## Description
As proposed in our earlier discussion #26977 we have introduced a Google
Books API Tool that leverages the Google Books API found at
[https://developers.google.com/books/docs/v1/using](https://developers.google.com/books/docs/v1/using)
to generate book recommendations.
### Sample Usage
```python
from langchain_community.tools import GoogleBooksQueryRun
from langchain_community.utilities import GoogleBooksAPIWrapper
api_wrapper = GoogleBooksAPIWrapper()
tool = GoogleBooksQueryRun(api_wrapper=api_wrapper)
tool.run('ai')
```
### Sample Output
```txt
Here are 5 suggestions based off your search for books related to ai:
1. "AI's Take on the Stigma Against AI-Generated Content" by Sandy Y. Greenleaf: In a world where artificial intelligence (AI) is rapidly advancing and transforming various industries, a new form of content creation has emerged: AI-generated content. However, despite its potential to revolutionize the way we produce and consume information, AI-generated content often faces a significant stigma. "AI's Take on the Stigma Against AI-Generated Content" is a groundbreaking book that delves into the heart of this issue, exploring the reasons behind the stigma and offering a fresh, unbiased perspective on the topic. Written from the unique viewpoint of an AI, this book provides readers with a comprehensive understanding of the challenges and opportunities surrounding AI-generated content. Through engaging narratives, thought-provoking insights, and real-world examples, this book challenges readers to reconsider their preconceptions about AI-generated content. It explores the potential benefits of embracing this technology, such as increased efficiency, creativity, and accessibility, while also addressing the concerns and drawbacks that contribute to the stigma. As you journey through the pages of this book, you'll gain a deeper understanding of the complex relationship between humans and AI in the realm of content creation. You'll discover how AI can be used as a tool to enhance human creativity, rather than replace it, and how collaboration between humans and machines can lead to unprecedented levels of innovation. Whether you're a content creator, marketer, business owner, or simply someone curious about the future of AI and its impact on our society, "AI's Take on the Stigma Against AI-Generated Content" is an essential read. With its engaging writing style, well-researched insights, and practical strategies for navigating this new landscape, this book will leave you equipped with the knowledge and tools needed to embrace the AI revolution and harness its potential for success. Prepare to have your assumptions challenged, your mind expanded, and your perspective on AI-generated content forever changed. Get ready to embark on a captivating journey that will redefine the way you think about the future of content creation.
Read more at https://play.google.com/store/books/details?id=4iH-EAAAQBAJ&source=gbs_api
2. "AI Strategies For Web Development" by Anderson Soares Furtado Oliveira: From fundamental to advanced strategies, unlock useful insights for creating innovative, user-centric websites while navigating the evolving landscape of AI ethics and security Key Features Explore AI's role in web development, from shaping projects to architecting solutions Master advanced AI strategies to build cutting-edge applications Anticipate future trends by exploring next-gen development environments, emerging interfaces, and security considerations in AI web development Purchase of the print or Kindle book includes a free PDF eBook Book Description If you're a web developer looking to leverage the power of AI in your projects, then this book is for you. Written by an AI and ML expert with more than 15 years of experience, AI Strategies for Web Development takes you on a transformative journey through the dynamic intersection of AI and web development, offering a hands-on learning experience.The first part of the book focuses on uncovering the profound impact of AI on web projects, exploring fundamental concepts, and navigating popular frameworks and tools. As you progress, you'll learn how to build smart AI applications with design intelligence, personalized user journeys, and coding assistants. Later, you'll explore how to future-proof your web development projects using advanced AI strategies and understand AI's impact on jobs. Toward the end, you'll immerse yourself in AI-augmented development, crafting intelligent web applications and navigating the ethical landscape.Packed with insights into next-gen development environments, AI-augmented practices, emerging realities, interfaces, and security governance, this web development book acts as your roadmap to staying ahead in the AI and web development domain. What you will learn Build AI-powered web projects with optimized models Personalize UX dynamically with AI, NLP, chatbots, and recommendations Explore AI coding assistants and other tools for advanced web development Craft data-driven, personalized experiences using pattern recognition Architect effective AI solutions while exploring the future of web development Build secure and ethical AI applications following TRiSM best practices Explore cutting-edge AI and web development trends Who this book is for This book is for web developers with experience in programming languages and an interest in keeping up with the latest trends in AI-powered web development. Full-stack, front-end, and back-end developers, UI/UX designers, software engineers, and web development enthusiasts will also find valuable information and practical guidelines for developing smarter websites with AI. To get the most out of this book, it is recommended that you have basic knowledge of programming languages such as HTML, CSS, and JavaScript, as well as a familiarity with machine learning concepts.
