mirror of
https://github.com/imartinez/privateGPT.git
synced 2025-06-24 14:33:23 +00:00
Update code to use sentence-transformers through huggingfaceembeddings
This commit is contained in:
parent
8a5b2f453b
commit
23d24c88e9
@ -1,5 +1,5 @@
|
||||
PERSIST_DIRECTORY=db
|
||||
LLAMA_EMBEDDINGS_MODEL=models/ggml-model-q4_0.bin
|
||||
MODEL_TYPE=GPT4All
|
||||
MODEL_PATH=models/ggml-gpt4all-j-v1.3-groovy.bin
|
||||
EMBEDDINGS_MODEL_NAME=all-MiniLM-L6-v2
|
||||
MODEL_N_CTX=1000
|
15
ingest.py
15
ingest.py
@ -6,7 +6,7 @@ from dotenv import load_dotenv
|
||||
from langchain.document_loaders import TextLoader, PDFMinerLoader, CSVLoader
|
||||
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
||||
from langchain.vectorstores import Chroma
|
||||
from langchain.embeddings import LlamaCppEmbeddings
|
||||
from langchain.embeddings import HuggingFaceEmbeddings
|
||||
from langchain.docstore.document import Document
|
||||
from constants import CHROMA_SETTINGS
|
||||
|
||||
@ -38,22 +38,23 @@ def main():
|
||||
# Load environment variables
|
||||
persist_directory = os.environ.get('PERSIST_DIRECTORY')
|
||||
source_directory = os.environ.get('SOURCE_DIRECTORY', 'source_documents')
|
||||
llama_embeddings_model = os.environ.get('LLAMA_EMBEDDINGS_MODEL')
|
||||
model_n_ctx = os.environ.get('MODEL_N_CTX')
|
||||
embeddings_model_name = os.environ.get('EMBEDDINGS_MODEL_NAME')
|
||||
|
||||
# Load documents and split in chunks
|
||||
print(f"Loading documents from {source_directory}")
|
||||
chunk_size = 500
|
||||
chunk_overlap = 50
|
||||
documents = load_documents(source_directory)
|
||||
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=50)
|
||||
text_splitter = RecursiveCharacterTextSplitter(chunk_size=chunk_size, chunk_overlap=chunk_overlap)
|
||||
texts = text_splitter.split_documents(documents)
|
||||
print(f"Loaded {len(documents)} documents from {source_directory}")
|
||||
print(f"Split into {len(texts)} chunks of text (max. 500 tokens each)")
|
||||
print(f"Split into {len(texts)} chunks of text (max. {chunk_size} characters each)")
|
||||
|
||||
# Create embeddings
|
||||
llama = LlamaCppEmbeddings(model_path=llama_embeddings_model, n_ctx=model_n_ctx)
|
||||
embeddings = HuggingFaceEmbeddings(model_name=embeddings_model_name)
|
||||
|
||||
# Create and store locally vectorstore
|
||||
db = Chroma.from_documents(texts, llama, persist_directory=persist_directory, client_settings=CHROMA_SETTINGS)
|
||||
db = Chroma.from_documents(texts, embeddings, persist_directory=persist_directory, client_settings=CHROMA_SETTINGS)
|
||||
db.persist()
|
||||
db = None
|
||||
|
||||
|
@ -1,6 +1,6 @@
|
||||
from dotenv import load_dotenv
|
||||
from langchain.chains import RetrievalQA
|
||||
from langchain.embeddings import LlamaCppEmbeddings
|
||||
from langchain.embeddings import HuggingFaceEmbeddings
|
||||
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
|
||||
from langchain.vectorstores import Chroma
|
||||
from langchain.llms import GPT4All, LlamaCpp
|
||||
@ -8,7 +8,7 @@ import os
|
||||
|
||||
load_dotenv()
|
||||
|
||||
llama_embeddings_model = os.environ.get("LLAMA_EMBEDDINGS_MODEL")
|
||||
embeddings_model_name = os.environ.get("EMBEDDINGS_MODEL_NAME")
|
||||
persist_directory = os.environ.get('PERSIST_DIRECTORY')
|
||||
|
||||
model_type = os.environ.get('MODEL_TYPE')
|
||||
@ -18,8 +18,8 @@ model_n_ctx = os.environ.get('MODEL_N_CTX')
|
||||
from constants import CHROMA_SETTINGS
|
||||
|
||||
def main():
|
||||
llama = LlamaCppEmbeddings(model_path=llama_embeddings_model, n_ctx=model_n_ctx)
|
||||
db = Chroma(persist_directory=persist_directory, embedding_function=llama, client_settings=CHROMA_SETTINGS)
|
||||
embeddings = HuggingFaceEmbeddings(model_name=embeddings_model_name)
|
||||
db = Chroma(persist_directory=persist_directory, embedding_function=embeddings, client_settings=CHROMA_SETTINGS)
|
||||
retriever = db.as_retriever()
|
||||
# Prepare the LLM
|
||||
callbacks = [StreamingStdOutCallbackHandler()]
|
||||
|
Loading…
Reference in New Issue
Block a user