Compare commits

...

70 Commits

Author SHA1 Message Date
jacoblee93
f90e665413 Lint 2024-01-28 20:46:46 -08:00
jacoblee93
fad076fa06 Lint 2024-01-28 20:43:54 -08:00
jacoblee93
59ffccf27d Fix lint 2024-01-28 20:40:39 -08:00
jacoblee93
ac85fca6f0 Switch to messages param 2024-01-28 20:28:00 -08:00
jacoblee93
f29ad020a0 Small tweak 2024-01-28 10:08:41 -08:00
jacoblee93
b67561890b Fix lint + tests 2024-01-28 10:07:21 -08:00
jacoblee93
b970bfe8da Make input param optional for retrieval chain and history aware retriever chain 2024-01-28 09:59:16 -08:00
Christophe Bornet
36e432672a community[minor]: Add async methods to AstraDBLoader (#16652) 2024-01-27 17:05:41 -08:00
William FH
38425c99d2 core[minor]: Image prompt template (#14263)
Builds on Bagatur's (#13227). See unit test for example usage (below)

```python
def test_chat_tmpl_from_messages_multipart_image() -> None:
    base64_image = "abcd123"
    other_base64_image = "abcd123"
    template = ChatPromptTemplate.from_messages(
        [
            ("system", "You are an AI assistant named {name}."),
            (
                "human",
                [
                    {"type": "text", "text": "What's in this image?"},
                    # OAI supports all these structures today
                    {
                        "type": "image_url",
                        "image_url": "data:image/jpeg;base64,{my_image}",
                    },
                    {
                        "type": "image_url",
                        "image_url": {"url": "data:image/jpeg;base64,{my_image}"},
                    },
                    {"type": "image_url", "image_url": "{my_other_image}"},
                    {
                        "type": "image_url",
                        "image_url": {"url": "{my_other_image}", "detail": "medium"},
                    },
                    {
                        "type": "image_url",
                        "image_url": {"url": "https://www.langchain.com/image.png"},
                    },
                    {
                        "type": "image_url",
                        "image_url": {"url": ""},
                    },
                ],
            ),
        ]
    )
    messages = template.format_messages(
        name="R2D2", my_image=base64_image, my_other_image=other_base64_image
    )
    expected = [
        SystemMessage(content="You are an AI assistant named R2D2."),
        HumanMessage(
            content=[
                {"type": "text", "text": "What's in this image?"},
                {
                    "type": "image_url",
                    "image_url": {"url": f"data:image/jpeg;base64,{base64_image}"},
                },
                {
                    "type": "image_url",
                    "image_url": {
                        "url": f"data:image/jpeg;base64,{other_base64_image}"
                    },
                },
                {
                    "type": "image_url",
                    "image_url": {"url": f"{other_base64_image}"},
                },
                {
                    "type": "image_url",
                    "image_url": {
                        "url": f"{other_base64_image}",
                        "detail": "medium",
                    },
                },
                {
                    "type": "image_url",
                    "image_url": {"url": "https://www.langchain.com/image.png"},
                },
                {
                    "type": "image_url",
                    "image_url": {"url": ""},
                },
            ]
        ),
    ]
    assert messages == expected
```

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
Co-authored-by: Brace Sproul <braceasproul@gmail.com>
2024-01-27 17:04:29 -08:00
ARKA1112
3c387bc12d docs: Error when importing packages from pydantic [docs] (#16564)
URL : https://python.langchain.com/docs/use_cases/extraction

Desc: 
<b> While the following statement executes successfully, it throws an
error which is described below when we use the imported packages</b>
 ```py 
from pydantic import BaseModel, Field, validator
```
Code: 
```python
from langchain.output_parsers import PydanticOutputParser
from langchain.prompts import (
    PromptTemplate,
)
from langchain_openai import OpenAI
from pydantic import BaseModel, Field, validator

# Define your desired data structure.
class Joke(BaseModel):
    setup: str = Field(description="question to set up a joke")
    punchline: str = Field(description="answer to resolve the joke")

    # You can add custom validation logic easily with Pydantic.
    @validator("setup")
    def question_ends_with_question_mark(cls, field):
        if field[-1] != "?":
            raise ValueError("Badly formed question!")
        return field
```

Error:
```md
PydanticUserError: The `field` and `config` parameters are not available
in Pydantic V2, please use the `info` parameter instead.

For further information visit
https://errors.pydantic.dev/2.5/u/validator-field-config-info
```

Solution:
Instead of doing:
```py
from pydantic import BaseModel, Field, validator
```
We should do:
```py
from langchain_core.pydantic_v1 import BaseModel, Field, validator
```
Thanks.

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-01-27 16:46:48 -08:00
Rashedul Hasan Rijul
481493dbce community[patch]: apply embedding functions during query if defined (#16646)
**Description:** This update ensures that the user-defined embedding
function specified during vector store creation is applied during
queries. Previously, even if a custom embedding function was defined at
the time of store creation, Bagel DB would default to using the standard
embedding function during query execution. This pull request addresses
this issue by consistently using the user-defined embedding function for
queries if one has been specified earlier.
2024-01-27 16:46:33 -08:00
Serena Ruan
f01fb47597 community[patch]: MLflowCallbackHandler -- Move textstat and spacy as optional dependency (#16657)
Signed-off-by: Serena Ruan <serena.rxy@gmail.com>
2024-01-27 16:15:07 -08:00
Zhuoyun(John) Xu
508bde7f40 community[patch]: Ollama - Pass headers to post request in async method (#16660)
# Description
A previous PR (https://github.com/langchain-ai/langchain/pull/15881)
added option to pass headers to ollama endpoint, but headers are not
pass to the async method.
2024-01-27 16:11:32 -08:00
Leonid Ganeline
5e73603e8a docs: DeepInfra provider page update (#16665)
- added description, links
- consistent formatting
- added links to the example pages
2024-01-27 16:05:29 -08:00
João Carlos Ferra de Almeida
3e87b67a3c community[patch]: Add Cookie Support to Fetch Method (#16673)
- **Description:** This change allows the `_fetch` method in the
`WebBaseLoader` class to utilize cookies from an existing
`requests.Session`. It ensures that when the `fetch` method is used, any
cookies in the provided session are included in the request. This
enhancement maintains compatibility with existing functionality while
extending the utility of the `fetch` method for scenarios where cookie
persistence is necessary.
- **Issue:** Not applicable (new feature),
- **Dependencies:** Requires `aiohttp` and `requests` libraries (no new
dependencies introduced),
- **Twitter handle:** N/A

Co-authored-by: Joao Almeida <joao.almeida@mercedes-benz.io>
2024-01-27 16:03:53 -08:00
Daniel Erenrich
c314137f5b docs: Fix broken link in CONTRIBUTING.md (#16681)
- **Description:** link in CONTRIBUTING.md is broken
  - **Issue:** N/A
  - **Dependencies:** N/A
  - **Twitter handle:** @derenrich
2024-01-27 15:43:44 -08:00
Harrison Chase
27665e3546 [community] fix anthropic streaming (#16682) 2024-01-27 15:16:22 -08:00
Bagatur
5975bf39ec infra: delete old CI workflows (#16680) 2024-01-27 14:14:53 -08:00
Christophe Bornet
4915c3cd86 [Fix] Fix Cassandra Document loader default page content mapper (#16273)
We can't use `json.dumps` by default as many types returned by the
cassandra driver are not serializable. It's safer to use `str` and let
users define their own custom `page_content_mapper` if needed.
2024-01-27 11:23:02 -08:00
Nuno Campos
e86fd946c8 In stream_event and stream_log handle closed streams (#16661)
if eg. the stream iterator is interrupted then adding more events to the
send_stream will raise an exception that we should catch (and handle
where appropriate)

<!-- Thank you for contributing to LangChain!

Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.

Replace this entire comment with:
  - **Description:** a description of the change, 
  - **Issue:** the issue # it fixes if applicable,
  - **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!

Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.

See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.

If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
 -->
2024-01-27 08:09:29 -08:00
Jarod Stewart
0bc397957b docs: document Ionic Tool (#16649)
- **Description:** Documentation for the Ionic Tool. A shopping
assistant tool that effortlessly adds e-commerce capabilities to your
Agent.
2024-01-26 16:02:07 -08:00
Nuno Campos
52ccae3fb1 Accept message-like things in Chat models, LLMs and MessagesPlaceholder (#16418) 2024-01-26 15:44:28 -08:00
Seungwoo Ryu
570b4f8e66 docs: Update openai_tools.ipynb (#16618)
typo
2024-01-26 15:26:27 -08:00
Pasha
4e189cd89a community[patch]: youtube loader transcript format (#16625)
- **Description**: YoutubeLoader right now returns one document that
contains the entire transcript. I think it would be useful to add an
option to return multiple documents, where each document would contain
one line of transcript with the start time and duration in the metadata.
For example,
[AssemblyAIAudioTranscriptLoader](https://github.com/langchain-ai/langchain/blob/master/libs/community/langchain_community/document_loaders/assemblyai.py)
is implemented in a similar way, it allows you to choose between the
format to use for the document loader.
2024-01-26 15:26:09 -08:00
yin1991
a936472512 docs: Update documentation to use 'model_id' rather than 'model_name' to match actual API (#16615)
- **Description:** Replace 'model_name' with 'model_id' for accuracy 
- **Issue:**
[link-to-issue](https://github.com/langchain-ai/langchain/issues/16577)
  - **Dependencies:** 
  - **Twitter handle:**
2024-01-26 15:01:12 -08:00
Micah Parker
6543e585a5 community[patch]: Added support for Ollama's num_predict option in ChatOllama (#16633)
Just a simple default addition to the options payload for a ollama
generate call to support a max_new_tokens parameter.

Should fix issue: https://github.com/langchain-ai/langchain/issues/14715
2024-01-26 15:00:19 -08:00
Callum
6a75ef74ca docs: Fix typo in XML agent documentation (#16645)
This is a tiny PR that just replacer "moduels" with "modules" in the
documentation for XML agents.
2024-01-26 14:59:46 -08:00
baichuan-assistant
70ff54eace community[minor]: Add Baichuan Text Embedding Model and Baichuan Inc introduction (#16568)
- **Description:** Adding Baichuan Text Embedding Model and Baichuan Inc
introduction.

Baichuan Text Embedding ranks #1 in C-MTEB leaderboard:
https://huggingface.co/spaces/mteb/leaderboard

Co-authored-by: BaiChuanHelper <wintergyc@WinterGYCs-MacBook-Pro.local>
2024-01-26 12:57:26 -08:00
Bagatur
5b5115c408 google-vertexai[patch]: streaming bug (#16603)
Fixes errors seen here
https://github.com/langchain-ai/langchain/actions/runs/7661680517/job/20881556592#step:9:229
2024-01-26 09:45:34 -08:00
ccurme
a989f82027 core: expand docstring for RunnableParallel (#16600)
- **Description:** expand docstring for RunnableParallel
  - **Issue:** https://github.com/langchain-ai/langchain/issues/16462

Feel free to modify this or let me know how it can be improved!
2024-01-26 10:03:32 -05:00
Ghani
e30c6662df Langchain-community : EdenAI chat integration. (#16377)
- **Description:** This PR adds [EdenAI](https://edenai.co/) for the
chat model (already available in LLM & Embeddings). It supports all
[ChatModel] functionality: generate, async generate, stream, astream and
batch. A detailed notebook was added.

  - **Dependencies**: No dependencies are added as we call a rest API.

---------

Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2024-01-26 09:56:43 -05:00
Antonio Lanza
08d3fd7f2e langchain[patch]: inconsistent results with RecursiveCharacterTextSplitter's add_start_index=True (#16583)
This PR fixes issue #16579
2024-01-25 15:50:06 -08:00
Eugene Yurtsev
42db96477f docs: Update in code documentation for runnable with message history (#16585)
Update the in code documentation for Runnable With Message History
2024-01-25 15:26:34 -08:00
Jatin Chawda
a79345f199 community[patch]: Fixed tool names snake_case (#16397)
#16396
Fixed
1. golden_query
2. google_lens
3. memorize
4. merriam_webster
5. open_weather_map
6. pub_med
7. stack_exchange
8. generate_image
9. wikipedia
2024-01-25 15:24:19 -08:00
Bagatur
bcc71d1a57 openai[patch]: Release 0.0.5 (#16598) 2024-01-25 15:20:28 -08:00
Bagatur
68f7468754 google-vertexai[patch]: Release 0.0.3 (#16597) 2024-01-25 15:19:00 -08:00
Bagatur
61e876aad8 openai[patch]: Explicitly support embedding dimensions (#16596) 2024-01-25 15:16:04 -08:00
Bagatur
5df8ab574e infra: move indexing documentation test (#16595) 2024-01-25 14:46:50 -08:00
Bagatur
f3d61a6e47 langchain[patch]: Release 0.1.4 (#16592) 2024-01-25 14:19:18 -08:00
Bagatur
61b200947f community[patch]: Release 0.0.16 (#16591) 2024-01-25 14:19:09 -08:00
Bagatur
75ad0bba2d openai[patch]: Release 0.0.4 (#16590) 2024-01-25 14:08:46 -08:00
Bagatur
1e3ce338ca core[patch]: Release 0.1.16 (#16589) 2024-01-25 13:56:00 -08:00
Bagatur
6c89507988 docs: add rag citations page (#16549) 2024-01-25 13:51:41 -08:00
Bagatur
31790d15ec openai[patch]: accept function_call dict in bind_functions (#16483)
Confusing that you can't pass in a dict
2024-01-25 13:47:44 -08:00
Bagatur
db80832e4f docs: output parser nits (#16588) 2024-01-25 13:20:48 -08:00
Bagatur
ef42d9d559 core[patch], community[patch], openai[patch]: consolidate openai tool… (#16485)
… converters

One way to convert anything to an OAI function:
convert_to_openai_function
One way to convert anything to an OAI tool: convert_to_openai_tool
Corresponding bind functions on OAI models: bind_functions, bind_tools
2024-01-25 13:18:46 -08:00
Brian Burgin
148347e858 community[minor]: Add LiteLLM Router Integration (#15588)
community:

  - **Description:**
- Add new ChatLiteLLMRouter class that allows a client to use a LiteLLM
Router as a LangChain chat model.
- Note: The existing ChatLiteLLM integration did not cover the LiteLLM
Router class.
    - Add tests and Jupyter notebook.
  - **Issue:** None
  - **Dependencies:** Relies on existing ChatLiteLLM integration
  - **Twitter handle:** @bburgin_0

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-01-25 11:03:05 -08:00
Bob Lin
35e60728b7 docs: Fix broken urls (#16559) 2024-01-25 09:20:05 -08:00
Bob Lin
6023953ea7 docs: Fix github link (#16560) 2024-01-25 09:19:09 -08:00
JongRok BAEK
3b8eba32f9 anthropic[patch]: Fix message type lookup in Anthropic Partners (#16563)
- **Description:** 

The parameters for user and assistant in Anthropic should be 'ai ->
assistant,' but they are reversed to 'assistant -> ai.'
Below is error code.
```python
anthropic.BadRequestError: Error code: 400 - {'type': 'error', 'error': {'type': 'invalid_request_error', 'message': 'messages: Unexpected role "ai". Allowed roles are "user" or "assistant"'}}
```

[anthropic](7177f3a71f/src/anthropic/types/beta/message_param.py (L13))

  - **Issue:** : #16561
  -  **Dependencies:** : None
   - **Twitter handle:** : None
2024-01-25 09:17:59 -08:00
Dmitry Tyumentsev
e86e66bad7 community[patch]: YandexGPT models - add sleep_interval (#16566)
Added sleep between requests to prevent errors associated with
simultaneous requests.
2024-01-25 09:07:19 -08:00
Bagatur
e510cfaa23 core[patch]: passthrough BaseRetriever.invoke(**kwargs) (#16551)
Fix for #16547
2024-01-25 08:58:39 -08:00
Anders Åhsman
355ef2a4a6 langchain[patch]: Fix doc-string grammar (#16543)
- **Description:** Small grammar fix in docstring for class
`BaseCombineDocumentsChain`.
2024-01-25 10:00:06 -05:00
Aditya
9dd7cbb447 google-genai: added logic for method get_num_tokens() (#16205)
<!-- Thank you for contributing to LangChain!

Please title your PR "partners: google-genai",

Replace this entire comment with:
- **Description:** : added logic for method get_num_tokens() for
ChatGoogleGenerativeAI , GoogleGenerativeAI,
  - **Issue:** : https://github.com/langchain-ai/langchain/issues/16204,
  - **Dependencies:** : None,
  - **Twitter handle:** @Aditya_Rane

---------

Co-authored-by: adityarane@google.com <adityarane@google.com>
Co-authored-by: Leonid Kuligin <lkuligin@yandex.ru>
2024-01-24 21:43:16 -07:00
James Braza
0785432e7b langchain-google-vertexai: perserving grounding metadata (#16309)
Revival of https://github.com/langchain-ai/langchain/pull/14549 that
closes https://github.com/langchain-ai/langchain/issues/14548.
2024-01-24 21:37:43 -07:00
Erick Friis
adc008407e exa: init pkg (#16553) 2024-01-24 20:57:17 -07:00
Rave Harpaz
c4e9c9ca29 community[minor]: Add OCI Generative AI integration (#16548)
<!-- Thank you for contributing to LangChain!

Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.

Replace this entire comment with:
- **Description:** Adding Oracle Cloud Infrastructure Generative AI
integration. Oracle Cloud Infrastructure (OCI) Generative AI is a fully
managed service that provides a set of state-of-the-art, customizable
large language models (LLMs) that cover a wide range of use cases, and
which is available through a single API. Using the OCI Generative AI
service you can access ready-to-use pretrained models, or create and
host your own fine-tuned custom models based on your own data on
dedicated AI clusters.
https://docs.oracle.com/en-us/iaas/Content/generative-ai/home.htm
  - **Issue:** None,
  - **Dependencies:** OCI Python SDK,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!

Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.
Passed

See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.

we provide unit tests. However, we cannot provide integration tests due
to Oracle policies that prohibit public sharing of api keys.
 
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
 -->

---------

Co-authored-by: Arthur Cheng <arthur.cheng@oracle.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-01-24 18:23:50 -08:00
Bagatur
b8768bd6e7 docs: allow pdf download of api ref (#16550)
https://docs.readthedocs.io/en/stable/config-file/v2.html#formats
2024-01-24 17:17:52 -08:00
Leonid Ganeline
f6a05e964b docs: Hugging Face update (#16490)
- added missed integrations to the platform page
- updated integration examples: added links and fixed formats
2024-01-24 16:59:00 -08:00
Bagatur
c173a69908 langchain[patch]: oai tools output parser nit (#16540)
allow positional init args
2024-01-24 16:57:16 -08:00
arnob-sengupta
f9976b9630 core[patch]: consolidate conditional in BaseTool (#16530)
- **Description:** Refactor contradictory conditional to single line
  - **Issue:** #16528
2024-01-24 16:56:58 -08:00
Bagatur
5c2538b9f7 anthropic[patch]: allow pop by field name (#16544)
allow `ChatAnthropicMessages(model=...)`
2024-01-24 15:48:31 -07:00
Harel Gal
a91181fe6d community[minor]: add support for Guardrails for Amazon Bedrock (#15099)
Added support for optionally supplying 'Guardrails for Amazon Bedrock'
on both types of model invocations (batch/regular and streaming) and for
all models supported by the Amazon Bedrock service.

@baskaryan  @hwchase17

```python 
llm = Bedrock(model_id="<model_id>", client=bedrock,
                  model_kwargs={},
                  guardrails={"id": " <guardrail_id>",
                              "version": "<guardrail_version>",
                               "trace": True}, callbacks=[BedrockAsyncCallbackHandler()])

class BedrockAsyncCallbackHandler(AsyncCallbackHandler):
    """Async callback handler that can be used to handle callbacks from langchain."""

    async def on_llm_error(
            self,
            error: BaseException,
            **kwargs: Any,
    ) -> Any:
        reason = kwargs.get("reason")
        if reason == "GUARDRAIL_INTERVENED":
           # kwargs contains additional trace information sent by 'Guardrails for Bedrock' service.
            print(f"""Guardrails: {kwargs}""")


# streaming 
llm = Bedrock(model_id="<model_id>", client=bedrock,
                  model_kwargs={},
                  streaming=True,
                  guardrails={"id": "<guardrail_id>",
                              "version": "<guardrail_version>"})
```

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-01-24 14:44:19 -08:00
Martin Kolb
04651f0248 community[minor]: VectorStore integration for SAP HANA Cloud Vector Engine (#16514)
- **Description:**
This PR adds a VectorStore integration for SAP HANA Cloud Vector Engine,
which is an upcoming feature in the SAP HANA Cloud database
(https://blogs.sap.com/2023/11/02/sap-hana-clouds-vector-engine-announcement/).

  - **Issue:** N/A
- **Dependencies:** [SAP HANA Python
Client](https://pypi.org/project/hdbcli/)
  - **Twitter handle:** @sapopensource

Implementation of the integration:
`libs/community/langchain_community/vectorstores/hanavector.py`

Unit tests:
`libs/community/tests/unit_tests/vectorstores/test_hanavector.py`

Integration tests:
`libs/community/tests/integration_tests/vectorstores/test_hanavector.py`

Example notebook:
`docs/docs/integrations/vectorstores/hanavector.ipynb`

Access credentials for execution of the integration tests can be
provided to the maintainers.

---------

Co-authored-by: sascha <sascha.stoll@sap.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-01-24 14:05:07 -08:00
Leonid Kuligin
1113700b09 google-genai[patch]: better error message when location is not supported (#16535)
Replace this entire comment with:
- **Description:** a better error message when location is not supported
2024-01-24 13:58:46 -08:00
Bob Lin
54dd8e52a8 docs: Updated comments about n_gpu_layers in the Metal section (#16501)
Ref: https://github.com/langchain-ai/langchain/issues/16502
2024-01-24 13:38:48 -08:00
Eugene Yurtsev
fe382fcf20 CI: more qa template changes (#16533)
More qa template changes
2024-01-24 14:40:29 -05:00
Eugene Yurtsev
06f66f25e1 CI: Update q-a template (#16532)
Update template for QA discussions
2024-01-24 14:29:31 -05:00
Eugene Yurtsev
b1b351b37e CI: more updates to feature request template (#16531)
More updates
2024-01-24 14:15:26 -05:00
Eugene Yurtsev
4fad71882e CI: Fix ideas template (#16529)
Fix ideas template
2024-01-24 14:06:53 -05:00
202 changed files with 11517 additions and 1348 deletions

View File

@@ -13,7 +13,7 @@ There are many ways to contribute to LangChain. Here are some common ways people
- [**Documentation**](https://python.langchain.com/docs/contributing/documentation): Help improve our docs, including this one!
- [**Code**](https://python.langchain.com/docs/contributing/code): Help us write code, fix bugs, or improve our infrastructure.
- [**Integrations**](https://python.langchain.com/docs/contributing/integration): Help us integrate with your favorite vendors and tools.
- [**Integrations**](https://python.langchain.com/docs/contributing/integrations): Help us integrate with your favorite vendors and tools.
### 🚩GitHub Issues

View File

@@ -1,5 +1,4 @@
labels: ["Idea"]
description: Suggest ideas for LangChain features and improvements.
labels: [idea]
body:
- type: checkboxes
id: checks
@@ -7,9 +6,11 @@ body:
label: Checked
description: Please confirm and check all the following options.
options:
- label: I searched existing ideas and did not find a similar one.
- label: I searched existing ideas and did not find a similar one
required: true
- label: I added a very descriptive title to this idea.
- label: I added a very descriptive title
required: true
- label: I've clearly described the feature request and motivation for it
required: true
- type: textarea
id: feature-request
@@ -19,7 +20,6 @@ body:
label: Feature request
description: |
A clear and concise description of the feature proposal. Please provide links to any relevant GitHub repos, papers, or other resources if relevant.
- type: textarea
id: motivation
validations:
@@ -28,3 +28,11 @@ body:
label: Motivation
description: |
Please outline the motivation for the proposal. Is your feature request related to a problem? e.g., I'm always frustrated when [...]. If this is related to another GitHub issue, please link here too.
- type: textarea
id: proposal
validations:
required: false
attributes:
label: Proposal (If applicable)
description: |
If you would like to propose a solution, please describe it here.

122
.github/DISCUSSION_TEMPLATE/q-a.yml vendored Normal file
View File

@@ -0,0 +1,122 @@
labels: [Question]
body:
- type: markdown
attributes:
value: |
Thanks for your interest in 🦜️🔗 LangChain!
Please follow these instructions, fill every question, and do every step. 🙏
We're asking for this because answering questions and solving problems in GitHub takes a lot of time --
this is time that we cannot spend on adding new features, fixing bugs, write documentation or reviewing pull requests.
By asking questions in a structured way (following this) it will be much easier to help you.
And there's a high chance that you will find the solution along the way and you won't even have to submit it and wait for an answer. 😎
As there are too many questions, we will **DISCARD** and close the incomplete ones.
That will allow us (and others) to focus on helping people like you that follow the whole process. 🤓
Relevant links to check before opening a question to see if your question has already been answered, fixed or
if there's another way to solve your problem:
[LangChain documentation with the integrated search](https://python.langchain.com/docs/get_started/introduction),
[API Reference](https://api.python.langchain.com/en/stable/),
[GitHub search](https://github.com/langchain-ai/langchain),
[LangChain Github Discussions](https://github.com/langchain-ai/langchain/discussions),
[LangChain Github Issues](https://github.com/langchain-ai/langchain/issues?q=is%3Aissue),
[LangChain ChatBot](https://chat.langchain.com/)
- type: checkboxes
id: checks
attributes:
label: Checked other resources
description: Please confirm and check all the following options.
options:
- label: I added a very descriptive title to this question.
required: true
- label: I searched the LangChain documentation with the integrated search.
required: true
- label: I used the GitHub search to find a similar question and didn't find it.
required: true
- type: checkboxes
id: help
attributes:
label: Commit to Help
description: |
After submitting this, I commit to one of:
* Read open questions until I find 2 where I can help someone and add a comment to help there.
* I already hit the "watch" button in this repository to receive notifications and I commit to help at least 2 people that ask questions in the future.
* Once my question is answered, I will mark the answer as "accepted".
options:
- label: I commit to help with one of those options 👆
required: true
- type: textarea
id: example
attributes:
label: Example Code
description: |
Please add a self-contained, [minimal, reproducible, example](https://stackoverflow.com/help/minimal-reproducible-example) with your use case.
If a maintainer can copy it, run it, and see it right away, there's a much higher chance that you'll be able to get help.
**Important!**
* Use code tags (e.g., ```python ... ```) to correctly [format your code](https://help.github.com/en/github/writing-on-github/creating-and-highlighting-code-blocks#syntax-highlighting).
* INCLUDE the language label (e.g. `python`) after the first three backticks to enable syntax highlighting. (e.g., ```python rather than ```).
* Reduce your code to the minimum required to reproduce the issue if possible. This makes it much easier for others to help you.
* Avoid screenshots when possible, as they are hard to read and (more importantly) don't allow others to copy-and-paste your code.
placeholder: |
from langchain_core.runnables import RunnableLambda
def bad_code(inputs) -> int:
raise NotImplementedError('For demo purpose')
chain = RunnableLambda(bad_code)
chain.invoke('Hello!')
render: python
validations:
required: true
- type: textarea
id: description
attributes:
label: Description
description: |
What is the problem, question, or error?
Write a short description explaining what you are doing, what you expect to happen, and what is currently happening.
placeholder: |
* I'm trying to use the `langchain` library to do X.
* I expect to see Y.
* Instead, it does Z.
validations:
required: true
- type: textarea
id: system-info
attributes:
label: System Info
description: |
Please share your system info with us.
"pip freeze | grep langchain"
platform (windows / linux / mac)
python version
OR if you're on a recent version of langchain-core you can paste the output of:
python -m langchain_core.sys_info
placeholder: |
"pip freeze | grep langchain"
platform
python version
Alternatively, if you're on a recent version of langchain-core you can paste the output of:
python -m langchain_core.sys_info
These will only surface LangChain packages, don't forget to include any other relevant
packages you're using (if you're not sure what's relevant, you can paste the entire output of `pip freeze`).
validations:
required: true

View File

@@ -55,6 +55,7 @@ jobs:
NVIDIA_API_KEY: ${{ secrets.NVIDIA_API_KEY }}
GOOGLE_SEARCH_API_KEY: ${{ secrets.GOOGLE_SEARCH_API_KEY }}
GOOGLE_CSE_ID: ${{ secrets.GOOGLE_CSE_ID }}
EXA_API_KEY: ${{ secrets.EXA_API_KEY }}
run: |
make integration_tests

View File

@@ -1,13 +0,0 @@
---
name: libs/cli Release
on:
workflow_dispatch: # Allows to trigger the workflow manually in GitHub UI
jobs:
release:
uses:
./.github/workflows/_release.yml
with:
working-directory: libs/cli
secrets: inherit

View File

@@ -1,13 +0,0 @@
---
name: libs/community Release
on:
workflow_dispatch: # Allows to trigger the workflow manually in GitHub UI
jobs:
release:
uses:
./.github/workflows/_release.yml
with:
working-directory: libs/community
secrets: inherit

View File

@@ -1,13 +0,0 @@
---
name: libs/core Release
on:
workflow_dispatch: # Allows to trigger the workflow manually in GitHub UI
jobs:
release:
uses:
./.github/workflows/_release.yml
with:
working-directory: libs/core
secrets: inherit

View File

@@ -1,13 +0,0 @@
---
name: libs/experimental Release
on:
workflow_dispatch: # Allows to trigger the workflow manually in GitHub UI
jobs:
release:
uses:
./.github/workflows/_release.yml
with:
working-directory: libs/experimental
secrets: inherit

View File

@@ -1,13 +0,0 @@
---
name: Experimental Test Release
on:
workflow_dispatch: # Allows to trigger the workflow manually in GitHub UI
jobs:
release:
uses:
./.github/workflows/_test_release.yml
with:
working-directory: libs/experimental
secrets: inherit

View File

@@ -1,13 +0,0 @@
---
name: libs/core Release
on:
workflow_dispatch: # Allows to trigger the workflow manually in GitHub UI
jobs:
release:
uses:
./.github/workflows/_release.yml
with:
working-directory: libs/core
secrets: inherit

View File

@@ -1,27 +0,0 @@
---
name: libs/langchain Release
on:
workflow_dispatch: # Allows to trigger the workflow manually in GitHub UI
jobs:
release:
uses:
./.github/workflows/_release.yml
with:
working-directory: libs/langchain
secrets: inherit
# N.B.: It's possible that PyPI doesn't make the new release visible / available
# immediately after publishing. If that happens, the docker build might not
# create a new docker image for the new release, since it won't see it.
#
# If this ends up being a problem, add a check to the end of the `_release.yml`
# workflow that prevents the workflow from finishing until the new release
# is visible and installable on PyPI.
release-docker:
needs:
- release
uses:
./.github/workflows/langchain_release_docker.yml
secrets: inherit

View File

@@ -1,13 +0,0 @@
---
name: Test Release
on:
workflow_dispatch: # Allows to trigger the workflow manually in GitHub UI
jobs:
release:
uses:
./.github/workflows/_test_release.yml
with:
working-directory: libs/langchain
secrets: inherit

View File

@@ -174,6 +174,7 @@ jobs:
NVIDIA_API_KEY: ${{ secrets.NVIDIA_API_KEY }}
GOOGLE_SEARCH_API_KEY: ${{ secrets.GOOGLE_SEARCH_API_KEY }}
GOOGLE_CSE_ID: ${{ secrets.GOOGLE_CSE_ID }}
EXA_API_KEY: ${{ secrets.EXA_API_KEY }}
run: make integration_tests
working-directory: ${{ inputs.working-directory }}

View File

@@ -4,6 +4,9 @@
# Required
version: 2
formats:
- pdf
# Set the version of Python and other tools you might need
build:
os: ubuntu-22.04

File diff suppressed because one or more lines are too long

View File

@@ -0,0 +1,272 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Eden AI"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Eden AI is revolutionizing the AI landscape by uniting the best AI providers, empowering users to unlock limitless possibilities and tap into the true potential of artificial intelligence. With an all-in-one comprehensive and hassle-free platform, it allows users to deploy AI features to production lightning fast, enabling effortless access to the full breadth of AI capabilities via a single API. (website: https://edenai.co/)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"This example goes over how to use LangChain to interact with Eden AI models\n",
"\n",
"-----------------------------------------------------------------------------------"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"`EdenAI` goes beyond mere model invocation. It empowers you with advanced features, including:\n",
"\n",
"- **Multiple Providers**: Gain access to a diverse range of language models offered by various providers, giving you the freedom to choose the best-suited model for your use case.\n",
"\n",
"- **Fallback Mechanism**: Set a fallback mechanism to ensure seamless operations even if the primary provider is unavailable, you can easily switches to an alternative provider.\n",
"\n",
"- **Usage Tracking**: Track usage statistics on a per-project and per-API key basis. This feature allows you to monitor and manage resource consumption effectively.\n",
"\n",
"- **Monitoring and Observability**: `EdenAI` provides comprehensive monitoring and observability tools on the platform. Monitor the performance of your language models, analyze usage patterns, and gain valuable insights to optimize your applications.\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Accessing the EDENAI's API requires an API key, \n",
"\n",
"which you can get by creating an account https://app.edenai.run/user/register and heading here https://app.edenai.run/admin/iam/api-keys\n",
"\n",
"Once we have a key we'll want to set it as an environment variable by running:\n",
"\n",
"```bash\n",
"export EDENAI_API_KEY=\"...\"\n",
"```\n",
"\n",
"You can find more details on the API reference : https://docs.edenai.co/reference"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"If you'd prefer not to set an environment variable you can pass the key in directly via the edenai_api_key named parameter\n",
"\n",
" when initiating the EdenAI Chat Model class."
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"from langchain_community.chat_models.edenai import ChatEdenAI\n",
"from langchain_core.messages import HumanMessage"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"chat = ChatEdenAI(\n",
" edenai_api_key=\"...\", provider=\"openai\", temperature=0.2, max_tokens=250\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"AIMessage(content='Hello! How can I assist you today?')"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"messages = [HumanMessage(content=\"Hello !\")]\n",
"chat.invoke(messages)"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"AIMessage(content='Hello! How can I assist you today?')"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"await chat.ainvoke(messages)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Streaming and Batching\n",
"\n",
"`ChatEdenAI` supports streaming and batching. Below is an example."
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Hello! How can I assist you today?"
]
}
],
"source": [
"for chunk in chat.stream(messages):\n",
" print(chunk.content, end=\"\", flush=True)"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[AIMessage(content='Hello! How can I assist you today?')]"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"chat.batch([messages])"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Fallback mecanism\n",
"\n",
"With Eden AI you can set a fallback mechanism to ensure seamless operations even if the primary provider is unavailable, you can easily switches to an alternative provider."
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [],
"source": [
"chat = ChatEdenAI(\n",
" edenai_api_key=\"...\",\n",
" provider=\"openai\",\n",
" temperature=0.2,\n",
" max_tokens=250,\n",
" fallback_providers=\"google\",\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"In this example, you can use Google as a backup provider if OpenAI encounters any issues.\n",
"\n",
"For more information and details about Eden AI, check out this link: : https://docs.edenai.co/docs/additional-parameters"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Chaining Calls\n"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [],
"source": [
"from langchain_core.prompts import ChatPromptTemplate\n",
"\n",
"prompt = ChatPromptTemplate.from_template(\n",
" \"What is a good name for a company that makes {product}?\"\n",
")\n",
"chain = prompt | chat"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"AIMessage(content='VitalBites')"
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"chain.invoke({\"product\": \"healthy snacks\"})"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "langchain-pr",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.12"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@@ -4,9 +4,9 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"# Hugging Face Chat Wrapper\n",
"# Hugging Face\n",
"\n",
"This notebook shows how to get started using Hugging Face LLM's as chat models.\n",
"This notebook shows how to get started using `Hugging Face` LLM's as chat models.\n",
"\n",
"In particular, we will:\n",
"1. Utilize the [HuggingFaceTextGenInference](https://github.com/langchain-ai/langchain/blob/master/libs/langchain/langchain/llms/huggingface_text_gen_inference.py), [HuggingFaceEndpoint](https://github.com/langchain-ai/langchain/blob/master/libs/langchain/langchain/llms/huggingface_endpoint.py), or [HuggingFaceHub](https://github.com/langchain-ai/langchain/blob/master/libs/langchain/langchain/llms/huggingface_hub.py) integrations to instantiate an `LLM`.\n",
@@ -49,7 +49,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"#### `HuggingFaceTextGenInference`"
"### `HuggingFaceTextGenInference`"
]
},
{
@@ -93,7 +93,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"#### `HuggingFaceEndpoint`"
"### `HuggingFaceEndpoint`"
]
},
{
@@ -121,7 +121,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"#### `HuggingFaceHub`"
"### `HuggingFaceHub`"
]
},
{
@@ -291,7 +291,7 @@
"source": [
"## 3. Take it for a spin as an agent!\n",
"\n",
"Here we'll test out `Zephyr-7B-beta` as a zero-shot ReAct Agent. The example below is taken from [here](https://python.langchain.com/docs/modules/agents/agent_types/react#using-chat-models).\n",
"Here we'll test out `Zephyr-7B-beta` as a zero-shot `ReAct` Agent. The example below is taken from [here](https://python.langchain.com/docs/modules/agents/agent_types/react#using-chat-models).\n",
"\n",
"> Note: To run this section, you'll need to have a [SerpAPI Token](https://serpapi.com/) saved as an environment variable: `SERPAPI_API_KEY`"
]
@@ -448,7 +448,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.5"
"version": "3.10.12"
}
},
"nbformat": 4,

