Compare commits

...

138 Commits

Author SHA1 Message Date
Bagatur
7a3d8e5a99 core[patch]: Release 0.2.11 (#23780) 2024-07-02 17:35:57 -04:00
Bagatur
d677dadf5f core[patch]: mark RemoveMessage beta (#23656) 2024-07-02 21:27:21 +00:00
ccurme
1d54ac93bb ai21[patch]: release 0.1.7 (#23781) 2024-07-02 21:24:13 +00:00
Asaf Joseph Gardin
320dc31822 partners: AI21 Labs Jamba Streaming Support (#23538)
Thank you for contributing to LangChain!

- [x] **PR title**: "package: description"

- [x] **PR message**: ***Delete this entire checklist*** and replace
with
    - **Description:** Added support for streaming in AI21 Jamba Model
    - **Twitter handle:** https://github.com/AI21Labs


- [x] **Add tests and docs**: If you're adding a new integration, please
include

- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.

---------

Co-authored-by: Asaf Gardin <asafg@ai21.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
Co-authored-by: Chester Curme <chester.curme@gmail.com>
2024-07-02 17:15:46 -04:00
Qingchuan Hao
5cd4083457 community: make bing web search as the only option (#23523)
This PR make bing web search as the option for BingSearchAPIWrapper to
facilitate and simply the user interface on Langchain.
This is a follow-up work of
https://github.com/langchain-ai/langchain/pull/23306.
2024-07-02 17:13:54 -04:00
William W Wang
76e7e4e9e6 Update docs: LangChain agent memory (#23673)
Thank you for contributing to LangChain!

- [x] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
  - Example: "community: add foobar LLM"


**Description:** Update docs content on agent memory

If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
2024-07-02 17:06:32 -04:00
ccurme
7c1cddf1b7 anthropic[patch]: release 0.1.18 (#23778) 2024-07-02 16:46:47 -04:00
ccurme
c9dac59008 anthropic[patch]: fix model name in some integration tests (#23779) 2024-07-02 20:45:52 +00:00
Bagatur
7a6c06cadd anthropic[patch]: tool output parser fix (#23647) 2024-07-02 16:33:22 -04:00
ccurme
46cbf0e4aa anthropic[patch]: use core output parsers for structured output (#23776)
Also add to standard tests for structured output.
2024-07-02 16:15:26 -04:00
kiarina
dc396835ed langchain_anthropic: add stop_reason in ChatAnthropic stream result (#23689)
`ChatAnthropic` can get `stop_reason` from the resulting `AIMessage` in
`invoke` and `ainvoke`, but not in `stream` and `astream`.
This is a different behavior from `ChatOpenAI`.
It is possible to get `stop_reason` from `stream` as well, since it is
needed to determine the next action after the LLM call. This would be
easier to handle in situations where only `stop_reason` is needed.

- Issue: NA
- Dependencies: NA
- Twitter handle: https://x.com/kiarina37
2024-07-02 15:16:20 -04:00
Bagatur
27ce58f86e docs: google genai standard page (#23766)
Part of #22296
2024-07-02 13:54:34 -04:00
maang-h
e4e28a6ff5 community[patch]: Fix MiniMaxChat validate_environment error (#23770)
- **Description:** Fix some issues in MiniMaxChat 
  - Fix `minimax_api_host` not in `values` error
- Remove `minimax_group_id` from reading environment variables, the
`minimax_group_id` no longer use in MiniMaxChat
  - Invoke callback prior to yielding token, the issus #16913
2024-07-02 13:23:32 -04:00
SN
acc457f645 core[patch]: fix nested sections for mustache templating (#23747)
The prompt template variable detection only worked for singly-nested
sections because we just kept track of whether we were in a section and
then set that to false as soon as we encountered an end block. i.e. the
following:

```
{{#outerSection}}
    {{variableThatShouldntShowUp}}
    {{#nestedSection}}
        {{nestedVal}}
    {{/nestedSection}}
    {{anotherVariableThatShouldntShowUp}}
{{/outerSection}}
```

Would yield `['outerSection', 'anotherVariableThatShouldntShowUp']` as
input_variables (whereas it should just yield `['outerSection']`). This
fixes that by keeping track of the current depth and using a stack.
2024-07-02 10:20:45 -07:00
Karim Lalani
acc8fb3ead docs[patch]: Update OllamaFunctions docs to match chat model integration template (#23179)
Added Tool Calling Agent Example with langgraph to OllamaFunctions
documentation
2024-07-02 10:05:44 -07:00
Bagatur
79c07a8ade docs: standardize bedrock page (#23738)
Part of #22296
2024-07-02 12:03:36 -04:00
Teja Hara
a77a263e24 Added langchain-community installation (#23741)
PR title: Docs enhancement

