7 Commits

Author SHA1 Message Date
github-actions[bot]
e8ac51bba4 chore(main): release 0.2.0 (#1387)
Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com>
2023-12-10 20:08:12 +01:00
3ly-13
145f3ec9f4 feat(ui): Allows User to Set System Prompt via "Additional Options" in Chat Interface (#1353) 2023-12-10 19:45:14 +01:00
3ly-13
a072a40a7c Allow setting OpenAI model in settings (#1386)
feat(settings): Allow setting openai model to be used. Default to GPT 3.5
2023-12-09 20:13:00 +01:00
Louis Melchior
a3ed14c58f feat(llm): drop default_system_prompt (#1385)
As discussed on Discord, the decision has been made to remove the system prompts by default, to better segregate the API and the UI usages.

A concurrent PR (#1353) is enabling the dynamic setting of a system prompt in the UI.

Therefore, if UI users want to use a custom system prompt, they can specify one directly in the UI.
If the API users want to use a custom prompt, they can pass it directly into their messages that they are passing to the API.

In the highlight of the two use case above, it becomes clear that default system_prompt does not need to exist.
2023-12-08 23:13:51 +01:00
Iván Martínez
f235c50be9 Delete old docs (#1384) 2023-12-08 22:39:23 +01:00
EEmlan
9302620eac Adding german speaking model to documentation (#1374) 2023-12-08 11:26:25 +01:00
Max Zangs
9cf972563e Add setup option to Makefile (#1368) 2023-12-08 10:34:12 +01:00
19 changed files with 195 additions and 1753 deletions

View File

@@ -1,5 +1,13 @@
# Changelog
## [0.2.0](https://github.com/imartinez/privateGPT/compare/v0.1.0...v0.2.0) (2023-12-10)
### Features
* **llm:** drop default_system_prompt ([#1385](https://github.com/imartinez/privateGPT/issues/1385)) ([a3ed14c](https://github.com/imartinez/privateGPT/commit/a3ed14c58f77351dbd5f8f2d7868d1642a44f017))
* **ui:** Allows User to Set System Prompt via "Additional Options" in Chat Interface ([#1353](https://github.com/imartinez/privateGPT/issues/1353)) ([145f3ec](https://github.com/imartinez/privateGPT/commit/145f3ec9f41c4def5abf4065a06fb0786e2d992a))
## [0.1.0](https://github.com/imartinez/privateGPT/compare/v0.0.2...v0.1.0) (2023-11-30)

View File

@@ -52,4 +52,7 @@ ingest:
@poetry run python scripts/ingest_folder.py $(call args)
wipe:
poetry run python scripts/utils.py wipe
poetry run python scripts/utils.py wipe
setup:
poetry run python scripts/setup

