Commit Graph

6965 Commits

Author SHA1 Message Date
ccurme
8a69de5c24
openai[patch]: ignore file blocks when counting tokens (#30601)
OpenAI does not appear to document how it transforms PDF pages to
images, which determines how tokens are counted:
https://platform.openai.com/docs/guides/pdf-files?api-mode=chat#usage-considerations

Currently these block types raise ValueError inside
`get_num_tokens_from_messages`. Here we update to generate a warning and
continue.
2025-04-01 15:29:33 -04:00
Christophe Bornet
558191198f
core: Add ruff rule FBT003 (boolean-trap) (#29424)
See
https://docs.astral.sh/ruff/rules/boolean-positional-value-in-call/#boolean-positional-value-in-call-fbt003
This PR also fixes some FBT001/002 in private methods but does not
enforce these rules globally atm.

Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2025-04-01 17:40:12 +00:00
Christophe Bornet
4f8ea13cea
core: Add ruff rules PERF (#29375)
See https://docs.astral.sh/ruff/rules/#perflint-perf
2025-04-01 13:34:56 -04:00
Christophe Bornet
8a33402016
core: Add ruff rules PT (pytest) (#29381)
See https://docs.astral.sh/ruff/rules/#flake8-pytest-style-pt
2025-04-01 13:31:07 -04:00
Christophe Bornet
768e4f695a
core: Add ruff rules S110 and S112 (#30599) 2025-04-01 13:17:22 -04:00
Christophe Bornet
88b4233fa1
core: Add ruff rules D (docstring) (#29406)
This ensures that the code is properly documented:
https://docs.astral.sh/ruff/rules/#pydocstyle-d

Related to #21983
2025-04-01 13:15:45 -04:00
Andras L Ferenczi
64df60e690
community[minor]: Add custom sitemap URL parameter to GitbookLoader (#30549)
## Description
This PR adds a new `sitemap_url` parameter to the `GitbookLoader` class
that allows users to specify a custom sitemap URL when loading content
from a GitBook site. This is particularly useful for GitBook sites that
use non-standard sitemap file names like `sitemap-pages.xml` instead of
the default `sitemap.xml`.
The standard `GitbookLoader` assumes that the sitemap is located at
`/sitemap.xml`, but some GitBook instances (including GitBook's own
documentation) use different paths for their sitemaps. This parameter
makes the loader more flexible and helps users extract content from a
wider range of GitBook sites.
## Issue
Fixes bug
[30473](https://github.com/langchain-ai/langchain/issues/30473) where
the `GitbookLoader` would fail to find pages on GitBook sites that use
custom sitemap URLs.
## Dependencies
No new dependencies required.
*I've added*:
* Unit tests to verify the parameter works correctly
* Integration tests to confirm the parameter is properly used with real
GitBook sites
* Updated docstrings with parameter documentation
The changes are fully backward compatible, as the parameter is optional
with a sensible default.

---------

Co-authored-by: andrasfe <andrasf94@gmail.com>
Co-authored-by: Eugene Yurtsev <eugene@langchain.dev>
2025-04-01 16:17:21 +00:00
Christophe Bornet
fdda1aaea1
core: Accept ALL ruff rules with exclusions (#30595)
This pull request updates the `pyproject.toml` configuration file to
modify the linting rules and ignored warnings for the project. The most
important changes include switching to a more comprehensive selection of
linting rules and updating the list of ignored rules to better align
with the project's requirements.

Linting rules update:

* Changed the `select` option to include all available linting rules by
setting it to `["ALL"]`.

Ignored rules update:

* Updated the `ignore` option to include specific rules that interfere
with the formatter, are incompatible with Pydantic, or are temporarily
excluded due to project constraints.
2025-04-01 11:17:51 -04:00
Kacper Włodarczyk
26a3256fc6
community[major]: DynamoDBChatMessageHistory bulk add messages, raise errors (#30572)
This PR addresses two key issues:

- **Prevent history errors from failing silently**: Previously, errors
in message history were only logged and not raised, which can lead to
inconsistent state and downstream failures (e.g., ValidationError from
Bedrock due to malformed message history). This change ensures that such
errors are raised explicitly, making them easier to detect and debug.
(Side note: I’m using AWS Lambda Powertools Logger but hadn’t configured
it properly with the standard Python logger—my bad. If the error had
been raised, I would’ve seen it in the logs 😄) This is a **BREAKING
CHANGE**

- **Add messages in bulk instead of iteratively**: This introduces a
custom add_messages method to add all messages at once. The previous
approach failed silently when individual messages were too large,
resulting in partial history updates and inconsistent state. With this
change, either all messages are added successfully, or none are—helping
avoid obscure history-related errors from Bedrock.

---------

Co-authored-by: Kacper Wlodarczyk <kacper.wlodarczyk@chaosgears.com>
2025-04-01 11:13:32 -04:00
Armaanjeet Singh Sandhu
4bbc249b13
community: Fix attribute access for transcript text in YoutubeLoader (Fixes #30309) (#30582)
**Description:** 
Fixes a bug in the YoutubeLoader where FetchedTranscript objects were
not properly processed. The loader was only extracting the 'text'
attribute from FetchedTranscriptSnippet objects while ignoring 'start'
and 'duration' attributes. This would cause a TypeError when the code
later tried to access these missing keys, particularly when using the
CHUNKS format or any code path that needed timestamp information.

This PR modifies the conversion of FetchedTranscriptSnippet objects to
include all necessary attributes, ensuring that the loader works
correctly with all transcript formats.

**Issue:** Fixes #30309

**Dependencies:** None

**Testing:**
- Tested the fix with multiple YouTube videos to confirm it resolves the
issue
- Verified that both regular loading and CHUNKS format work correctly
2025-04-01 07:13:06 -04:00
Ivan Brko
ecff055096
community[minor]: Improve Brave Search Tool, allow api key in env var (#30364)
- **Description:** 

- Make Brave Search Tool consistent with other tools and allow reading
its api key from `BRAVE_SEARCH_API_KEY` instead of having to pass the
api key manually (no breaking changes)
- Improve Brave Search Tool by storing api key in `SecretStr` instead of
plain `str`.
    - Add unit test for `BraveSearchWrapper`
    - Reflect the changes in the documentation
  - **Issue:** N/A
  - **Dependencies:** N/A
  - **Twitter handle:** ivan_brko
2025-03-31 14:48:52 -04:00
ccurme
0c623045b5
core[patch]: pydantic 2.11 compat (#30554)
Release notes: https://pydantic.dev/articles/pydantic-v2-11-release

Covered here:

- We no longer access `model_fields` on class instances (that is now
deprecated);
- Update schema normalization for Pydantic version testing to reflect
changes to generated JSON schema (addition of `"additionalProperties":
True` for dict types with value Any or object).

## Considerations:

### Changes to JSON schema generation

#### Tool-calling / structured outputs

This may impact tool-calling + structured outputs for some providers,
but schema generation only changes if you have parameters of the form
`dict`, `dict[str, Any]`, `dict[str, object]`, etc. If dict parameters
are typed my understanding is there are no changes.

For OpenAI for example, untyped dicts work for structured outputs with
default settings before and after updating Pydantic, and error both
before/after if `strict=True`.

### Use of `model_fields`

There is one spot where we previously accessed `super(cls,
self).model_fields`, where `cls` is an object in the MRO. This was done
for the purpose of tracking aliases in secrets. I've updated this to
always be `type(self).model_fields`-- see comment in-line for detail.

---------

Co-authored-by: Sydney Runkle <54324534+sydney-runkle@users.noreply.github.com>
2025-03-31 14:22:57 -04:00
keshavshrikant
e8be3cca5c
fix huggingface tokenizer default length function (#30185)
#30184
2025-03-31 11:54:30 -04:00
Wenqi Li
64f97e707e
ollama[patch]: Support seed param for OllamaLLM (#30553)
**Description:** a description of the change
add the seed param for OllamaLLM client reproducibility

**Issue:** the issue # it fixes, if applicable
follow up of a similar issue
https://github.com/langchain-ai/langchain/issues/24703
see also https://github.com/langchain-ai/langchain/pull/24782

**Dependencies:** any dependencies required for this change
n/a
2025-03-31 11:28:49 -04:00
Christophe Bornet
8395abbb42
core: Fix test_stream_error_callback (#30228)
Fixes #29436

---------

Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2025-03-31 10:37:22 -04:00
Christophe Bornet
026de908eb
core: Add ruff rules G, FA, INP, AIR and ISC (#29334)
Fixes mostly for rules G. See
https://docs.astral.sh/ruff/rules/#flake8-logging-format-g
2025-03-31 10:05:23 -04:00
ccurme
b4fe1f1ec0
groq: release 0.3.2 (#30570) 2025-03-31 13:29:45 +00:00
ccurme
9c682af8f3
langchain: release 0.3.22 (#30557)
Closes https://github.com/langchain-ai/langchain/issues/30536
2025-03-30 14:48:22 -04:00
William FH
b075eab3e0
Include delayed inputs in langchain tracer (#30546) 2025-03-28 16:07:22 -07:00
Thommy257
372dc7f991
core[patch]: fix loss of partially initialized variables during prompt composition (#30096)
**Description:**
This PR addresses the loss of partially initialised variables when
composing different prompts. I.e. it allows the following snippet to
run:

```python
from langchain_core.prompts import ChatPromptTemplate

prompt = ChatPromptTemplate.from_messages([('system', 'Prompt {x} {y}')]).partial(x='1')
appendix = ChatPromptTemplate.from_messages([('system', 'Appendix {z}')])

(prompt + appendix).invoke({'y': '2', 'z': '3'})
```

Previously, this would have raised a `KeyError`, stating that variable
`x` remains undefined.

**Issue**
References issue #30049

**Todo**
- [x] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.


- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

---------

Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2025-03-28 20:41:57 +00:00
Koshik Debanath
e7883d5b9f
langchain-openai: Support token counting for o-series models in ChatOpenAI (#30542)
Related to #30344

Add support for token counting for o-series models in
`test_token_counts.py`.

* **Update `_MODELS` and `_CHAT_MODELS` dictionaries**
- Add "o1", "o3", and "gpt-4o" to `_MODELS` and `_CHAT_MODELS`
dictionaries.

* **Update token counts**
  - Add token counts for "o1", "o3", and "gpt-4o" models.

---

For more details, open the [Copilot Workspace
session](https://copilot-workspace.githubnext.com/langchain-ai/langchain/pull/30542?shareId=ab208bf7-80a3-4b8d-80c4-2287486fedae).
2025-03-28 16:02:09 -04:00
Eugene Yurtsev
d075ad21a0
core[patch]: specify default event loop scope in pyproject.toml (#30543)
Specify default event loop scope
2025-03-28 19:51:19 +00:00
Ahmed Tammaa
f23c3e2444
text-splitters[patch]: Refactor HTMLHeaderTextSplitter for Enhanced Maintainability and Readability (#29397)
Please see PR #27678 for context

## Overview

This pull request presents a refactor of the `HTMLHeaderTextSplitter`
class aimed at improving its maintainability and readability. The
primary enhancements include simplifying the internal structure by
consolidating multiple private helper functions into a single private
method, thereby reducing complexity and making the codebase easier to
understand and extend. Importantly, all existing functionalities and
public interfaces remain unchanged.