View File

@@ -0,0 +1,218 @@
{
"cells": [
{
"cell_type": "raw",
"id": "59148044",
"metadata": {},
"source": [
"---\n",
"sidebar_label: LiteLLM Router\n",
"---"
]
},
{
"cell_type": "markdown",
"id": "247da7a6",
"metadata": {},
"source": []
},
{
"attachments": {},
"cell_type": "markdown",
"id": "bf733a38-db84-4363-89e2-de6735c37230",
"metadata": {},
"source": [
"# ChatLiteLLMRouter\n",
"\n",
"[LiteLLM](https://github.com/BerriAI/litellm) is a library that simplifies calling Anthropic, Azure, Huggingface, Replicate, etc. \n",
"\n",
"This notebook covers how to get started with using Langchain + the LiteLLM Router I/O library. "
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "d4a7c55d-b235-4ca4-a579-c90cc9570da9",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"from langchain.schema import HumanMessage\n",
"from langchain_community.chat_models import ChatLiteLLMRouter\n",
"from litellm import Router"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "70cf04e8-423a-4ff6-8b09-f11fb711c817",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"model_list = [\n",
" {\n",
" \"model_name\": \"gpt-4\",\n",
" \"litellm_params\": {\n",
" \"model\": \"azure/gpt-4-1106-preview\",\n",
" \"api_key\": \"<your-api-key>\",\n",
" \"api_version\": \"2023-05-15\",\n",
" \"api_base\": \"https://<your-endpoint>.openai.azure.com/\",\n",
" },\n",
" },\n",
" {\n",
" \"model_name\": \"gpt-4\",\n",
" \"litellm_params\": {\n",
" \"model\": \"azure/gpt-4-1106-preview\",\n",
" \"api_key\": \"<your-api-key>\",\n",
" \"api_version\": \"2023-05-15\",\n",
" \"api_base\": \"https://<your-endpoint>.openai.azure.com/\",\n",
" },\n",
" },\n",
"]\n",
"litellm_router = Router(model_list=model_list)\n",
"chat = ChatLiteLLMRouter(router=litellm_router)"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "8199ef8f-eb8b-4253-9ea0-6c24a013ca4c",
"metadata": {
"tags": []
},
"outputs": [
{
"data": {
"text/plain": [
"AIMessage(content=\"J'aime programmer.\")"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"messages = [\n",
" HumanMessage(\n",
" content=\"Translate this sentence from English to French. I love programming.\"\n",
" )\n",
"]\n",
"chat(messages)"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "c361ab1e-8c0c-4206-9e3c-9d1424a12b9c",
"metadata": {},
"source": [
"## `ChatLiteLLMRouter` also supports async and streaming functionality:"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "93a21c5c-6ef9-4688-be60-b2e1f94842fb",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"from langchain.callbacks.manager import CallbackManager\n",
"from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "c5fac0e9-05a4-4fc1-a3b3-e5bbb24b971b",
"metadata": {
"tags": []
},
"outputs": [
{
"data": {
"text/plain": [
"LLMResult(generations=[[ChatGeneration(text=\"J'adore programmer.\", generation_info={'finish_reason': 'stop'}, message=AIMessage(content=\"J'adore programmer.\"))]], llm_output={'token_usage': {'completion_tokens': 6, 'prompt_tokens': 19, 'total_tokens': 25}, 'model_name': None}, run=[RunInfo(run_id=UUID('75003ec9-1e2b-43b7-a216-10dcc0f75e00'))])"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"await chat.agenerate([messages])"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "025be980-e50d-4a68-93dc-c9c7b500ce34",
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"J'adore programmer."
]
},
{
"data": {
"text/plain": [
"AIMessage(content=\"J'adore programmer.\")"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"chat = ChatLiteLLMRouter(\n",
" router=litellm_router,\n",
" streaming=True,\n",
" verbose=True,\n",
" callback_manager=CallbackManager([StreamingStdOutCallbackHandler()]),\n",
")\n",
"chat(messages)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "c253883f",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.13"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -12,7 +12,7 @@
},
{
"cell_type": "code",
"execution_count": 3,
"execution_count": 2,
"id": "497736aa",
"metadata": {},
"outputs": [],
@@ -24,7 +24,7 @@
},
{
"cell_type": "code",
"execution_count": 4,
"execution_count": 3,
"id": "009e0036",
"metadata": {},
"outputs": [],
@@ -34,19 +34,19 @@
},
{
"cell_type": "code",
"execution_count": 5,
"execution_count": 8,
"id": "910fb6ee",
"metadata": {},
"outputs": [],
"source": [
"loader = ToMarkdownLoader.from_api_key(\n",
" url=\"https://python.langchain.com/en/latest/\", api_key=api_key\n",
"loader = ToMarkdownLoader(\n",
" url=\"https://python.langchain.com/docs/get_started/introduction\", api_key=api_key\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 6,
"execution_count": 9,
"id": "ac8db139",
"metadata": {},
"outputs": [],
@@ -56,7 +56,7 @@
},
{
"cell_type": "code",
"execution_count": 8,
"execution_count": 10,
"id": "706304e9",
"metadata": {},
"outputs": [
@@ -64,130 +64,106 @@
"name": "stdout",
"output_type": "stream",
"text": [
"## Contents\n",
"**LangChain** is a framework for developing applications powered by language models. It enables applications that:\n",
"\n",
"- [Getting Started](#getting-started)\n",
"- [Modules](#modules)\n",
"- [Use Cases](#use-cases)\n",
"- [Reference Docs](#reference-docs)\n",
"- [LangChain Ecosystem](#langchain-ecosystem)\n",
"- [Additional Resources](#additional-resources)\n",
"- **Are context-aware**: connect a language model to sources of context (prompt instructions, few shot examples, content to ground its response in, etc.)\n",
"- **Reason**: rely on a language model to reason (about how to answer based on provided context, what actions to take, etc.)\n",
"\n",
"## Welcome to LangChain [\\#](\\#welcome-to-langchain \"Permalink to this headline\")\n",
"This framework consists of several parts.\n",
"\n",
"**LangChain** is a framework for developing applications powered by language models. We believe that the most powerful and differentiated applications will not only call out to a language model, but will also be:\n",
"- **LangChain Libraries**: The Python and JavaScript libraries. Contains interfaces and integrations for a myriad of components, a basic run time for combining these components into chains and agents, and off-the-shelf implementations of chains and agents.\n",
"- **[LangChain Templates](https://python.langchain.com/docs/templates)**: A collection of easily deployable reference architectures for a wide variety of tasks.\n",
"- **[LangServe](https://python.langchain.com/docs/langserve)**: A library for deploying LangChain chains as a REST API.\n",
"- **[LangSmith](https://python.langchain.com/docs/langsmith)**: A developer platform that lets you debug, test, evaluate, and monitor chains built on any LLM framework and seamlessly integrates with LangChain.\n",
"\n",
"1. _Data-aware_: connect a language model to other sources of data\n",
"![Diagram outlining the hierarchical organization of the LangChain framework, displaying the interconnected parts across multiple layers.](https://python.langchain.com/assets/images/langchain_stack-f21828069f74484521f38199910007c1.svg)\n",
"\n",
"2. _Agentic_: allow a language model to interact with its environment\n",
"Together, these products simplify the entire application lifecycle:\n",
"\n",
"- **Develop**: Write your applications in LangChain/LangChain.js. Hit the ground running using Templates for reference.\n",
"- **Productionize**: Use LangSmith to inspect, test and monitor your chains, so that you can constantly improve and deploy with confidence.\n",
"- **Deploy**: Turn any chain into an API with LangServe.\n",
"\n",
"The LangChain framework is designed around these principles.\n",
"## LangChain Libraries [](\\#langchain-libraries \"Direct link to LangChain Libraries\")\n",
"\n",
"This is the Python specific portion of the documentation. For a purely conceptual guide to LangChain, see [here](https://docs.langchain.com/docs/). For the JavaScript documentation, see [here](https://js.langchain.com/docs/).\n",
"The main value props of the LangChain packages are:\n",
"\n",
"## Getting Started [\\#](\\#getting-started \"Permalink to this headline\")\n",
"1. **Components**: composable tools and integrations for working with language models. Components are modular and easy-to-use, whether you are using the rest of the LangChain framework or not\n",
"2. **Off-the-shelf chains**: built-in assemblages of components for accomplishing higher-level tasks\n",
"\n",
"How to get started using LangChain to create an Language Model application.\n",
"Off-the-shelf chains make it easy to get started. Components make it easy to customize existing chains and build new ones.\n",
"\n",
"- [Quickstart Guide](https://python.langchain.com/en/latest/getting_started/getting_started.html)\n",
"The LangChain libraries themselves are made up of several different packages.\n",
"\n",
"- **`langchain-core`**: Base abstractions and LangChain Expression Language.\n",
"- **`langchain-community`**: Third party integrations.\n",
"- **`langchain`**: Chains, agents, and retrieval strategies that make up an application's cognitive architecture.\n",
"\n",
"Concepts and terminology.\n",
"## Get started [](\\#get-started \"Direct link to Get started\")\n",
"\n",
"- [Concepts and terminology](https://python.langchain.com/en/latest/getting_started/concepts.html)\n",
"[Heres](https://python.langchain.com/docs/get_started/installation) how to install LangChain, set up your environment, and start building.\n",
"\n",
"We recommend following our [Quickstart](https://python.langchain.com/docs/get_started/quickstart) guide to familiarize yourself with the framework by building your first LangChain application.\n",
"\n",
"Tutorials created by community experts and presented on YouTube.\n",
"Read up on our [Security](https://python.langchain.com/docs/security) best practices to make sure you're developing safely with LangChain.\n",
"\n",
"- [Tutorials](https://python.langchain.com/en/latest/getting_started/tutorials.html)\n",
"note\n",
"\n",
"These docs focus on the Python LangChain library. [Head here](https://js.langchain.com) for docs on the JavaScript LangChain library.\n",
"\n",
"## Modules [\\#](\\#modules \"Permalink to this headline\")\n",
"## LangChain Expression Language (LCEL) [](\\#langchain-expression-language-lcel \"Direct link to LangChain Expression Language (LCEL)\")\n",
"\n",
"These modules are the core abstractions which we view as the building blocks of any LLM-powered application.\n",
"LCEL is a declarative way to compose chains. LCEL was designed from day 1 to support putting prototypes in production, with no code changes, from the simplest “prompt + LLM” chain to the most complex chains.\n",
"\n",
"For each module LangChain provides standard, extendable interfaces. LanghChain also provides external integrations and even end-to-end implementations for off-the-shelf use.\n",
"- **[Overview](https://python.langchain.com/docs/expression_language/)**: LCEL and its benefits\n",
"- **[Interface](https://python.langchain.com/docs/expression_language/interface)**: The standard interface for LCEL objects\n",
"- **[How-to](https://python.langchain.com/docs/expression_language/how_to)**: Key features of LCEL\n",
"- **[Cookbook](https://python.langchain.com/docs/expression_language/cookbook)**: Example code for accomplishing common tasks\n",
"\n",
"The docs for each module contain quickstart examples, how-to guides, reference docs, and conceptual guides.\n",
"## Modules [](\\#modules \"Direct link to Modules\")\n",
"\n",
"The modules are (from least to most complex):\n",
"LangChain provides standard, extendable interfaces and integrations for the following modules:\n",
"\n",
"- [Models](https://python.langchain.com/docs/modules/model_io/models/): Supported model types and integrations.\n",
"#### [Model I/O](https://python.langchain.com/docs/modules/model_io/) [](\\#model-io \"Direct link to model-io\")\n",
"\n",
"- [Prompts](https://python.langchain.com/en/latest/modules/prompts.html): Prompt management, optimization, and serialization.\n",
"Interface with language models\n",
"\n",
"- [Memory](https://python.langchain.com/en/latest/modules/memory.html): Memory refers to state that is persisted between calls of a chain/agent.\n",
"#### [Retrieval](https://python.langchain.com/docs/modules/data_connection/) [](\\#retrieval \"Direct link to retrieval\")\n",
"\n",
"- [Indexes](https://python.langchain.com/en/latest/modules/data_connection.html): Language models become much more powerful when combined with application-specific data - this module contains interfaces and integrations for loading, querying and updating external data.\n",
"Interface with application-specific data\n",
"\n",
"- [Chains](https://python.langchain.com/en/latest/modules/chains.html): Chains are structured sequences of calls (to an LLM or to a different utility).\n",
"#### [Agents](https://python.langchain.com/docs/modules/agents/) [](\\#agents \"Direct link to agents\")\n",
"\n",
"- [Agents](https://python.langchain.com/en/latest/modules/agents.html): An agent is a Chain in which an LLM, given a high-level directive and a set of tools, repeatedly decides an action, executes the action and observes the outcome until the high-level directive is complete.\n",
"Let models choose which tools to use given high-level directives\n",
"\n",
"- [Callbacks](https://python.langchain.com/en/latest/modules/callbacks/getting_started.html): Callbacks let you log and stream the intermediate steps of any chain, making it easy to observe, debug, and evaluate the internals of an application.\n",
"## Examples, ecosystem, and resources [](\\#examples-ecosystem-and-resources \"Direct link to Examples, ecosystem, and resources\")\n",
"\n",
"### [Use cases](https://python.langchain.com/docs/use_cases/question_answering/) [](\\#use-cases \"Direct link to use-cases\")\n",
"\n",
"## Use Cases [\\#](\\#use-cases \"Permalink to this headline\")\n",
"Walkthroughs and techniques for common end-to-end use cases, like:\n",
"\n",
"Best practices and built-in implementations for common LangChain use cases:\n",
"- [Document question answering](https://python.langchain.com/docs/use_cases/question_answering/)\n",
"- [Chatbots](https://python.langchain.com/docs/use_cases/chatbots/)\n",
"- [Analyzing structured data](https://python.langchain.com/docs/use_cases/sql/)\n",
"- and much more...\n",
"\n",
"- [Autonomous Agents](https://python.langchain.com/en/latest/use_cases/autonomous_agents.html): Autonomous agents are long-running agents that take many steps in an attempt to accomplish an objective. Examples include AutoGPT and BabyAGI.\n",
"### [Integrations](https://python.langchain.com/docs/integrations/providers/) [](\\#integrations \"Direct link to integrations\")\n",
"\n",
"- [Agent Simulations](https://python.langchain.com/en/latest/use_cases/agent_simulations.html): Putting agents in a sandbox and observing how they interact with each other and react to events can be an effective way to evaluate their long-range reasoning and planning abilities.\n",
"LangChain is part of a rich ecosystem of tools that integrate with our framework and build on top of it. Check out our growing list of [integrations](https://python.langchain.com/docs/integrations/providers/).\n",
"\n",
"- [Personal Assistants](https://python.langchain.com/en/latest/use_cases/personal_assistants.html): One of the primary LangChain use cases. Personal assistants need to take actions, remember interactions, and have knowledge about your data.\n",
"### [Guides](https://python.langchain.com/docs/guides/debugging) [](\\#guides \"Direct link to guides\")\n",
"\n",
"- [Question Answering](https://python.langchain.com/en/latest/use_cases/question_answering.html): Another common LangChain use case. Answering questions over specific documents, only utilizing the information in those documents to construct an answer.\n",
"Best practices for developing with LangChain.\n",
"\n",
"- [Chatbots](https://python.langchain.com/en/latest/use_cases/chatbots.html): Language models love to chat, making this a very natural use of them.\n",
"### [API reference](https://api.python.langchain.com) [](\\#api-reference \"Direct link to api-reference\")\n",
"\n",
"- [Querying Tabular Data](https://python.langchain.com/en/latest/use_cases/tabular.html): Recommended reading if you want to use language models to query structured data (CSVs, SQL, dataframes, etc).\n",
"Head to the reference section for full documentation of all classes and methods in the LangChain and LangChain Experimental Python packages.\n",
"\n",
"- [Code Understanding](https://python.langchain.com/en/latest/use_cases/code.html): Recommended reading if you want to use language models to analyze code.\n",
"### [Developer's guide](https://python.langchain.com/docs/contributing) [](\\#developers-guide \"Direct link to developers-guide\")\n",
"\n",
"- [Interacting with APIs](https://python.langchain.com/en/latest/use_cases/apis.html): Enabling language models to interact with APIs is extremely powerful. It gives them access to up-to-date information and allows them to take actions.\n",
"Check out the developer's guide for guidelines on contributing and help getting your dev environment set up.\n",
"\n",
"- [Extraction](https://python.langchain.com/en/latest/use_cases/extraction.html): Extract structured information from text.\n",
"\n",
"- [Summarization](https://python.langchain.com/en/latest/use_cases/summarization.html): Compressing longer documents. A type of Data-Augmented Generation.\n",
"\n",
"- [Evaluation](https://python.langchain.com/en/latest/use_cases/evaluation.html): Generative models are hard to evaluate with traditional metrics. One promising approach is to use language models themselves to do the evaluation.\n",
"\n",
"\n",
"## Reference Docs [\\#](\\#reference-docs \"Permalink to this headline\")\n",
"\n",
"Full documentation on all methods, classes, installation methods, and integration setups for LangChain.\n",
"\n",
"- [Reference Documentation](https://python.langchain.com/en/latest/reference.html)\n",
"\n",
"\n",
"## LangChain Ecosystem [\\#](\\#langchain-ecosystem \"Permalink to this headline\")\n",
"\n",
"Guides for how other companies/products can be used with LangChain.\n",
"\n",
"- [LangChain Ecosystem](https://python.langchain.com/en/latest/ecosystem.html)\n",
"\n",
"\n",
"## Additional Resources [\\#](\\#additional-resources \"Permalink to this headline\")\n",
"\n",
"Additional resources we think may be useful as you develop your application!\n",
"\n",
"- [LangChainHub](https://github.com/hwchase17/langchain-hub): The LangChainHub is a place to share and explore other prompts, chains, and agents.\n",
"\n",
"- [Gallery](https://python.langchain.com/en/latest/additional_resources/gallery.html): A collection of our favorite projects that use LangChain. Useful for finding inspiration or seeing how things were done in other applications.\n",
"\n",
"- [Deployments](https://python.langchain.com/en/latest/additional_resources/deployments.html): A collection of instructions, code snippets, and template repositories for deploying LangChain apps.\n",
"\n",
"- [Tracing](https://python.langchain.com/en/latest/additional_resources/tracing.html): A guide on using tracing in LangChain to visualize the execution of chains and agents.\n",
"\n",
"- [Model Laboratory](https://python.langchain.com/en/latest/additional_resources/model_laboratory.html): Experimenting with different prompts, models, and chains is a big part of developing the best possible application. The ModelLaboratory makes it easy to do so.\n",
"\n",
"- [Discord](https://discord.gg/6adMQxSpJS): Join us on our Discord to discuss all things LangChain!\n",
"\n",
"- [YouTube](https://python.langchain.com/en/latest/additional_resources/youtube.html): A collection of the LangChain tutorials and videos.\n",
"\n",
"- [Production Support](https://forms.gle/57d8AmXBYp8PP8tZA): As you move your LangChains into production, wed love to offer more comprehensive support. Please fill out this form and well set up a dedicated support Slack channel.\n"
"Head to the [Community navigator](https://python.langchain.com/docs/community) to find places to ask questions, share feedback, meet other developers, and dream about the future of LLMs.\n"
]
}
],
@@ -198,7 +174,7 @@
{
"cell_type": "code",
"execution_count": null,
"id": "5dde17e7",
"id": "7c89b313-adb6-4aa2-9cd8-952a5724a2ce",
"metadata": {},
"outputs": [],
"source": []
@@ -220,7 +196,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.6"
"version": "3.11.6"
}
},
"nbformat": 4,

View File

@@ -106,6 +106,45 @@
"\n",
"conversation.predict(input=\"Hi there!\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Guardrails for Amazon Bedrock example \n",
"\n",
"In this section, we are going to set up a Bedrock language model with specific guardrails that include tracing capabilities. "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from typing import Any\n",
"\n",
"from langchain_core.callbacks import AsyncCallbackHandler\n",
"\n",
"\n",
"class BedrockAsyncCallbackHandler(AsyncCallbackHandler):\n",
" # Async callback handler that can be used to handle callbacks from langchain.\n",
"\n",
" async def on_llm_error(self, error: BaseException, **kwargs: Any) -> Any:\n",
" reason = kwargs.get(\"reason\")\n",
" if reason == \"GUARDRAIL_INTERVENED\":\n",
" print(f\"Guardrails: {kwargs}\")\n",
"\n",
"\n",
"# guardrails for Amazon Bedrock with trace\n",
"llm = Bedrock(\n",
" credentials_profile_name=\"bedrock-admin\",\n",
" model_id=\"<Model_ID>\",\n",
" model_kwargs={},\n",
" guardrails={\"id\": \"<Guardrail_ID>\", \"version\": \"<Version>\", \"trace\": True},\n",
" callbacks=[BedrockAsyncCallbackHandler()],\n",
")"
]
}
],
"metadata": {

View File

@@ -186,7 +186,7 @@
},
{
"cell_type": "code",
"execution_count": 3,
"execution_count": 1,
"metadata": {
"tags": []
},
@@ -223,7 +223,7 @@
},
{
"cell_type": "code",
"execution_count": 4,
"execution_count": 3,
"metadata": {
"tags": []
},
@@ -406,7 +406,7 @@
"- `n_gpu_layers` - determines how many layers of the model are offloaded to your GPU.\n",
"- `n_batch` - how many tokens are processed in parallel. \n",
"\n",
"Setting these parameters correctly will dramatically improve the evaluation speed (see [wrapper code](https://github.com/mmagnesium/langchain/blob/master/langchain/llms/llamacpp.py) for more details)."
"Setting these parameters correctly will dramatically improve the evaluation speed (see [wrapper code](https://github.com/langchain-ai/langchain/blob/master/libs/community/langchain_community/llms/llamacpp.py) for more details)."
]
},
{
@@ -487,12 +487,12 @@
"\n",
"Two of the most important GPU parameters are:\n",
"\n",
"- `n_gpu_layers` - determines how many layers of the model are offloaded to your Metal GPU, in the most case, set it to `1` is enough for Metal\n",
"- `n_gpu_layers` - determines how many layers of the model are offloaded to your Metal GPU.\n",
"- `n_batch` - how many tokens are processed in parallel, default is 8, set to bigger number.\n",
"- `f16_kv` - for some reason, Metal only support `True`, otherwise you will get error such as `Asserting on type 0\n",
"GGML_ASSERT: .../ggml-metal.m:706: false && \"not implemented\"`\n",
"\n",
"Setting these parameters correctly will dramatically improve the evaluation speed (see [wrapper code](https://github.com/mmagnesium/langchain/blob/master/langchain/llms/llamacpp.py) for more details)."
"Setting these parameters correctly will dramatically improve the evaluation speed (see [wrapper code](https://github.com/langchain-ai/langchain/blob/master/libs/community/langchain_community/llms/llamacpp.py) for more details)."
]
},
{
@@ -501,7 +501,7 @@
"metadata": {},
"outputs": [],
"source": [
"n_gpu_layers = 1 # Metal set to 1 is enough.\n",
"n_gpu_layers = 1 # Change this value based on your model and your GPU VRAM pool.\n",
"n_batch = 512 # Should be between 1 and n_ctx, consider the amount of RAM of your Apple Silicon Chip.\n",
"# Make sure the model path is correct for your system!\n",
"llm = LlamaCpp(\n",
@@ -680,7 +680,7 @@
],
"metadata": {
"kernelspec": {
"display_name": "Python 3.10.12 ('langchain_venv': venv)",
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
@@ -694,7 +694,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.12"
"version": "3.11.6"
},
"vscode": {
"interpreter": {

View File

@@ -0,0 +1,191 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Oracle Cloud Infrastructure Generative AI"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Oracle Cloud Infrastructure (OCI) Generative AI is a fully managed service that provides a set of state-of-the-art, customizable large language models (LLMs) that cover a wide range of use cases, and which is available through a single API.\n",
"Using the OCI Generative AI service you can access ready-to-use pretrained models, or create and host your own fine-tuned custom models based on your own data on dedicated AI clusters. Detailed documentation of the service and API is available __[here](https://docs.oracle.com/en-us/iaas/Content/generative-ai/home.htm)__ and __[here](https://docs.oracle.com/en-us/iaas/api/#/en/generative-ai/20231130/)__.\n",
"\n",
"This notebook explains how to use OCI's Genrative AI models with LangChain."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Prerequisite\n",
"We will need to install the oci sdk"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"!pip install -U oci"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### OCI Generative AI API endpoint \n",
"https://inference.generativeai.us-chicago-1.oci.oraclecloud.com"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Authentication\n",
"The authentication methods supported for this langchain integration are:\n",
"\n",
"1. API Key\n",
"2. Session token\n",
"3. Instance principal\n",
"4. Resource principal \n",
"\n",
"These follows the standard SDK authentication methods detailed __[here](https://docs.oracle.com/en-us/iaas/Content/API/Concepts/sdk_authentication_methods.htm)__.\n",
" "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Usage"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from langchain_community.llms import OCIGenAI\n",
"\n",
"# use default authN method API-key\n",
"llm = OCIGenAI(\n",
" model_id=\"MY_MODEL\",\n",
" service_endpoint=\"https://inference.generativeai.us-chicago-1.oci.oraclecloud.com\",\n",
" compartment_id=\"MY_OCID\",\n",
")\n",
"\n",
"response = llm.invoke(\"Tell me one fact about earth\", temperature=0.7)\n",
"print(response)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from langchain.chains import LLMChain\n",
"from langchain_core.prompts import PromptTemplate\n",
"\n",
"# Use Session Token to authN\n",
"llm = OCIGenAI(\n",
" model_id=\"MY_MODEL\",\n",
" service_endpoint=\"https://inference.generativeai.us-chicago-1.oci.oraclecloud.com\",\n",
" compartment_id=\"MY_OCID\",\n",
")\n",
"\n",
"prompt = PromptTemplate(input_variables=[\"query\"], template=\"{query}\")\n",
"\n",
"llm_chain = LLMChain(llm=llm, prompt=prompt)\n",
"\n",
"response = llm_chain.invoke(\"what is the capital of france?\")\n",
"print(response)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from langchain.schema.output_parser import StrOutputParser\n",
"from langchain.schema.runnable import RunnablePassthrough\n",
"from langchain_community.embeddings import OCIGenAIEmbeddings\n",
"from langchain_community.vectorstores import FAISS\n",
"\n",
"embeddings = OCIGenAIEmbeddings(\n",
" model_id=\"MY_EMBEDDING_MODEL\",\n",
" service_endpoint=\"https://inference.generativeai.us-chicago-1.oci.oraclecloud.com\",\n",
" compartment_id=\"MY_OCID\",\n",
")\n",
"\n",
"vectorstore = FAISS.from_texts(\n",
" [\n",
" \"Larry Ellison co-founded Oracle Corporation in 1977 with Bob Miner and Ed Oates.\",\n",
" \"Oracle Corporation is an American multinational computer technology company headquartered in Austin, Texas, United States.\",\n",
" ],\n",
" embedding=embeddings,\n",
")\n",
"\n",
"retriever = vectorstore.as_retriever()\n",
"\n",
"template = \"\"\"Answer the question based only on the following context:\n",
"{context}\n",
" \n",
"Question: {question}\n",
"\"\"\"\n",
"prompt = PromptTemplate.from_template(template)\n",
"\n",
"llm = OCIGenAI(\n",
" model_id=\"MY_MODEL\",\n",
" service_endpoint=\"https://inference.generativeai.us-chicago-1.oci.oraclecloud.com\",\n",
" compartment_id=\"MY_OCID\",\n",
")\n",
"\n",
"chain = (\n",
" {\"context\": retriever, \"question\": RunnablePassthrough()}\n",
" | prompt\n",
" | llm\n",
" | StrOutputParser()\n",
")\n",
"\n",
"print(chain.invoke(\"when was oracle founded?\"))\n",
"print(chain.invoke(\"where is oracle headquartered?\"))"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "oci_langchain",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.18"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@@ -14,7 +14,7 @@
"\n",
"This example showcases how to connect to [PromptLayer](https://www.promptlayer.com) to start recording your OpenAI requests.\n",
"\n",
"Another example is [here](https://python.langchain.com/en/latest/ecosystem/promptlayer.html)."
"Another example is [here](https://python.langchain.com/docs/integrations/providers/promptlayer)."
]
},
{
@@ -225,7 +225,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.6"
"version": "3.11.6"
},
"vscode": {
"interpreter": {

View File

@@ -58,31 +58,24 @@ See a [usage example](/docs/integrations/llms/huggingface_textgen_inference).
from langchain_community.llms import HuggingFaceTextGenInference
```
## Chat models
### Models from Hugging Face
## Document Loaders
We can use the `Hugging Face` LLM classes or directly use the `ChatHuggingFace` class.
### Hugging Face dataset
>[Hugging Face Hub](https://huggingface.co/docs/hub/index) is home to over 75,000
> [datasets](https://huggingface.co/docs/hub/index#datasets) in more than 100 languages
> that can be used for a broad range of tasks across NLP, Computer Vision, and Audio.
> They used for a diverse range of tasks such as translation, automatic speech
> recognition, and image classification.
We need to install `datasets` python package.
We need to install several python packages.
```bash
pip install datasets
pip install huggingface_hub
pip install transformers
```
See a [usage example](/docs/integrations/document_loaders/hugging_face_dataset).
See a [usage example](/docs/integrations/chat/huggingface).
```python
from langchain_community.document_loaders.hugging_face_dataset import HuggingFaceDatasetLoader
from langchain_community.chat_models.huggingface import ChatHuggingFace
```
## Embedding Models
### Hugging Face Hub
@@ -126,6 +119,48 @@ See a [usage example](/docs/integrations/text_embedding/bge_huggingface).
from langchain_community.embeddings import HuggingFaceBgeEmbeddings
```
### Hugging Face Text Embeddings Inference (TEI)
>[Hugging Face Text Embeddings Inference (TEI)](https://huggingface.co/docs/text-generation-inference/index) is a toolkit for deploying and serving open-source
> text embeddings and sequence classification models. `TEI` enables high-performance extraction for the most popular models,
>including `FlagEmbedding`, `Ember`, `GTE` and `E5`.
We need to install `huggingface-hub` python package.
```bash
pip install huggingface-hub
```
See a [usage example](/docs/integrations/text_embedding/text_embeddings_inference).
```python
from langchain_community.embeddings import HuggingFaceHubEmbeddings
```
## Document Loaders
### Hugging Face dataset
>[Hugging Face Hub](https://huggingface.co/docs/hub/index) is home to over 75,000
> [datasets](https://huggingface.co/docs/hub/index#datasets) in more than 100 languages
> that can be used for a broad range of tasks across NLP, Computer Vision, and Audio.
> They used for a diverse range of tasks such as translation, automatic speech
> recognition, and image classification.
We need to install `datasets` python package.
```bash
pip install datasets
```
See a [usage example](/docs/integrations/document_loaders/hugging_face_dataset).
```python
from langchain_community.document_loaders.hugging_face_dataset import HuggingFaceDatasetLoader
```
## Tools

View File

@@ -0,0 +1,13 @@
# Baichuan
>[Baichuan Inc.](https://www.baichuan-ai.com/) is a Chinese startup in the era of AGI, dedicated to addressing fundamental human needs: Efficiency, Health, and Happiness.
## Visit Us
Visit us at https://www.baichuan-ai.com/.
Register and get an API key if you are trying out our APIs.
## Baichuan Chat Model
An example is available at [example](/docs/integrations/chat/baichuan).
## Baichuan Text Embedding Model
An example is available at [example] (/docs/integrations/text_embedding/baichuan)

