(Reopen PR #7706, hope this problem can fix.) When using `pdfplumber`, some documents may be parsed incorrectly, resulting in **duplicated characters**. Taking the [linked](https://bruusgaard.no/wp-content/uploads/2021/05/Datasheet1000-series.pdf) document as an example: ## Before ```python from langchain.document_loaders import PDFPlumberLoader pdf_file = 'file.pdf' loader = PDFPlumberLoader(pdf_file) docs = loader.load() print(docs[0].page_content) ``` Results: ``` 11000000 SSeerriieess PPoorrttaabbllee ssiinnggllee ggaass ddeetteeccttoorrss ffoorr HHyyddrrooggeenn aanndd CCoommbbuussttiibbllee ggaasseess TThhee RRiikkeenn KKeeiikkii GGPP--11000000 iiss aa ccoommppaacctt aanndd lliigghhttwweeiigghhtt ggaass ddeetteeccttoorr wwiitthh hhiigghh sseennssiittiivviittyy ffoorr tthhee ddeetteeccttiioonn ooff hhyyddrrooccaarrbboonnss.. TThhee mmeeaassuurreemmeenntt iiss ppeerrffoorrmmeedd ffoorr tthhiiss ppuurrppoossee bbyy mmeeaannss ooff ccaattaallyyttiicc sseennssoorr.. TThhee GGPP--11000000 hhaass aa bbuuiilltt--iinn ppuummpp wwiitthh ppuummpp bboooosstteerr ffuunnccttiioonn aanndd aa ddiirreecctt sseelleeccttiioonn ffrroomm aa lliisstt ooff 2255 hhyyddrrooccaarrbboonnss ffoorr eexxaacctt aalliiggnnmmeenntt ooff tthhee ttaarrggeett ggaass -- OOnnllyy ccaalliibbrraattiioonn oonn CCHH iiss nneecceessssaarryy.. 44 FFeeaattuurreess TThhee RRiikkeenn KKeeiikkii 110000vvvvttaabbllee ssiinnggllee HHyyddrrooggeenn aanndd CCoommbbuussttiibbllee ggaass ddeetteeccttoorrss.. TThheerree aarree 33 ssttaannddaarrdd mmooddeellss:: GGPP--11000000:: 00--1100%%LLEELL // 00--110000%%LLEELL ›› LLEELL ddeetteeccttoorr NNCC--11000000:: 00--11000000ppppmm // 00--1100000000ppppmm ›› PPPPMM ddeetteeccttoorr DDiirreecctt rreeaaddiinngg ooff tthhee ccoonncceennttrraattiioonn vvaalluueess ooff ccoommbbuussttiibbllee ggaasseess ooff 2255 ggaasseess ((55 NNPP--11000000)).. EEaassyy ooppeerraattiioonn ffeeaattuurree ooff cchhaannggiinngg tthhee ggaass nnaammee ddiissppllaayy wwiitthh 11 sswwiittcchh bbuuttttoonn.. LLoonngg ddiissttaannccee ddrraawwiinngg ppoossssiibbllee wwiitthh tthhee ppuummpp bboooosstteerr ffuunnccttiioonn.. VVaarriioouuss ccoommbbuussttiibbllee ggaasseess ccaann bbee mmeeaassuurreedd bbyy tthhee ppppmm oorrddeerr wwiitthh NNCC--11000000.. www.bruusgaard.no postmaster@bruusgaard.no +47 67 54 93 30 Rev: 446-2 ``` We can see that there are a large number of duplicated characters in the text, which can cause issues in subsequent applications. ## After Therefore, based on the [solution](https://github.com/jsvine/pdfplumber/issues/71) provided by the `pdfplumber` source project. I added the `"dedupe_chars()"` method to address this problem. (Just pass the parameter `dedupe` to `True`) ```python from langchain.document_loaders import PDFPlumberLoader pdf_file = 'file.pdf' loader = PDFPlumberLoader(pdf_file, dedupe=True) docs = loader.load() print(docs[0].page_content) ``` Results: ``` 1000 Series Portable single gas detectors for Hydrogen and Combustible gases The Riken Keiki GP-1000 is a compact and lightweight gas detector with high sensitivity for the detection of hydrocarbons. The measurement is performed for this purpose by means of catalytic sensor. The GP-1000 has a built-in pump with pump booster function and a direct selection from a list of 25 hydrocarbons for exact alignment of the target gas - Only calibration on CH is necessary. 4 Features The Riken Keiki 100vvtable single Hydrogen and Combustible gas detectors. There are 3 standard models: GP-1000: 0-10%LEL / 0-100%LEL › LEL detector NC-1000: 0-1000ppm / 0-10000ppm › PPM detector Direct reading of the concentration values of combustible gases of 25 gases (5 NP-1000). Easy operation feature of changing the gas name display with 1 switch button. Long distance drawing possible with the pump booster function. Various combustible gases can be measured by the ppm order with NC-1000. www.bruusgaard.no postmaster@bruusgaard.no +47 67 54 93 30 Rev: 446-2 ``` --------- Co-authored-by: Bagatur <baskaryan@gmail.com> |
||
---|---|---|