## PR Goals

1. **Simplify Internal Logic**:
- **Consolidation of Private Methods**: The original implementation
utilized multiple private helper functions (`_header_level`,
`_dom_depth`, `_get_elements`) to manage different aspects of HTML
parsing and document generation. This fragmentation increased cognitive
load and potential maintenance overhead.
- **Streamlined Processing**: By merging these functionalities into a
single private method (`_generate_documents`), the class now offers a
more straightforward flow, making it easier for developers to trace and
understand the processing steps. (Thanks to @eyurtsev)

2. **Enhance Readability**:
- **Clearer Method Responsibilities**: With fewer private methods, each
method now has a more focused responsibility. The primary logic resides
within `_generate_documents`, which handles both HTML traversal and
document creation in a cohesive manner.
- **Reduced Redundancy**: Eliminating redundant checks and consolidating
logic reduces the code's verbosity, making it more concise without
sacrificing clarity.

3. **Improve Maintainability**:
- **Easier Debugging and Extension**: A simplified internal structure
allows for quicker identification of issues and easier implementation of
future enhancements or feature additions.
- **Consistent Header Management**: The new implementation ensures that
headers are managed consistently within a single context, reducing the
likelihood of bugs related to header scope and hierarchy.

4. **Maintain Backward Compatibility**:
- **Unchanged Public Interface**: All public methods (`split_text`,
`split_text_from_url`, `split_text_from_file`) and their signatures
remain unchanged, ensuring that existing integrations and usage patterns
are unaffected.
- **Preserved Docstrings**: Comprehensive docstrings are retained,
providing clear documentation for users and developers alike.

## Detailed Changes

1. **Removed Redundant Private Methods**:
- **Eliminated `_header_level`, `_dom_depth`, and `_get_elements`**:
These methods were merged into the `_generate_documents` method,
centralizing the logic for HTML parsing and document generation.

2. **Consolidated Document Generation Logic**:
- **Single Private Method `_generate_documents`**: This method now
handles the entire process of parsing HTML, tracking active headers,
managing document chunks, and yielding `Document` instances. This
consolidation reduces the number of moving parts and simplifies the
overall processing flow.

3. **Simplified Header Management**:
- **Immediate Header Scope Handling**: Headers are now managed within
the traversal loop of `_generate_documents`, ensuring that headers are
added or removed from the active headers dictionary in real-time based
on their DOM depth and hierarchy.
- **Removed `chunk_dom_depth` Attribute**: The need to track chunk DOM
depth separately has been eliminated, as header scopes are now directly
managed within the traversal logic.

4. **Streamlined Chunk Finalization**:
- **Enhanced `finalize_chunk` Function**: The chunk finalization process
has been simplified to directly yield a single `Document` when needed,
without maintaining an intermediate list. This change reduces
unnecessary list operations and makes the logic more straightforward.

5. **Improved Variable Naming and Flow**:
- **Descriptive Variable Names**: Variables such as `current_chunk` and
`node_text` provide clear insights into their roles within the
processing logic.
- **Direct Header Removal Logic**: Headers that are out of scope are
removed immediately during traversal, ensuring that the active headers
dictionary remains accurate and up-to-date.

6. **Preserved Comprehensive Docstrings**:
- **Unchanged Documentation**: All existing docstrings, including
class-level and method-level documentation, remain intact. This ensures
that users and developers continue to have access to detailed usage
instructions and method explanations.

## Testing

All existing test cases from `test_html_header_text_splitter.py` have
been executed against the refactored code. The results confirm that:

- **Functionality Remains Intact**: The splitter continues to accurately
parse HTML content, respect header hierarchies, and produce the expected
`Document` objects with correct metadata.
- **Backward Compatibility is Maintained**: No changes were required in
the test cases, and all tests pass without modifications, demonstrating
that the refactor does not introduce any regressions or alter existing
behaviors.


This example remains fully operational and behaves as before, returning
a list of `Document` objects with the expected metadata and content
splits.

## Conclusion

This refactor achieves a more maintainable and readable codebase by
simplifying the internal structure of the `HTMLHeaderTextSplitter`
class. By consolidating multiple private methods into a single, cohesive
private method, the class becomes easier to understand, debug, and
extend. All existing functionalities are preserved, and comprehensive
tests confirm that the refactor maintains the expected behavior. These
changes align with LangChain’s standards for clean, maintainable, and
efficient code.

---

---------

Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2025-03-28 15:36:00 -04:00
omahs
6f8735592b
docs,langchain-community: Fix typos in docs and code (#30541)
Fix typos
2025-03-28 19:21:16 +00:00
Agus
47d50f49d9
docs: Add GOAT integration to docs (#30478)
This PR adds:
1. Docs for the GOAT integration 
2. An "Agentic Finance" table to the Tools page that includes GOAT

**Twitter handle**: @0xaguspunk
2025-03-28 15:19:37 -04:00
Shixian Sheng
94a7fd2497
docs: fix broken hyperlinks in fireworks integration package README (#30538)
Fix two broken hyperlinks
2025-03-28 15:18:44 -04:00
Oskar Stark
0d2cea747c
docs: streamline LangSmith teasing (#30302)
This can only be reviewed by [hiding
whitespaces](https://github.com/langchain-ai/langchain/pull/30302/files?diff=unified&w=1).

The motivation behind this PR is to get my hands on the docs and make
the LangSmith teasing short and clear.

Right now I don't know how to do it, but this could be an include in the
future.

---------

Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2025-03-28 15:13:22 -04:00
Eugene Yurtsev
dd0faab07e fix types 2025-03-28 14:23:50 -04:00
Eugene Yurtsev
21ab1dc675 Merge branch 'master' of github.com:xzq-xu/langchain into xzq-xu/master 2025-03-28 13:56:49 -04:00
Eugene Yurtsev
22cee5d983 x 2025-03-28 13:56:10 -04:00
Eugene Yurtsev
a14d8b103b
Merge branch 'master' into master 2025-03-28 13:53:58 -04:00
Eugene Yurtsev
6d22f40a0b x 2025-03-28 13:51:06 -04:00
Philippe PRADOS
92189c8b31
community[patch]: Handle gray scale images in ImageBlobParser (Fixes 30261 and 29586) (#30493)
Fix [29586](https://github.com/langchain-ai/langchain/issues/29586) and
[30261](https://github.com/langchain-ai/langchain/pull/30261)
2025-03-28 10:15:40 -04:00
小豆豆学长
1f0686db80
community: add netmind integration (#30149)
Co-authored-by: yanrujing <rujing.yan@protagonist-ai.com>
Co-authored-by: ccurme <chester.curme@gmail.com>
2025-03-27 15:27:04 -04:00
Kyungho Byoun
e6b6c07395
community: add HANA dialect to SQLDatabase (#30475)
This PR includes support for HANA dialect in SQLDatabase, which is a
wrapper class for SQLAlchemy.

Currently, it is unable to set schema name when using HANA DB with
Langchain. And, it does not show any message to user so that it makes
hard for user to figure out why the SQL does not work as expected.

Here is the reference document for HANA DB to set schema for the
session.

- [SET SCHEMA Statement (Session
Management)](https://help.sap.com/docs/SAP_HANA_PLATFORM/4fe29514fd584807ac9f2a04f6754767/20fd550375191014b886a338afb4cd5f.html)
2025-03-27 15:19:50 -04:00
Christophe Bornet
e181d43214
core: Bump ruff version to 0.11 (#30519)
Changes are from the new TC006 rule:
https://docs.astral.sh/ruff/rules/runtime-cast-value/
TC006 is auto-fixed.
2025-03-27 13:01:49 -04:00
ccurme
59908f04d4
fireworks: release 0.2.9 (#30527) 2025-03-27 16:04:20 +00:00
ccurme
05482877be
mistralai: release 0.2.10 (#30526) 2025-03-27 16:01:40 +00:00
Andras L Ferenczi
63673b765b
Fix: Enable max_retries Parameter in ChatMistralAI Class (#30448)
**partners: Enable max_retries in ChatMistralAI**

**Description**

- This pull request reactivates the retry logic in the
completion_with_retry method of the ChatMistralAI class, restoring the
intended functionality of the previously ineffective max_retries
parameter. New unit test that mocks failed/successful retry calls and an
integration test to confirm end-to-end functionality.

**Issue**
- Closes #30362

**Dependencies**
- No additional dependencies required

Co-authored-by: andrasfe <andrasf94@gmail.com>
2025-03-27 11:53:44 -04:00
Keiichi Hirobe
956b09f468
core[patch]: stop deleting records with "scoped_full" when doc is empty (#30520)
Fix a bug that causes `scoped_full` in index to delete records when there are no input docs.
2025-03-27 11:04:34 -04:00
Christophe Bornet
b28a474e79
core[patch]: Add ruff rules for PLW (Pylint Warnings) (#29288)
See https://docs.astral.sh/ruff/rules/#warning-w_1

---------

Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2025-03-27 10:26:12 +00:00
xzq.xu
92dc3f7341 format test lint passed 2025-03-27 13:44:59 +08:00
xzq.xu
d0a9808148 modify test name 2025-03-27 13:34:51 +08:00
xzq.xu
ed2428f902 add a unit test 2025-03-27 12:43:16 +08:00
David Sánchez Sánchez
75823d580b
community: fix perplexity response parameters not being included in model response (#30440)
This pull request includes enhancements to the `perplexity.py` file in
the `chat_models` module, focusing on improving the handling of
additional keyword arguments (`additional_kwargs`) in message processing
methods. Additionally, new unit tests have been added to ensure the
correct inclusion of citations, images, and related questions in the
`additional_kwargs`.

Issue: resolves https://github.com/langchain-ai/langchain/issues/30439

Enhancements to `perplexity.py`:

*
[`libs/community/langchain_community/chat_models/perplexity.py`](diffhunk://#diff-d3e4d7b277608683913b53dcfdbd006f0f4a94d110d8b9ac7acf855f1f22207fL208-L212):
Modified the `_convert_delta_to_message_chunk`, `_stream`, and
`_generate` methods to handle `additional_kwargs`, which include
citations, images, and related questions.
[[1]](diffhunk://#diff-d3e4d7b277608683913b53dcfdbd006f0f4a94d110d8b9ac7acf855f1f22207fL208-L212)
[[2]](diffhunk://#diff-d3e4d7b277608683913b53dcfdbd006f0f4a94d110d8b9ac7acf855f1f22207fL277-L286)
[[3]](diffhunk://#diff-d3e4d7b277608683913b53dcfdbd006f0f4a94d110d8b9ac7acf855f1f22207fR324-R331)

New unit tests:

*
[`libs/community/tests/unit_tests/chat_models/test_perplexity.py`](diffhunk://#diff-dab956d79bd7d17a0f5dea3f38ceab0d583b43b63eb1b29138ee9b6b271ba1d9R119-R275):
Added new tests `test_perplexity_stream_includes_citations_and_images`
and `test_perplexity_stream_includes_citations_and_related_questions` to
verify that the `stream` method correctly includes citations, images,
and related questions in the `additional_kwargs`.
2025-03-26 22:28:08 -04:00
Adeel Ehsan
d7d0bca2bc
docs: add vectara to libs package yml (#30504) 2025-03-26 16:47:53 -04:00
ccurme
a9b1e1b177
openai: release 0.3.11 (#30503) 2025-03-26 19:24:37 +00:00
ccurme
8119a7bc5c
openai[patch]: support streaming token counts in AzureChatOpenAI (#30494)
When OpenAI originally released `stream_options` to enable token usage
during streaming, it was not supported in AzureOpenAI. It is now
supported.