Read more at https://play.google.com/store/books/details?id=FzYZEQAAQBAJ&source=gbs_api
3. "Artificial Intelligence for Students" by Vibha Pandey: A multifaceted approach to develop an understanding of AI and its potential applications KEY FEATURES ● AI-informed focuses on AI foundation, applications, and methodologies. ● AI-inquired focuses on computational thinking and bias awareness. ● AI-innovate focuses on creative and critical thinking and the Capstone project. DESCRIPTION AI is a discipline in Computer Science that focuses on developing intelligent machines, machines that can learn and then teach themselves. If you are interested in AI, this book can definitely help you prepare for future careers in AI and related fields. The book is aligned with the CBSE course, which focuses on developing employability and vocational competencies of students in skill subjects. The book is an introduction to the basics of AI. It is divided into three parts – AI-informed, AI-inquired and AI-innovate. It will help you understand AI's implications on society and the world. You will also develop a deeper understanding of how it works and how it can be used to solve complex real-world problems. Additionally, the book will also focus on important skills such as problem scoping, goal setting, data analysis, and visualization, which are essential for success in AI projects. Lastly, you will learn how decision trees, neural networks, and other AI concepts are commonly used in real-world applications. By the end of the book, you will develop the skills and competencies required to pursue a career in AI. WHAT YOU WILL LEARN ● Get familiar with the basics of AI and Machine Learning. ● Understand how and where AI can be applied. ● Explore different applications of mathematical methods in AI. ● Get tips for improving your skills in Data Storytelling. ● Understand what is AI bias and how it can affect human rights. WHO THIS BOOK IS FOR This book is for CBSE class XI and XII students who want to learn and explore more about AI. Basic knowledge of Statistical concepts, Algebra, and Plotting of equations is a must. TABLE OF CONTENTS 1. Introduction: AI for Everyone 2. AI Applications and Methodologies 3. Mathematics in Artificial Intelligence 4. AI Values (Ethical Decision-Making) 5. Introduction to Storytelling 6. Critical and Creative Thinking 7. Data Analysis 8. Regression 9. Classification and Clustering 10. AI Values (Bias Awareness) 11. Capstone Project 12. Model Lifecycle (Knowledge) 13. Storytelling Through Data 14. AI Applications in Use in Real-World
Read more at https://play.google.com/store/books/details?id=ptq1EAAAQBAJ&source=gbs_api
4. "The AI Book" by Ivana Bartoletti, Anne Leslie and Shân M. Millie: Written by prominent thought leaders in the global fintech space, The AI Book aggregates diverse expertise into a single, informative volume and explains what artifical intelligence really means and how it can be used across financial services today. Key industry developments are explained in detail, and critical insights from cutting-edge practitioners offer first-hand information and lessons learned. Coverage includes: · Understanding the AI Portfolio: from machine learning to chatbots, to natural language processing (NLP); a deep dive into the Machine Intelligence Landscape; essentials on core technologies, rethinking enterprise, rethinking industries, rethinking humans; quantum computing and next-generation AI · AI experimentation and embedded usage, and the change in business model, value proposition, organisation, customer and co-worker experiences in today’s Financial Services Industry · The future state of financial services and capital markets – what’s next for the real-world implementation of AITech? · The innovating customer – users are not waiting for the financial services industry to work out how AI can re-shape their sector, profitability and competitiveness · Boardroom issues created and magnified by AI trends, including conduct, regulation & oversight in an algo-driven world, cybersecurity, diversity & inclusion, data privacy, the ‘unbundled corporation’ & the future of work, social responsibility, sustainability, and the new leadership imperatives · Ethical considerations of deploying Al solutions and why explainable Al is so important
Read more at http://books.google.ca/books?id=oE3YDwAAQBAJ&dq=ai&hl=&source=gbs_api
5. "Artificial Intelligence in Society" by OECD: The artificial intelligence (AI) landscape has evolved significantly from 1950 when Alan Turing first posed the question of whether machines can think. Today, AI is transforming societies and economies. It promises to generate productivity gains, improve well-being and help address global challenges, such as climate change, resource scarcity and health crises.
