mirror of
https://github.com/imartinez/privateGPT.git
synced 2025-09-08 10:39:33 +00:00
Add sources to completions APIs and UI (#1206)
This commit is contained in:
@@ -20,6 +20,7 @@ class ChatBody(BaseModel):
|
||||
messages: list[OpenAIMessage]
|
||||
use_context: bool = False
|
||||
context_filter: ContextFilter | None = None
|
||||
include_sources: bool = True
|
||||
stream: bool = False
|
||||
|
||||
model_config = {
|
||||
@@ -34,6 +35,7 @@ class ChatBody(BaseModel):
|
||||
],
|
||||
"stream": False,
|
||||
"use_context": True,
|
||||
"include_sources": True,
|
||||
"context_filter": {
|
||||
"docs_ids": ["c202d5e6-7b69-4869-81cc-dd574ee8ee11"]
|
||||
},
|
||||
@@ -58,6 +60,9 @@ def chat_completion(body: ChatBody) -> OpenAICompletion | StreamingResponse:
|
||||
Ingested documents IDs can be found using `/ingest/list` endpoint. If you want
|
||||
all ingested documents to be used, remove `context_filter` altogether.
|
||||
|
||||
When using `'include_sources': true`, the API will return the source Chunks used
|
||||
to create the response, which come from the context provided.
|
||||
|
||||
When using `'stream': true`, the API will return data chunks following [OpenAI's
|
||||
streaming model](https://platform.openai.com/docs/api-reference/chat/streaming):
|
||||
```
|
||||
@@ -71,12 +76,18 @@ def chat_completion(body: ChatBody) -> OpenAICompletion | StreamingResponse:
|
||||
ChatMessage(content=m.content, role=MessageRole(m.role)) for m in body.messages
|
||||
]
|
||||
if body.stream:
|
||||
stream = service.stream_chat(
|
||||
completion_gen = service.stream_chat(
|
||||
all_messages, body.use_context, body.context_filter
|
||||
)
|
||||
return StreamingResponse(
|
||||
to_openai_sse_stream(stream), media_type="text/event-stream"
|
||||
to_openai_sse_stream(
|
||||
completion_gen.response,
|
||||
completion_gen.sources if body.include_sources else None,
|
||||
),
|
||||
media_type="text/event-stream",
|
||||
)
|
||||
else:
|
||||
response = service.chat(all_messages, body.use_context, body.context_filter)
|
||||
return to_openai_response(response)
|
||||
completion = service.chat(all_messages, body.use_context, body.context_filter)
|
||||
return to_openai_response(
|
||||
completion.response, completion.sources if body.include_sources else None
|
||||
)
|
||||
|
@@ -1,13 +1,14 @@
|
||||
from collections.abc import Sequence
|
||||
from typing import TYPE_CHECKING, Any
|
||||
|
||||
from injector import inject, singleton
|
||||
from llama_index import ServiceContext, StorageContext, VectorStoreIndex
|
||||
from llama_index.chat_engine import ContextChatEngine
|
||||
from llama_index.chat_engine.types import (
|
||||
BaseChatEngine,
|
||||
)
|
||||
from llama_index.indices.postprocessor import MetadataReplacementPostProcessor
|
||||
from llama_index.llm_predictor.utils import stream_chat_response_to_tokens
|
||||
from llama_index.llms import ChatMessage
|
||||
from llama_index.types import TokenGen
|
||||
from pydantic import BaseModel
|
||||
|
||||
from private_gpt.components.embedding.embedding_component import EmbeddingComponent
|
||||
from private_gpt.components.llm.llm_component import LLMComponent
|
||||
@@ -16,12 +17,17 @@ from private_gpt.components.vector_store.vector_store_component import (
|
||||
VectorStoreComponent,
|
||||
)
|
||||
from private_gpt.open_ai.extensions.context_filter import ContextFilter
|
||||
from private_gpt.server.chunks.chunks_service import Chunk
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from llama_index.chat_engine.types import (
|
||||
AgentChatResponse,
|
||||
StreamingAgentChatResponse,
|
||||
)
|
||||
|
||||
