Building applications with LLMs through composability
Go to file
Shotaro Sano 55c624a694
infra: Resolve the endless dependency resolution during the build of dev.Dockerfile by copying poetry.lock (#19465)
## Description
This PR proposes a modification to the `libs/langchain/dev.Dockerfile`
configuration to copy the `libs/langchain/poetry.lock` into the working
directory. The change aims to address the issue where the Poetry install
command, the last command in the `dev.Dockerfile`, takes excessively
long hours, and to ensure the reproducibility of the poetry environment
in the devcontainer.

## Problem
The `dev.Dockerfile`, prepared for development environments such as
`.devcontainer`, encounters an unending dependency resolution when
attempting the Poetry installation.

### Steps to Reproduce
Execute the following build command: 

```bash
docker build -f libs/langchain/dev.Dockerfile .
```

### Current Behavior
The Docker build process gets stuck at the following step, which, in my
experience, did not conclude even after an entire night:

```
 => [langchain-dev-dependencies 4/6] COPY libs/community/ ../community/                                                                                0.9s
 => [langchain-dev-dependencies 5/6] COPY libs/text-splitters/ ../text-splitters/                                                                      0.0s
 => [langchain-dev-dependencies 6/6] RUN poetry install --no-interaction --no-ansi --with dev,test,docs                                               12.3s
 => => # Updating dependencies                                                                                                                             
 => => # Resolving dependencies...  
```

### Expected Behavior
The Docker build completes in a realistic timeframe. By applying this
PR, the build finishes within a few minutes.

### Analysis
The complexity of LangChain's dependencies has reached a point where
Poetry is required to resolve dependencies akin to threading a needle.
Consequently, poetry install fails to complete in a practical timeframe.

## Solution
The solution for dependency resolution is already recorded in
`libs/langchain/poetry.lock`, so we can use it. When copying
`project.toml` and `poetry.toml`, the `poetry.lock` located in the same
directory should also be copied.

```diff
# Copy only the dependency files for installation
-COPY libs/langchain/pyproject.toml libs/langchain/poetry.toml ./
+COPY libs/langchain/pyproject.toml libs/langchain/poetry.toml libs/langchain/poetry.lock ./
```

## Note
I am not intimately familiar with the historical context of the
`dev.Dockerfile` and thus do not know why `poetry.lock` has not been
copied until now. It might have been an oversight, or perhaps dependency
resolution used to complete quickly even without the `poetry.lock` file
in the past. However, if there are deliberate reasons why copying
`poetry.lock` is not advisable, please just close this PR.
2024-03-26 10:54:53 -04:00
.devcontainer
.github cohere[patch]: fix release (#19529) 2024-03-25 13:46:29 -07:00
cookbook docs: Update function "run" to "invoke" in fake_llm.ipynb (#19570) 2024-03-26 09:54:31 -04:00
docker community[patch]: Add pgvector to docker compose and update settings used in integration test (#18815) 2024-03-08 14:39:28 -05:00
docs community[minor]: Improvements for NeptuneRdfGraph, Improve discovery of graph schema using database statistics (#19546) 2024-03-26 10:36:51 -04:00
libs infra: Resolve the endless dependency resolution during the build of dev.Dockerfile by copying poetry.lock (#19465) 2024-03-26 10:54:53 -04:00
templates infra: Update package version to apply CVE-related patch (#19490) 2024-03-25 07:11:23 +00:00
.gitattributes
.gitignore Add docstrings for Clickhouse class methods (#19195) 2024-03-19 04:03:12 +00:00
.readthedocs.yaml infra: update rtd yaml (#17502) 2024-02-13 18:16:44 -08:00
CITATION.cff
LICENSE
Makefile infra: makefile api_docs_clean fix (#19405) 2024-03-22 15:45:55 -07:00
MIGRATE.md
poetry.lock infra: Update package version to apply CVE-related patch (#19490) 2024-03-25 07:11:23 +00:00
poetry.toml
pyproject.toml infra: Update package version to apply CVE-related patch (#19490) 2024-03-25 07:11:23 +00:00
README.md docs: update readme diagram (#18929) 2024-03-11 11:17:45 -07:00
SECURITY.md Updated security policy (#19089) 2024-03-14 20:58:47 +00:00

🦜🔗 LangChain

Build context-aware reasoning applications

Release Notes CI Downloads License: MIT Twitter Open in Dev Containers Open in GitHub Codespaces GitHub star chart Dependency Status Open Issues

Looking for the JS/TS library? Check out LangChain.js.

To help you ship LangChain apps to production faster, check out LangSmith. LangSmith is a unified developer platform for building, testing, and monitoring LLM applications. Fill out this form to speak with our sales team.

Quick Install

With pip:

pip install langchain

With conda:

conda install langchain -c conda-forge

🤔 What is LangChain?

LangChain is a framework for developing applications powered by language models. It enables applications that:

  • Are context-aware: connect a language model to sources of context (prompt instructions, few shot examples, content to ground its response in, etc.)
  • Reason: rely on a language model to reason (about how to answer based on provided context, what actions to take, etc.)

This framework consists of several parts.

  • LangChain Libraries: The Python and JavaScript libraries. Contains interfaces and integrations for a myriad of components, a basic run time for combining these components into chains and agents, and off-the-shelf implementations of chains and agents.
  • LangChain Templates: A collection of easily deployable reference architectures for a wide variety of tasks.
  • LangServe: A library for deploying LangChain chains as a REST API.
  • LangSmith: A developer platform that lets you debug, test, evaluate, and monitor chains built on any LLM framework and seamlessly integrates with LangChain.
  • LangGraph: LangGraph is a library for building stateful, multi-actor applications with LLMs, built on top of (and intended to be used with) LangChain. It extends the LangChain Expression Language with the ability to coordinate multiple chains (or actors) across multiple steps of computation in a cyclic manner.

The LangChain libraries themselves are made up of several different packages.

  • langchain-core: Base abstractions and LangChain Expression Language.
  • langchain-community: Third party integrations.
  • langchain: Chains, agents, and retrieval strategies that make up an application's cognitive architecture.

Diagram outlining the hierarchical organization of the LangChain framework, displaying the interconnected parts across multiple layers.

🧱 What can you build with LangChain?

Retrieval augmented generation

💬 Analyzing structured data

🤖 Chatbots

And much more! Head to the Use cases section of the docs for more.

🚀 How does LangChain help?

The main value props of the LangChain libraries are:

  1. Components: composable tools and integrations for working with language models. Components are modular and easy-to-use, whether you are using the rest of the LangChain framework or not
  2. Off-the-shelf chains: built-in assemblages of components for accomplishing higher-level tasks

Off-the-shelf chains make it easy to get started. Components make it easy to customize existing chains and build new ones.

Components fall into the following modules:

📃 Model I/O:

This includes prompt management, prompt optimization, a generic interface for all LLMs, and common utilities for working with LLMs.

📚 Retrieval:

Data Augmented Generation involves specific types of chains that first interact with an external data source to fetch data for use in the generation step. Examples include summarization of long pieces of text and question/answering over specific data sources.

🤖 Agents:

Agents involve an LLM making decisions about which Actions to take, taking that Action, seeing an Observation, and repeating that until done. LangChain provides a standard interface for agents, a selection of agents to choose from, and examples of end-to-end agents.

📖 Documentation

Please see here for full documentation, which includes:

💁 Contributing

As an open-source project in a rapidly developing field, we are extremely open to contributions, whether it be in the form of a new feature, improved infrastructure, or better documentation.

For detailed information on how to contribute, see here.

🌟 Contributors

langchain contributors