Read more at https://play.google.com/store/books/details?id=eRmdDwAAQBAJ&source=gbs_api
```
## Issue
This closes#27276
## Dependencies
No additional dependencies were added
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
Thank you for contributing to LangChain!
- [x] **PR title**: "community: chat models wrapper for Cloudflare
Workers AI"
- [x] **PR message**:
- **Description:** Add chat models wrapper for Cloudflare Workers AI.
Enables Langgraph intergration via ChatModel for tool usage, agentic
usage.
- [x] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
Co-authored-by: Chester Curme <chester.curme@gmail.com>
## Description
This PR adds support for Memcached as a usable LLM model cache by adding
the ```MemcachedCache``` implementation relying on the
[pymemcache](https://github.com/pinterest/pymemcache) client.
Unit test-wise, the new integration is generally covered under existing
import testing. All new functionality depends on pymemcache if
instantiated and used, so to comply with the other cache implementations
the PR also adds optional integration tests for ```MemcachedCache```.
Since this is a new integration, documentation is added for Memcached as
an integration and as an LLM Cache.
## Issue
This PR closes#27275 which was originally raised as a discussion in
#27035
## Dependencies
There are no new required dependencies for langchain, but
[pymemcache](https://github.com/pinterest/pymemcache) is required to
instantiate the new ```MemcachedCache```.
## Example Usage
```python3
from langchain.globals import set_llm_cache
from langchain_openai import OpenAI
from langchain_community.cache import MemcachedCache
from pymemcache.client.base import Client
llm = OpenAI(model="gpt-3.5-turbo-instruct", n=2, best_of=2)
set_llm_cache(MemcachedCache(Client('localhost')))
# The first time, it is not yet in cache, so it should take longer
llm.invoke("Which city is the most crowded city in the USA?")
# The second time it is, so it goes faster
llm.invoke("Which city is the most crowded city in the USA?")
```
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
Description:
This fixes an issue that mistakenly created in
https://github.com/langchain-ai/langchain/pull/27253. The issue
currently exists only in `langchain-community==0.3.4`.
Test cases were added to prevent this issue in the future.
Co-authored-by: Erick Friis <erick@langchain.dev>
**Description:** Add support for Writer chat models
**Issue:** N/A
**Dependencies:** Add `writer-sdk` to optional dependencies.
**Twitter handle:** Please tag `@samjulien` and `@Get_Writer`
**Tests and docs**
- [x] Unit test
- [x] Example notebook in `docs/docs/integrations` directory.
**Lint and test**
- [x] Run `make format`
- [x] Run `make lint`
- [x] Run `make test`
---------
Co-authored-by: Johannes <tolstoy.work@gmail.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
**Description:**
- Fix bug in Replicate LLM class, where it was looking for parameter
names in a place where they no longer exist in pydantic 2, resulting in
the "Field required" validation error described in the issue.
- Fix Replicate LLM integration tests to:
- Use active models on Replicate.
- Use the correct model parameter `max_new_tokens` as shown in the
[Replicate
docs](https://replicate.com/docs/guides/language-models/how-to-use#minimum-and-maximum-new-tokens).
- Use callbacks instead of deprecated callback_manager.
**Issue:** #26937
**Dependencies:** n/a
**Twitter handle:** n/a
---------
Signed-off-by: Fayvor Love <fayvor@gmail.com>
Co-authored-by: Chester Curme <chester.curme@gmail.com>
Reopened as a personal repo outside the organization.