View File

@@ -1,45 +1,52 @@
# DeepInfra
This page covers how to use the DeepInfra ecosystem within LangChain.
>[DeepInfra](https://deepinfra.com/docs) allows us to run the
> [latest machine learning models](https://deepinfra.com/models) with ease.
> DeepInfra takes care of all the heavy lifting related to running, scaling and monitoring
> the models. Users can focus on your application and integrate the models with simple REST API calls.
>DeepInfra provides [examples](https://deepinfra.com/docs/advanced/langchain) of integration with LangChain.
This page covers how to use the `DeepInfra` ecosystem within `LangChain`.
It is broken into two parts: installation and setup, and then references to specific DeepInfra wrappers.
## Installation and Setup
- Get your DeepInfra api key from this link [here](https://deepinfra.com/).
- Get an DeepInfra api key and set it as an environment variable (`DEEPINFRA_API_TOKEN`)
## Available Models
DeepInfra provides a range of Open Source LLMs ready for deployment.
You can list supported models for
You can see supported models for
[text-generation](https://deepinfra.com/models?type=text-generation) and
[embeddings](https://deepinfra.com/models?type=embeddings).
google/flan\* models can be viewed [here](https://deepinfra.com/models?type=text2text-generation).
You can view a [list of request and response parameters](https://deepinfra.com/meta-llama/Llama-2-70b-chat-hf/api).
Chat models [follow openai api](https://deepinfra.com/meta-llama/Llama-2-70b-chat-hf/api?example=openai-http)
## Wrappers
### LLM
## LLM
There exists an DeepInfra LLM wrapper, which you can access with
See a [usage example](/docs/integrations/llms/deepinfra).
```python
from langchain_community.llms import DeepInfra
```
### Embeddings
## Embeddings
There is also an DeepInfra Embeddings wrapper, you can access with
See a [usage example](/docs/integrations/text_embedding/deepinfra).
```python
from langchain_community.embeddings import DeepInfraEmbeddings
```
### Chat Models
## Chat Models
There is a chat-oriented wrapper as well, accessible with
See a [usage example](/docs/integrations/chat/deepinfra).
```python
from langchain_community.chat_models import ChatDeepInfra

View File

@@ -5,9 +5,7 @@
"id": "134a0785",
"metadata": {},
"source": [
"# Chat Over Documents with Vectara\n",
"\n",
"This notebook is based on the [chat_vector_db](https://github.com/hwchase17/langchain/blob/master/docs/modules/chains/index_examples/chat_vector_db.html) notebook, but using Vectara as the vector database."
"# Chat Over Documents with Vectara"
]
},
{
@@ -186,9 +184,7 @@
"cell_type": "code",
"execution_count": 8,
"id": "e8ce4fe9",
"metadata": {
"scrolled": false
},
"metadata": {},
"outputs": [],
"source": [
"query = \"What did the president say about Ketanji Brown Jackson\"\n",
@@ -547,7 +543,6 @@
"execution_count": 26,
"id": "e2badd21",
"metadata": {
"scrolled": false,
"tags": []
},
"outputs": [],
@@ -755,7 +750,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.9"
"version": "3.11.6"
}
},
"nbformat": 4,

View File

@@ -0,0 +1,75 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Baichuan Text Embeddings\n",
"\n",
"As of today (Jan 25th, 2024) BaichuanTextEmbeddings ranks #1 in C-MTEB (Chinese Multi-Task Embedding Benchmark) leaderboard.\n",
"\n",
"Leaderboard (Under Overall -> Chinese section): https://huggingface.co/spaces/mteb/leaderboard\n",
"\n",
"Official Website: https://platform.baichuan-ai.com/docs/text-Embedding\n",
"An API-key is required to use this embedding model. You can get one by registering at https://platform.baichuan-ai.com/docs/text-Embedding.\n",
"BaichuanTextEmbeddings support 512 token window and preduces vectors with 1024 dimensions. \n",
"\n",
"Please NOTE that BaichuanTextEmbeddings only supports Chinese text embedding. Multi-language support is coming soon.\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"vscode": {
"languageId": "plaintext"
}
},
"outputs": [],
"source": [
"from langchain_community.embeddings import BaichuanTextEmbeddings\n",
"\n",
"# Place your Baichuan API-key here.\n",
"embeddings = BaichuanTextEmbeddings(baichuan_api_key=\"sk-*\")\n",
"\n",
"text_1 = \"今天天气不错\"\n",
"text_2 = \"今天阳光很好\""
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"vscode": {
"languageId": "plaintext"
}
},
"outputs": [],
"source": [
"query_result = embeddings.embed_query(text_1)\n",
"query_result"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"vscode": {
"languageId": "plaintext"
}
},
"outputs": [],
"source": [
"doc_result = embeddings.embed_documents([text_1, text_2])\n",
"doc_result"
]
}
],
"metadata": {
"language_info": {
"name": "python"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@@ -10,9 +10,42 @@
"Let's load the OpenAI Embedding class."
]
},
{
"cell_type": "markdown",
"id": "40ff98ff-58e9-4716-8788-227a5c3f473d",
"metadata": {},
"source": [
"## Setup\n",
"\n",
"First we install langchain-openai and set the required env vars"
]
},
{
"cell_type": "code",
"execution_count": 6,
"execution_count": null,
"id": "c66c4613-6c67-40ca-b3b1-c026750d1742",
"metadata": {},
"outputs": [],
"source": [
"%pip install -qU langchain-openai"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "62e3710e-55a0-44fb-ba51-2f1d520dfc38",
"metadata": {},
"outputs": [],
"source": [
"import getpass\n",
"import os\n",
"\n",
"os.environ[\"OPENAI_API_KEY\"] = getpass.getpass()"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "0be1af71",
"metadata": {},
"outputs": [],
@@ -22,17 +55,17 @@
},
{
"cell_type": "code",
"execution_count": 29,
"execution_count": 5,
"id": "2c66e5da",
"metadata": {},
"outputs": [],
"source": [
"embeddings = OpenAIEmbeddings()"
"embeddings = OpenAIEmbeddings(model=\"text-embedding-3-large\")"
]
},
{
"cell_type": "code",
"execution_count": 30,
"execution_count": 6,
"id": "01370375",
"metadata": {},
"outputs": [],
@@ -40,33 +73,50 @@
"text = \"This is a test document.\""
]
},
{
"cell_type": "markdown",
"id": "f012c222-3fa9-470a-935c-758b2048d9af",
"metadata": {},
"source": [
"## Usage\n",
"### Embed query"
]
},
{
"cell_type": "code",
"execution_count": 31,
"execution_count": 7,
"id": "bfb6142c",
"metadata": {},
"outputs": [],
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Warning: model not found. Using cl100k_base encoding.\n"
]
}
],
"source": [
"query_result = embeddings.embed_query(text)"
]
},
{
"cell_type": "code",
"execution_count": 32,
"execution_count": 8,
"id": "91bc875d-829b-4c3d-8e6f-fc2dda30a3bd",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[-0.003186025367556387,\n",
" 0.011071979803637493,\n",
" -0.004020420763285827,\n",
" -0.011658221276953042,\n",
" -0.0010534035786864363]"
"[-0.014380056377383358,\n",
" -0.027191711627651764,\n",
" -0.020042716111860304,\n",
" 0.057301379620345545,\n",
" -0.022267658631828974]"
]
},
"execution_count": 32,
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
@@ -75,33 +125,49 @@
"query_result[:5]"
]
},
{
"cell_type": "markdown",
"id": "6b733391-1e23-438b-a6bc-0d77eed9426e",
"metadata": {},
"source": [
"## Embed documents"
]
},
{
"cell_type": "code",
"execution_count": 33,
"execution_count": 9,
"id": "0356c3b7",
"metadata": {},
"outputs": [],
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Warning: model not found. Using cl100k_base encoding.\n"
]
}
],
"source": [
"doc_result = embeddings.embed_documents([text])"
]
},
{
"cell_type": "code",
"execution_count": 34,
"execution_count": 10,
"id": "a4b0d49e-0c73-44b6-aed5-5b426564e085",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[-0.003186025367556387,\n",
" 0.011071979803637493,\n",
" -0.004020420763285827,\n",
" -0.011658221276953042,\n",
" -0.0010534035786864363]"
"[-0.014380056377383358,\n",
" -0.027191711627651764,\n",
" -0.020042716111860304,\n",
" 0.057301379620345545,\n",
" -0.022267658631828974]"
]
},
"execution_count": 34,
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
@@ -112,131 +178,87 @@
},
{
"cell_type": "markdown",
"id": "bb61bbeb",
"id": "e7dc464a-6fa2-4cff-ab2e-49a0566d819b",
"metadata": {},
"source": [
"Let's load the OpenAI Embedding class with first generation models (e.g. text-search-ada-doc-001/text-search-ada-query-001). Note: These are not recommended models - see [here](https://platform.openai.com/docs/guides/embeddings/what-are-embeddings)"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "c0b072cc",
"metadata": {},
"outputs": [],
"source": [
"from langchain_openai import OpenAIEmbeddings"
]
},
{
"cell_type": "code",
"execution_count": 23,
"id": "a56b70f5",
"metadata": {},
"outputs": [],
"source": [
"embeddings = OpenAIEmbeddings(model=\"text-embedding-ada-002\")"
]
},
{
"cell_type": "code",
"execution_count": 24,
"id": "14aefb64",
"metadata": {},
"outputs": [],
"source": [
"text = \"This is a test document.\""
]
},
{
"cell_type": "code",
"execution_count": 25,
"id": "3c39ed33",
"metadata": {},
"outputs": [],
"source": [
"query_result = embeddings.embed_query(text)"
]
},
{
"cell_type": "code",
"execution_count": 26,
"id": "2ee7ce9f-d506-4810-8897-e44334412714",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[0.004452846988523035,\n",
" 0.034550655976098514,\n",
" -0.015029939040690051,\n",
" 0.03827273883655212,\n",
" 0.005785414075152477]"
]
},
"execution_count": 26,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"query_result[:5]"
]
},
{
"cell_type": "code",
"execution_count": 27,
"id": "e3221db6",
"metadata": {},
"outputs": [],
"source": [
"doc_result = embeddings.embed_documents([text])"
]
},
{
"cell_type": "code",
"execution_count": 28,
"id": "a0865409-3a6d-468f-939f-abde17c7cac3",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[0.004452846988523035,\n",
" 0.034550655976098514,\n",
" -0.015029939040690051,\n",
" 0.03827273883655212,\n",
" 0.005785414075152477]"
]
},
"execution_count": 28,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"doc_result[0][:5]"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "aaad49f8",
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"## Specify dimensions\n",
"\n",
"# if you are behind an explicit proxy, you can use the OPENAI_PROXY environment variable to pass through\n",
"os.environ[\"OPENAI_PROXY\"] = \"http://proxy.yourcompany.com:8080\""
"With the `text-embedding-3` class of models, you can specify the size of the embeddings you want returned. For example by default `text-embedding-3-large` returned embeddings of dimension 3072:"
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "f7be1e7b-54c6-4893-b8ad-b872e6705735",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"3072"
]
},
"execution_count": 11,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"len(doc_result[0])"
]
},
{
"cell_type": "markdown",
"id": "33287142-0835-4958-962f-385ae4447431",
"metadata": {},
"source": [
"But by passing in `dimensions=1024` we can reduce the size of our embeddings to 1024:"
]
},
{
"cell_type": "code",
"execution_count": 15,
"id": "854ee772-2de9-4a83-84e0-908033d98e4e",
"metadata": {},
"outputs": [],
"source": [
"embeddings_1024 = OpenAIEmbeddings(model=\"text-embedding-3-large\", dimensions=1024)"
]
},
{
"cell_type": "code",
"execution_count": 16,
"id": "3b464396-8d94-478b-8329-849b56e1ae23",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Warning: model not found. Using cl100k_base encoding.\n"
]
},
{
"data": {
"text/plain": [
"1024"
]
},
"execution_count": 16,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"len(embeddings_1024.embed_documents([text])[0])"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"display_name": "poetry-venv",
"language": "python",
"name": "python3"
"name": "poetry-venv"
},
"language_info": {
"codemirror_mode": {
@@ -248,7 +270,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.12"
"version": "3.9.1"
},
"vscode": {
"interpreter": {

View File

@@ -7,7 +7,9 @@
"source": [
"# Text Embeddings Inference\n",
"\n",
"Text Embeddings Inference (TEI) is a toolkit for deploying and serving open source text embeddings and sequence classification models. TEI enables high-performance extraction for the most popular models, including FlagEmbedding, Ember, GTE and E5.\n",
">[Hugging Face Text Embeddings Inference (TEI)](https://huggingface.co/docs/text-generation-inference/index) is a toolkit for deploying and serving open-source\n",
"> text embeddings and sequence classification models. `TEI` enables high-performance extraction for the most popular models,\n",
">including `FlagEmbedding`, `Ember`, `GTE` and `E5`.\n",
"\n",
"To use it within langchain, first install `huggingface-hub`."
]
@@ -21,7 +23,7 @@
},
"outputs": [],
"source": [
"%pip install --upgrade --quiet huggingface-hub -q"
"%pip install --upgrade huggingface-hub"
]
},
{
@@ -146,9 +148,9 @@
],
"metadata": {
"kernelspec": {
"display_name": "conda_python3",
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "conda_python3"
"name": "python3"
},
"language_info": {
"codemirror_mode": {
@@ -160,7 +162,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.13"
"version": "3.10.12"
}
},
"nbformat": 4,

View File

@@ -6,7 +6,7 @@
"id": "4x4kQ0VcodAC"
},
"source": [
"# Metaphor Search"
"# Exa Search"
]
},
{
@@ -15,13 +15,13 @@
"id": "V1x8wEUhodAH"
},
"source": [
"Metaphor is a search engine fully designed for use by LLMs. Search for documents on the internet using **natural language queries**, then retrieve **cleaned HTML content** from desired documents.\n",
"Exa (formerly Metaphor Search) is a search engine fully designed for use by LLMs. Search for documents on the internet using **natural language queries**, then retrieve **cleaned HTML content** from desired documents.\n",
"\n",
"Unlike keyword-based search (Google), Metaphor's neural search capabilities allow it to semantically understand queries and return relevant documents. For example, we could search `\"fascinating article about cats\"` and compare the search results from [Google](https://www.google.com/search?q=fascinating+article+about+cats) and [Metaphor](https://metaphor.systems/search?q=fascinating%20article%20about%20cats&autopromptString=Here%20is%20a%20fascinating%20article%20about%20cats%3A). Google gives us SEO-optimized listicles based on the keyword \"fascinating\". Metaphor just works.\n",
"Unlike keyword-based search (Google), Exa's neural search capabilities allow it to semantically understand queries and return relevant documents. For example, we could search `\"fascinating article about cats\"` and compare the search results from [Google](https://www.google.com/search?q=fascinating+article+about+cats) and [Exa](https://search.exa.ai/search?q=fascinating%20article%20about%20cats&autopromptString=Here%20is%20a%20fascinating%20article%20about%20cats%3A). Google gives us SEO-optimized listicles based on the keyword \"fascinating\". Exa just works.\n",
"\n",
"This notebook goes over how to use Metaphor Search with LangChain.\n",
"This notebook goes over how to use Exa Search with LangChain.\n",
"\n",
"First, get a Metaphor API key and add it as an environment variable. Get 1000 free searches/month by [signing up here](https://platform.metaphor.systems/)."
"First, get an Exa API key and add it as an environment variable. Get 1000 free searches/month by [signing up here](https://dashboard.exa.ai/)."
]
},
{
@@ -34,7 +34,88 @@
"source": [
"import os\n",
"\n",
"os.environ[\"METAPHOR_API_KEY\"] = \"...\""
"os.environ[\"EXA_API_KEY\"] = \"...\""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"And install the integration package"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%pip install --upgrade --quiet langchain-exa\n",
"\n",
"# and some deps for this notebook\n",
"%pip install --upgrade --quiet langchain langchain-openai"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Using ExaSearchRetriever\n",
"\n",
"ExaSearchRetriever is a retriever that uses Exa Search to retrieve relevant documents."
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[Result(title='Find Us:', url='https://travelila.com/best-time-to-visit-japan/', id='UFLQGtanQffaDErhngnzgA', score=0.1865834891796112, published_date='2021-01-05', author=None, text='If you are planning to spend your next vacation in Japan, then hold your excitement a bit. It would help if you planned which places you will visit in Japan and the countrys best things. Its entirel', highlights=None, highlight_scores=None), Result(title='When Is The Best Time of Year To Visit Japan?', url='https://boutiquejapan.com/when-is-the-best-time-of-year-to-visit-japan/', id='70b0IMuaQpshjpBpnwsfUg', score=0.17796635627746582, published_date='2022-09-26', author='Andres Zuleta', text='The good news for travelers is that there is no single best time of year to travel to Japan — yet this makes it hard to decide when to visit, as each season has its own special highlights.When plannin', highlights=None, highlight_scores=None), Result(title='Here is the Best Time to Visit Japan - Cooking Sun', url='https://www.cooking-sun.com/best-time-to-visit-japan/', id='2mh-xvoqGPT-ZRvX9GezNQ', score=0.17497511208057404, published_date='2018-12-17', author='Cooking Sun', text='Japan is a diverse and beautiful country thats brimming with culture. For some travelers, visiting Japan is a dream come true, since it grazes bucket lists across the globe. One of the best parts abo', highlights=None, highlight_scores=None), Result(title='When to Visit Japan? Bests Times and 2023 Travel Tips', url='https://www.jrailpass.com/blog/when-visit-japan-times', id='KqCnY8fF-nc76n1wNpIo1Q', score=0.17359933257102966, published_date='2020-02-18', author='JRailPass', text='When is the best time to visit Japan? This is a question without a simple answer. Japan is a year-round destination, with interesting activities, attractions, and festivities throughout the year.Your ', highlights=None, highlight_scores=None), Result(title='Complete Guide To Visiting Japan In February 2023: Weather, What To See & Do | LIVE JAPAN travel guide', url='https://livejapan.com/en/article-a0002948/', id='i3nmekOdM8_VBxPfcJmxng', score=0.17215865850448608, published_date='2019-11-13', author='Lucio Maurizi', text='\\n \\n \\n HOME\\n Complete Guide To Visiting Japan In February 2023: Weather, What To See & Do\\n \\n \\n \\n \\n \\n \\n Date published: 13 November 2019 \\n Last updated: 26 January 2021 \\n \\n \\n So youre planning your tra', highlights=None, highlight_scores=None)]\n"
]
},
{
"data": {
"text/plain": [
"AIMessage(content='Based on the given context, there is no specific best time mentioned to visit Japan. Each season has its own special highlights, and Japan is a year-round destination with interesting activities, attractions, and festivities throughout the year. Therefore, the best time to visit Japan depends on personal preferences and the specific activities or events one wants to experience.')"
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from langchain_core.prompts import PromptTemplate\n",
"from langchain_core.runnables import RunnableParallel, RunnablePassthrough\n",
"from langchain_exa import ExaSearchRetriever, TextContentsOptions\n",
"from langchain_openai import ChatOpenAI\n",
"\n",
"# retrieve 5 documents, with content truncated at 1000 characters\n",
"retriever = ExaSearchRetriever(\n",
" k=5, text_contents_options=TextContentsOptions(max_length=200)\n",
")\n",
"\n",
"prompt = PromptTemplate.from_template(\n",
" \"\"\"Answer the following query based on the following context:\n",
"query: {query}\n",
"<context>\n",
"{context}\n",
"</context\"\"\"\n",
")\n",
"\n",
"llm = ChatOpenAI()\n",
"\n",
"chain = (\n",
" RunnableParallel({\"context\": retriever, \"query\": RunnablePassthrough()})\n",
" | prompt\n",
" | llm\n",
")\n",
"\n",
"chain.invoke(\"When is the best time to visit japan?\")"
]
},
{
@@ -43,14 +124,14 @@
"id": "ip5_D9MkodAK"
},
"source": [
"## Using the Metaphor SDK as LangChain Agent Tools\n",
"## Using the Exa SDK as LangChain Agent Tools\n",
"\n",
"The [Metaphor SDK](https://docs.metaphor.systems/) creates a client that can use the Metaphor API to perform three functions:\n",
"The [Exa SDK](https://docs.exa.ai/) creates a client that can use the Exa API to perform three functions:\n",
"- `search`: Given a natural language search query, retrieve a list of search results.\n",
"- `find_similar`: Given a URL, retrieve a list of search results corresponding to webpages which are similar to the document at the provided URL.\n",
"- `get_content`: Given a list of document ids fetched from `search` or `find_similar`, get cleaned HTML content for each document.\n",
"\n",
"We can use the `@tool` decorator and docstrings to create LangChain Tool wrappers that tell an LLM agent how to use Metaphor."
"We can use the `@tool` decorator and docstrings to create LangChain Tool wrappers that tell an LLM agent how to use Exa."
]
},
{
@@ -61,7 +142,7 @@
},
"outputs": [],
"source": [
"%pip install --upgrade --quiet metaphor-python"
"%pip install --upgrade --quiet langchain-exa"
]
},
{
@@ -72,16 +153,16 @@
},
"outputs": [],
"source": [
"from exa_py import Exa\n",
"from langchain.agents import tool\n",
"from metaphor_python import Metaphor\n",
"\n",
"metaphor = Metaphor(api_key=os.environ[\"METAPHOR_API_KEY\"])\n",
"exa = Exa(api_key=os.environ[\"EXA_API_KEY\"])\n",
"\n",
"\n",
"@tool\n",
"def search(query: str):\n",
" \"\"\"Search for a webpage based on the query.\"\"\"\n",
" return metaphor.search(f\"{query}\", use_autoprompt=True, num_results=5)\n",
" return exa.search(f\"{query}\", use_autoprompt=True, num_results=5)\n",
"\n",
"\n",
"@tool\n",
@@ -89,7 +170,7 @@
" \"\"\"Search for webpages similar to a given URL.\n",
" The url passed in should be a URL returned from `search`.\n",
" \"\"\"\n",
" return metaphor.find_similar(url, num_results=5)\n",
" return exa.find_similar(url, num_results=5)\n",
"\n",
"\n",
"@tool\n",
@@ -97,7 +178,7 @@
" \"\"\"Get the contents of a webpage.\n",
" The ids passed in should be a list of ids returned from `search`.\n",
" \"\"\"\n",
" return metaphor.get_contents(ids)\n",
" return exa.get_contents(ids)\n",
"\n",
"\n",
"tools = [search, get_contents, find_similar]"
@@ -109,9 +190,9 @@
"id": "sVe2ca9OodAO"
},
"source": [
"### Providing Metaphor Tools to an Agent\n",
"### Providing Exa Tools to an Agent\n",
"\n",
"We can provide the Metaphor tools we just created to a LangChain `OpenAIFunctionsAgent`. When asked to `Summarize for me a fascinating article about cats`, the agent uses the `search` tool to perform a Metaphor search with an appropriate search query, uses the `get_contents` tool to perform Metaphor content retrieval, and then returns a summary of the retrieved content."
"We can provide the Exa tools we just created to a LangChain `OpenAIFunctionsAgent`. When asked to `Summarize for me a fascinating article about cats`, the agent uses the `search` tool to perform a Exa search with an appropriate search query, uses the `get_contents` tool to perform Exa content retrieval, and then returns a summary of the retrieved content."
]
},
{
@@ -237,9 +318,11 @@
"id": "e3FHjxT-RoIH"
},
"source": [
"## Advanced Metaphor Features\n",
"## Advanced Exa Features\n",
"\n",
"Metaphor supports powerful filters by domain and date. We can provide a more powerful `search` tool to the agent that lets it decide to apply filters if they are useful for the objective. See all of Metaphor's search features [here](https://github.com/metaphorsystems/metaphor-python/)."
"Exa supports powerful filters by domain and date. We can provide a more powerful `search` tool to the agent that lets it decide to apply filters if they are useful for the objective. See all of Exa's search features [here](https://github.com/metaphorsystems/metaphor-python/).\n",
"\n",
"[//]: # \"TODO(erick): switch metaphor github link to exa github link when sdk published\""
]
},
{
@@ -250,10 +333,10 @@
},
"outputs": [],
"source": [
"from exa_py import Exa\n",
"from langchain.agents import tool\n",
"from metaphor_python import Metaphor\n",
"\n",
"metaphor = Metaphor(api_key=os.environ[\"METAPHOR_API_KEY\"])\n",
"exa = Exa(api_key=os.environ[\"Exa_API_KEY\"])\n",
"\n",
"\n",
"@tool\n",
@@ -262,7 +345,7 @@
" Set the optional include_domains (list[str]) parameter to restrict the search to a list of domains.\n",
" Set the optional start_published_date (str) parameter to restrict the search to documents published after the date (YYYY-MM-DD).\n",
" \"\"\"\n",
" return metaphor.search(\n",
" return exa.search(\n",
" f\"{query}\",\n",
" use_autoprompt=True,\n",
" num_results=5,\n",
@@ -276,7 +359,7 @@
" \"\"\"Search for webpages similar to a given URL.\n",
" The url passed in should be a URL returned from `search`.\n",
" \"\"\"\n",
" return metaphor.find_similar(url, num_results=5)\n",
" return exa.find_similar(url, num_results=5)\n",
"\n",
"\n",
"@tool\n",
@@ -284,7 +367,7 @@
" \"\"\"Get the contents of a webpage.\n",
" The ids passed in should be a list of ids returned from `search`.\n",
" \"\"\"\n",
" return metaphor.get_contents(ids)\n",
" return exa.get_contents(ids)\n",
"\n",
"\n",
"tools = [search, get_contents, find_similar]"
@@ -449,7 +532,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.0"
"version": "3.11.4"
}
},
"nbformat": 4,

View File

@@ -0,0 +1,160 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Ionic\n",
">[Ionic](https://www.ioniccommerce.com/) stands at the forefront of commerce innovation, offering a suite of APIs that serve as the backbone for AI assistants and their developers. With Ionic, you unlock a new realm of possibility where convenience and intelligence converge, enabling users to navigate purchases with unprecedented ease. Experience the synergy of human desire and AI capability, all through Ionic's seamless integration.\n",
"\n",
"By including an `IonicTool` in the list of tools provided to an Agent, you are effortlessly adding e-commerce capabilities to your Agent. For more documetation on setting up your Agent with Ionic, see the [Ionic documentation](https://docs.ioniccommerce.com/guides/langchain).\n",
"\n",
"This Jupyter Notebook demonstrates how to use the `Ionic` tool with an Agent.\n",
"\n",
"First, let's install the `ionic-langchain` package.\n",
"**The `ionic-langchain` package is maintained by the Ionic team, not the LangChain maintainers.**"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"vscode": {
"languageId": "shellscript"
}
},
"outputs": [],
"source": [
"pip install ionic-langchain > /dev/null"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Now, let's create an `IonicTool` instance and initialize an Agent with the tool."
]
},
{
"cell_type": "code",
"execution_count": 30,
"metadata": {
"ExecuteTime": {
"end_time": "2024-01-24T17:33:11.755683Z",
"start_time": "2024-01-24T17:33:11.174044Z"
}
},
"outputs": [],
"source": [
"import os\n",
"\n",
"from ionic_langchain.tool import Ionic, IonicTool\n",
"from langchain import hub\n",
"from langchain.agents import AgentExecutor, Tool, create_react_agent\n",
"from langchain_openai import OpenAI\n",
"\n",
"open_ai_key = os.environ[\"OPENAI_API_KEY\"]\n",
"\n",
"llm = OpenAI(openai_api_key=open_ai_key, temperature=0.5)\n",
"\n",
"tools: list[Tool] = [IonicTool().tool()]\n",
"\n",
"prompt = hub.pull(\"hwchase17/react\") # the example prompt for create_react_agent\n",
"\n",
"agent = create_react_agent(\n",
" llm,\n",
" tools,\n",
" prompt=prompt,\n",
")\n",
"\n",
"agent_executor = AgentExecutor(agent=agent, tools=tools, verbose=True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Now, we can use the Agent to shop for products and get product information from Ionic."
]
},
{
"cell_type": "code",
"execution_count": 32,
"metadata": {
"ExecuteTime": {
"end_time": "2024-01-24T17:34:31.257036Z",
"start_time": "2024-01-24T17:33:45.849440Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"\n",
"\u001B[1m> Entering new AgentExecutor chain...\u001B[0m\n",
"\u001B[32;1m\u001B[1;3m Since the user is looking for a specific product, we should use Ionic Commerce Shopping Tool to find and compare products.\n",
"Action: Ionic Commerce Shopping Tool\n",
"Action Input: 4K Monitor, 5, 100000, 1000000\u001B[0m\u001B[36;1m\u001B[1;3m[{'products': [{'links': [{'text': 'Details', 'type': 'pdp', 'url': 'https://goto.walmart.com/c/123456/568844/9383?veh=aff&sourceid=imp_000011112222333344&u=https%3A%2F%2Fwww.walmart.com%2Fip%2F118806626'}], 'merchant_name': 'Walmart', 'merchant_product_id': '118806626', 'name': 'ASUS ProArt Display PA32UCX-PK 32” 4K HDR Mini LED Monitor, 99% DCI-P3 99.5% Adobe RGB, DeltaE<1, 10-bit, IPS, Thunderbolt 3 USB-C HDMI DP, Calman Ready, Dolby Vision, 1200nits, w/ X-rite Calibrator', 'price': '$2299.00', 'status': 'available', 'thumbnail': 'https://i5.walmartimages.com/asr/5ddc6e4a-5197-4f08-b505-83551b541de3.fd51cbae2a4d88fb366f5880b41eef03.png?odnHeight=100&odnWidth=100&odnBg=ffffff', 'brand_name': 'ASUS', 'upc': '192876749388'}, {'links': [{'text': 'Details', 'type': 'pdp', 'url': 'https://www.amazon.com/dp/B0BHXNL922?tag=ioniccommer00-20&linkCode=osi&th=1&psc=1'}], 'merchant_name': 'Amazon', 'merchant_product_id': 'B0BHXNL922', 'name': 'LG Ultrafine™ OLED Monitor (27EQ850) 27 inch 4K UHD (3840 x 2160) OLED Pro Display with Adobe RGB 99%, DCI-P3 99%, 1M:1 Contrast Ratio, Hardware Calibration, Multi-Interface, USB Type-C™ (PD 90W)', 'price': '$1796.99', 'status': 'available', 'thumbnail': 'https://m.media-amazon.com/images/I/41VEl4V2U4L._SL160_.jpg', 'brand_name': 'LG', 'upc': None}, {'links': [{'text': 'Details', 'type': 'pdp', 'url': 'https://www.amazon.com/dp/B0BZR81SQG?tag=ioniccommer00-20&linkCode=osi&th=1&psc=1'}], 'merchant_name': 'Amazon', 'merchant_product_id': 'B0BZR81SQG', 'name': 'ASUS ROG Swift 38” 4K HDMI 2.1 HDR DSC Gaming Monitor (PG38UQ) - UHD (3840 x 2160), 144Hz, 1ms, Fast IPS, G-SYNC Compatible, Speakers, FreeSync Premium Pro, DisplayPort, DisplayHDR600, 98% DCI-P3', 'price': '$1001.42', 'status': 'available', 'thumbnail': 'https://m.media-amazon.com/images/I/41ULH0sb1zL._SL160_.jpg', 'brand_name': 'ASUS', 'upc': None}, {'links': [{'text': 'Details', 'type': 'pdp', 'url': 'https://www.amazon.com/dp/B0BBSV1LK5?tag=ioniccommer00-20&linkCode=osi&th=1&psc=1'}], 'merchant_name': 'Amazon', 'merchant_product_id': 'B0BBSV1LK5', 'name': 'ASUS ROG Swift 41.5\" 4K OLED 138Hz 0.1ms Gaming Monitor PG42UQ', 'price': '$1367.09', 'status': 'available', 'thumbnail': 'https://m.media-amazon.com/images/I/51ZM41brvHL._SL160_.jpg', 'brand_name': 'ASUS', 'upc': None}, {'links': [{'text': 'Details', 'type': 'pdp', 'url': 'https://www.amazon.com/dp/B07K8877Y5?tag=ioniccommer00-20&linkCode=osi&th=1&psc=1'}], 'merchant_name': 'Amazon', 'merchant_product_id': 'B07K8877Y5', 'name': 'LG 32UL950-W 32\" Class Ultrafine 4K UHD LED Monitor with Thunderbolt 3 Connectivity Silver (31.5\" Display)', 'price': '$1149.33', 'status': 'available', 'thumbnail': 'https://m.media-amazon.com/images/I/41Q2OE2NnDL._SL160_.jpg', 'brand_name': 'LG', 'upc': None}], 'query': {'query': '4K Monitor', 'max_price': 1000000, 'min_price': 100000, 'num_results': 5}}]\u001B[0m\u001B[32;1m\u001B[1;3m Since the results are in cents, we should convert them back to dollars before displaying the results to the user.\n",
"Action: Convert prices to dollars\n",
"Action Input: [{'products': [{'links': [{'text': 'Details', 'type': 'pdp', 'url': 'https://goto.walmart.com/c/123456/568844/9383?veh=aff&sourceid=imp_000011112222333344&u=https%3A%2F%2Fwww.walmart.com%2Fip%2F118806626'}], 'merchant_name': 'Walmart', 'merchant_product_id': '118806626', 'name': 'ASUS ProArt Display PA32UCX-PK 32” 4K HDR Mini LED Monitor, 99% DCI-P3 99.5% Adobe RGB, DeltaE<1, 10-bit, IPS, Thunderbolt 3 USB-C HDMI DP, Calman Ready, Dolby Vision, 1200nits, w/ X-rite Calibrator', 'price': '$2299.00', 'status': 'available', 'thumbnail': 'https://i5.walmartimages.com/asr/5ddc6e4a-5197\u001B[0mConvert prices to dollars is not a valid tool, try one of [Ionic Commerce Shopping Tool].\u001B[32;1m\u001B[1;3m The results are in a list format, we should display them to the user in a more readable format.\n",
"Action: Display results in readable format\n",
"Action Input: [{'products': [{'links': [{'text': 'Details', 'type': 'pdp', 'url': 'https://goto.walmart.com/c/123456/568844/9383?veh=aff&sourceid=imp_000011112222333344&u=https%3A%2F%2Fwww.walmart.com%2Fip%2F118806626'}], 'merchant_name': 'Walmart', 'merchant_product_id': '118806626', 'name': 'ASUS ProArt Display PA32UCX-PK 32” 4K HDR Mini LED Monitor, 99% DCI-P3 99.5% Adobe RGB, DeltaE<1, 10-bit, IPS, Thunderbolt 3 USB-C HDMI DP, Calman Ready, Dolby Vision, 1200nits, w/ X-rite Calibrator', 'price': '$2299.00', 'status': 'available', 'thumbnail': 'https://i5.walmartimages.com/asr/5ddc6e4a-5197\u001B[0mDisplay results in readable format is not a valid tool, try one of [Ionic Commerce Shopping Tool].\u001B[32;1m\u001B[1;3m We should check if the user is satisfied with the results or if they have additional requirements.\n",
"Action: Check user satisfaction\n",
"Action Input: None\u001B[0mCheck user satisfaction is not a valid tool, try one of [Ionic Commerce Shopping Tool].\u001B[32;1m\u001B[1;3m I now know the final answer\n",
"Final Answer: The final answer is [{'products': [{'links': [{'text': 'Details', 'type': 'pdp', 'url': 'https://goto.walmart.com/c/123456/568844/9383?veh=aff&sourceid=imp_000011112222333344&u=https%3A%2F%2Fwww.walmart.com%2Fip%2F118806626'}], 'merchant_name': 'Walmart', 'merchant_product_id': '118806626', 'name': 'ASUS ProArt Display PA32UCX-PK 32” 4K HDR Mini LED Monitor, 99% DCI-P3 99.5% Adobe RGB, DeltaE<1, 10-bit, IPS, Thunderbolt 3 USB-C HDMI DP, Calman Ready, Dolby Vision, 1200nits, w/ X-rite Calibrator', 'price': '$2299.00', 'status': 'available', 'thumbnail': 'https://i5.walmartimages.com/asr/5ddc6e4a-5197-4f08-b505-83551b541de3.fd51cbae2\u001B[0m\n",
"\n",
"\u001B[1m> Finished chain.\u001B[0m\n"
]
},
{
"data": {
"text/plain": "{'input': \"I'm looking for a new 4K Monitor with 1000R under $1000\",\n 'output': \"The final answer is [{'products': [{'links': [{'text': 'Details', 'type': 'pdp', 'url': 'https://goto.walmart.com/c/123456/568844/9383?veh=aff&sourceid=imp_000011112222333344&u=https%3A%2F%2Fwww.walmart.com%2Fip%2F118806626'}], 'merchant_name': 'Walmart', 'merchant_product_id': '118806626', 'name': 'ASUS ProArt Display PA32UCX-PK 32” 4K HDR Mini LED Monitor, 99% DCI-P3 99.5% Adobe RGB, DeltaE<1, 10-bit, IPS, Thunderbolt 3 USB-C HDMI DP, Calman Ready, Dolby Vision, 1200nits, w/ X-rite Calibrator', 'price': '$2299.00', 'status': 'available', 'thumbnail': 'https://i5.walmartimages.com/asr/5ddc6e4a-5197-4f08-b505-83551b541de3.fd51cbae2\"}"
},
"execution_count": 32,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"input = \"I'm looking for a new 4K Monitor under $1000\"\n",
"\n",
"agent_executor.invoke({\"input\": input})"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": []
}
],
"metadata": {
"interpreter": {
"hash": "f85209c3c4c190dca7367d6a1e623da50a9a4392fd53313a7cf9d4bda9c4b85b"
},
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.12"
}
},
"nbformat": 4,
"nbformat_minor": 4
}

View File

@@ -0,0 +1,703 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# SAP HANA Cloud Vector Engine\n",
"\n",
">SAP HANA Cloud Vector Engine is a vector store fully integrated into the SAP HANA Cloud database."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Installation of the HANA database driver."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"# Pip install necessary package\n",
"%pip install --upgrade --quiet hdbcli"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"To use `OpenAIEmbeddings` so we use the OpenAI API Key."
]
},
{
"cell_type": "code",
"execution_count": 28,
"metadata": {
"ExecuteTime": {
"end_time": "2023-09-09T08:02:16.802456Z",
"start_time": "2023-09-09T08:02:07.065604Z"
}
},
"outputs": [],
"source": [
"import os\n",
"# Use OPENAI_API_KEY env variable\n",
"# os.environ[\"OPENAI_API_KEY\"] = \"Your OpenAI API key\""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Load the sample document \"state_of_the_union.txt\" and create chunks from it."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"ExecuteTime": {
"end_time": "2023-09-09T08:02:25.452472Z",
"start_time": "2023-09-09T08:02:25.441563Z"
}
},
"outputs": [],
"source": [
"from langchain.docstore.document import Document\n",
"from langchain.text_splitter import CharacterTextSplitter\n",
"from langchain_community.document_loaders import TextLoader\n",
"from langchain_community.vectorstores.hanavector import HanaDB\n",
"from langchain_openai import OpenAIEmbeddings\n",
"\n",