View File

View File

@@ -1,474 +0,0 @@
## Introduction
PrivateGPT provides an **API** containing all the building blocks required to build
**private, context-aware AI applications**. The API follows and extends OpenAI API standard, and supports
both normal and streaming responses.
The API is divided in two logical blocks:
- High-level API, abstracting all the complexity of a RAG (Retrieval Augmented Generation) pipeline implementation:
- Ingestion of documents: internally managing document parsing, splitting, metadata extraction,
embedding generation and storage.
- Chat & Completions using context from ingested documents: abstracting the retrieval of context, the prompt
engineering and the response generation.
- Low-level API, allowing advanced users to implement their own complex pipelines:
- Embeddings generation: based on a piece of text.
- Contextual chunks retrieval: given a query, returns the most relevant chunks of text from the ingested
documents.
> A working **Gradio UI client** is provided to test the API, together with a set of
> useful tools such as bulk model download script, ingestion script, documents folder
> watch, etc.
## Quick Local Installation steps
The steps in `Installation and Settings` section are better explained and cover more
setup scenarios. But if you are looking for a quick setup guide, here it is:
```
# Clone the repo
git clone https://github.com/imartinez/privateGPT
cd privateGPT
# Install Python 3.11
pyenv install 3.11
pyenv local 3.11
# Install dependencies
poetry install --with ui,local
# Download Embedding and LLM models
poetry run python scripts/setup
# (Optional) For Mac with Metal GPU, enable it. Check Installation and Settings section
to know how to enable GPU on other platforms
CMAKE_ARGS="-DLLAMA_METAL=on" pip install --force-reinstall --no-cache-dir llama-cpp-python
# Run the local server
PGPT_PROFILES=local make run
# Note: on Mac with Metal you should see a ggml_metal_add_buffer log, stating GPU is
being used
# Navigate to the UI and try it out!
http://localhost:8001/
```
## Installation and Settings
### Base requirements to run PrivateGPT
* Git clone PrivateGPT repository, and navigate to it:
```
git clone https://github.com/imartinez/privateGPT
cd privateGPT
```
* Install Python 3.11. Ideally through a python version manager like `pyenv`.
Python 3.12
should work too. Earlier python versions are not supported.
* osx/linux: [pyenv](https://github.com/pyenv/pyenv)
* windows: [pyenv-win](https://github.com/pyenv-win/pyenv-win)
```
pyenv install 3.11
pyenv local 3.11
```
* Install [Poetry](https://python-poetry.org/docs/#installing-with-the-official-installer) for dependency management:
* Have a valid C++ compiler like gcc. See [Troubleshooting: C++ Compiler](#troubleshooting-c-compiler) for more details.
* Install `make` for scripts:
* osx: (Using homebrew): `brew install make`
* windows: (Using chocolatey) `choco install make`
### Install dependencies
Install the dependencies:
```bash
poetry install --with ui
```
Verify everything is working by running `make run` (or `poetry run python -m private_gpt`) and navigate to
http://localhost:8001. You should see a [Gradio UI](https://gradio.app/) **configured with a mock LLM** that will
echo back the input. Later we'll see how to configure a real LLM.
### Settings
> Note: the default settings of PrivateGPT work out-of-the-box for a 100% local setup. Skip this section if you just
> want to test PrivateGPT locally, and come back later to learn about more configuration options.
PrivateGPT is configured through *profiles* that are defined using yaml files, and selected through env variables.
The full list of properties configurable can be found in `settings.yaml`
#### env var `PGPT_SETTINGS_FOLDER`
The location of the settings folder. Defaults to the root of the project.
Should contain the default `settings.yaml` and any other `settings-{profile}.yaml`.
#### env var `PGPT_PROFILES`
By default, the profile definition in `settings.yaml` is loaded.
Using this env var you can load additional profiles; format is a comma separated list of profile names.
This will merge `settings-{profile}.yaml` on top of the base settings file.
For example:
`PGPT_PROFILES=local,cuda` will load `settings-local.yaml`
and `settings-cuda.yaml`, their contents will be merged with
later profiles properties overriding values of earlier ones like `settings.yaml`.
During testing, the `test` profile will be active along with the default, therefore `settings-test.yaml`
file is required.
#### Environment variables expansion
Configuration files can contain environment variables,
they will be expanded at runtime.
Expansion must follow the pattern `${VARIABLE_NAME:default_value}`.
For example, the following configuration will use the value of the `PORT`
environment variable or `8001` if it's not set.
Missing variables with no default will produce an error.
```yaml
server:
port: ${PORT:8001}
```
### Local LLM requirements
Install extra dependencies for local execution:
```bash
poetry install --with local
```
For PrivateGPT to run fully locally GPU acceleration is required
(CPU execution is possible, but very slow), however,
typical Macbook laptops or window desktops with mid-range GPUs lack VRAM to run
even the smallest LLMs. For that reason
**local execution is only supported for models compatible with [llama.cpp](https://github.com/ggerganov/llama.cpp)**
These two models are known to work well:
* https://huggingface.co/TheBloke/Llama-2-7B-chat-GGUF
* https://huggingface.co/TheBloke/Mistral-7B-Instruct-v0.1-GGUF (recommended)
To ease the installation process, use the `setup` script that will download both
the embedding and the LLM model and place them in the correct location (under `models` folder):
```bash
poetry run python scripts/setup
```
If you are ok with CPU execution, you can skip the rest of this section.
As stated before, llama.cpp is required and in
particular [llama-cpp-python](https://github.com/abetlen/llama-cpp-python)
is used.
> It's highly encouraged that you fully read llama-cpp and llama-cpp-python documentation relevant to your platform.
