Define LIST_OF_VMX_MSRS which includes a list of MSRs that are visible to
L1 guests if nested virtualization is enabled.
- If CONFIG_NVMX_ENABLED is set, these MSRs are included in
emulated_guest_msrs[].
- otherwise, they are included in unsupported_msrs[].
In this way we can take advantage of the existing infrastructure to
emulate these MSRs.
Tracked-On: #5923
Spick igned-off-by: Zide Chen <zide.chen@intel.com>
Acked-by: Eddie Dong <eddie.dong@intel.com>
In order to support nested virtualization, need to expose the "Enable VMX
outside SMX operation" bit to L1 hypervisor.
Tracked-On: #5923
Signed-off-by: Zide Chen <zide.chen@intel.com>
Acked-by: Eddie Dong <eddie.dong@intel.com>
Allow guest set CR4_VMXE if CONFIG_NVMX_ENABLED is set:
- move CR4_VMXE from CR4_EMULATED_RESERVE_BITS to CR4_TRAP_AND_EMULATE_BITS
so that CR4_VMXE is removed from cr4_reserved_bits_mask.
- force CR4_VMXE to be removed from cr4_rsv_bits_guest_value so that CR4_VMXE
is able to be set.
Expose VMX feature (CPUID01.01H:ECX[5]) to L1 guests whose GUEST_FLAG_NVMX_ENABLED
is set.
Assuming guest hypervisor (L1) is KVM, and KVM uses EPT for L2 guests.
Constraints on ACRN VM.
- LAPIC passthrough should be enabled.
- use SCHED_NOOP scheduler.
Tracked-On: #5923
Signed-off-by: Sainath Grandhi <sainath.grandhi@intel.com>
Signed-off-by: Zide Chen <zide.chen@intel.com>
Acked-by: Eddie Dong <eddie.dong@intel.com>
TPAUSE, UMONITOR or UMWAIT instructions execution in guest VM cause
a #UD if "enable user wait and pause" (bit 26) of VMX_PROCBASED_CTLS2
is not set. To fix this issue, set the bit 26 of VMX_PROCBASED_CTLS2.
Besides, these WAITPKG instructions uses MSR_IA32_UMWAIT_CONTROL. So
load corresponding vMSR value during context switch in of a vCPU.
Please note, the TPAUSE or UMWAIT instruction causes a VM exit if the
"RDTSC exiting" and "enable user wait and pause" are both 1. In ACRN
hypervisor, "RDTSC exiting" is always 0. So TPAUSE or UMWAIT doesn't
cause a VM exit.
Performance impact:
MSR_IA32_UMWAIT_CONTROL read costs ~19 cycles;
MSR_IA32_UMWAIT_CONTROL write costs ~63 cycles.
Tracked-On: #6006
Signed-off-by: Shuo A Liu <shuo.a.liu@intel.com>
The current permission-checking and dispatching mechanism of hypercalls is
not unified because:
1. Some hypercalls require the exact vCPU initiating the call, while the
others only need to know the VM.
2. Different hypercalls have different permission requirements: the
trusty-related ones are enabled by a guest flag, while the others
require the initiating VM to be the Service OS.
Without a unified logic it could be hard to scale when more kinds of
hypercalls are added later.
The objectives of this patch are as follows.
1. All hypercalls have the same prototype and are dispatched by a unified
logic.
2. Permissions are checked by a unified logic without consulting the
hypercall ID.
To achieve the first objective, this patch modifies the type of the first
parameter of hcall_* functions (which are the callbacks implementing the
hypercalls) from `struct acrn_vm *` to `struct acrn_vcpu *`. The
doxygen-style documentations are updated accordingly.
To achieve the second objective, this patch adds to `struct hc_dispatch` a
`permission_flags` field which specifies the guest flags that must ALL be
set for a VM to be able to invoke the hypercall. The default value (which
is 0UL) indicates that this hypercall is for SOS only. Currently only the
`permission_flag` of trusty-related hypercalls have the non-zero value
GUEST_FLAG_SECURE_WORLD_ENABLED.
With `permission_flag`, the permission checking logic of hypercalls is
unified as follows.
1. General checks
i. If the VM is neither SOS nor having any guest flag that allows
certain hypercalls, it gets #UD upon executing the `vmcall`
instruction.
ii. If the VM is allowed to execute the `vmcall` instruction, but
attempts to execute it in ring 1, 2 or 3, the VM gets #GP(0).
