This PR makes `cohere_api_key` in `llms/cohere` a SecretStr, so that the
API Key is not leaked when `Cohere.cohere_api_key` is represented as a
string.
---------
Signed-off-by: Arun <arun@arun.blog>
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
- **Description**:
[`bigdl-llm`](https://github.com/intel-analytics/BigDL) is a library for
running LLM on Intel XPU (from Laptop to GPU to Cloud) using
INT4/FP4/INT8/FP8 with very low latency (for any PyTorch model). This PR
adds bigdl-llm integrations to langchain.
- **Issue**: NA
- **Dependencies**: `bigdl-llm` library
- **Contribution maintainer**: @shane-huang
Examples added:
- docs/docs/integrations/llms/bigdl.ipynb
1. integrate with
[`Yuan2.0`](https://github.com/IEIT-Yuan/Yuan-2.0/blob/main/README-EN.md)
2. update `langchain.llms`
3. add a new doc for [Yuan2.0
integration](docs/docs/integrations/llms/yuan2.ipynb)
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
This PR enables changing the behaviour of huggingface pipeline between
different calls. For example, before this PR there's no way of changing
maximum generation length between different invocations of the chain.
This is desirable in cases, such as when we want to scale the maximum
output size depending on a dynamic prompt size.
Usage example:
```python
from langchain_community.llms.huggingface_pipeline import HuggingFacePipeline
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
model_id = "gpt2"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id)
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer)
hf = HuggingFacePipeline(pipeline=pipe)
hf("Say foo:", pipeline_kwargs={"max_new_tokens": 42})
```
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
Previously, if this did not find a mypy cache then it wouldnt run
this makes it always run
adding mypy ignore comments with existing uncaught issues to unblock other prs
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Replace this entire comment with:
- **Description:** Add Baichuan LLM to integration/llm, also updated
related docs.
Co-authored-by: BaiChuanHelper <wintergyc@WinterGYCs-MacBook-Pro.local>
Added support for optionally supplying 'Guardrails for Amazon Bedrock'
on both types of model invocations (batch/regular and streaming) and for
all models supported by the Amazon Bedrock service.
@baskaryan @hwchase17
```python
llm = Bedrock(model_id="<model_id>", client=bedrock,
model_kwargs={},
guardrails={"id": " <guardrail_id>",
"version": "<guardrail_version>",
"trace": True}, callbacks=[BedrockAsyncCallbackHandler()])
class BedrockAsyncCallbackHandler(AsyncCallbackHandler):
"""Async callback handler that can be used to handle callbacks from langchain."""
async def on_llm_error(
self,
error: BaseException,
**kwargs: Any,
) -> Any:
reason = kwargs.get("reason")
if reason == "GUARDRAIL_INTERVENED":
# kwargs contains additional trace information sent by 'Guardrails for Bedrock' service.
print(f"""Guardrails: {kwargs}""")
# streaming
llm = Bedrock(model_id="<model_id>", client=bedrock,
model_kwargs={},
streaming=True,
guardrails={"id": "<guardrail_id>",
"version": "<guardrail_version>"})
```
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
This PR introduces update to Konko Integration with LangChain.
1. **New Endpoint Addition**: Integration of a new endpoint to utilize
completion models hosted on Konko.
2. **Chat Model Updates for Backward Compatibility**: We have updated
the chat models to ensure backward compatibility with previous OpenAI
versions.
4. **Updated Documentation**: Comprehensive documentation has been
updated to reflect these new changes, providing clear guidance on
utilizing the new features and ensuring seamless integration.
Thank you to the LangChain team for their exceptional work and for
considering this PR. Please let me know if any additional information is
needed.
---------
Co-authored-by: Shivani Modi <shivanimodi@Shivanis-MacBook-Pro.local>
Co-authored-by: Shivani Modi <shivanimodi@Shivanis-MBP.lan>
Todo
- [x] copy over integration tests
- [x] update docs with new instructions in #15513
- [x] add linear ticket to bump core -> community, community->langchain,
and core->openai deps
- [ ] (optional): add `pip install langchain-openai` command to each
notebook using it
- [x] Update docstrings to not need `openai` install
- [x] Add serialization
- [x] deprecate old models
Contributor steps:
- [x] Add secret names to manual integrations workflow in
.github/workflows/_integration_test.yml
- [x] Add secrets to release workflow (for pre-release testing) in
.github/workflows/_release.yml
Maintainer steps (Contributors should not do these):
- [x] set up pypi and test pypi projects
- [x] add credential secrets to Github Actions
- [ ] add package to conda-forge
Functional changes to existing classes:
- now relies on openai client v1 (1.6.1) via concrete dep in
langchain-openai package
Codebase organization
- some function calling stuff moved to
`langchain_core.utils.function_calling` in order to be used in both
community and langchain-openai
- **Description:**
- support custom kwargs in object initialization. For instantance, QPS
differs from multiple object(chat/completion/embedding with diverse
models), for which global env is not a good choice for configuration.
- **Issue:** no
- **Dependencies:** no
- **Twitter handle:** no
@baskaryan PTAL
- **Description:** In response to user feedback, this PR refactors the
Baseten integration with updated model endpoints, as well as updates
relevant documentation. This PR has been tested by end users in
production and works as expected.
- **Issue:** N/A
- **Dependencies:** This PR actually removes the dependency on the
`baseten` package!
- **Twitter handle:** https://twitter.com/basetenco
This is technically a breaking change because it'll switch out default
models from `text-davinci-003` to `gpt-3.5-turbo-instruct`, but OpenAI
is shutting off those endpoints on 1/4 anyways.
Feels less disruptive to switch out the default instead.
Replace this entire comment with:
- **Description:** added support for new Google GenerativeAI models
- **Twitter handle:** lkuligin
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
h/t to @lkuligin
- **Description:** added new models on VertexAI
- **Twitter handle:** @lkuligin
---------
Co-authored-by: Leonid Kuligin <lkuligin@yandex.ru>
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>