Minh Nguyen 8af0dc5fd6 docs: Update langchain-anthropic version for tutorial with web search tool (#31240)
**Description:** This is a document change regarding integration with
package `langchain-anthropic` for newly released websearch tool ([Claude
doc](https://docs.anthropic.com/en/docs/build-with-claude/tool-use/web-search-tool)).

Issue 1: The sample in [Web Search
section](https://python.langchain.com/docs/integrations/chat/anthropic/#web-search)
did not run. You would get an error as below:
```
File "my_file.py", line 170, in call
    model_with_tools = model.bind_tools([websearch_tool])
                       ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/langchain_anthropic/chat_models.py", line 1363, in bind_tools
    tool if _is_builtin_tool(tool) else convert_to_anthropic_tool(tool)
                                        ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/langchain_anthropic/chat_models.py", line 1645, in convert_to_anthropic_tool
    input_schema=oai_formatted["parameters"],
                 ~~~~~~~~~~~~~^^^^^^^^^^^^^^
KeyError: 'parameters'
```
This is because websearch tool is only recently supported in
langchain-anthropic==0.3.13`, in [0.3.13
release](https://github.com/langchain-ai/langchain/releases?q=tag%3A%22langchain-anthropic%3D%3D0%22&expanded=true)
mentioning:
> anthropic[patch]: support web search
(https://github.com/langchain-ai/langchain/pull/31157)



Issue 2: The current doc has outdated package requirements for Websearch
tool: "This guide requires langchain-anthropic>=0.3.10".

Changes:
- Updated the required `langchain-anthropic` package version (0.3.10 ->
0.3.13).
- Added notes to user when using websearch sample.

I believe this will help avoid future confusion from readers.

**Issue:** N/A
**Dependencies:** N/A
**Twitter handle:** N/A
2025-05-14 14:19:32 -04:00
2024-12-04 18:15:34 +00:00
2025-05-02 14:33:11 +00:00

LangChain Logo

Release Notes CI PyPI - License PyPI - Downloads GitHub star chart Open Issues Open in Dev Containers Twitter CodSpeed Badge

Note

Looking for the JS/TS library? Check out LangChain.js.

LangChain is a framework for building LLM-powered applications. It helps you chain together interoperable components and third-party integrations to simplify AI application development — all while future-proofing decisions as the underlying technology evolves.

pip install -U langchain

To learn more about LangChain, check out the docs. If youre looking for more advanced customization or agent orchestration, check out LangGraph, our framework for building controllable agent workflows.

Why use LangChain?

LangChain helps developers build applications powered by LLMs through a standard interface for models, embeddings, vector stores, and more.

Use LangChain for:

  • Real-time data augmentation. Easily connect LLMs to diverse data sources and external / internal systems, drawing from LangChains vast library of integrations with model providers, tools, vector stores, retrievers, and more.
  • Model interoperability. Swap models in and out as your engineering team experiments to find the best choice for your applications needs. As the industry frontier evolves, adapt quickly — LangChains abstractions keep you moving without losing momentum.

LangChains ecosystem

While the LangChain framework can be used standalone, it also integrates seamlessly with any LangChain product, giving developers a full suite of tools when building LLM applications.

To improve your LLM application development, pair LangChain with:

  • LangSmith - Helpful for agent evals and observability. Debug poor-performing LLM app runs, evaluate agent trajectories, gain visibility in production, and improve performance over time.
  • LangGraph - Build agents that can reliably handle complex tasks with LangGraph, our low-level agent orchestration framework. LangGraph offers customizable architecture, long-term memory, and human-in-the-loop workflows — and is trusted in production by companies like LinkedIn, Uber, Klarna, and GitLab.
  • LangGraph Platform - Deploy and scale agents effortlessly with a purpose-built deployment platform for long running, stateful workflows. Discover, reuse, configure, and share agents across teams — and iterate quickly with visual prototyping in LangGraph Studio.

Additional resources

  • Tutorials: Simple walkthroughs with guided examples on getting started with LangChain.
  • How-to Guides: Quick, actionable code snippets for topics such as tool calling, RAG use cases, and more.
  • Conceptual Guides: Explanations of key concepts behind the LangChain framework.
  • API Reference: Detailed reference on navigating base packages and integrations for LangChain.
Description
Building applications with LLMs through composability
Readme MIT Cite this repository 4.8 GiB
Languages
Jupyter Notebook 73.9%
Python 21%
omnetpp-msg 4.8%
Makefile 0.1%
MDX 0.1%