"text_documents = TextLoader(\"../../modules/state_of_the_union.txt\").load()\n",
"text_splitter = CharacterTextSplitter(chunk_size=500, chunk_overlap=0)\n",
"text_chunks = text_splitter.split_documents(text_documents)\n",
"print(f\"Number of document chunks: {len(text_chunks)}\")\n",
"\n",
"embeddings = OpenAIEmbeddings()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Create a database connection to a HANA Cloud instance"
]
},
{
"cell_type": "code",
"execution_count": 30,
"metadata": {
"ExecuteTime": {
"end_time": "2023-09-09T08:02:28.174088Z",
"start_time": "2023-09-09T08:02:28.162698Z"
}
},
"outputs": [],
"source": [
"from hdbcli import dbapi\n",
"\n",
"# Use connection settings from the environment\n",
"connection = dbapi.connect(\n",
" address=os.environ.get(\"HANA_DB_ADDRESS\"),\n",
" port=os.environ.get(\"HANA_DB_PORT\"),\n",
" user=os.environ.get(\"HANA_DB_USER\"),\n",
" password=os.environ.get(\"HANA_DB_PASSWORD\"),\n",
" autocommit=True,\n",
" sslValidateCertificate=False,\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Create a LangChain VectorStore interface for the HANA database and specify the table (collection) to use for accessing the vector embeddings"
]
},
{
"cell_type": "code",
"execution_count": 31,
"metadata": {
"ExecuteTime": {
"end_time": "2023-09-09T08:04:16.696625Z",
"start_time": "2023-09-09T08:02:31.817790Z"
}
},
"outputs": [],
"source": [
"db = HanaDB(\n",
" embedding=embeddings, connection=connection, table_name=\"STATE_OF_THE_UNION\"\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Add the loaded document chunks to the table. For this example, we delete any previous content from the table which might exist from previous runs."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Delete already existing documents from the table\n",
"db.delete(filter={})\n",
"\n",
"# add the loaded document chunks\n",
"db.add_documents(text_chunks)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Perform a query to get the two best matching document chunks from the ones that we added in the previous step.\n",
"By default \"Cosine Similarity\" is used for the search."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"query = \"What did the president say about Ketanji Brown Jackson\"\n",
"docs = db.similarity_search(query, k=2)\n",
"\n",
"for doc in docs:\n",
" print(\"-\" * 80)\n",
" print(doc.page_content)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Query the same content with \"Euclidian Distance\". The results shoud be the same as with \"Cosine Similarity\"."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from langchain_community.vectorstores.utils import DistanceStrategy\n",
"\n",
"db = HanaDB(\n",
" embedding=embeddings,\n",
" connection=connection,\n",
" distance_strategy=DistanceStrategy.EUCLIDEAN_DISTANCE,\n",
" table_name=\"STATE_OF_THE_UNION\",\n",
")\n",
"\n",
"query = \"What did the president say about Ketanji Brown Jackson\"\n",
"docs = db.similarity_search(query, k=2)\n",
"for doc in docs:\n",
" print(\"-\" * 80)\n",
" print(doc.page_content)"
]
},
{
"cell_type": "markdown",
"metadata": {
"collapsed": false
},
"source": [
"Maximal Marginal Relevance Search (MMR)\n",
"\n",
"Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents. First 20 (fetch_k) items will be retrieved from the DB. The MMR algorithm will then find the best 2 (k) matches."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"ExecuteTime": {
"end_time": "2023-09-09T08:05:23.276819Z",
"start_time": "2023-09-09T08:05:21.972256Z"
},
"collapsed": false
},
"outputs": [],
"source": [
"docs = db.max_marginal_relevance_search(query, k=2, fetch_k=20)\n",
"for doc in docs:\n",
" print(\"-\" * 80)\n",
" print(doc.page_content)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Basic Vectorstore Operations"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"db = HanaDB(\n",
" connection=connection, embedding=embeddings, table_name=\"LANGCHAIN_DEMO_BASIC\"\n",
")\n",
"\n",
"# Delete already existing documents from the table\n",
"db.delete(filter={})"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We can add simple text documents to the existing table."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"docs = [Document(page_content=\"Some text\"), Document(page_content=\"Other docs\")]\n",
"db.add_documents(docs)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Add documents with metadata."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"docs = [\n",
" Document(\n",
" page_content=\"foo\",\n",
" metadata={\"start\": 100, \"end\": 150, \"doc_name\": \"foo.txt\", \"quality\": \"bad\"},\n",
" ),\n",
" Document(\n",
" page_content=\"bar\",\n",
" metadata={\"start\": 200, \"end\": 250, \"doc_name\": \"bar.txt\", \"quality\": \"good\"},\n",
" ),\n",
"]\n",
"db.add_documents(docs)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Query documents with specific metadata."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"docs = db.similarity_search(\"foobar\", k=2, filter={\"quality\": \"bad\"})\n",
"# With filtering on \"quality\"==\"bad\", only one document should be returned\n",
"for doc in docs:\n",
" print(\"-\" * 80)\n",
" print(doc.page_content)\n",
" print(doc.metadata)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Delete documents with specific metadata."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"db.delete(filter={\"quality\": \"bad\"})\n",
"\n",
"# Now the similarity search with the same filter will return no results\n",
"docs = db.similarity_search(\"foobar\", k=2, filter={\"quality\": \"bad\"})\n",
"print(len(docs))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Using a VectorStore as a retriever in chains for retrieval augmented generation (RAG)\n"
]
},
{
"cell_type": "code",
"execution_count": 36,
"metadata": {},
"outputs": [],
"source": [
"from langchain.memory import ConversationBufferMemory\n",
"from langchain_openai import ChatOpenAI\n",
"\n",
"# Access the vector DB with a new table\n",
"db = HanaDB(\n",
" connection=connection,\n",
" embedding=embeddings,\n",
" table_name=\"LANGCHAIN_DEMO_RETRIEVAL_CHAIN\",\n",
")\n",
"\n",
"# Delete already existing entries from the table\n",
"db.delete(filter={})\n",
"\n",
"# add the loaded document chunks from the \"State Of The Union\" file\n",
"db.add_documents(text_chunks)\n",
"\n",
"# Create a retriever instance of the vector store\n",
"retriever = db.as_retriever()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Define the prompt."
]
},
{
"cell_type": "code",
"execution_count": 37,
"metadata": {},
"outputs": [],
"source": [
"from langchain.prompts import PromptTemplate\n",
"\n",
"prompt_template = \"\"\"\n",
"You are an expert in state of the union topics. You are provided multiple context items that are related to the prompt you have to answer.\n",
"Use the following pieces of context to answer the question at the end.\n",
"\n",
"```\n",
"{context}\n",
"```\n",
"\n",
"Question: {question}\n",
"\"\"\"\n",
"\n",
"PROMPT = PromptTemplate(\n",
" template=prompt_template, input_variables=[\"context\", \"question\"]\n",
")\n",
"chain_type_kwargs = {\"prompt\": PROMPT}"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Create the ConversationalRetrievalChain, which handles the chat history and the retrieval of similar document chunks to be added to the prompt."
]
},
{
"cell_type": "code",
"execution_count": 38,
"metadata": {},
"outputs": [],
"source": [
"from langchain.chains import ConversationalRetrievalChain\n",
"\n",
"llm = ChatOpenAI(model_name=\"gpt-3.5-turbo\")\n",
"memory = ConversationBufferMemory(\n",
" memory_key=\"chat_history\", output_key=\"answer\", return_messages=True\n",
")\n",
"qa_chain = ConversationalRetrievalChain.from_llm(\n",
" llm,\n",
" db.as_retriever(search_kwargs={\"k\": 5}),\n",
" return_source_documents=True,\n",
" memory=memory,\n",
" verbose=False,\n",
" combine_docs_chain_kwargs={\"prompt\": PROMPT},\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Ask the first question (and verify how many text chunks have been used)."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"question = \"What about Mexico and Guatemala?\"\n",
"\n",
"result = qa_chain.invoke({\"question\": question})\n",
"print(\"Answer from LLM:\")\n",
"print(\"================\")\n",
"print(result[\"answer\"])\n",
"\n",
"source_docs = result[\"source_documents\"]\n",
"print(\"================\")\n",
"print(f\"Number of used source document chunks: {len(source_docs)}\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Examine the used chunks of the chain in detail. Check if the best ranked chunk contains info about \"Mexico and Guatemala\" as mentioned in the question."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"for doc in source_docs:\n",
" print(\"-\" * 80)\n",
" print(doc.page_content)\n",
" print(doc.metadata)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Ask another question on the same conversational chain. The answer should relate to the previous answer given."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"question = \"What about other countries?\"\n",
"\n",
"result = qa_chain.invoke({\"question\": question})\n",
"print(\"Answer from LLM:\")\n",
"print(\"================\")\n",
"print(result[\"answer\"])"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Standard tables vs. \"custom\" tables with vector data"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"As default behaviour, the table for the embeddings is created with 3 columns\n",
"* A column \"VEC_TEXT\", which contains the text of the Document\n",
"* A column \"VEC_METADATA\", which contains the metadata of the Document\n",
"* A column \"VEC_VECTOR\", which contains the embeddings-vector of the document's text"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Access the vector DB with a new table\n",
"db = HanaDB(\n",
" connection=connection, embedding=embeddings, table_name=\"LANGCHAIN_DEMO_NEW_TABLE\"\n",
")\n",
"\n",
"# Delete already existing entries from the table\n",
"db.delete(filter={})\n",
"\n",
"# Add a simple document with some metadata\n",
"docs = [\n",
" Document(\n",
" page_content=\"A simple document\",\n",
" metadata={\"start\": 100, \"end\": 150, \"doc_name\": \"simple.txt\"},\n",
" )\n",
"]\n",
"db.add_documents(docs)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Show the columns in table \"LANGCHAIN_DEMO_NEW_TABLE\""
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"cur = connection.cursor()\n",
"cur.execute(\n",
" \"SELECT COLUMN_NAME, DATA_TYPE_NAME FROM SYS.TABLE_COLUMNS WHERE SCHEMA_NAME = CURRENT_SCHEMA AND TABLE_NAME = 'LANGCHAIN_DEMO_NEW_TABLE'\"\n",
")\n",
"rows = cur.fetchall()\n",
"for row in rows:\n",
" print(row)\n",
"cur.close()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Show the value of the inserted document in the three columns "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"cur = connection.cursor()\n",
"cur.execute(\n",
" \"SELECT VEC_TEXT, VEC_META, TO_NVARCHAR(VEC_VECTOR) FROM LANGCHAIN_DEMO_NEW_TABLE LIMIT 1\"\n",
")\n",
"rows = cur.fetchall()\n",
"print(rows[0][0]) # The text\n",
"print(rows[0][1]) # The metadata\n",
"print(rows[0][2]) # The vector\n",
"cur.close()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Custom tables must have at least three columns that match the semantics of a standard table\n",
"* A column with type \"NCLOB\" or \"NVARCHAR\" for the text/context of the embeddings\n",
"* A column with type \"NCLOB\" or \"NVARCHAR\" for the metadata \n",
"* A column with type REAL_VECTOR for the embedding vector\n",
"\n",
"The table can contain additional columns. When new Documents are inserted to the table, these addtional columns must allow NULL values."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Create a new table \"MY_OWN_TABLE\" with three \"standard\" columns and one additional column\n",
"my_own_table_name = \"MY_OWN_TABLE\"\n",
"cur = connection.cursor()\n",
"cur.execute(\n",
" (\n",
" f\"CREATE TABLE {my_own_table_name} (\"\n",
" \"SOME_OTHER_COLUMN NVARCHAR(42), \"\n",
" \"MY_TEXT NVARCHAR(2048), \"\n",
" \"MY_METADATA NVARCHAR(1024), \"\n",
" \"MY_VECTOR REAL_VECTOR )\"\n",
" )\n",
")\n",
"\n",
"# Create a HanaDB instance with the own table\n",
"db = HanaDB(\n",
" connection=connection,\n",
" embedding=embeddings,\n",
" table_name=my_own_table_name,\n",
" content_column=\"MY_TEXT\",\n",
" metadata_column=\"MY_METADATA\",\n",
" vector_column=\"MY_VECTOR\",\n",
")\n",
"\n",
"# Add a simple document with some metadata\n",
"docs = [\n",
" Document(\n",
" page_content=\"Some other text\",\n",
" metadata={\"start\": 400, \"end\": 450, \"doc_name\": \"other.txt\"},\n",
" )\n",
"]\n",
"db.add_documents(docs)\n",
"\n",
"# Check if data has been inserted into our own table\n",
"cur.execute(f\"SELECT * FROM {my_own_table_name} LIMIT 1\")\n",
"rows = cur.fetchall()\n",
"print(rows[0][0]) # Value of column \"SOME_OTHER_DATA\". Should be NULL/None\n",
"print(rows[0][1]) # The text\n",
"print(rows[0][2]) # The metadata\n",
"print(rows[0][3]) # The vector\n",
"\n",
"cur.close()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Add another document and perform a similarity search on the custom table"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"docs = [\n",
" Document(\n",
" page_content=\"Some more text\",\n",
" metadata={\"start\": 800, \"end\": 950, \"doc_name\": \"more.txt\"},\n",
" )\n",
"]\n",
"db.add_documents(docs)\n",
"\n",
"query = \"What's up?\"\n",
"docs = db.similarity_search(query, k=2)\n",
"for doc in docs:\n",
" print(\"-\" * 80)\n",
" print(doc.page_content)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.12"
}
},
"nbformat": 4,
"nbformat_minor": 4
}

View File

@@ -167,9 +167,9 @@
],
"source": [
"%%time\n",
"URL = 'https://www.conseil-constitutionnel.fr/node/3850/pdf'\n",
"PDF = 'Déclaration_des_droits_de_l_homme_et_du_citoyen.pdf'\n",
"open(PDF, 'wb').write(requests.get(URL).content)"
"URL = \"https://www.conseil-constitutionnel.fr/node/3850/pdf\"\n",
"PDF = \"Déclaration_des_droits_de_l_homme_et_du_citoyen.pdf\"\n",
"open(PDF, \"wb\").write(requests.get(URL).content)"
]
},
{
@@ -208,7 +208,7 @@
],
"source": [
"%%time\n",
"print('Read a PDF...')\n",
"print(\"Read a PDF...\")\n",
"loader = PyPDFLoader(PDF)\n",
"pages = loader.load_and_split()\n",
"len(pages)"
@@ -252,12 +252,14 @@
],
"source": [
"%%time\n",
"print('Create a Vector Database from PDF text...')\n",
"embeddings = OpenAIEmbeddings(model='text-embedding-ada-002')\n",
"print(\"Create a Vector Database from PDF text...\")\n",
"embeddings = OpenAIEmbeddings(model=\"text-embedding-ada-002\")\n",
"texts = [p.page_content for p in pages]\n",
"metadata = pd.DataFrame(index=list(range(len(texts))))\n",
"metadata['tag'] = 'law'\n",
"metadata['title'] = 'Déclaration des Droits de l\\'Homme et du Citoyen de 1789'.encode('utf-8')\n",
"metadata[\"tag\"] = \"law\"\n",
"metadata[\"title\"] = \"Déclaration des Droits de l'Homme et du Citoyen de 1789\".encode(\n",
" \"utf-8\"\n",
")\n",
"vectordb = KDBAI(table, embeddings)\n",
"vectordb.add_texts(texts=texts, metadatas=metadata)"
]
@@ -288,11 +290,13 @@
],
"source": [
"%%time\n",
"print('Create LangChain Pipeline...')\n",
"qabot = RetrievalQA.from_chain_type(chain_type='stuff',\n",
" llm=ChatOpenAI(model='gpt-3.5-turbo-16k', temperature=TEMP), \n",
" retriever=vectordb.as_retriever(search_kwargs=dict(k=K)),\n",
" return_source_documents=True)"
"print(\"Create LangChain Pipeline...\")\n",
"qabot = RetrievalQA.from_chain_type(\n",
" chain_type=\"stuff\",\n",
" llm=ChatOpenAI(model=\"gpt-3.5-turbo-16k\", temperature=TEMP),\n",
" retriever=vectordb.as_retriever(search_kwargs=dict(k=K)),\n",
" return_source_documents=True,\n",
")"
]
},
{
@@ -325,9 +329,9 @@
],
"source": [
"%%time\n",
"Q = 'Summarize the document in English:'\n",
"print(f'\\n\\n{Q}\\n')\n",
"print(qabot.invoke(dict(query=Q))['result'])"
"Q = \"Summarize the document in English:\"\n",
"print(f\"\\n\\n{Q}\\n\")\n",
"print(qabot.invoke(dict(query=Q))[\"result\"])"
]
},
{
@@ -362,9 +366,9 @@
],
"source": [
"%%time\n",
"Q = 'Is it a fair law and why ?'\n",
"print(f'\\n\\n{Q}\\n')\n",
"print(qabot.invoke(dict(query=Q))['result'])"
"Q = \"Is it a fair law and why ?\"\n",
"print(f\"\\n\\n{Q}\\n\")\n",
"print(qabot.invoke(dict(query=Q))[\"result\"])"
]
},
{
@@ -414,9 +418,9 @@
],
"source": [
"%%time\n",
"Q = 'What are the rights and duties of the man, the citizen and the society ?'\n",
"print(f'\\n\\n{Q}\\n')\n",
"print(qabot.invoke(dict(query=Q))['result'])"
"Q = \"What are the rights and duties of the man, the citizen and the society ?\"\n",
"print(f\"\\n\\n{Q}\\n\")\n",
"print(qabot.invoke(dict(query=Q))[\"result\"])"
]
},
{
@@ -441,9 +445,9 @@
],
"source": [
"%%time\n",
"Q = 'Is this law practical ?'\n",
"print(f'\\n\\n{Q}\\n')\n",
"print(qabot.invoke(dict(query=Q))['result'])"
"Q = \"Is this law practical ?\"\n",
"print(f\"\\n\\n{Q}\\n\")\n",
"print(qabot.invoke(dict(query=Q))[\"result\"])"
]
},
{

View File

@@ -129,7 +129,7 @@
},
{
"cell_type": "code",
"execution_count": 6,
"execution_count": 1,
"id": "a0fbfbba-3c82-4298-a312-9cec016d9d2e",
"metadata": {},
"outputs": [],
@@ -138,8 +138,7 @@
"from langchain.agents import AgentExecutor\n",
"from langchain.agents.format_scratchpad import format_to_openai_function_messages\n",
"from langchain.agents.output_parsers import OpenAIFunctionsAgentOutputParser\n",
"from langchain.tools import DuckDuckGoSearchResults\n",
"from langchain_community.tools.convert_to_openai import format_tool_to_openai_function\n",
"from langchain_community.tools import DuckDuckGoSearchResults\n",
"from langchain_openai import ChatOpenAI\n",
"\n",
"# Fetches the latest version of this prompt\n",
@@ -156,7 +155,7 @@
" ), # General internet search using DuckDuckGo\n",
"]\n",
"\n",
"llm_with_tools = llm.bind(functions=[format_tool_to_openai_function(t) for t in tools])\n",
"llm_with_tools = llm.bind_functions(tools)\n",
"\n",
"runnable_agent = (\n",
" {\n",
@@ -334,7 +333,6 @@
"from langchain.agents import AgentExecutor, AgentType, initialize_agent, load_tools\n",
"from langchain.agents.format_scratchpad import format_to_openai_function_messages\n",
"from langchain.agents.output_parsers import OpenAIFunctionsAgentOutputParser\n",
"from langchain_community.tools.convert_to_openai import format_tool_to_openai_function\n",
"from langchain_openai import ChatOpenAI\n",
"\n",
"\n",
@@ -1345,9 +1343,9 @@
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"display_name": "poetry-venv",
"language": "python",
"name": "python3"
"name": "poetry-venv"
},
"language_info": {
"codemirror_mode": {
@@ -1359,7 +1357,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.2"
"version": "3.9.1"
}
},
"nbformat": 4,

View File

@@ -19,7 +19,7 @@
"\n",
"Newer OpenAI models have been fine-tuned to detect when **one or more** function(s) should be called and respond with the inputs that should be passed to the function(s). In an API call, you can describe functions and have the model intelligently choose to output a JSON object containing arguments to call these functions. The goal of the OpenAI tools APIs is to more reliably return valid and useful function calls than what can be done using a generic text completion or chat API.\n",
"\n",
"OpenAI termed the capability to invoke a **single** function as **functions**, and the capability to invoke **one or more** funcitons as **tools**.\n",
"OpenAI termed the capability to invoke a **single** function as **functions**, and the capability to invoke **one or more** functions as **tools**.\n",
"\n",
":::tip\n",
"\n",

View File

@@ -23,7 +23,7 @@
"\n",
"* Use with regular LLMs, not with chat models.\n",
"* Use only with unstructured tools; i.e., tools that accept a single string input.\n",
"* See [AgentTypes](/docs/moduels/agents/agent_types/) documentation for more agent types.\n",
"* See [AgentTypes](/docs/modules/agents/agent_types/) documentation for more agent types.\n",
":::"
]
},

View File

@@ -43,7 +43,7 @@
"metadata": {},
"outputs": [],
"source": [
"# pip install chromadb"
"%pip install -qU chromadb langchain langchain-community langchain-openai"
]
},
{
@@ -61,7 +61,7 @@
},
{
"cell_type": "code",
"execution_count": 16,
"execution_count": 2,
"id": "e3002ed7",
"metadata": {},
"outputs": [],
@@ -96,14 +96,12 @@
},
{
"cell_type": "code",
"execution_count": 4,
"execution_count": 3,
"id": "204ef7ca",
"metadata": {},
"outputs": [],
"source": [
"from langchain.agents.agent_toolkits.conversational_retrieval.tool import (\n",
" create_retriever_tool,\n",
")\n",
"from langchain.tools.retriever import create_retriever_tool\n",
"\n",
"retriever_tool = create_retriever_tool(\n",
" retriever,\n",
@@ -124,15 +122,14 @@
},
{
"cell_type": "code",
"execution_count": 5,
"execution_count": 4,
"id": "2df91723",
"metadata": {},
"outputs": [],
"source": [
"from typing import List\n",
"\n",
"from langchain.utils.openai_functions import convert_pydantic_to_openai_function\n",
"from pydantic import BaseModel, Field\n",
"from langchain_core.pydantic_v1 import BaseModel, Field\n",
"\n",
"\n",
"class Response(BaseModel):\n",
@@ -169,7 +166,7 @@
},
{
"cell_type": "code",
"execution_count": 6,
"execution_count": 5,
"id": "dfb73fe3",
"metadata": {},
"outputs": [],
@@ -181,7 +178,7 @@
},
{
"cell_type": "code",
"execution_count": 17,
"execution_count": 6,
"id": "5b46cdb2",
"metadata": {},
"outputs": [],
@@ -224,14 +221,13 @@
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 7,
"id": "73c785f9",
"metadata": {},
"outputs": [],
"source": [
"from langchain.agents import AgentExecutor\n",
"from langchain.agents.format_scratchpad import format_to_openai_function_messages\n",
"from langchain_community.tools.convert_to_openai import format_tool_to_openai_function\n",
"from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder\n",
"from langchain_openai import ChatOpenAI"
]
@@ -269,14 +265,7 @@
"metadata": {},
"outputs": [],
"source": [
"llm_with_tools = llm.bind(\n",
" functions=[\n",
" # The retriever tool\n",
" format_tool_to_openai_function(retriever_tool),\n",
" # Response schema\n",
" convert_pydantic_to_openai_function(Response),\n",
" ]\n",
")"
"llm_with_tools = llm.bind_functions([retriever_tool, Response])"
]
},
{
@@ -302,7 +291,7 @@
},
{
"cell_type": "code",
"execution_count": 14,
"execution_count": 12,
"id": "2cfd783e",
"metadata": {},
"outputs": [],
@@ -322,7 +311,7 @@
},
{
"cell_type": "code",
"execution_count": 18,
"execution_count": 20,
"id": "2667c9a4",
"metadata": {},
"outputs": [
@@ -333,7 +322,55 @@
"\n",
"\n",
"\u001b[1m> Entering new AgentExecutor chain...\u001b[0m\n",
"\u001b[32;1m\u001b[1;3m\u001b[0m\u001b[36;1m\u001b[1;3m[Document(page_content='Tonight. I call on the Senate to: Pass the Freedom to Vote Act. Pass the John Lewis Voting Rights Act. And while youre at it, pass the Disclose Act so Americans can know who is funding our elections. \\n\\nTonight, Id like to honor someone who has dedicated his life to serve this country: Justice Stephen Breyer—an Army veteran, Constitutional scholar, and retiring Justice of the United States Supreme Court. Justice Breyer, thank you for your service. \\n\\nOne of the most serious constitutional responsibilities a President has is nominating someone to serve on the United States Supreme Court. \\n\\nAnd I did that 4 days ago, when I nominated Circuit Court of Appeals Judge Ketanji Brown Jackson. One of our nations top legal minds, who will continue Justice Breyers legacy of excellence.', metadata={'page_chunk': 31, 'source': '../../state_of_the_union.txt'}), Document(page_content='One was stationed at bases and breathing in toxic smoke from “burn pits” that incinerated wastes of war—medical and hazard material, jet fuel, and more. \\n\\nWhen they came home, many of the worlds fittest and best trained warriors were never the same. \\n\\nHeadaches. Numbness. Dizziness. \\n\\nA cancer that would put them in a flag-draped coffin. \\n\\nI know. \\n\\nOne of those soldiers was my son Major Beau Biden. \\n\\nWe dont know for sure if a burn pit was the cause of his brain cancer, or the diseases of so many of our troops. \\n\\nBut Im committed to finding out everything we can. \\n\\nCommitted to military families like Danielle Robinson from Ohio. \\n\\nThe widow of Sergeant First Class Heath Robinson. \\n\\nHe was born a soldier. Army National Guard. Combat medic in Kosovo and Iraq. \\n\\nStationed near Baghdad, just yards from burn pits the size of football fields. \\n\\nHeaths widow Danielle is here with us tonight. They loved going to Ohio State football games. He loved building Legos with their daughter.', metadata={'page_chunk': 37, 'source': '../../state_of_the_union.txt'}), Document(page_content='A former top litigator in private practice. A former federal public defender. And from a family of public school educators and police officers. A consensus builder. Since shes been nominated, shes received a broad range of support—from the Fraternal Order of Police to former judges appointed by Democrats and Republicans. \\n\\nAnd if we are to advance liberty and justice, we need to secure the Border and fix the immigration system. \\n\\nWe can do both. At our border, weve installed new technology like cutting-edge scanners to better detect drug smuggling. \\n\\nWeve set up joint patrols with Mexico and Guatemala to catch more human traffickers. \\n\\nWere putting in place dedicated immigration judges so families fleeing persecution and violence can have their cases heard faster. \\n\\nWere securing commitments and supporting partners in South and Central America to host more refugees and secure their own borders.', metadata={'page_chunk': 32, 'source': '../../state_of_the_union.txt'}), Document(page_content='But cancer from prolonged exposure to burn pits ravaged Heaths lungs and body. \\n\\nDanielle says Heath was a fighter to the very end. \\n\\nHe didnt know how to stop fighting, and neither did she. \\n\\nThrough her pain she found purpose to demand we do better. \\n\\nTonight, Danielle—we are. \\n\\nThe VA is pioneering new ways of linking toxic exposures to diseases, already helping more veterans get benefits. \\n\\nAnd tonight, Im announcing were expanding eligibility to veterans suffering from nine respiratory cancers. \\n\\nIm also calling on Congress: pass a law to make sure veterans devastated by toxic exposures in Iraq and Afghanistan finally get the benefits and comprehensive health care they deserve. \\n\\nAnd fourth, lets end cancer as we know it. \\n\\nThis is personal to me and Jill, to Kamala, and to so many of you. \\n\\nCancer is the #2 cause of death in Americasecond only to heart disease.', metadata={'page_chunk': 38, 'source': '../../state_of_the_union.txt'})]\u001b[0m\u001b[32;1m\u001b[1;3m{'name': 'Response', 'arguments': '{\\n \"answer\": \"President mentioned Ketanji Brown Jackson as a nominee for the United States Supreme Court and praised her as one of the nation\\'s top legal minds.\",\\n \"sources\": [31]\\n}'}\u001b[0m\n",
"\u001b[32;1m\u001b[1;3m\u001b[0m\u001b[36;1m\u001b[1;3mTonight. I call on the Senate to: Pass the Freedom to Vote Act. Pass the John Lewis Voting Rights Act. And while youre at it, pass the Disclose Act so Americans can know who is funding our elections. \n",
"\n",
"Tonight, Id like to honor someone who has dedicated his life to serve this country: Justice Stephen Breyer—an Army veteran, Constitutional scholar, and retiring Justice of the United States Supreme Court. Justice Breyer, thank you for your service. \n",
"\n",
"One of the most serious constitutional responsibilities a President has is nominating someone to serve on the United States Supreme Court. \n",
"\n",
"And I did that 4 days ago, when I nominated Circuit Court of Appeals Judge Ketanji Brown Jackson. One of our nations top legal minds, who will continue Justice Breyers legacy of excellence.\n",
"\n",
"And for our LGBTQ+ Americans, lets finally get the bipartisan Equality Act to my desk. The onslaught of state laws targeting transgender Americans and their families is wrong. \n",
"\n",
"As I said last year, especially to our younger transgender Americans, I will always have your back as your President, so you can be yourself and reach your God-given potential. \n",
"\n",
"While it often appears that we never agree, that isnt true. I signed 80 bipartisan bills into law last year. From preventing government shutdowns to protecting Asian-Americans from still-too-common hate crimes to reforming military justice. \n",
"\n",
"And soon, well strengthen the Violence Against Women Act that I first wrote three decades ago. It is important for us to show the nation that we can come together and do big things. \n",
"\n",
"So tonight Im offering a Unity Agenda for the Nation. Four big things we can do together. \n",
"\n",
"First, beat the opioid epidemic.\n",
"\n",
"Madam Speaker, Madam Vice President, our First Lady and Second Gentleman. Members of Congress and the Cabinet. Justices of the Supreme Court. My fellow Americans. \n",
"\n",
"Last year COVID-19 kept us apart. This year we are finally together again. \n",
"\n",
"Tonight, we meet as Democrats Republicans and Independents. But most importantly as Americans. \n",
"\n",
"With a duty to one another to the American people to the Constitution. \n",
"\n",
"And with an unwavering resolve that freedom will always triumph over tyranny. \n",
"\n",
"Six days ago, Russias Vladimir Putin sought to shake the foundations of the free world thinking he could make it bend to his menacing ways. But he badly miscalculated. \n",
"\n",
"He thought he could roll into Ukraine and the world would roll over. Instead he met a wall of strength he never imagined. \n",
"\n",
"He met the Ukrainian people. \n",
"\n",
"From President Zelenskyy to every Ukrainian, their fearlessness, their courage, their determination, inspires the world.\n",
"\n",
"A former top litigator in private practice. A former federal public defender. And from a family of public school educators and police officers. A consensus builder. Since shes been nominated, shes received a broad range of support—from the Fraternal Order of Police to former judges appointed by Democrats and Republicans. \n",
"\n",
"And if we are to advance liberty and justice, we need to secure the Border and fix the immigration system. \n",
"\n",
"We can do both. At our border, weve installed new technology like cutting-edge scanners to better detect drug smuggling. \n",
"\n",
"Weve set up joint patrols with Mexico and Guatemala to catch more human traffickers. \n",
"\n",
"Were putting in place dedicated immigration judges so families fleeing persecution and violence can have their cases heard faster. \n",
"\n",
"Were securing commitments and supporting partners in South and Central America to host more refugees and secure their own borders.\u001b[0m\u001b[32;1m\u001b[1;3m{'arguments': '{\\n\"answer\": \"President Biden nominated Ketanji Brown Jackson for the United States Supreme Court and described her as one of our nation\\'s top legal minds who will continue Justice Breyer\\'s legacy of excellence.\",\\n\"sources\": [6]\\n}', 'name': 'Response'}\u001b[0m\n",
"\n",
"\u001b[1m> Finished chain.\u001b[0m\n"
]
@@ -341,18 +378,18 @@
{
"data": {
"text/plain": [
"{'answer': \"President mentioned Ketanji Brown Jackson as a nominee for the United States Supreme Court and praised her as one of the nation's top legal minds.\",\n",
" 'sources': [31]}"
"{'answer': \"President Biden nominated Ketanji Brown Jackson for the United States Supreme Court and described her as one of our nation's top legal minds who will continue Justice Breyer's legacy of excellence.\",\n",
" 'sources': [6]}"
]
},
"execution_count": 18,
"execution_count": 20,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"agent_executor.invoke(\n",
" {\"input\": \"what did the president say about kentaji brown jackson\"},\n",
" {\"input\": \"what did the president say about ketanji brown jackson\"},\n",
" return_only_outputs=True,\n",
")"
]
@@ -368,9 +405,9 @@
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"display_name": "poetry-venv",
"language": "python",
"name": "python3"
"name": "poetry-venv"
},
"language_info": {
"codemirror_mode": {
@@ -382,7 +419,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.1"
"version": "3.9.1"
}
},
"nbformat": 4,

View File

@@ -152,9 +152,7 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain_community.tools.convert_to_openai import format_tool_to_openai_tool\n",
"\n",
"llm_with_tools = llm.bind(tools=[format_tool_to_openai_tool(tool) for tool in tools])"
"llm_with_tools = llm.bind_tools(tools)"
]
},
{
@@ -229,9 +227,9 @@
{
"data": {
"text/plain": [
"[{'actions': [OpenAIToolAgentAction(tool='get_word_length', tool_input={'word': 'eudca'}, log=\"\\nInvoking: `get_word_length` with `{'word': 'eudca'}`\\n\\n\\n\", message_log=[AIMessageChunk(content='', additional_kwargs={'tool_calls': [{'index': 0, 'id': 'call_U9SR78eT398r9UbzID2N9LXh', 'function': {'arguments': '{\\n \"word\": \"eudca\"\\n}', 'name': 'get_word_length'}, 'type': 'function'}]})], tool_call_id='call_U9SR78eT398r9UbzID2N9LXh')],\n",
" 'messages': [AIMessageChunk(content='', additional_kwargs={'tool_calls': [{'index': 0, 'id': 'call_U9SR78eT398r9UbzID2N9LXh', 'function': {'arguments': '{\\n \"word\": \"eudca\"\\n}', 'name': 'get_word_length'}, 'type': 'function'}]})]},\n",
" {'steps': [AgentStep(action=OpenAIToolAgentAction(tool='get_word_length', tool_input={'word': 'eudca'}, log=\"\\nInvoking: `get_word_length` with `{'word': 'eudca'}`\\n\\n\\n\", message_log=[AIMessageChunk(content='', additional_kwargs={'tool_calls': [{'index': 0, 'id': 'call_U9SR78eT398r9UbzID2N9LXh', 'function': {'arguments': '{\\n \"word\": \"eudca\"\\n}', 'name': 'get_word_length'}, 'type': 'function'}]})], tool_call_id='call_U9SR78eT398r9UbzID2N9LXh'), observation=5)],\n",
"[{'actions': [OpenAIToolAgentAction(tool='get_word_length', tool_input={'word': 'eudca'}, log=\"\\nInvoking: `get_word_length` with `{'word': 'eudca'}`\\n\\n\\n\", message_log=[AIMessageChunk(content='', additional_kwargs={'tool_calls': [{'index': 0, 'id': 'call_A07D5TuyqcNIL0DIEVRPpZkg', 'function': {'arguments': '{\\n \"word\": \"eudca\"\\n}', 'name': 'get_word_length'}, 'type': 'function'}]})], tool_call_id='call_A07D5TuyqcNIL0DIEVRPpZkg')],\n",
" 'messages': [AIMessageChunk(content='', additional_kwargs={'tool_calls': [{'index': 0, 'id': 'call_A07D5TuyqcNIL0DIEVRPpZkg', 'function': {'arguments': '{\\n \"word\": \"eudca\"\\n}', 'name': 'get_word_length'}, 'type': 'function'}]})]},\n",
" {'steps': [AgentStep(action=OpenAIToolAgentAction(tool='get_word_length', tool_input={'word': 'eudca'}, log=\"\\nInvoking: `get_word_length` with `{'word': 'eudca'}`\\n\\n\\n\", message_log=[AIMessageChunk(content='', additional_kwargs={'tool_calls': [{'index': 0, 'id': 'call_A07D5TuyqcNIL0DIEVRPpZkg', 'function': {'arguments': '{\\n \"word\": \"eudca\"\\n}', 'name': 'get_word_length'}, 'type': 'function'}]})], tool_call_id='call_A07D5TuyqcNIL0DIEVRPpZkg'), observation=5)],\n",
" 'messages': [FunctionMessage(content='5', name='get_word_length')]},\n",
" {'output': 'There are 5 letters in the word \"eudca\".',\n",
" 'messages': [AIMessage(content='There are 5 letters in the word \"eudca\".')]}]"
@@ -449,7 +447,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.4"
"version": "3.9.1"
},
"vscode": {
"interpreter": {

View File

@@ -12,71 +12,101 @@
},
{
"cell_type": "code",
"execution_count": 1,
"execution_count": null,
"id": "bb220019-4012-4da4-bfee-01fb8189aa49",
"metadata": {},
"outputs": [],
"source": [
"%pip install -qU langchain-community langchain-openai"
]
},
{
"cell_type": "code",
"execution_count": 19,
"id": "d65d8a60",
"metadata": {},
"outputs": [],
"source": [
"from langchain.schema import HumanMessage\n",
"from langchain_community.tools import MoveFileTool\n",
"from langchain_core.messages import HumanMessage\n",
"from langchain_core.utils.function_calling import convert_to_openai_function\n",
"from langchain_openai import ChatOpenAI"
]
},
{
"cell_type": "code",
"execution_count": 2,
"execution_count": 20,
"id": "abd8dc72",
"metadata": {},
"outputs": [],
"source": [
"model = ChatOpenAI(model=\"gpt-3.5-turbo-0613\")"
"model = ChatOpenAI(model=\"gpt-3.5-turbo\")"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "dce2cdb7",
"metadata": {},
"outputs": [],
"source": [
"from langchain.tools import MoveFileTool, format_tool_to_openai_function"
]
},
{
"cell_type": "code",
"execution_count": 4,
"execution_count": 21,
"id": "3b3dc766",
"metadata": {},