- Description: Adding installation instructions for integrations
requiring langchain-community package since 0.2
- Issue: https://github.com/langchain-ai/langchain/issues/22005

---------

Co-authored-by: ccurme <chester.curme@gmail.com>
2024-07-02 11:03:07 -04:00
Eugene Yurtsev
46ff0f7a3c community[patch]: Update @root_validators to use explicit pre=True or pre=False (#23737) 2024-07-02 10:47:21 -04:00
Igor Drozdov
b664dbcc36 feat(community): add support for tool_calls response (#23765)
When `model_kwargs={"tools": tools}` are passed to `ChatLiteLLM`, they
are executed, but the response is not recognized correctly

Let's add `tool_calls` to the `additional_kwargs`

Thank you for contributing to LangChain!

## ChatAnthropic

I used the following example to verify the output of llm with tools:

```python
from langchain_core.pydantic_v1 import BaseModel, Field
from langchain_anthropic import ChatAnthropic

class GetWeather(BaseModel):
    '''Get the current weather in a given location'''

    location: str = Field(..., description="The city and state, e.g. San Francisco, CA")

class GetPopulation(BaseModel):
    '''Get the current population in a given location'''

    location: str = Field(..., description="The city and state, e.g. San Francisco, CA")

llm = ChatAnthropic(model="claude-3-sonnet-20240229")
llm_with_tools = llm.bind_tools([GetWeather, GetPopulation])
ai_msg = llm_with_tools.invoke("Which city is hotter today and which is bigger: LA or NY?")
print(ai_msg.tool_calls)
```

I get the following response:

```json
[{'name': 'GetWeather', 'args': {'location': 'Los Angeles, CA'}, 'id': 'toolu_01UfDA89knrhw3vFV9X47neT'}, {'name': 'GetWeather', 'args': {'location': 'New York, NY'}, 'id': 'toolu_01NrYVRYae7m7z7tBgyPb3Gd'}, {'name': 'GetPopulation', 'args': {'location': 'Los Angeles, CA'}, 'id': 'toolu_01EPFEpDgzL6vV2dTpD9SVP5'}, {'name': 'GetPopulation', 'args': {'location': 'New York, NY'}, 'id': 'toolu_01B5J6tPJXgwwfhQX9BHP2dt'}]
```

## LiteLLM

Based on https://litellm.vercel.app/docs/completion/function_call

```python
from langchain_core.pydantic_v1 import BaseModel, Field
from langchain_core.utils.function_calling import convert_to_openai_tool
import litellm

class GetWeather(BaseModel):
    '''Get the current weather in a given location'''

    location: str = Field(..., description="The city and state, e.g. San Francisco, CA")

class GetPopulation(BaseModel):
    '''Get the current population in a given location'''

    location: str = Field(..., description="The city and state, e.g. San Francisco, CA")

prompt = "Which city is hotter today and which is bigger: LA or NY?"
tools = [convert_to_openai_tool(GetWeather), convert_to_openai_tool(GetPopulation)]

response = litellm.completion(model="claude-3-sonnet-20240229", messages=[{'role': 'user', 'content': prompt}], tools=tools)
print(response.choices[0].message.tool_calls)
```

```python
[ChatCompletionMessageToolCall(function=Function(arguments='{"location": "Los Angeles, CA"}', name='GetWeather'), id='toolu_01HeDWV5vP7BDFfytH5FJsja', type='function'), ChatCompletionMessageToolCall(function=Function(arguments='{"location": "New York, NY"}', name='GetWeather'), id='toolu_01EiLesUSEr3YK1DaE2jxsQv', type='function'), ChatCompletionMessageToolCall(function=Function(arguments='{"location": "Los Angeles, CA"}', name='GetPopulation'), id='toolu_01Xz26zvkBDRxEUEWm9pX6xa', type='function'), ChatCompletionMessageToolCall(function=Function(arguments='{"location": "New York, NY"}', name='GetPopulation'), id='toolu_01SDqKnsLjvUXuBsgAZdEEpp', type='function')]
```

