mirror of
https://github.com/hwchase17/langchain.git
synced 2025-05-18 13:31:36 +00:00
This PR adds an "Azure AI data" document loader, which allows Azure AI users to load their registered data assets as a document object in langchain. --------- Co-authored-by: Bagatur <baskaryan@gmail.com>
175 lines
4.5 KiB
Plaintext
175 lines
4.5 KiB
Plaintext
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "a634365e",
|
|
"metadata": {},
|
|
"source": [
|
|
"# Azure AI Data\n",
|
|
"\n",
|
|
">[Azure AI Studio](https://ai.azure.com/) provides the capability to upload data assets to cloud storage and register existing data assets from the following sources:\n",
|
|
"\n",
|
|
"- Microsoft OneLake\n",
|
|
"- Azure Blob Storage\n",
|
|
"- Azure Data Lake gen 2\n",
|
|
"\n",
|
|
"The benefit of this approach over `AzureBlobStorageContainerLoader` and `AzureBlobStorageFileLoader` is that authentication is handled seamlessly to cloud storage. You can use either *identity-based* data access control to the data or *credential-based* (e.g. SAS token, account key). In the case of credential-based data access you do not need to specify secrets in your code or set up key vaults - the system handles that for you.\n",
|
|
"\n",
|
|
"This notebook covers how to load document objects from a data asset in AI Studio."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "49815096",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"#!pip install azureml-fsspec, azure-ai-generative"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 1,
|
|
"id": "2f0cd6a5",
|
|
"metadata": {
|
|
"tags": []
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"from azure.ai.resources.client import AIClient\n",
|
|
"from azure.identity import DefaultAzureCredential\n",
|
|
"from langchain.document_loaders import AzureAIDataLoader"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "08d40b11-e87a-426e-a6b0-89f24e47ce2c",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# Create a connection to your project\n",
|
|
"client = AIClient(\n",
|
|
" credential=DefaultAzureCredential(),\n",
|
|
" subscription_id=\"<subscription_id>\",\n",
|
|
" resource_group_name=\"<resource_group_name>\",\n",
|
|
" project_name=\"<project_name>\",\n",
|
|
")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 3,
|
|
"id": "321cc7f1",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# get the latest version of your data asset\n",
|
|
"data_asset = client.data.get(name=\"<data_asset_name>\", label=\"latest\")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "25d91cea-c5f2-4a53-ac19-442810451ec6",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# load the data asset\n",
|
|
"loader = AzureAIDataLoader(url=data_asset.path)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 4,
|
|
"id": "2b11d155",
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"[Document(page_content='Lorem ipsum dolor sit amet.', lookup_str='', metadata={'source': '/var/folders/y6/8_bzdg295ld6s1_97_12m4lr0000gn/T/tmpaa9xl6ch/fake.docx'}, lookup_index=0)]"
|
|
]
|
|
},
|
|
"execution_count": 4,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"loader.load()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "0690c40a",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Specifying a glob pattern\n",
|
|
"You can also specify a glob pattern for more finegrained control over what files to load. In the example below, only files with a `pdf` extension will be loaded."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 5,
|
|
"id": "72d44781",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"loader = AzureAIDataLoader(url=data_asset.path, glob=\"*.pdf\")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 6,
|
|
"id": "2d3c32db",
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"[Document(page_content='Lorem ipsum dolor sit amet.', lookup_str='', metadata={'source': '/var/folders/y6/8_bzdg295ld6s1_97_12m4lr0000gn/T/tmpujbkzf_l/fake.docx'}, lookup_index=0)]"
|
|
]
|
|
},
|
|
"execution_count": 6,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"loader.load()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "885dc280",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": "Python 3 (ipykernel)",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.11.6"
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 5
|
|
}
|