mirror of
https://github.com/hwchase17/langchain.git
synced 2025-11-24 09:47:28 +00:00
Thank you for contributing to LangChain!
- [ ] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
- Example: "community: add foobar LLM"
- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** a description of the change
- **Issue:** the issue # it fixes, if applicable
- **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!
- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
83 lines
2.5 KiB
Markdown
83 lines
2.5 KiB
Markdown
# rag-opensearch
|
|
|
|
This Template performs RAG using [OpenSearch](https://python.langchain.com/docs/integrations/vectorstores/opensearch).
|
|
|
|
## Environment Setup
|
|
|
|
Set the following environment variables.
|
|
|
|
- `OPENAI_API_KEY` - To access OpenAI Embeddings and Models.
|
|
|
|
And optionally set the OpenSearch ones if not using defaults:
|
|
|
|
- `OPENSEARCH_URL` - URL of the hosted OpenSearch Instance
|
|
- `OPENSEARCH_USERNAME` - User name for the OpenSearch instance
|
|
- `OPENSEARCH_PASSWORD` - Password for the OpenSearch instance
|
|
- `OPENSEARCH_INDEX_NAME` - Name of the index
|
|
|
|
To run the default OpenSearch instance in docker, you can use the command
|
|
```shell
|
|
docker run -p 9200:9200 -p 9600:9600 -e "discovery.type=single-node" --name opensearch-node -d opensearchproject/opensearch:latest
|
|
```
|
|
|
|
Note: To load dummy index named `langchain-test` with dummy documents, run `python dummy_index_setup.py` in the package
|
|
|
|
## Usage
|
|
|
|
To use this package, you should first have the LangChain CLI installed:
|
|
|
|
```shell
|
|
pip install -U langchain-cli
|
|
```
|
|
|
|
To create a new LangChain project and install this as the only package, you can do:
|
|
|
|
```shell
|
|
langchain app new my-app --package rag-opensearch
|
|
```
|
|
|
|
If you want to add this to an existing project, you can just run:
|
|
|
|
```shell
|
|
langchain app add rag-opensearch
|
|
```
|
|
|
|
And add the following code to your `server.py` file:
|
|
```python
|
|
from rag_opensearch import chain as rag_opensearch_chain
|
|
|
|
add_routes(app, rag_opensearch_chain, path="/rag-opensearch")
|
|
```
|
|
|
|
(Optional) Let's now configure LangSmith.
|
|
LangSmith will help us trace, monitor and debug LangChain applications.
|
|
You can sign up for LangSmith [here](https://smith.langchain.com/).
|
|
If you don't have access, you can skip this section
|
|
|
|
|
|
```shell
|
|
export LANGCHAIN_TRACING_V2=true
|
|
export LANGCHAIN_API_KEY=<your-api-key>
|
|
export LANGCHAIN_PROJECT=<your-project> # if not specified, defaults to "default"
|
|
```
|
|
|
|
If you are inside this directory, then you can spin up a LangServe instance directly by:
|
|
|
|
```shell
|
|
langchain serve
|
|
```
|
|
|
|
This will start the FastAPI app with a server is running locally at
|
|
[http://localhost:8000](http://localhost:8000)
|
|
|
|
We can see all templates at [http://127.0.0.1:8000/docs](http://127.0.0.1:8000/docs)
|
|
We can access the playground at [http://127.0.0.1:8000/rag-opensearch/playground](http://127.0.0.1:8000/rag-opensearch/playground)
|
|
|
|
We can access the template from code with:
|
|
|
|
```python
|
|
from langserve.client import RemoteRunnable
|
|
|
|
runnable = RemoteRunnable("http://localhost:8000/rag-opensearch")
|
|
```
|