template: Update Vectara templates (#15363)

fixed multi-query template for Vectara
added self-query template for Vectara

Also added prompt_name parameter to summarization

CC @efriis 
 **Twitter handle:** @ofermend
This commit is contained in:
Ofer Mendelevitch
2024-01-19 17:32:33 -08:00
committed by GitHub
parent 1e29b676d5
commit ffae98d371
3 changed files with 10 additions and 6 deletions

View File

@@ -23,20 +23,20 @@ pip install -U langchain-cli
To create a new LangChain project and install this as the only package, you can do:
```shell
langchain app new my-app --package rag-vectara
langchain app new my-app --package rag-vectara-multiquery
```
If you want to add this to an existing project, you can just run:
```shell
langchain app add rag-vectara
langchain app add rag-vectara-multiquery
```
And add the following code to your `server.py` file:
```python
from rag_vectara import chain as rag_vectara_chain
add_routes(app, rag_vectara_chain, path="/rag-vectara")
add_routes(app, rag_vectara_chain, path="/rag-vectara-multiquery")
```
(Optional) Let's now configure LangSmith.
@@ -61,12 +61,12 @@ This will start the FastAPI app with a server is running locally at
[http://localhost:8000](http://localhost:8000)
We can see all templates at [http://127.0.0.1:8000/docs](http://127.0.0.1:8000/docs)
We can access the playground at [http://127.0.0.1:8000/rag-vectara/playground](http://127.0.0.1:8000/rag-vectara/playground)
We can access the playground at [http://127.0.0.1:8000/rag-vectara-multiquery/playground](http://127.0.0.1:8000/rag-vectara-multiquery/playground)
We can access the template from code with:
```python
from langserve.client import RemoteRunnable
runnable = RemoteRunnable("http://localhost:8000/rag-vectara")
runnable = RemoteRunnable("http://localhost:8000/rag-vectara-multiquery")
```

View File

@@ -41,7 +41,6 @@ retriever = MultiQueryRetriever.from_llm(retriever=vectara_retriever, llm=llm)
# We extract the summary from the RAG output, which is the last document
# (if summary is enabled)
# Note that if you want to extract the citation information, you can use res[:-1]]
model = ChatOpenAI()
chain = (
RunnableParallel({"context": retriever, "question": RunnablePassthrough()})
| (lambda res: res[-1])