"outputs": [],
"source": [
"tools = [MoveFileTool()]\n",
"functions = [format_tool_to_openai_function(t) for t in tools]"
"functions = [convert_to_openai_function(t) for t in tools]"
]
},
{
"cell_type": "code",
"execution_count": 5,
"execution_count": 12,
"id": "d38c4a22-2e9e-4d15-a9e1-bf8103c6303b",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'name': 'move_file',\n",
" 'description': 'Move or rename a file from one location to another',\n",
" 'parameters': {'type': 'object',\n",
" 'properties': {'source_path': {'description': 'Path of the file to move',\n",
" 'type': 'string'},\n",
" 'destination_path': {'description': 'New path for the moved file',\n",
" 'type': 'string'}},\n",
" 'required': ['source_path', 'destination_path']}}"
]
},
"execution_count": 12,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"functions[0]"
]
},
{
"cell_type": "code",
"execution_count": 15,
"id": "230a7939",
"metadata": {},
"outputs": [],
"source": [
"message = model.predict_messages(\n",
"message = model.invoke(\n",
" [HumanMessage(content=\"move file foo to bar\")], functions=functions\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 6,
"execution_count": 16,
"id": "c118c940",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"AIMessage(content='', additional_kwargs={'function_call': {'name': 'move_file', 'arguments': '{\\n \"source_path\": \"foo\",\\n \"destination_path\": \"bar\"\\n}'}}, example=False)"
"AIMessage(content='', additional_kwargs={'function_call': {'arguments': '{\\n \"source_path\": \"foo\",\\n \"destination_path\": \"bar\"\\n}', 'name': 'move_file'}})"
]
},
"execution_count": 6,
"execution_count": 16,
"metadata": {},
"output_type": "execute_result"
}
@@ -108,12 +138,64 @@
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "751da79f",
"cell_type": "markdown",
"id": "77dd0d9f-2f24-4535-a658-a061f91e009a",
"metadata": {},
"outputs": [],
"source": []
"source": [
"With OpenAI chat models we can also automatically bind and convert function-like objects with `bind_functions`"
]
},
{
"cell_type": "code",
"execution_count": 17,
"id": "24bb1518-8100-4ac3-acea-04acfac963d1",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"AIMessage(content='', additional_kwargs={'function_call': {'arguments': '{\\n \"source_path\": \"foo\",\\n \"destination_path\": \"bar\"\\n}', 'name': 'move_file'}})"
]
},
"execution_count": 17,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"model_with_functions = model.bind_functions(tools)\n",
"model_with_functions.invoke([HumanMessage(content=\"move file foo to bar\")])"
]
},
{
"cell_type": "markdown",
"id": "000ec6ff-ca67-4206-ba56-cc2a91b85ce6",
"metadata": {},
"source": [
"Or we can use the update OpenAI API that uses `tools` and `tool_choice` instead of `functions` and `function_call` by using `ChatOpenAI.bind_tools`:"
]
},
{
"cell_type": "code",
"execution_count": 18,
"id": "1a333e4e-df55-4e15-9d2e-4fd142d969f3",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"AIMessage(content='', additional_kwargs={'tool_calls': [{'id': 'call_btkY3xV71cEVAOHnNa5qwo44', 'function': {'arguments': '{\\n \"source_path\": \"foo\",\\n \"destination_path\": \"bar\"\\n}', 'name': 'move_file'}, 'type': 'function'}]})"
]
},
"execution_count": 18,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"model_with_tools = model.bind_tools(tools)\n",
"model_with_tools.invoke([HumanMessage(content=\"move file foo to bar\")])"
]
}
],
"metadata": {

View File

@@ -6,7 +6,7 @@
"metadata": {},
"source": [
"# Logging to file\n",
"This example shows how to print logs to file. It shows how to use the `FileCallbackHandler`, which does the same thing as [`StdOutCallbackHandler`](https://python.langchain.com/en/latest/modules/callbacks/getting_started.html#using-an-existing-handler), but instead writes the output to file. It also uses the `loguru` library to log other outputs that are not captured by the handler."
"This example shows how to print logs to file. It shows how to use the `FileCallbackHandler`, which does the same thing as [`StdOutCallbackHandler`](https://python.langchain.com/docs/modules/callbacks/#get-started), but instead writes the output to file. It also uses the `loguru` library to log other outputs that are not captured by the handler."
]
},
{
@@ -166,7 +166,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.16"
"version": "3.11.6"
}
},
"nbformat": 4,

View File

@@ -60,7 +60,7 @@
" * document addition by id (`add_documents` method with `ids` argument)\n",
" * delete by id (`delete` method with `ids` argument)\n",
"\n",
"Compatible Vectorstores: `AnalyticDB`, `AstraDB`, `AwaDB`, `Bagel`, `Cassandra`, `Chroma`, `DashVector`, `DatabricksVectorSearch`, `DeepLake`, `Dingo`, `ElasticVectorSearch`, `ElasticsearchStore`, `FAISS`, `MyScale`, `PGVector`, `Pinecone`, `Qdrant`, `Redis`, `ScaNN`, `SupabaseVectorStore`, `SurrealDBStore`, `TimescaleVector`, `Vald`, `Vearch`, `VespaStore`, `Weaviate`, `ZepVectorStore`.\n",
"Compatible Vectorstores: `AnalyticDB`, `AstraDB`, `AwaDB`, `Bagel`, `Cassandra`, `Chroma`, `DashVector`, `DatabricksVectorSearch`, `DeepLake`, `Dingo`, `ElasticVectorSearch`, `ElasticsearchStore`, `FAISS`, `HanaDB`, `MyScale`, `PGVector`, `Pinecone`, `Qdrant`, `Redis`, `ScaNN`, `SupabaseVectorStore`, `SurrealDBStore`, `TimescaleVector`, `Vald`, `Vearch`, `VespaStore`, `Weaviate`, `ZepVectorStore`.\n",
" \n",
"## Caution\n",
"\n",

View File

@@ -0,0 +1,492 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "dae8d4ed-9150-45da-b494-7717ab0a2960",
"metadata": {},
"source": [
"# Function calling\n",
"\n",
"Certain chat models, like [OpenAI's](https://platform.openai.com/docs/guides/function-calling), have a function-calling API that lets you describe functions and their arguments, and have the model return a JSON object with a function to invoke and the inputs to that function. Function-calling is extremely useful for building [tool-using chains and agents](/docs/use_cases/tool_use/), and for getting structured outputs from models more generally.\n",
"\n",
"LangChain comes with a number of utilities to make function-calling easy. Namely, it comes with\n",
"\n",
"* simple syntax for binding functions to models\n",
"* converters for formatting various types of objects to the expected function schemas\n",
"* output parsers for extracting the function invocations from API responses\n",
"\n",
"We'll focus here on the first two bullets. To see how output parsing works as well check out the [OpenAI Tools output parsers](/docs/modules/model_io/output_parsers/types/openai_tools)."
]
},
{
"cell_type": "markdown",
"id": "a177c64b-7c99-495c-b362-5ed3b40aa26a",
"metadata": {},
"source": [
"## Defining functions\n",
"\n",
"We'll focus on the [OpenAI function format](https://platform.openai.com/docs/api-reference/chat/create#chat-create-tools) here since as of this writing that is the main model provider that supports function calling. LangChain has a built-in converter that can turn Python functions, Pydantic classes, and LangChain Tools into the OpenAI function format:"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "f6d1dc0c-6170-4977-809f-365099f628ea",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m A new release of pip is available: \u001b[0m\u001b[31;49m23.2.1\u001b[0m\u001b[39;49m -> \u001b[0m\u001b[32;49m23.3.2\u001b[0m\n",
"\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m To update, run: \u001b[0m\u001b[32;49mpip install --upgrade pip\u001b[0m\n",
"Note: you may need to restart the kernel to use updated packages.\n"
]
}
],
"source": [
"%pip install -qU langchain-core langchain-openai"
]
},
{
"cell_type": "markdown",
"id": "6bd290bd-7621-466b-a73e-fc8480f879ec",
"metadata": {},
"source": [
"### Python function"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "41ebab5c-0e9f-4b49-86ee-9290ced2fe96",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"{\n",
" \"type\": \"function\",\n",
" \"function\": {\n",
" \"name\": \"multiply\",\n",
" \"description\": \"Multiply two integers together.\",\n",
" \"parameters\": {\n",
" \"type\": \"object\",\n",
" \"properties\": {\n",
" \"a\": {\n",
" \"type\": \"integer\",\n",
" \"description\": \"First integer\"\n",
" },\n",
" \"b\": {\n",
" \"type\": \"integer\",\n",
" \"description\": \"Second integer\"\n",
" }\n",
" },\n",
" \"required\": [\n",
" \"a\",\n",
" \"b\"\n",
" ]\n",
" }\n",
" }\n",
"}\n"
]
}
],
"source": [
"import json\n",
"\n",
"from langchain_core.utils.function_calling import convert_to_openai_tool\n",
"\n",
"\n",
"def multiply(a: int, b: int) -> int:\n",
" \"\"\"Multiply two integers together.\n",
"\n",
" Args:\n",
" a: First integer\n",
" b: Second integer\n",
" \"\"\"\n",
" return a * b\n",
"\n",
"\n",
"print(json.dumps(convert_to_openai_tool(multiply), indent=2))"
]
},
{
"cell_type": "markdown",
"id": "ecf22577-38ab-48f1-ba0b-371aaba1bacc",
"metadata": {},
"source": [
"### Pydantic class"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "ecc8ffd4-aed3-4f47-892d-1896cc1ca4dc",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"{\n",
" \"type\": \"function\",\n",
" \"function\": {\n",
" \"name\": \"multiply\",\n",
" \"description\": \"Multiply two integers together.\",\n",
" \"parameters\": {\n",
" \"type\": \"object\",\n",
" \"properties\": {\n",
" \"a\": {\n",
" \"description\": \"First integer\",\n",
" \"type\": \"integer\"\n",
" },\n",
" \"b\": {\n",
" \"description\": \"Second integer\",\n",
" \"type\": \"integer\"\n",
" }\n",
" },\n",
" \"required\": [\n",
" \"a\",\n",
" \"b\"\n",
" ]\n",
" }\n",
" }\n",
"}\n"
]
}
],
"source": [
"from langchain_core.pydantic_v1 import BaseModel, Field\n",
"\n",
"\n",
"class multiply(BaseModel):\n",
" \"\"\"Multiply two integers together.\"\"\"\n",
"\n",
" a: int = Field(..., description=\"First integer\")\n",
" b: int = Field(..., description=\"Second integer\")\n",
"\n",
"\n",
"print(json.dumps(convert_to_openai_tool(multiply), indent=2))"
]
},
{
"cell_type": "markdown",
"id": "b83d5a88-50ed-4ae4-85cf-8b895617496f",
"metadata": {},
"source": [
"### LangChain Tool"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "696c7dd6-660c-4797-909f-bf878b3acf93",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"{\n",
" \"type\": \"function\",\n",
" \"function\": {\n",
" \"name\": \"multiply\",\n",
" \"description\": \"Multiply two integers together.\",\n",
" \"parameters\": {\n",
" \"type\": \"object\",\n",
" \"properties\": {\n",
" \"a\": {\n",
" \"description\": \"First integer\",\n",
" \"type\": \"integer\"\n",
" },\n",
" \"b\": {\n",
" \"description\": \"Second integer\",\n",
" \"type\": \"integer\"\n",
" }\n",
" },\n",
" \"required\": [\n",
" \"a\",\n",
" \"b\"\n",
" ]\n",
" }\n",
" }\n",
"}\n"
]
}
],
"source": [
"from typing import Any, Type\n",
"\n",
"from langchain_core.tools import BaseTool\n",
"\n",
"\n",
"class MultiplySchema(BaseModel):\n",
" \"\"\"Multiply tool schema.\"\"\"\n",
"\n",
" a: int = Field(..., description=\"First integer\")\n",
" b: int = Field(..., description=\"Second integer\")\n",
"\n",
"\n",
"class Multiply(BaseTool):\n",
" args_schema: Type[BaseModel] = MultiplySchema\n",
" name: str = \"multiply\"\n",
" description: str = \"Multiply two integers together.\"\n",
"\n",
" def _run(self, a: int, b: int, **kwargs: Any) -> Any:\n",
" return a * b\n",
"\n",
"\n",
"# Note: we're passing in a Multiply object not the class itself.\n",
"print(json.dumps(convert_to_openai_tool(Multiply()), indent=2))"
]
},
{
"cell_type": "markdown",
"id": "04bda177-202f-4811-bb74-f3fa7094a15b",
"metadata": {},
"source": [
"## Binding functions\n",
"\n",
"Now that we've defined a function, we'll want to pass it in to our model."
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "a5aa93a7-6859-43e8-be85-619d975b908c",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"AIMessage(content='', additional_kwargs={'tool_calls': [{'id': 'call_JvOu9oUwMrQHiDekZTbpNCHY', 'function': {'arguments': '{\\n \"a\": 5,\\n \"b\": 3\\n}', 'name': 'multiply'}, 'type': 'function'}]})"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from langchain_openai import ChatOpenAI\n",
"\n",
"llm = ChatOpenAI(model=\"gpt-3.5-turbo\")\n",
"llm.invoke(\"what's 5 times three\", tools=[convert_to_openai_tool(multiply)])"
]
},
{
"cell_type": "markdown",
"id": "dd0e7365-32d0-46a3-b8f2-caf27d5d9262",
"metadata": {},
"source": [
"And if we wanted this function to be passed in every time we call the tool, we could bind it to the tool:"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "87165d64-31a7-4332-965e-18fa939fda50",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"AIMessage(content='', additional_kwargs={'tool_calls': [{'id': 'call_cwRoTnD1ux1SnWXLrTj2KlWH', 'function': {'arguments': '{\\n \"a\": 5,\\n \"b\": 3\\n}', 'name': 'multiply'}, 'type': 'function'}]})"
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"llm_with_tool = llm.bind(tools=[convert_to_openai_tool(multiply)])\n",
"llm_with_tool.invoke(\"what's 5 times three\")"
]
},
{
"cell_type": "markdown",
"id": "21b4d000-3828-4e32-9226-55119f47ee67",
"metadata": {},
"source": [
"We can also enforce that a tool is called using the [tool_choice](https://platform.openai.com/docs/api-reference/chat/create#chat-create-tools) parameter."
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "2daa354c-cc85-4a60-a9b2-b681ec22ca33",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"AIMessage(content='', additional_kwargs={'tool_calls': [{'id': 'call_sWjLyioSZAtYMQRLMTzncz1v', 'function': {'arguments': '{\\n \"a\": 5,\\n \"b\": 4\\n}', 'name': 'multiply'}, 'type': 'function'}]})"
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"llm_with_tool = llm.bind(\n",
" tools=[convert_to_openai_tool(multiply)],\n",
" tool_choice={\"type\": \"function\", \"function\": {\"name\": \"multiply\"}},\n",
")\n",
"llm_with_tool.invoke(\n",
" \"don't answer my question. no do answer my question. no don't. what's five times four\"\n",
")"
]
},
{
"cell_type": "markdown",
"id": "ce013d11-49ea-4de9-8bbc-bc9ae203002c",
"metadata": {},
"source": [
"The [ChatOpenAI](https://api.python.langchain.com/en/latest/chat_models/langchain_openai.chat_models.base.ChatOpenAI.html#langchain_openai.chat_models.base.ChatOpenAI) class even comes with a `bind_tools` helper function that handles converting function-like objects to the OpenAI format and binding them for you:"
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "842c9914-ac28-428f-9fcc-556177e8e715",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"AIMessage(content='', additional_kwargs={'tool_calls': [{'id': 'call_LCdBa4cbhMJPRdtkhDzpRh7x', 'function': {'arguments': '{\\n \"a\": 5,\\n \"b\": 3\\n}', 'name': 'multiply'}, 'type': 'function'}]})"
]
},
"execution_count": 11,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"llm_with_tool = llm.bind_tools([multiply], tool_choice=\"multiply\")\n",
"llm_with_tool.invoke(\"what's 5 times three\")"
]
},
{
"cell_type": "markdown",
"id": "7d6e22d8-9f33-4845-9364-0d276df35ff5",
"metadata": {},
"source": [
"## Legacy args `functions` and `function_call`\n",
"\n",
"Until Fall of 2023 the OpenAI API expected arguments `functions` and `funtion_call` instead of `tools` and `tool_choice`, and they had a slightly different format than `tools` and `tool_choice`. LangChain maintains utilities for using the old API if you need to use that as well:"
]
},
{
"cell_type": "code",
"execution_count": 13,
"id": "a317f71e-177e-404b-b09c-8fb365a4d8a2",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'name': 'multiply',\n",
" 'description': 'Multiply two integers together.',\n",
" 'parameters': {'type': 'object',\n",
" 'properties': {'a': {'description': 'First integer', 'type': 'integer'},\n",
" 'b': {'description': 'Second integer', 'type': 'integer'}},\n",
" 'required': ['a', 'b']}}"
]
},
"execution_count": 13,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from langchain_core.utils.function_calling import convert_to_openai_function\n",
"\n",
"convert_to_openai_function(multiply)"
]
},
{
"cell_type": "code",
"execution_count": 14,
"id": "dd124259-75e2-4704-9f57-824d3e463bfa",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"AIMessage(content='', additional_kwargs={'function_call': {'arguments': '{\\n \"a\": 3,\\n \"b\": 1000000\\n}', 'name': 'multiply'}})"
]
},
"execution_count": 14,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"llm_with_functions = llm.bind(\n",
" functions=[convert_to_openai_function(multiply)], function_call={\"name\": \"multiply\"}\n",
")\n",
"llm_with_functions.invoke(\"what's 3 times a million\")"
]
},
{
"cell_type": "code",
"execution_count": 15,
"id": "d9a90af9-1c81-4ace-b155-1589f7308a1c",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"AIMessage(content='', additional_kwargs={'function_call': {'arguments': '{\\n \"a\": 3,\\n \"b\": 1000000\\n}', 'name': 'multiply'}})"
]
},
"execution_count": 15,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"llm_with_functions = llm.bind_functions([multiply], function_call=\"multiply\")\n",
"llm_with_functions.invoke(\"what's 3 times a million\")"
]
},
{
"cell_type": "markdown",
"id": "7779808d-d75c-4d76-890d-ba8c6c571514",
"metadata": {},
"source": [
"## Next steps\n",
"\n",
"* **Output parsing**: See [OpenAI Tools output parsers](/docs/modules/model_io/output_parsers/types/openai_tools) and [OpenAI Functions output parsers](/docs/modules/model_io/output_parsers/types/openai_functions) to learn about extracting the function calling API responses into various formats.\n",
"* **Tool use**: See how to construct chains and agents that actually call the invoked tools in [these guides](/docs/use_cases/tool_use/)."
]
}
],
"metadata": {
"kernelspec": {
"display_name": "poetry-venv",
"language": "python",
"name": "poetry-venv"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.1"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -24,5 +24,6 @@ We have several how-to guides for more advanced usage of LLMs.
This includes:
- [How to cache ChatModel responses](./chat_model_caching)
- [How to use ChatModels that support function calling](./function_calling)
- [How to stream responses from a ChatModel](./streaming)
- [How to track token usage in a ChatModel call](./token_usage_tracking)

View File

@@ -32,7 +32,8 @@ LangChain has lots of different types of output parsers. This is a list of outpu
| Name | Supports Streaming | Has Format Instructions | Calls LLM | Input Type | Output Type | Description |
|-----------------|--------------------|-------------------------------|-----------|----------------------------------|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [OpenAIFunctions](./types/openai_functions) | | (Passes `functions` to model) | | `Message` (with `function_call`) | JSON object | Uses OpenAI function calling to structure the return output. If you are using a model that supports function calling, this is generally the most reliable method. |
| [OpenAITools](./types/openai_tools) | | (Passes `tools` to model) | | `Message` (with `tool_choice`) | JSON object | Uses latest OpenAI function calling args `tools` and `tool_choice` to structure the return output. If you are using a model that supports function calling, this is generally the most reliable method. |
| [OpenAIFunctions](./types/openai_functions) | ✅ | (Passes `functions` to model) | | `Message` (with `function_call`) | JSON object | Uses legacy OpenAI function calling args `functions` and `function_call` to structure the return output. |
| [JSON](./types/json) | ✅ | ✅ | | `str \| Message` | JSON object | Returns a JSON object as specified. You can specify a Pydantic model and it will return JSON for that model. Probably the most reliable output parser for getting structured data that does NOT use function calling. |
| [XML](./types/xml) | ✅ | ✅ | | `str \| Message` | `dict` | Returns a dictionary of tags. Use when XML output is needed. Use with models that are good at writing XML (like Anthropic's). |
| [CSV](./types/csv) | ✅ | ✅ | | `str \| Message` | `List[str]` | Returns a list of comma separated values. |

View File

@@ -0,0 +1,385 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "bcbe5c87",
"metadata": {},
"source": [
"# OpenAI Tools\n",
"\n",
"These output parsers extract tool calls from OpenAI's function calling API responses. This means they are only usable with models that support function calling, and specifically the latest `tools` and `tool_choice` parameters. We recommend familiarizing yourself with [function calling](/docs/modules/model_io/chat/function_calling) before reading this guide.\n",
"\n",
"There are a few different variants of output parsers:\n",
"\n",
"- [JsonOutputToolsParser](https://api.python.langchain.com/en/latest/output_parsers/langchain.output_parsers.openai_tools.JsonOutputToolsParser.html#langchain.output_parsers.openai_tools.JsonOutputToolsParser): Returns the arguments of the function call as JSON\n",
"- [JsonOutputKeyToolsParser](https://api.python.langchain.com/en/latest/output_parsers/langchain.output_parsers.openai_tools.JsonOutputKeyToolsParser.html#langchain.output_parsers.openai_tools.JsonOutputKeyToolsParser): Returns the value of specific key in the function call as JSON\n",
"- [PydanticToolsParser](https://api.python.langchain.com/en/latest/output_parsers/langchain.output_parsers.openai_tools.PydanticToolsParser.html#langchain.output_parsers.openai_tools.PydanticToolsParser): Returns the arguments of the function call as a Pydantic Model"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "aac4262b",
"metadata": {},
"outputs": [],
"source": [
"from langchain_core.prompts import ChatPromptTemplate\n",
"from langchain_core.pydantic_v1 import BaseModel, Field, validator\n",
"from langchain_openai import ChatOpenAI"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "52cb351d",
"metadata": {},
"outputs": [],
"source": [
"class Joke(BaseModel):\n",
" \"\"\"Joke to tell user.\"\"\"\n",
"\n",
" setup: str = Field(description=\"question to set up a joke\")\n",
" punchline: str = Field(description=\"answer to resolve the joke\")"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "2c3259c4",
"metadata": {},
"outputs": [],
"source": [
"model = ChatOpenAI(model=\"gpt-3.5-turbo\", temperature=0).bind_tools([Joke])"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "75c33a76-ead8-43aa-ba18-c1822c38cfa9",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[{'type': 'function',\n",
" 'function': {'name': 'Joke',\n",
" 'description': 'Joke to tell user.',\n",
" 'parameters': {'type': 'object',\n",
" 'properties': {'setup': {'description': 'question to set up a joke',\n",
" 'type': 'string'},\n",
" 'punchline': {'description': 'answer to resolve the joke',\n",
" 'type': 'string'}},\n",
" 'required': ['setup', 'punchline']}}}]"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"model.kwargs[\"tools\"]"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "d3e9007c",
"metadata": {},
"outputs": [],
"source": [
"prompt = ChatPromptTemplate.from_messages(\n",
" [(\"system\", \"You are helpful assistant\"), (\"user\", \"{input}\")]\n",
")"
]
},
{
"cell_type": "markdown",
"id": "87680951",
"metadata": {},
"source": [
"## JsonOutputToolsParser"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "cb065bdd",
"metadata": {},
"outputs": [],
"source": [
"from langchain.output_parsers.openai_tools import JsonOutputToolsParser"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "6ff758c8",
"metadata": {},
"outputs": [],
"source": [
"parser = JsonOutputToolsParser()"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "27a3acd1",
"metadata": {},
"outputs": [],
"source": [
"chain = prompt | model | parser"
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "59b59179",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[{'type': 'Joke',\n",
" 'args': {'setup': \"Why don't scientists trust atoms?\",\n",
" 'punchline': 'Because they make up everything!'}}]"
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"chain.invoke({\"input\": \"tell me a joke\"})"
]
},
{
"cell_type": "markdown",
"id": "0f093b2b-ffd1-47b7-9221-b4265ae52701",
"metadata": {},
"source": [
"To include the tool call id we can specify `return_id=True`:"
]
},
{
"cell_type": "code",
"execution_count": 13,
"id": "d43fd620-dcdc-4ad0-a3a9-e7d2d71d6e68",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[{'type': 'Joke',\n",
" 'args': {'setup': \"Why don't scientists trust atoms?\",\n",
" 'punchline': 'Because they make up everything!'},\n",
" 'id': 'call_Isuoh0RTeQzzOKGg5QlQ7UqI'}]"
]
},
"execution_count": 13,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"parser = JsonOutputToolsParser(return_id=True)\n",
"chain = prompt | model | parser\n",
"chain.invoke({\"input\": \"tell me a joke\"})"
]
},
{
"cell_type": "markdown",
"id": "7ca55ac9",
"metadata": {},
"source": [
"## JsonOutputKeyToolsParser\n",
"\n",
"This merely extracts a single key from the returned response. This is useful for when you are passing in a single tool and just want it's arguments."
]
},
{
"cell_type": "code",
"execution_count": 14,
"id": "f8bc404e",
"metadata": {},
"outputs": [],
"source": [
"from typing import List\n",
"\n",
"from langchain.output_parsers.openai_tools import JsonOutputKeyToolsParser"
]
},
{
"cell_type": "code",
"execution_count": 19,
"id": "c91c5949",
"metadata": {},
"outputs": [],
"source": [
"parser = JsonOutputKeyToolsParser(key_name=\"Joke\")"
]
},
{
"cell_type": "code",
"execution_count": 20,
"id": "b4583baf",
"metadata": {},
"outputs": [],
"source": [
"chain = prompt | model | parser"
]
},
{
"cell_type": "code",
"execution_count": 23,
"id": "e8b766ff",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[{'setup': \"Why don't scientists trust atoms?\",\n",
" 'punchline': 'Because they make up everything!'}]"
]
},
"execution_count": 23,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"chain.invoke({\"input\": \"tell me a joke\"})"
]
},
{
"cell_type": "markdown",
"id": "fc5695c5-451f-482f-bde6-462d85f1a93e",
"metadata": {},
"source": [
"Certain models can return multiple tool invocations each call, so by default the output is a list. If we just want to return the first tool invocation, we can specify `return_single=True`"
]
},
{
"cell_type": "code",
"execution_count": 24,
"id": "b1f3097a-5040-435e-9e26-bbdf9506aead",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'setup': \"Why don't scientists trust atoms?\",\n",
" 'punchline': 'Because they make up everything!'}"
]
},
"execution_count": 24,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"parser = JsonOutputKeyToolsParser(key_name=\"Joke\", return_single=True)\n",
"chain = prompt | model | parser\n",
"chain.invoke({\"input\": \"tell me a joke\"})"
]
},
{
"cell_type": "markdown",
"id": "941a3d4e",
"metadata": {},
"source": [
"## PydanticToolsParser\n",
"\n",
"This builds on top of `JsonOutputToolsParser` but passes the results to a Pydantic Model. This allows for further validation should you choose."
]
},
{
"cell_type": "code",
"execution_count": 25,
"id": "f51823fe",
"metadata": {},
"outputs": [],
"source": [
"from langchain.output_parsers.openai_tools import PydanticToolsParser"
]
},
{
"cell_type": "code",
"execution_count": 28,
"id": "3c6a5e4d",
"metadata": {},
"outputs": [],
"source": [
"class Joke(BaseModel):\n",
" \"\"\"Joke to tell user.\"\"\"\n",
"\n",
" setup: str = Field(description=\"question to set up a joke\")\n",
" punchline: str = Field(description=\"answer to resolve the joke\")\n",
"\n",
" # You can add custom validation logic easily with Pydantic.\n",
" @validator(\"setup\")\n",
" def question_ends_with_question_mark(cls, field):\n",
" if field[-1] != \"?\":\n",
" raise ValueError(\"Badly formed question!\")\n",
" return field\n",
"\n",
"\n",
"parser = PydanticToolsParser(tools=[Joke])"
]
},
{
"cell_type": "code",
"execution_count": 30,
"id": "d2bbd54f",
"metadata": {},
"outputs": [],
"source": [
"model = ChatOpenAI(model=\"gpt-3.5-turbo\", temperature=0).bind_tools([Joke])\n",
"chain = prompt | model | parser"
]
},
{
"cell_type": "code",
"execution_count": 31,
"id": "db1a06e8",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[Joke(setup=\"Why don't scientists trust atoms?\", punchline='Because they make up everything!')]"
]
},
"execution_count": 31,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"chain.invoke({\"input\": \"tell me a joke\"})"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.1"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -430,7 +430,7 @@
},
{
"cell_type": "code",
"execution_count": 10,
"execution_count": null,
"id": "64650362",
"metadata": {},
"outputs": [
@@ -452,8 +452,8 @@
"from langchain.prompts import (\n",
" PromptTemplate,\n",
")\n",
"from langchain_core.pydantic_v1 import BaseModel, Field, validator\n",
"from langchain_openai import OpenAI\n",
"from pydantic import BaseModel, Field, validator\n",
"\n",
"\n",
"class Person(BaseModel):\n",
@@ -531,8 +531,8 @@
"from langchain.prompts import (\n",
" PromptTemplate,\n",
")\n",
"from langchain_core.pydantic_v1 import BaseModel, Field, validator\n",
"from langchain_openai import OpenAI\n",
"from pydantic import BaseModel, Field, validator\n",
"\n",
"\n",
"# Define your desired data structure.\n",

File diff suppressed because one or more lines are too long

View File

@@ -67,7 +67,7 @@
},
{
"cell_type": "code",
"execution_count": 25,
"execution_count": 2,
"id": "0221fdfd-2a18-4449-a123-e6b0b15bb3d9",
"metadata": {},
"outputs": [
@@ -77,7 +77,7 @@
"[{'type': 'count_emails', 'args': {'last_n_days': 5}, 'output': 10}]"
]
},
"execution_count": 25,
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
@@ -86,7 +86,6 @@
"from operator import itemgetter\n",
"\n",
"from langchain.output_parsers import JsonOutputToolsParser\n",
"from langchain_community.tools.convert_to_openai import format_tool_to_openai_tool\n",
"from langchain_core.runnables import Runnable, RunnableLambda, RunnablePassthrough\n",
"from langchain_core.tools import tool\n",
"from langchain_openai import ChatOpenAI\n",
@@ -105,9 +104,7 @@
"\n",
"\n",
"tools = [count_emails, send_email]\n",
"model = ChatOpenAI(model=\"gpt-3.5-turbo\", temperature=0).bind(\n",
" tools=[format_tool_to_openai_tool(t) for t in tools]\n",
")\n",
"model = ChatOpenAI(model=\"gpt-3.5-turbo\", temperature=0).bind_tools(tools)\n",
"\n",
"\n",
"def call_tool(tool_invocation: dict) -> Runnable:\n",

View File

@@ -128,7 +128,7 @@
},
{
"cell_type": "code",
"execution_count": 13,
"execution_count": 5,
"id": "c35359ae-a740-48c5-b5e7-1a377fb25aa2",
"metadata": {},
"outputs": [],
@@ -137,9 +137,6 @@
"from typing import Union\n",
"\n",
"from langchain.output_parsers import JsonOutputToolsParser\n",
"from langchain_community.tools.convert_to_openai import (\n",
" format_tool_to_openai_tool,\n",
")\n",
"from langchain_core.runnables import (\n",
" Runnable,\n",
" RunnableLambda,\n",
@@ -150,7 +147,7 @@
"\n",
"model = ChatOpenAI(model=\"gpt-3.5-turbo\")\n",
"tools = [multiply, exponentiate, add]\n",
"model_with_tools = model.bind(tools=[format_tool_to_openai_tool(t) for t in tools])\n",
"model_with_tools = model.bind_tools(tools)\n",
"tool_map = {tool.name: tool for tool in tools}\n",
"\n",
"\n",

View File

@@ -65,7 +65,7 @@
},
{
"cell_type": "code",
"execution_count": 3,
"execution_count": 1,
"id": "e13ec98c-8521-4d63-b521-caf92da87b70",
"metadata": {},
"outputs": [],
@@ -103,7 +103,7 @@
},
{
"cell_type": "code",
"execution_count": 11,
"execution_count": 2,
"id": "c35359ae-a740-48c5-b5e7-1a377fb25aa2",
"metadata": {},
"outputs": [],
@@ -112,9 +112,6 @@
"from typing import Union\n",
"\n",
"from langchain.output_parsers import JsonOutputToolsParser\n",
"from langchain_community.tools.convert_to_openai import (\n",
" format_tool_to_openai_tool,\n",
")\n",
"from langchain_core.runnables import (\n",
" Runnable,\n",
" RunnableLambda,\n",
@@ -125,7 +122,7 @@
"\n",
"model = ChatOpenAI(model=\"gpt-3.5-turbo-1106\")\n",
"tools = [multiply, exponentiate, add]\n",
"model_with_tools = model.bind(tools=[format_tool_to_openai_tool(t) for t in tools])\n",
"model_with_tools = model.bind_tools(tools)\n",
"tool_map = {tool.name: tool for tool in tools}\n",
"\n",
"\n",

View File

@@ -146,7 +146,7 @@
"![chain](../../../static/img/tool_chain.svg)\n",
"\n",
"### Function calling\n",
"One of the most reliable ways to use tools with LLMs is with function calling APIs (also sometimes called tool calling or parallel function calling). This only works with models that explicitly support function calling, like OpenAI models.\n",
"One of the most reliable ways to use tools with LLMs is with function calling APIs (also sometimes called tool calling or parallel function calling). This only works with models that explicitly support function calling, like OpenAI models. To learn more head to the [function calling guide](/docs/modules/model_io/chat/function_calling).\n",
"\n",
"First we'll define our model and tools. We'll start with just a single tool, `multiply`."
]
@@ -168,13 +168,23 @@
"id": "c22e6f0f-c5ad-4c0f-9514-e626704ea51c",
"metadata": {},
"source": [
"Next we'll convert our LangChain Tool to an OpenAI format JSONSchema function, and bind this as the `tools` argument to be passed to all ChatOpenAI calls. Since we only have a single Tool and in this initial chain we want to make sure it's always used, we'll also specify `tool_choice`. See the [OpenAI chat API reference](https://platform.openai.com/docs/api-reference/chat/create#chat-create-tool_choice) for more on these parameters."
"Next we'll convert our LangChain Tool to an OpenAI format JSONSchema function, and bind this as the `tools` argument to be passed to all ChatOpenAI calls. Since we only have a single Tool and in this initial chain we want to make sure it's always used, we'll also specify `tool_choice`. See the [OpenAI chat API reference](https://platform.openai.com/docs/api-reference/chat/create#chat-create-tool_choice) for more on these parameters:"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "2babd759-bccd-4d50-95ad-365a07347926",
"id": "3bfe2cdc-7d72-457c-a9a1-5fa1e0bcde55",
"metadata": {},
"outputs": [],
"source": [
"model_with_tools = model.bind_tools([multiply], tool_choice=\"multiply\")"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "19f6285f-d8b1-432c-8c07-f7aee3fc0fa4",
"metadata": {},
"outputs": [
{
@@ -183,39 +193,40 @@
"[{'type': 'function',\n",
" 'function': {'name': 'multiply',\n",
" 'description': 'multiply(first_int: int, second_int: int) -> int - Multiply two integers together.',\n",
" 'parameters': {'title': 'multiplySchemaSchema',\n",
" 'type': 'object',\n",
" 'properties': {'first_int': {'title': 'First Int', 'type': 'integer'},\n",
" 'second_int': {'title': 'Second Int', 'type': 'integer'}},\n",
" 'parameters': {'type': 'object',\n",
" 'properties': {'first_int': {'type': 'integer'},\n",
" 'second_int': {'type': 'integer'}},\n",
" 'required': ['first_int', 'second_int']}}}]"
]
},
"execution_count": 5,
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from langchain_community.tools.convert_to_openai import (\n",
" format_tool_to_openai_tool,\n",
")\n",
"\n",
"formatted_tools = [format_tool_to_openai_tool(multiply)]\n",
"formatted_tools"
"model_with_tools.kwargs[\"tools\"]"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "3bfe2cdc-7d72-457c-a9a1-5fa1e0bcde55",
"execution_count": 8,
"id": "340c1b04-38cb-4467-83ca-8aa2b59176d8",
"metadata": {},
"outputs": [],
"outputs": [
{
"data": {
"text/plain": [
"{'type': 'function', 'function': {'name': 'multiply'}}"
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"model_with_tools = model.bind(\n",
" tools=formatted_tools,\n",
" # We specify tool_choice to enforce that the 'multiply' function is called by the model.\n",
" tool_choice={\"type\": \"function\", \"function\": {\"name\": \"multiply\"}},\n",
")"
"model_with_tools.kwargs[\"tool_choice\"]"
]
},
{

View File

@@ -69,7 +69,7 @@
},
{
"cell_type": "code",
"execution_count": 2,
"execution_count": 1,
"id": "1d20604e-c4d1-4d21-841b-23e4f61aec36",
"metadata": {},
"outputs": [],
@@ -92,13 +92,12 @@
"outputs": [],
"source": [
"# Define model and bind tool\n",
"from langchain_community.tools.convert_to_openai import format_tool_to_openai_tool\n",
"from langchain_openai import ChatOpenAI\n",
"\n",
"model = ChatOpenAI(model=\"gpt-3.5-turbo\", temperature=0)\n",
"model_with_tools = model.bind(\n",
" tools=[format_tool_to_openai_tool(complex_tool)],\n",
" tool_choice={\"type\": \"function\", \"function\": {\"name\": \"complex_tool\"}},\n",
"model_with_tools = model.bind_tools(\n",
" [complex_tool],\n",