class Completion(BaseModel):
|
||||
response: str
|
||||
sources: list[Chunk] | None = None
|
||||
|
||||
|
||||
class CompletionGen(BaseModel):
|
||||
response: TokenGen
|
||||
sources: list[Chunk] | None = None
|
||||
|
||||
|
||||
@singleton
|
||||
@@ -51,66 +57,64 @@ class ChatService:
|
||||
show_progress=True,
|
||||
)
|
||||
|
||||
def _chat_with_contex(
|
||||
self,
|
||||
message: str,
|
||||
context_filter: ContextFilter | None = None,
|
||||
chat_history: Sequence[ChatMessage] | None = None,
|
||||
streaming: bool = False,
|
||||
) -> Any:
|
||||
def _chat_engine(
|
||||
self, context_filter: ContextFilter | None = None
|
||||
) -> BaseChatEngine:
|
||||
vector_index_retriever = self.vector_store_component.get_retriever(
|
||||
index=self.index, context_filter=context_filter
|
||||
)
|
||||
chat_engine = ContextChatEngine.from_defaults(
|
||||
return ContextChatEngine.from_defaults(
|
||||
retriever=vector_index_retriever,
|
||||
service_context=self.service_context,
|
||||
node_postprocessors=[
|
||||
MetadataReplacementPostProcessor(target_metadata_key="window"),
|
||||
],
|
||||
)
|
||||
if streaming:
|
||||
result = chat_engine.stream_chat(message, chat_history)
|
||||
else:
|
||||
result = chat_engine.chat(message, chat_history)
|
||||
return result
|
||||
|
||||
def stream_chat(
|
||||
self,
|
||||
messages: list[ChatMessage],
|
||||
use_context: bool = False,
|
||||
context_filter: ContextFilter | None = None,
|
||||
) -> TokenGen:
|
||||
) -> CompletionGen:
|
||||
if use_context:
|
||||
last_message = messages[-1].content
|
||||
response: StreamingAgentChatResponse = self._chat_with_contex(
|
||||
chat_engine = self._chat_engine(context_filter=context_filter)
|
||||
streaming_response = chat_engine.stream_chat(
|
||||
message=last_message if last_message is not None else "",
|
||||
chat_history=messages[:-1],
|
||||
context_filter=context_filter,
|
||||
streaming=True,
|
||||
)
|
||||
response_gen = response.response_gen
|
||||
sources = [
|
||||
Chunk.from_node(node) for node in streaming_response.source_nodes
|
||||
]
|
||||
completion_gen = CompletionGen(
|
||||
response=streaming_response.response_gen, sources=sources
|
||||
)
|
||||
else:
|
||||
stream = self.llm_service.llm.stream_chat(messages)
|
||||
response_gen = stream_chat_response_to_tokens(stream)
|
||||
return response_gen
|
||||
completion_gen = CompletionGen(
|
||||
response=stream_chat_response_to_tokens(stream)
|
||||
)
|
||||
return completion_gen
|
||||
|
||||
def chat(
|
||||
self,
|
||||
messages: list[ChatMessage],
|
||||
use_context: bool = False,
|
||||
context_filter: ContextFilter | None = None,
|
||||
) -> str:
|
||||
) -> Completion:
|
||||
if use_context:
|
||||
last_message = messages[-1].content
|
||||
wrapped_response: AgentChatResponse = self._chat_with_contex(
|
||||
chat_engine = self._chat_engine(context_filter=context_filter)
|
||||
wrapped_response = chat_engine.chat(
|
||||
message=last_message if last_message is not None else "",
|
||||
chat_history=messages[:-1],
|
||||
context_filter=context_filter,
|
||||
streaming=False,
|
||||
)
|
||||
response = wrapped_response.response
|
||||
sources = [Chunk.from_node(node) for node in wrapped_response.source_nodes]
|
||||
completion = Completion(response=wrapped_response.response, sources=sources)
|
||||
else:
|
||||
chat_response = self.llm_service.llm.chat(messages)
|
||||
response_content = chat_response.message.content
|
||||
response = response_content if response_content is not None else ""
|
||||
return response
|
||||
completion = Completion(response=response)
|
||||
return completion
|
||||
|
Reference in New Issue
Block a user