**Description:**
This PR fixes a minor typo in the comments within
`libs/partners/openai/langchain_openai/chat_models/base.py`. The word
"ben" has been corrected to "be" for clarity and professionalism.
**Issue:**
N/A
**Dependencies:**
None
**Description:**
Since `ChatLiteLLM` is forwarding most parameters to
`litellm.completion(...)`, there is no reason to set other default
values than the ones defined by `litellm`.
In the case of parameter 'n', it also provokes an issue when trying to
call a serverless endpoint on Azure, as it is considered an extra
parameter. So we need to keep it optional.
We can debate about backward compatibility of this change: in my
opinion, there should not be big issues since from my experience,
calling `litellm.completion()` without these parameters works fine.
**Issue:**
- #29679
**Dependencies:** None
- **Description:** Adding keep_newlines parameter to process_pages
method with page_ids on Confluence document loader
- **Issue:** N/A (This is an enhancement rather than a bug fix)
- **Dependencies:** N/A
- **Twitter handle:** N/A
# Description
Adds documentation on LangChain website for a Dell specific document
loader for on-prem storage devices. Additional details on what the
document loader is described in the PR as well as on our github repo:
[https://github.com/dell/powerscale-rag-connector](https://github.com/dell/powerscale-rag-connector)
This PR also creates a category on the document loader webpage as no
existing category exists for on-prem. This follows the existing pattern
already established as the website has a category for cloud providers.
# Issue:
New release, no issue.
# Dependencies:
None
# Twitter handle:
DellTech
---------
Signed-off-by: Adam Brenner <adam@aeb.io>
Co-authored-by: Chester Curme <chester.curme@gmail.com>
From function calling to Ollama's [dedicated structured output
feature](https://ollama.com/blog/structured-outputs).
---------
Co-authored-by: Chester Curme <chester.curme@gmail.com>
- **Description:** I was testing out `init_chat` and saw that chat
models can now be inferred. Azure OpenAI is currently only supported but
we would like to add support for Azure AI which is a different package.
This PR edits the `base.py` file to add the chat implementation.
- I don't think this adds any additional dependencies
- Will add a test and lint, but starting an initial draft PR.
cc @santiagxf
---------
Co-authored-by: Chester Curme <chester.curme@gmail.com>
The default model for `ChatGroq`, `"mixtral-8x7b-32768"`, is being
retired on March 20, 2025. Here we remove the default, such that model
names must be explicitly specified (being explicit is a good practice
here, and avoids the need for breaking changes down the line). This
change will be released in a minor version bump to 0.3.
This follows https://github.com/langchain-ai/langchain/pull/30161
(released in version 0.2.5), where we began generating warnings to this
effect.

OpenAIWhisperParser, OpenAIWhisperParserLocal, YandexSTTParser do not
handle in-memory audio data (loaded via Blob.from_data) correctly. They
require Blob.path to be set and AudioSegment is always read from the
file system. In-memory data is handled correctly only for
FasterWhisperParser so far. I changed OpenAIWhisperParser,
OpenAIWhisperParserLocal, YandexSTTParser accordingly to match
FasterWhisperParser.
Thanks for reviewing the PR!
Co-authored-by: qonnop <qonnop@users.noreply.github.com>
**description:** the ChatModel[Integration]Tests classes are powerful
and helpful, this change allows sub-classes to add additional tests.
for instance,
```
class TestChatMyServiceIntegration(ChatModelIntegrationTests):
...
def test_myservice(self, model: BaseChatModel) -> None:
...
```
---------
Co-authored-by: ccurme <chester.curme@gmail.com>
## Description
This pull request introduces a new text splitter,
`JSFrameworkTextSplitter`, to the Langchain library. The
`JSFrameworkTextSplitter` extends the `RecursiveCharacterTextSplitter`
to handle JavaScript framework code effectively, including React (JSX),
Vue, and Svelte. It identifies and utilizes framework-specific component
tags and syntax elements as splitting points, alongside standard
JavaScript syntax. This ensures that code is divided at natural
boundaries, enhancing the parsing and processing of JavaScript and
framework-specific code.
### Key Features
- Supports React (JSX), Vue, and Svelte frameworks.
- Identifies and uses framework-specific tags and syntax elements as
natural splitting points.
- Extends the existing `RecursiveCharacterTextSplitter` for seamless
integration.
## Issue
No specific issue addressed.
## Dependencies
No additional dependencies required.
---------
Co-authored-by: ccurme <chester.curme@gmail.com>
**Description:**
Added an 'extract' mode to FireCrawlLoader that enables structured data
extraction from web pages. This feature allows users to Extract
structured data from a single URLs, or entire websites using Large
Language Models (LLMs).
