llm proxy framework design, adding support for bard large language model proxy (#376)

1. llm proxy framework design, adding support for bard large language
model proxy
2. add Alibaba Cloud Image Deployment Solution.

Close #369
This commit is contained in:
magic.chen 2023-07-28 17:04:09 +08:00 committed by GitHub
commit 9236f4260e
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
20 changed files with 200 additions and 64 deletions

View File

@ -121,6 +121,8 @@ LANGUAGE=en
PROXY_API_KEY={your-openai-sk}
PROXY_SERVER_URL=https://api.openai.com/v1/chat/completions
# from https://bard.google.com/ f12-> application-> __Secure-1PSID
BARD_PROXY_API_KEY={your-bard-token}
#*******************************************************************#
# ** SUMMARY_CONFIG

View File

@ -3,7 +3,7 @@
# This workflow uses actions that are not certified by GitHub.
# They are provided by a third-party and are governed by
# separate terms of service, privacy policy, and support
# separate terms of service, data_privacy policy, and support
# documentation.
name: Upload Python Package

View File

@ -145,6 +145,8 @@ DB-GPT基于 [FastChat](https://github.com/lm-sys/FastChat) 构建大模型运
## Image
🌐 [AutoDL镜像](https://www.codewithgpu.com/i/csunny/DB-GPT/dbgpt-0.3.1-v2)
🌐 [阿里云镜像](https://www.zhihu.com/pin/1668226536363728896?utm_psn=1668228728445579265)
## 安装
[快速开始](https://db-gpt.readthedocs.io/projects/db-gpt-docs-zh-cn/zh_CN/latest/getting_started/getting_started.html)