> Running into installation issues is very likely, and you'll need to troubleshoot them yourself.
#### Customizing low level parameters
Currently not all the parameters of llama-cpp and llama-cpp-python are available at PrivateGPT's `settings.yaml` file. In case you need to customize parameters such as the number of layers loaded into the GPU, you might change these at the `llm_component.py` file under the `private_gpt/components/llm/llm_component.py`. If you are getting an out of memory error, you might also try a smaller model or stick to the proposed recommended models, instead of custom tuning the parameters.
#### OSX GPU support
You will need to build [llama.cpp](https://github.com/ggerganov/llama.cpp) with
metal support. To do that run:
```bash
CMAKE_ARGS="-DLLAMA_METAL=on" pip install --force-reinstall --no-cache-dir llama-cpp-python
```
#### Windows NVIDIA GPU support
Windows GPU support is done through CUDA.
Follow the instructions on the original [llama.cpp](https://github.com/ggerganov/llama.cpp) repo to install the required
dependencies.
Some tips to get it working with an NVIDIA card and CUDA (Tested on Windows 10 with CUDA 11.5 RTX 3070):
* Install latest VS2022 (and build tools) https://visualstudio.microsoft.com/vs/community/
* Install CUDA toolkit https://developer.nvidia.com/cuda-downloads
* Verify your installation is correct by running `nvcc --version` and `nvidia-smi`, ensure your CUDA version is up to
date and your GPU is detected.
* [Optional] Install CMake to troubleshoot building issues by compiling llama.cpp directly https://cmake.org/download/
If you have all required dependencies properly configured running the
following powershell command should succeed.
```powershell
$env:CMAKE_ARGS='-DLLAMA_CUBLAS=on'; poetry run pip install --force-reinstall --no-cache-dir llama-cpp-python
```
If your installation was correct, you should see a message similar to the following next
time you start the server `BLAS = 1`.
```
llama_new_context_with_model: total VRAM used: 4857.93 MB (model: 4095.05 MB, context: 762.87 MB)
AVX = 1 | AVX2 = 1 | AVX512 = 0 | AVX512_VBMI = 0 | AVX512_VNNI = 0 | FMA = 1 | NEON = 0 | ARM_FMA = 0 | F16C = 1 | FP16_VA = 0 | WASM_SIMD = 0 | BLAS = 1 | SSE3 = 1 | SSSE3 = 0 | VSX = 0 |
```
Note that llama.cpp offloads matrix calculations to the GPU but the performance is
still hit heavily due to latency between CPU and GPU communication. You might need to tweak
batch sizes and other parameters to get the best performance for your particular system.
#### Linux NVIDIA GPU support and Windows-WSL
Linux GPU support is done through CUDA.
Follow the instructions on the original [llama.cpp](https://github.com/ggerganov/llama.cpp) repo to install the required
external
dependencies.
Some tips:
* Make sure you have an up-to-date C++ compiler
* Install CUDA toolkit https://developer.nvidia.com/cuda-downloads
* Verify your installation is correct by running `nvcc --version` and `nvidia-smi`, ensure your CUDA version is up to
date and your GPU is detected.
After that running the following command in the repository will install llama.cpp with GPU support:
`
CMAKE_ARGS='-DLLAMA_CUBLAS=on' poetry run pip install --force-reinstall --no-cache-dir llama-cpp-python
`
If your installation was correct, you should see a message similar to the following next
time you start the server `BLAS = 1`.
```
llama_new_context_with_model: total VRAM used: 4857.93 MB (model: 4095.05 MB, context: 762.87 MB)
AVX = 1 | AVX2 = 1 | AVX512 = 0 | AVX512_VBMI = 0 | AVX512_VNNI = 0 | FMA = 1 | NEON = 0 | ARM_FMA = 0 | F16C = 1 | FP16_VA = 0 | WASM_SIMD = 0 | BLAS = 1 | SSE3 = 1 | SSSE3 = 0 | VSX = 0 |
```
#### Vectorstores
PrivateGPT supports [Chroma](https://www.trychroma.com/), [Qdrant](https://qdrant.tech/) as vectorstore providers. Chroma being the default.
To enable Qdrant, set the `vectorstore.database` property in the `settings.yaml` file to `qdrant` and install the `qdrant` extra.
```bash
poetry install --extras qdrant
```
By default Qdrant tries to connect to an instance at `http://localhost:3000`.
Qdrant settings can be configured by setting values to the `qdrant` property in the `settings.yaml` file.
The available configuration options are:
| Field | Description |
|--------------|-------------|
| location | If `:memory:` - use in-memory Qdrant instance.<br>If `str` - use it as a `url` parameter.|
| url | Either host or str of 'Optional[scheme], host, Optional[port], Optional[prefix]'.<br> Eg. `http://localhost:6333` |
| port | Port of the REST API interface. Default: `6333` |
| grpc_port | Port of the gRPC interface. Default: `6334` |
| prefer_grpc | If `true` - use gRPC interface whenever possible in custom methods. |
| https | If `true` - use HTTPS(SSL) protocol.|
| api_key | API key for authentication in Qdrant Cloud.|
| prefix | If set, add `prefix` to the REST URL path.<br>Example: `service/v1` will result in `http://localhost:6333/service/v1/{qdrant-endpoint}` for REST API.|
| timeout | Timeout for REST and gRPC API requests.<br>Default: 5.0 seconds for REST and unlimited for gRPC |
| host | Host name of Qdrant service. If url and host are not set, defaults to 'localhost'.|
| path | Persistence path for QdrantLocal. Eg. `local_data/private_gpt/qdrant`|
| force_disable_check_same_thread | Force disable check_same_thread for QdrantLocal sqlite connection.|
#### Known issues and Troubleshooting
Execution of LLMs locally still has a lot of sharp edges, specially when running on non Linux platforms.
You might encounter several issues:
* Performance: RAM or VRAM usage is very high, your computer might experience slowdowns or even crashes.
* GPU Virtualization on Windows and OSX: Simply not possible with docker desktop, you have to run the server directly on
the host.
* Building errors: Some of PrivateGPT dependencies need to build native code, and they might fail on some platforms.
Most likely you are missing some dev tools in your machine (updated C++ compiler, CUDA is not on PATH, etc.).
If you encounter any of these issues, please open an issue and we'll try to help.
