mirror of
https://github.com/hwchase17/langchain.git
synced 2025-06-23 15:19:33 +00:00
template: Update Vectara templates (#15363)
fixed multi-query template for Vectara added self-query template for Vectara Also added prompt_name parameter to summarization CC @efriis **Twitter handle:** @ofermend
This commit is contained in:
parent
1e29b676d5
commit
ffae98d371
@ -22,11 +22,14 @@ class SummaryConfig:
|
||||
is_enabled: True if summary is enabled, False otherwise
|
||||
max_results: maximum number of results to summarize
|
||||
response_lang: requested language for the summary
|
||||
prompt_name: name of the prompt to use for summarization
|
||||
(see https://docs.vectara.com/docs/learn/grounded-generation/select-a-summarizer)
|
||||
"""
|
||||
|
||||
is_enabled: bool = False
|
||||
max_results: int = 7
|
||||
response_lang: str = "eng"
|
||||
prompt_name: str = "vectara-summary-ext-v1.2.0"
|
||||
|
||||
|
||||
@dataclass
|
||||
@ -364,6 +367,7 @@ class Vectara(VectorStore):
|
||||
{
|
||||
"maxSummarizedResults": config.summary_config.max_results,
|
||||
"responseLang": config.summary_config.response_lang,
|
||||
"summarizerPromptName": config.summary_config.prompt_name,
|
||||
}
|
||||
]
|
||||
|
||||
@ -570,6 +574,7 @@ class VectaraRetriever(VectorStoreRetriever):
|
||||
"k": 5,
|
||||
"filter": "",
|
||||
"n_sentence_context": "2",
|
||||
"summary_config": SummaryConfig(),
|
||||
}
|
||||
)
|
||||
|
||||
|
@ -23,20 +23,20 @@ pip install -U langchain-cli
|
||||
To create a new LangChain project and install this as the only package, you can do:
|
||||
|
||||
```shell
|
||||
langchain app new my-app --package rag-vectara
|
||||
langchain app new my-app --package rag-vectara-multiquery
|
||||
```
|
||||
|
||||
If you want to add this to an existing project, you can just run:
|
||||
|
||||
```shell
|
||||
langchain app add rag-vectara
|
||||
langchain app add rag-vectara-multiquery
|
||||
```
|
||||
|
||||
And add the following code to your `server.py` file:
|
||||
```python
|
||||
from rag_vectara import chain as rag_vectara_chain
|
||||
|
||||
add_routes(app, rag_vectara_chain, path="/rag-vectara")
|
||||
add_routes(app, rag_vectara_chain, path="/rag-vectara-multiquery")
|
||||
```
|
||||
|
||||
(Optional) Let's now configure LangSmith.
|
||||
@ -61,12 +61,12 @@ This will start the FastAPI app with a server is running locally at
|
||||
[http://localhost:8000](http://localhost:8000)
|
||||
|
||||
We can see all templates at [http://127.0.0.1:8000/docs](http://127.0.0.1:8000/docs)
|
||||
We can access the playground at [http://127.0.0.1:8000/rag-vectara/playground](http://127.0.0.1:8000/rag-vectara/playground)
|
||||
We can access the playground at [http://127.0.0.1:8000/rag-vectara-multiquery/playground](http://127.0.0.1:8000/rag-vectara-multiquery/playground)
|
||||
|
||||
We can access the template from code with:
|
||||
|
||||
```python
|
||||
from langserve.client import RemoteRunnable
|
||||
|
||||
runnable = RemoteRunnable("http://localhost:8000/rag-vectara")
|
||||
runnable = RemoteRunnable("http://localhost:8000/rag-vectara-multiquery")
|
||||
```
|
||||
|
@ -41,7 +41,6 @@ retriever = MultiQueryRetriever.from_llm(retriever=vectara_retriever, llm=llm)
|
||||
# We extract the summary from the RAG output, which is the last document
|
||||
# (if summary is enabled)
|
||||
# Note that if you want to extract the citation information, you can use res[:-1]]
|
||||
model = ChatOpenAI()
|
||||
chain = (
|
||||
RunnableParallel({"context": retriever, "question": RunnablePassthrough()})
|
||||
| (lambda res: res[-1])
|
||||
|
Loading…
Reference in New Issue
Block a user