" tool_choice=\"complex_tool\",\n",
")"
]
},
@@ -259,9 +258,8 @@
" | JsonOutputKeyToolsParser(key_name=\"complex_tool\", return_single=True)\n",
" | complex_tool\n",
")\n",
"better_model = ChatOpenAI(model=\"gpt-4-1106-preview\", temperature=0).bind(\n",
" tools=[format_tool_to_openai_tool(complex_tool)],\n",
" tool_choice={\"type\": \"function\", \"function\": {\"name\": \"complex_tool\"}},\n",
"better_model = ChatOpenAI(model=\"gpt-4-1106-preview\", temperature=0).bind_tools(\n",
" [complex_tool], tool_choice=\"complex_tool\"\n",
")\n",
"better_chain = (\n",
" better_model\n",

View File

@@ -3715,6 +3715,10 @@
{
"source": "/docs/integrations/providers/google_document_ai",
"destination": "/docs/integrations/platforms/google#google-document-ai"
},
{
"source": "/docs/integrations/tools/metaphor_search",
"destination": "/docs/integrations/tools/exa_search"
}
]
}

View File

@@ -1 +1 @@
langchain-core==0.1.14
langchain-core==0.1.16

View File

@@ -94,15 +94,19 @@ def analyze_text(
files serialized to HTML string.
"""
resp: Dict[str, Any] = {}
textstat = import_textstat()
spacy = import_spacy()
text_complexity_metrics = {
key: getattr(textstat, key)(text) for key in get_text_complexity_metrics()
}
resp.update({"text_complexity_metrics": text_complexity_metrics})
resp.update(text_complexity_metrics)
try:
textstat = import_textstat()
except ImportError:
pass
else:
text_complexity_metrics = {
key: getattr(textstat, key)(text) for key in get_text_complexity_metrics()
}
resp.update({"text_complexity_metrics": text_complexity_metrics})
resp.update(text_complexity_metrics)
if nlp is not None:
spacy = import_spacy()
doc = nlp(text)
dep_out = spacy.displacy.render( # type: ignore
@@ -279,9 +283,7 @@ class MlflowCallbackHandler(BaseMetadataCallbackHandler, BaseCallbackHandler):
) -> None:
"""Initialize callback handler."""
import_pandas()
import_textstat()
import_mlflow()
spacy = import_spacy()
super().__init__()
self.name = name
@@ -303,14 +305,19 @@ class MlflowCallbackHandler(BaseMetadataCallbackHandler, BaseCallbackHandler):
)
self.action_records: list = []
self.nlp = None
try:
self.nlp = spacy.load("en_core_web_sm")
except OSError:
logger.warning(
"Run `python -m spacy download en_core_web_sm` "
"to download en_core_web_sm model for text visualization."
)
self.nlp = None
spacy = import_spacy()
except ImportError:
pass
else:
try:
self.nlp = spacy.load("en_core_web_sm")
except OSError:
logger.warning(
"Run `python -m spacy download en_core_web_sm` "
"to download en_core_web_sm model for text visualization."
)
self.metrics = {key: 0 for key in mlflow_callback_metrics()}

View File

@@ -40,6 +40,7 @@ from langchain_community.chat_models.javelin_ai_gateway import ChatJavelinAIGate
from langchain_community.chat_models.jinachat import JinaChat
from langchain_community.chat_models.konko import ChatKonko
from langchain_community.chat_models.litellm import ChatLiteLLM
from langchain_community.chat_models.litellm_router import ChatLiteLLMRouter
from langchain_community.chat_models.llama_edge import LlamaEdgeChatService
from langchain_community.chat_models.minimax import MiniMaxChat
from langchain_community.chat_models.mlflow import ChatMlflow
@@ -78,6 +79,7 @@ __all__ = [
"MiniMaxChat",
"ChatAnyscale",
"ChatLiteLLM",
"ChatLiteLLMRouter",
"ErnieBotChat",
"ChatJavelinAIGateway",
"ChatKonko",

View File

@@ -142,9 +142,10 @@ class ChatAnthropic(BaseChatModel, _AnthropicCommon):
stream_resp = self.client.completions.create(**params, stream=True)
for data in stream_resp:
delta = data.completion
yield ChatGenerationChunk(message=AIMessageChunk(content=delta))
chunk = ChatGenerationChunk(message=AIMessageChunk(content=delta))
yield chunk
if run_manager:
run_manager.on_llm_new_token(delta)
run_manager.on_llm_new_token(delta, chunk=chunk)
async def _astream(
self,
@@ -161,9 +162,10 @@ class ChatAnthropic(BaseChatModel, _AnthropicCommon):
stream_resp = await self.async_client.completions.create(**params, stream=True)
async for data in stream_resp:
delta = data.completion
yield ChatGenerationChunk(message=AIMessageChunk(content=delta))
chunk = ChatGenerationChunk(message=AIMessageChunk(content=delta))
yield chunk
if run_manager:
await run_manager.on_llm_new_token(delta)
await run_manager.on_llm_new_token(delta, chunk=chunk)
def _generate(
self,

View File

@@ -0,0 +1,368 @@
import json
from typing import Any, AsyncIterator, Dict, Iterator, List, Optional
from aiohttp import ClientSession
from langchain_core.callbacks import (
AsyncCallbackManagerForLLMRun,
CallbackManagerForLLMRun,
)
from langchain_core.language_models.chat_models import (
BaseChatModel,
agenerate_from_stream,
generate_from_stream,
)
from langchain_core.messages import (
AIMessage,
AIMessageChunk,
BaseMessage,
)
from langchain_core.outputs import ChatGeneration, ChatGenerationChunk, ChatResult
from langchain_core.pydantic_v1 import Extra, Field, SecretStr, root_validator
from langchain_core.utils import convert_to_secret_str, get_from_dict_or_env
from langchain_community.utilities.requests import Requests
def _message_role(type: str) -> str:
role_mapping = {"ai": "assistant", "human": "user", "chat": "user"}
if type in role_mapping:
return role_mapping[type]
else:
raise ValueError(f"Unknown type: {type}")
def _format_edenai_messages(messages: List[BaseMessage]) -> Dict[str, Any]:
system = None
formatted_messages = []
text = messages[-1].content
for i, message in enumerate(messages[:-1]):
if message.type == "system":
if i != 0:
raise ValueError("System message must be at beginning of message list.")
system = message.content
else:
formatted_messages.append(
{
"role": _message_role(message.type),
"message": message.content,
}
)
return {
"text": text,
"previous_history": formatted_messages,
"chatbot_global_action": system,
}
class ChatEdenAI(BaseChatModel):
"""`EdenAI` chat large language models.
`EdenAI` is a versatile platform that allows you to access various language models
from different providers such as Google, OpenAI, Cohere, Mistral and more.
To get started, make sure you have the environment variable ``EDENAI_API_KEY``
set with your API key, or pass it as a named parameter to the constructor.
Additionally, `EdenAI` provides the flexibility to choose from a variety of models,
including the ones like "gpt-4".
Example:
.. code-block:: python
from langchain_community.chat_models import ChatEdenAI
from langchain_core.messages import HumanMessage
# Initialize `ChatEdenAI` with the desired configuration
chat = ChatEdenAI(
provider="openai",
model="gpt-4",
max_tokens=256,
temperature=0.75)
# Create a list of messages to interact with the model
messages = [HumanMessage(content="hello")]
# Invoke the model with the provided messages
chat.invoke(messages)
`EdenAI` goes beyond mere model invocation. It empowers you with advanced features :
- **Multiple Providers**: access to a diverse range of llms offered by various
providers giving you the freedom to choose the best-suited model for your use case.
- **Fallback Mechanism**: Set a fallback mechanism to ensure seamless operations
even if the primary provider is unavailable, you can easily switches to an
alternative provider.
- **Usage Statistics**: Track usage statistics on a per-project
and per-API key basis.
This feature allows you to monitor and manage resource consumption effectively.
- **Monitoring and Observability**: `EdenAI` provides comprehensive monitoring
and observability tools on the platform.
Example of setting up a fallback mechanism:
.. code-block:: python
# Initialize `ChatEdenAI` with a fallback provider
chat_with_fallback = ChatEdenAI(
provider="openai",
model="gpt-4",
max_tokens=256,
temperature=0.75,
fallback_provider="google")
you can find more details here : https://docs.edenai.co/reference/text_chat_create
"""
provider: str = "openai"
"""chat provider to use (eg: openai,google etc.)"""
model: Optional[str] = None
"""
model name for above provider (eg: 'gpt-4' for openai)
available models are shown on https://docs.edenai.co/ under 'available providers'
"""
max_tokens: int = 256
"""Denotes the number of tokens to predict per generation."""
temperature: Optional[float] = 0
"""A non-negative float that tunes the degree of randomness in generation."""
streaming: bool = False
"""Whether to stream the results."""
fallback_providers: Optional[str] = None
"""Providers in this will be used as fallback if the call to provider fails."""
edenai_api_url: str = "https://api.edenai.run/v2"
edenai_api_key: Optional[SecretStr] = Field(None, description="EdenAI API Token")
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
@root_validator()
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that api key exists in environment."""
values["edenai_api_key"] = convert_to_secret_str(
get_from_dict_or_env(values, "edenai_api_key", "EDENAI_API_KEY")
)
return values
@staticmethod
def get_user_agent() -> str:
from langchain_community import __version__
return f"langchain/{__version__}"
@property
def _llm_type(self) -> str:
"""Return type of chat model."""
return "edenai-chat"
def _stream(
self,
messages: List[BaseMessage],
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> Iterator[ChatGenerationChunk]:
"""Call out to EdenAI's chat endpoint."""
url = f"{self.edenai_api_url}/text/chat/stream"
headers = {
"Authorization": f"Bearer {self.edenai_api_key.get_secret_value()}",
"User-Agent": self.get_user_agent(),
}
formatted_data = _format_edenai_messages(messages=messages)
payload: Dict[str, Any] = {
"providers": self.provider,
"max_tokens": self.max_tokens,
"temperature": self.temperature,
"fallback_providers": self.fallback_providers,
**formatted_data,
**kwargs,
}
payload = {k: v for k, v in payload.items() if v is not None}
if self.model is not None:
payload["settings"] = {self.provider: self.model}
request = Requests(headers=headers)
response = request.post(url=url, data=payload, stream=True)
response.raise_for_status()
for chunk_response in response.iter_lines():
chunk = json.loads(chunk_response.decode())
token = chunk["text"]
chat_generatio_chunk = ChatGenerationChunk(
message=AIMessageChunk(content=token)
)
yield chat_generatio_chunk
if run_manager:
run_manager.on_llm_new_token(token, chunk=chat_generatio_chunk)
async def _astream(
self,
messages: List[BaseMessage],
stop: Optional[List[str]] = None,
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> AsyncIterator[ChatGenerationChunk]:
url = f"{self.edenai_api_url}/text/chat/stream"
headers = {
"Authorization": f"Bearer {self.edenai_api_key.get_secret_value()}",
"User-Agent": self.get_user_agent(),
}
formatted_data = _format_edenai_messages(messages=messages)
payload: Dict[str, Any] = {
"providers": self.provider,
"max_tokens": self.max_tokens,
"temperature": self.temperature,
"fallback_providers": self.fallback_providers,
**formatted_data,
**kwargs,
}
payload = {k: v for k, v in payload.items() if v is not None}
if self.model is not None:
payload["settings"] = {self.provider: self.model}
async with ClientSession() as session:
async with session.post(url, json=payload, headers=headers) as response:
response.raise_for_status()
async for chunk_response in response.content:
chunk = json.loads(chunk_response.decode())
token = chunk["text"]
chat_generation_chunk = ChatGenerationChunk(
message=AIMessageChunk(content=token)
)
yield chat_generation_chunk
if run_manager:
await run_manager.on_llm_new_token(
token=chunk["text"], chunk=chat_generation_chunk
)
def _generate(
self,
messages: List[BaseMessage],
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> ChatResult:
"""Call out to EdenAI's chat endpoint."""
if self.streaming:
stream_iter = self._stream(
messages, stop=stop, run_manager=run_manager, **kwargs
)
return generate_from_stream(stream_iter)
url = f"{self.edenai_api_url}/text/chat"
headers = {
"Authorization": f"Bearer {self.edenai_api_key.get_secret_value()}",
"User-Agent": self.get_user_agent(),
}
formatted_data = _format_edenai_messages(messages=messages)
payload: Dict[str, Any] = {
"providers": self.provider,
"max_tokens": self.max_tokens,
"temperature": self.temperature,
"fallback_providers": self.fallback_providers,
**formatted_data,
**kwargs,
}
payload = {k: v for k, v in payload.items() if v is not None}
if self.model is not None:
payload["settings"] = {self.provider: self.model}
request = Requests(headers=headers)
response = request.post(url=url, data=payload)
response.raise_for_status()
data = response.json()
provider_response = data[self.provider]
if self.fallback_providers:
fallback_response = data.get(self.fallback_providers)
if fallback_response:
provider_response = fallback_response
if provider_response.get("status") == "fail":
err_msg = provider_response.get("error", {}).get("message")
raise Exception(err_msg)
return ChatResult(
generations=[
ChatGeneration(
message=AIMessage(content=provider_response["generated_text"])
)
],
llm_output=data,
)
async def _agenerate(
self,
messages: List[BaseMessage],
stop: Optional[List[str]] = None,
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> ChatResult:
if self.streaming:
stream_iter = self._astream(
messages, stop=stop, run_manager=run_manager, **kwargs
)
return await agenerate_from_stream(stream_iter)
url = f"{self.edenai_api_url}/text/chat"
headers = {
"Authorization": f"Bearer {self.edenai_api_key.get_secret_value()}",
"User-Agent": self.get_user_agent(),
}
formatted_data = _format_edenai_messages(messages=messages)
payload: Dict[str, Any] = {
"providers": self.provider,
"max_tokens": self.max_tokens,
"temperature": self.temperature,
"fallback_providers": self.fallback_providers,
**formatted_data,
**kwargs,
}
payload = {k: v for k, v in payload.items() if v is not None}
if self.model is not None:
payload["settings"] = {self.provider: self.model}
async with ClientSession() as session:
async with session.post(url, json=payload, headers=headers) as response:
response.raise_for_status()
data = await response.json()
provider_response = data[self.provider]
if self.fallback_providers:
fallback_response = data.get(self.fallback_providers)
if fallback_response:
provider_response = fallback_response
if provider_response.get("status") == "fail":
err_msg = provider_response.get("error", {}).get("message")
raise Exception(err_msg)
return ChatResult(
generations=[
ChatGeneration(
message=AIMessage(
content=provider_response["generated_text"]
)
)
],
llm_output=data,
)

View File

@@ -0,0 +1,221 @@
"""LiteLLM Router as LangChain Model."""
from typing import (
Any,
AsyncIterator,
Iterator,
List,
Mapping,
Optional,
)
from langchain_core.callbacks.manager import (
AsyncCallbackManagerForLLMRun,
CallbackManagerForLLMRun,
)
from langchain_core.language_models.chat_models import (
agenerate_from_stream,
generate_from_stream,
)
from langchain_core.messages import (
AIMessageChunk,
BaseMessage,
)
from langchain_core.outputs import (
ChatGeneration,
ChatGenerationChunk,
ChatResult,
)
from langchain_community.chat_models.litellm import (
ChatLiteLLM,
_convert_delta_to_message_chunk,
_convert_dict_to_message,
)
token_usage_key_name = "token_usage"
model_extra_key_name = "model_extra"
def get_llm_output(usage: Any, **params: Any) -> dict:
"""Get llm output from usage and params."""
llm_output = {token_usage_key_name: usage}
# copy over metadata (metadata came from router completion call)
metadata = params["metadata"]
for key in metadata:
if key not in llm_output:
# if token usage in metadata, prefer metadata's copy of it
llm_output[key] = metadata[key]
return llm_output
class ChatLiteLLMRouter(ChatLiteLLM):
"""LiteLLM Router as LangChain Model."""
router: Any
def __init__(self, *, router: Any, **kwargs: Any) -> None:
"""Construct Chat LiteLLM Router."""
super().__init__(**kwargs)
self.router = router
@property
def _llm_type(self) -> str:
return "LiteLLMRouter"
def _set_model_for_completion(self) -> None:
# use first model name (aka: model group),
# since we can only pass one to the router completion functions
self.model = self.router.model_list[0]["model_name"]
def _prepare_params_for_router(self, params: Any) -> None:
params["model"] = self.model
# allow the router to set api_base based on its model choice
api_base_key_name = "api_base"
if api_base_key_name in params and params[api_base_key_name] is None:
del params[api_base_key_name]
# add metadata so router can fill it below
params.setdefault("metadata", {})
def _generate(
self,
messages: List[BaseMessage],
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
stream: Optional[bool] = None,
**kwargs: Any,
) -> ChatResult:
should_stream = stream if stream is not None else self.streaming
if should_stream:
stream_iter = self._stream(
messages, stop=stop, run_manager=run_manager, **kwargs
)
return generate_from_stream(stream_iter)
message_dicts, params = self._create_message_dicts(messages, stop)
params = {**params, **kwargs}
self._set_model_for_completion()
self._prepare_params_for_router(params)
response = self.router.completion(
messages=message_dicts,
**params,
)
return self._create_chat_result(response, **params)
def _stream(
self,
messages: List[BaseMessage],
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> Iterator[ChatGenerationChunk]:
default_chunk_class = AIMessageChunk
message_dicts, params = self._create_message_dicts(messages, stop)
params = {**params, **kwargs, "stream": True}
self._set_model_for_completion()
self._prepare_params_for_router(params)
for chunk in self.router.completion(messages=message_dicts, **params):
if len(chunk["choices"]) == 0:
continue
delta = chunk["choices"][0]["delta"]
chunk = _convert_delta_to_message_chunk(delta, default_chunk_class)
default_chunk_class = chunk.__class__
yield ChatGenerationChunk(message=chunk)
if run_manager:
run_manager.on_llm_new_token(chunk.content, **params)
async def _astream(
self,
messages: List[BaseMessage],
stop: Optional[List[str]] = None,
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> AsyncIterator[ChatGenerationChunk]:
default_chunk_class = AIMessageChunk
message_dicts, params = self._create_message_dicts(messages, stop)
params = {**params, **kwargs, "stream": True}
self._set_model_for_completion()
self._prepare_params_for_router(params)
async for chunk in await self.router.acompletion(
messages=message_dicts, **params
):
if len(chunk["choices"]) == 0:
continue
delta = chunk["choices"][0]["delta"]
chunk = _convert_delta_to_message_chunk(delta, default_chunk_class)
default_chunk_class = chunk.__class__
yield ChatGenerationChunk(message=chunk)
if run_manager:
await run_manager.on_llm_new_token(chunk.content, **params)
async def _agenerate(
self,
messages: List[BaseMessage],
stop: Optional[List[str]] = None,
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
stream: Optional[bool] = None,
**kwargs: Any,
) -> ChatResult:
should_stream = stream if stream is not None else self.streaming
if should_stream:
stream_iter = self._astream(
messages=messages, stop=stop, run_manager=run_manager, **kwargs
)
return await agenerate_from_stream(stream_iter)
message_dicts, params = self._create_message_dicts(messages, stop)
params = {**params, **kwargs}
self._set_model_for_completion()
self._prepare_params_for_router(params)
response = await self.router.acompletion(
messages=message_dicts,
**params,
)
return self._create_chat_result(response, **params)
# from
# https://github.com/langchain-ai/langchain/blob/master/libs/community/langchain_community/chat_models/openai.py
# but modified to handle LiteLLM Usage class
def _combine_llm_outputs(self, llm_outputs: List[Optional[dict]]) -> dict:
overall_token_usage: dict = {}
system_fingerprint = None
for output in llm_outputs:
if output is None:
# Happens in streaming
continue
token_usage = output["token_usage"]
if token_usage is not None:
# get dict from LiteLLM Usage class
for k, v in token_usage.dict().items():
if k in overall_token_usage:
overall_token_usage[k] += v
else:
overall_token_usage[k] = v
if system_fingerprint is None:
system_fingerprint = output.get("system_fingerprint")
combined = {"token_usage": overall_token_usage, "model_name": self.model_name}
if system_fingerprint:
combined["system_fingerprint"] = system_fingerprint
return combined
def _create_chat_result(
self, response: Mapping[str, Any], **params: Any
) -> ChatResult:
from litellm.utils import Usage
generations = []
for res in response["choices"]:
message = _convert_dict_to_message(res["message"])
gen = ChatGeneration(
message=message,
generation_info=dict(finish_reason=res.get("finish_reason")),
)
generations.append(gen)
token_usage = response.get("usage", Usage(prompt_tokens=0, total_tokens=0))
llm_output = get_llm_output(token_usage, **params)
return ChatResult(generations=generations, llm_output=llm_output)

View File

@@ -139,7 +139,8 @@ def _make_request(
)
except ImportError as e:
raise ImportError(
"Please install YandexCloud SDK" " with `pip install yandexcloud`."
"Please install YandexCloud SDK with `pip install yandexcloud` \
or upgrade it to recent version."
) from e
if not messages:
raise ValueError("You should provide at least one message to start the chat!")
@@ -182,7 +183,8 @@ async def _amake_request(self: ChatYandexGPT, messages: List[BaseMessage]) -> st
)
except ImportError as e:
raise ImportError(
"Please install YandexCloud SDK" " with `pip install yandexcloud`."
"Please install YandexCloud SDK with `pip install yandexcloud` \
or upgrade it to recent version."
) from e
if not messages:
raise ValueError("You should provide at least one message to start the chat!")
@@ -219,7 +221,7 @@ async def _amake_request(self: ChatYandexGPT, messages: List[BaseMessage]) -> st
def _create_retry_decorator(llm: ChatYandexGPT) -> Callable[[Any], Any]:
from grpc import RpcError
min_seconds = 1
min_seconds = llm.sleep_interval
max_seconds = 60
return retry(
reraise=True,

View File

@@ -59,6 +59,7 @@ from langchain_community.document_loaders.blob_loaders import (
from langchain_community.document_loaders.blockchain import BlockchainDocumentLoader
from langchain_community.document_loaders.brave_search import BraveSearchLoader
from langchain_community.document_loaders.browserless import BrowserlessLoader
from langchain_community.document_loaders.cassandra import CassandraLoader
from langchain_community.document_loaders.chatgpt import ChatGPTLoader
from langchain_community.document_loaders.chromium import AsyncChromiumLoader
from langchain_community.document_loaders.college_confidential import (
@@ -267,6 +268,7 @@ __all__ = [
"BlockchainDocumentLoader",
"BraveSearchLoader",
"BrowserlessLoader",
"CassandraLoader",
"CSVLoader",
"ChatGPTLoader",
"CoNLLULoader",

View File

@@ -2,12 +2,24 @@ import json
import logging
import threading
from queue import Queue
from typing import Any, Callable, Dict, Iterator, List, Optional
from typing import (
TYPE_CHECKING,
Any,
AsyncIterator,
Callable,
Dict,
Iterator,
List,
Optional,
)
from langchain_core.documents import Document
from langchain_community.document_loaders.base import BaseLoader
if TYPE_CHECKING:
from astrapy.db import AstraDB, AsyncAstraDB
logger = logging.getLogger(__name__)
@@ -19,7 +31,8 @@ class AstraDBLoader(BaseLoader):
collection_name: str,
token: Optional[str] = None,
api_endpoint: Optional[str] = None,
astra_db_client: Optional[Any] = None, # 'astrapy.db.AstraDB' if passed
astra_db_client: Optional["AstraDB"] = None,
async_astra_db_client: Optional["AsyncAstraDB"] = None,
namespace: Optional[str] = None,
filter_criteria: Optional[Dict[str, Any]] = None,
projection: Optional[Dict[str, Any]] = None,
@@ -36,34 +49,60 @@ class AstraDBLoader(BaseLoader):
)
# Conflicting-arg checks:
if astra_db_client is not None:
if astra_db_client is not None or async_astra_db_client is not None:
if token is not None or api_endpoint is not None:
raise ValueError(
"You cannot pass 'astra_db_client' to AstraDB if passing "
"'token' and 'api_endpoint'."
"You cannot pass 'astra_db_client' or 'async_astra_db_client' to "
"AstraDB if passing 'token' and 'api_endpoint'."
)
self.collection_name = collection_name
self.filter = filter_criteria
self.projection = projection
self.find_options = find_options or {}
self.nb_prefetched = nb_prefetched
self.extraction_function = extraction_function
if astra_db_client is not None:
astra_db = astra_db_client
else:
astra_db = astra_db_client
async_astra_db = async_astra_db_client
if token and api_endpoint:
astra_db = AstraDB(
token=token,
api_endpoint=api_endpoint,
namespace=namespace,
)
self.collection = astra_db.collection(collection_name)
try:
from astrapy.db import AsyncAstraDB
async_astra_db = AsyncAstraDB(
token=token,
api_endpoint=api_endpoint,
namespace=namespace,
)
except (ImportError, ModuleNotFoundError):
pass
if not astra_db and not async_astra_db:
raise ValueError(
"Must provide 'astra_db_client' or 'async_astra_db_client' or 'token' "
"and 'api_endpoint'"
)
self.collection = astra_db.collection(collection_name) if astra_db else None
if async_astra_db:
from astrapy.db import AsyncAstraDBCollection
self.async_collection = AsyncAstraDBCollection(
astra_db=async_astra_db, collection_name=collection_name
)
else:
self.async_collection = None
def load(self) -> List[Document]:
"""Eagerly load the content."""
return list(self.lazy_load())
def lazy_load(self) -> Iterator[Document]:
if not self.collection:
raise ValueError("Missing AstraDB client")
queue = Queue(self.nb_prefetched)
t = threading.Thread(target=self.fetch_results, args=(queue,))
t.start()
@@ -74,6 +113,29 @@ class AstraDBLoader(BaseLoader):
yield doc
t.join()
async def aload(self) -> List[Document]:
"""Load data into Document objects."""
return [doc async for doc in self.alazy_load()]
async def alazy_load(self) -> AsyncIterator[Document]:
if not self.async_collection:
raise ValueError("Missing AsyncAstraDB client")
async for doc in self.async_collection.paginated_find(
filter=self.filter,
options=self.find_options,
projection=self.projection,
sort=None,
prefetched=True,
):
yield Document(
page_content=self.extraction_function(doc),
metadata={
"namespace": self.async_collection.astra_db.namespace,
"api_endpoint": self.async_collection.astra_db.base_url,
"collection": self.collection_name,
},
)
def fetch_results(self, queue: Queue):
self.fetch_page_result(queue)
while self.find_options.get("pageState"):

View File

@@ -1,4 +1,3 @@
import json
from typing import (
TYPE_CHECKING,
Any,
@@ -14,13 +13,6 @@ from langchain_core.documents import Document
from langchain_community.document_loaders.base import BaseLoader
def default_page_content_mapper(row: Any) -> str:
if hasattr(row, "_asdict"):
return json.dumps(row._asdict())
return json.dumps(row)
_NOT_SET = object()
if TYPE_CHECKING:
@@ -36,7 +28,7 @@ class CassandraLoader(BaseLoader):
session: Optional["Session"] = None,
keyspace: Optional[str] = None,
query: Optional[Union[str, "Statement"]] = None,
page_content_mapper: Callable[[Any], str] = default_page_content_mapper,
page_content_mapper: Callable[[Any], str] = str,
metadata_mapper: Callable[[Any], dict] = lambda _: {},
*,
query_parameters: Union[dict, Sequence] = None,
@@ -61,6 +53,7 @@ class CassandraLoader(BaseLoader):
query: The query used to load the data.
(do not use together with the table parameter)
page_content_mapper: a function to convert a row to string page content.
Defaults to the str representation of the row.
query_parameters: The query parameters used when calling session.execute .
query_timeout: The query timeout used when calling session.execute .
query_custom_payload: The query custom_payload used when calling

View File

@@ -132,6 +132,7 @@ class WebBaseLoader(BaseLoader):
url,
headers=self.session.headers,
ssl=None if self.session.verify else False,
cookies=self.session.cookies.get_dict(),
) as response:
return await response.text()
except aiohttp.ClientConnectionError as e:

View File

@@ -2,6 +2,7 @@
from __future__ import annotations
import logging
from enum import Enum
from pathlib import Path
from typing import Any, Dict, List, Optional, Sequence, Union
from urllib.parse import parse_qs, urlparse
@@ -139,6 +140,11 @@ def _parse_video_id(url: str) -> Optional[str]:
return video_id
class TranscriptFormat(Enum):
TEXT = "text"
LINES = "lines"
class YoutubeLoader(BaseLoader):
"""Load `YouTube` transcripts."""
@@ -148,6 +154,7 @@ class YoutubeLoader(BaseLoader):
add_video_info: bool = False,
language: Union[str, Sequence[str]] = "en",
translation: Optional[str] = None,
transcript_format: TranscriptFormat = TranscriptFormat.TEXT,
continue_on_failure: bool = False,
):
"""Initialize with YouTube video ID."""
@@ -159,6 +166,7 @@ class YoutubeLoader(BaseLoader):
else:
self.language = language
self.translation = translation
self.transcript_format = transcript_format
self.continue_on_failure = continue_on_failure
@staticmethod
@@ -214,9 +222,19 @@ class YoutubeLoader(BaseLoader):
transcript_pieces = transcript.fetch()
transcript = " ".join([t["text"].strip(" ") for t in transcript_pieces])
return [Document(page_content=transcript, metadata=metadata)]
if self.transcript_format == TranscriptFormat.TEXT:
transcript = " ".join([t["text"].strip(" ") for t in transcript_pieces])
return [Document(page_content=transcript, metadata=metadata)]
elif self.transcript_format == TranscriptFormat.LINES:
return [
Document(
page_content=t["text"].strip(" "),
metadata=dict((key, t[key]) for key in t if key != "text"),
)
for t in transcript_pieces
]
else:
raise ValueError("Unknown transcript format.")
def _get_video_info(self) -> dict:
"""Get important video information.

View File

@@ -20,6 +20,7 @@ from langchain_community.embeddings.aleph_alpha import (
)
from langchain_community.embeddings.awa import AwaEmbeddings
from langchain_community.embeddings.azure_openai import AzureOpenAIEmbeddings
from langchain_community.embeddings.baichuan import BaichuanTextEmbeddings
from langchain_community.embeddings.baidu_qianfan_endpoint import (
QianfanEmbeddingsEndpoint,
)
@@ -65,6 +66,7 @@ from langchain_community.embeddings.mlflow_gateway import MlflowAIGatewayEmbeddi
from langchain_community.embeddings.modelscope_hub import ModelScopeEmbeddings
from langchain_community.embeddings.mosaicml import MosaicMLInstructorEmbeddings
from langchain_community.embeddings.nlpcloud import NLPCloudEmbeddings
from langchain_community.embeddings.oci_generative_ai import OCIGenAIEmbeddings
from langchain_community.embeddings.octoai_embeddings import OctoAIEmbeddings
from langchain_community.embeddings.ollama import OllamaEmbeddings
from langchain_community.embeddings.openai import OpenAIEmbeddings
@@ -91,6 +93,7 @@ logger = logging.getLogger(__name__)
__all__ = [
"OpenAIEmbeddings",
"AzureOpenAIEmbeddings",
"BaichuanTextEmbeddings",
"ClarifaiEmbeddings",
"CohereEmbeddings",
"DatabricksEmbeddings",
@@ -144,6 +147,7 @@ __all__ = [
"VoyageEmbeddings",
"BookendEmbeddings",
"VolcanoEmbeddings",
"OCIGenAIEmbeddings",
]

View File

@@ -0,0 +1,113 @@
from typing import Any, Dict, List, Optional
import requests
from langchain_core.embeddings import Embeddings
from langchain_core.pydantic_v1 import BaseModel, SecretStr, root_validator
from langchain_core.utils import convert_to_secret_str, get_from_dict_or_env
BAICHUAN_API_URL: str = "http://api.baichuan-ai.com/v1/embeddings"
# BaichuanTextEmbeddings is an embedding model provided by Baichuan Inc. (https://www.baichuan-ai.com/home).
# As of today (Jan 25th, 2024) BaichuanTextEmbeddings ranks #1 in C-MTEB
# (Chinese Multi-Task Embedding Benchmark) leaderboard.
# Leaderboard (Under Overall -> Chinese section): https://huggingface.co/spaces/mteb/leaderboard
# Official Website: https://platform.baichuan-ai.com/docs/text-Embedding
# An API-key is required to use this embedding model. You can get one by registering
# at https://platform.baichuan-ai.com/docs/text-Embedding.
# BaichuanTextEmbeddings support 512 token window and preduces vectors with
# 1024 dimensions.
# NOTE!! BaichuanTextEmbeddings only supports Chinese text embedding.
# Multi-language support is coming soon.
class BaichuanTextEmbeddings(BaseModel, Embeddings):
"""Baichuan Text Embedding models."""
session: Any #: :meta private:
model_name: str = "Baichuan-Text-Embedding"
baichuan_api_key: Optional[SecretStr] = None
@root_validator(allow_reuse=True)
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that auth token exists in environment."""
try:
baichuan_api_key = convert_to_secret_str(
get_from_dict_or_env(values, "baichuan_api_key", "BAICHUAN_API_KEY")
)
except ValueError as original_exc:
try:
baichuan_api_key = convert_to_secret_str(
get_from_dict_or_env(
values, "baichuan_auth_token", "BAICHUAN_AUTH_TOKEN"
)
)
except ValueError:
raise original_exc
session = requests.Session()
session.headers.update(
{
"Authorization": f"Bearer {baichuan_api_key.get_secret_value()}",
"Accept-Encoding": "identity",
"Content-type": "application/json",
}
)
values["session"] = session
return values
def _embed(self, texts: List[str]) -> Optional[List[List[float]]]:
"""Internal method to call Baichuan Embedding API and return embeddings.
Args:
texts: A list of texts to embed.
Returns:
A list of list of floats representing the embeddings, or None if an
error occurs.
"""
try:
response = self.session.post(
BAICHUAN_API_URL, json={"input": texts, "model": self.model_name}
)
# Check if the response status code indicates success
if response.status_code == 200:
resp = response.json()
embeddings = resp.get("data", [])
# Sort resulting embeddings by index
sorted_embeddings = sorted(embeddings, key=lambda e: e.get("index", 0))
# Return just the embeddings
return [result.get("embedding", []) for result in sorted_embeddings]
else:
# Log error or handle unsuccessful response appropriately
print(
f"""Error: Received status code {response.status_code} from
embedding API"""
)
return None
except Exception as e:
# Log the exception or handle it as needed
print(f"Exception occurred while trying to get embeddings: {str(e)}")
return None
def embed_documents(self, texts: List[str]) -> Optional[List[List[float]]]:
"""Public method to get embeddings for a list of documents.
Args:
texts: The list of texts to embed.
Returns:
A list of embeddings, one for each text, or None if an error occurs.
"""
return self._embed(texts)
def embed_query(self, text: str) -> Optional[List[float]]:
"""Public method to get embedding for a single query text.
Args:
text: The text to embed.
Returns:
Embeddings for the text, or None if an error occurs.
"""
result = self._embed([text])
return result[0] if result is not None else None

View File

@@ -0,0 +1,203 @@
from enum import Enum
from typing import Any, Dict, List, Mapping, Optional
from langchain_core.embeddings import Embeddings
from langchain_core.pydantic_v1 import BaseModel, Extra, root_validator
CUSTOM_ENDPOINT_PREFIX = "ocid1.generativeaiendpoint"
class OCIAuthType(Enum):
API_KEY = 1
SECURITY_TOKEN = 2
INSTANCE_PRINCIPAL = 3
RESOURCE_PRINCIPAL = 4
class OCIGenAIEmbeddings(BaseModel, Embeddings):
"""OCI embedding models.
To authenticate, the OCI client uses the methods described in
https://docs.oracle.com/en-us/iaas/Content/API/Concepts/sdk_authentication_methods.htm
The authentifcation method is passed through auth_type and should be one of:
API_KEY (default), SECURITY_TOKEN, INSTANCE_PRINCIPLE, RESOURCE_PRINCIPLE
Make sure you have the required policies (profile/roles) to
access the OCI Generative AI service. If a specific config profile is used,
you must pass the name of the profile (~/.oci/config) through auth_profile.
To use, you must provide the compartment id
along with the endpoint url, and model id
as named parameters to the constructor.
Example:
.. code-block:: python
from langchain.embeddings import OCIGenAIEmbeddings
embeddings = OCIGenAIEmbeddings(
model_id="MY_EMBEDDING_MODEL",
service_endpoint="https://inference.generativeai.us-chicago-1.oci.oraclecloud.com",
compartment_id="MY_OCID"
)
"""
client: Any #: :meta private:
service_models: Any #: :meta private:
auth_type: Optional[str] = "API_KEY"
"""Authentication type, could be
API_KEY,
SECURITY_TOKEN,
INSTANCE_PRINCIPLE,
RESOURCE_PRINCIPLE
If not specified, API_KEY will be used
"""
auth_profile: Optional[str] = "DEFAULT"
"""The name of the profile in ~/.oci/config
If not specified , DEFAULT will be used
"""
model_id: str = None
"""Id of the model to call, e.g., cohere.embed-english-light-v2.0"""
model_kwargs: Optional[Dict] = None
"""Keyword arguments to pass to the model"""
service_endpoint: str = None
"""service endpoint url"""
compartment_id: str = None
"""OCID of compartment"""
truncate: Optional[str] = "END"
"""Truncate embeddings that are too long from start or end ("NONE"|"START"|"END")"""