Like the [OpenAI
SDK](f66d2e6fdc/src/openai/resources/completions.py (L68)),
ChatOpenAI does not return usage metadata during streaming by default
(which adds an extra chunk to the stream). The OpenAI SDK requires users
to pass `stream_options={"include_usage": True}`. ChatOpenAI implements
a convenience argument `stream_usage: Optional[bool]`, and an attribute
`stream_usage: bool = False`.

Here we extend this to AzureChatOpenAI by moving the `stream_usage`
attribute and `stream_usage` kwarg (on `_(a)stream`) from ChatOpenAI to
BaseChatOpenAI.

---

Additional consideration: we must be sensitive to the number of users
using BaseChatOpenAI to interact with other APIs that do not support the
`stream_options` parameter.

Suppose OpenAI in the future updates the default behavior to stream
token usage. Currently, BaseChatOpenAI only passes `stream_options` if
`stream_usage` is True, so there would be no way to disable this new
default behavior.

To address this, we could update the `stream_usage` attribute to
`Optional[bool] = None`, but this is technically a breaking change (as
currently values of False are not passed to the client). IMO: if / when
this change happens, we could accompany it with this update in a minor
bump.

--- 

Related previous PRs:
- https://github.com/langchain-ai/langchain/pull/22628
- https://github.com/langchain-ai/langchain/pull/22854
- https://github.com/langchain-ai/langchain/pull/23552

---------

Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2025-03-26 15:16:37 -04:00
ccurme
f68eaab44f
tests: release 0.3.17 (#30502) 2025-03-26 18:56:54 +00:00
Louis Auneau
0b532a4ed0
community: Azure Document Intelligence parser features not available fixed (#30370)
Thank you for contributing to LangChain!

- **Description:** Azure Document Intelligence OCR solution has a
*feature* parameter that enables some features such as high-resolution
document analysis, key-value pairs extraction, ... In langchain parser,
you could be provided as a `analysis_feature` parameter to the
constructor that was passed on the `DocumentIntelligenceClient`.
However, according to the `DocumentIntelligenceClient` [API
Reference](https://learn.microsoft.com/en-us/python/api/azure-ai-documentintelligence/azure.ai.documentintelligence.documentintelligenceclient?view=azure-python),
this is not a valid constructor parameter. It was therefore remove and
instead stored as a parser property that is used in the
`begin_analyze_document`'s `features` parameter (see [API
Reference](https://learn.microsoft.com/en-us/python/api/azure-ai-formrecognizer/azure.ai.formrecognizer.documentanalysisclient?view=azure-python#azure-ai-formrecognizer-documentanalysisclient-begin-analyze-document)).
I also removed the check for "Supported features" since all features are
supported out-of-the-box. Also I did not check if the provided `str`
actually corresponds to the Azure package enumeration of features, since
the `ValueError` when creating the enumeration object is pretty
explicit.
Last caveat, is that some features are not supported for some kind of
documents. This is documented inside Microsoft documentation and
exception are also explicit.
- **Issue:** N/A
- **Dependencies:** No
- **Twitter handle:** @Louis___A

---------

Co-authored-by: Louis Auneau <louis@handshakehealth.co>
2025-03-26 14:40:14 -04:00
Philippe PRADOS
8e5d2a44ce
community[patch]: update PyPDFParser to take into account filters returned as arrays (#30489)
The image parsing is generating a bug as the the extracted objects for
the /Filter returns sometimes an array, sometimes a string.

Fix [Issue
30098](https://github.com/langchain-ai/langchain/issues/30098)
2025-03-26 14:16:54 -04:00
ccurme
422ba4cde5
infra: handle flaky tests (#30501) 2025-03-26 13:28:56 -04:00
ccurme
9a80be7bb7
core[patch]: release 0.3.49 (#30500) 2025-03-26 13:26:32 -04:00
ccurme
299b222c53
mistral[patch]: check types in adding model_name to response_metadata (#30499) 2025-03-26 16:30:09 +00:00
ccurme
22d1a7d7b6
standard-tests[patch]: require model_name in response_metadata if returns_usage_metadata (#30497)
We are implementing a token-counting callback handler in
`langchain-core` that is intended to work with all chat models
supporting usage metadata. The callback will aggregate usage metadata by
model. This requires responses to include the model name in its
metadata.

To support this, if a model `returns_usage_metadata`, we check that it
includes a string model name in its `response_metadata` in the
`"model_name"` key.

More context: https://github.com/langchain-ai/langchain/pull/30487
2025-03-26 12:20:53 -04:00
Ante Javor
20f82502e5
Community: Add Memgraph integration docs (#30457)
Thank you for contributing to LangChain!

**Description:** 
Since we just implemented
[langchain-memgraph](https://pypi.org/project/langchain-memgraph/)
integration, we are adding basic docs to [your site based on this
comment](https://github.com/langchain-ai/langchain/pull/30197#pullrequestreview-2671616410)
from @ccurme .
   
 **Twitter handle:**
 [@memgraphdb](https://x.com/memgraphdb)


- [x] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.


- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.

If no one reviews your PR within a few days, please @-mention one of
baskaryan, eyurtsev, ccurme, vbarda, hwchase17.

---------

Co-authored-by: Chester Curme <chester.curme@gmail.com>
2025-03-26 11:58:09 -04:00
xzq.xu
913c8b71d9 format import 2025-03-26 23:34:38 +08:00
xzq.xu
7e3dea5db8 add a new-line 2025-03-26 23:32:07 +08:00
xzq.xu
d602141ab1 remove unused e 2025-03-26 23:10:41 +08:00
xzq.xu
dd9031fc82 _prep_run_args,tool_input copy, Exception 2025-03-26 23:06:43 +08:00
xzq.xu
3382b0d8ea _prep_run_args,tool_input copy 2025-03-26 22:56:32 +08:00
xzq.xu
65ecc22606 # Fix: Prevent run_manager from being added to state object 2025-03-26 22:36:31 +08:00
ccurme
7e62e3a137
core[patch]: store model names on usage callback handler (#30487)
So we avoid mingling tokens from different models.
2025-03-25 21:26:09 -04:00
ccurme
32827765bf
core[patch]: mark usage callback handler as beta (#30486) 2025-03-25 23:25:57 +00:00
Eugene Yurtsev
9f345d64fd
core[patch]: Remove old accidental commit (#30483)
Remove commented out file that was accidentally added

Co-authored-by: ccurme <chester.curme@gmail.com>
2025-03-25 15:37:20 -07:00
ccurme
4b9e2e51f3
core[patch]: add token counting callback handler (#30481)
Stripped-down version of
[OpenAICallbackHandler](https://github.com/langchain-ai/langchain/blob/master/libs/community/langchain_community/callbacks/openai_info.py)
that just tracks `AIMessage.usage_metadata`.

```python
from langchain_core.callbacks import get_usage_metadata_callback
from langgraph.prebuilt import create_react_agent

def get_weather(location: str) -> str:
    """Get the weather at a location."""
    return "It's sunny."

tools = [get_weather]
agent = create_react_agent("openai:gpt-4o-mini", tools)

with get_usage_metadata_callback() as cb:
    result = await agent.ainvoke({"messages": "What's the weather in Boston?"})
    print(cb.usage_metadata)
```
2025-03-25 18:16:39 -04:00
Eugene Yurtsev
0acca6b9c8
core[patch]: Fix handling of title when tool schema is specified manually via JSONSchema (#30479)
Fix issue: https://github.com/langchain-ai/langchain/issues/30456
2025-03-25 15:15:24 -04:00
Ben Chambers
c5e42a4027
community: deprecate graph vector store (#30328)
- **Description:** mark GraphVectorStore `@deprecated`

---------

Co-authored-by: Chester Curme <chester.curme@gmail.com>
2025-03-25 13:52:54 +00:00
Ian Muge
a8ce63903d
community: Add edge properties to the gremlin graph schema (#30449)
Description: Extend the gremlin graph schema to include the edge
properties, grouped by its triples; i.e: `inVLabel` and `outVLabel`.
This should give more context when crafting queries to run against a
gremlin graph db
2025-03-24 19:03:01 -04:00
ccurme
b60e6f6efa
community[patch]: update API ref for AmazonTextractPDFParser (#30468) 2025-03-24 23:02:52 +00:00
David Sánchez Sánchez
3ba0d28d8e
community: update perplexity docstring (#30451)
This pull request includes extensive documentation updates for the
`ChatPerplexity` class in the
`libs/community/langchain_community/chat_models/perplexity.py` file. The
changes provide detailed setup instructions, key initialization
arguments, and usage examples for various functionalities of the
`ChatPerplexity` class.

Documentation improvements:

* Added setup instructions for installing the `openai` package and
setting the `PPLX_API_KEY` environment variable.
* Documented key initialization arguments for completion parameters and
client parameters, including `model`, `temperature`, `max_tokens`,
`streaming`, `pplx_api_key`, `request_timeout`, and `max_retries`.
* Provided examples for instantiating the `ChatPerplexity` class,
invoking it with messages, using structured output, invoking with
perplexity-specific parameters, streaming responses, and accessing token
usage and response metadata.Thank you for contributing to LangChain!
2025-03-24 15:01:02 -04:00
Vadym Barda
97dec30eea
docs[patch]: update trim_messages doc (#30462) 2025-03-24 18:50:48 +00:00
ccurme
c2dd8d84ff
infra[patch]: remove pyspark from langchain-community extended testing requirements (#30466) 2025-03-24 14:41:54 -04:00
ccurme
aa30d2d57f
standard-tests: release 0.3.16 (#30464) 2025-03-24 18:35:12 +00:00
ccurme
b09e7c125c
cli: use pytest-watcher (#30465)
pytest-watch is no longer maintained.
2025-03-24 18:06:31 +00:00
ccurme
50ec4a1a4f
openai[patch]: attempt to make test less flaky (#30463) 2025-03-24 17:36:36 +00:00
ccurme
8486e0ae80
openai[patch]: bump openai sdk (#30461)
[New required
field](https://github.com/openai/openai-python/pull/2223/files#diff-530fd17eb1cc43440c82630df0ddd9b0893cf14b04065a95e6eef6cd2f766a44R26)
for `ResponseUsage` released in 1.66.5.
2025-03-24 12:10:00 -04:00
ccurme
cbbc968903
openai: release 0.3.10 (#30460) 2025-03-24 15:37:53 +00:00
ccurme
ed5e589191
openai[patch]: support multi-turn computer use (#30410)
Here we accept ToolMessages of the form
```python
ToolMessage(
    content=<representation of screenshot> (see below),
    tool_call_id="abc123",
    additional_kwargs={"type": "computer_call_output"},
)
```
and translate them to `computer_call_output` items for the Responses
API.

We also propagate `reasoning_content` items from AIMessages.