View File

@ -126,3 +126,11 @@ MODEL_SERVER=127.0.0.1:8000
PROXY_API_KEY=sk-xxx
PROXY_SERVER_URL={your-openai-proxy-server/v1/chat/completions}
```
### 2. Bard Proxy
- If your environment deploying DB-GPT has access to https://bard.google.com/ (F12-> application-> __Secure-1PSID), then modify the .env configuration file as below will work.
```
LLM_MODEL=bard_proxyllm
MODEL_SERVER=127.0.0.1:8000
BARD_PROXY_API_KEY={your-bard-key}
```

View File

@ -45,6 +45,7 @@ class Config(metaclass=Singleton):
# This is a proxy server, just for test_py. we will remove this later.
self.proxy_api_key = os.getenv("PROXY_API_KEY")
self.bard_proxy_api_key = os.getenv("BARD_PROXY_API_KEY")
self.proxy_server_url = os.getenv("PROXY_SERVER_URL")
self.elevenlabs_api_key = os.getenv("ELEVENLABS_API_KEY")

View File

@ -46,7 +46,13 @@ LLM_MODEL_CONFIG = {
"falcon-40b": os.path.join(MODEL_PATH, "falcon-40b"),
"gorilla-7b": os.path.join(MODEL_PATH, "gorilla-7b"),
"gptj-6b": os.path.join(MODEL_PATH, "ggml-gpt4all-j-v1.3-groovy.bin"),
"proxyllm": "proxyllm",
"proxyllm": "chatgpt_proxyllm",
"chatgpt_proxyllm": "chatgpt_proxyllm",
"bard_proxyllm": "bard_proxyllm",
"claude_proxyllm": "claude_proxyllm",
"wenxin_proxyllm": "wenxin_proxyllm",
"tongyi_proxyllm": "tongyi_proxyllm",
"gpt4_proxyllm": "gpt4_proxyllm",
"llama-2-7b": os.path.join(MODEL_PATH, "Llama-2-7b-chat-hf"),
"llama-2-13b": os.path.join(MODEL_PATH, "Llama-2-13b-chat-hf"),
"llama-2-70b": os.path.join(MODEL_PATH, "Llama-2-70b-chat-hf"),

View File

@ -1,74 +1,33 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
import time
import json
import requests
from typing import List
from pilot.configs.config import Config
from pilot.conversation import ROLE_ASSISTANT, ROLE_USER
from pilot.scene.base_message import ModelMessage, ModelMessageRoleType
from pilot.model.proxy.llms.chatgpt import chatgpt_generate_stream
from pilot.model.proxy.llms.bard import bard_generate_stream
from pilot.model.proxy.llms.claude import claude_generate_stream
from pilot.model.proxy.llms.wenxin import wenxin_generate_stream
from pilot.model.proxy.llms.tongyi import tongyi_generate_stream
from pilot.model.proxy.llms.gpt4 import gpt4_generate_stream
CFG = Config()
def proxyllm_generate_stream(model, tokenizer, params, device, context_len=2048):
history = []
prompt = params["prompt"]
stop = params.get("stop", "###")
headers = {
"Authorization": "Bearer " + CFG.proxy_api_key,
"Token": CFG.proxy_api_key,
generator_mapping = {
"proxyllm": chatgpt_generate_stream,
"chatgpt_proxyllm": chatgpt_generate_stream,
"bard_proxyllm": bard_generate_stream,
"claude_proxyllm": claude_generate_stream,
"gpt4_proxyllm": gpt4_generate_stream,
"wenxin_proxyllm": wenxin_generate_stream,
"tongyi_proxyllm": tongyi_generate_stream,
}
messages: List[ModelMessage] = params["messages"]
# Add history conversation
for message in messages:
if message.role == ModelMessageRoleType.HUMAN:
history.append({"role": "user", "content": message.content})
elif message.role == ModelMessageRoleType.SYSTEM:
history.append({"role": "system", "content": message.content})
elif message.role == ModelMessageRoleType.AI:
history.append({"role": "assistant", "content": message.content})
else:
pass
# Move the last user's information to the end
temp_his = history[::-1]
last_user_input = None
for m in temp_his:
if m["role"] == "user":
last_user_input = m
break
if last_user_input:
history.remove(last_user_input)
history.append(last_user_input)
payloads = {
"model": "gpt-3.5-turbo", # just for test, remove this later
"messages": history,
"temperature": params.get("temperature"),
"max_tokens": params.get("max_new_tokens"),
"stream": True,
}
res = requests.post(
CFG.proxy_server_url, headers=headers, json=payloads, stream=True
default_error_message = f"{CFG.LLM_MODEL} LLM is not supported"
generator_function = generator_mapping.get(
CFG.LLM_MODEL, lambda: default_error_message
)
text = ""
for line in res.iter_lines():
if line:
if not line.startswith(b"data: "):
error_message = line.decode("utf-8")
yield error_message
else:
json_data = line.split(b": ", 1)[1]
decoded_line = json_data.decode("utf-8")
if decoded_line.lower() != "[DONE]".lower():
obj = json.loads(json_data)
if obj["choices"][0]["delta"].get("content") is not None:
content = obj["choices"][0]["delta"]["content"]
text += content
yield text
yield from generator_function(model, tokenizer, params, device, context_len)

View File

@ -0,0 +1,3 @@
"""
data masking, transform private sensitive data into mask data, based on the tool sensitive data recognition.
"""

View File

@ -0,0 +1,3 @@
"""
mask the sensitive data before upload LLM inference service
"""

View File

@ -0,0 +1,3 @@
"""
recovery the data after LLM inference
