5 Commits

Author SHA1 Message Date
github-actions[bot]
22904ca8ad chore(main): release 0.6.2 (#2049)
Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com>
2024-08-08 18:16:41 +02:00
Javier Martinez
7fefe408b4 fix: auto-update version (#2052) 2024-08-08 16:50:42 +02:00
Javier Martinez
b1acf9dc2c fix: publish image name (#2043) 2024-08-07 17:39:32 +02:00
Javier Martinez
4ca6d0cb55 fix: add numpy issue to troubleshooting (#2048)
* docs: add numpy issue to troubleshooting

* fix: troubleshooting link

...
2024-08-07 12:16:03 +02:00
Javier Martinez
b16abbefe4 fix: update matplotlib to 3.9.1-post1 to fix win install
* chore: block matplotlib to fix installation in window machines

* chore: remove workaround, just update poetry.lock

* fix: update matplotlib to last version
2024-08-07 11:26:42 +02:00
13 changed files with 93 additions and 162 deletions

View File

@@ -0,0 +1,19 @@
{
"$schema": "https://raw.githubusercontent.com/googleapis/release-please/main/schemas/config.json",
"release-type": "simple",
"version-file": "version.txt",
"extra-files": [
{
"type": "toml",
"path": "pyproject.toml",
"jsonpath": "$.tool.poetry.version"
},
{
"type": "generic",
"path": "docker-compose.yaml"
}
],
"packages": {
".": {}
}
}

View File

@@ -0,0 +1,3 @@
{
".": "0.6.2"
}

View File

@@ -7,7 +7,7 @@ on:
env:
REGISTRY: docker.io
IMAGE_NAME: ${{ github.repository }}
IMAGE_NAME: zylonai/private-gpt
platforms: linux/amd64,linux/arm64
DEFAULT_TYPE: "ollama"

View File

@@ -13,7 +13,8 @@ jobs:
release-please:
runs-on: ubuntu-latest
steps:
- uses: google-github-actions/release-please-action@v3
- uses: google-github-actions/release-please-action@v4
id: release
with:
release-type: simple
version-file: version.txt
config-file: .github/release_please/.release-please-config.json
manifest-file: .github/release_please/.release-please-manifest.json

View File

@@ -1,5 +1,15 @@
# Changelog
## [0.6.2](https://github.com/zylon-ai/private-gpt/compare/v0.6.1...v0.6.2) (2024-08-08)
### Bug Fixes
* add numpy issue to troubleshooting ([#2048](https://github.com/zylon-ai/private-gpt/issues/2048)) ([4ca6d0c](https://github.com/zylon-ai/private-gpt/commit/4ca6d0cb556be7a598f7d3e3b00d2a29214ee1e8))
* auto-update version ([#2052](https://github.com/zylon-ai/private-gpt/issues/2052)) ([7fefe40](https://github.com/zylon-ai/private-gpt/commit/7fefe408b4267684c6e3c1a43c5dc2b73ec61fe4))
* publish image name ([#2043](https://github.com/zylon-ai/private-gpt/issues/2043)) ([b1acf9d](https://github.com/zylon-ai/private-gpt/commit/b1acf9dc2cbca2047cd0087f13254ff5cda6e570))
* update matplotlib to 3.9.1-post1 to fix win install ([b16abbe](https://github.com/zylon-ai/private-gpt/commit/b16abbefe49527ac038d235659854b98345d5387))
## [0.6.1](https://github.com/zylon-ai/private-gpt/compare/v0.6.0...v0.6.1) (2024-08-05)