## ChatLiteLLM

When I try the following

```python
from langchain_core.pydantic_v1 import BaseModel, Field
from langchain_core.utils.function_calling import convert_to_openai_tool
from langchain_community.chat_models import ChatLiteLLM

class GetWeather(BaseModel):
    '''Get the current weather in a given location'''

    location: str = Field(..., description="The city and state, e.g. San Francisco, CA")

class GetPopulation(BaseModel):
    '''Get the current population in a given location'''

    location: str = Field(..., description="The city and state, e.g. San Francisco, CA")

prompt = "Which city is hotter today and which is bigger: LA or NY?"
tools = [convert_to_openai_tool(GetWeather), convert_to_openai_tool(GetPopulation)]

llm = ChatLiteLLM(model="claude-3-sonnet-20240229", model_kwargs={"tools": tools})
ai_msg = llm.invoke(prompt)
print(ai_msg)
print(ai_msg.tool_calls)
```

```python
content="Okay, let's find out the current weather and populations for Los Angeles and New York City:" response_metadata={'token_usage': Usage(prompt_tokens=329, completion_tokens=193, total_tokens=522), 'model': 'claude-3-sonnet-20240229', 'finish_reason': 'tool_calls'} id='run-748b7a84-84f4-497e-bba1-320bd4823937-0'
[]
```

---

When I apply the changes of this PR, the output is

```json
[{'name': 'GetWeather', 'args': {'location': 'Los Angeles, CA'}, 'id': 'toolu_017D2tGjiaiakB1HadsEFZ4e'}, {'name': 'GetWeather', 'args': {'location': 'New York, NY'}, 'id': 'toolu_01WrDpJfVqLkPejWzonPCbLW'}, {'name': 'GetPopulation', 'args': {'location': 'Los Angeles, CA'}, 'id': 'toolu_016UKyYrVAV9Pz99iZGgGU7V'}, {'name': 'GetPopulation', 'args': {'location': 'New York, NY'}, 'id': 'toolu_01Sgv1imExFX1oiR1Cw88zKy'}]
```

If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.

Co-authored-by: Igor Drozdov <idrozdov@gitlab.com>
2024-07-02 10:42:08 -04:00
Eugene Yurtsev
338cef35b4 community[patch]: update @root_validator in utilities namespace (#23768)
Update all utilities to use `pre=True` or `pre=False`

https://github.com/langchain-ai/langchain/issues/22819
2024-07-02 14:33:01 +00:00
wenngong
ee5eedfa04 partners: support reading HuggingFace params from env (#23309)
Description: 
1. partners/HuggingFace module support reading params from env. Not
adjust langchain_community/.../huggingfaceXX modules since they are
deprecated.
  2. pydantic 2 @root_validator migration.

Issue: #22448 #22819

---------

Co-authored-by: gongwn1 <gongwn1@lenovo.com>
2024-07-02 10:12:45 -04:00
antonpibm
ffde8a6a09 Milvus vectorstore: fix pass ids as argument after upsert (#23761)
**Description**: Milvus vectorstore supports both `add_documents` via
the base class and `upsert` method which deletes and re-adds documents
based on their ids

**Issue**: Due to mismatch in the interfaces the ids used by `upsert`
are neglected in `add_documents`, as `ids` are passed as argument in
`upsert` but via `kwargs` is `add_documents`

This caused exceptions and inconsistency in the DB, tested with
`auto_id=False`

**Fix**: pass `ids` via `kwargs` to `add_documents`
2024-07-02 13:45:30 +00:00
Eugene Yurtsev
d084172b63 community[patch]: root validator set explicit pre=False or pre=True (#23764)
See issue: https://github.com/langchain-ai/langchain/issues/22819
2024-07-02 09:42:05 -04:00
Khelan Modi
4457e64e13 Update azure_cosmos_db for mongodb documentation (#23740)
added pre-filtering documentation

Thank you for contributing to LangChain!

- [x] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
  - Example: "community: add foobar LLM"


- [x] **PR message**: 
    - **Description:** added filter vector search 
    - **Issue:** N/A
    - **Dependencies:** N/A
    - **Twitter handle:**: n/a


- [x] **Add tests and docs**: If you're adding a new integration, please
include - No need for tests, just a simple doc update
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.


- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.

If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
2024-07-02 12:53:05 +00:00
panwg3
bc98f90ba3 update wrong words (#23749)
Thank you for contributing to LangChain!

- [ ] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
  - Example: "community: add foobar LLM"


- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
    - **Description:** a description of the change
    - **Issue:** the issue # it fixes, if applicable
    - **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!


- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.


- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.