## Example

### Load screenshots
```python
import base64

def load_png_as_base64(file_path):
    with open(file_path, "rb") as image_file:
        encoded_string = base64.b64encode(image_file.read())
        return encoded_string.decode('utf-8')

screenshot_1_base64 = load_png_as_base64("/path/to/screenshot/of/application.png")
screenshot_2_base64 = load_png_as_base64("/path/to/screenshot/of/desktop.png")
```

### Initial message and response
```python
from langchain_core.messages import HumanMessage, ToolMessage
from langchain_openai import ChatOpenAI

llm = ChatOpenAI(
    model="computer-use-preview",
    model_kwargs={"truncation": "auto"},
)

tool = {
    "type": "computer_use_preview",
    "display_width": 1024,
    "display_height": 768,
    "environment": "browser"
}
llm_with_tools = llm.bind_tools([tool])

input_message = HumanMessage(
    content=[
        {
            "type": "text",
            "text": (
                "Click the red X to close and reveal my Desktop. "
                "Proceed, no confirmation needed."
            )
        },
        {
            "type": "input_image",
            "image_url": f"data:image/png;base64,{screenshot_1_base64}",
        }
    ]
)

response = llm_with_tools.invoke(
    [input_message],
    reasoning={
        "generate_summary": "concise",
    },
)
response.additional_kwargs["tool_outputs"]
```

### Construct ToolMessage
```python
tool_call_id = response.additional_kwargs["tool_outputs"][0]["call_id"]

tool_message = ToolMessage(
    content=[
        {
            "type": "input_image",
            "image_url": f"data:image/png;base64,{screenshot_2_base64}"
        }
    ],
    #  content=f"data:image/png;base64,{screenshot_2_base64}",  # <-- also acceptable
    tool_call_id=tool_call_id,
    additional_kwargs={"type": "computer_call_output"},
)
```

### Invoke again
```python
messages = [
    input_message,
    response,
    tool_message,
]

response_2 = llm_with_tools.invoke(
    messages,
    reasoning={
        "generate_summary": "concise",
    },
)
```
2025-03-24 15:25:36 +00:00
Vadym Barda
7bc50730aa
core[patch]: release 0.3.48 (#30458) 2025-03-24 09:48:03 -04:00
Mohammad Mohtashim
33f1ab1528
Youtube Loader load method Fixed (#30314)
- **Description:** Fixed the `YoutubeLoader` loading method not
returning the correct object
- **Issue:** #30309

---------

Co-authored-by: ccurme <chester.curme@gmail.com>
2025-03-23 14:48:03 -04:00
Simon Paredes
df4448dfac
langchain-groq: Add response metadata when streaming (#30379)
- **Description:** Add missing `model_name` and `system_fingerprint`
metadata when streaming.

---------

Co-authored-by: Chester Curme <chester.curme@gmail.com>
2025-03-23 14:34:41 -04:00
Changyong Um
e2d9fe766f
community[tool]: Integrate a tool for the naver_search (#30392)
Hello!
I have reopened a pull request for tool integration.
Please refer to the previous
[PR](https://github.com/langchain-ai/langchain/pull/30248).

I understand that for the tool integration, a separate package should be
created, and only the documentation should be added under docs/docs/. If
there are any other procedures, please let me know.


[langchain-naver-community](https://github.com/e7217/langchain-naver-community)

cc: @ccurme

---------

Co-authored-by: Chester Curme <chester.curme@gmail.com>
2025-03-23 14:05:24 -04:00
ccurme
d867afff1c
docs: update package table ordering (#30437)
Update download counts (only impacts ordering, counts in rendered page
are updated automatically).
2025-03-22 18:07:08 -04:00
Matthew Farrellee
e7032901c3
langchain-tests: allow test_serdes for packages outside the default valid namespaces (#30343)
**Description:**

a third party package not listed in the default valid namespaces cannot
pass test_serdes because the load() does not allow for extending the
valid_namespaces.

test_serdes will fail with -
ValueError: Invalid namespace: {'lc': 1, 'type': 'constructor', 'id':
['langchain_other', 'chat_models', 'ChatOther'], 'kwargs':
{'model_name': '...', 'api_key': '...'}, 'name': 'ChatOther'}

this change has test_serdes automatically extend valid_namespaces based
off the ChatModel under test's namespace.
2025-03-22 17:27:39 -04:00
Jiwon Kang
699475a01d
community: uuidv1 is unsafe (#30432)
this_row_id previously used UUID v1. However, since UUID v1 can be
predicted if the MAC address and timestamp are known, it poses a
potential security risk. Therefore, it has been changed to UUID v4.
2025-03-22 15:27:49 -04:00
Dhruvajyoti Sarma
31551dab40
feature: added warning when duckdb is used as a vectorstore without pandas (#30435)
added warning when duckdb is used as a vectorstore without pandas being
installed (currently used for similarity search result processing)

Thank you for contributing to LangChain!

- [ ] **PR title**: "community: added warning when duckdb is used as a
vectorstore without pandas"


- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** displays a warning when using duckdb as a vector
store without pandas being installed, as it is used by the
`similarity_search` function
    - **Issue:** #29933 
    - **Dependencies:** None

---------

Co-authored-by: Chester Curme <chester.curme@gmail.com>
2025-03-22 19:27:21 +00:00
Cesar Sanz
5383abfeee
Fix incorrect import path for AzureAIChatCompletionsModel (#30417)
Fixes #30416

Correct the import path for `AzureAIChatCompletionsModel` in the
`_init_chat_model_helper` function.

* Update the import statement in
`libs/langchain/langchain/chat_models/base.py` to `from
langchain_azure_ai.chat_models import AzureAIChatCompletionsModel`.

---

For more details, open the [Copilot Workspace
session](https://copilot-workspace.githubnext.com/langchain-ai/langchain/pull/30417?shareId=6ff6d5de-e3d1-4972-8d24-5e74838e9945).
2025-03-22 07:44:51 -04:00
Misakar
7750ad588b
community:ChatLiteLLM support output reasoning content (#30430) 2025-03-22 07:43:33 -04:00
Adrián Panella
b75573e858
core: add tool_call exclusion in filter_message (#30289)
Extend functionallity to allow to filter pairs of tool calls (ai +
tool).

---------

Co-authored-by: vbarda <vadym@langchain.dev>
2025-03-21 23:05:29 +00:00
Vadym Barda
673ec00030
docs[patch]: add warning to token counter docstring (#30426) 2025-03-21 18:59:40 -04:00
Adrián Panella
3933a4abc3
core(mermaid): allow greater customization (#29939)
Adds greater style customization by allowing a custom frontmatter
config. This allows to set a `theme` and `look` or to adjust theme by
setting `themeVariables`

Example:

```python

node_colors = NodeStyles(
    default="fill:#e2e2e2,line-height:1.2,stroke:#616161",
    first="fill:#cfeab8,fill-opacity:0",
    last="fill:#eac3b8",
)

frontmatter_config = {
    "config": {
        "theme": "neutral",
        "look": "handDrawn"
    }
}

graph.get_graph().draw_mermaid_png(node_colors=node_colors, frontmatter_config=frontmatter_config)
```


![image](https://github.com/user-attachments/assets/11b56d30-3be2-482f-8432-3ce704a09552)

---------

Co-authored-by: vbarda <vadym@langchain.dev>
2025-03-21 18:25:26 -04:00
Vadym Barda
07823cd41c
core[patch]: optimize trim_messages (#30327)
Refactored w/ Claude

Up to 20x speedup! (with theoretical max improvement of `O(n / log n)`)
2025-03-21 17:08:26 -04:00
ccurme
b78ae7817e
openai[patch]: trace strict in structured_output_kwargs (#30425) 2025-03-21 14:37:28 -04:00
ccurme
1de7fa8f3a
Revert "deepseek: temporarily bypass tests" (#30424)
Reverts langchain-ai/langchain#30423
2025-03-21 17:14:31 +00:00
ccurme
c74dfff836
deepseek: temporarily bypass tests (#30423)
Deepseek infra is not stable enough to get through integration tests.

Previous two attempts had two tests time out, they both pass locally.
2025-03-21 17:08:35 +00:00
ccurme
7147903724
deepseek: release 0.1.3 (#30422) 2025-03-21 16:39:50 +00:00
Andras L Ferenczi
b5f49df86a
partner: ChatDeepSeek on openrouter not returning reasoning (#30240)
Deepseek model does not return reasoning when hosted on openrouter
(Issue [30067](https://github.com/langchain-ai/langchain/issues/30067))

the following code did not return reasoning:

```python
llm = ChatDeepSeek( model = 'deepseek/deepseek-r1:nitro', api_base="https://openrouter.ai/api/v1", api_key=os.getenv("OPENROUTER_API_KEY")) 
messages = [
    {"role": "system", "content": "You are an assistant."},
    {"role": "user", "content": "9.11 and 9.8, which is greater? Explain the reasoning behind this decision."}
]
response = llm.invoke(messages, extra_body={"include_reasoning": True})
print(response.content)
print(f"REASONING: {response.additional_kwargs.get('reasoning_content', '')}")
print(response)
```

The fix is to extract reasoning from
response.choices[0].message["model_extra"] and from
choices[0].delta["reasoning"]. and place in response additional_kwargs.
Change is really just the addition of a couple one-sentence if
statements.

---------

Co-authored-by: andrasfe <andrasf94@gmail.com>
Co-authored-by: Chester Curme <chester.curme@gmail.com>
2025-03-21 16:35:37 +00:00
Vadym Barda
4852ab8d0a
core[patch]: more tests for trim_messages (#30421) 2025-03-21 16:19:52 +00:00
ccurme
e8e3b2bfae
ollama: release 0.3.0 (#30420) 2025-03-21 15:50:08 +00:00
Bob Merkus
5700646cc5
ollama: add reasoning model support (e.g. deepseek) (#29689)
# Description
This PR adds reasoning model support for `langchain-ollama` by
extracting reasoning token blocks, like those used in deepseek. It was
inspired by
[ollama-deep-researcher](https://github.com/langchain-ai/ollama-deep-researcher),
specifically the parsing of [thinking
blocks](6d1aaf2139/src/assistant/graph.py (L91)):
```python
  # TODO: This is a hack to remove the <think> tags w/ Deepseek models 
  # It appears very challenging to prompt them out of the responses 
  while "<think>" in running_summary and "</think>" in running_summary:
      start = running_summary.find("<think>")
      end = running_summary.find("</think>") + len("</think>")
      running_summary = running_summary[:start] + running_summary[end:]
```

This notes that it is very hard to remove the reasoning block from
prompting, but we actually want the model to reason in order to increase
model performance. This implementation extracts the thinking block, so
the client can still expect a proper message to be returned by
`ChatOllama` (and use the reasoning content separately when desired).

This implementation takes the same approach as
[ChatDeepseek](5d581ba22c/libs/partners/deepseek/langchain_deepseek/chat_models.py (L215)),
which adds the reasoning content to
chunk.additional_kwargs.reasoning_content;
```python
  if hasattr(response.choices[0].message, "reasoning_content"):  # type: ignore
      rtn.generations[0].message.additional_kwargs["reasoning_content"] = (
          response.choices[0].message.reasoning_content  # type: ignore
      )
```

This should probably be handled upstream in ollama + ollama-python, but
this seems like a reasonably effective solution. This is a standalone
example of what is happening;

```python
async def deepseek_message_astream(
    llm: BaseChatModel,
    messages: list[BaseMessage],
    config: RunnableConfig | None = None,
    *,
    model_target: str = "deepseek-r1",
    **kwargs: Any,
) -> AsyncIterator[BaseMessageChunk]:
    """Stream responses from Deepseek models, filtering out <think> tags.

    Args:
        llm: The language model to stream from
        messages: The messages to send to the model

    Yields:
        Filtered chunks from the model response
    """
    # check if the model is deepseek based
    if (llm.name and model_target not in llm.name) or (hasattr(llm, "model") and model_target not in llm.model):
        async for chunk in llm.astream(messages, config=config, **kwargs):
            yield chunk
        return

    # Yield with a buffer, upon completing the <think></think> tags, move them to the reasoning content and start over
    buffer = ""
    async for chunk in llm.astream(messages, config=config, **kwargs):
        # start or append
        if not buffer:
            buffer = chunk.content
        else:
            buffer += chunk.content if hasattr(chunk, "content") else chunk

        # Process buffer to remove <think> tags
        if "<think>" in buffer or "</think>" in buffer:
            if hasattr(chunk, "tool_calls") and chunk.tool_calls:
                raise NotImplementedError("tool calls during reasoning should be removed?")
            if "<think>" in chunk.content or "</think>" in chunk.content:
                continue
            chunk.additional_kwargs["reasoning_content"] = chunk.content
            chunk.content = ""
        # upon block completion, reset the buffer
        if "<think>" in buffer and "</think>" in buffer:
            buffer = ""
        yield chunk

```

# Issue
Integrating reasoning models (e.g. deepseek-r1) into existing LangChain
based workflows is hard due to the thinking blocks that are included in
the message contents. To avoid this, we could match the `ChatOllama`
integration with `ChatDeepseek` to return the reasoning content inside
`message.additional_arguments.reasoning_content` instead.

