privateGPT/private_gpt/server/completions/completions_router.py
Pablo Orgaz 51cc638758
Next version of PrivateGPT (#1077)
* Dockerize private-gpt

* Use port 8001 for local development

* Add setup script

* Add CUDA Dockerfile

* Create README.md

* Make the API use OpenAI response format

* Truncate prompt

* refactor: add models and __pycache__ to .gitignore

* Better naming

* Update readme

* Move models ignore to it's folder

* Add scaffolding

* Apply formatting

* Fix tests

* Working sagemaker custom llm

* Fix linting

* Fix linting

* Enable streaming

* Allow all 3.11 python versions

* Use llama 2 prompt format and fix completion

* Restructure (#3)

Co-authored-by: Pablo Orgaz <pablo@Pablos-MacBook-Pro.local>

* Fix Dockerfile

* Use a specific build stage

* Cleanup

* Add FastAPI skeleton

* Cleanup openai package

* Fix DI and tests

* Split tests and tests with coverage

* Remove old scaffolding

* Add settings logic (#4)

* Add settings logic

* Add settings for sagemaker

---------

Co-authored-by: Pablo Orgaz <pablo@Pablos-MacBook-Pro.local>

* Local LLM (#5)

* Add settings logic

* Add settings for sagemaker

* Add settings-local-example.yaml

* Delete terraform files

* Refactor tests to use fixtures

* Join deltas

* Add local model support

---------

Co-authored-by: Pablo Orgaz <pablo@Pablos-MacBook-Pro.local>

* Update README.md

* Fix tests

* Version bump

* Enable simple llamaindex observability (#6)

* Enable simple llamaindex observability

* Improve code through linting

* Update README.md

* Move to async (#7)

* Migrate implementation to use asyncio

* Formatting

* Cleanup

* Linting

---------

Co-authored-by: Pablo Orgaz <pablo@Pablos-MacBook-Pro.local>

* Query Docs and gradio UI

* Remove unnecessary files

* Git ignore chromadb folder

* Async migration + DI Cleanup

* Fix tests

* Add integration test

* Use fastapi responses

* Retrieval service with partial implementation

* Cleanup

* Run formatter

* Fix types

* Fetch nodes asynchronously

* Install local dependencies in tests

* Install ui dependencies in tests

* Install dependencies for llama-cpp

* Fix sudo

* Attempt to fix cuda issues

* Attempt to fix cuda issues

* Try to reclaim some space from ubuntu machine

* Retrieval with context

* Fix lint and imports

* Fix mypy

* Make retrieval API a POST

* Make Completions body a dataclass

* Fix LLM chat message order

* Add Query Chunks to Gradio UI

* Improve rag query prompt

* Rollback CI Changes

* Move to sync code

* Using Llamaindex abstraction for query retrieval

* Fix types

* Default to CONDENSED chat mode for contextualized chat

* Rename route function

* Add Chat endpoint

* Remove webhooks

* Add IntelliJ run config to gitignore

* .gitignore applied

* Sync chat completion

* Refactor total

* Typo in context_files.py

* Add embeddings component and service

* Remove wrong dataclass from IngestService

* Filter by context file id implementation

* Fix typing

* Implement context_filter and separate from the bool use_context in the API

* Change chunks api to avoid conceptual class of the context concept

* Deprecate completions and fix tests

* Remove remaining dataclasses

* Use embedding component in ingest service

* Fix ingestion to have multipart and local upload

* Fix ingestion API

* Add chunk tests

* Add configurable paths

* Cleaning up

* Add more docs

* IngestResponse includes a list of IngestedDocs

* Use IngestedDoc in the Chunk document reference

* Rename ingest routes to ingest_router.py

* Fix test working directory for intellij

* Set testpaths for pytest

* Remove unused as_chat_engine

* Add .fleet ide to gitignore

* Make LLM and Embedding model configurable

* Fix imports and checks

* Let local_data folder exist empty in the repository

* Don't use certain metadata in LLM

* Remove long lines

* Fix windows installation

* Typos

* Update poetry.lock

* Add TODO for linux

* Script and first version of docs

* No jekill build

* Fix relative url to openapi json

* Change default docs values

* Move chromadb dependency to the general group

* Fix tests to use separate local_data

* Create CNAME

* Update CNAME

* Fix openapi.json relative path

* PrivateGPT logo

* WIP OpenAPI documentation metadata

* Add ingest script (#11)