If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
2024-07-02 08:50:20 -04:00
mattthomps1
cc55823486 docs: updated PPLX model (#23723)
Description: updated pplx docs to reference a currently [supported
model](https://docs.perplexity.ai/docs/model-cards). pplx-70b-online
->llama-3-sonar-small-32k-online

---------

Co-authored-by: Chester Curme <chester.curme@gmail.com>
2024-07-02 08:48:49 -04:00
Bagatur
aa165539f6 docs: standardize cohere page (#23739)
Part of #22296
2024-07-01 19:34:13 -04:00
Jacob Lee
7791d92711 community[patch]: Fix requests alias for load_tools (#23734)
CC @baskaryan
2024-07-01 15:02:14 -07:00
Eugene Yurtsev
f24e38876a community[patch]: Update root_validators to use explicit pre=True or pre=False (#23736) 2024-07-01 17:13:23 -04:00
Yannick Stephan
5b1de2ae93 mistralai: Fixed streaming in MistralAI with ainvoke and callbacks (#22000)
# Fix streaming in mistral with ainvoke 
- [x] **PR title**
- [x] **PR message**
- [x] **Add tests and docs**:
  1. [x] Added a test for the fixed integration.
2. [x] An example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [x] **Lint and test**: Ran `make format`, `make lint` and `make test`
from the root of the package(s) I've modified.

Hello 

* I Identified an issue in the mistral package where the callback
streaming (see on_llm_new_token) was not functioning correctly when the
streaming parameter was set to True and call with `ainvoke`.
* The root cause of the problem was the streaming not taking into
account. ( I think it's an oversight )
* To resolve the issue, I added the `streaming` attribut.
* Now, the callback with streaming works as expected when the streaming
parameter is set to True.

## How to reproduce

```
from langchain_mistralai.chat_models import ChatMistralAI
chain = ChatMistralAI(streaming=True)
# Add a callback
chain.ainvoke(..)

# Oberve on_llm_new_token
# Now, the callback is given as streaming tokens, before it was in grouped format.
```

Co-authored-by: Erick Friis <erick@langchain.dev>
2024-07-01 20:53:09 +00:00
Jacob Lee
f4b2e553e7 docs[patch]: Update Unstructured loader notebooks and install instructions (#23726)
CC @baskaryan @MthwRobinson
2024-07-01 13:36:48 -07:00
Eugene Yurtsev
5d2262af34 community[patch]: Update root_validators to use pre=True or pre=False (#23731)
Update root_validators in preparation for pydantic 2 migration.
2024-07-01 20:10:15 +00:00
Erick Friis
6019147b66 infra: filter template check (#23727) 2024-07-01 13:00:33 -07:00
Eugene Yurtsev
ebcee4f610 core[patch]: Add versionadded to get_by_ids (#23728) 2024-07-01 15:16:00 -04:00
Eugene Yurtsev
e800f6bb57 core[minor]: Create BaseMedia object (#23639)
This PR implements a BaseContent object from which Document and Blob
objects will inherit proposed here:
https://github.com/langchain-ai/langchain/pull/23544

Alternative: Create a base object that only has an identifier and no
metadata.

For now decided against it, since that refactor can be done at a later
time. It also feels a bit odd since our IDs are optional at the moment.

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2024-07-01 15:07:30 -04:00
Chip Davis
04bc5f1a95 partners[azure]: fix having openai_api_base set for other packages (#22068)
This fix is for #21726. When having other packages installed that
require the `openai_api_base` environment variable, users are not able
to instantiate the AzureChatModels or AzureEmbeddings.

This PR adds a new value `ignore_openai_api_base` which is a bool. When
set to True, it sets `openai_api_base` to `None`

Two new tests were added for the `test_azure` and a new file
`test_azure_embeddings`

A different approach may be better for this. If you can think of better
logic, let me know and I can adjust it.

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2024-07-01 18:35:20 +00:00
Nuno Campos
b36e95caa9 core[patch]: use async messages where possible (#23718)
Fix #23716

Thank you for contributing to LangChain!

- [ ] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
  - Example: "community: add foobar LLM"


- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
    - **Description:** a description of the change
    - **Issue:** the issue # it fixes, if applicable
    - **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!


- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.


- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.

If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.