# Dependenices
None

---------

Co-authored-by: Chester Curme <chester.curme@gmail.com>
2025-03-21 15:44:54 +00:00
ccurme
d8145dda95
xai: release 0.2.2 (#30403) 2025-03-20 20:25:16 +00:00
ccurme
e194902994
mistral: release 0.2.9 (#30402) 2025-03-20 20:22:24 +00:00
ccurme
49466ec9ca
groq: release 0.3.1 (#30401) 2025-03-20 20:19:49 +00:00
ccurme
db1e340387
fireworks: release 0.2.8 (#30400) 2025-03-20 16:15:51 -04:00
ccurme
785a8e7d45
tests: release 0.3.15 (#30397) 2025-03-20 15:38:40 -04:00
ccurme
5588ca4cfb
core: release 0.3.47 (#30396) 2025-03-20 18:52:53 +00:00
ccurme
de3960d285
multiple: enforce standards on tool_choice (#30372)
- Test if models support forcing tool calls via `tool_choice`. If they
do, they should support
  - `"any"` to specify any tool
  - the tool name as a string to force calling a particular tool
- Add `tool_choice` to signature of `BaseChatModel.bind_tools` in core
- Deprecate `tool_choice_value` in standard tests in favor of a boolean
`has_tool_choice`

Will follow up with PRs in external repos (tested in AWS and Google
already).
2025-03-20 17:48:59 +00:00
ccurme
b86cd8270c
multiple: support strict and method in with_structured_output (#30385) 2025-03-20 13:17:07 -04:00
Mohammad Mohtashim
1103bdfaf1
(Ollama) Fix String Value parsing in _parse_arguments_from_tool_call (#30154)
- **Description:** Fix String Value parsing in
_parse_arguments_from_tool_call
- **Issue:** #30145

---------

Co-authored-by: Chester Curme <chester.curme@gmail.com>
2025-03-19 21:47:18 -04:00
Tim König
b5992695ae
community: add ZoteroRetriever (#30270)
**Description** 
This contribution adds a retriever for the Zotero API.
[Zotero](https://www.zotero.org/) is an open source reference management
for bibliographic data and related research materials. A retriever will
allow langchain applications to retrieve relevant documents from
personal or shared group libraries, which I believe will be helpful for
numerous applications, such as RAG systems, personal research
assistants, etc. Tests and docs were added.

The documentation provided assumes the retriever will be part of the
langchain-community package, as this seemed customary. Please let me
know if this is not the preferred way to do it. I also uploaded the
implementation to PyPI.

**Dependencies**
The retriever requires the `pyzotero` package for API access. This
dependency is stated in the docs, and the retriever will return an error
if the package is not found. However, this dependency is not added to
the langchain package itself.

**Twitter handle**
I'm no longer using Twitter, but I'd appreciate a shoutout on
[Bluesky](https://bsky.app/profile/koenigt.bsky.social) or
[LinkedIn](https://www.linkedin.com/in/dr-tim-k%C3%B6nig-534aa2324/)!


Let me know if there are any issues, I'll gladly try and sort them out!

---------

Co-authored-by: Chester Curme <chester.curme@gmail.com>
2025-03-19 20:19:32 -04:00
pulvedu
4346aca5cf
Integration update (#30381)
This pull request includes a change to the following
- docs/docs/integrations/tools/tavily_search.ipynb 
- docs/docs/integrations/tools/tavily_extract.ipynb
- added docs/docs/integrations/providers/tavily.mdx

---------

Co-authored-by: pulvedu <dustin@tavily.com>
2025-03-19 17:58:25 -04:00
Daniel Rauber
9b687d7fbd
community[minor]: PlaywrightURLLoader can take stored session file (#30152)
**Description:**
Implements an additional `browser_session` parameter on
PlaywrightURLLoader which can be used to initialize the browser context
by providing a stored playwright context.
2025-03-19 16:29:07 -04:00
Vadym Barda
73c04f4707
core[patch]: release 0.3.46 (#30383) 2025-03-19 15:09:08 -04:00
William FH
ce84f8ba7e
Dereference run tree (#30377) 2025-03-19 19:05:06 +00:00
William FH
8265be4d3e
Unset context to None in var (#30380) 2025-03-19 18:53:17 +00:00
William FH
4130e6476b
Unset context after step (#30378)
While we are already careful to copy before setting the config, if other
objects hold a reference to the config or context, it wouldn't be
cleared.
2025-03-19 11:46:23 -07:00
Vadym Barda
37190881d3
core[patch]: add util for approximate token counting (#30373) 2025-03-19 17:48:38 +00:00
Matthew Farrellee
5f812f5968
langchain-tests: skip instead of passing image message tests (#30375)
**Description:** use skip for image message tests
2025-03-19 15:35:32 +00:00
ccurme
aae8306d6c
groq: release 0.3.0 (#30374) 2025-03-19 15:23:30 +00:00
Ashwin
83cfb9691f
Fix typo: change 'ben' to 'be' in comment (#30358)
**Description:**  
This PR fixes a minor typo in the comments within
`libs/partners/openai/langchain_openai/chat_models/base.py`. The word
"ben" has been corrected to "be" for clarity and professionalism.

**Issue:**  
N/A

**Dependencies:**  
None
2025-03-19 10:35:35 -04:00
Florian Chappaz
07cb41ea9e
community: aligning ChatLiteLLM default parameters with litellm (#30360)
**Description:**
Since `ChatLiteLLM` is forwarding most parameters to
`litellm.completion(...)`, there is no reason to set other default
values than the ones defined by `litellm`.

In the case of parameter 'n', it also provokes an issue when trying to
call a serverless endpoint on Azure, as it is considered an extra
parameter. So we need to keep it optional.

We can debate about backward compatibility of this change: in my
opinion, there should not be big issues since from my experience,
calling `litellm.completion()` without these parameters works fine.

**Issue:** 
- #29679 

**Dependencies:** None
2025-03-19 09:07:28 -04:00
Hodory
57ffacadd0
community: add keep_newlines parameter to process_pages method (#30365)
- **Description:** Adding keep_newlines parameter to process_pages
method with page_ids on Confluence document loader
- **Issue:** N/A (This is an enhancement rather than a bug fix)
- **Dependencies:** N/A
- **Twitter handle:** N/A
2025-03-19 08:57:59 -04:00
William FH
f5a0092551
Rm test for parent_run presence (#30356) 2025-03-18 19:44:19 -07:00
Adam Brenner
f949d9a3d3
docs: Add Dell PowerScale Document Loader (#30209)
# Description
Adds documentation on LangChain website for a Dell specific document
loader for on-prem storage devices. Additional details on what the
document loader is described in the PR as well as on our github repo:
[https://github.com/dell/powerscale-rag-connector](https://github.com/dell/powerscale-rag-connector)

This PR also creates a category on the document loader webpage as no
existing category exists for on-prem. This follows the existing pattern
already established as the website has a category for cloud providers.

# Issue:
New release, no issue.

# Dependencies:

None

# Twitter handle:

DellTech

---------

Signed-off-by: Adam Brenner <adam@aeb.io>
Co-authored-by: Chester Curme <chester.curme@gmail.com>
2025-03-18 22:39:21 -04:00
ccurme
9fb0db6937
community: release 0.3.20 (#30354) 2025-03-18 21:57:12 +00:00
ccurme
168f1dfd93
langchain[patch]: update text-splitters min bound (#30352) 2025-03-18 20:53:43 +00:00
ccurme
f6cf2ce2ad
langchain[patch]: lock with latest text-splitters (#30350) 2025-03-18 19:29:11 +00:00
ccurme
2909b49045
langchain: release 0.3.21 (#30348) 2025-03-18 19:13:20 +00:00
ccurme
958f85d541
text-splitters: release 0.3.7 (#30347) 2025-03-18 19:11:37 +00:00
Lance Martin
46d6bf0330
ollama[minor]: update default method for structured output (#30273)
From function calling to Ollama's [dedicated structured output
feature](https://ollama.com/blog/structured-outputs).

---------

Co-authored-by: Chester Curme <chester.curme@gmail.com>
2025-03-18 12:44:22 -04:00
Marlene
ff8ce60dcc
Core: Adding Azure AI to Supported Chat Models (#30342)
- **Description:** I was testing out `init_chat` and saw that chat
models can now be inferred. Azure OpenAI is currently only supported but
we would like to add support for Azure AI which is a different package.
This PR edits the `base.py` file to add the chat implementation.
- I don't think this adds any additional dependencies 
- Will add a test and lint, but starting an initial draft PR. 

cc @santiagxf

---------

Co-authored-by: Chester Curme <chester.curme@gmail.com>
2025-03-18 11:53:20 -04:00
TheSongg
251551ccf1
doc: Implement langchain-xinference (#30296)
- [ ] **PR title**: Implement langchain-xinference

- [ ] **PR message**: 
Implement a standalone package for Xinference chat models and llm
models.

https://github.com/langchain-ai/langchain/issues/30045#issue-2887214214
2025-03-18 11:50:16 -04:00
wenmeng zhou
5a6e1254a7
support return reasoning content for models like qwq in dashscope (#30317)
Thank you for contributing to LangChain!