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
@root_validator()
def validate_environment(cls, values: Dict) -> Dict: # pylint: disable=no-self-argument
"""Validate that OCI config and python package exists in environment."""
# Skip creating new client if passed in constructor
if values["client"] is not None:
return values
try:
import oci
client_kwargs = {
"config": {},
"signer": None,
"service_endpoint": values["service_endpoint"],
"retry_strategy": oci.retry.DEFAULT_RETRY_STRATEGY,
"timeout": (10, 240), # default timeout config for OCI Gen AI service
}
if values["auth_type"] == OCIAuthType(1).name:
client_kwargs["config"] = oci.config.from_file(
profile_name=values["auth_profile"]
)
client_kwargs.pop("signer", None)
elif values["auth_type"] == OCIAuthType(2).name:
def make_security_token_signer(oci_config):
pk = oci.signer.load_private_key_from_file(
oci_config.get("key_file"), None
)
with open(
oci_config.get("security_token_file"), encoding="utf-8"
) as f:
st_string = f.read()
return oci.auth.signers.SecurityTokenSigner(st_string, pk)
client_kwargs["config"] = oci.config.from_file(
profile_name=values["auth_profile"]
)
client_kwargs["signer"] = make_security_token_signer(
oci_config=client_kwargs["config"]
)
elif values["auth_type"] == OCIAuthType(3).name:
client_kwargs[
"signer"
] = oci.auth.signers.InstancePrincipalsSecurityTokenSigner()
elif values["auth_type"] == OCIAuthType(4).name:
client_kwargs[
"signer"
] = oci.auth.signers.get_resource_principals_signer()
else:
raise ValueError("Please provide valid value to auth_type")
values["client"] = oci.generative_ai_inference.GenerativeAiInferenceClient(
**client_kwargs
)
except ImportError as ex:
raise ModuleNotFoundError(
"Could not import oci python package. "
"Please make sure you have the oci package installed."
) from ex
except Exception as e:
raise ValueError(
"Could not authenticate with OCI client. "
"Please check if ~/.oci/config exists. "
"If INSTANCE_PRINCIPLE or RESOURCE_PRINCIPLE is used, "
"Please check the specified "
"auth_profile and auth_type are valid."
) from e
return values
@property
def _identifying_params(self) -> Mapping[str, Any]:
"""Get the identifying parameters."""
_model_kwargs = self.model_kwargs or {}
return {
**{"model_kwargs": _model_kwargs},
}
def embed_documents(self, texts: List[str]) -> List[List[float]]:
"""Call out to OCIGenAI's embedding endpoint.
Args:
texts: The list of texts to embed.
Returns:
List of embeddings, one for each text.
"""
from oci.generative_ai_inference import models
if self.model_id.startswith(CUSTOM_ENDPOINT_PREFIX):
serving_mode = models.DedicatedServingMode(endpoint_id=self.model_id)
else:
serving_mode = models.OnDemandServingMode(model_id=self.model_id)
invocation_obj = models.EmbedTextDetails(
serving_mode=serving_mode,
compartment_id=self.compartment_id,
truncate=self.truncate,
inputs=texts,
)
response = self.client.embed_text(invocation_obj)
return response.data.embeddings
def embed_query(self, text: str) -> List[float]:
"""Call out to OCIGenAI's embedding endpoint.
Args:
text: The text to embed.
Returns:
Embeddings for the text.
"""
return self.embed_documents([text])[0]

View File

@@ -71,9 +71,9 @@ class SelfHostedHuggingFaceEmbeddings(SelfHostedEmbeddings):
from langchain_community.embeddings import SelfHostedHuggingFaceEmbeddings
import runhouse as rh
model_name = "sentence-transformers/all-mpnet-base-v2"
model_id = "sentence-transformers/all-mpnet-base-v2"
gpu = rh.cluster(name="rh-a10x", instance_type="A100:1")
hf = SelfHostedHuggingFaceEmbeddings(model_name=model_name, hardware=gpu)
hf = SelfHostedHuggingFaceEmbeddings(model_id=model_id, hardware=gpu)
"""
client: Any #: :meta private:

View File

@@ -2,6 +2,7 @@
from __future__ import annotations
import logging
import time
from typing import Any, Callable, Dict, List
from langchain_core.embeddings import Embeddings
@@ -59,6 +60,8 @@ class YandexGPTEmbeddings(BaseModel, Embeddings):
"""The url of the API."""
max_retries: int = 6
"""Maximum number of retries to make when generating."""
sleep_interval: float = 0.0
"""Delay between API requests"""
@root_validator()
def validate_environment(cls, values: Dict) -> Dict:
@@ -154,7 +157,8 @@ def _make_request(self: YandexGPTEmbeddings, texts: List[str]):
)
except ImportError as e:
raise ImportError(
"Please install YandexCloud SDK" " with `pip install yandexcloud`."
"Please install YandexCloud SDK with `pip install yandexcloud` \
or upgrade it to recent version."
) from e
result = []
channel_credentials = grpc.ssl_channel_credentials()
@@ -164,6 +168,7 @@ def _make_request(self: YandexGPTEmbeddings, texts: List[str]):
request = TextEmbeddingRequest(model_uri=self.model_uri, text=text)
stub = EmbeddingsServiceStub(channel)
res = stub.TextEmbedding(request, metadata=self._grpc_metadata)
result.append(res.embedding)
result.append(list(res.embedding))
time.sleep(self.sleep_interval)
return result

View File

@@ -346,6 +346,12 @@ def _import_oci_md_vllm() -> Any:
return OCIModelDeploymentVLLM
def _import_oci_gen_ai() -> Any:
from langchain_community.llms.oci_generative_ai import OCIGenAI
return OCIGenAI
def _import_octoai_endpoint() -> Any:
from langchain_community.llms.octoai_endpoint import OctoAIEndpoint
@@ -667,6 +673,8 @@ def __getattr__(name: str) -> Any:
return _import_oci_md_tgi()
elif name == "OCIModelDeploymentVLLM":
return _import_oci_md_vllm()
elif name == "OCIGenAI":
return _import_oci_gen_ai()
elif name == "OctoAIEndpoint":
return _import_octoai_endpoint()
elif name == "Ollama":
@@ -801,6 +809,7 @@ __all__ = [
"NLPCloud",
"OCIModelDeploymentTGI",
"OCIModelDeploymentVLLM",
"OCIGenAI",
"Ollama",
"OpenAI",
"OpenAIChat",
@@ -891,6 +900,7 @@ def get_type_to_cls_dict() -> Dict[str, Callable[[], Type[BaseLLM]]]:
"nlpcloud": _import_nlpcloud,
"oci_model_deployment_tgi_endpoint": _import_oci_md_tgi,
"oci_model_deployment_vllm_endpoint": _import_oci_md_vllm,
"oci_generative_ai": _import_oci_gen_ai,
"ollama": _import_ollama,
"openai": _import_openai,
"openlm": _import_openlm,

View File

@@ -34,6 +34,8 @@ from langchain_community.utilities.anthropic import (
if TYPE_CHECKING:
from botocore.config import Config
AMAZON_BEDROCK_TRACE_KEY = "amazon-bedrock-trace"
GUARDRAILS_BODY_KEY = "amazon-bedrock-guardrailAssessment"
HUMAN_PROMPT = "\n\nHuman:"
ASSISTANT_PROMPT = "\n\nAssistant:"
ALTERNATION_ERROR = (
@@ -117,21 +119,26 @@ class LLMInputOutputAdapter:
return input_body
@classmethod
def prepare_output(cls, provider: str, response: Any) -> str:
def prepare_output(cls, provider: str, response: Any) -> dict:
if provider == "anthropic":
response_body = json.loads(response.get("body").read().decode())
return response_body.get("completion")
text = response_body.get("completion")
else:
response_body = json.loads(response.get("body").read())
if provider == "ai21":
return response_body.get("completions")[0].get("data").get("text")
elif provider == "cohere":
return response_body.get("generations")[0].get("text")
elif provider == "meta":
return response_body.get("generation")
else:
return response_body.get("results")[0].get("outputText")
if provider == "ai21":
text = response_body.get("completions")[0].get("data").get("text")
elif provider == "cohere":
text = response_body.get("generations")[0].get("text")
elif provider == "meta":
text = response_body.get("generation")
else:
text = response_body.get("results")[0].get("outputText")
return {
"text": text,
"body": response_body,
}
@classmethod
def prepare_output_stream(
@@ -160,8 +167,15 @@ class LLMInputOutputAdapter:
chunk_obj["is_finished"] or chunk_obj[output_key] == "<EOS_TOKEN>"
):
return
yield GenerationChunk(text=chunk_obj[output_key])
# chunk obj format varies with provider
yield GenerationChunk(
text=chunk_obj[output_key],
generation_info={
GUARDRAILS_BODY_KEY: chunk_obj.get(GUARDRAILS_BODY_KEY)
if GUARDRAILS_BODY_KEY in chunk_obj
else None,
},
)
@classmethod
async def aprepare_output_stream(
@@ -235,6 +249,53 @@ class BedrockBase(BaseModel, ABC):
"cohere": "stop_sequences",
}
guardrails: Optional[Mapping[str, Any]] = {
"id": None,
"version": None,
"trace": False,
}
"""
An optional dictionary to configure guardrails for Bedrock.
This field 'guardrails' consists of two keys: 'id' and 'version',
which should be strings, but are initialized to None. It's used to
determine if specific guardrails are enabled and properly set.
Type:
Optional[Mapping[str, str]]: A mapping with 'id' and 'version' keys.
Example:
llm = Bedrock(model_id="<model_id>", client=<bedrock_client>,
model_kwargs={},
guardrails={
"id": "<guardrail_id>",
"version": "<guardrail_version>"})
To enable tracing for guardrails, set the 'trace' key to True and pass a callback handler to the
'run_manager' parameter of the 'generate', '_call' methods.
Example:
llm = Bedrock(model_id="<model_id>", client=<bedrock_client>,
model_kwargs={},
guardrails={
"id": "<guardrail_id>",
"version": "<guardrail_version>",
"trace": True},
callbacks=[BedrockAsyncCallbackHandler()])
[https://python.langchain.com/docs/modules/callbacks/] for more information on callback handlers.
class BedrockAsyncCallbackHandler(AsyncCallbackHandler):
async def on_llm_error(
self,
error: BaseException,
**kwargs: Any,
) -> Any:
reason = kwargs.get("reason")
if reason == "GUARDRAIL_INTERVENED":
...Logic to handle guardrail intervention...
""" # noqa: E501
@root_validator()
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that AWS credentials to and python package exists in environment."""
@@ -298,6 +359,47 @@ class BedrockBase(BaseModel, ABC):
def _model_is_anthropic(self) -> bool:
return self._get_provider() == "anthropic"
@property
def _guardrails_enabled(self) -> bool:
"""
Determines if guardrails are enabled and correctly configured.
Checks if 'guardrails' is a dictionary with non-empty 'id' and 'version' keys.
Checks if 'guardrails.trace' is true.
Returns:
bool: True if guardrails are correctly configured, False otherwise.
Raises:
TypeError: If 'guardrails' lacks 'id' or 'version' keys.
"""
try:
return (
isinstance(self.guardrails, dict)
and bool(self.guardrails["id"])
and bool(self.guardrails["version"])
)
except KeyError as e:
raise TypeError(
"Guardrails must be a dictionary with 'id' and 'version' keys."
) from e
def _get_guardrails_canonical(self) -> Dict[str, Any]:
"""
The canonical way to pass in guardrails to the bedrock service
adheres to the following format:
"amazon-bedrock-guardrailDetails": {
"guardrailId": "string",
"guardrailVersion": "string"
}
"""
return {
"amazon-bedrock-guardrailDetails": {
"guardrailId": self.guardrails.get("id"),
"guardrailVersion": self.guardrails.get("version"),
}
}
def _prepare_input_and_invoke(
self,
prompt: str,
@@ -309,29 +411,81 @@ class BedrockBase(BaseModel, ABC):
provider = self._get_provider()
params = {**_model_kwargs, **kwargs}
if self._guardrails_enabled:
params.update(self._get_guardrails_canonical())
input_body = LLMInputOutputAdapter.prepare_input(provider, prompt, params)
body = json.dumps(input_body)
accept = "application/json"
contentType = "application/json"
request_options = {
"body": body,
"modelId": self.model_id,
"accept": accept,
"contentType": contentType,
}
if self._guardrails_enabled:
request_options["guardrail"] = "ENABLED"
if self.guardrails.get("trace"):
request_options["trace"] = "ENABLED"
try:
response = self.client.invoke_model(
body=body,
modelId=self.model_id,
accept=accept,
contentType=contentType,
)
text = LLMInputOutputAdapter.prepare_output(provider, response)
response = self.client.invoke_model(**request_options)
text, body = LLMInputOutputAdapter.prepare_output(
provider, response
).values()
except Exception as e:
raise ValueError(f"Error raised by bedrock service: {e}").with_traceback(
e.__traceback__
)
raise ValueError(f"Error raised by bedrock service: {e}")
if stop is not None:
text = enforce_stop_tokens(text, stop)
# Verify and raise a callback error if any intervention occurs or a signal is
# sent from a Bedrock service,
# such as when guardrails are triggered.
services_trace = self._get_bedrock_services_signal(body)
if services_trace.get("signal") and run_manager is not None:
run_manager.on_llm_error(
Exception(
f"Error raised by bedrock service: {services_trace.get('reason')}"
),
**services_trace,
)
return text
def _get_bedrock_services_signal(self, body: dict) -> dict:
"""
This function checks the response body for an interrupt flag or message that indicates
whether any of the Bedrock services have intervened in the processing flow. It is
primarily used to identify modifications or interruptions imposed by these services
during the request-response cycle with a Large Language Model (LLM).
""" # noqa: E501
if (
self._guardrails_enabled
and self.guardrails.get("trace")
and self._is_guardrails_intervention(body)
):
return {
"signal": True,
"reason": "GUARDRAIL_INTERVENED",
"trace": body.get(AMAZON_BEDROCK_TRACE_KEY),
}
return {
"signal": False,
"reason": None,
"trace": None,
}
def _is_guardrails_intervention(self, body: dict) -> bool:
return body.get(GUARDRAILS_BODY_KEY) == "GUARDRAIL_INTERVENED"
def _prepare_input_and_invoke_stream(
self,
prompt: str,
@@ -356,16 +510,28 @@ class BedrockBase(BaseModel, ABC):
_model_kwargs["stream"] = True
params = {**_model_kwargs, **kwargs}
if self._guardrails_enabled:
params.update(self._get_guardrails_canonical())
input_body = LLMInputOutputAdapter.prepare_input(provider, prompt, params)
body = json.dumps(input_body)
request_options = {
"body": body,
"modelId": self.model_id,
"accept": "application/json",
"contentType": "application/json",
}
if self._guardrails_enabled:
request_options["guardrail"] = "ENABLED"
if self.guardrails.get("trace"):
request_options["trace"] = "ENABLED"
try:
response = self.client.invoke_model_with_response_stream(
body=body,
modelId=self.model_id,
accept="application/json",
contentType="application/json",
)
response = self.client.invoke_model_with_response_stream(**request_options)
except Exception as e:
raise ValueError(f"Error raised by bedrock service: {e}")
@@ -373,6 +539,9 @@ class BedrockBase(BaseModel, ABC):
provider, response, stop
):
yield chunk
# verify and raise callback error if any middleware intervened
self._get_bedrock_services_signal(chunk.generation_info)
if run_manager is not None:
run_manager.on_llm_new_token(chunk.text, chunk=chunk)
@@ -536,7 +705,9 @@ class Bedrock(LLM, BedrockBase):
completion += chunk.text
return completion
return self._prepare_input_and_invoke(prompt=prompt, stop=stop, **kwargs)
return self._prepare_input_and_invoke(
prompt=prompt, stop=stop, run_manager=run_manager, **kwargs
)
async def _astream(
self,

View File

@@ -0,0 +1,276 @@
from __future__ import annotations
from abc import ABC
from enum import Enum
from typing import Any, Dict, List, Mapping, Optional
from langchain_core.callbacks import CallbackManagerForLLMRun
from langchain_core.language_models.llms import LLM
from langchain_core.pydantic_v1 import BaseModel, Extra, root_validator
from langchain_community.llms.utils import enforce_stop_tokens
CUSTOM_ENDPOINT_PREFIX = "ocid1.generativeaiendpoint"
VALID_PROVIDERS = ("cohere", "meta")
class OCIAuthType(Enum):
API_KEY = 1
SECURITY_TOKEN = 2
INSTANCE_PRINCIPAL = 3
RESOURCE_PRINCIPAL = 4
class OCIGenAIBase(BaseModel, ABC):
"""Base class for OCI GenAI models"""
client: Any #: :meta private:
auth_type: Optional[str] = "API_KEY"
"""Authentication type, could be
API_KEY,
SECURITY_TOKEN,
INSTANCE_PRINCIPLE,
RESOURCE_PRINCIPLE
If not specified, API_KEY will be used
"""
auth_profile: Optional[str] = "DEFAULT"
"""The name of the profile in ~/.oci/config
If not specified , DEFAULT will be used
"""
model_id: str = None
"""Id of the model to call, e.g., cohere.command"""
provider: str = None
"""Provider name of the model. Default to None,
will try to be derived from the model_id
otherwise, requires user input
"""
model_kwargs: Optional[Dict] = None
"""Keyword arguments to pass to the model"""
service_endpoint: str = None
"""service endpoint url"""
compartment_id: str = None
"""OCID of compartment"""
is_stream: bool = False
"""Whether to stream back partial progress"""
llm_stop_sequence_mapping: Mapping[str, str] = {
"cohere": "stop_sequences",
"meta": "stop",
}
@root_validator()
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that OCI config and python package exists in environment."""
# Skip creating new client if passed in constructor
if values["client"] is not None:
return values
try:
import oci
client_kwargs = {
"config": {},
"signer": None,
"service_endpoint": values["service_endpoint"],
"retry_strategy": oci.retry.DEFAULT_RETRY_STRATEGY,
"timeout": (10, 240), # default timeout config for OCI Gen AI service
}
if values["auth_type"] == OCIAuthType(1).name:
client_kwargs["config"] = oci.config.from_file(
profile_name=values["auth_profile"]
)
client_kwargs.pop("signer", None)
elif values["auth_type"] == OCIAuthType(2).name:
def make_security_token_signer(oci_config):
pk = oci.signer.load_private_key_from_file(
oci_config.get("key_file"), None
)
with open(
oci_config.get("security_token_file"), encoding="utf-8"
) as f:
st_string = f.read()
return oci.auth.signers.SecurityTokenSigner(st_string, pk)
client_kwargs["config"] = oci.config.from_file(
profile_name=values["auth_profile"]
)
client_kwargs["signer"] = make_security_token_signer(
oci_config=client_kwargs["config"]
)
elif values["auth_type"] == OCIAuthType(3).name:
client_kwargs[
"signer"
] = oci.auth.signers.InstancePrincipalsSecurityTokenSigner()
elif values["auth_type"] == OCIAuthType(4).name:
client_kwargs[
"signer"
] = oci.auth.signers.get_resource_principals_signer()
else:
raise ValueError("Please provide valid value to auth_type")
values["client"] = oci.generative_ai_inference.GenerativeAiInferenceClient(
**client_kwargs
)
except ImportError as ex:
raise ModuleNotFoundError(
"Could not import oci python package. "
"Please make sure you have the oci package installed."
) from ex
except Exception as e:
raise ValueError(
"Could not authenticate with OCI client. "
"Please check if ~/.oci/config exists. "
"If INSTANCE_PRINCIPLE or RESOURCE_PRINCIPLE is used, "
"Please check the specified "
"auth_profile and auth_type are valid."
) from e
return values
@property
def _identifying_params(self) -> Mapping[str, Any]:
"""Get the identifying parameters."""
_model_kwargs = self.model_kwargs or {}
return {
**{"model_kwargs": _model_kwargs},
}
def _get_provider(self) -> str:
if self.provider is not None:
provider = self.provider
else:
provider = self.model_id.split(".")[0].lower()
if provider not in VALID_PROVIDERS:
raise ValueError(
f"Invalid provider derived from model_id: {self.model_id} "
"Please explicitly pass in the supported provider "
"when using custom endpoint"
)
return provider
class OCIGenAI(LLM, OCIGenAIBase):
"""OCI large language models.
To authenticate, the OCI client uses the methods described in
https://docs.oracle.com/en-us/iaas/Content/API/Concepts/sdk_authentication_methods.htm
The authentifcation method is passed through auth_type and should be one of:
API_KEY (default), SECURITY_TOKEN, INSTANCE_PRINCIPLE, RESOURCE_PRINCIPLE
Make sure you have the required policies (profile/roles) to
access the OCI Generative AI service.
If a specific config profile is used, you must pass
the name of the profile (from ~/.oci/config) through auth_profile.
To use, you must provide the compartment id
along with the endpoint url, and model id
as named parameters to the constructor.
Example:
.. code-block:: python
from langchain_community.llms import OCIGenAI
llm = OCIGenAI(
model_id="MY_MODEL_ID",
service_endpoint="https://inference.generativeai.us-chicago-1.oci.oraclecloud.com",
compartment_id="MY_OCID"
)
"""
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
@property
def _llm_type(self) -> str:
"""Return type of llm."""
return "oci"
def _prepare_invocation_object(
self, prompt: str, stop: Optional[List[str]], kwargs: Dict[str, Any]
) -> Dict[str, Any]:
from oci.generative_ai_inference import models
oci_llm_request_mapping = {
"cohere": models.CohereLlmInferenceRequest,
"meta": models.LlamaLlmInferenceRequest,
}
provider = self._get_provider()
_model_kwargs = self.model_kwargs or {}
if stop is not None:
_model_kwargs[self.llm_stop_sequence_mapping[provider]] = stop
if self.model_id.startswith(CUSTOM_ENDPOINT_PREFIX):
serving_mode = models.DedicatedServingMode(endpoint_id=self.model_id)
else:
serving_mode = models.OnDemandServingMode(model_id=self.model_id)
inference_params = {**_model_kwargs, **kwargs}
inference_params["prompt"] = prompt
inference_params["is_stream"] = self.is_stream
invocation_obj = models.GenerateTextDetails(
compartment_id=self.compartment_id,
serving_mode=serving_mode,
inference_request=oci_llm_request_mapping[provider](**inference_params),
)
return invocation_obj
def _process_response(self, response: Any, stop: Optional[List[str]]) -> str:
provider = self._get_provider()
if provider == "cohere":
text = response.data.inference_response.generated_texts[0].text
elif provider == "meta":
text = response.data.inference_response.choices[0].text
else:
raise ValueError(f"Invalid provider: {provider}")
if stop is not None:
text = enforce_stop_tokens(text, stop)
return text
def _call(
self,
prompt: str,
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> str:
"""Call out to OCIGenAI generate endpoint.
Args:
prompt: The prompt to pass into the model.
stop: Optional list of stop words to use when generating.
Returns:
The string generated by the model.
Example:
.. code-block:: python
response = llm.invoke("Tell me a joke.")
"""
invocation_obj = self._prepare_invocation_object(prompt, stop, kwargs)
response = self.client.generate_text(invocation_obj)
return self._process_response(response, stop)

View File

@@ -64,6 +64,10 @@ class _OllamaCommon(BaseLanguageModel):
It is recommended to set this value to the number of physical
CPU cores your system has (as opposed to the logical number of cores)."""
num_predict: Optional[int] = None
"""Maximum number of tokens to predict when generating text.
(Default: 128, -1 = infinite generation, -2 = fill context)"""
repeat_last_n: Optional[int] = None
"""Sets how far back for the model to look back to prevent
repetition. (Default: 64, 0 = disabled, -1 = num_ctx)"""
@@ -126,6 +130,7 @@ class _OllamaCommon(BaseLanguageModel):
"num_ctx": self.num_ctx,
"num_gpu": self.num_gpu,
"num_thread": self.num_thread,
"num_predict": self.num_predict,
"repeat_last_n": self.repeat_last_n,
"repeat_penalty": self.repeat_penalty,
"temperature": self.temperature,
@@ -279,7 +284,10 @@ class _OllamaCommon(BaseLanguageModel):
async with aiohttp.ClientSession() as session:
async with session.post(
url=api_url,
headers={"Content-Type": "application/json"},
headers={
"Content-Type": "application/json",
**(self.headers if isinstance(self.headers, dict) else {}),
},
json=request_payload,
timeout=self.timeout,
) as response:

View File

@@ -770,6 +770,7 @@ class AzureOpenAI(BaseOpenAI):
.. code-block:: python
from langchain_community.llms import AzureOpenAI
openai = AzureOpenAI(model_name="gpt-3.5-turbo-instruct")
"""

View File

@@ -52,6 +52,8 @@ class _BaseYandexGPT(Serializable):
"""The url of the API."""
max_retries: int = 6
"""Maximum number of retries to make when generating."""
sleep_interval: float = 1.0
"""Delay between API requests"""
@property
def _llm_type(self) -> str:
@@ -195,7 +197,8 @@ def _make_request(
)
except ImportError as e:
raise ImportError(
"Please install YandexCloud SDK" " with `pip install yandexcloud`."
"Please install YandexCloud SDK with `pip install yandexcloud` \
or upgrade it to recent version."
) from e
channel_credentials = grpc.ssl_channel_credentials()
channel = grpc.secure_channel(self.url, channel_credentials)
@@ -235,7 +238,8 @@ async def _amake_request(self: YandexGPT, prompt: str) -> str:
)
except ImportError as e:
raise ImportError(
"Please install YandexCloud SDK" " with `pip install yandexcloud`."
"Please install YandexCloud SDK with `pip install yandexcloud` \
or upgrade it to recent version."
) from e
operation_api_url = "operation.api.cloud.yandex.net:443"
channel_credentials = grpc.ssl_channel_credentials()
@@ -269,7 +273,7 @@ async def _amake_request(self: YandexGPT, prompt: str) -> str:
def _create_retry_decorator(llm: YandexGPT) -> Callable[[Any], Any]:
from grpc import RpcError
min_seconds = 1
min_seconds = llm.sleep_interval
max_seconds = 60
return retry(
reraise=True,

View File

@@ -1,38 +1,6 @@
from langchain_core.tools import BaseTool
from langchain_community.utils.openai_functions import (
FunctionDescription,
ToolDescription,
convert_pydantic_to_openai_function,
from langchain_core.utils.function_calling import (
format_tool_to_openai_function,
format_tool_to_openai_tool,
)
def format_tool_to_openai_function(tool: BaseTool) -> FunctionDescription:
"""Format tool into the OpenAI function API."""
if tool.args_schema:
return convert_pydantic_to_openai_function(
tool.args_schema, name=tool.name, description=tool.description
)
else:
return {
"name": tool.name,
"description": tool.description,
"parameters": {
# This is a hack to get around the fact that some tools
# do not expose an args_schema, and expect an argument
# which is a string.
# And Open AI does not support an array type for the
# parameters.
"properties": {
"__arg1": {"title": "__arg1", "type": "string"},
},
"required": ["__arg1"],
"type": "object",
},
}
def format_tool_to_openai_tool(tool: BaseTool) -> ToolDescription:
"""Format tool into the OpenAI function API."""
function = format_tool_to_openai_function(tool)
return {"type": "function", "function": function}
__all__ = ["format_tool_to_openai_function", "format_tool_to_openai_tool"]

View File

@@ -44,7 +44,7 @@ class DataForSeoAPISearchResults(BaseTool):
"""Tool that queries the DataForSeo Google Search API
and get back json."""
name: str = "DataForSeo-Results-JSON"
name: str = "dataforseo_results_json"
description: str = (
"A comprehensive Google Search API provided by DataForSeo."
"This tool is useful for obtaining real-time data on current events "

View File

@@ -42,7 +42,7 @@ class DuckDuckGoSearchRun(BaseTool):
class DuckDuckGoSearchResults(BaseTool):
"""Tool that queries the DuckDuckGo search API and gets back json."""
name: str = "DuckDuckGo Results JSON"
name: str = "duckduckgo_results_json"
description: str = (
"A wrapper around Duck Duck Go Search. "
"Useful for when you need to answer questions about current events. "

View File

@@ -11,7 +11,7 @@ from langchain_community.utilities.golden_query import GoldenQueryAPIWrapper
class GoldenQueryRun(BaseTool):
"""Tool that adds the capability to query using the Golden API and get back JSON."""
name: str = "Golden-Query"
name: str = "golden_query"
description: str = (
"A wrapper around Golden Query API."
" Useful for getting entities that match"

View File

@@ -11,7 +11,7 @@ from langchain_community.utilities.google_lens import GoogleLensAPIWrapper
class GoogleLensQueryRun(BaseTool):
"""Tool that queries the Google Lens API."""
name: str = "google_Lens"
name: str = "google_lens"
description: str = (
"A wrapper around Google Lens Search. "
"Useful for when you need to get information related"

View File

@@ -31,7 +31,7 @@ class GoogleSearchRun(BaseTool):
class GoogleSearchResults(BaseTool):
"""Tool that queries the Google Search API and gets back json."""
name: str = "Google Search Results JSON"
name: str = "google_search_results_json"
description: str = (
"A wrapper around Google Search. "
"Useful for when you need to answer questions about current events. "

View File

@@ -35,7 +35,7 @@ class TrainableLLM(Protocol):
class Memorize(BaseTool):
"""Tool that trains a language model."""
name: str = "Memorize"
name: str = "memorize"
description: str = (
"Useful whenever you observed novel information "
"from previous conversation history, "

View File

@@ -11,7 +11,7 @@ from langchain_community.utilities.merriam_webster import MerriamWebsterAPIWrapp
class MerriamWebsterQueryRun(BaseTool):
"""Tool that searches the Merriam-Webster API."""
name: str = "MerriamWebster"
name: str = "merriam_webster"
description: str = (
"A wrapper around Merriam-Webster. "
"Useful for when you need to get the definition of a word."

View File

@@ -2,6 +2,7 @@
from typing import Dict, List, Optional, Union
from langchain_core._api.deprecation import deprecated
from langchain_core.callbacks import (
AsyncCallbackManagerForToolRun,
CallbackManagerForToolRun,
@@ -11,6 +12,11 @@ from langchain_core.tools import BaseTool
from langchain_community.utilities.metaphor_search import MetaphorSearchAPIWrapper
@deprecated(
since="0.0.15",
removal="0.2.0",
alternative="langchain_exa.ExaSearchResults",
)
class MetaphorSearchResults(BaseTool):
"""Tool that queries the Metaphor Search API and gets back json."""

View File

@@ -16,7 +16,7 @@ class OpenWeatherMapQueryRun(BaseTool):
default_factory=OpenWeatherMapAPIWrapper
)
name: str = "OpenWeatherMap"
name: str = "open_weather_map"
description: str = (
"A wrapper around OpenWeatherMap API. "
"Useful for fetching current weather information for a specified location. "

View File

@@ -10,7 +10,7 @@ from langchain_community.utilities.pubmed import PubMedAPIWrapper
class PubmedQueryRun(BaseTool):
"""Tool that searches the PubMed API."""
name: str = "PubMed"
name: str = "pub_med"
description: str = (
"A wrapper around PubMed. "
"Useful for when you need to answer questions about medicine, health, "

View File

@@ -1,44 +1,6 @@
"""Different methods for rendering Tools to be passed to LLMs.
Depending on the LLM you are using and the prompting strategy you are using,
you may want Tools to be rendered in a different way.
This module contains various ways to render tools.
"""
from langchain_core.tools import BaseTool
from langchain_community.utils.openai_functions import (
FunctionDescription,
ToolDescription,
convert_pydantic_to_openai_function,
from langchain_core.utils.function_calling import (
format_tool_to_openai_function,
format_tool_to_openai_tool,
)
def format_tool_to_openai_function(tool: BaseTool) -> FunctionDescription:
"""Format tool into the OpenAI function API."""
if tool.args_schema:
return convert_pydantic_to_openai_function(
tool.args_schema, name=tool.name, description=tool.description
)
else:
return {
"name": tool.name,
"description": tool.description,
"parameters": {
# This is a hack to get around the fact that some tools
# do not expose an args_schema, and expect an argument
# which is a string.
# And Open AI does not support an array type for the
# parameters.
"properties": {
"__arg1": {"title": "__arg1", "type": "string"},
},
"required": ["__arg1"],
"type": "object",
},
}
def format_tool_to_openai_tool(tool: BaseTool) -> ToolDescription:
"""Format tool into the OpenAI function API."""
function = format_tool_to_openai_function(tool)
return {"type": "function", "function": function}
__all__ = ["format_tool_to_openai_function", "format_tool_to_openai_tool"]

View File

@@ -43,7 +43,7 @@ class SearxSearchRun(BaseTool):
class SearxSearchResults(BaseTool):
"""Tool that queries a Searx instance and gets back json."""
name: str = "Searx-Search-Results"
name: str = "searx_search_results"
description: str = (
"A meta search engine."
"Useful for when you need to answer questions about current events."

View File

@@ -11,7 +11,7 @@ from langchain_community.utilities.stackexchange import StackExchangeAPIWrapper
class StackExchangeTool(BaseTool):
"""Tool that uses StackExchange"""
name: str = "StackExchange"
name: str = "stack_exchange"
description: str = (
"A wrapper around StackExchange. "
"Useful for when you need to answer specific programming questions"

View File

@@ -12,7 +12,7 @@ class SteamWebAPIQueryRun(BaseTool):
"""Tool that searches the Steam Web API."""
mode: str
name: str = "Steam"
name: str = "steam"
description: str = (
"A wrapper around Steam Web API."
"Steam Tool is useful for fetching User profiles and stats, Game data and more!"

View File

@@ -49,7 +49,7 @@ class SteamshipImageGenerationTool(BaseTool):
steamship: Steamship
return_urls: Optional[bool] = False
name: str = "GenerateImage"
name: str = "generate_image"
description: str = (
"Useful for when you need to generate an image."
"Input: A detailed text-2-image prompt describing an image"

View File

@@ -11,7 +11,7 @@ from langchain_community.utilities.wikipedia import WikipediaAPIWrapper
class WikipediaQueryRun(BaseTool):
"""Tool that searches the Wikipedia API."""
name: str = "Wikipedia"
name: str = "wikipedia"
description: str = (
"A wrapper around Wikipedia. "
"Useful for when you need to answer general questions about "

View File

@@ -204,6 +204,12 @@ def _import_faiss() -> Any:
return FAISS
def _import_hanavector() -> Any:
from langchain_community.vectorstores.hanavector import HanaDB
return HanaDB
def _import_hologres() -> Any:
from langchain_community.vectorstores.hologres import Hologres
@@ -527,6 +533,8 @@ def __getattr__(name: str) -> Any:
return _import_epsilla()
elif name == "FAISS":
return _import_faiss()
elif name == "HanaDB":
return _import_hanavector()
elif name == "Hologres":
return _import_hologres()
elif name == "KDBAI":
@@ -645,6 +653,7 @@ __all__ = [
"ElasticsearchStore",
"Epsilla",
"FAISS",
"HanaDB",
"Hologres",
"KDBAI",
"LanceDB",

View File

@@ -109,6 +109,12 @@ class Bagel(VectorStore):
import bagel # noqa: F401
except ImportError:
raise ImportError("Please install bagel `pip install betabageldb`.")
if self._embedding_function and query_embeddings is None and query_texts:
texts = list(query_texts)
query_embeddings = self._embedding_function.embed_documents(texts)
query_texts = None
return self._cluster.find(
query_texts=query_texts,
query_embeddings=query_embeddings,

View File

@@ -0,0 +1,575 @@
"""SAP HANA Cloud Vector Engine"""
from __future__ import annotations
import importlib.util
import json
import re
from typing import (
TYPE_CHECKING,
Callable,
Iterable,
List,
Optional,
Tuple,
Type,
)
import numpy as np
from langchain_core.documents import Document
from langchain_core.embeddings import Embeddings
from langchain_core.runnables.config import run_in_executor
from langchain_core.vectorstores import VectorStore
from langchain_community.vectorstores.utils import (
DistanceStrategy,
maximal_marginal_relevance,
)
if TYPE_CHECKING:
from hdbcli import dbapi
HANA_DISTANCE_FUNCTION: dict = {
DistanceStrategy.COSINE: ("COSINE_SIMILARITY", "DESC"),
DistanceStrategy.EUCLIDEAN_DISTANCE: ("L2DISTANCE", "ASC"),
}
default_distance_strategy = DistanceStrategy.COSINE
default_table_name: str = "EMBEDDINGS"
default_content_column: str = "VEC_TEXT"
default_metadata_column: str = "VEC_META"
default_vector_column: str = "VEC_VECTOR"
default_vector_column_length: int = -1 # -1 means dynamic length
class HanaDB(VectorStore):
"""SAP HANA Cloud Vector Engine
The prerequisite for using this class is the installation of the ``hdbcli``
Python package.
The HanaDB vectorstore can be created by providing an embedding function and
an existing database connection. Optionally, the names of the table and the
columns to use.
"""
def __init__(
self,
connection: dbapi.Connection,
embedding: Embeddings,
distance_strategy: DistanceStrategy = default_distance_strategy,
table_name: str = default_table_name,
content_column: str = default_content_column,
metadata_column: str = default_metadata_column,
vector_column: str = default_vector_column,
vector_column_length: int = default_vector_column_length,
):
# Check if the hdbcli package is installed
if importlib.util.find_spec("hdbcli") is None:
raise ImportError(
"Could not import hdbcli python package. "
"Please install it with `pip install hdbcli`."
)
valid_distance = False
for key in HANA_DISTANCE_FUNCTION.keys():
if key is distance_strategy:
valid_distance = True
if not valid_distance:
raise ValueError(
"Unsupported distance_strategy: {}".format(distance_strategy)
)
self.connection = connection
self.embedding = embedding
self.distance_strategy = distance_strategy
self.table_name = HanaDB._sanitize_name(table_name)
self.content_column = HanaDB._sanitize_name(content_column)
self.metadata_column = HanaDB._sanitize_name(metadata_column)
self.vector_column = HanaDB._sanitize_name(vector_column)
self.vector_column_length = HanaDB._sanitize_int(vector_column_length)
# Check if the table exists, and eventually create it
if not self._table_exists(self.table_name):
sql_str = (
f"CREATE TABLE {self.table_name}("
f"{self.content_column} NCLOB, "
f"{self.metadata_column} NCLOB, "
f"{self.vector_column} REAL_VECTOR "
)