#### Troubleshooting: C++ Compiler
If you encounter an error while building a wheel during the `pip install` process, you may need to install a C++
compiler on your computer.
**For Windows 10/11**
To install a C++ compiler on Windows 10/11, follow these steps:
1. Install Visual Studio 2022.
2. Make sure the following components are selected:
* Universal Windows Platform development
* C++ CMake tools for Windows
3. Download the MinGW installer from the [MinGW website](https://sourceforge.net/projects/mingw/).
4. Run the installer and select the `gcc` component.
** For OSX **
1. Check if you have a C++ compiler installed, Xcode might have done it for you. for example running `gcc`.
2. If not, you can install clang or gcc with homebrew `brew install gcc`
#### Troubleshooting: Mac Running Intel
When running a Mac with Intel hardware (not M1), you may run into _clang: error: the clang compiler does not support '
-march=native'_ during pip install.
If so set your archflags during pip install. eg: _ARCHFLAGS="-arch x86_64" pip3 install -r requirements.txt_
## Running the Server
After following the installation steps you should be ready to go. Here are some common run setups:
### Running 100% locally
Make sure you have followed the *Local LLM requirements* section before moving on.
This command will start PrivateGPT using the `settings.yaml` (default profile) together with the `settings-local.yaml`
configuration files. By default, it will enable both the API and the Gradio UI. Run:
```
PGPT_PROFILES=local make run
```
or
```
PGPT_PROFILES=local poetry run python -m private_gpt
```
When the server is started it will print a log *Application startup complete*.
Navigate to http://localhost:8001 to use the Gradio UI or to http://localhost:8001/docs (API section) to try the API
using Swagger UI.
### Local server using OpenAI as LLM
If you cannot run a local model (because you don't have a GPU, for example) or for testing purposes, you may
decide to run PrivateGPT using OpenAI as the LLM.
In order to do so, create a profile `settings-openai.yaml` with the following contents:
```yaml
llm:
mode: openai
openai:
api_key: <your_openai_api_key> # You could skip this configuration and use the OPENAI_API_KEY env var instead
```
And run PrivateGPT loading that profile you just created:
```PGPT_PROFILES=openai make run```
or
```PGPT_PROFILES=openai poetry run python -m private_gpt```
> Note this will still use the local Embeddings model, as it is ok to use it on a CPU.
> We'll support using OpenAI embeddings in a future release.
When the server is started it will print a log *Application startup complete*.
Navigate to http://localhost:8001 to use the Gradio UI or to http://localhost:8001/docs (API section) to try the API.
You'll notice the speed and quality of response is higher, given you are using OpenAI's servers for the heavy
computations.
### Use AWS's Sagemaker
🚧 Under construction 🚧
## Gradio UI user manual
Gradio UI is a ready to use way of testing most of PrivateGPT API functionalities.
![Gradio PrivateGPT](https://lh3.googleusercontent.com/drive-viewer/AK7aPaD_Hc-A8A9ooMe-hPgm_eImgsbxAjb__8nFYj8b_WwzvL1Gy90oAnp1DfhPaN6yGiEHCOXs0r77W1bYHtPzlVwbV7fMsA=s1600)
### Execution Modes
It has 3 modes of execution (you can select in the top-left):
* Query Docs: uses the context from the
ingested documents to answer the questions posted in the chat. It also takes
into account previous chat messages as context.
* Makes use of `/chat/completions` API with `use_context=true` and no
`context_filter`.
* Search in Docs: fast search that returns the 4 most related text
chunks, together with their source document and page.
* Makes use of `/chunks` API with no `context_filter`, `limit=4` and
`prev_next_chunks=0`.
* LLM Chat: simple, non-contextual chat with the LLM. The ingested documents won't
be taken into account, only the previous messages.
* Makes use of `/chat/completions` API with `use_context=false`.
### Document Ingestion
Ingest documents by using the `Upload a File` button. You can check the progress of
the ingestion in the console logs of the server.
The list of ingested files is shown below the button.
If you want to delete the ingested documents, refer to *Reset Local documents
database* section in the documentation.
### Chat
Normal chat interface, self-explanatory ;)
You can check the actual prompt being passed to the LLM by looking at the logs of
the server. We'll add better observability in future releases.
## Deployment options
🚧 We are working on Dockerized deployment guidelines 🚧
## Observability
Basic logs are enabled using LlamaIndex
basic logging (for example ingestion progress or LLM prompts and answers).
🚧 We are working on improved Observability. 🚧
## Ingesting & Managing Documents
🚧 Document Update and Delete are still WIP. 🚧
The ingestion of documents can be done in different ways:
* Using the `/ingest` API
* Using the Gradio UI
* Using the Bulk Local Ingestion functionality (check next section)
### Bulk Local Ingestion
When you are running PrivateGPT in a fully local setup, you can ingest a complete folder for convenience (containing
pdf, text files, etc.)
and optionally watch changes on it with the command:
```bash
make ingest /path/to/folder -- --watch
```
To log the processed and failed files to an additional file, use:
```bash
make ingest /path/to/folder -- --watch --log-file /path/to/log/file.log
```
After ingestion is complete, you should be able to chat with your documents
by navigating to http://localhost:8001 and using the option `Query documents`,
or using the completions / chat API.
### Reset Local documents database
When running in a local setup, you can remove all ingested documents by simply
deleting all contents of `local_data` folder (except .gitignore).
To simplify this process, you can use the command:
```bash
make wipe
```
## API
As explained in the introduction, the API contains high level APIs (ingestion and chat/completions) and low level APIs
(embeddings and chunk retrieval). In this section the different specific API calls are explained.

