding_ctx_length=False)
texts = ["text1", "text2", "text3", "text4"]
custom_chunk_size = 3
with patch.object(embeddings.client, "create") as mock_create:
mock_create.side_effect = [
{"data": [{"embedding": [0.1, 0.2]}, {"embedding": [0.3, 0.4]}]},
{"data": [{"embedding": [0.5, 0.6]}, {"embedding": [0.7, 0.8]}]},
]
result = embeddings.embed_documents(texts, chunk_size=custom_chunk_size)
mock_create.call_args
mock_create.assert_any_call(input=texts[0:3], **embeddings._invocation_params)
mock_create.assert_any_call(input=texts[3:4], **embeddings._invocation_params)
assert result == [[0.1, 0.2], [0.3, 0.4], [0.5, 0.6], [0.7, 0.8]]