Issues with combining flex and nano
```shell
FAILED tests/integration_tests/chat_models/test_base.py::test_openai_invoke - openai.InternalServerError: Error code: 500 - {'error': {'message': 'The server had an error while processing your request. Sorry about that!', 'type': 'server_error', 'param': None, 'code': None}}
FAILED tests/integration_tests/chat_models/test_base.py::test_stream - openai.InternalServerError: Error code: 500 - {'error': {'message': 'The server had an error processing your request. Sorry about that! You can retry your request, or contact us through our help center at help.openai.com if you keep seeing this error. (Please include the request ID req_e726769d95994fd4bccbe55680a35f59 in your email.)', 'type': 'server_error', 'param': None, 'code': None}}
FAILED tests/integration_tests/chat_models/test_base.py::test_flex_usage_responses[False] - openai.InternalServerError: Error code: 500 - {'error': {'message': 'An error occurred while processing your request. You can retry your request, or contact us through our help center at help.openai.com if the error persists. Please include the request ID req_935316418319494d8682e4adcd67ab47 in your message.', 'type': 'server_error', 'param': None, 'code': 'server_error'}}
FAILED tests/integration_tests/chat_models/test_base.py::test_flex_usage_responses[True] - openai.APIError: An error occurred while processing your request. You can retry your request, or contact us through our help center at help.openai.com if the error persists. Please include the request ID req_f3c164d0d1f045a5a0f5965ab5c253bf in your message.
```
The platform for reliable agents.
LangChain is a framework for building agents and LLM-powered applications. It helps you chain together interoperable components and third-party integrations to simplify AI application development – all while future-proofing decisions as the underlying technology evolves.
pip install langchain
If you're looking for more advanced customization or agent orchestration, check out LangGraph, our framework for building controllable agent workflows.
Documentation:
- docs.langchain.com – Comprehensive documentation, including conceptual overviews and guides
- reference.langchain.com/python – API reference docs for LangChain packages
Discussions: Visit the LangChain Forum to connect with the community and share all of your technical questions, ideas, and feedback.
Note
Looking for the JS/TS library? Check out LangChain.js.
Why use LangChain?
LangChain helps developers build applications powered by LLMs through a standard interface for models, embeddings, vector stores, and more.
Use LangChain for:
- Real-time data augmentation. Easily connect LLMs to diverse data sources and external/internal systems, drawing from LangChain's vast library of integrations with model providers, tools, vector stores, retrievers, and more.
- Model interoperability. Swap models in and out as your engineering team experiments to find the best choice for your application's needs. As the industry frontier evolves, adapt quickly – LangChain's abstractions keep you moving without losing momentum.
- Rapid prototyping. Quickly build and iterate on LLM applications with LangChain's modular, component-based architecture. Test different approaches and workflows without rebuilding from scratch, accelerating your development cycle.
- Production-ready features. Deploy reliable applications with built-in support for monitoring, evaluation, and debugging through integrations like LangSmith. Scale with confidence using battle-tested patterns and best practices.
- Vibrant community and ecosystem. Leverage a rich ecosystem of integrations, templates, and community-contributed components. Benefit from continuous improvements and stay up-to-date with the latest AI developments through an active open-source community.
- Flexible abstraction layers. Work at the level of abstraction that suits your needs - from high-level chains for quick starts to low-level components for fine-grained control. LangChain grows with your application's complexity.
LangChain ecosystem
While the LangChain framework can be used standalone, it also integrates seamlessly with any LangChain product, giving developers a full suite of tools when building LLM applications.
To improve your LLM application development, pair LangChain with:
- LangGraph – Build agents that can reliably handle complex tasks with LangGraph, our low-level agent orchestration framework. LangGraph offers customizable architecture, long-term memory, and human-in-the-loop workflows – and is trusted in production by companies like LinkedIn, Uber, Klarna, and GitLab.
- Integrations – List of LangChain integrations, including chat & embedding models, tools & toolkits, and more
- LangSmith – Helpful for agent evals and observability. Debug poor-performing LLM app runs, evaluate agent trajectories, gain visibility in production, and improve performance over time.
- LangSmith Deployment – Deploy and scale agents effortlessly with a purpose-built deployment platform for long-running, stateful workflows. Discover, reuse, configure, and share agents across teams – and iterate quickly with visual prototyping in LangSmith Studio.
- Deep Agents (new!) – Build agents that can plan, use subagents, and leverage file systems for complex tasks
Additional resources
- API Reference – Detailed reference on navigating base packages and integrations for LangChain.
- Contributing Guide – Learn how to contribute to LangChain projects and find good first issues.
- Code of Conduct – Our community guidelines and standards for participation.