View File

@@ -1,22 +0,0 @@
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<title>PrivateGPT Docs</title>
<!-- needed for adaptive design -->
<meta name="viewport" content="width=device-width, initial-scale=1">
<link href="https://fonts.googleapis.com/css?family=Montserrat:300,400,700|Roboto:300,400,700" rel="stylesheet">
<link rel="shortcut icon" href="https://fastapi.tiangolo.com/img/favicon.png">
<!-- ReDoc doesn't change outer page styles -->
<style>
body {
margin: 0;
padding: 0;
}
</style>
</head>
<body>
<noscript> ReDoc requires Javascript to function. Please enable it to browse the documentation. </noscript>
<redoc spec-url="/openapi.json"></redoc>
<script src="https://cdn.jsdelivr.net/npm/redoc@next/bundles/redoc.standalone.js"></script>
</body>

Binary file not shown.

Before

Width:  |  Height:  |  Size: 2.6 KiB

File diff suppressed because one or more lines are too long

View File

@@ -38,6 +38,8 @@ llm:
openai:
api_key: <your_openai_api_key> # You could skip this configuration and use the OPENAI_API_KEY env var instead
model: <openai_model_to_use> # Optional model to use. Default is "gpt-3.5-turbo"
# Note: Open AI Models are listed here: https://platform.openai.com/docs/models
```
And run PrivateGPT loading that profile you just created:

View File

@@ -35,5 +35,32 @@ database* section in the documentation.
Normal chat interface, self-explanatory ;)
You can check the actual prompt being passed to the LLM by looking at the logs of
the server. We'll add better observability in future releases.
#### System Prompt
You can view and change the system prompt being passed to the LLM by clicking "Additional Inputs"
in the chat interface. The system prompt is also logged on the server.
By default, the `Query Docs` mode uses the setting value `ui.default_query_system_prompt`.
The `LLM Chat` mode attempts to use the optional settings value `ui.default_chat_system_prompt`.
If no system prompt is entered, the UI will display the default system prompt being used
for the active mode.
##### System Prompt Examples:
The system prompt can effectively provide your chat bot specialized roles, and results tailored to the prompt
you have given the model. Examples of system prompts can be be found
[here](https://www.w3schools.com/gen_ai/chatgpt-3-5/chatgpt-3-5_roles.php).
Some interesting examples to try include:
* You are -X-. You have all the knowledge and personality of -X-. Answer as if you were -X- using
their manner of speaking and vocabulary.
* Example: You are Shakespeare. You have all the knowledge and personality of Shakespeare.
Answer as if you were Shakespeare using their manner of speaking and vocabulary.
* You are an expert (at) -role-. Answer all questions using your expertise on -specific domain topic-.
* Example: You are an expert software engineer. Answer all questions using your expertise on Python.
* You are a -role- bot, respond with -response criteria needed-. If no -response criteria- is needed,
respond with -alternate response-.
* Example: You are a grammar checking bot, respond with any grammatical corrections needed. If no corrections
are needed, respond with "verified".

View File

@@ -92,4 +92,14 @@ local:
llm_hf_model_file: godzilla2-70b.Q4_K_M.gguf
embedding_hf_model_name: BAAI/bge-large-en
prompt_style: "llama2"
```
```
### German speaking model
`settings-de.yaml`:
```yml
local:
llm_hf_repo_id: TheBloke/em_german_leo_mistral-GGUF
llm_hf_model_file: em_german_leo_mistral.Q4_K_M.gguf
embedding_hf_model_name: T-Systems-onsite/german-roberta-sentence-transformer-v2
#llama, default or tag
prompt_style: "default"
```

View File

@@ -1,20 +1,8 @@
{
"openapi": "3.1.0",
"info": {
"title": "PrivateGPT",
"summary": "PrivateGPT is a production-ready AI project that allows you to ask questions to your documents using the power of Large Language Models (LLMs), even in scenarios without Internet connection. 100% private, no data leaves your execution environment at any point.",
"description": "",
"contact": {
"url": "https://github.com/imartinez/privateGPT"
},
"license": {
"name": "Apache 2.0",
"url": "https://www.apache.org/licenses/LICENSE-2.0.html"
},
"version": "0.1.0",
"x-logo": {
"url": "https://lh3.googleusercontent.com/drive-viewer/AK7aPaD_iNlMoTquOBsw4boh4tIYxyEuhz6EtEs8nzq3yNkNAK00xGjE1KUCmPJSk3TYOjcs6tReG6w_cLu1S7L_gPgT9z52iw=s2560"
}
"title": "FastAPI",
"version": "0.1.0"
},
"paths": {
"/v1/completions": {
@@ -65,7 +53,7 @@
"Contextual Completions"
],
"summary": "Chat Completion",
"description": "Given a list of messages comprising a conversation, return a response.\n\nOptionally include a `system_prompt` to influence the way the LLM answers.\n\nIf `use_context` is set to `true`, the model will use context coming\nfrom the ingested documents to create the response. The documents being used can\nbe filtered using the `context_filter` and passing the document IDs to be used.\nIngested documents IDs can be found using `/ingest/list` endpoint. If you want\nall ingested documents to be used, remove `context_filter` altogether.\n\nWhen using `'include_sources': true`, the API will return the source Chunks used\nto create the response, which come from the context provided.\n\nWhen using `'stream': true`, the API will return data chunks following [OpenAI's\nstreaming model](https://platform.openai.com/docs/api-reference/chat/streaming):\n```\n{\"id\":\"12345\",\"object\":\"completion.chunk\",\"created\":1694268190,\n\"model\":\"private-gpt\",\"choices\":[{\"index\":0,\"delta\":{\"content\":\"Hello\"},\n\"finish_reason\":null}]}\n```",
"description": "Given a list of messages comprising a conversation, return a response.\n\nOptionally include an initial `role: system` message to influence the way\nthe LLM answers.\n\nIf `use_context` is set to `true`, the model will use context coming\nfrom the ingested documents to create the response. The documents being used can\nbe filtered using the `context_filter` and passing the document IDs to be used.\nIngested documents IDs can be found using `/ingest/list` endpoint. If you want\nall ingested documents to be used, remove `context_filter` altogether.\n\nWhen using `'include_sources': true`, the API will return the source Chunks used\nto create the response, which come from the context provided.\n\nWhen using `'stream': true`, the API will return data chunks following [OpenAI's\nstreaming model](https://platform.openai.com/docs/api-reference/chat/streaming):\n```\n{\"id\":\"12345\",\"object\":\"completion.chunk\",\"created\":1694268190,\n\"model\":\"private-gpt\",\"choices\":[{\"index\":0,\"delta\":{\"content\":\"Hello\"},\n\"finish_reason\":null}]}\n```",
"operationId": "chat_completion_v1_chat_completions_post",
"requestBody": {
"content": {
@@ -338,17 +326,6 @@
"type": "array",
"title": "Messages"
},
"system_prompt": {
"anyOf": [
{
"type": "string"
},
{
"type": "null"
}
],