- [x] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core, etc. is
being modified. Use "docs: ..." for purely docs changes, "infra: ..."
for CI changes.
  - Example: "community: add foobar LLM"

here is an example
```python
from langchain_community.chat_models.tongyi import ChatTongyi
from langchain_core.messages import HumanMessage

chatLLM = ChatTongyi(
    model="qwq-32b",   # refer to  https://help.aliyun.com/zh/model-studio/getting-started/models for more models
)
res = chatLLM.stream([HumanMessage(content="how much is 1 plus 1")])
for r in res:
    print(r)
```

```shell
content='' additional_kwargs={'reasoning_content': 'Okay, so the'} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content='' additional_kwargs={'reasoning_content': ' user is asking "'} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content='' additional_kwargs={'reasoning_content': 'how much is 1 plus'} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content='' additional_kwargs={'reasoning_content': ' 1." Let me think'} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content='' additional_kwargs={'reasoning_content': ' about this. Hmm'} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content='' additional_kwargs={'reasoning_content': ', 1 plus'} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content='' additional_kwargs={'reasoning_content': " 1... That's a pretty"} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content='' additional_kwargs={'reasoning_content': ' basic math question. I'} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content='' additional_kwargs={'reasoning_content': ' remember from arithmetic that when'} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content='' additional_kwargs={'reasoning_content': ' you add 1 and'} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content='' additional_kwargs={'reasoning_content': ' 1 together, the'} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content='' additional_kwargs={'reasoning_content': ' result is 2.'} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content='' additional_kwargs={'reasoning_content': ' But wait, maybe'} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content='' additional_kwargs={'reasoning_content': ' I should double-check to be'} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content='' additional_kwargs={'reasoning_content': ' sure. Let me visualize it'} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content='' additional_kwargs={'reasoning_content': '. If I have one apple'} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content='' additional_kwargs={'reasoning_content': ' and someone gives me another'} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content='' additional_kwargs={'reasoning_content': ' apple, I have'} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content='' additional_kwargs={'reasoning_content': ' two apples total. Yeah,'} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content='' additional_kwargs={'reasoning_content': ' that makes sense. Or'} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content='' additional_kwargs={'reasoning_content': ' on a number line'} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content='' additional_kwargs={'reasoning_content': ', starting at 1 and'} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content='' additional_kwargs={'reasoning_content': ' moving 1 step forward lands'} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content='' additional_kwargs={'reasoning_content': ' you at 2'} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content='' additional_kwargs={'reasoning_content': '. \n\nIs there any'} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content='' additional_kwargs={'reasoning_content': ' context where 1 +'} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content='' additional_kwargs={'reasoning_content': ' 1 might not equal'} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content='' additional_kwargs={'reasoning_content': ' 2? Like in different'} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content='' additional_kwargs={'reasoning_content': ' number bases? Let'} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content='' additional_kwargs={'reasoning_content': "'s see. In base"} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content='' additional_kwargs={'reasoning_content': ' 10, which'} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content='' additional_kwargs={'reasoning_content': ' is standard,'} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content='' additional_kwargs={'reasoning_content': ' 1+1 is'} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content='' additional_kwargs={'reasoning_content': ' 2. But if'} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content='' additional_kwargs={'reasoning_content': ' we were in binary'} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content='' additional_kwargs={'reasoning_content': ' (base 2'} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content='' additional_kwargs={'reasoning_content': '), 1 +'} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content='' additional_kwargs={'reasoning_content': ' 1 would be 1'} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content='' additional_kwargs={'reasoning_content': '0. But the question'} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content='' additional_kwargs={'reasoning_content': " doesn't specify a base,"} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content='' additional_kwargs={'reasoning_content': ' so I think the'} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content='' additional_kwargs={'reasoning_content': ' default is base 10'} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content='' additional_kwargs={'reasoning_content': '. \n\nAlternatively, could'} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content='' additional_kwargs={'reasoning_content': ' this be a trick'} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content='' additional_kwargs={'reasoning_content': ' question? Maybe they'} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content='' additional_kwargs={'reasoning_content': "'re referring to something else"} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content='' additional_kwargs={'reasoning_content': ', like in Boolean'} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content='' additional_kwargs={'reasoning_content': ' algebra where 1 +'} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content='' additional_kwargs={'reasoning_content': ' 1 might still'} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content='' additional_kwargs={'reasoning_content': ' be 1 in'} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content='' additional_kwargs={'reasoning_content': ' some contexts? Wait'} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content='' additional_kwargs={'reasoning_content': ', no, in Boolean'} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content='' additional_kwargs={'reasoning_content': ' addition, 1'} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content='' additional_kwargs={'reasoning_content': ' + 1 is typically'} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content='' additional_kwargs={'reasoning_content': " 1 because it's logical"} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content='' additional_kwargs={'reasoning_content': ' OR. But the'} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content='' additional_kwargs={'reasoning_content': ' question just says "1'} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content='' additional_kwargs={'reasoning_content': ' plus 1," which is'} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content='' additional_kwargs={'reasoning_content': ' more arithmetic than Boolean.'} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content='' additional_kwargs={'reasoning_content': ' \n\nOr maybe in some other'} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content='' additional_kwargs={'reasoning_content': ' mathematical structure like modular arithmetic?'} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content='' additional_kwargs={'reasoning_content': ' For example, modulo'} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content='' additional_kwargs={'reasoning_content': ' 2,'} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content='' additional_kwargs={'reasoning_content': ' 1 + 1 is'} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content='' additional_kwargs={'reasoning_content': ' 0. But again'} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content='' additional_kwargs={'reasoning_content': ', unless specified, it'} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content='' additional_kwargs={'reasoning_content': "'s probably standard addition"} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content='' additional_kwargs={'reasoning_content': '. \n\nThe user might be'} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content='' additional_kwargs={'reasoning_content': ' testing if I know basic'} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content='' additional_kwargs={'reasoning_content': ' math, or maybe'} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content='' additional_kwargs={'reasoning_content': " they're a student just"} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content='' additional_kwargs={'reasoning_content': ' starting out. Either way,'} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content='' additional_kwargs={'reasoning_content': ' the straightforward answer is'} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content='' additional_kwargs={'reasoning_content': ' 2. I should also'} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content='' additional_kwargs={'reasoning_content': " consider if there's any cultural"} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content='' additional_kwargs={'reasoning_content': ' references or jokes where'} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content='' additional_kwargs={'reasoning_content': ' 1 + 1 equals'} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content='' additional_kwargs={'reasoning_content': ' something else, but I can'} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content='' additional_kwargs={'reasoning_content': "'t think of any common"} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content='' additional_kwargs={'reasoning_content': ' ones. \n\nAlternatively'} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content='' additional_kwargs={'reasoning_content': ', in some contexts like'} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content='' additional_kwargs={'reasoning_content': ' in chemistry,'} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content='' additional_kwargs={'reasoning_content': ' 1 + 1 could refer'} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content='' additional_kwargs={'reasoning_content': ' to mixing solutions, but that'} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content='' additional_kwargs={'reasoning_content': "'s not standard. The question"} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content='' additional_kwargs={'reasoning_content': ' is pretty simple,'} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content='' additional_kwargs={'reasoning_content': ' so I think the answer'} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content='' additional_kwargs={'reasoning_content': ' is 2. To'} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content='' additional_kwargs={'reasoning_content': ' be thorough, maybe mention'} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content='' additional_kwargs={'reasoning_content': ' that in standard arithmetic it'} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content='' additional_kwargs={'reasoning_content': "'s 2, but if"} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content='' additional_kwargs={'reasoning_content': " there's a different"} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content='' additional_kwargs={'reasoning_content': ' context, the answer'} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content='' additional_kwargs={'reasoning_content': ' might vary. But since'} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content='' additional_kwargs={'reasoning_content': ' no context is given'} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content='' additional_kwargs={'reasoning_content': ', 2 is the safest'} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content='' additional_kwargs={'reasoning_content': ' answer.'} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content='The result' additional_kwargs={'reasoning_content': ''} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content=' of 1 plus' additional_kwargs={'reasoning_content': ''} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content=' 1 is **2**.' additional_kwargs={'reasoning_content': ''} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content=' \n\nIn standard arithmetic (base' additional_kwargs={'reasoning_content': ''} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content=' 10), adding' additional_kwargs={'reasoning_content': ''} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content=' 1 and 1 together' additional_kwargs={'reasoning_content': ''} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content=' yields 2. This is' additional_kwargs={'reasoning_content': ''} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content=' a fundamental mathematical principle. If' additional_kwargs={'reasoning_content': ''} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content=' the question involves a different context' additional_kwargs={'reasoning_content': ''} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content=' (e.g., binary' additional_kwargs={'reasoning_content': ''} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content=', modular arithmetic, or a' additional_kwargs={'reasoning_content': ''} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content=' metaphorical meaning), it' additional_kwargs={'reasoning_content': ''} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content=' would need clarification,' additional_kwargs={'reasoning_content': ''} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content=' but under typical circumstances, the' additional_kwargs={'reasoning_content': ''} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content=' answer is **2**.' additional_kwargs={'reasoning_content': ''} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content='' additional_kwargs={'reasoning_content': ''} response_metadata={'finish_reason': 'stop', 'request_id': '4738c641-6bd8-9efc-a4fe-d929d4e62bef', 'token_usage': {'input_tokens': 16, 'output_tokens': 560, 'total_tokens': 576}} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'

```

Co-authored-by: ccurme <chester.curme@gmail.com>
2025-03-18 11:43:10 -04:00
ccurme
b91daf06eb
groq[minor]: remove default model (#30341)
The default model for `ChatGroq`, `"mixtral-8x7b-32768"`, is being
retired on March 20, 2025. Here we remove the default, such that model
names must be explicitly specified (being explicit is a good practice
here, and avoids the need for breaking changes down the line). This
change will be released in a minor version bump to 0.3.

This follows https://github.com/langchain-ai/langchain/pull/30161
(released in version 0.2.5), where we began generating warnings to this
effect.

![Screenshot 2025-03-18 at 10 33
27 AM](https://github.com/user-attachments/assets/f1e4b302-c62a-43b0-aa86-eaf9271e86cb)
2025-03-18 10:50:34 -04:00
amuwall
f6a17fbc56
community: fix import exception too constrictive (#30218)
Fix this issue #30097
2025-03-17 22:09:02 -04:00
qonnop
036f00dc92
community: support in-memory data (Blob.from_data) in all audio parsers (#30262)
OpenAIWhisperParser, OpenAIWhisperParserLocal, YandexSTTParser do not
handle in-memory audio data (loaded via Blob.from_data) correctly. They
require Blob.path to be set and AudioSegment is always read from the
file system. In-memory data is handled correctly only for
FasterWhisperParser so far. I changed OpenAIWhisperParser,
OpenAIWhisperParserLocal, YandexSTTParser accordingly to match
FasterWhisperParser.
Thanks for reviewing the PR!

Co-authored-by: qonnop <qonnop@users.noreply.github.com>
2025-03-17 19:52:33 -04:00
Matthew Farrellee
1985aaf095
langchain-tests: allow subclasses to add addition, non-standard tests (#30204)
**description:** the ChatModel[Integration]Tests classes are powerful
and helpful, this change allows sub-classes to add additional tests.

for instance,

```
class TestChatMyServiceIntegration(ChatModelIntegrationTests):
    ...
    def test_myservice(self, model: BaseChatModel) -> None:
        ...
```

---------

Co-authored-by: ccurme <chester.curme@gmail.com>
2025-03-17 23:37:16 +00:00
Ben
789db7398b
text-splitters: Add JSFrameworkTextSplitter for Handling JavaScript Framework Code (#28972)
## Description
This pull request introduces a new text splitter,
`JSFrameworkTextSplitter`, to the Langchain library. The
`JSFrameworkTextSplitter` extends the `RecursiveCharacterTextSplitter`
to handle JavaScript framework code effectively, including React (JSX),
Vue, and Svelte. It identifies and utilizes framework-specific component
tags and syntax elements as splitting points, alongside standard
JavaScript syntax. This ensures that code is divided at natural
boundaries, enhancing the parsing and processing of JavaScript and
framework-specific code.

### Key Features
- Supports React (JSX), Vue, and Svelte frameworks.
- Identifies and uses framework-specific tags and syntax elements as
natural splitting points.
- Extends the existing `RecursiveCharacterTextSplitter` for seamless
integration.