* Add ingest script

* Fix broken name refactor

* Add ingest docs and Makefile script

* Linting

* Move transformers to main dependency

* Move torch to main dependencies

* Don't load HuggingFaceEmbedding in tests

* Fix lint

---------

Co-authored-by: Pablo Orgaz <pablo@Pablos-MacBook-Pro.local>

* Rename file to camel_case

* Commit settings-local.yaml

* Move documentation to public docs

* Fix docker image for linux

* Installation and Running the Server documentation

* Move back to docs folder, as it is the only supported by github pages

* Delete CNAME

* Create CNAME

* Delete CNAME

* Create CNAME

* Improved API documentation

* Fix lint

* Completions documentation

* Updated openapi scheme

* Ingestion API doc

* Minor doc changes

* Updated openapi scheme

* Chunks API documentation

* Embeddings and Health API, and homogeneous responses

* Revamp README with new skeleton of content

* More docs

* PrivateGPT logo

* Improve UI

* Update ingestion docu

* Update README with new sections

* Use context window in the retriever

* Gradio Documentation

* Add logo to UI

* Include Contributing and Community sections to README

* Update links to resources in the README

* Small README.md updates

* Wrap lines of README.md

* Don't put health under /v1

* Add copy button to Chat

* Architecture documentation

* Updated openapi.json

* Updated openapi.json

* Updated openapi.json

* Change UI label

* Update documentation

* Add releases link to README.md

* Gradio avatar and stop debug

* Readme update

* Clean old files

* Remove unused terraform checks

* Update twitter link.

* Disable minimum coverage

* Clean install message in README.md

---------

Co-authored-by: Pablo Orgaz <pablo@Pablos-MacBook-Pro.local>
Co-authored-by: Iván Martínez <ivanmartit@gmail.com>
Co-authored-by: RubenGuerrero <ruben.guerrero@boopos.com>
Co-authored-by: Daniel Gallego Vico <daniel.gallego@bq.com>
2023-10-19 16:04:35 +02:00

67 lines
2.2 KiB
Python

from fastapi import APIRouter
from pydantic import BaseModel
from starlette.responses import StreamingResponse
from private_gpt.open_ai.extensions.context_filter import ContextFilter
from private_gpt.open_ai.openai_models import (
OpenAICompletion,
OpenAIMessage,
)
from private_gpt.server.chat.chat_router import ChatBody, chat_completion
completions_router = APIRouter(prefix="/v1")
class CompletionsBody(BaseModel):
prompt: str
use_context: bool = False
context_filter: ContextFilter | None = None
stream: bool = False
model_config = {
"json_schema_extra": {
"examples": [
{
"prompt": "How do you fry an egg?",
"stream": False,
"use_context": False,
}
]
}
}
@completions_router.post(
"/completions",
response_model=None,
summary="Completion",
responses={200: {"model": OpenAICompletion}},
tags=["Contextual Completions"],
)
def prompt_completion(body: CompletionsBody) -> OpenAICompletion | StreamingResponse:
"""We recommend most users use our Chat completions API.
Given a prompt, the model will return one predicted completion. If `use_context`
is set to `true`, the model will use context coming from the ingested documents
to create the response. The documents being used can be filtered using the
`context_filter` and passing the document IDs to be used. Ingested documents IDs
can be found using `/ingest/list` endpoint. If you want all ingested documents to
be used, remove `context_filter` altogether.
When using `'stream': true`, the API will return data chunks following [OpenAI's
streaming model](https://platform.openai.com/docs/api-reference/chat/streaming):
```
{"id":"12345","object":"completion.chunk","created":1694268190,
"model":"private-gpt","choices":[{"index":0,"delta":{"content":"Hello"},
"finish_reason":null}]}
```
"""
message = OpenAIMessage(content=body.prompt, role="user")
chat_body = ChatBody(
messages=[message],
use_context=body.use_context,
stream=body.stream,
context_filter=body.context_filter,
)
return chat_completion(chat_body)