## Description
- Naver HyperCLOVA X community package
- Add chat model & embeddings
- Add unit test & integration test
- Add chat model & embeddings docs
- I changed partner
package(https://github.com/langchain-ai/langchain/pull/24252) to
community package on this PR
- Could this
embeddings(https://github.com/langchain-ai/langchain/pull/21890) be
deprecated? We are trying to replace it with embedding
model(**ClovaXEmbeddings**) in this PR.
Twitter handle: None. (if needed, contact with
joonha.jeon@navercorp.com)
---
you can check our previous discussion below:
> one question on namespaces - would it make sense to have these in
.clova namespaces instead of .naver?
I would like to keep it as is, unless it is essential to unify the
package name.
(ClovaX is a branding for the model, and I plan to add other models and
components. They need to be managed as separate classes.)
> also, could you clarify the difference between ClovaEmbeddings and
ClovaXEmbeddings?
There are 3 models that are being serviced by embedding, and all are
supported in the current PR. In addition, all the functionality of CLOVA
Studio that serves actual models, such as distinguishing between test
apps and service apps, is supported. The existing PR does not support
this content because it is hard-coded.
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
Co-authored-by: Vadym Barda <vadym@langchain.dev>
**Description:**
This PR updates `CassandraGraphVectorStore` to be based off
`CassandraVectorStore`, instead of using a custom CQL implementation.
This allows users using a `CassandraVectorStore` to upgrade to a
`GraphVectorStore` without having to change their database schema or
re-embed documents.
This PR also updates the documentation of the `GraphVectorStore` base
class and contains native async implementations for the standard graph
methods: `traversal_search` and `mmr_traversal_search` in
`CassandraVectorStore`.
**Issue:** No issue number.
**Dependencies:** https://github.com/langchain-ai/langchain/pull/27078
(already-merged)
**Lint and test**:
- Lint and tests all pass, including existing
`CassandraGraphVectorStore` tests.
- Also added numerous additional tests based of the tests in
`langchain-astradb` which cover many more scenarios than the existing
tests for `Cassandra` and `CassandraGraphVectorStore`
** BREAKING CHANGE**
Note that this is a breaking change for existing users of
`CassandraGraphVectorStore`. They will need to wipe their database table
and restart.
However:
- The interfaces have not changed. Just the underlying storage
mechanism.
- Any one using `langchain_community.vectorstores.Cassandra` can instead
use `langchain_community.graph_vectorstores.CassandraGraphVectorStore`
and they will gain Graph capabilities without having to re-embed their
existing documents. This is the primary goal of this PR.
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
This PR updates the integration with OCI data science model deployment
service.
- Update LLM to support streaming and async calls.
- Added chat model.
- Updated tests and docs.
- Updated `libs/community/scripts/check_pydantic.sh` since the use of
`@pre_init` is removed from existing integration.
- Updated `libs/community/extended_testing_deps.txt` as this integration
requires `langchain_openai`.
---------
Co-authored-by: MING KANG <ming.kang@oracle.com>
Co-authored-by: Dmitrii Cherkasov <dmitrii.cherkasov@oracle.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
**Description**:
this PR enable VectorStore TLS and authentication (digest, basic) with
HTTP/2 for Infinispan server.
Based on httpx.
Added docker-compose facilities for testing
Added documentation
**Dependencies:**
requires `pip install httpx[http2]` if HTTP2 is needed
**Twitter handle:**
https://twitter.com/infinispan
**Description:** this PR adds a set of methods to deal with metadata
associated to the vector store entries. These, while essential to the
Graph-related extension of the `Cassandra` vector store, are also useful
in themselves. These are (all come in their sync+async versions):
- `[a]delete_by_metadata_filter`
- `[a]replace_metadata`
- `[a]get_by_document_id`
- `[a]metadata_search`
Additionally, a `[a]similarity_search_with_embedding_id_by_vector`
method is introduced to better serve the store's internal working (esp.
related to reranking logic).
**Issue:** no issue number, but now all Document's returned bear their
`.id` consistently (as a consequence of a slight refactoring in how the
raw entries read from DB are made back into `Document` instances).