2. Hypercall-specific checks
i. If the hypercall is for SOS (i.e. `permission_flag` is 0), the
initiating VM must be SOS and the specified target VM cannot be a
pre-launched VM. Otherwise the hypercall returns -EINVAL without
further actions.
ii. If the hypercall requires certain guest flags, the initiating VM
must have all the required flags. Otherwise the hypercall returns
-EINVAL without further actions.
iii. A hypercall with an unknown hypercall ID makes the hypercall
returns -EINVAL without further actions.
The logic above is different from the current implementation in the
following aspects.
1. A pre-launched VM now gets #UD (rather than #GP(0)) when it attempts
to execute `vmcall` in ring 1, 2 or 3.
2. A pre-launched VM now gets #UD (rather than the return value -EPERM)
when it attempts to execute a trusty hypercall in ring 0.
3. The SOS now gets the return value -EINVAL (rather than -EPERM) when it
attempts to invoke a trusty hypercall.
4. A post-launched VM with trusty support now gets the return value
-EINVAL (rather than #UD) when it attempts to invoke a non-trusty
hypercall or an invalid hypercall.
v1 -> v2:
- Update documentation that describe hypercall behavior.
- Fix Doxygen warnings
Tracked-On: #5924
Signed-off-by: Junjie Mao <junjie.mao@intel.com>
Acked-by: Eddie Dong <eddie.dong@intel.com>
Instead of "#include <x86/foo.h>", use "#include <asm/foo.h>".
In other words, we are adopting the same practice in Linux kernel.
Tracked-On: #5920
Signed-off-by: Liang Yi <yi.liang@intel.com>
Reviewed-by: Jason Chen CJ <jason.cj.chen@intel.com>
Both Windows guest and Linux guest use the MSR MSR_IA32_CSTAR, while
Linux uses it rarely. Now vcpu context switch doesn't save/restore it.
Windows detects the change of the MSR and rises a exception.
Do the save/resotre MSR_IA32_CSTAR during context switch.
Tracked-On: #5899
Signed-off-by: Shuo A Liu <shuo.a.liu@intel.com>
Acked-by: Eddie Dong <eddie.dong@intel.com>
TLFS spec defines that when a VM is created, the value of
HV_X64_MSR_TIME_REF_COUNT is set to zero. Now tsc_offset is not
supported properly, so guest get a drifted reference time.
This patch implements tsc_offset. tsc_scale and tsc_offset
are calculated when a VM is launched and are saved in
struct acrn_hyperv of struct acrn_vm.
Tracked-On: #5956
Signed-off-by: Jian Jun Chen <jian.jun.chen@intel.com>
Signed-off-by: Shuo A Liu <shuo.a.liu@intel.com>
Acked-by: Eddie Dong <eddie.dong@intel.com>
TLFS spec defines that HV_X64_MSR_VP_INDEX and HV_X64_MSR_TIME_REF_COUNT
are read-only MSRs. Any attempt to write to them results in a #GP fault.
Fix the issue by returning error in handler hyperv_wrmsr() of MSRs
HV_X64_MSR_VP_INDEX/HV_X64_MSR_TIME_REF_COUNT emulation.
Tracked-On: #5956
Signed-off-by: Jian Jun Chen <jian.jun.chen@intel.com>
Signed-off-by: Shuo A Liu <shuo.a.liu@intel.com>
Acked-by: Eddie Dong <eddie.dong@intel.com>
TLFS spec defines different hypercall ABIs for X86 and x64. Currently
x64 hypercall interface is not supported well.
Setup the hypercall interface page according to the vcpu mode.
Tracked-On: #5956
Signed-off-by: Jian Jun Chen <jian.jun.chen@intel.com>
Signed-off-by: Shuo A Liu <shuo.a.liu@intel.com>
Acked-by: Eddie Dong <eddie.dong@intel.com>
In order to support platform (such as Ander Lake) which physical address width
bits is 46, the current code need to reserve 2^16 PD page ((2^46) / (2^30)).
This is a complete waste of memory.
This patch would reserve PD page by three parts:
1. DRAM - may take PD_PAGE_NUM(CONFIG_PLATFORM_RAM_SIZE) PD pages at most;
2. low MMIO - may take PD_PAGE_NUM(MEM_1G << 2U) PD pages at most;
3. high MMIO - may takes (CONFIG_MAX_PCI_DEV_NUM * 6U) PD pages (may plus
PDPT entries if its size is larger than 1GB ) at most for:
(a) MMIO BAR size must be a power of 2 from 16 bytes;
(b) MMIO BAR base address must be power of two in size and are aligned with
its size.