"title": "System Prompt"
},
"use_context": {
"type": "boolean",
"title": "Use Context",
@@ -389,13 +366,16 @@
},
"include_sources": true,
"messages": [
{
"content": "You are a rapper. Always answer with a rap.",
"role": "system"
},
{
"content": "How do you fry an egg?",
"role": "user"
}
],
"stream": false,
"system_prompt": "You are a rapper. Always answer with a rap.",
"use_context": true
}
]
@@ -591,6 +571,7 @@
"include_sources": false,
"prompt": "How do you fry an egg?",
"stream": false,
"system_prompt": "You are a rapper. Always answer with a rap.",
"use_context": false
}
]
@@ -986,27 +967,5 @@
"title": "ValidationError"
}
}
},
"tags": [
{
"name": "Ingestion",
"description": "High-level APIs covering document ingestion -internally managing document parsing, splitting,metadata extraction, embedding generation and storage- and ingested documents CRUD.Each ingested document is identified by an ID that can be used to filter the contextused in *Contextual Completions* and *Context Chunks* APIs."
},
{
"name": "Contextual Completions",
"description": "High-level APIs covering contextual Chat and Completions. They follow OpenAI's format, extending it to allow using the context coming from ingested documents to create the response. Internallymanage context retrieval, prompt engineering and the response generation."
},
{
"name": "Context Chunks",
"description": "Low-level API that given a query return relevant chunks of text coming from the ingesteddocuments."
},
{
"name": "Embeddings",
"description": "Low-level API to obtain the vector representation of a given text, using an Embeddings model.Follows OpenAI's embeddings API format."
},
{
"name": "Health",
"description": "Simple health API to make sure the server is up and running."
}
]
}
}

View File

@@ -23,10 +23,7 @@ class LLMComponent:
case "local":
from llama_index.llms import LlamaCPP
prompt_style_cls = get_prompt_style(settings.local.prompt_style)
prompt_style = prompt_style_cls(
default_system_prompt=settings.local.default_system_prompt
)
prompt_style = get_prompt_style(settings.local.prompt_style)
self.llm = LlamaCPP(
model_path=str(models_path / settings.local.llm_hf_model_file),
@@ -53,7 +50,9 @@ class LLMComponent:
case "openai":
from llama_index.llms import OpenAI
openai_settings = settings.openai.api_key
self.llm = OpenAI(api_key=openai_settings)
openai_settings = settings.openai
self.llm = OpenAI(
api_key=openai_settings.api_key, model=openai_settings.model
)
case "mock":
self.llm = MockLLM()

View File

@@ -5,7 +5,6 @@ from typing import Any, Literal
from llama_index.llms import ChatMessage, MessageRole
from llama_index.llms.llama_utils import (
DEFAULT_SYSTEM_PROMPT,
completion_to_prompt,
messages_to_prompt,
)
@@ -29,7 +28,6 @@ class AbstractPromptStyle(abc.ABC):
series of messages into a prompt.
"""
@abc.abstractmethod
def __init__(self, *args: Any, **kwargs: Any) -> None:
logger.debug("Initializing prompt_style=%s", self.__class__.__name__)
@@ -52,15 +50,6 @@ class AbstractPromptStyle(abc.ABC):
return prompt
class AbstractPromptStyleWithSystemPrompt(AbstractPromptStyle, abc.ABC):
_DEFAULT_SYSTEM_PROMPT = DEFAULT_SYSTEM_PROMPT
def __init__(self, default_system_prompt: str | None) -> None:
super().__init__()
logger.debug("Got default_system_prompt='%s'", default_system_prompt)
self.default_system_prompt = default_system_prompt
class DefaultPromptStyle(AbstractPromptStyle):
"""Default prompt style that uses the defaults from llama_utils.
@@ -83,7 +72,7 @@ class DefaultPromptStyle(AbstractPromptStyle):
return ""
class Llama2PromptStyle(AbstractPromptStyleWithSystemPrompt):
class Llama2PromptStyle(AbstractPromptStyle):
"""Simple prompt style that just uses the default llama_utils functions.
It transforms the sequence of messages into a prompt that should look like:
@@ -94,18 +83,14 @@ class Llama2PromptStyle(AbstractPromptStyleWithSystemPrompt):
```
"""
def __init__(self, default_system_prompt: str | None = None) -> None:
# If no system prompt is given, the default one of the implementation is used.
super().__init__(default_system_prompt=default_system_prompt)
def _messages_to_prompt(self, messages: Sequence[ChatMessage]) -> str:
return messages_to_prompt(messages, self.default_system_prompt)
return messages_to_prompt(messages)
def _completion_to_prompt(self, completion: str) -> str:
return completion_to_prompt(completion, self.default_system_prompt)
return completion_to_prompt(completion)
class TagPromptStyle(AbstractPromptStyleWithSystemPrompt):
class TagPromptStyle(AbstractPromptStyle):
"""Tag prompt style (used by Vigogne) that uses the prompt style `<|ROLE|>`.
It transforms the sequence of messages into a prompt that should look like:
@@ -119,37 +104,8 @@ class TagPromptStyle(AbstractPromptStyleWithSystemPrompt):
FIXME: should we add surrounding `<s>` and `</s>` tags, like in llama2?
"""
def __init__(self, default_system_prompt: str | None = None) -> None:
# We have to define a default system prompt here as the LLM will not
# use the default llama_utils functions.
default_system_prompt = default_system_prompt or self._DEFAULT_SYSTEM_PROMPT
super().__init__(default_system_prompt)
self.system_prompt: str = default_system_prompt
def _messages_to_prompt(self, messages: Sequence[ChatMessage]) -> str:
messages = list(messages)
if messages[0].role != MessageRole.SYSTEM:
logger.info(
"Adding system_promt='%s' to the given messages as there are none given in the session",
self.system_prompt,
)
messages = [
ChatMessage(content=self.system_prompt, role=MessageRole.SYSTEM),
*messages,
]
return self._format_messages_to_prompt(messages)
def _completion_to_prompt(self, completion: str) -> str:
return (
f"<|system|>: {self.system_prompt.strip()}\n"
f"<|user|>: {completion.strip()}\n"
"<|assistant|>: "
)
@staticmethod
def _format_messages_to_prompt(messages: list[ChatMessage]) -> str:
"""Format message to prompt with `<|ROLE|>: MSG` style."""
assert messages[0].role == MessageRole.SYSTEM
prompt = ""
for message in messages:
role = message.role
@@ -161,19 +117,24 @@ class TagPromptStyle(AbstractPromptStyleWithSystemPrompt):
prompt += "<|assistant|>: "
return prompt
def _completion_to_prompt(self, completion: str) -> str:
return self._messages_to_prompt(
[ChatMessage(content=completion, role=MessageRole.USER)]
)
def get_prompt_style(
prompt_style: Literal["default", "llama2", "tag"] | None
) -> type[AbstractPromptStyle]:
) -> AbstractPromptStyle:
"""Get the prompt style to use from the given string.
:param prompt_style: The prompt style to use.
:return: The prompt style to use.
"""
if prompt_style is None or prompt_style == "default":
return DefaultPromptStyle
return DefaultPromptStyle()
elif prompt_style == "llama2":
return Llama2PromptStyle
return Llama2PromptStyle()
elif prompt_style == "tag":
return TagPromptStyle
return TagPromptStyle()
raise ValueError(f"Unknown prompt_style='{prompt_style}'")