View File

@@ -1,84 +0,0 @@
FROM nvidia/cuda:12.5.1-cudnn-devel-ubuntu22.04 as base
# For tzdata
ENV DEBIAN_FRONTEND="noninteractive" TZ="Etc/UTC"
RUN apt-get update && apt-get upgrade -y \
&& apt-get install -y git build-essential \
python3 python3-pip python3.11-venv gcc wget \
ocl-icd-opencl-dev opencl-headers clinfo \
libclblast-dev libopenblas-dev \
&& mkdir -p /etc/OpenCL/vendors && echo "libnvidia-opencl.so.1" > /etc/OpenCL/vendors/nvidia.icd \
&& ln -sf /usr/bin/python3.11 /usr/bin/python3 \
&& python3 --version
# Install poetry
RUN pip install pipx
RUN python3 -m pipx ensurepath
RUN pipx install poetry==1.8.3
ENV PATH="/root/.local/bin:$PATH"
ENV PATH=".venv/bin/:$PATH"
# Dependencies to build llama-cpp
RUN apt update && apt install -y \
libopenblas-dev\
ninja-build\
build-essential\
pkg-config\
wget
# https://python-poetry.org/docs/configuration/#virtualenvsin-project
ENV POETRY_VIRTUALENVS_IN_PROJECT=true
FROM base as dependencies
WORKDIR /home/worker/app
COPY pyproject.toml poetry.lock ./
ARG POETRY_EXTRAS="ui embeddings-huggingface llms-llama-cpp vector-stores-qdrant"
RUN poetry install --no-root --extras "${POETRY_EXTRAS}"
# Enable GPU support
ENV CUDA_DOCKER_ARCH=all
ENV GGML_CUDA=1
ENV TOKENIZERS_PARALLELISM=true
RUN CMAKE_ARGS="-DGGML_CUDA=on" \
poetry run pip install \
--force-reinstall \
--no-cache-dir \
--verbose \
llama-cpp-python==0.2.84 \
numpy==1.26.0
FROM base as app
ENV PYTHONUNBUFFERED=1
ENV PORT=8080
ENV APP_ENV=prod
ENV PYTHONPATH="$PYTHONPATH:/home/worker/app/private_gpt/"
EXPOSE 8080
# Prepare a non-root user
# More info about how to configure UIDs and GIDs in Docker:
# https://github.com/systemd/systemd/blob/main/docs/UIDS-GIDS.md
# Define the User ID (UID) for the non-root user
# UID 100 is chosen to avoid conflicts with existing system users
ARG UID=1000
# Define the Group ID (GID) for the non-root user
# GID 65534 is often used for the 'nogroup' or 'nobody' group
ARG GID=65534
RUN adduser --system --gid ${GID} --uid ${UID} --home /home/worker worker
WORKDIR /home/worker/app
RUN chown worker /home/worker/app
RUN mkdir local_data && chown worker local_data
RUN mkdir models && chown worker models
COPY --chown=worker --from=dependencies /home/worker/app/.venv/ .venv
COPY --chown=worker private_gpt/ private_gpt
COPY --chown=worker *.yaml ./
COPY --chown=worker scripts/ scripts
USER worker
ENTRYPOINT python -m private_gpt

View File

@@ -7,7 +7,7 @@ services:
# Private-GPT service for the Ollama CPU and GPU modes
# This service builds from an external Dockerfile and runs the Ollama mode.
private-gpt-ollama:
image: ${PGPT_IMAGE:-zylonai/private-gpt}${PGPT_TAG:-0.6.1}-ollama
image: ${PGPT_IMAGE:-zylonai/private-gpt}${PGPT_TAG:-0.6.2}-ollama # x-release-please-version
build:
context: .
dockerfile: Dockerfile.ollama
@@ -31,7 +31,7 @@ services:
# Private-GPT service for the local mode
# This service builds from a local Dockerfile and runs the application in local mode.
private-gpt-llamacpp-cpu:
image: ${PGPT_IMAGE:-zylonai/private-gpt}${PGPT_TAG:-0.6.1}-llamacpp-cpu
image: ${PGPT_IMAGE:-zylonai/private-gpt}${PGPT_TAG:-0.6.2}-llamacpp-cpu # x-release-please-version
build:
context: .
dockerfile: Dockerfile.llamacpp-cpu
@@ -48,26 +48,6 @@ services:
profiles:
- llamacpp-cpu
# Private-GPT service for the local mode (with CUDA support)
# This service builds from a local Dockerfile and runs the application in local mode.
private-gpt-llamacpp-cuda:
image: ${PGPT_IMAGE:-zylonai/private-gpt}${PGPT_TAG:-0.6.1}-llamacpp-cuda
build:
context: .
dockerfile: Dockerfile.llamacpp-cuda
volumes:
- ./local_data/:/home/worker/app/local_data
- ./models/:/home/worker/app/models
entrypoint: sh -c ".venv/bin/python scripts/setup && .venv/bin/python -m private_gpt"
ports:
- "8001:8001"
environment:
PORT: 8001
PGPT_PROFILES: local
HF_TOKEN: ${HF_TOKEN}
profiles:
- llamacpp-cuda
#-----------------------------------
#---- Ollama services --------------
#-----------------------------------