---------

Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2024-07-01 18:33:05 +00:00
Spyros Avlonitis
8cfb2fa1b7 core[minor]: Add maxsize for InMemoryCache (#23405)
This PR introduces a maxsize parameter for the InMemoryCache class,
allowing users to specify the maximum number of items to store in the
cache. If the cache exceeds the specified maximum size, the oldest items
are removed. Additionally, comprehensive unit tests have been added to
ensure all functionalities are thoroughly tested. The tests are written
using pytest and cover both synchronous and asynchronous methods.

Twitter: @spyrosavl

---------

Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2024-07-01 14:21:21 -04:00
maang-h
96af8f31ae community[patch]: Invoke callback prior to yielding token (#23638)
- **Description:** Invoke callback prior to yielding token in stream and
astream methods for ChatZhipuAI.
- **Issue:** the issue #16913
2024-07-01 18:12:24 +00:00
Eugene Yurtsev
b5aef4cf97 core[patch]: Fix llm string representation for serializable models (#23416)
Fix LLM string representation for serializable objects.

Fix for issue: https://github.com/langchain-ai/langchain/issues/23257

The llm string of serializable chat models is the serialized
representation of the object. LangChain serialization dumps some basic
information about non serializable objects including their repr() which
includes an object id.

This means that if a chat model has any non serializable fields (e.g., a
cache), then any new instantiation of the those fields will change the
llm representation of the chat model and cause chat misses.

i.e., re-instantiating a postgres cache would result in cache misses!
2024-07-01 14:06:33 -04:00
nobbbbby
3904f2cd40 core: fix NameError (#23658)
**Description:** In the chat_models module of the language model, the
import statement for BaseModel has been moved from the conditionally
imported section to the main import area, fixing `NameError `.
**Issue:** fix `NameError `
2024-07-01 17:51:23 +00:00
Jacob Lee
d2c7379f1c 👥 Update LangChain people data (#23697)
👥 Update LangChain people data

---------

Co-authored-by: github-actions <github-actions@github.com>
2024-07-01 17:42:55 +00:00
Jordy Jackson Antunes da Rocha
a50eabbd48 experimental: LLMGraphTransformer add missing conditional adding restrictions to prompts for LLM that do not support function calling (#22793)
- Description: Modified the prompt created by the function
`create_unstructured_prompt` (which is called for LLMs that do not
support function calling) by adding conditional checks that verify if
restrictions on entity types and rel_types should be added to the
prompt. If the user provides a sufficiently large text, the current
prompt **may** fail to produce results in some LLMs. I have first seen
this issue when I implemented a custom LLM class that did not support
Function Calling and used Gemini 1.5 Pro, but I was able to replicate
this issue using OpenAI models.

By loading a sufficiently large text
```python
from langchain_community.llms import Ollama
from langchain_openai import ChatOpenAI, OpenAI
from langchain_core.prompts import PromptTemplate
import re
from langchain_experimental.graph_transformers import LLMGraphTransformer
from langchain_core.documents import Document

with open("texto-longo.txt", "r") as file:
    full_text = file.read()
    partial_text = full_text[:4000]

documents = [Document(page_content=partial_text)] # cropped to fit GPT 3.5 context window
```

And using the chat class (that has function calling)
```python
chat_openai = ChatOpenAI(model="gpt-3.5-turbo", model_kwargs={"seed": 42})
chat_gpt35_transformer = LLMGraphTransformer(llm=chat_openai)
graph_from_chat_gpt35 = chat_gpt35_transformer.convert_to_graph_documents(documents)
```
It works:
```
>>> print(graph_from_chat_gpt35[0].nodes)
[Node(id="Jesu, Joy of Man's Desiring", type='Music'), Node(id='Godel', type='Person'), Node(id='Johann Sebastian Bach', type='Person'), Node(id='clever way of encoding the complicated expressions as numbers', type='Concept')]
```

But if you try to use the non-chat LLM class (that does not support
function calling)
```python
openai = OpenAI(
    model="gpt-3.5-turbo-instruct",
    max_tokens=1000,
)
gpt35_transformer = LLMGraphTransformer(llm=openai)
graph_from_gpt35 = gpt35_transformer.convert_to_graph_documents(documents)
```

It uses the prompt that has issues and sometimes does not produce any
result
```
>>> print(graph_from_gpt35[0].nodes)
[]
```