Tracked-On: #5929
Signed-off-by: Li Fei1 <fei1.li@intel.com>
We used get_mem_range_info to get the top memory address and then use this address
as the high 64 bits max memory address of SOS. This assumes the platform must have
high memory space.
This patch removes the assumption. It will set high 64 bits max memory address of
SOS to 4G by default (Which means there's no 64 bits high memory), then update
the high 64 bits max memory address if the SOS really has high memory space.
Tracked-On: #5830
Signed-off-by: Li Fei1 <fei1.li@intel.com>
Acked-by: eddie Dong <eddie.dong@intel.com>
SOS's memory size could be calculated by its vE820 Tables easily.
Tracked-On: #5830
Signed-off-by: Li Fei1 <fei1.li@intel.com>
Acked-by: eddie Dong <eddie.dong@intel.com>
For platform with HLAT (Hypervisor-managed Linear Address Translation)
capability, the hypervisor shall hide this feature to its guest.
This patch adds MSR_IA32_VMX_PROCBASED_CTLS3 MSR to unsupported MSR
list.
The presence of this MSR is determined by 1-setting of bit 49 of MSR
MSR_IA32_VMX_PROCBASED_CTLS. which is already in unsupported MSR list. [2]
Related documentations:
[1] Intel Architecture Instruction Set Extensions, version Feb 16, 2021,
Ch 6.12
[2] Intel KeyLocker Specification, Sept 2020, Ch 7.2
Tracked-On: #5895
Signed-off-by: Yifan Liu <yifan1.liu@intel.com>
Acked-by: Eddie Dong <eddie.dong@intel.com>
sanitize_pte is used to set page table entry to map to an sanitized page to
mitigate l1tf. It should belongs to pgtable module. So move it to pagetable.c
Tracked-On: #5830
Signed-off-by: Li Fei1 <fei1.li@intel.com>
lookup_address is used to lookup a pagetable entry by an address. So rename it
to pgtable_lookup_entry to indicate this clearly.
Tracked-On: #5830
Signed-off-by: Li Fei1 <fei1.li@intel.com>
Reviewed-by: Jason Chen CJ <jason.cj.chen@intel.com>
alloc_page/free_page should been called in pagetable module. In order to do this,
we add pgtable_create_root and pgtable_create_trusty_root to create PML4 page table
page for normal world and secure world.
After this done, no one uses alloc_ept_page. So remove it.
Tracked-On: #5830
Signed-off-by: Li Fei1 <fei1.li@intel.com>
Reviewed-by: Jason Chen CJ <jason.cj.chen@intel.com>
Add pgtable_create_trusty_root to allocate a page for trusty PML4 page table page.
This function also copy PDPT entries from Normal world to Secure world.
Tracked-On: #5830
Signed-off-by: Li Fei1 <fei1.li@intel.com>
Reviewed-by: Jason Chen CJ <jason.cj.chen@intel.com>
Add pgtable_create_root to allocate a page for PMl4 page table page.
Tracked-On: #5830
Signed-off-by: Li Fei1 <fei1.li@intel.com>
Reviewed-by: Jason Chen CJ <jason.cj.chen@intel.com>
Rename mmu_add to pgtable_add_map;
Rename mmu_modify_or_del to pgtable_modify_or_del_map.
And move these functions declaration into pgtable.h
Tracked-On: #5830
Signed-off-by: Li Fei1 <fei1.li@intel.com>
Reviewed-by: Jason Chen CJ <jason.cj.chen@intel.com>
Requires explicit arch path name in the include directive.
The config scripts was also updated to reflect this change.
Tracked-On: #5825
Signed-off-by: Peter Fang <peter.fang@intel.com>
Reviewed-by: Jason Chen CJ <jason.cj.chen@intel.com>
Each .c file includes the arch specific irq header file (with full
path) by itself if required.
Tracked-On: #5825
Signed-off-by: Jason Chen CJ <jason.cj.chen@intel.com>
A new x86/guest/virq.h head file now contains all guest
related interrupt handling API.