View File

@@ -307,11 +307,12 @@ If you have all required dependencies properly configured running the
following powershell command should succeed.
```powershell
$env:CMAKE_ARGS='-DLLAMA_CUBLAS=on'; poetry run pip install --force-reinstall --no-cache-dir llama-cpp-python
$env:CMAKE_ARGS='-DLLAMA_CUBLAS=on'; poetry run pip install --force-reinstall --no-cache-dir llama-cpp-python numpy==1.26.0
```
If your installation was correct, you should see a message similar to the following next
time you start the server `BLAS = 1`.
time you start the server `BLAS = 1`. If there is some issue, please refer to the
[troubleshooting](/installation/getting-started/troubleshooting#building-llama-cpp-with-nvidia-gpu-support) section.
```console
llama_new_context_with_model: total VRAM used: 4857.93 MB (model: 4095.05 MB, context: 762.87 MB)
@@ -339,11 +340,12 @@ Some tips:
After that running the following command in the repository will install llama.cpp with GPU support:
```bash
CMAKE_ARGS='-DLLAMA_CUBLAS=on' poetry run pip install --force-reinstall --no-cache-dir llama-cpp-python
CMAKE_ARGS='-DLLAMA_CUBLAS=on' poetry run pip install --force-reinstall --no-cache-dir llama-cpp-python numpy==1.26.0
```
If your installation was correct, you should see a message similar to the following next
time you start the server `BLAS = 1`.
time you start the server `BLAS = 1`. If there is some issue, please refer to the
[troubleshooting](/installation/getting-started/troubleshooting#building-llama-cpp-with-nvidia-gpu-support) section.
```
llama_new_context_with_model: total VRAM used: 4857.93 MB (model: 4095.05 MB, context: 762.87 MB)

View File

@@ -46,4 +46,19 @@ huggingface:
embedding:
embed_dim: 384
```
</Callout>
</Callout>
# Building Llama-cpp with NVIDIA GPU support
## Out-of-memory error
If you encounter an out-of-memory error while running `llama-cpp` with CUDA, you can try the following steps to resolve the issue:
1. **Set the next environment:**
```bash
TOKENIZERS_PARALLELISM=true
```
2. **Run PrivateGPT:**
```bash
poetry run python -m privategpt
```
Give thanks to [MarioRossiGithub](https://github.com/MarioRossiGithub) for providing the following solution.

View File

@@ -82,21 +82,6 @@ HF_TOKEN=<your_hf_token> docker-compose --profile llamacpp-cpu up
```
Replace `<your_hf_token>` with your actual Hugging Face token.
#### 2. LlamaCPP CUDA
**Description:**
This profile runs the Private-GPT services locally using `llama-cpp` and Hugging Face models.
**Requirements:**
A **Hugging Face Token (HF_TOKEN)** is required for accessing Hugging Face models. Obtain your token following [this guide](/installation/getting-started/troubleshooting#downloading-gated-and-private-models).
**Run:**
Start the services with your Hugging Face token using pre-built images:
```sh
HF_TOKEN=<your_hf_token> docker-compose --profile llamacpp-cuda up
```
Replace `<your_hf_token>` with your actual Hugging Face token.
## Building Locally
If you prefer to build Docker images locally, which is useful when making changes to the codebase or the Dockerfiles, follow these steps:

60
poetry.lock generated
View File

@@ -2901,40 +2901,40 @@ tests = ["pytest", "pytz", "simplejson"]
[[package]]
name = "matplotlib"
version = "3.9.1"
version = "3.9.1.post1"
description = "Python plotting package"
optional = true
python-versions = ">=3.9"
files = [
{file = "matplotlib-3.9.1-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:7ccd6270066feb9a9d8e0705aa027f1ff39f354c72a87efe8fa07632f30fc6bb"},
{file = "matplotlib-3.9.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:591d3a88903a30a6d23b040c1e44d1afdd0d778758d07110eb7596f811f31842"},
{file = "matplotlib-3.9.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:dd2a59ff4b83d33bca3b5ec58203cc65985367812cb8c257f3e101632be86d92"},
{file = "matplotlib-3.9.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0fc001516ffcf1a221beb51198b194d9230199d6842c540108e4ce109ac05cc0"},
{file = "matplotlib-3.9.1-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:83c6a792f1465d174c86d06f3ae85a8fe36e6f5964633ae8106312ec0921fdf5"},
{file = "matplotlib-3.9.1-cp310-cp310-win_amd64.whl", hash = "sha256:421851f4f57350bcf0811edd754a708d2275533e84f52f6760b740766c6747a7"},
{file = "matplotlib-3.9.1-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:b3fce58971b465e01b5c538f9d44915640c20ec5ff31346e963c9e1cd66fa812"},
{file = "matplotlib-3.9.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:a973c53ad0668c53e0ed76b27d2eeeae8799836fd0d0caaa4ecc66bf4e6676c0"},
{file = "matplotlib-3.9.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:82cd5acf8f3ef43f7532c2f230249720f5dc5dd40ecafaf1c60ac8200d46d7eb"},
{file = "matplotlib-3.9.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ab38a4f3772523179b2f772103d8030215b318fef6360cb40558f585bf3d017f"},
{file = "matplotlib-3.9.1-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:2315837485ca6188a4b632c5199900e28d33b481eb083663f6a44cfc8987ded3"},
{file = "matplotlib-3.9.1-cp311-cp311-win_amd64.whl", hash = "sha256:a0c977c5c382f6696caf0bd277ef4f936da7e2aa202ff66cad5f0ac1428ee15b"},
{file = "matplotlib-3.9.1-cp312-cp312-macosx_10_12_x86_64.whl", hash = "sha256:565d572efea2b94f264dd86ef27919515aa6d629252a169b42ce5f570db7f37b"},
{file = "matplotlib-3.9.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:6d397fd8ccc64af2ec0af1f0efc3bacd745ebfb9d507f3f552e8adb689ed730a"},
{file = "matplotlib-3.9.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:26040c8f5121cd1ad712abffcd4b5222a8aec3a0fe40bc8542c94331deb8780d"},
{file = "matplotlib-3.9.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d12cb1837cffaac087ad6b44399d5e22b78c729de3cdae4629e252067b705e2b"},
{file = "matplotlib-3.9.1-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:0e835c6988edc3d2d08794f73c323cc62483e13df0194719ecb0723b564e0b5c"},
{file = "matplotlib-3.9.1-cp312-cp312-win_amd64.whl", hash = "sha256:44a21d922f78ce40435cb35b43dd7d573cf2a30138d5c4b709d19f00e3907fd7"},
{file = "matplotlib-3.9.1-cp39-cp39-macosx_10_12_x86_64.whl", hash = "sha256:0c584210c755ae921283d21d01f03a49ef46d1afa184134dd0f95b0202ee6f03"},
{file = "matplotlib-3.9.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:11fed08f34fa682c2b792942f8902e7aefeed400da71f9e5816bea40a7ce28fe"},
{file = "matplotlib-3.9.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0000354e32efcfd86bda75729716b92f5c2edd5b947200be9881f0a671565c33"},
{file = "matplotlib-3.9.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4db17fea0ae3aceb8e9ac69c7e3051bae0b3d083bfec932240f9bf5d0197a049"},
{file = "matplotlib-3.9.1-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:208cbce658b72bf6a8e675058fbbf59f67814057ae78165d8a2f87c45b48d0ff"},
{file = "matplotlib-3.9.1-cp39-cp39-win_amd64.whl", hash = "sha256:dc23f48ab630474264276be156d0d7710ac6c5a09648ccdf49fef9200d8cbe80"},
{file = "matplotlib-3.9.1-pp39-pypy39_pp73-macosx_10_15_x86_64.whl", hash = "sha256:3fda72d4d472e2ccd1be0e9ccb6bf0d2eaf635e7f8f51d737ed7e465ac020cb3"},
{file = "matplotlib-3.9.1-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:84b3ba8429935a444f1fdc80ed930babbe06725bcf09fbeb5c8757a2cd74af04"},
{file = "matplotlib-3.9.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b918770bf3e07845408716e5bbda17eadfc3fcbd9307dc67f37d6cf834bb3d98"},
{file = "matplotlib-3.9.1-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:f1f2e5d29e9435c97ad4c36fb6668e89aee13d48c75893e25cef064675038ac9"},
{file = "matplotlib-3.9.1.tar.gz", hash = "sha256:de06b19b8db95dd33d0dc17c926c7c9ebed9f572074b6fac4f65068a6814d010"},