**Dependencies:** (no new deps: packaging comes through langchain-core
already; `cassio` is now required to be version 0.1.10+)
**Add tests and docs**
Added integration tests for the relevant newly-introduced methods.
(Docs will be updated in a separate PR).
**Lint and test** Lint and (updated) test all pass.
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
Given the current erroring behavior, every time we've moved a kwarg from
model_kwargs and made it its own field that was a breaking change.
Updating this behavior to support the old instantiations /
serializations.
Assuming build_extra_kwargs was not something that itself is being used
externally and needs to be kept backwards compatible
These allow converting linked documents (such as those used with
GraphVectorStore) to networkx for rendering and/or in-memory graph
algorithms such as community detection.
**Description**:
Adds a vector store integration with
[sqlite-vec](https://alexgarcia.xyz/sqlite-vec/), the successor to
sqlite-vss that is a single C file with no external dependencies.
Pretty straightforward, just copy-pasted the sqlite-vss integration and
made a few tweaks and added integration tests. Only question is whether
all documentation should be directed away from sqlite-vss if it is
defacto deprecated (cc @asg017).
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
Co-authored-by: philippe-oger <philippe.oger@adevinta.com>
- **Description:** Added PebbloTextLoader for loading text in
PebbloSafeLoader.
- Since PebbloSafeLoader wraps document loaders, this new loader enables
direct loading of text into Documents using PebbloSafeLoader.
- **Issue:** NA
- **Dependencies:** NA
- [x] **Tests**: Added/Updated tests
# Description
[Vector store base
class](4cdaca67dc/libs/core/langchain_core/vectorstores/base.py (L65))
currently expects `ids` to be passed in and that is what it passes along
to the AzureSearch vector store when attempting to `add_texts()`.
However AzureSearch expects `keys` to be passed in. When they are not
present, AzureSearch `add_embeddings()` makes up new uuids. This is a
problem when trying to run indexing. [Indexing code
expects](b297af5482/libs/core/langchain_core/indexing/api.py (L371))
the documents to be uploaded using provided ids. Currently AzureSearch
ignores `ids` passed from `indexing` and makes up new ones. Later when
`indexer` attempts to delete removed file, it uses the `id` it had
stored when uploading the document, however it was uploaded under
different `id`.
**Twitter handle: @martintriska1**
Thank you for contributing to LangChain!
- [ ] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
- Example: "community: add foobar LLM"
- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** a description of the change
- **Issue:** the issue # it fixes, if applicable
- **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!
- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
### Description:
This pull request significantly enhances the MongodbLoader class in the
LangChain community package by adding robust metadata customization and
improved field extraction capabilities. The updated class now allows
users to specify additional metadata fields through the metadata_names
parameter, enabling the extraction of both top-level and deeply nested
document attributes as metadata. This flexibility is crucial for users
who need to include detailed contextual information without altering the
database schema.
Moreover, the include_db_collection_in_metadata flag offers optional
inclusion of database and collection names in the metadata, allowing for
even greater customization depending on the user's needs.
The loader's field extraction logic has been refined to handle missing
or nested fields more gracefully. It now employs a safe access mechanism
that avoids the KeyError previously encountered when a specified nested
field was absent in a document. This update ensures that the loader can
handle diverse and complex data structures without failure, making it
more resilient and user-friendly.
### Issue:
This pull request addresses a critical issue where the MongodbLoader
class in the LangChain community package could throw a KeyError when
attempting to access nested fields that may not exist in some documents.
The previous implementation did not handle the absence of specified
nested fields gracefully, leading to runtime errors and interruptions in
data processing workflows.
This enhancement ensures robust error handling by safely accessing
nested document fields, using default values for missing data, thus
preventing KeyError and ensuring smoother operation across various data
structures in MongoDB. This improvement is crucial for users working
with diverse and complex data sets, ensuring the loader can adapt to
documents with varying structures without failing.
### Dependencies:
Requires motor for asynchronous MongoDB interaction.
### Twitter handle:
N/A
### Add tests and docs
Tests: Unit tests have been added to verify that the metadata inclusion
toggle works as expected and that the field extraction correctly handles
nested fields.