After implementing the changes, I was able to use both classes more
consistently:

```shell
>>> chat_gpt35_transformer = LLMGraphTransformer(llm=chat_openai)
>>> graph_from_chat_gpt35 = chat_gpt35_transformer.convert_to_graph_documents(documents)
>>> print(graph_from_chat_gpt35[0].nodes)
[Node(id="Jesu, Joy Of Man'S Desiring", type='Music'), Node(id='Johann Sebastian Bach', type='Person'), Node(id='Godel', type='Person')]
>>> gpt35_transformer = LLMGraphTransformer(llm=openai)
>>> graph_from_gpt35 = gpt35_transformer.convert_to_graph_documents(documents)
>>> print(graph_from_gpt35[0].nodes)
[Node(id='I', type='Pronoun'), Node(id="JESU, JOY OF MAN'S DESIRING", type='Song'), Node(id='larger memory', type='Memory'), Node(id='this nice tree structure', type='Structure'), Node(id='how you can do it all with the numbers', type='Process'), Node(id='JOHANN SEBASTIAN BACH', type='Composer'), Node(id='type of structure', type='Characteristic'), Node(id='that', type='Pronoun'), Node(id='we', type='Pronoun'), Node(id='worry', type='Verb')]
```

The results are a little inconsistent because the GPT 3.5 model may
produce incomplete json due to the token limit, but that could be solved
(or mitigated) by checking for a complete json when parsing it.
2024-07-01 17:33:51 +00:00
Eugene Yurtsev
4f1821db3e core[minor]: Add get_by_ids to vectorstore interface (#23594)
This PR adds a part of the indexing API proposed in this RFC
https://github.com/langchain-ai/langchain/pull/23544/files.

It allows rolling out `get_by_ids` which should be uncontroversial to
existing vectorstores without introducing new abstractions.

The semantics for this method depend on the ability of identifying
returned documents using the new optional ID field on documents:
https://github.com/langchain-ai/langchain/pull/23411

Alternatives are:

1. Relax the sequence requirement

```python
def get_by_ids(self, ids: Iterable[str], /) -> Iterable[Document]:
```

Rejected:
- implementations are more likley to start batching with bad defaults
- users would need to call list() or we'd need to introduce another
convenience method

2. Support more kwargs

```python

def get_by_ids(self, ids: Sequence[str], /, **kwargs) -> List[Document]:
...
```

Rejected: 
- No need for `batch` parameter since IDs is a sequence
- Output cannot be customized since `Document` is fixed. (e.g.,
parameters could be useful to grab extra metadata like the vector that
was indexed with the Document or to project a part of the document)
2024-07-01 13:04:33 -04:00
Valentin
bf402f902e community: Fix LanceDB similarity search bug (#23591)
**Description:** LanceDB didn't allow querying the database using
similarity score thresholds because the metrics value was missing. This
PR simply fixes that bug.
**Issue:** not applicable
**Dependencies:** none
**Twitter handle:** not available

---------

Co-authored-by: ccurme <chester.curme@gmail.com>
2024-07-01 16:33:45 +00:00
Bagatur
389a568f9a standard-tests[patch]: add anthropic format integration test (#23717) 2024-07-01 11:06:04 -04:00
Rafael Pereira
4b9517db85 Jira: Allow Jira access using only the token (#23708)
- **Description:** At the moment the Jira wrapper only accepts the the
usage of the Username and Password/Token at the same time. However Jira
allows the connection using only is useful for enterprise context.

Co-authored-by: rpereira <rafael.pereira@criticalsoftware.com>
2024-07-01 13:13:51 +00:00
Francesco Kruk
7538f3df58 Update jina embedding notebook to show multimodal capability more clearly (#23702)
After merging the [PR #22594 to include Jina AI multimodal capabilities
in the Langchain
documentation](https://github.com/langchain-ai/langchain/pull/22594), we
updated the notebook to showcase the difference between text and
multimodal capabilities more clearly.
2024-07-01 09:13:19 -04:00
Tim Van Wassenhove
24916c6703 community: Register pandas df in duckdb when creating vector_store (#23690)
- **Description:** Register pandas df in duckdb when creating
vector_store
- **Issue:** Resolves #23308
- **Dependencies:** None
- **Twitter handle:** @timvw

Co-authored-by: Tim Van Wassenhove <tim.van.wassenhove@telenetgroup.be>
2024-07-01 09:12:06 -04:00
Sourav Biswal
b60df8bb4f Update chatbot.ipynb (#23688)
DOC: missing parenthesis #23687

Thank you for contributing to LangChain!

- [x] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
  - Example: "community: add foobar LLM"


- [x] **PR message**: ***Delete this entire checklist*** and replace
with
    - **Description:** a description of the change
    - **Issue:** the issue # it fixes, if applicable
    - **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!