View File

@@ -1,13 +1,10 @@
"""FastAPI app creation, logger configuration and main API routes."""
import logging
from typing import Any
from fastapi import Depends, FastAPI, Request
from fastapi.middleware.cors import CORSMiddleware
from fastapi.openapi.utils import get_openapi
from injector import Injector
from private_gpt.paths import docs_path
from private_gpt.server.chat.chat_router import chat_router
from private_gpt.server.chunks.chunks_router import chunks_router
from private_gpt.server.completions.completions_router import completions_router
@@ -22,107 +19,35 @@ logger = logging.getLogger(__name__)
def create_app(root_injector: Injector) -> FastAPI:
# Start the API
with open(docs_path / "description.md") as description_file:
description = description_file.read()
async def bind_injector_to_request(request: Request) -> None:
request.state.injector = root_injector
tags_metadata = [
{
"name": "Ingestion",
"description": "High-level APIs covering document ingestion -internally "
"managing document parsing, splitting,"
"metadata extraction, embedding generation and storage- and ingested "
"documents CRUD."
"Each ingested document is identified by an ID that can be used to filter the "
"context"
"used in *Contextual Completions* and *Context Chunks* APIs.",
},
{
"name": "Contextual Completions",
"description": "High-level APIs covering contextual Chat and Completions. They "
"follow OpenAI's format, extending it to "
"allow using the context coming from ingested documents to create the "
"response. Internally"
"manage context retrieval, prompt engineering and the response generation.",
},
{
"name": "Context Chunks",
"description": "Low-level API that given a query return relevant chunks of "
"text coming from the ingested"
"documents.",
},
{
"name": "Embeddings",
"description": "Low-level API to obtain the vector representation of a given "
"text, using an Embeddings model."
"Follows OpenAI's embeddings API format.",
},
{
"name": "Health",
"description": "Simple health API to make sure the server is up and running.",
},
]
app = FastAPI(dependencies=[Depends(bind_injector_to_request)])
async def bind_injector_to_request(request: Request) -> None:
request.state.injector = root_injector
app.include_router(completions_router)
app.include_router(chat_router)
app.include_router(chunks_router)
app.include_router(ingest_router)
app.include_router(embeddings_router)
app.include_router(health_router)
app = FastAPI(dependencies=[Depends(bind_injector_to_request)])
settings = root_injector.get(Settings)
if settings.server.cors.enabled:
logger.debug("Setting up CORS middleware")
app.add_middleware(
CORSMiddleware,
allow_credentials=settings.server.cors.allow_credentials,
allow_origins=settings.server.cors.allow_origins,
allow_origin_regex=settings.server.cors.allow_origin_regex,
allow_methods=settings.server.cors.allow_methods,
allow_headers=settings.server.cors.allow_headers,
)
def custom_openapi() -> dict[str, Any]:
if app.openapi_schema:
return app.openapi_schema
openapi_schema = get_openapi(
title="PrivateGPT",
description=description,
version="0.1.0",
summary="PrivateGPT is a production-ready AI project that allows you to "
"ask questions to your documents using the power of Large Language "
"Models (LLMs), even in scenarios without Internet connection. "
"100% private, no data leaves your execution environment at any point.",
contact={
"url": "https://github.com/imartinez/privateGPT",
},
license_info={
"name": "Apache 2.0",
"url": "https://www.apache.org/licenses/LICENSE-2.0.html",
},
routes=app.routes,
tags=tags_metadata,
)
openapi_schema["info"]["x-logo"] = {
"url": "https://lh3.googleusercontent.com/drive-viewer"
"/AK7aPaD_iNlMoTquOBsw4boh4tIYxyEuhz6EtEs8nzq3yNkNAK00xGj"
"E1KUCmPJSk3TYOjcs6tReG6w_cLu1S7L_gPgT9z52iw=s2560"
}
if settings.ui.enabled:
logger.debug("Importing the UI module")
from private_gpt.ui.ui import PrivateGptUi
app.openapi_schema = openapi_schema
return app.openapi_schema
ui = root_injector.get(PrivateGptUi)
ui.mount_in_app(app, settings.ui.path)
app.openapi = custom_openapi # type: ignore[method-assign]
app.include_router(completions_router)
app.include_router(chat_router)
app.include_router(chunks_router)
app.include_router(ingest_router)
app.include_router(embeddings_router)
app.include_router(health_router)
settings = root_injector.get(Settings)
if settings.server.cors.enabled:
logger.debug("Setting up CORS middleware")
app.add_middleware(
CORSMiddleware,
allow_credentials=settings.server.cors.allow_credentials,
allow_origins=settings.server.cors.allow_origins,
allow_origin_regex=settings.server.cors.allow_origin_regex,
allow_methods=settings.server.cors.allow_methods,
allow_headers=settings.server.cors.allow_headers,
)
if settings.ui.enabled:
logger.debug("Importing the UI module")
from private_gpt.ui.ui import PrivateGptUi
ui = root_injector.get(PrivateGptUi)
ui.mount_in_app(app, settings.ui.path)
return app
return app

View File

@@ -108,15 +108,6 @@ class LocalSettings(BaseModel):
"`llama2` is the historic behaviour. `default` might work better with your custom models."
),
)
default_system_prompt: str | None = Field(
None,
description=(
"The default system prompt to use for the chat engine. "
"If none is given - use the default system prompt (from the llama_index). "
"Please note that the default prompt might not be the same for all prompt styles. "
"Also note that this is only used if the first message is not a system message. "
),
)
class EmbeddingSettings(BaseModel):
@@ -154,11 +145,22 @@ class SagemakerSettings(BaseModel):
class OpenAISettings(BaseModel):
api_key: str
model: str = Field(
"gpt-3.5-turbo",
description="OpenAI Model to use. Example: 'gpt-4'.",
)
class UISettings(BaseModel):
enabled: bool
path: str
default_chat_system_prompt: str = Field(
None,
description="The default system prompt to use for the chat mode.",
)
default_query_system_prompt: str = Field(
None, description="The default system prompt to use for the query mode."
)
class QdrantSettings(BaseModel):