{file = "matplotlib-3.9.1.post1-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:3779ad3e8b72df22b8a622c5796bbcfabfa0069b835412e3c1dec8ee3de92d0c"},
{file = "matplotlib-3.9.1.post1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:ec400340f8628e8e2260d679078d4e9b478699f386e5cc8094e80a1cb0039c7c"},
{file = "matplotlib-3.9.1.post1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:82c18791b8862ea095081f745b81f896b011c5a5091678fb33204fef641476af"},
{file = "matplotlib-3.9.1.post1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:621a628389c09a6b9f609a238af8e66acecece1cfa12febc5fe4195114ba7446"},
{file = "matplotlib-3.9.1.post1-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:9a54734ca761ebb27cd4f0b6c2ede696ab6861052d7d7e7b8f7a6782665115f5"},
{file = "matplotlib-3.9.1.post1-cp310-cp310-win_amd64.whl", hash = "sha256:0721f93db92311bb514e446842e2b21c004541dcca0281afa495053e017c5458"},
{file = "matplotlib-3.9.1.post1-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:b08b46058fe2a31ecb81ef6aa3611f41d871f6a8280e9057cb4016cb3d8e894a"},
{file = "matplotlib-3.9.1.post1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:22b344e84fcc574f561b5731f89a7625db8ef80cdbb0026a8ea855a33e3429d1"},
{file = "matplotlib-3.9.1.post1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4b49fee26d64aefa9f061b575f0f7b5fc4663e51f87375c7239efa3d30d908fa"},
{file = "matplotlib-3.9.1.post1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:89eb7e89e2b57856533c5c98f018aa3254fa3789fcd86d5f80077b9034a54c9a"},
{file = "matplotlib-3.9.1.post1-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:c06e742bade41fda6176d4c9c78c9ea016e176cd338e62a1686384cb1eb8de41"},
{file = "matplotlib-3.9.1.post1-cp311-cp311-win_amd64.whl", hash = "sha256:c44edab5b849e0fc1f1c9d6e13eaa35ef65925f7be45be891d9784709ad95561"},
{file = "matplotlib-3.9.1.post1-cp312-cp312-macosx_10_12_x86_64.whl", hash = "sha256:bf28b09986aee06393e808e661c3466be9c21eff443c9bc881bce04bfbb0c500"},
{file = "matplotlib-3.9.1.post1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:92aeb8c439d4831510d8b9d5e39f31c16c7f37873879767c26b147cef61e54cd"},
{file = "matplotlib-3.9.1.post1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f15798b0691b45c80d3320358a88ce5a9d6f518b28575b3ea3ed31b4bd95d009"},
{file = "matplotlib-3.9.1.post1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d59fc6096da7b9c1df275f9afc3fef5cbf634c21df9e5f844cba3dd8deb1847d"},
{file = "matplotlib-3.9.1.post1-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:ab986817a32a70ce22302438691e7df4c6ee4a844d47289db9d583d873491e0b"},
{file = "matplotlib-3.9.1.post1-cp312-cp312-win_amd64.whl", hash = "sha256:0d78e7d2d86c4472da105d39aba9b754ed3dfeaeaa4ac7206b82706e0a5362fa"},
{file = "matplotlib-3.9.1.post1-cp39-cp39-macosx_10_12_x86_64.whl", hash = "sha256:bd07eba6431b4dc9253cce6374a28c415e1d3a7dc9f8aba028ea7592f06fe172"},
{file = "matplotlib-3.9.1.post1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:ca230cc4482010d646827bd2c6d140c98c361e769ae7d954ebf6fff2a226f5b1"},
{file = "matplotlib-3.9.1.post1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ace27c0fdeded399cbc43f22ffa76e0f0752358f5b33106ec7197534df08725a"},
{file = "matplotlib-3.9.1.post1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9a4f3aeb7ba14c497dc6f021a076c48c2e5fbdf3da1e7264a5d649683e284a2f"},
{file = "matplotlib-3.9.1.post1-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:23f96fbd4ff4cfa9b8a6b685a65e7eb3c2ced724a8d965995ec5c9c2b1f7daf5"},
{file = "matplotlib-3.9.1.post1-cp39-cp39-win_amd64.whl", hash = "sha256:2808b95452b4ffa14bfb7c7edffc5350743c31bda495f0d63d10fdd9bc69e895"},
{file = "matplotlib-3.9.1.post1-pp39-pypy39_pp73-macosx_10_15_x86_64.whl", hash = "sha256:ffc91239f73b4179dec256b01299d46d0ffa9d27d98494bc1476a651b7821cbe"},
{file = "matplotlib-3.9.1.post1-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:f965ebca9fd4feaaca45937c4849d92b70653057497181100fcd1e18161e5f29"},
{file = "matplotlib-3.9.1.post1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:801ee9323fd7b2da0d405aebbf98d1da77ea430bbbbbec6834c0b3af15e5db44"},
{file = "matplotlib-3.9.1.post1-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:50113e9b43ceb285739f35d43db36aa752fb8154325b35d134ff6e177452f9ec"},
{file = "matplotlib-3.9.1.post1.tar.gz", hash = "sha256:c91e585c65092c975a44dc9d4239ba8c594ba3c193d7c478b6d178c4ef61f406"},
]
[package.dependencies]

View File

@@ -1,6 +1,6 @@
[tool.poetry]
name = "private-gpt"
version = "0.6.0"
version = "0.6.2"
description = "Private GPT"
authors = ["Zylon <hi@zylon.ai>"]

View File

@@ -1 +1 @@
0.6.1
0.6.2