## Issue
No specific issue addressed.

## Dependencies
No additional dependencies required.

---------

Co-authored-by: ccurme <chester.curme@gmail.com>
2025-03-17 23:32:33 +00:00
ccurme
5684653775
openai[patch]: release 0.3.9 (#30325) 2025-03-17 16:08:41 +00:00
ccurme
eb9b992aa6
openai[patch]: support additional Responses API features (#30322)
- Include response headers
- Max tokens
- Reasoning effort
- Fix bug with structured output / strict
- Fix bug with simultaneous tool calling + structured output
2025-03-17 12:02:21 -04:00
Bae-ChangHyun
d8510270ee
community: add 'extract' mode to FireCrawlLoader for structured data extraction (#30242)
**Description:** 
Added an 'extract' mode to FireCrawlLoader that enables structured data
extraction from web pages. This feature allows users to Extract
structured data from a single URLs, or entire websites using Large
Language Models (LLMs).
You can show more params and usage on [firecrawl
docs](https://docs.firecrawl.dev/features/extract-beta).
You can extract from only one url now.(it depends on firecrawl's extract
method)

**Dependencies:** 
No new dependencies required. Uses existing FireCrawl API capabilities.

---------

Co-authored-by: chbae <chbae@gcsc.co.kr>
Co-authored-by: ccurme <chester.curme@gmail.com>
2025-03-17 15:15:57 +00:00
qonnop
747efa16ec
community: fix CPU support for FasterWhisperParser (implicit compute type for WhisperModel) (#30263)
FasterWhisperParser fails on a machine without an NVIDIA GPU: "Requested
float16 compute type, but the target device or backend do not support
efficient float16 computation." This problem arises because the
WhisperModel is called with compute_type="float16", which works only for
NVIDIA GPU.

According to the [CTranslate2
docs](https://opennmt.net/CTranslate2/quantization.html#bit-floating-points-float16)
float16 is supported only on NVIDIA GPUs. Removing the compute_type
parameter solves the problem for CPUs. According to the [CTranslate2
docs](https://opennmt.net/CTranslate2/quantization.html#quantize-on-model-loading)
setting compute_type to "default" (standard when omitting the parameter)
uses the original compute type of the model or performs implicit
conversion for the specific computation device (GPU or CPU). I suggest
to remove compute_type="float16".

@hulitaitai you are the original author of the FasterWhisperParser - is
there a reason for setting the parameter to float16?

Thanks for reviewing the PR!

Co-authored-by: qonnop <qonnop@users.noreply.github.com>
2025-03-14 22:22:29 -04:00
ccurme
c74e7b997d
openai[patch]: support structured output via Responses API (#30265)
Also runs all standard tests using Responses API.
2025-03-14 15:14:23 -04:00
Priyansh Agrawal
f54f14b747
community: cube document loader - do not load non-public dimensions and measures (#30286)
Thank you for contributing to LangChain!

- [x] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core, etc. is
being modified. Use "docs: ..." for purely docs changes, "infra: ..."
for CI changes.
  - Example: "community: add foobar LLM"

- **Description:** Do not load non-public dimensions and measures
(public: false) with Cube semantic loader

- **Issue:** Currently, non-public dimensions and measures are loaded by
the Cube document loader which leads to downstream applications using
these which is not allowed by Cube.


- [x] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.


- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.

If no one reviews your PR within a few days, please @-mention one of
baskaryan, eyurtsev, ccurme, vbarda, hwchase17.
2025-03-14 15:07:56 -04:00
Stavros Kontopoulos
ac22cde130
langchain_ollama: Support keep_alive in embeddings (#30251)
- Description: Adds support for keep_alive in Ollama Embeddings see
https://github.com/ollama/ollama/issues/6401.
Builds on top of of
https://github.com/langchain-ai/langchain/pull/29296. I have this use
case where I want to keep the embeddings model in cpu forever.
- Dependencies: no deps are being introduced.
- Issue: haven't created an issue yet.
2025-03-14 14:56:50 -04:00
homeffjy
2c99f12062
community[patch]: fix bilibili loader handling of multi-page content (#30283)
Previously the loader would only extract subtitles from the first page
of multi-page videos.
2025-03-14 14:53:03 -04:00
ccurme
d5d0134e7b
anthropic: release 0.3.10 (#30287) 2025-03-14 16:23:21 +00:00
ccurme
226f29bc96
anthropic: support built-in tools, improve docs (#30274)
- Support features from recent update:
https://www.anthropic.com/news/token-saving-updates (mostly adding
support for built-in tools in `bind_tools`
- Add documentation around prompt caching, token-efficient tool use, and
built-in tools.
2025-03-14 16:18:50 +00:00
Priyansh Agrawal
f27e2d7ce7
community: cube document loader - fix logging (#30285)
Thank you for contributing to LangChain!

- [x] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core, etc. is
being modified. Use "docs: ..." for purely docs changes, "infra: ..."
for CI changes.
  - Example: "community: add foobar LLM"

- **Description:** Fix bad log message on line#56 and replace f-string
logs with format specifiers

- **Issue:** Log messages such as this one
`INFO:langchain_community.document_loaders.cube_semantic:Loading
dimension values for: {dimension_name}...`

- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.


- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.

If no one reviews your PR within a few days, please @-mention one of
baskaryan, eyurtsev, ccurme, vbarda, hwchase17.
2025-03-14 11:36:18 -04:00
ccurme
bbd4b36d76
mistralai[patch]: bump core (#30278) 2025-03-13 23:04:36 +00:00
ccurme
315bb17ef5
core: release 0.3.45 (#30277) 2025-03-13 22:44:23 +00:00
pulvedu
d0bfc7f820
community[fix] : Pass API_KEY as argument (#30272)
PR Title:
community: Fix Pass API_KEY as argument

PR Message:
Description:
This PR fixes validation error "Value error, Did not find
tavily_api_key, please add an environment variable `TAVILY_API_KEY`
which contains it, or pass `tavily_api_key` as a named parameter."

Dependencies:
No new dependencies introduced.

---------

Co-authored-by: pulvedu <dustin@tavily.com>
Co-authored-by: Chester Curme <chester.curme@gmail.com>
2025-03-13 22:19:31 +00:00
ccurme
733abcc884
mistral: release 0.2.8 (#30275) 2025-03-13 21:54:34 +00:00
Jacob Lee
e9c1765967
fix(core): Ignore missing secrets on deserialization (#30252) 2025-03-13 12:27:03 -07:00
ccurme
ebea5e014d
standard tests: test simple agent loop (#30268) 2025-03-13 16:34:12 +00:00
ccurme
cd1ea8e94d
openai[patch]: support Responses API (#30231)
Co-authored-by: Bagatur <baskaryan@gmail.com>
2025-03-12 12:25:46 -04:00
Jason Zhang
49bdd3b6fe
docs: Add AgentQL provider doc, tool/toolkit doc and documentloader doc (#30144)
- **Description:** Added AgentQL docs for the provider page, tools page
and documentloader page
- **Twitter handle:** @AgentQL

Repo:
https://github.com/tinyfish-io/agentql-integrations/tree/main/langchain
PyPI: https://pypi.org/project/langchain-agentql/

If no one reviews your PR within a few days, please @-mention one of
baskaryan, eyurtsev, ccurme, vbarda, hwchase17.

---------

Co-authored-by: Chester Curme <chester.curme@gmail.com>
2025-03-11 21:57:40 -04:00
Vadym Barda
23fa70f328
core[patch]: release 0.3.44 (#30236) 2025-03-11 18:59:02 -04:00
Vadym Barda
c7842730ef
core[patch]: support single-node subgraphs and put subgraph nodes under the respective subgraphs (#30234) 2025-03-11 18:55:45 -04:00
ccurme
62c570dd77
standard-tests, openai: bump core (#30202) 2025-03-10 19:22:24 +00:00
ccurme
f896e701eb
deepseek: install local langchain-tests in test deps (#30198) 2025-03-10 16:58:17 +00:00
Hugh Gao
aa6dae4a5b
community: Remove the system message count limit for ChatTongyi. (#30192)
## Description
The models in DashScope support multiple SystemMessage. Here is the
[Doc](https://bailian.console.aliyun.com/model_experience_center/text#/model-market/detail/qwen-long?tabKey=sdk),
and the example code on the document page:
```python
import os
from openai import OpenAI

client = OpenAI(
    api_key=os.getenv("DASHSCOPE_API_KEY"),  # 如果您没有配置环境变量,请在此处替换您的API-KEY
    base_url="https://dashscope.aliyuncs.com/compatible-mode/v1",  # 填写DashScope服务base_url
)
# 初始化messages列表
completion = client.chat.completions.create(
    model="qwen-long",
    messages=[
        {'role': 'system', 'content': 'You are a helpful assistant.'},
        # 请将 'file-fe-xxx'替换为您实际对话场景所使用的 file-id。
        {'role': 'system', 'content': 'fileid://file-fe-xxx'},
        {'role': 'user', 'content': '这篇文章讲了什么?'}
    ],
    stream=True,
    stream_options={"include_usage": True}
)

full_content = ""
for chunk in completion:
    if chunk.choices and chunk.choices[0].delta.content:
        # 拼接输出内容
        full_content += chunk.choices[0].delta.content
        print(chunk.model_dump())

print({full_content})
```
Tip: The example code is for OpenAI, but the document said that it also
supports the DataScope API, and I tested it, and it works.
```
Is the Dashscope SDK invocation method compatible?

Yes, the Dashscope SDK remains compatible for model invocation. However, file uploads and file-ID retrieval are currently only supported via the OpenAI SDK. The file-ID obtained through this method is also compatible with Dashscope for model invocation.
```
2025-03-10 08:58:40 -04:00
ccurme
67aff1648b
community: Add OpenGradient integration (Toolkit) (#30190)
Commandeering https://github.com/langchain-ai/langchain/pull/30135

---------

Co-authored-by: kylexqian <kylexqian@gmail.com>
2025-03-09 18:08:07 -04:00
ccurme
b209d46eb3
mistral[patch]: set global ssl context (#30189) 2025-03-09 21:27:41 +00:00
Vijay Selvaraj
df459d0d5e
community: add Valthera integration (#30105)
```markdown
**Description:**  
This PR integrates Valthera into LangChain, introducing an framework designed to send highly personalized nudges by an LLM agent. This is modeled after Dr. BJ Fogg's Behavior Model. This integration includes:

- Custom data connectors for HubSpot, PostHog, and Snowflake.
- A unified data aggregator that consolidates user data.
- Scoring configurations to compute motivation and ability scores.
- A reasoning engine that determines the appropriate user action.
- A trigger generator to create personalized messages for user engagement.

**Issue:**  
N/A

**Dependencies:**  
N/A

**Twitter handle:**  
- `@vselvarajijay`

**Tests and Docs:**  
- `docs/docs/integrations/tools/valthera` 
- `https://github.com/valthera/langchain-valthera/tree/main/tests`

```

---------

Co-authored-by: Chester Curme <chester.curme@gmail.com>
2025-03-09 21:19:08 +00:00
ccurme
3823daa0b9
cli: update integration doc template for tools (#30188)
Chain example -> langgraph agent
2025-03-09 21:14:43 +00:00
Jonathan Feng
911accf733
docs: add contextualai documentation (#30050)
Thank you for contributing to LangChain!
 
**Description:** adds ContextualAI's `langchain-contextual` package's
documentation

If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.

---------

Co-authored-by: Chester Curme <chester.curme@gmail.com>
2025-03-09 02:43:13 +00:00
Bharat
b9746a6910
fixes#30182: update tool names to match OpenAI function name pattern (#30183)
The OpenAI API requires function names to match the pattern
'^[a-zA-Z0-9_-]+$'. This updates the JIRA toolkit's tool names to use
underscores instead of spaces to comply with this requirement and
prevent BadRequestError when using the tools with OpenAI functions.