Docs: An example notebook demonstrating the use of the enhanced
MongodbLoader is included in the docs/docs/integrations directory. This
notebook includes setup instructions, example usage, and outputs.
(Here is the notebook link : [colab
link](https://colab.research.google.com/drive/1tp7nyUnzZa3dxEFF4Kc3KS7ACuNF6jzH?usp=sharing))
Lint and test
Before submitting, I ran make format, make lint, and make test as per
the contribution guidelines. All tests pass, and the code style adheres
to the LangChain standards.
```python
import unittest
from unittest.mock import patch, MagicMock
import asyncio
from langchain_community.document_loaders.mongodb import MongodbLoader
class TestMongodbLoader(unittest.TestCase):
def setUp(self):
"""Setup the MongodbLoader test environment by mocking the motor client
and database collection interactions."""
# Mocking the AsyncIOMotorClient
self.mock_client = MagicMock()
self.mock_db = MagicMock()
self.mock_collection = MagicMock()
self.mock_client.get_database.return_value = self.mock_db
self.mock_db.get_collection.return_value = self.mock_collection
# Initialize the MongodbLoader with test data
self.loader = MongodbLoader(
connection_string="mongodb://localhost:27017",
db_name="testdb",
collection_name="testcol"
)
@patch('langchain_community.document_loaders.mongodb.AsyncIOMotorClient', return_value=MagicMock())
def test_constructor(self, mock_motor_client):
"""Test if the constructor properly initializes with the correct database and collection names."""
loader = MongodbLoader(
connection_string="mongodb://localhost:27017",
db_name="testdb",
collection_name="testcol"
)
self.assertEqual(loader.db_name, "testdb")
self.assertEqual(loader.collection_name, "testcol")
def test_aload(self):
"""Test the aload method to ensure it correctly queries and processes documents."""
# Setup mock data and responses for the database operations
self.mock_collection.count_documents.return_value = asyncio.Future()
self.mock_collection.count_documents.return_value.set_result(1)
self.mock_collection.find.return_value = [
{"_id": "1", "content": "Test document content"}
]
# Run the aload method and check responses
loop = asyncio.get_event_loop()
results = loop.run_until_complete(self.loader.aload())
self.assertEqual(len(results), 1)
self.assertEqual(results[0].page_content, "Test document content")
def test_construct_projection(self):
"""Verify that the projection dictionary is constructed correctly based on field names."""
self.loader.field_names = ['content', 'author']
self.loader.metadata_names = ['timestamp']
expected_projection = {'content': 1, 'author': 1, 'timestamp': 1}
projection = self.loader._construct_projection()
self.assertEqual(projection, expected_projection)
if __name__ == '__main__':
unittest.main()
```
### Additional Example for Documentation
Sample Data:
```json
[
{
"_id": "1",
"title": "Artificial Intelligence in Medicine",
"content": "AI is transforming the medical industry by providing personalized medicine solutions.",
"author": {
"name": "John Doe",
"email": "john.doe@example.com"
},
"tags": ["AI", "Healthcare", "Innovation"]
},
{
"_id": "2",
"title": "Data Science in Sports",
"content": "Data science provides insights into player performance and strategic planning in sports.",
"author": {
"name": "Jane Smith",
"email": "jane.smith@example.com"
},
"tags": ["Data Science", "Sports", "Analytics"]
}
]
```
Example Code:
```python
loader = MongodbLoader(
connection_string="mongodb://localhost:27017",
db_name="example_db",
collection_name="articles",
filter_criteria={"tags": "AI"},
field_names=["title", "content"],
metadata_names=["author.name", "author.email"],
include_db_collection_in_metadata=True
)
documents = loader.load()
for doc in documents:
print("Page Content:", doc.page_content)
print("Metadata:", doc.metadata)
```
Expected Output:
```
Page Content: Artificial Intelligence in Medicine AI is transforming the medical industry by providing personalized medicine solutions.
Metadata: {'author_name': 'John Doe', 'author_email': 'john.doe@example.com', 'database': 'example_db', 'collection': 'articles'}
```
Thank you.