if self.vector_column_length == -1:
sql_str += ");"
else:
sql_str += f"({self.vector_column_length}));"
try:
cur = self.connection.cursor()
cur.execute(sql_str)
finally:
cur.close()
# Check if the needed columns exist and have the correct type
self._check_column(self.table_name, self.content_column, ["NCLOB", "NVARCHAR"])
self._check_column(self.table_name, self.metadata_column, ["NCLOB", "NVARCHAR"])
self._check_column(
self.table_name,
self.vector_column,
["REAL_VECTOR"],
self.vector_column_length,
)
def _table_exists(self, table_name) -> bool:
sql_str = (
"SELECT COUNT(*) FROM SYS.TABLES WHERE SCHEMA_NAME = CURRENT_SCHEMA"
" AND TABLE_NAME = ?"
)
try:
cur = self.connection.cursor()
cur.execute(sql_str, (table_name))
if cur.has_result_set():
rows = cur.fetchall()
if rows[0][0] == 1:
return True
finally:
cur.close()
return False
def _check_column(self, table_name, column_name, column_type, column_length=None):
sql_str = (
"SELECT DATA_TYPE_NAME, LENGTH FROM SYS.TABLE_COLUMNS WHERE "
"SCHEMA_NAME = CURRENT_SCHEMA "
"AND TABLE_NAME = ? AND COLUMN_NAME = ?"
)
try:
cur = self.connection.cursor()
cur.execute(sql_str, (table_name, column_name))
if cur.has_result_set():
rows = cur.fetchall()
if len(rows) == 0:
raise AttributeError(f"Column {column_name} does not exist")
# Check data type
if rows[0][0] not in column_type:
raise AttributeError(
f"Column {column_name} has the wrong type: {rows[0][0]}"
)
# Check length, if parameter was provided
if column_length is not None:
if rows[0][1] != column_length:
raise AttributeError(
f"Column {column_name} has the wrong length: {rows[0][1]}"
)
else:
raise AttributeError(f"Column {column_name} does not exist")
finally:
cur.close()
@property
def embeddings(self) -> Embeddings:
return self.embedding
def _sanitize_name(input_str: str) -> str:
# Remove characters that are not alphanumeric or underscores
return re.sub(r"[^a-zA-Z0-9_]", "", input_str)
def _sanitize_int(input_int: any) -> int:
value = int(str(input_int))
if value < -1:
raise ValueError(f"Value ({value}) must not be smaller than -1")
return int(str(input_int))
def _sanitize_list_float(embedding: List[float]) -> List[float]:
for value in embedding:
if not isinstance(value, float):
raise ValueError(f"Value ({value}) does not have type float")
return embedding
# Compile pattern only once, for better performance
_compiled_pattern = re.compile("^[_a-zA-Z][_a-zA-Z0-9]*$")
def _sanitize_metadata_keys(metadata: dict) -> dict:
for key in metadata.keys():
if not HanaDB._compiled_pattern.match(key):
raise ValueError(f"Invalid metadata key {key}")
return metadata
def add_texts(
self,
texts: Iterable[str],
metadatas: Optional[List[dict]] = None,
embeddings: Optional[List[List[float]]] = None,
) -> List[str]:
"""Add more texts to the vectorstore.
Args:
texts (Iterable[str]): Iterable of strings/text to add to the vectorstore.
metadatas (Optional[List[dict]], optional): Optional list of metadatas.
Defaults to None.
embeddings (Optional[List[List[float]]], optional): Optional pre-generated
embeddings. Defaults to None.
Returns:
List[str]: empty list
"""
# Create all embeddings of the texts beforehand to improve performance
if embeddings is None:
embeddings = self.embedding.embed_documents(list(texts))
cur = self.connection.cursor()
try:
# Insert data into the table
for i, text in enumerate(texts):
# Use provided values by default or fallback
metadata = metadatas[i] if metadatas else {}
embedding = (
embeddings[i]
if embeddings
else self.embedding.embed_documents([text])[0]
)
sql_str = (
f"INSERT INTO {self.table_name} ({self.content_column}, "
f"{self.metadata_column}, {self.vector_column}) "
f"VALUES (?, ?, TO_REAL_VECTOR (?));"
)
cur.execute(
sql_str,
(
text,
json.dumps(HanaDB._sanitize_metadata_keys(metadata)),
f"[{','.join(map(str, embedding))}]",
),
)
finally:
cur.close()
return []
@classmethod
def from_texts(
cls: Type[HanaDB],
texts: List[str],
embedding: Embeddings,
metadatas: Optional[List[dict]] = None,
connection: dbapi.Connection = None,
distance_strategy: DistanceStrategy = default_distance_strategy,
table_name: str = default_table_name,
content_column: str = default_content_column,
metadata_column: str = default_metadata_column,
vector_column: str = default_vector_column,
vector_column_length: int = default_vector_column_length,
):
"""Create a HanaDB instance from raw documents.
This is a user-friendly interface that:
1. Embeds documents.
2. Creates a table if it does not yet exist.
3. Adds the documents to the table.
This is intended to be a quick way to get started.
"""
instance = cls(
connection=connection,
embedding=embedding,
distance_strategy=distance_strategy,
table_name=table_name,
content_column=content_column,
metadata_column=metadata_column,
vector_column=vector_column,
vector_column_length=vector_column_length, # -1 means dynamic length
)
instance.add_texts(texts, metadatas)
return instance
def similarity_search(
self, query: str, k: int = 4, filter: Optional[dict] = None
) -> List[Document]:
"""Return docs most similar to query.
Args:
query: Text to look up documents similar to.
k: Number of Documents to return. Defaults to 4.
filter: A dictionary of metadata fields and values to filter by.
Defaults to None.
Returns:
List of Documents most similar to the query
"""
docs_and_scores = self.similarity_search_with_score(
query=query, k=k, filter=filter
)
return [doc for doc, _ in docs_and_scores]
def similarity_search_with_score(
self, query: str, k: int = 4, filter: Optional[dict] = None
) -> List[Tuple[Document, float]]:
"""Return documents and score values most similar to query.
Args:
query: Text to look up documents similar to.
k: Number of Documents to return. Defaults to 4.
filter: A dictionary of metadata fields and values to filter by.
Defaults to None.
Returns:
List of tuples (containing a Document and a score) that are
most similar to the query
"""
embedding = self.embedding.embed_query(query)
return self.similarity_search_with_score_by_vector(
embedding=embedding, k=k, filter=filter
)
def similarity_search_with_score_and_vector_by_vector(
self, embedding: List[float], k: int = 4, filter: Optional[dict] = None
) -> List[Tuple[Document, float, List[float]]]:
"""Return docs most similar to the given embedding.
Args:
query: Text to look up documents similar to.
k: Number of Documents to return. Defaults to 4.
filter: A dictionary of metadata fields and values to filter by.
Defaults to None.
Returns:
List of Documents most similar to the query and
score and the document's embedding vector for each
"""
result = []
k = HanaDB._sanitize_int(k)
embedding = HanaDB._sanitize_list_float(embedding)
distance_func_name = HANA_DISTANCE_FUNCTION[self.distance_strategy][0]
embedding_as_str = ",".join(map(str, embedding))
sql_str = (
f"SELECT TOP {k}"
f" {self.content_column}, " # row[0]
f" {self.metadata_column}, " # row[1]
f" TO_NVARCHAR({self.vector_column}), " # row[2]
f" {distance_func_name}({self.vector_column}, TO_REAL_VECTOR "
f" (ARRAY({embedding_as_str}))) AS CS " # row[3]
f"FROM {self.table_name}"
)
order_str = f" order by CS {HANA_DISTANCE_FUNCTION[self.distance_strategy][1]}"
where_str, query_tuple = self._create_where_by_filter(filter)
sql_str = sql_str + where_str
sql_str = sql_str + order_str
try:
cur = self.connection.cursor()
cur.execute(sql_str, query_tuple)
if cur.has_result_set():
rows = cur.fetchall()
for row in rows:
js = json.loads(row[1])
doc = Document(page_content=row[0], metadata=js)
result_vector = HanaDB._parse_float_array_from_string(row[2])
result.append((doc, row[3], result_vector))
finally:
cur.close()
return result
def similarity_search_with_score_by_vector(
self, embedding: List[float], k: int = 4, filter: Optional[dict] = None
) -> List[Tuple[Document, float]]:
"""Return docs most similar to the given embedding.
Args:
query: Text to look up documents similar to.
k: Number of Documents to return. Defaults to 4.
filter: A dictionary of metadata fields and values to filter by.
Defaults to None.
Returns:
List of Documents most similar to the query and score for each
"""
whole_result = self.similarity_search_with_score_and_vector_by_vector(
embedding=embedding, k=k, filter=filter
)
return [(result_item[0], result_item[1]) for result_item in whole_result]
def similarity_search_by_vector(
self, embedding: List[float], k: int = 4, filter: Optional[dict] = None
) -> List[Document]:
"""Return docs most similar to embedding vector.
Args:
embedding: Embedding to look up documents similar to.
k: Number of Documents to return. Defaults to 4.
filter: A dictionary of metadata fields and values to filter by.
Defaults to None.
Returns:
List of Documents most similar to the query vector.
"""
docs_and_scores = self.similarity_search_with_score_by_vector(
embedding=embedding, k=k, filter=filter
)
return [doc for doc, _ in docs_and_scores]
def _create_where_by_filter(self, filter):
query_tuple = []
where_str = ""
if filter:
for i, key in enumerate(filter.keys()):
if i == 0:
where_str += " WHERE "
else:
where_str += " AND "
where_str += f" JSON_VALUE({self.metadata_column}, '$.{key}') = ?"
if isinstance(filter[key], bool):
if filter[key]:
query_tuple.append("true")
else:
query_tuple.append("false")
elif isinstance(filter[key], int) or isinstance(filter[key], str):
query_tuple.append(filter[key])
else:
raise ValueError(
f"Unsupported filter data-type: {type(filter[key])}"
)
return where_str, query_tuple
def delete(
self, ids: Optional[List[str]] = None, filter: Optional[dict] = None
) -> Optional[bool]:
"""Delete entries by filter with metadata values
Args:
ids: Deletion with ids is not supported! A ValueError will be raised.
filter: A dictionary of metadata fields and values to filter by.
An empty filter ({}) will delete all entries in the table.
Returns:
Optional[bool]: True, if deletion is technically successful.
Deletion of zero entries, due to non-matching filters is a success.
"""
if ids is not None:
raise ValueError("Deletion via ids is not supported")
if filter is None:
raise ValueError("Parameter 'filter' is required when calling 'delete'")
where_str, query_tuple = self._create_where_by_filter(filter)
sql_str = f"DELETE FROM {self.table_name} {where_str}"
try:
cur = self.connection.cursor()
cur.execute(sql_str, query_tuple)
finally:
cur.close()
return True
async def adelete(
self, ids: Optional[List[str]] = None, filter: Optional[dict] = None
) -> Optional[bool]:
"""Delete by vector ID or other criteria.
Args:
ids: List of ids to delete.
Returns:
Optional[bool]: True if deletion is successful,
False otherwise, None if not implemented.
"""
return await run_in_executor(None, self.delete, ids=ids, filter=filter)
def max_marginal_relevance_search(
self,
query: str,
k: int = 4,
fetch_k: int = 20,
lambda_mult: float = 0.5,
filter: Optional[dict] = None,
) -> List[Document]:
"""Return docs selected using the maximal marginal relevance.
Maximal marginal relevance optimizes for similarity to query AND diversity
among selected documents.
Args:
query: search query text.
k: Number of Documents to return. Defaults to 4.
fetch_k: Number of Documents to fetch to pass to MMR algorithm.
lambda_mult: Number between 0 and 1 that determines the degree
of diversity among the results with 0 corresponding
to maximum diversity and 1 to minimum diversity.
Defaults to 0.5.
filter: Filter on metadata properties, e.g.
{
"str_property": "foo",
"int_property": 123
}
Returns:
List of Documents selected by maximal marginal relevance.
"""
embedding = self.embedding.embed_query(query)
return self.max_marginal_relevance_search_by_vector(
embedding=embedding,
k=k,
fetch_k=fetch_k,
lambda_mult=lambda_mult,
filter=filter,
)
def _parse_float_array_from_string(array_as_string: str) -> List[float]:
array_wo_brackets = array_as_string[1:-1]
return [float(x) for x in array_wo_brackets.split(",")]
def max_marginal_relevance_search_by_vector(
self,
embedding: List[float],
k: int = 4,
fetch_k: int = 20,
lambda_mult: float = 0.5,
filter: Optional[dict] = None,
) -> List[Document]:
whole_result = self.similarity_search_with_score_and_vector_by_vector(
embedding=embedding, k=fetch_k, filter=filter
)
embeddings = [result_item[2] for result_item in whole_result]
mmr_doc_indexes = maximal_marginal_relevance(
np.array(embedding), embeddings, lambda_mult=lambda_mult, k=k
)
return [whole_result[i][0] for i in mmr_doc_indexes]
async def amax_marginal_relevance_search_by_vector(
self,
embedding: List[float],
k: int = 4,
fetch_k: int = 20,
lambda_mult: float = 0.5,
) -> List[Document]:
"""Return docs selected using the maximal marginal relevance."""
return await run_in_executor(
None,
self.max_marginal_relevance_search_by_vector,
embedding=embedding,
k=k,
fetch_k=fetch_k,
lambda_mult=lambda_mult,
)
@staticmethod
def _cosine_relevance_score_fn(distance: float) -> float:
return distance
def _select_relevance_score_fn(self) -> Callable[[float], float]:
"""
The 'correct' relevance function
may differ depending on a few things, including:
- the distance / similarity metric used by the VectorStore
- the scale of your embeddings (OpenAI's are unit normed. Many others are not!)
- embedding dimensionality
- etc.
Vectorstores should define their own selection based method of relevance.
"""
if self.distance_strategy == DistanceStrategy.COSINE:
return HanaDB._cosine_relevance_score_fn
elif self.distance_strategy == DistanceStrategy.EUCLIDEAN_DISTANCE:
return HanaDB._euclidean_relevance_score_fn
else:
raise ValueError(
"Unsupported distance_strategy: {}".format(self.distance_strategy)
)

View File

@@ -1173,6 +1173,7 @@ files = [
{file = "contourpy-1.1.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:18a64814ae7bce73925131381603fff0116e2df25230dfc80d6d690aa6e20b37"},
{file = "contourpy-1.1.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:90c81f22b4f572f8a2110b0b741bb64e5a6427e0a198b2cdc1fbaf85f352a3aa"},
{file = "contourpy-1.1.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:53cc3a40635abedbec7f1bde60f8c189c49e84ac180c665f2cd7c162cc454baa"},
{file = "contourpy-1.1.0-cp310-cp310-win32.whl", hash = "sha256:9b2dd2ca3ac561aceef4c7c13ba654aaa404cf885b187427760d7f7d4c57cff8"},
{file = "contourpy-1.1.0-cp310-cp310-win_amd64.whl", hash = "sha256:1f795597073b09d631782e7245016a4323cf1cf0b4e06eef7ea6627e06a37ff2"},
{file = "contourpy-1.1.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:0b7b04ed0961647691cfe5d82115dd072af7ce8846d31a5fac6c142dcce8b882"},
{file = "contourpy-1.1.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:27bc79200c742f9746d7dd51a734ee326a292d77e7d94c8af6e08d1e6c15d545"},
@@ -1181,6 +1182,7 @@ files = [
{file = "contourpy-1.1.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:e5cec36c5090e75a9ac9dbd0ff4a8cf7cecd60f1b6dc23a374c7d980a1cd710e"},
{file = "contourpy-1.1.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1f0cbd657e9bde94cd0e33aa7df94fb73c1ab7799378d3b3f902eb8eb2e04a3a"},
{file = "contourpy-1.1.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:181cbace49874f4358e2929aaf7ba84006acb76694102e88dd15af861996c16e"},
{file = "contourpy-1.1.0-cp311-cp311-win32.whl", hash = "sha256:edb989d31065b1acef3828a3688f88b2abb799a7db891c9e282df5ec7e46221b"},
{file = "contourpy-1.1.0-cp311-cp311-win_amd64.whl", hash = "sha256:fb3b7d9e6243bfa1efb93ccfe64ec610d85cfe5aec2c25f97fbbd2e58b531256"},
{file = "contourpy-1.1.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:bcb41692aa09aeb19c7c213411854402f29f6613845ad2453d30bf421fe68fed"},
{file = "contourpy-1.1.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:5d123a5bc63cd34c27ff9c7ac1cd978909e9c71da12e05be0231c608048bb2ae"},
@@ -1189,6 +1191,7 @@ files = [
{file = "contourpy-1.1.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:317267d915490d1e84577924bd61ba71bf8681a30e0d6c545f577363157e5e94"},
{file = "contourpy-1.1.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d551f3a442655f3dcc1285723f9acd646ca5858834efeab4598d706206b09c9f"},
{file = "contourpy-1.1.0-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:e7a117ce7df5a938fe035cad481b0189049e8d92433b4b33aa7fc609344aafa1"},
{file = "contourpy-1.1.0-cp38-cp38-win32.whl", hash = "sha256:108dfb5b3e731046a96c60bdc46a1a0ebee0760418951abecbe0fc07b5b93b27"},
{file = "contourpy-1.1.0-cp38-cp38-win_amd64.whl", hash = "sha256:d4f26b25b4f86087e7d75e63212756c38546e70f2a92d2be44f80114826e1cd4"},
{file = "contourpy-1.1.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:bc00bb4225d57bff7ebb634646c0ee2a1298402ec10a5fe7af79df9a51c1bfd9"},
{file = "contourpy-1.1.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:189ceb1525eb0655ab8487a9a9c41f42a73ba52d6789754788d1883fb06b2d8a"},
@@ -1197,6 +1200,7 @@ files = [
{file = "contourpy-1.1.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:143dde50520a9f90e4a2703f367cf8ec96a73042b72e68fcd184e1279962eb6f"},
{file = "contourpy-1.1.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e94bef2580e25b5fdb183bf98a2faa2adc5b638736b2c0a4da98691da641316a"},
{file = "contourpy-1.1.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:ed614aea8462735e7d70141374bd7650afd1c3f3cb0c2dbbcbe44e14331bf002"},
{file = "contourpy-1.1.0-cp39-cp39-win32.whl", hash = "sha256:71551f9520f008b2950bef5f16b0e3587506ef4f23c734b71ffb7b89f8721999"},
{file = "contourpy-1.1.0-cp39-cp39-win_amd64.whl", hash = "sha256:438ba416d02f82b692e371858143970ed2eb6337d9cdbbede0d8ad9f3d7dd17d"},
{file = "contourpy-1.1.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:a698c6a7a432789e587168573a864a7ea374c6be8d4f31f9d87c001d5a843493"},
{file = "contourpy-1.1.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:397b0ac8a12880412da3551a8cb5a187d3298a72802b45a3bd1805e204ad8439"},
@@ -2957,6 +2961,29 @@ files = [
{file = "h11-0.14.0.tar.gz", hash = "sha256:8f19fbbe99e72420ff35c00b27a34cb9937e902a8b810e2c88300c6f0a3b699d"},
]
[[package]]
name = "hdbcli"
version = "2.19.21"
description = "SAP HANA Python Client"
optional = true
python-versions = "*"
files = [
{file = "hdbcli-2.19.21-cp27-cp27m-macosx_10_7_x86_64.whl", hash = "sha256:3028f04b86de2d9834a69f3fec2abb58201be3f1cbc357a63af18d4becaab1d3"},
{file = "hdbcli-2.19.21-cp27-cp27m-manylinux1_x86_64.whl", hash = "sha256:f5e5ad76e77eff67ffad4f7db4a9cbe3e6b9c0399e39bd31ffeb4136d2192bc0"},
{file = "hdbcli-2.19.21-cp27-cp27m-manylinux2014_ppc64le.whl", hash = "sha256:a8ceca28c6b80c5e6f8fc80a3517d7e843b9c3288f8b03c49316be68468d3848"},
{file = "hdbcli-2.19.21-cp27-cp27m-win_amd64.whl", hash = "sha256:c963a8fa2f3405024051812048479bdd527d730351473f354d85e7fd933bf7ce"},
{file = "hdbcli-2.19.21-cp27-cp27mu-macosx_10_7_x86_64.whl", hash = "sha256:98e72291fd5c226b22636274c3ccadb93ff2e3b54b98bff3f37e402ecfd73151"},
{file = "hdbcli-2.19.21-cp27-cp27mu-manylinux1_x86_64.whl", hash = "sha256:9773cc00cfd72ac7c2ad102560ca747bd5077437bed8bbb812071fa0ceb195a2"},
{file = "hdbcli-2.19.21-cp27-cp27mu-manylinux2014_ppc64le.whl", hash = "sha256:ba5cf42ea026a1b1677c2c8bdbf2e6b77fbbabb7506671485740e675a6a5345a"},
{file = "hdbcli-2.19.21-cp34-abi3-macosx_10_11_x86_64.whl", hash = "sha256:fac185d39a7a143a3c505c3e4260d0fc1b244589d4bea126e248e70e9e994e2b"},
{file = "hdbcli-2.19.21-cp34-abi3-manylinux1_x86_64.whl", hash = "sha256:3c20763ba687acab151680c296c9daddbbbb7107a9790cf953da9bc527e373b9"},
{file = "hdbcli-2.19.21-cp34-abi3-manylinux2014_ppc64le.whl", hash = "sha256:e20a3f60039875d03165c5790993952f5e2ec8efe141e051f7e154d96afc79a4"},
{file = "hdbcli-2.19.21-cp36-abi3-manylinux2014_aarch64.whl", hash = "sha256:7c7c50e89fe03be434460d407f2b74196eadde21db4046d52175a22b879ffa28"},
{file = "hdbcli-2.19.21-cp36-abi3-win32.whl", hash = "sha256:d8529099b535b2c02ddb923ef8006132cf548e358f0bb0afdef3d4d81adc74d0"},
{file = "hdbcli-2.19.21-cp36-abi3-win_amd64.whl", hash = "sha256:7c631a467f15cbb0d91655c2059b3c421e2fa0451ffeb500a3461aa4456e3fa2"},
{file = "hdbcli-2.19.21-cp38-abi3-macosx_11_0_arm64.whl", hash = "sha256:f8607479efef3dea5fc4181806a20ffe6552ef0212efc371c93a15bf2d50c3b4"},
]
[[package]]
name = "hologres-vector"
version = "0.0.6"
@@ -3917,7 +3944,7 @@ files = [
[[package]]
name = "langchain-core"
version = "0.1.14"
version = "0.1.16"
description = "Building applications with LLMs through composability"
optional = false
python-versions = ">=3.8.1,<4.0"
@@ -4164,6 +4191,16 @@ files = [
{file = "MarkupSafe-2.1.3-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:5bbe06f8eeafd38e5d0a4894ffec89378b6c6a625ff57e3028921f8ff59318ac"},
{file = "MarkupSafe-2.1.3-cp311-cp311-win32.whl", hash = "sha256:dd15ff04ffd7e05ffcb7fe79f1b98041b8ea30ae9234aed2a9168b5797c3effb"},
{file = "MarkupSafe-2.1.3-cp311-cp311-win_amd64.whl", hash = "sha256:134da1eca9ec0ae528110ccc9e48041e0828d79f24121a1a146161103c76e686"},
{file = "MarkupSafe-2.1.3-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:f698de3fd0c4e6972b92290a45bd9b1536bffe8c6759c62471efaa8acb4c37bc"},
{file = "MarkupSafe-2.1.3-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:aa57bd9cf8ae831a362185ee444e15a93ecb2e344c8e52e4d721ea3ab6ef1823"},
{file = "MarkupSafe-2.1.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ffcc3f7c66b5f5b7931a5aa68fc9cecc51e685ef90282f4a82f0f5e9b704ad11"},
{file = "MarkupSafe-2.1.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:47d4f1c5f80fc62fdd7777d0d40a2e9dda0a05883ab11374334f6c4de38adffd"},
{file = "MarkupSafe-2.1.3-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:1f67c7038d560d92149c060157d623c542173016c4babc0c1913cca0564b9939"},
{file = "MarkupSafe-2.1.3-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:9aad3c1755095ce347e26488214ef77e0485a3c34a50c5a5e2471dff60b9dd9c"},
{file = "MarkupSafe-2.1.3-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:14ff806850827afd6b07a5f32bd917fb7f45b046ba40c57abdb636674a8b559c"},
{file = "MarkupSafe-2.1.3-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:8f9293864fe09b8149f0cc42ce56e3f0e54de883a9de90cd427f191c346eb2e1"},
{file = "MarkupSafe-2.1.3-cp312-cp312-win32.whl", hash = "sha256:715d3562f79d540f251b99ebd6d8baa547118974341db04f5ad06d5ea3eb8007"},
{file = "MarkupSafe-2.1.3-cp312-cp312-win_amd64.whl", hash = "sha256:1b8dd8c3fd14349433c79fa8abeb573a55fc0fdd769133baac1f5e07abf54aeb"},
{file = "MarkupSafe-2.1.3-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:8e254ae696c88d98da6555f5ace2279cf7cd5b3f52be2b5cf97feafe883b58d2"},
{file = "MarkupSafe-2.1.3-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:cb0932dc158471523c9637e807d9bfb93e06a95cbf010f1a38b98623b929ef2b"},
{file = "MarkupSafe-2.1.3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9402b03f1a1b4dc4c19845e5c749e3ab82d5078d16a2a4c2cd2df62d57bb0707"},
@@ -4962,13 +4999,13 @@ signedtoken = ["cryptography (>=3.0.0)", "pyjwt (>=2.0.0,<3)"]
[[package]]
name = "oci"
version = "2.118.0"
version = "2.119.1"
description = "Oracle Cloud Infrastructure Python SDK"
optional = true
python-versions = "*"
files = [
{file = "oci-2.118.0-py3-none-any.whl", hash = "sha256:766170a9b4c93053ba3fe5ae63c0ab48fdd71b4d17709742a2b45249f0829872"},
{file = "oci-2.118.0.tar.gz", hash = "sha256:1004726c4dad6c02f967b7bc4e733ff552451a2914cb542c380756c7d46bb938"},
{file = "oci-2.119.1-py3-none-any.whl", hash = "sha256:64b6012f3c2b70cf7fb5f58a1a4b4458d8f4d41ea1b79a5d9f8ca4beb2dfa225"},
{file = "oci-2.119.1.tar.gz", hash = "sha256:992df963382f378b93634826956677f3c13407ca1b828c4eaf1cfd18f19fae33"},
]
[package.dependencies]
@@ -6723,6 +6760,7 @@ files = [
{file = "PyYAML-6.0.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:69b023b2b4daa7548bcfbd4aa3da05b3a74b772db9e23b982788168117739938"},
{file = "PyYAML-6.0.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:81e0b275a9ecc9c0c0c07b4b90ba548307583c125f54d5b6946cfee6360c733d"},
{file = "PyYAML-6.0.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ba336e390cd8e4d1739f42dfe9bb83a3cc2e80f567d8805e11b46f4a943f5515"},
{file = "PyYAML-6.0.1-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:326c013efe8048858a6d312ddd31d56e468118ad4cdeda36c719bf5bb6192290"},
{file = "PyYAML-6.0.1-cp310-cp310-win32.whl", hash = "sha256:bd4af7373a854424dabd882decdc5579653d7868b8fb26dc7d0e99f823aa5924"},
{file = "PyYAML-6.0.1-cp310-cp310-win_amd64.whl", hash = "sha256:fd1592b3fdf65fff2ad0004b5e363300ef59ced41c2e6b3a99d4089fa8c5435d"},
{file = "PyYAML-6.0.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:6965a7bc3cf88e5a1c3bd2e0b5c22f8d677dc88a455344035f03399034eb3007"},
@@ -6730,8 +6768,15 @@ files = [
{file = "PyYAML-6.0.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:42f8152b8dbc4fe7d96729ec2b99c7097d656dc1213a3229ca5383f973a5ed6d"},
{file = "PyYAML-6.0.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:062582fca9fabdd2c8b54a3ef1c978d786e0f6b3a1510e0ac93ef59e0ddae2bc"},
{file = "PyYAML-6.0.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d2b04aac4d386b172d5b9692e2d2da8de7bfb6c387fa4f801fbf6fb2e6ba4673"},
{file = "PyYAML-6.0.1-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:e7d73685e87afe9f3b36c799222440d6cf362062f78be1013661b00c5c6f678b"},
{file = "PyYAML-6.0.1-cp311-cp311-win32.whl", hash = "sha256:1635fd110e8d85d55237ab316b5b011de701ea0f29d07611174a1b42f1444741"},
{file = "PyYAML-6.0.1-cp311-cp311-win_amd64.whl", hash = "sha256:bf07ee2fef7014951eeb99f56f39c9bb4af143d8aa3c21b1677805985307da34"},
{file = "PyYAML-6.0.1-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:855fb52b0dc35af121542a76b9a84f8d1cd886ea97c84703eaa6d88e37a2ad28"},
{file = "PyYAML-6.0.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:40df9b996c2b73138957fe23a16a4f0ba614f4c0efce1e9406a184b6d07fa3a9"},
{file = "PyYAML-6.0.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6c22bec3fbe2524cde73d7ada88f6566758a8f7227bfbf93a408a9d86bcc12a0"},
{file = "PyYAML-6.0.1-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:8d4e9c88387b0f5c7d5f281e55304de64cf7f9c0021a3525bd3b1c542da3b0e4"},
{file = "PyYAML-6.0.1-cp312-cp312-win32.whl", hash = "sha256:d483d2cdf104e7c9fa60c544d92981f12ad66a457afae824d146093b8c294c54"},
{file = "PyYAML-6.0.1-cp312-cp312-win_amd64.whl", hash = "sha256:0d3304d8c0adc42be59c5f8a4d9e3d7379e6955ad754aa9d6ab7a398b59dd1df"},
{file = "PyYAML-6.0.1-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:50550eb667afee136e9a77d6dc71ae76a44df8b3e51e41b77f6de2932bfe0f47"},
{file = "PyYAML-6.0.1-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1fe35611261b29bd1de0070f0b2f47cb6ff71fa6595c077e42bd0c419fa27b98"},
{file = "PyYAML-6.0.1-cp36-cp36m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:704219a11b772aea0d8ecd7058d0082713c3562b4e271b849ad7dc4a5c90c13c"},
@@ -6748,6 +6793,7 @@ files = [
{file = "PyYAML-6.0.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a0cd17c15d3bb3fa06978b4e8958dcdc6e0174ccea823003a106c7d4d7899ac5"},
{file = "PyYAML-6.0.1-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:28c119d996beec18c05208a8bd78cbe4007878c6dd15091efb73a30e90539696"},
{file = "PyYAML-6.0.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7e07cbde391ba96ab58e532ff4803f79c4129397514e1413a7dc761ccd755735"},
{file = "PyYAML-6.0.1-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:49a183be227561de579b4a36efbb21b3eab9651dd81b1858589f796549873dd6"},
{file = "PyYAML-6.0.1-cp38-cp38-win32.whl", hash = "sha256:184c5108a2aca3c5b3d3bf9395d50893a7ab82a38004c8f61c258d4428e80206"},
{file = "PyYAML-6.0.1-cp38-cp38-win_amd64.whl", hash = "sha256:1e2722cc9fbb45d9b87631ac70924c11d3a401b2d7f410cc0e3bbf249f2dca62"},
{file = "PyYAML-6.0.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:9eb6caa9a297fc2c2fb8862bc5370d0303ddba53ba97e71f08023b6cd73d16a8"},
@@ -6755,6 +6801,7 @@ files = [
{file = "PyYAML-6.0.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5773183b6446b2c99bb77e77595dd486303b4faab2b086e7b17bc6bef28865f6"},
{file = "PyYAML-6.0.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:b786eecbdf8499b9ca1d697215862083bd6d2a99965554781d0d8d1ad31e13a0"},
{file = "PyYAML-6.0.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bc1bf2925a1ecd43da378f4db9e4f799775d6367bdb94671027b73b393a7c42c"},
{file = "PyYAML-6.0.1-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:04ac92ad1925b2cff1db0cfebffb6ffc43457495c9b3c39d3fcae417d7125dc5"},
{file = "PyYAML-6.0.1-cp39-cp39-win32.whl", hash = "sha256:faca3bdcf85b2fc05d06ff3fbc1f83e1391b3e724afa3feba7d13eeab355484c"},
{file = "PyYAML-6.0.1-cp39-cp39-win_amd64.whl", hash = "sha256:510c9deebc5c0225e8c96813043e62b680ba2f9c50a08d3724c7f28a747d1486"},
{file = "PyYAML-6.0.1.tar.gz", hash = "sha256:bfdf460b1736c775f2ba9f6a92bca30bc2095067b8a9d77876d1fad6cc3b4a43"},
@@ -7726,7 +7773,9 @@ python-versions = ">=3.7"
files = [
{file = "SQLAlchemy-2.0.23-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:638c2c0b6b4661a4fd264f6fb804eccd392745c5887f9317feb64bb7cb03b3ea"},
{file = "SQLAlchemy-2.0.23-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:e3b5036aa326dc2df50cba3c958e29b291a80f604b1afa4c8ce73e78e1c9f01d"},
{file = "SQLAlchemy-2.0.23-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:787af80107fb691934a01889ca8f82a44adedbf5ef3d6ad7d0f0b9ac557e0c34"},
{file = "SQLAlchemy-2.0.23-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c14eba45983d2f48f7546bb32b47937ee2cafae353646295f0e99f35b14286ab"},
{file = "SQLAlchemy-2.0.23-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:0666031df46b9badba9bed00092a1ffa3aa063a5e68fa244acd9f08070e936d3"},
{file = "SQLAlchemy-2.0.23-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:89a01238fcb9a8af118eaad3ffcc5dedaacbd429dc6fdc43fe430d3a941ff965"},
{file = "SQLAlchemy-2.0.23-cp310-cp310-win32.whl", hash = "sha256:cabafc7837b6cec61c0e1e5c6d14ef250b675fa9c3060ed8a7e38653bd732ff8"},
{file = "SQLAlchemy-2.0.23-cp310-cp310-win_amd64.whl", hash = "sha256:87a3d6b53c39cd173990de2f5f4b83431d534a74f0e2f88bd16eabb5667e65c6"},
@@ -7763,7 +7812,9 @@ files = [
{file = "SQLAlchemy-2.0.23-cp38-cp38-win_amd64.whl", hash = "sha256:964971b52daab357d2c0875825e36584d58f536e920f2968df8d581054eada4b"},
{file = "SQLAlchemy-2.0.23-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:616fe7bcff0a05098f64b4478b78ec2dfa03225c23734d83d6c169eb41a93e55"},
{file = "SQLAlchemy-2.0.23-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:0e680527245895aba86afbd5bef6c316831c02aa988d1aad83c47ffe92655e74"},
{file = "SQLAlchemy-2.0.23-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9585b646ffb048c0250acc7dad92536591ffe35dba624bb8fd9b471e25212a35"},
{file = "SQLAlchemy-2.0.23-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4895a63e2c271ffc7a81ea424b94060f7b3b03b4ea0cd58ab5bb676ed02f4221"},
{file = "SQLAlchemy-2.0.23-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:cc1d21576f958c42d9aec68eba5c1a7d715e5fc07825a629015fe8e3b0657fb0"},
{file = "SQLAlchemy-2.0.23-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:967c0b71156f793e6662dd839da54f884631755275ed71f1539c95bbada9aaab"},
{file = "SQLAlchemy-2.0.23-cp39-cp39-win32.whl", hash = "sha256:0a8c6aa506893e25a04233bc721c6b6cf844bafd7250535abb56cb6cc1368884"},
{file = "SQLAlchemy-2.0.23-cp39-cp39-win_amd64.whl", hash = "sha256:f3420d00d2cb42432c1d0e44540ae83185ccbbc67a6054dcc8ab5387add6620b"},
@@ -9175,9 +9226,9 @@ testing = ["big-O", "jaraco.functools", "jaraco.itertools", "more-itertools", "p
[extras]
cli = ["typer"]
extended-testing = ["aiosqlite", "aleph-alpha-client", "anthropic", "arxiv", "assemblyai", "atlassian-python-api", "azure-ai-documentintelligence", "beautifulsoup4", "bibtexparser", "cassio", "chardet", "cohere", "dashvector", "databricks-vectorsearch", "datasets", "dgml-utils", "elasticsearch", "esprima", "faiss-cpu", "feedparser", "fireworks-ai", "geopandas", "gitpython", "google-cloud-documentai", "gql", "gradientai", "hologres-vector", "html2text", "javelin-sdk", "jinja2", "jq", "jsonschema", "lxml", "markdownify", "motor", "msal", "mwparserfromhell", "mwxml", "newspaper3k", "numexpr", "openai", "openapi-pydantic", "oracle-ads", "pandas", "pdfminer-six", "pgvector", "praw", "psychicapi", "py-trello", "pymupdf", "pypdf", "pypdfium2", "pyspark", "rank-bm25", "rapidfuzz", "rapidocr-onnxruntime", "requests-toolbelt", "rspace_client", "scikit-learn", "sqlite-vss", "streamlit", "sympy", "telethon", "timescale-vector", "tqdm", "upstash-redis", "xata", "xmltodict", "zhipuai"]
extended-testing = ["aiosqlite", "aleph-alpha-client", "anthropic", "arxiv", "assemblyai", "atlassian-python-api", "azure-ai-documentintelligence", "beautifulsoup4", "bibtexparser", "cassio", "chardet", "cohere", "dashvector", "databricks-vectorsearch", "datasets", "dgml-utils", "elasticsearch", "esprima", "faiss-cpu", "feedparser", "fireworks-ai", "geopandas", "gitpython", "google-cloud-documentai", "gql", "gradientai", "hdbcli", "hologres-vector", "html2text", "javelin-sdk", "jinja2", "jq", "jsonschema", "lxml", "markdownify", "motor", "msal", "mwparserfromhell", "mwxml", "newspaper3k", "numexpr", "oci", "openai", "openapi-pydantic", "oracle-ads", "pandas", "pdfminer-six", "pgvector", "praw", "psychicapi", "py-trello", "pymupdf", "pypdf", "pypdfium2", "pyspark", "rank-bm25", "rapidfuzz", "rapidocr-onnxruntime", "requests-toolbelt", "rspace_client", "scikit-learn", "sqlite-vss", "streamlit", "sympy", "telethon", "timescale-vector", "tqdm", "upstash-redis", "xata", "xmltodict", "zhipuai"]
[metadata]
lock-version = "2.0"
python-versions = ">=3.8.1,<4.0"
content-hash = "73184aec5978e0de5b99029724164fa76394beb6359b59763ca488a258b0df4d"
content-hash = "064816bab088c1f6ff9902cb998291581b66a6d7762f965ff805b4e0b9b2e7e9"

View File

@@ -1,6 +1,6 @@
[tool.poetry]
name = "langchain-community"
version = "0.0.15"
version = "0.0.16"
description = "Community contributed LangChain integrations."
authors = []
license = "MIT"
@@ -9,7 +9,7 @@ repository = "https://github.com/langchain-ai/langchain"
[tool.poetry.dependencies]
python = ">=3.8.1,<4.0"
langchain-core = ">=0.1.14,<0.2"
langchain-core = ">=0.1.16,<0.2"
SQLAlchemy = ">=1.4,<3"
requests = "^2"
PyYAML = ">=5.3"
@@ -88,6 +88,8 @@ azure-ai-documentintelligence = {version = "^1.0.0b1", optional = true}
oracle-ads = {version = "^2.9.1", optional = true}
zhipuai = {version = "^1.0.7", optional = true}
elasticsearch = {version = "^8.12.0", optional = true}
hdbcli = {version = "^2.19.21", optional = true}
oci = {version = "^2.119.1", optional = true}
[tool.poetry.group.test]
optional = true
@@ -251,6 +253,8 @@ extended_testing = [
"oracle-ads",
"zhipuai",
"elasticsearch",
"hdbcli",
"oci"
]
[tool.ruff]

View File

@@ -0,0 +1,70 @@
"""Test EdenAI API wrapper."""
from typing import List
import pytest
from langchain_core.messages import AIMessage, BaseMessage, HumanMessage
from langchain_core.outputs import ChatGeneration, LLMResult
from langchain_community.chat_models.edenai import (
ChatEdenAI,
)
@pytest.mark.scheduled
def test_chat_edenai() -> None:
"""Test ChatEdenAI wrapper."""
chat = ChatEdenAI(
provider="openai", model="gpt-3.5-turbo", temperature=0, max_tokens=1000
)
message = HumanMessage(content="Who are you ?")
response = chat([message])
assert isinstance(response, AIMessage)
assert isinstance(response.content, str)
@pytest.mark.scheduled
def test_edenai_generate() -> None:
"""Test generate method of edenai."""
chat = ChatEdenAI(provider="google")
chat_messages: List[List[BaseMessage]] = [
[HumanMessage(content="What is the meaning of life?")]
]
messages_copy = [messages.copy() for messages in chat_messages]
result: LLMResult = chat.generate(chat_messages)
assert isinstance(result, LLMResult)
for response in result.generations[0]:
assert isinstance(response, ChatGeneration)
assert isinstance(response.text, str)
assert response.text == response.message.content
assert chat_messages == messages_copy
@pytest.mark.scheduled
async def test_edenai_async_generate() -> None:
"""Test async generation."""
chat = ChatEdenAI(provider="google", max_tokens=50)
message = HumanMessage(content="Hello")
result: LLMResult = await chat.agenerate([[message], [message]])
assert isinstance(result, LLMResult)
for response in result.generations[0]:
assert isinstance(response, ChatGeneration)
assert isinstance(response.text, str)
assert response.text == response.message.content
@pytest.mark.scheduled
def test_edenai_streaming() -> None:
"""Test streaming EdenAI chat."""
llm = ChatEdenAI(provider="openai", max_tokens=50)
for chunk in llm.stream("Generate a high fantasy story."):
assert isinstance(chunk.content, str)
@pytest.mark.scheduled
async def test_edenai_astream() -> None:
"""Test streaming from EdenAI."""
llm = ChatEdenAI(provider="openai", max_tokens=50)
async for token in llm.astream("Generate a high fantasy story."):
assert isinstance(token.content, str)

Some files were not shown because too many files have changed in this diff Show More