Tracked-On: #5825
Signed-off-by: Jason Chen CJ <jason.cj.chen@intel.com>
Move the EPT page table related APIs to ept.c. page module only provides APIs to
allocate/free page for page table page. pagetabl module only provides APIs to
add/modify/delete/lookup page table entry. The page pool and the page table
related APIs for EPT should defined in EPT module.
Tracked-On: #5830
Signed-off-by: Li Fei1 <fei1.li@intel.com>
Reviewed-by: Jason Chen CJ <jason.cj.chen@intel.com>
post_uos_sworld_memory are used for post-launched VM which support trusty.
It's more VM related. So move it definition into vm.c
Tracked-On: #5830
Signed-off-by: Li Fei1 <fei1.li@intel.com>
Acked-by: Eddie Dong <eddie.dong@intel.com>
Per-core software SRAM L2 cache may be flushed by 'mwait'
extension instruction, which guest VM may execute to enter
core deep sleep. Such kind of flushing is not expected when
software SRAM is enabled for RTVM.
Hypervisor disables MONITOR-WAIT support on both hypervisor
and VMs sides to protect above software SRAM from being flushed.
This patch disable ACRN guest MONITOR-WAIT support if software
SRAM is configured.
Tracked-On: #5649
Signed-off-by: Yonghua Huang <yonghua.huang@intel.com>
Reviewed-by: Fei Li <fei1.li@intel.com>
Acked-by: Eddie Dong <eddie.dong@intel.com>
Below boolean function are defined in this patch:
- is_software_sram_enabled() to check if SW SRAM
feature is enabled or not.
- set global variable 'is_sw_sram_initialized'
to file static.
Tracked-On: #5649
Signed-off-by: Yonghua Huang <yonghua.huang@intel.com>
Reviewed-by: Fei Li <fei1.li@intel.com>
Acked-by: Eddie Dong <eddie.dong@intel.com>
The fields and APIs in old 'struct memory_ops' are used to add/modify/delete
page table (page or entry). So rename 'struct memory_ops' to 'struct pgtable'.
Tracked-On: #5830
Signed-off-by: Li Fei1 <fei1.li@intel.com>
Acked-by: Eddie Dong <eddie.dong@intel.com>
RTVM is enforced to use 4KB pages to mitigate CVE-2018-12207 and performance jitter,
which may be introduced by splitting large page into 4KB pages on demand. It works
fine in previous hardware platform where the size of address space for the RTVM is
relatively small. However, this is a problem when the platforms support 64 bits
high MMIO space, which could be super large and therefore consumes large # of
EPT page table pages.
This patch optimize it by using large page for purely data pages, such as MMIO spaces,
even for the RTVM.
Signed-off-by: Li Fei1 <fei1.li@intel.com>
Tracked-On: #5788
For FuSa's case, we remove all dynamic memory allocation use in ACRN HV. Instead,
we use static memory allocation or embedded data structure. For pagetable page,
we prefer to use an index (hva for MMU, gpa for EPT) to get a page from a special
page pool. The special page pool should be big enougn for each possible index.
This is not a big problem when we don't support 64 bits MMIO. Without 64 bits MMIO
support, we could use the index to search addrss not larger than DRAM_SIZE + 4G.
However, if ACRN plan to support 64 bits MMIO in SOS, we could not use the static
memory alocation any more. This is because there's a very huge hole between the
top DRAM address and the bottom 64 bits MMIO address. We could not reserve such
many pages for pagetable mapping as the CPU physical address bits may very large.
This patch will use dynamic page allocation for pagetable mapping. We also need
reserve a big enough page pool at first. For HV MMU, we don't use 4K granularity
page table mapping, we need reserve PML4, PDPT and PD pages according the maximum
physical address space (PPT va and pa are identical mapping); For each VM EPT,
we reserve PML4, PDPT and PD pages according to the maximum physical address space
too, (the EPT address sapce can't beyond the physical address space), and we reserve
PT pages by real use cases of DRAM, low MMIO and high MMIO.
Signed-off-by: Li Fei1 <fei1.li@intel.com>
Tracked-On: #5788
memory_ops structure will be changed to store page table related fields.
However, secure world memory base address is not one of them, it's VM
related. So save sworld_memory_base_hva in vm_arch structure directly.
Signed-off-by: Li Fei1 <fei1.li@intel.com>
Acked-by: Eddie Dong <eddie.dong@intel.com>
Tracked-On: #5788
Accessing to software SRAM region is not allowed when
software SRAM is pass-thru to prelaunch RTVM.
