mirror of
https://github.com/hwchase17/langchain.git
synced 2025-05-05 07:08:03 +00:00
**Description:** Add support for Writer chat models **Issue:** N/A **Dependencies:** Add `writer-sdk` to optional dependencies. **Twitter handle:** Please tag `@samjulien` and `@Get_Writer` **Tests and docs** - [x] Unit test - [x] Example notebook in `docs/docs/integrations` directory. **Lint and test** - [x] Run `make format` - [x] Run `make lint` - [x] Run `make test` --------- Co-authored-by: Johannes <tolstoy.work@gmail.com> Co-authored-by: Erick Friis <erick@langchain.dev>
318 lines
10 KiB
Python
318 lines
10 KiB
Python
"""Writer chat wrapper."""
|
|
|
|
from __future__ import annotations
|
|
|
|
import logging
|
|
from typing import (
|
|
Any,
|
|
AsyncIterator,
|
|
Callable,
|
|
Dict,
|
|
Iterator,
|
|
List,
|
|
Literal,
|
|
Mapping,
|
|
Optional,
|
|
Sequence,
|
|
Tuple,
|
|
Type,
|
|
Union,
|
|
)
|
|
|
|
from langchain_core.callbacks import (
|
|
AsyncCallbackManagerForLLMRun,
|
|
CallbackManagerForLLMRun,
|
|
)
|
|
from langchain_core.language_models import LanguageModelInput
|
|
from langchain_core.language_models.chat_models import (
|
|
BaseChatModel,
|
|
agenerate_from_stream,
|
|
generate_from_stream,
|
|
)
|
|
from langchain_core.messages import (
|
|
AIMessage,
|
|
AIMessageChunk,
|
|
BaseMessage,
|
|
ChatMessage,
|
|
HumanMessage,
|
|
SystemMessage,
|
|
ToolMessage,
|
|
)
|
|
from langchain_core.outputs import ChatGeneration, ChatGenerationChunk, ChatResult
|
|
from langchain_core.runnables import Runnable
|
|
from langchain_core.utils.function_calling import convert_to_openai_tool
|
|
from pydantic import BaseModel, ConfigDict, Field, SecretStr
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
def _convert_message_to_dict(message: BaseMessage) -> dict:
|
|
"""Convert a LangChain message to a Writer message dict."""
|
|
message_dict = {"role": "", "content": message.content}
|
|
|
|
if isinstance(message, ChatMessage):
|
|
message_dict["role"] = message.role
|
|
elif isinstance(message, HumanMessage):
|
|
message_dict["role"] = "user"
|
|
elif isinstance(message, AIMessage):
|
|
message_dict["role"] = "assistant"
|
|
if message.tool_calls:
|
|
message_dict["tool_calls"] = [
|
|
{
|
|
"id": tool["id"],
|
|
"type": "function",
|
|
"function": {"name": tool["name"], "arguments": tool["args"]},
|
|
}
|
|
for tool in message.tool_calls
|
|
]
|
|
elif isinstance(message, SystemMessage):
|
|
message_dict["role"] = "system"
|
|
elif isinstance(message, ToolMessage):
|
|
message_dict["role"] = "tool"
|
|
message_dict["tool_call_id"] = message.tool_call_id
|
|
else:
|
|
raise ValueError(f"Got unknown message type: {type(message)}")
|
|
|
|
if message.name:
|
|
message_dict["name"] = message.name
|
|
|
|
return message_dict
|
|
|
|
|
|
def _convert_dict_to_message(response_dict: Dict[str, Any]) -> BaseMessage:
|
|
"""Convert a Writer message dict to a LangChain message."""
|
|
role = response_dict["role"]
|
|
content = response_dict.get("content", "")
|
|
|
|
if role == "user":
|
|
return HumanMessage(content=content)
|
|
elif role == "assistant":
|
|
additional_kwargs = {}
|
|
if tool_calls := response_dict.get("tool_calls"):
|
|
additional_kwargs["tool_calls"] = tool_calls
|
|
return AIMessageChunk(content=content, additional_kwargs=additional_kwargs)
|
|
elif role == "system":
|
|
return SystemMessage(content=content)
|
|
elif role == "tool":
|
|
return ToolMessage(
|
|
content=content,
|
|
tool_call_id=response_dict["tool_call_id"],
|
|
name=response_dict.get("name"),
|
|
)
|
|
else:
|
|
return ChatMessage(content=content, role=role)
|
|
|
|
|
|
class ChatWriter(BaseChatModel):
|
|
"""Writer chat model.