You can show more params and usage on [firecrawl
docs](https://docs.firecrawl.dev/features/extract-beta).
You can extract from only one url now.(it depends on firecrawl's extract
method)
**Dependencies:**
No new dependencies required. Uses existing FireCrawl API capabilities.
---------
Co-authored-by: chbae <chbae@gcsc.co.kr>
Co-authored-by: ccurme <chester.curme@gmail.com>
FasterWhisperParser fails on a machine without an NVIDIA GPU: "Requested
float16 compute type, but the target device or backend do not support
efficient float16 computation." This problem arises because the
WhisperModel is called with compute_type="float16", which works only for
NVIDIA GPU.
According to the [CTranslate2
docs](https://opennmt.net/CTranslate2/quantization.html#bit-floating-points-float16)
float16 is supported only on NVIDIA GPUs. Removing the compute_type
parameter solves the problem for CPUs. According to the [CTranslate2
docs](https://opennmt.net/CTranslate2/quantization.html#quantize-on-model-loading)
setting compute_type to "default" (standard when omitting the parameter)
uses the original compute type of the model or performs implicit
conversion for the specific computation device (GPU or CPU). I suggest
to remove compute_type="float16".
@hulitaitai you are the original author of the FasterWhisperParser - is
there a reason for setting the parameter to float16?
Thanks for reviewing the PR!
Co-authored-by: qonnop <qonnop@users.noreply.github.com>
Thank you for contributing to LangChain!
- [x] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core, etc. is
being modified. Use "docs: ..." for purely docs changes, "infra: ..."
for CI changes.
- Example: "community: add foobar LLM"
- **Description:** Do not load non-public dimensions and measures
(public: false) with Cube semantic loader
- **Issue:** Currently, non-public dimensions and measures are loaded by
the Cube document loader which leads to downstream applications using
these which is not allowed by Cube.
- [x] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, eyurtsev, ccurme, vbarda, hwchase17.
- Support features from recent update:
https://www.anthropic.com/news/token-saving-updates (mostly adding
support for built-in tools in `bind_tools`
- Add documentation around prompt caching, token-efficient tool use, and
built-in tools.
Thank you for contributing to LangChain!
- [x] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core, etc. is
being modified. Use "docs: ..." for purely docs changes, "infra: ..."
for CI changes.
- Example: "community: add foobar LLM"
- **Description:** Fix bad log message on line#56 and replace f-string
logs with format specifiers
- **Issue:** Log messages such as this one
`INFO:langchain_community.document_loaders.cube_semantic:Loading
dimension values for: {dimension_name}...`
- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, eyurtsev, ccurme, vbarda, hwchase17.
PR Title:
community: Fix Pass API_KEY as argument
PR Message:
Description:
This PR fixes validation error "Value error, Did not find
tavily_api_key, please add an environment variable `TAVILY_API_KEY`
which contains it, or pass `tavily_api_key` as a named parameter."
Dependencies:
No new dependencies introduced.
---------
Co-authored-by: pulvedu <dustin@tavily.com>
Co-authored-by: Chester Curme <chester.curme@gmail.com>
## Description
The models in DashScope support multiple SystemMessage. Here is the
[Doc](https://bailian.console.aliyun.com/model_experience_center/text#/model-market/detail/qwen-long?tabKey=sdk),
and the example code on the document page:
```python
import os
from openai import OpenAI
client = OpenAI(
api_key=os.getenv("DASHSCOPE_API_KEY"), # 如果您没有配置环境变量,请在此处替换您的API-KEY
base_url="https://dashscope.aliyuncs.com/compatible-mode/v1", # 填写DashScope服务base_url
)
# 初始化messages列表
completion = client.chat.completions.create(
model="qwen-long",
messages=[
{'role': 'system', 'content': 'You are a helpful assistant.'},
# 请将 'file-fe-xxx'替换为您实际对话场景所使用的 file-id。
{'role': 'system', 'content': 'fileid://file-fe-xxx'},
{'role': 'user', 'content': '这篇文章讲了什么?'}
],
stream=True,
stream_options={"include_usage": True}
)
full_content = ""
for chunk in completion:
if chunk.choices and chunk.choices[0].delta.content:
# 拼接输出内容
full_content += chunk.choices[0].delta.content
print(chunk.model_dump())
print({full_content})
```
Tip: The example code is for OpenAI, but the document said that it also
supports the DataScope API, and I tested it, and it works.
```
Is the Dashscope SDK invocation method compatible?
Yes, the Dashscope SDK remains compatible for model invocation. However, file uploads and file-ID retrieval are currently only supported via the OpenAI SDK. The file-ID obtained through this method is also compatible with Dashscope for model invocation.
```