- [x] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.


- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.

If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
2024-07-01 13:00:34 +00:00
Jacob Lee
9604cb833b ci[patch]: Update people PR CI permissions (#23696)
CC @agola11
2024-06-30 22:25:08 -07:00
Bagatur
29aa9d6750 groq[patch]: Release 0.1.6 (#23655) 2024-06-29 07:35:23 -04:00
Bagatur
f2d0c13a15 fireworks[patch]: Release 0.1.4 (#23654) 2024-06-29 07:35:16 -04:00
Bagatur
9a5e35d1ba mistralai[patch]: Release 0.1.9 (#23653) 2024-06-29 07:35:09 -04:00
Bagatur
74321e546d infra: update release permissions (#23662) 2024-06-29 07:31:36 -04:00
Mateusz Szewczyk
a78ccb993c ibm: Add support for Chat Models (#22979) 2024-06-29 01:59:25 -07:00
Jacob Lee
16c59118eb docs[patch]: Adds short tracing how-tos and conceptual guide (#23657)
CC @agola11
2024-06-28 18:28:49 -07:00
Jacob Lee
c0bb26e85b docs[patch]: Typo fix (#23652) 2024-06-28 17:27:44 -07:00
Jacob Lee
72175c57bd docs[patch]: Fix docs bugs in response to feedback (#23649)
- Update Meta Llama 3 cookbook link
- Add prereq section and information on `messages_modifier` to LangGraph
migration guide
- Update `PydanticToolsParser` explanation and entrypoint in tool
calling guide
- Add more obvious warning to `OllamaFunctions`
- Fix Wikidata tool install flow
- Update Bedrock LLM initialization

@baskaryan can you add a bit of information on how to authenticate into
the `ChatBedrock` and `BedrockLLM` models? I wasn't able to figure it
out :(
2024-06-28 17:24:55 -07:00
Bagatur
af2c05e5f3 openai[patch]: Release 0.1.13 (#23651) 2024-06-28 17:10:30 -07:00
Bagatur
b63c7f10bc anthropic[patch]: Release 0.1.17 (#23650) 2024-06-28 17:07:08 -07:00
Bagatur
fc8fd49328 openai, anthropic, ...: with_structured_output to pass in explicit tool choice (#23645)
...community, mistralai, groq, fireworks

part of #23644
2024-06-28 16:39:53 -07:00
Bagatur
c5f35a72da docs: vllm pkg nit (#23648) 2024-06-28 16:09:36 -07:00
Bagatur
81064017a9 docs: azure openai docstring (#23643)
part of #22296
2024-06-28 15:15:58 -07:00
Bagatur
381aedcc61 docs: standardize azure openai page (#23642)
part of #22296
2024-06-28 15:15:41 -07:00
Vadym Barda
e8d77002ea core: add RemoveMessage (#23636)
This change adds a new message type `RemoveMessage`. This will enable
`langgraph` users to manually modify graph state (or have the graph
nodes modify the state) to remove messages by `id`

Examples:

* allow users to delete messages from state by calling

```python
graph.update_state(config, values=[RemoveMessage(id=state.values[-1].id)])
```

* allow nodes to delete messages

```python
graph.add_node("delete_messages", lambda state: [RemoveMessage(id=state[-1].id)])
```
2024-06-28 14:40:02 -07:00
ccurme
8fce8c6771 community: fix extended tests (#23640) 2024-06-28 16:35:38 -04:00
ccurme
5d93916665 openai[patch]: release 0.1.12 (#23641) 2024-06-28 19:51:16 +00:00
Jacob Lee
a032583b17 docs[patch]: Update diagrams (#23613) 2024-06-28 12:36:00 -07:00
ccurme
390ee8d971 standard-tests: add test for structured output (#23631)
- add test for structured output
- fix bug with structured output for Azure
- better testing on Groq (break out Mixtral + Llama3 and add xfails
where needed)
2024-06-28 15:01:40 -04:00
Eugene Yurtsev
6c1ba9731d docs: Resurface some methods in API reference and clarify note at top of Reference (#23633)
This PR modifies the API Reference in the following way:

1. Relist standard methods: invoke, ainvoke, batch, abatch,
batch_as_completed, abatch_as_completed, stream, astream,
astream_events. These are the main entry points for a lot of runnables,
so we'll keep them for each runnable.
2. Relist methods from Runnable Serializable: to_json,
configurable_fields, configurable_alternatives.
3. Expand the note in the API reference documentation to explain that
additional methods are available.
2024-06-28 12:31:37 -04:00
Brace Sproul
800b0ff3b9 docs[minor]: Hide langserve pages (#23618) 2024-06-28 08:25:08 -07:00
j pradhan
5f21eab491 community:perplexity[patch]: standardize init args (#21794)
updated request_timeout default alias value per related docstring.