|
|
|
|
To use, you should have the ``writer-sdk`` Python package installed, and the
|
|
environment variable ``WRITER_API_KEY`` set with your API key.
|
|
|
|
Example:
|
|
.. code-block:: python
|
|
|
|
from langchain_community.chat_models import ChatWriter
|
|
|
|
chat = ChatWriter(model="palmyra-x-004")
|
|
"""
|
|
|
|
client: Any = Field(default=None, exclude=True) #: :meta private:
|
|
async_client: Any = Field(default=None, exclude=True) #: :meta private:
|
|
model_name: str = Field(default="palmyra-x-004", alias="model")
|
|
"""Model name to use."""
|
|
temperature: float = 0.7
|
|
"""What sampling temperature to use."""
|
|
model_kwargs: Dict[str, Any] = Field(default_factory=dict)
|
|
"""Holds any model parameters valid for `create` call not explicitly specified."""
|
|
writer_api_key: Optional[SecretStr] = Field(default=None, alias="api_key")
|
|
"""Writer API key."""
|
|
writer_api_base: Optional[str] = Field(default=None, alias="base_url")
|
|
"""Base URL for API requests."""
|
|
streaming: bool = False
|
|
"""Whether to stream the results or not."""
|
|
n: int = 1
|
|
"""Number of chat completions to generate for each prompt."""
|
|
max_tokens: Optional[int] = None
|
|
"""Maximum number of tokens to generate."""
|
|
|
|
model_config = ConfigDict(populate_by_name=True)
|
|
|
|
@property
|
|
def _llm_type(self) -> str:
|
|
"""Return type of chat model."""
|
|
return "writer-chat"
|
|
|
|
@property
|
|
def _identifying_params(self) -> Dict[str, Any]:
|
|
"""Get the identifying parameters."""
|
|
return {
|
|
"model_name": self.model_name,
|
|
"temperature": self.temperature,
|
|
"streaming": self.streaming,
|
|
**self.model_kwargs,
|
|
}
|
|
|
|
def _create_chat_result(self, response: Mapping[str, Any]) -> ChatResult:
|
|
generations = []
|
|
for choice in response["choices"]:
|
|
message = _convert_dict_to_message(choice["message"])
|
|
gen = ChatGeneration(
|
|
message=message,
|
|
generation_info=dict(finish_reason=choice.get("finish_reason")),
|
|
)
|
|
generations.append(gen)
|
|
|
|
token_usage = response.get("usage", {})
|
|
llm_output = {
|
|
"token_usage": token_usage,
|
|
"model_name": self.model_name,
|
|
"system_fingerprint": response.get("system_fingerprint", ""),
|
|
}
|
|
|
|
return ChatResult(generations=generations, llm_output=llm_output)
|
|
|
|
def _convert_messages_to_dicts(
|
|
self, messages: List[BaseMessage], stop: Optional[List[str]] = None
|
|
) -> Tuple[List[Dict[str, Any]], Dict[str, Any]]:
|
|
params = {
|
|
"model": self.model_name,
|
|
"temperature": self.temperature,
|
|
"n": self.n,
|
|
"stream": self.streaming,
|
|
**self.model_kwargs,
|
|
}
|
|
if stop:
|
|
params["stop"] = stop
|
|
if self.max_tokens is not None:
|
|
params["max_tokens"] = self.max_tokens
|
|
|
|
message_dicts = [_convert_message_to_dict(m) for m in messages]
|
|
return message_dicts, params
|
|
|
|
def _stream(
|
|
self,
|
|
messages: List[BaseMessage],
|
|
stop: Optional[List[str]] = None,
|
|
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
|
**kwargs: Any,
|
|
) -> Iterator[ChatGenerationChunk]:
|
|
message_dicts, params = self._convert_messages_to_dicts(messages, stop)
|
|
params = {**params, **kwargs, "stream": True}
|
|
|
|
response = self.client.chat.chat(messages=message_dicts, **params)
|
|
|
|
for chunk in response:
|
|
delta = chunk["choices"][0].get("delta")
|
|
if not delta or not delta.get("content"):
