Multiple models were
[retired](https://docs.anthropic.com/en/docs/about-claude/model-deprecations#model-status)
yesterday.
Tests remain broken until we figure out what to do with the legacy
Anthropic LLM integration— currently uses their (legacy) text
completions API, for which there appear to be no remaining supported
models.
* Adding support for more Chroma client options (`HttpClient` and
`CloundClient`). This includes adding arguments necessary for
instantiating these clients.
* Adding support for Chroma's new persisted collection configuration (we
moved index configuration into this new construct).
* Delegate `Settings` configuration to Chroma's client constructors.
## Problem
When using `ChatOllama` with `create_react_agent`, agents would
sometimes terminate prematurely with empty responses when Ollama
returned `done_reason: 'load'` responses with no content. This caused
agents to return empty `AIMessage` objects instead of actual generated
text.
```python
from langchain_ollama import ChatOllama
from langgraph.prebuilt import create_react_agent
from langchain_core.messages import HumanMessage
llm = ChatOllama(model='qwen2.5:7b', temperature=0)
agent = create_react_agent(model=llm, tools=[])
result = agent.invoke(HumanMessage('Hello'), {"configurable": {"thread_id": "1"}})
# Before fix: AIMessage(content='', response_metadata={'done_reason': 'load'})
# Expected: AIMessage with actual generated content
```
## Root Cause
The `_iterate_over_stream` and `_aiterate_over_stream` methods treated
any response with `done: True` as final, regardless of `done_reason`.
When Ollama returns `done_reason: 'load'` with empty content, it
indicates the model was loaded but no actual generation occurred - this
should not be considered a complete response.
## Solution
Modified the streaming logic to skip responses when:
- `done: True`
- `done_reason: 'load'`
- Content is empty or contains only whitespace
This ensures agents only receive actual generated content while
preserving backward compatibility for load responses that do contain
content.
## Changes
- **`_iterate_over_stream`**: Skip empty load responses instead of
yielding them
- **`_aiterate_over_stream`**: Apply same fix to async streaming
- **Tests**: Added comprehensive test cases covering all edge cases
## Testing
All scenarios now work correctly:
- ✅ Empty load responses are skipped (fixes original issue)
- ✅ Load responses with actual content are preserved (backward
compatibility)
- ✅ Normal stop responses work unchanged
- ✅ Streaming behavior preserved
- ✅ `create_react_agent` integration fixed
Fixes#31482.
<!-- START COPILOT CODING AGENT TIPS -->
---
💡 You can make Copilot smarter by setting up custom instructions,
customizing its development environment and configuring Model Context
Protocol (MCP) servers. Learn more [Copilot coding agent
tips](https://gh.io/copilot-coding-agent-tips) in the docs.
---------
Co-authored-by: copilot-swe-agent[bot] <198982749+Copilot@users.noreply.github.com>
Co-authored-by: mdrxy <61371264+mdrxy@users.noreply.github.com>
Co-authored-by: Mason Daugherty <github@mdrxy.com>
## **Description:**
This PR updates the internal documentation link for the RAG tutorials to
reflect the updated path. Previously, the link pointed to the root
`/docs/tutorials/`, which was generic. It now correctly routes to the
RAG-specific tutorial page for the following text-embedding models.
1. DatabricksEmbeddings
2. IBM watsonx.ai
3. OpenAIEmbeddings
4. NomicEmbeddings
5. CohereEmbeddings
6. MistralAIEmbeddings
7. FireworksEmbeddings
8. TogetherEmbeddings
9. LindormAIEmbeddings
10. ModelScopeEmbeddings
11. ClovaXEmbeddings
12. NetmindEmbeddings
13. SambaNovaCloudEmbeddings
14. SambaStudioEmbeddings
15. ZhipuAIEmbeddings
## **Issue:** N/A
## **Dependencies:** None
## **Twitter handle:** N/A
This PR addresses deprecation warnings users encounter when using
LangChain tools with Pydantic v2:
```
PydanticDeprecatedSince20: The `schema` method is deprecated; use `model_json_schema` instead.
Deprecated in Pydantic V2.0 to be removed in V3.0.
```
## Root Cause
Several LangChain components were still using the deprecated `.schema()`
method directly instead of the Pydantic v1/v2 compatible approach. While
users calling `.schema()` on returned models will still see warnings
(which is correct), LangChain's internal code should not generate these
warnings.
## Changes Made
Updated 3 files to use the standard compatibility pattern:
```python
# Before (deprecated)
schema = model.schema()
# After (compatible with both v1 and v2)
if hasattr(model, "model_json_schema"):
schema = model.model_json_schema() # Pydantic v2
else:
schema = model.schema() # Pydantic v1
```
### Files Updated:
- **`evaluation/parsing/json_schema.py`**: Fixed `_parse_json()` method
to handle Pydantic models correctly
- **`output_parsers/yaml.py`**: Fixed `get_format_instructions()` to use
compatible schema access
- **`chains/openai_functions/citation_fuzzy_match.py`**: Fixed direct
`.schema()` call on QuestionAnswer model
## Verification
✅ **Zero breaking changes** - all existing functionality preserved
✅ **No deprecation warnings** from LangChain internal code
✅ **Backward compatible** with Pydantic v1
✅ **Forward compatible** with Pydantic v2
✅ **Edge cases handled** (strings, plain objects, etc.)
## User Impact
LangChain users will no longer see deprecation warnings from internal
LangChain code. Users who directly call `.schema()` on schemas returned
by LangChain should adopt the same compatibility pattern:
```python
# User code should use this pattern
input_schema = tool.get_input_schema()
if hasattr(input_schema, "model_json_schema"):
schema_result = input_schema.model_json_schema()
else:
schema_result = input_schema.schema()
```
Fixes#31458.
<!-- START COPILOT CODING AGENT TIPS -->
---
💬 Share your feedback on Copilot coding agent for the chance to win a
$200 gift card! Click
[here](https://survey.alchemer.com/s3/8343779/Copilot-Coding-agent) to
start the survey.
---------
Co-authored-by: copilot-swe-agent[bot] <198982749+Copilot@users.noreply.github.com>
Co-authored-by: mdrxy <61371264+mdrxy@users.noreply.github.com>
Co-authored-by: Mason Daugherty <github@mdrxy.com>