---
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
---------
Co-authored-by: ccurme <chester.curme@gmail.com>
- **PR title**: "community: add Jina Search tool"
- **Description:** Added the Jina Search tool for querying the Jina
search API. This includes the implementation of the JinaSearchAPIWrapper
and the JinaSearch tool, along with a Jupyter notebook example
demonstrating its usage.
- **Issue:** N/A
- **Dependencies:** N/A
- **Twitter handle:** [Twitter
handle](https://x.com/yashp3020?t=7wM0gQ7XjGciFoh9xaBtqA&s=09)
- [x] **Add tests and docs**: If you're adding a new integration, please
include
1. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
Co-authored-by: Chester Curme <chester.curme@gmail.com>
**Description:**
Adding a new option to the CSVLoader that allows us to implicitly
specify the columns that are used for generating the Document content.
Currently these are implicitly set as "all fields not part of the
metadata_columns".
In some cases however it is useful to have a field both as a metadata
and as part of the document content.
Description:
- Add system templates and user templates in integration testing
- initialize the response id field value to request_id
- Adjust the default model to hunyuan-pro
- Remove the default values of Temperature and TopP
- Add SystemMessage
all the integration tests have passed.
1、Execute integration tests for the first time
<img width="1359" alt="71ca77a2-e9be-4af6-acdc-4d665002bd9b"
src="https://github.com/user-attachments/assets/9298dc3a-aa26-4bfa-968b-c011a4e699c9">
2、Run the integration test a second time
<img width="1501" alt="image"
src="https://github.com/user-attachments/assets/61335416-4a67-4840-bb89-090ba668e237">
Issue: None
Dependencies: None
Twitter handle: None
---------
Co-authored-by: Chester Curme <chester.curme@gmail.com>
**Description:** [IPEX-LLM](https://github.com/intel-analytics/ipex-llm)
is a PyTorch library for running LLM on Intel CPU and GPU (e.g., local
PC with iGPU, discrete GPU such as Arc, Flex and Max) with very low
latency. This PR adds Intel GPU support to `ipex-llm` llm integration.
**Dependencies:** `ipex-llm`
**Contribution maintainer**: @ivy-lv11 @Oscilloscope98
**tests and docs**:
- Add: langchain/docs/docs/integrations/llms/ipex_llm_gpu.ipynb
- Update: langchain/docs/docs/integrations/llms/ipex_llm_gpu.ipynb
- Update: langchain/libs/community/tests/llms/test_ipex_llm.py
---------
Co-authored-by: ivy-lv11 <zhicunlv@gmail.com>
- [x] **PR title - community: add neo4j query constructor for self
query**
- [x] **PR message**
- **Description:** adding a Neo4jTranslator so that the Neo4j vector
database can use SelfQueryRetriever
- **Issue:** this issue had been raised before in #19748
- **Dependencies:** none.
- **Twitter handle:** @moyi_dang
- p.s. I have not added the query constructor in BUILTIN_TRANSLATORS in
this PR, I want to make changes to only one package at a time.
- [x] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
---------
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Co-authored-by: Chester Curme <chester.curme@gmail.com>
- [ ] **PR title**: community: add tests for ChatOctoAI
- [ ] **PR message**:
Description: Added unit tests for the ChatOctoAI class in the community
package to ensure proper validation and default values. These tests
verify the correct initialization of fields, the handling of missing
required parameters, and the proper setting of aliases.
Issue: N/A
Dependencies: None
---------
Co-authored-by: ccurme <chester.curme@gmail.com>
Co-authored-by: Eugene Yurtsev <eugene@langchain.dev>
Thank you for contributing to LangChain!
community:premai[patch]: standardize init args
- updated `temperature` with Pydantic Field, updated the unit test.
- updated `max_tokens` with Pydantic Field, updated the unit test.
- updated `max_retries` with Pydantic Field, updated the unit test.
Related to #20085
---------
Co-authored-by: Isaac Francisco <78627776+isahers1@users.noreply.github.com>
Co-authored-by: ccurme <chester.curme@gmail.com>