"""

View File

@ -0,0 +1,3 @@
"""
a tool to discovery sensitive data
"""

View File

@ -0,0 +1,5 @@
"""
There are several limitations to privatizing large models: high deployment costs and poor performance.
In scenarios where data data_privacy requirements are relatively low, connecting with commercial large models can enable
rapid and efficient product implementation with high quality.
"""

View File

@ -0,0 +1,42 @@
import bardapi
from typing import List
from pilot.configs.config import Config
from pilot.scene.base_message import ModelMessage, ModelMessageRoleType
CFG = Config()
def bard_generate_stream(model, tokenizer, params, device, context_len=2048):
token = CFG.bard_proxy_api_key
history = []
messages: List[ModelMessage] = params["messages"]
for message in messages:
if message.role == ModelMessageRoleType.HUMAN:
history.append({"role": "user", "content": message.content})
elif message.role == ModelMessageRoleType.SYSTEM:
history.append({"role": "system", "content": message.content})
elif message.role == ModelMessageRoleType.AI:
history.append({"role": "assistant", "content": message.content})
else:
pass
temp_his = history[::-1]
last_user_input = None
for m in temp_his:
if m["role"] == "user":
last_user_input = m
break
if last_user_input:
history.remove(last_user_input)
history.append(last_user_input)
msgs = []
for msg in history:
if msg.get("content"):
msgs.append(msg["content"])
response = bardapi.core.Bard(token).get_answer("\n".join(msgs))
if response is not None and response.get("content") is not None:
yield str(response["content"])
else:
yield f"bard response error: {str(response)}"

View File

@ -0,0 +1,70 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
import json
import requests
from typing import List
from pilot.configs.config import Config
from pilot.scene.base_message import ModelMessage, ModelMessageRoleType
CFG = Config()
def chatgpt_generate_stream(model, tokenizer, params, device, context_len=2048):
history = []
headers = {
"Authorization": "Bearer " + CFG.proxy_api_key,
"Token": CFG.proxy_api_key,
}
messages: List[ModelMessage] = params["messages"]
# Add history conversation
for message in messages:
if message.role == ModelMessageRoleType.HUMAN:
history.append({"role": "user", "content": message.content})
elif message.role == ModelMessageRoleType.SYSTEM:
history.append({"role": "system", "content": message.content})
elif message.role == ModelMessageRoleType.AI:
history.append({"role": "assistant", "content": message.content})
else:
pass
# Move the last user's information to the end
temp_his = history[::-1]
last_user_input = None
for m in temp_his:
if m["role"] == "user":
last_user_input = m
break
if last_user_input:
history.remove(last_user_input)
history.append(last_user_input)
payloads = {
"model": "gpt-3.5-turbo", # just for test, remove this later
"messages": history,
"temperature": params.get("temperature"),
"max_tokens": params.get("max_new_tokens"),
"stream": True,
}
res = requests.post(
CFG.proxy_server_url, headers=headers, json=payloads, stream=True
)
text = ""
for line in res.iter_lines():
if line:
if not line.startswith(b"data: "):
error_message = line.decode("utf-8")
yield error_message
else:
json_data = line.split(b": ", 1)[1]
decoded_line = json_data.decode("utf-8")
if decoded_line.lower() != "[DONE]".lower():
obj = json.loads(json_data)
if obj["choices"][0]["delta"].get("content") is not None:
content = obj["choices"][0]["delta"]["content"]
text += content
yield text

View File

@ -0,0 +1,7 @@
from pilot.configs.config import Config
CFG = Config()
def claude_generate_stream(model, tokenizer, params, device, context_len=2048):
yield "claude LLM was not supported!"

View File

@ -0,0 +1,7 @@
from pilot.configs.config import Config
CFG = Config()
def gpt4_generate_stream(model, tokenizer, params, device, context_len=2048):
yield "gpt4 LLM was not supported!"

View File

@ -0,0 +1,7 @@
from pilot.configs.config import Config
CFG = Config()
def tongyi_generate_stream(model, tokenizer, params, device, context_len=2048):
yield "tongyi LLM was not supported!"

View File

@ -0,0 +1,7 @@
from pilot.configs.config import Config
CFG = Config()
def wenxin_generate_stream(model, tokenizer, params, device, context_len=2048):
yield "wenxin LLM is not supported!"

View File

@ -38,7 +38,7 @@ class ChatDashboard(BaseChat):
current_user_input=user_input,
)
if not db_name:
raise ValueError(f"{ChatScene.ChatDashboard.value} mode should chose db!")
raise ValueError(f"{ChatScene.ChatDashboard.value} mode should choose db!")
self.db_name = db_name
self.report_name = report_name

View File

@ -68,6 +68,7 @@ playsound
distro
pypdf
weaviate-client
bardapi==0.1.29
# database