.devcontainer | ||
.github | ||
docs | ||
libs | ||
.gitattributes | ||
.gitignore | ||
.gitmodules | ||
.readthedocs.yaml | ||
CITATION.cff | ||
LICENSE | ||
Makefile | ||
MIGRATE.md | ||
poetry.lock | ||
poetry.toml | ||
pyproject.toml | ||
README.md | ||
SECURITY.md |
🦜️🔗 LangChain
⚡ Building applications with LLMs through composability ⚡
Looking for the JS/TS version? Check out LangChain.js.
Production Support: As you move your LangChains into production, we'd love to offer more hands-on support. Fill out this form to share more about what you're building, and our team will get in touch.
🚨Breaking Changes for select chains (SQLDatabase) on 7/28/23
In an effort to make langchain
leaner and safer, we are moving select chains to langchain_experimental
.
This migration has already started, but we are remaining backwards compatible until 7/28.
On that date, we will remove functionality from langchain
.
Read more about the motivation and the progress here.
Read how to migrate your code here.
Quick Install
pip install langchain
or
pip install langsmith && conda install langchain -c conda-forge
🤔 What is this?
Large language models (LLMs) are emerging as a transformative technology, enabling developers to build applications that they previously could not. However, using these LLMs in isolation is often insufficient for creating a truly powerful app - the real power comes when you can combine them with other sources of computation or knowledge.
This library aims to assist in the development of those types of applications. Common examples of these applications include:
❓ Question Answering over specific documents
- Documentation
- End-to-end Example: Question Answering over Notion Database
💬 Chatbots
- Documentation
- End-to-end Example: Chat-LangChain
🤖 Agents
- Documentation
- End-to-end Example: GPT+WolframAlpha
📖 Documentation
Please see here for full documentation on:
- Getting started (installation, setting up the environment, simple examples)
- How-To examples (demos, integrations, helper functions)
- Reference (full API docs)
- Resources (high-level explanation of core concepts)
🚀 What can this help with?
There are six main areas that LangChain is designed to help with. These are, in increasing order of complexity:
📃 LLMs and Prompts:
This includes prompt management, prompt optimization, a generic interface for all LLMs, and common utilities for working with LLMs.
🔗 Chains:
Chains go beyond a single LLM call and involve sequences of calls (whether to an LLM or a different utility). LangChain provides a standard interface for chains, lots of integrations with other tools, and end-to-end chains for common applications.
📚 Data Augmented Generation:
Data Augmented Generation involves specific types of chains that first interact with an external data source to fetch data for use in the generation step. Examples include summarization of long pieces of text and question/answering over specific data sources.
🤖 Agents:
Agents involve an LLM making decisions about which Actions to take, taking that Action, seeing an Observation, and repeating that until done. LangChain provides a standard interface for agents, a selection of agents to choose from, and examples of end-to-end agents.
🧠 Memory:
Memory refers to persisting state between calls of a chain/agent. LangChain provides a standard interface for memory, a collection of memory implementations, and examples of chains/agents that use memory.
🧐 Evaluation:
[BETA] Generative models are notoriously hard to evaluate with traditional metrics. One new way of evaluating them is using language models themselves to do the evaluation. LangChain provides some prompts/chains for assisting in this.
For more information on these concepts, please see our full documentation.
💁 Contributing
As an open-source project in a rapidly developing field, we are extremely open to contributions, whether it be in the form of a new feature, improved infrastructure, or better documentation.
For detailed information on how to contribute, see here.