Error fixed:
```
File "langgraph-bug-fix/.venv/lib/python3.13/site-packages/openai/_base_client.py", line 1023, in _request
    raise self._make_status_error_from_response(err.response) from None
openai.BadRequestError: Error code: 400 - {'error': {'message': "Invalid 'tools[0].function.name': string does not match pattern. Expected a string that matches the pattern '^[a-zA-Z0-9_-]+$'.", 'type': 'invalid_request_error', 'param': 'tools[0].function.name', 'code': 'invalid_value'}}
During task with name 'agent' and id 'aedd7537-e8d5-6678-d0c5-98129586d3ac'
```

Issue:#30182
2025-03-08 20:48:25 -05:00
ccurme
cee0fecb08
docs: update package registry counts (#30181) 2025-03-08 20:37:59 -05:00
William FH
bac3a28e70
Flush (#30157) 2025-03-07 16:32:15 -08:00
ccurme
a7ab5e8372
community[patch]: ChatPerplexity: track usage metadata (#30175) 2025-03-07 23:25:05 +00:00
ccurme
1c993b921c
core[patch]: release 0.3.43 (#30173) 2025-03-07 21:56:00 +00:00
ccurme
9893e5cb80
core[patch]: catch structured_output_format (#30172)
Change to `ls_structured_output_format` was not backward-compatible with
older versions of integration packages.
2025-03-07 16:50:06 -05:00
ccurme
33a3510243
core[patch]: export ArgsSchema (#30169)
This is needed for type hints

see: https://github.com/langchain-ai/langchain/pull/30167
2025-03-07 20:43:05 +00:00
ccurme
17507c9ba6
groq[patch]: release 0.2.5 (#30168) 2025-03-07 20:25:51 +00:00
andyzhou1982
9e863c89d2
add JiebaLinkExtractor for chinese doc extracting (#30150)
Thank you for contributing to LangChain!

- [ ] **PR title**: "community: chinese doc extracting"


- [ ] **PR message**: 
- **Description:** add jieba_link_extractor.py for chinese doc
extracting
    - **Dependencies:** jieba


- [ ] **Add tests and docs**: If you're adding a new integration, please
include
  /doc/doc/integrations/providers/jieba.md
  /doc/doc/integrations/vectorstores/jieba_link_extractor.ipynb
  /libs/packages.yml

---------

Co-authored-by: Chester Curme <chester.curme@gmail.com>
2025-03-07 20:21:46 +00:00
ccurme
74e7772a5f
groq[patch]: warn if model is not specified (#30161)
Groq is retiring `mixtral-8x7b-32768`, which is currently the default
model for ChatGroq, on March 20. Here we emit a warning if the model is
not specified explicitly.

A version 0.3.0 will be released ahead of March 20 that removes the
default altogether.
2025-03-07 15:21:13 -05:00
Ioannis Bakagiannis
3444e587ee
docs: Integration Update - ADS4GPTs (#30153)
docs: New integration for LangChain - ads4gpts-langchain

Description: Tools and Toolkit for Agentic integration natively within
LangChain with ADS4GPTs, in order to help applications monetize with
advertising.

Twitter handle: @ads4gpts

Co-authored-by: knitlydevaccount <loom+github@knitly.app>
2025-03-07 14:35:44 -05:00
ccurme
3c258194ae
tests[patch]: release 0.3.14 (#30165) 2025-03-07 18:34:05 +00:00
ccurme
34638ccfae
openai[patch]: release 0.3.8 (#30164) 2025-03-07 18:26:40 +00:00
ccurme
4e5058f29c
core[patch]: release 0.3.42 (#30163) 2025-03-07 18:14:45 +00:00
Eugene Yurtsev
894fd63a61
cli: release 0.0.36 (#30159)
Bump for 0.0.36
2025-03-07 13:05:40 -05:00
ccurme
806211475a
core[patch]: update structured output tracing (#30123)
- Trace JSON schema in `options`
- Rename to `ls_structured_output_format`
2025-03-07 13:05:25 -05:00
ccurme
230876a7c5
anthropic[patch]: add PDF input example to API reference (#30156) 2025-03-07 14:19:08 +00:00
joeconstantino
022ff9eead
Tableau docs for new datasource qa tool (#30125)
- **Description: a notebook showing langchain and langraph agents using
the new langchain_tableau tool
- **Twitter handle: @joe_constantin0

---------

Co-authored-by: Joe Constantino <joe@constantino.com>
Co-authored-by: Chester Curme <chester.curme@gmail.com>
2025-03-06 14:58:56 +00:00
ccurme
52b0570bec
core, openai, standard-tests: improve OpenAI compatibility with Anthropic content blocks (#30128)
- Support thinking blocks in core's `convert_to_openai_messages` (pass
through instead of error)
- Ignore thinking blocks in ChatOpenAI (instead of error)
- Support Anthropic-style image blocks in ChatOpenAI

---

Standard integration tests include a `supports_anthropic_inputs`
property which is currently enabled only for tests on `ChatAnthropic`.
This test enforces compatibility with message histories of the form:
```
- system message
- human message
- AI message with tool calls specified only through `tool_use` content blocks
- human message containing `tool_result` and an additional `text` block
```
It additionally checks support for Anthropic-style image inputs if
`supports_image_inputs` is enabled.

Here we change this test, such that if you enable
`supports_anthropic_inputs`:
- You support AI messages with text and `tool_use` content blocks
- You support Anthropic-style image inputs (if `supports_image_inputs`
is enabled)
- You support thinking content blocks.

That is, we add a test case for thinking content blocks, but we also
remove the requirement of handling tool results within HumanMessages
(motivated by existing agent abstractions, which should all return
ToolMessage). We move that requirement to a ChatAnthropic-specific test.
2025-03-06 09:53:14 -05:00
Pat Patterson
b3dc66f7a3
community: fix AttributeError when creating LanceDB vectorstore (#30127)
**Description:**

This PR adds a call to `guard_import()` to fix an AttributeError raised
when creating LanceDB vectorstore instance with an existing LanceDB
table.

**Issue:**

This PR fixes issue #30124.

**Dependencies:**

No additional dependencies.

**Twitter handle:**

[@metadaddy](https://x.com/metadaddy), but I spend more time at
[@metadaddy.net](https://bsky.app/profile/metadaddy.net) these days.

---------

Co-authored-by: Chester Curme <chester.curme@gmail.com>
2025-03-05 23:04:38 +00:00
Hugh Gao
9b7b8e4a1a
community: make DashScope models support Partial Mode for text continuation. (#30108)
## Description
make DashScope models support Partial Mode for text continuation.

For text continuation in ChatTongYi, it supports text continuation with
a prefix by adding a "partial" argument in AIMessage. The document is
[Partial Mode
](https://help.aliyun.com/zh/model-studio/user-guide/partial-mode?spm=a2c4g.11186623.help-menu-2400256.d_1_0_0_8.211e5b77KMH5Pn&scm=20140722.H_2862210._.OR_help-T_cn~zh-V_1).
The API example is:
```py
import os
import dashscope

messages = [{
    "role": "user",
    "content": "请对“春天来了,大地”这句话进行续写,来表达春天的美好和作者的喜悦之情"
},
{
    "role": "assistant",
    "content": "春天来了,大地",
    "partial": True
}]
response = dashscope.Generation.call(
    api_key=os.getenv("DASHSCOPE_API_KEY"),
    model='qwen-plus',
    messages=messages,
    result_format='message',  
)

print(response.output.choices[0].message.content)
```

---------

Co-authored-by: Chester Curme <chester.curme@gmail.com>
2025-03-05 16:22:14 +00:00
黑牛
f0153414d5
Add request_id field to improve request tracking and debugging (for Tongyi model) (#30110)
- **Description**: Added the request_id field to the check_response
function to improve request tracking and debugging, applicable for the
Tongyi model.
- **Issue**: None
- **Dependencies**: None
- **Twitter handle**: None

- **Add tests and docs**: None

- **Lint and test**: Ran `make format`, `make lint`, and `make test` to
ensure the code meets formatting and testing requirements.
2025-03-05 11:03:47 -05:00
Manthan Surkar
1ee8aceaee
community: fix Jira API wrapper failing initialization with cloud param (#30117)
### **Description**  
Converts the boolean `jira_cloud` parameter in the Jira API Wrapper to a
string before initializing the Jira Client. Also adds tests for the
same.

### **Issue**  
[Jira API Wrapper
Bug](8abb65e138/libs/community/langchain_community/utilities/jira.py (L47))

```python
jira_cloud_str = get_from_dict_or_env(values, "jira_cloud", "JIRA_CLOUD")
jira_cloud = jira_cloud_str.lower() == "true"
```

The above code has a bug where the value of `"jira_cloud"` is a boolean.
If it is passed, calling `.lower()` on a boolean raises an error.
Additionally, `False` cannot be passed explicitly since
`get_from_dict_or_env` falls back to environment variables.

Relevant code in `langchain_core`:  

[Source](https://github.com/thesmallstar/langchain/blob/master/.venv/lib/python3.13/site-packages/langchain_core/utils/env.py#L46)

```python
if isinstance(key, str) and key in data and data[key]:  # Here, data[key] is False
```

This PR fixes both issues.

### **Twitter Handle**  
[Manthan Surkar](https://x.com/manthan_surkar)
2025-03-05 10:49:25 -05:00
Adrián Panella
c599ba47d5
core(mermaid): fix error when 3+ subgraph levels (#29970) 2025-03-04 13:27:49 -05:00
Alexander Henlein
417efa30a6
docs: add Taiga Tool integration docs (#30042)
This PR adds documentation for the langchain-taiga Tool integration,
including an example notebook at
'docs/docs/integrations/tools/taiga.ipynb' and updates to
'libs/packages.yml' to track the new package.

Issue:
N/A

Dependencies:
None

Twitter handle:
N/A

---------

Co-authored-by: ccurme <chester.curme@gmail.com>
2025-03-04 17:51:20 +00:00
Mathias Marciano
5f0102242a
Fixed an issue with the OpenAI Assistant's 'retrieval' tool and adding support for the 'attachments' parameter (#30006)
PR Title:
langchain: add attachments support in OpenAIAssistantRunnable

PR Description:
This PR fixes an issue with the "retrieval" tool (internally named
"file_search") in the OpenAI Assistant by adding support for the
"attachments" parameter in the invoke method. This change allows files
to be linked to messages when they are inserted into threads, which is
essential for utilizing OpenAI's Retrieval Augmented Generation (RAG)
feature.

Issue:
N/A

Dependencies:
None

Twitter handle:
N/A

---------

Co-authored-by: Chester Curme <chester.curme@gmail.com>
2025-03-04 17:34:11 +00:00
Philippe PRADOS
4710c1fa8c
community[minor]: Fix regular expression in visualize and outlines modules. (#30002)
Fix invalid escape characteres
2025-03-04 12:23:48 -05:00
ccurme
577c0d0715
community[patch]: release 0.3.19 (#30104) 2025-03-04 16:12:03 +00:00
ccurme
ba5ddb218f
anthropic[patch]: release 0.3.9 (#30103) 2025-03-04 10:53:55 -05:00
ccurme
9383a0536a
tests[patch]: release 0.3.13 (#30102) 2025-03-04 10:53:43 -05:00
ccurme
fb16c25920
langchain[patch]: release 0.3.20 (#30101) 2025-03-04 15:47:27 +00:00
ccurme
692a68bf1c
core[patch]: release 0.3.41 (#30100) 2025-03-04 15:08:57 +00:00