View File

@@ -30,6 +30,8 @@ UI_TAB_TITLE = "My Private GPT"
SOURCES_SEPARATOR = "\n\n Sources: \n"
MODES = ["Query Docs", "Search in Docs", "LLM Chat"]
class Source(BaseModel):
file: str
@@ -71,6 +73,10 @@ class PrivateGptUi:
# Cache the UI blocks
self._ui_block = None
# Initialize system prompt based on default mode
self.mode = MODES[0]
self._system_prompt = self._get_default_system_prompt(self.mode)
def _chat(self, message: str, history: list[list[str]], mode: str, *_: Any) -> Any:
def yield_deltas(completion_gen: CompletionGen) -> Iterable[str]:
full_response: str = ""
@@ -114,25 +120,22 @@ class PrivateGptUi:
new_message = ChatMessage(content=message, role=MessageRole.USER)
all_messages = [*build_history(), new_message]
# If a system prompt is set, add it as a system message
if self._system_prompt:
all_messages.insert(
0,
ChatMessage(
content=self._system_prompt,
role=MessageRole.SYSTEM,
),
)
match mode:
case "Query Docs":
# Add a system message to force the behaviour of the LLM
# to answer only questions about the provided context.
all_messages.insert(
0,
ChatMessage(
content="You can only answer questions about the provided context. If you know the answer "
"but it is not based in the provided context, don't provide the answer, just state "
"the answer is not in the context provided.",
role=MessageRole.SYSTEM,
),
)
query_stream = self._chat_service.stream_chat(
messages=all_messages,
use_context=True,
)
yield from yield_deltas(query_stream)
case "LLM Chat":
llm_stream = self._chat_service.stream_chat(
messages=all_messages,
@@ -154,6 +157,37 @@ class PrivateGptUi:
for index, source in enumerate(sources, start=1)
)
# On initialization and on mode change, this function set the system prompt
# to the default prompt based on the mode (and user settings).
@staticmethod
def _get_default_system_prompt(mode: str) -> str:
p = ""
match mode:
# For query chat mode, obtain default system prompt from settings
case "Query Docs":
p = settings().ui.default_query_system_prompt
# For chat mode, obtain default system prompt from settings
case "LLM Chat":
p = settings().ui.default_chat_system_prompt
# For any other mode, clear the system prompt
case _:
p = ""
return p
def _set_system_prompt(self, system_prompt_input: str) -> None:
logger.info(f"Setting system prompt to: {system_prompt_input}")
self._system_prompt = system_prompt_input
def _set_current_mode(self, mode: str) -> Any:
self.mode = mode
self._set_system_prompt(self._get_default_system_prompt(mode))
# Update placeholder and allow interaction if default system prompt is set
if self._system_prompt:
return gr.update(placeholder=self._system_prompt, interactive=True)
# Update placeholder and disable interaction if no default system prompt is set
else:
return gr.update(placeholder=self._system_prompt, interactive=False)
def _list_ingested_files(self) -> list[list[str]]:
files = set()
for ingested_document in self._ingest_service.list_ingested():
@@ -193,7 +227,7 @@ class PrivateGptUi:
with gr.Row():
with gr.Column(scale=3, variant="compact"):
mode = gr.Radio(
["Query Docs", "Search in Docs", "LLM Chat"],
MODES,
label="Mode",
value="Query Docs",
)
@@ -220,6 +254,23 @@ class PrivateGptUi:
outputs=ingested_dataset,
)
ingested_dataset.render()
system_prompt_input = gr.Textbox(
placeholder=self._system_prompt,
label="System Prompt",
lines=2,
interactive=True,
render=False,
)
# When mode changes, set default system prompt
mode.change(
self._set_current_mode, inputs=mode, outputs=system_prompt_input
)
# On blur, set system prompt to use in queries
system_prompt_input.blur(
self._set_system_prompt,
inputs=system_prompt_input,
)
with gr.Column(scale=7):
_ = gr.ChatInterface(
self._chat,
@@ -232,7 +283,7 @@ class PrivateGptUi:
AVATAR_BOT,
),
),
additional_inputs=[mode, upload_button],
additional_inputs=[mode, upload_button, system_prompt_input],
)
return blocks

View File

@@ -22,6 +22,13 @@ data:
ui:
enabled: true
path: /
default_chat_system_prompt: "You are a helpful, respectful and honest assistant.
Always answer as helpfully as possible and follow ALL given instructions.
Do not speculate or make up information.
Do not reference any given instructions or context."
default_query_system_prompt: "You can only answer questions about the provided context.
If you know the answer but it is not based in the provided context, don't provide
the answer, just state the answer is not in the context provided."
llm:
mode: local
@@ -49,3 +56,4 @@ sagemaker:
openai:
api_key: ${OPENAI_API_KEY:}
model: gpt-3.5-turbo

View File

@@ -18,7 +18,7 @@ from private_gpt.components.llm.prompt_helper import (
],
)
def test_get_prompt_style_success(prompt_style, expected_prompt_style):
assert get_prompt_style(prompt_style) == expected_prompt_style
assert isinstance(get_prompt_style(prompt_style), expected_prompt_style)
def test_get_prompt_style_failure():
@@ -45,20 +45,7 @@ def test_tag_prompt_style_format():
def test_tag_prompt_style_format_with_system_prompt():
system_prompt = "This is a system prompt from configuration."
prompt_style = TagPromptStyle(default_system_prompt=system_prompt)
messages = [
ChatMessage(content="Hello, how are you doing?", role=MessageRole.USER),
]
expected_prompt = (
f"<|system|>: {system_prompt}\n"
"<|user|>: Hello, how are you doing?\n"
"<|assistant|>: "
)
assert prompt_style.messages_to_prompt(messages) == expected_prompt
prompt_style = TagPromptStyle()
messages = [
ChatMessage(
content="FOO BAR Custom sys prompt from messages.", role=MessageRole.SYSTEM
@@ -94,22 +81,7 @@ def test_llama2_prompt_style_format():
def test_llama2_prompt_style_with_system_prompt():
system_prompt = "This is a system prompt from configuration."
prompt_style = Llama2PromptStyle(default_system_prompt=system_prompt)
messages = [
ChatMessage(content="Hello, how are you doing?", role=MessageRole.USER),
]
expected_prompt = (
"<s> [INST] <<SYS>>\n"
f" {system_prompt} \n"
"<</SYS>>\n"
"\n"
" Hello, how are you doing? [/INST]"
)
assert prompt_style.messages_to_prompt(messages) == expected_prompt
prompt_style = Llama2PromptStyle()
messages = [
ChatMessage(
content="FOO BAR Custom sys prompt from messages.", role=MessageRole.SYSTEM

View File

@@ -1 +1 @@
0.1.0
0.2.0