The `num_gpu` parameter in `OllamaEmbeddings` was not being passed to
the Ollama client in the async embedding method, causing GPU
acceleration settings to be ignored when using async operations.
## Problem
The issue was in the `aembed_documents` method where the `options`
parameter (containing `num_gpu` and other configuration) was missing:
```python
# Sync method (working correctly)
return self._client.embed(
self.model, texts, options=self._default_params, keep_alive=self.keep_alive
)["embeddings"]
# Async method (missing options parameter)
return (
await self._async_client.embed(
self.model, texts, keep_alive=self.keep_alive # ❌ No options!
)
)["embeddings"]
```
This meant that when users specified `num_gpu=4` (or any other GPU
configuration), it would work with sync calls but be ignored with async
calls.
## Solution
Added the missing `options=self._default_params` parameter to the async
embed call to match the sync version:
```python
# Fixed async method
return (
await self._async_client.embed(
self.model,
texts,
options=self._default_params, # ✅ Now includes num_gpu!
keep_alive=self.keep_alive,
)
)["embeddings"]
```
## Validation
- ✅ Added unit test to verify options are correctly passed in both sync
and async methods
- ✅ All existing tests continue to pass
- ✅ Manual testing confirms `num_gpu` parameter now works correctly
- ✅ Code passes linting and formatting checks
The fix ensures that GPU configuration works consistently across both
synchronous and asynchronous embedding operations.
Fixes#32059.
<!-- START COPILOT CODING AGENT TIPS -->
---
💡 You can make Copilot smarter by setting up custom instructions,
customizing its development environment and configuring Model Context
Protocol (MCP) servers. Learn more [Copilot coding agent
tips](https://gh.io/copilot-coding-agent-tips) in the docs.
---------
Co-authored-by: copilot-swe-agent[bot] <198982749+Copilot@users.noreply.github.com>
Co-authored-by: mdrxy <61371264+mdrxy@users.noreply.github.com>
Co-authored-by: Mason Daugherty <github@mdrxy.com>
* New `reasoning` (bool) param to support toggling [Ollama
thinking](https://ollama.com/blog/thinking) (#31573, #31700). If
`reasoning=True`, Ollama's `thinking` content will be placed in the
model responses' `additional_kwargs.reasoning_content`.
* Supported by:
* ChatOllama (class level, invocation level TODO)
* OllamaLLM (TODO)
* Added tests to ensure streaming tool calls is successful (#29129)
* Refactored tests that relied on `extract_reasoning()`
* Myriad docs additions and consistency/typo fixes
* Improved type safety in some spots
Closes#29129
Addresses #31573 and #31700
Supersedes #31701
* Ensure access to local model during `ChatOllama` instantiation
(#27720). This adds a new param `validate_model_on_init` (default:
`true`)
* Catch a few more errors from the Ollama client to assist users
- There was some ambiguous wording that has been updated to hopefully
clarify the functionality of `reasoning_format` in ChatGroq.
- Added support for `reasoning_effort`
- Added links to see models capable of `reasoning_format` and
`reasoning_effort`
- Other minor nits
**Description**:
Add a `async_client_kwargs` field to ollama chat/llm/embeddings adapters
that is passed to async httpx client constructor.
**Motivation:**
In my use-case:
- chat/embedding model adapters may be created frequently, sometimes to
be called just once or to never be called at all
- they may be used in bots sunc and async mode (not known at the moment
they are created)
So, I want to keep a static transport instance maintaining connection
pool, so model adapters can be created and destroyed freely. But that
doesn't work when both sync and async functions are in use as I can only
pass one transport instance for both sync and async client, while
transport types must be different for them. So I can't make both sync
and async calls use shared transport with current model adapter
interfaces.
In this PR I add a separate `async_client_kwargs` that gets passed to
async client constructor, so it will be possible to pass a separate
transport instance. For sake of backwards compatibility, it is merged
with `client_kwargs`, so nothing changes when it is not set.
I am unable to run linter right now, but the changes look ok.
- [feat] **Added backwards compatibility for OllamaEmbeddings
initialization (migration from `langchain_community.embeddings` to
`langchain_ollama.embeddings`**: "langchain_ollama"
- **Description:** Given that `OllamaEmbeddings` from
`langchain_community.embeddings` is deprecated, code is being shifted to
``langchain_ollama.embeddings`. However, this does not offer backward
compatibility of initializing the parameters and `OllamaEmbeddings`
object.
- **Issue:** #29294
- **Dependencies:** None
- **Twitter handle:** @BaqarAbbas2001
## Additional Information
Previously, `OllamaEmbeddings` from `langchain_community.embeddings`
used to support the following options:
e9abe583b2/libs/community/langchain_community/embeddings/ollama.py (L125-L139)
However, in the new package `from langchain_ollama import
OllamaEmbeddings`, there is no method to set these options. I have added
these parameters to resolve this issue.
This issue was also discussed in
https://github.com/langchain-ai/langchain/discussions/29113