|
|
continue
|
|
chunk = _convert_dict_to_message(
|
|
{"role": "assistant", "content": delta["content"]}
|
|
)
|
|
chunk = ChatGenerationChunk(message=chunk)
|
|
|
|
if run_manager:
|
|
run_manager.on_llm_new_token(chunk.text)
|
|
|
|
yield chunk
|
|
|
|
async def _astream(
|
|
self,
|
|
messages: List[BaseMessage],
|
|
stop: Optional[List[str]] = None,
|
|
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
|
|
**kwargs: Any,
|
|
) -> AsyncIterator[ChatGenerationChunk]:
|
|
message_dicts, params = self._convert_messages_to_dicts(messages, stop)
|
|
params = {**params, **kwargs, "stream": True}
|
|
|
|
response = await self.async_client.chat.chat(messages=message_dicts, **params)
|
|
|
|
async for chunk in response:
|
|
delta = chunk["choices"][0].get("delta")
|
|
if not delta or not delta.get("content"):
|
|
continue
|
|
chunk = _convert_dict_to_message(
|
|
{"role": "assistant", "content": delta["content"]}
|
|
)
|
|
chunk = ChatGenerationChunk(message=chunk)
|
|
|
|
if run_manager:
|
|
await run_manager.on_llm_new_token(chunk.text)
|
|
|
|
yield chunk
|
|
|
|
def _generate(
|
|
self,
|
|
messages: List[BaseMessage],
|
|
stop: Optional[List[str]] = None,
|
|
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
|
**kwargs: Any,
|
|
) -> ChatResult:
|
|
if self.streaming:
|
|
return generate_from_stream(
|
|
self._stream(messages, stop, run_manager, **kwargs)
|
|
)
|
|
|
|
message_dicts, params = self._convert_messages_to_dicts(messages, stop)
|
|
params = {**params, **kwargs}
|
|
response = self.client.chat.chat(messages=message_dicts, **params)
|
|
return self._create_chat_result(response)
|
|
|
|
async def _agenerate(
|
|
self,
|
|
messages: List[BaseMessage],
|
|
stop: Optional[List[str]] = None,
|
|
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
|
|
**kwargs: Any,
|
|
) -> ChatResult:
|
|
if self.streaming:
|
|
return await agenerate_from_stream(
|
|
self._astream(messages, stop, run_manager, **kwargs)
|
|
)
|
|
|
|
message_dicts, params = self._convert_messages_to_dicts(messages, stop)
|
|
params = {**params, **kwargs}
|
|
response = await self.async_client.chat.chat(messages=message_dicts, **params)
|
|
return self._create_chat_result(response)
|
|
|
|
@property
|
|
def _default_params(self) -> Dict[str, Any]:
|
|
"""Get the default parameters for calling Writer API."""
|
|
return {
|
|
"model": self.model_name,
|
|
"temperature": self.temperature,
|
|
"stream": self.streaming,
|
|
"n": self.n,
|
|
"max_tokens": self.max_tokens,
|
|
**self.model_kwargs,
|
|
}
|
|
|
|
def bind_tools(
|
|
self,
|
|
tools: Sequence[Union[Dict[str, Any], Type[BaseModel], Callable]],
|
|
*,
|
|
tool_choice: Optional[Union[str, Literal["auto", "none"]]] = None,
|
|
**kwargs: Any,
|
|
) -> Runnable[LanguageModelInput, BaseMessage]:
|
|
"""Bind tools to the chat model.
|
|
|
|
Args:
|
|
tools: Tools to bind to the model
|
|
tool_choice: Which tool to require ('auto', 'none', or specific tool name)
|
|
**kwargs: Additional parameters to pass to the chat model
|
|
|
|
Returns:
|
|
A runnable that will use the tools
|
|
"""
|
|
formatted_tools = [convert_to_openai_tool(tool) for tool in tools]
|
|
|
|
if tool_choice:
|
|
kwargs["tool_choice"] = (
|
|
(tool_choice)
|
|
if tool_choice in ("auto", "none")
|
|
else {"type": "function", "function": {"name": tool_choice}}
|
|
)
|
|
|
|
return super().bind(tools=formatted_tools, **kwargs)
|