langchain/docs/docs/integrations/text_embedding/baichuan.ipynb
baichuan-assistant f8f2649f12
community: Add Baichuan LLM to community (#16724)
Replace this entire comment with:
- **Description:** Add Baichuan LLM to integration/llm, also updated
related docs.

Co-authored-by: BaiChuanHelper <wintergyc@WinterGYCs-MacBook-Pro.local>
2024-01-29 20:08:24 -08:00

103 lines
2.3 KiB
Plaintext

{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Baichuan Text Embeddings\n",
"\n",
"As of today (Jan 25th, 2024) BaichuanTextEmbeddings ranks #1 in C-MTEB (Chinese Multi-Task Embedding Benchmark) leaderboard.\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Leaderboard (Under Overall -> Chinese section): https://huggingface.co/spaces/mteb/leaderboard"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Official Website: https://platform.baichuan-ai.com/docs/text-Embedding\n",
"\n",
"An API key is required to use this embedding model. You can get one by registering at https://platform.baichuan-ai.com/docs/text-Embedding."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"BaichuanTextEmbeddings support 512 token window and preduces vectors with 1024 dimensions. "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Please NOTE that BaichuanTextEmbeddings only supports Chinese text embedding. Multi-language support is coming soon."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from langchain_community.embeddings import BaichuanTextEmbeddings\n",
"\n",
"embeddings = BaichuanTextEmbeddings(baichuan_api_key=\"sk-*\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Alternatively, you can set API key this way:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"\n",
"os.environ[\"BAICHUAN_API_KEY\"] = \"YOUR_API_KEY\""
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"text_1 = \"今天天气不错\"\n",
"text_2 = \"今天阳光很好\"\n",
"\n",
"query_result = embeddings.embed_query(text_1)\n",
"query_result"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"doc_result = embeddings.embed_documents([text_1, text_2])\n",
"doc_result"
]
}
],
"metadata": {
"language_info": {
"name": "python"
}
},
"nbformat": 4,
"nbformat_minor": 2
}