mirror of
https://github.com/csunny/DB-GPT.git
synced 2025-07-31 15:47:05 +00:00
Merge branch 'dev' of github.com:csunny/DB-GPT into dev
This commit is contained in:
commit
4ce257e84f
@ -46,7 +46,7 @@ def get_similar(q):
|
||||
|
||||
for doc in docs:
|
||||
dc, s = doc
|
||||
print(dc.page_content)
|
||||
print(s)
|
||||
yield dc.page_content
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
@ -8,7 +8,7 @@ ROOT_PATH = os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__fi
|
||||
MODEL_PATH = os.path.join(ROOT_PATH, "models")
|
||||
VECTORE_PATH = os.path.join(ROOT_PATH, "vector_store")
|
||||
LOGDIR = os.path.join(ROOT_PATH, "logs")
|
||||
DATASETS_DIR = os.path.join(ROOT_PATH, "datasets")
|
||||
DATASETS_DIR = os.path.join(ROOT_PATH, "pilot/datasets")
|
||||
|
||||
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
||||
LLM_MODEL_CONFIG = {
|
||||
|
@ -12,9 +12,9 @@ import requests
|
||||
from urllib.parse import urljoin
|
||||
from pilot.configs.model_config import DB_SETTINGS
|
||||
from pilot.connections.mysql_conn import MySQLOperator
|
||||
from pilot.vector_store.extract_tovec import get_vector_storelist, load_knownledge_from_doc
|
||||
from pilot.vector_store.extract_tovec import get_vector_storelist, load_knownledge_from_doc, knownledge_tovec_st
|
||||
|
||||
from pilot.configs.model_config import LOGDIR, VICUNA_MODEL_SERVER, LLM_MODEL
|
||||
from pilot.configs.model_config import LOGDIR, VICUNA_MODEL_SERVER, LLM_MODEL, DATASETS_DIR
|
||||
|
||||
from pilot.conversation import (
|
||||
default_conversation,
|
||||
@ -50,7 +50,7 @@ priority = {
|
||||
|
||||
def get_simlar(q):
|
||||
|
||||
docsearch = load_knownledge_from_doc()
|
||||
docsearch = knownledge_tovec_st(os.path.join(DATASETS_DIR, "plan.md"))
|
||||
docs = docsearch.similarity_search_with_score(q, k=1)
|
||||
|
||||
contents = [dc.page_content for dc, _ in docs]
|
||||
@ -160,7 +160,7 @@ def http_bot(state, db_selector, temperature, max_new_tokens, request: gr.Reques
|
||||
yield (state, state.to_gradio_chatbot()) + (no_change_btn,) * 5
|
||||
return
|
||||
|
||||
query = state.messages[-2][1]
|
||||
|
||||
if len(state.messages) == state.offset + 2:
|
||||
# 第一轮对话需要加入提示Prompt
|
||||
|
||||
@ -168,15 +168,25 @@ def http_bot(state, db_selector, temperature, max_new_tokens, request: gr.Reques
|
||||
new_state = conv_templates[template_name].copy()
|
||||
new_state.conv_id = uuid.uuid4().hex
|
||||
|
||||
query = state.messages[-2][1]
|
||||
|
||||
# prompt 中添加上下文提示
|
||||
if db_selector:
|
||||
new_state.append_message(new_state.roles[0], gen_sqlgen_conversation(dbname) + query)
|
||||
new_state.append_message(new_state.roles[1], None)
|
||||
state = new_state
|
||||
else:
|
||||
new_state.append_message(new_state.roles[0], query)
|
||||
new_state.append_message(new_state.roles[1], None)
|
||||
state = new_state
|
||||
|
||||
new_state.append_message(new_state.roles[1], None)
|
||||
state = new_state
|
||||
|
||||
if not db_selector:
|
||||
state.append_message(new_state.roles[0], get_simlar(query) + query)
|
||||
# try:
|
||||
# if not db_selector:
|
||||
# sim_q = get_simlar(query)
|
||||
# print("********vector similar info*************: ", sim_q)
|
||||
# state.append_message(new_state.roles[0], sim_q + query)
|
||||
# except Exception as e:
|
||||
# print(e)
|
||||
|
||||
prompt = state.get_prompt()
|
||||
|
||||
|
@ -50,17 +50,15 @@ def load_knownledge_from_doc():
|
||||
from pilot.configs.model_config import LLM_MODEL_CONFIG
|
||||
embeddings = HuggingFaceEmbeddings(model_name=LLM_MODEL_CONFIG["sentence-transforms"])
|
||||
|
||||
docs = []
|
||||
files = os.listdir(DATASETS_DIR)
|
||||
for file in files:
|
||||
if not os.path.isdir(file):
|
||||
with open(file, "r") as f:
|
||||
doc = f.read()
|
||||
docs.append(docs)
|
||||
filename = os.path.join(DATASETS_DIR, file)
|
||||
with open(filename, "r") as f:
|
||||
knownledge = f.read()
|
||||
|
||||
print(doc)
|
||||
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_owerlap=0)
|
||||
texts = text_splitter.split_text("\n".join(docs))
|
||||
texts = text_splitter.split_text(knownledge)
|
||||
docsearch = Chroma.from_texts(texts, embeddings, metadatas=[{"source": str(i)} for i in range(len(texts))],
|
||||
persist_directory=os.path.join(VECTORE_PATH, ".vectore"))
|
||||
return docsearch
|
||||
|
Loading…
Reference in New Issue
Block a user