This patch removes software SRAM region from service VM
EPT if it is enabled for prelaunch RTVM.
Tracked-On: #5649
Signed-off-by: Yonghua Huang <yonghua.huang@intel.com>
This patch denies Service VM the access permission to device resources
owned by hypervisor.
HV may own these devices: (1) debug uart pci device for debug version
(2) type 1 pci device if have pre-launched VMs.
Current implementation exposes the mmio/pio resource of HV owned devices
to SOS, should remove them from SOS.
Tracked-On: #5615
Signed-off-by: Tao Yuhong <yuhong.tao@intel.com>
This patch denies Service VM the access permission to device
resources owned by pre-launched VMs.
Rationale:
* Pre-launched VMs in ACRN are independent of service VM,
and should be immune to attacks from service VM. However,
current implementation exposes the bar resource of passthru
devices to service VM for some reason. This makes it possible
for service VM to crash or attack pre-launched VMs.
* It is same for hypervisor owned devices.
NOTE:
* The MMIO spaces pre-allocated to VFs are still presented to
Service VM. The SR-IOV capable devices assigned to pre-launched
VMs doesn't have the SR-IOV capability. So the MMIO address spaces
pre-allocated by BIOS for VFs are not decoded by hardware and
couldn't be enabled by guest. SOS may live with seeing the address
space or not. We will revisit later.
Tracked-On: #5615
Signed-off-by: Tao Yuhong <yuhong.tao@intel.com>
Reviewed-by: Fei Li <fei1.li@intel.com>
Acked-by: Eddie Dong <eddie.dong@intel.com>
The logical processor scoped IWKey can be copied to or from a
platform-scope storage copy called IWKeyBackup. Copying IWKey to
IWKeyBackup is called ‘backing up IWKey’ and copying from IWKeyBackup to
IWKey is called ‘restoring IWKey’.
IWKeyBackup and the path between it and IWKey are protected against
software and simple hardware attacks. This means that IWKeyBackup can be
used to distribute an IWKey within the logical processors in a platform
in a protected manner.
Linux keylocker implementation uses this feature, so they are
introduced by this patch.
Tracked-On: #5695
Signed-off-by: Shuo A Liu <shuo.a.liu@intel.com>
Acked-by: Eddie Dong <eddie.dong@intel.com>
Different vCPU may have different IWKeys. Hypervisor need do the iwkey
context switch.
This patch introduce a load_iwkey() function to do that. Switches the
host iwkey when the switch_in vCPU satisfies:
1) keylocker feature enabled
2) Different from the current loaded one.
Two opportunities to do the load_iwkey():
1) Guest enables CR4.KL bit.
2) vCPU thread context switch.
load_iwkey() costs ~600 cycles when do the load IWKey action.
Tracked-On: #5695
Signed-off-by: Shuo A Liu <shuo.a.liu@intel.com>
Acked-by: Eddie Dong <eddie.dong@intel.com>
KeyLocker is a new security feature available in new Intel CPUs that
protects data-encryption keys for the Advanced Encryption Standard (AES)
algorithm. These keys are more valuable than what they guard. If stolen
once, the key can be repeatedly used even on another system and even
after vulnerability closed.
It also introduces a CPU-internal wrapping key (IWKey), which is a key-
encryption key to wrap AES keys into handles. While the IWKey is
inaccessible to software, randomizing the value during the boot-time
helps its value unpredictable.
Keylocker usage:
- New “ENCODEKEY” instructions take original key input and returns HANDLE
crypted by an internal wrap key (IWKey, init by “LOADIWKEY” instruction)
- Software can then delete the original key from memory
- Early in boot/software, less likely to have vulnerability that allows
stealing original key
- Later encrypt/decrypt can use the HANDLE through new AES KeyLocker
instructions
- Note:
* Software can use original key without knowing it (use HANDLE)
* HANDLE cannot be used on other systems or after warm/cold reset
* IWKey cannot be read from CPU after it's loaded (this is the
nature of this feature) and only 1 copy of IWKey inside CPU.
The virtualization implementation of Key Locker on ACRN is:
- Each vCPU has a 'struct iwkey' to store its IWKey in struct
acrn_vcpu_arch.
- At initilization, every vCPU is created with a random IWKey.
- Hypervisor traps the execution of LOADIWKEY (by 'LOADIWKEY exiting'
VM-exectuion control) of vCPU to capture and save the IWKey if guest
set a new IWKey. Don't support randomization (emulate CPUID to
disable) of the LOADIWKEY as hypervisor cannot capture and save the
random IWKey. From keylocker spec:
"Note that a VMM may wish to enumerate no support for HW random IWKeys
to the guest (i.e. enumerate CPUID.19H:ECX[1] as 0) as such IWKeys
cannot be easily context switched. A guest ENCODEKEY will return the
type of IWKey used (IWKey.KeySource) and thus will notice if a VMM
virtualized a HW random IWKey with a SW specified IWKey."
- In context_switch_in() of each vCPU, hypervisor loads that vCPU's
IWKey into pCPU by LOADIWKEY instruction.
- There is an assumption that ACRN hypervisor will never use the
KeyLocker feature itself.
This patch implements the vCPU's IWKey management and the next patch
implements host context save/restore IWKey logic.
Tracked-On: #5695
Signed-off-by: Shuo A Liu <shuo.a.liu@intel.com>
Acked-by: Eddie Dong <eddie.dong@intel.com>
In order for a VMM to capture the IWKey values of guests, processors
that support Key Locker also support a new "LOADIWKEY exiting"
VM-execution control in bit 0 of the tertiary processor-based
VM-execution controls.
This patch enables the tertiary VM-execution controls.
Tracked-On: #5695
Signed-off-by: Shuo A Liu <shuo.a.liu@intel.com>
Acked-by: Eddie Dong <eddie.dong@intel.com>
KeyLocker is a new security feature available in new Intel CPUs that
protects data-encryption keys for the Advanced Encryption Standard (AES)
algorithm.
This patch emulates Keylocker CPUID leaf 19H to support Keylocker
feature for guest VM.
To make the hypervisor being able to manage the IWKey correctly, this
patch doesn't expose hardware random IWKey capability
(CPUID.0x19.ECX[1]) to guest VM.
Tracked-On: #5695
Signed-off-by: Shuo A Liu <shuo.a.liu@intel.com>
Acked-by: Eddie Dong <eddie.dong@Intel.com>
Bit19 (CR4_KL) of CR4 is CPU KeyLocker feature enable bit. Hypervisor
traps the bit's writing to track the keylocker feature on/off of guest.
While the bit is set by guest,
- set cr4_kl_enabled to indicate the vcpu's keylocker feature enabled status
- load vcpu's IWKey in host (will add in later patch)
While the bit is clear by guest,
- clear cr4_kl_enabled
This patch trap and passthru the CR4_KL bit to guest for operation.
Tracked-On: #5695
Signed-off-by: Shuo A Liu <shuo.a.liu@intel.com>
Acked-by: Eddie Dong <eddie.dong@intel.com>
Current implementation, SOS may allocate the memory region belonging to
hypervisor/pre-launched VM to a post-launched VM. Because it only verifies
the start address rather than the entire memory region.
This patch verifies the validity of the entire memory region before
allocating to a post-launched VM so that the specified memory can only
be allocated to a post-launched VM if the entire memory region is mapped
in SOS’s EPT.
Tracked-On: #5555
Signed-off-by: Li Fei1 <fei1.li@intel.com>
Reviewed-by: Yonghua Huang <yonghua.huang@intel.com>
Currently, we hardcode the GPA base of Software SRAM
to an address that is derived from TGL platform,
as this GPA is identical with HPA for Pre-launch VM,
This hardcoded address may not work on other platforms
if the HPA bases of Software SRAM are different.
Now, Offline tool configures above GPA based on the
detection of Software SRAM on specific platform.
This patch removes the hardcoding GPA of Software SRAM,
and also renames MACRO 'SOFTWARE_SRAM_BASE_GPA' to
'PRE_RTVM_SW_SRAM_BASE_GPA' to avoid confusing, as it
is for Prelaunch VM only.
Tracked-On: #5649
Signed-off-by: Yonghua Huang <yonghua.huang@intel.com>
Acked-by: Eddie Dong <eddie.dong@intel.com>
Physical address to SW SRAM region maybe different
on different platforms, this hardcoded address may
result in address mismatch for SW SRAM operations.
This patch removes above hardcoded address and uses
the physical address parsed from native RTCT.
Tracked-On: #5649
Signed-off-by: Yonghua Huang <yonghua.huang@intel.com>
Reviewed-by: Fei Li <fei1.li@intel.com>
Acked-by: Eddie Dong <eddie.dong@intel.com>