Related to
[20085](https://github.com/langchain-ai/langchain/issues/20085)

Thank you for contributing to LangChain!

---------

Co-authored-by: ccurme <chester.curme@gmail.com>
2024-06-28 13:26:12 +00:00
mackong
11483b0fb8 community[patch]: set tool name for tongyi&qianfan llm (#22889)
- **Description:** The name of ToolMessage is default to None, which
makes tool message send to LLM likes
 ```json
{"role": "tool",
   "tool_call_id": "",
   "content": "{\"time\": \"12:12\"}",
   "name": null}
```
But the name seems essential for some LLMs like TongYi Qwen. so we need to set the name use agent_action's tool value.
  - **Issue:** N/A
  - **Dependencies:** N/A
2024-06-28 09:17:05 -04:00
Leonid Ganeline
e4caa41aa9 community: docstrings toolkits (#23616)
Added missed docstrings. Formatted docstrings to the consistent form.
2024-06-28 08:40:52 -04:00
clement.l
19eb82e68b docs: Fix link in LLMChain tutorial (#23620)
Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-06-28 03:59:24 +00:00
Bagatur
bd68a38723 docs: update chatmodel.with_structured_output feat in table (#23610) 2024-06-27 20:38:49 -07:00
ccurme
adf2dc13de community: fix lint (#23611) 2024-06-27 22:12:16 +00:00
Bagatur
ef0593db58 docs: tool call run model (#23609) 2024-06-27 22:02:12 +00:00
Leonid Ganeline
75a44fe951 core: chat_* docstrings (#23412)
Added missed docstrings. Formatted docstrings to the consistent form.
2024-06-27 17:29:38 -04:00
Bagatur
3b1fcb2a65 chroma[patch]: Release 0.1.2 (#23604) 2024-06-27 13:58:24 -07:00
Eugene Yurtsev
68f348357e community[patch]: Test InMemoryVectorStore with RWAPI test suite (#23603)
Add standard test suite to InMemoryVectorStore implementation.
2024-06-27 16:43:43 -04:00
Eugene Yurtsev
da7beb1c38 core[patch]: Add unit test when catching generator exit (#23402)
This pr adds a unit test for:
https://github.com/langchain-ai/langchain/pull/22662
And narrows the scope where the exception is caught.
2024-06-27 20:36:07 +00:00
NG Sai Prasanth
5e6d23f27d community: Standardise tool import for arxiv & semantic scholar (#23578)
- **Description:** Fixing the way users have to import Arxiv and
Semantic Scholar
- **Issue:** Changed to use `from langchain_community.tools.arxiv import
ArxivQueryRun` instead of `from langchain_community.tools.arxiv.tool
import ArxivQueryRun`
    - **Dependencies:** None
    - **Twitter handle:** Nope
2024-06-27 16:35:50 -04:00
ccurme
d04f657424 langchain[patch]: deprecate ConversationChain (#23504)
Would like some feedback on how to best incorporate legacy memory
objects into `RunnableWithMessageHistory`.
2024-06-27 16:32:44 -04:00
Ayo Ayibiowu
c6f700b7cb fix(community): allow support for disabling max_tokens args (#21534)
This PR fixes an issue with not able to use unlimited/infinity tokens
from the respective provider for the LiteLLM provider.

This is an issue when working in an agent environment that the token
usage can drastically increase beyond the initial value set causing
unexpected behavior.
2024-06-27 16:28:59 -04:00
WU LIFU
2a0d6788f7 docs[patch]: extraction_examples fix the examples given to the llm (#23393)
Descriptions: currently in the
[doc](https://python.langchain.com/v0.2/docs/how_to/extraction_examples/)
it sets "Data" as the LLM's structured output schema, however its
examples given to the LLM output's "Person", which causes the LLM to be
confused and might occasionally return "Person" as the function to call

issue: #23383

Co-authored-by: Lifu Wu <lifu@nextbillion.ai>
2024-06-27 16:22:26 -04:00
Leonid Ganeline
c0fdbaac85 langchain: docstrings in agents root (#23561)
Added missed docstrings. Formatted docstrings to the consistent form.
2024-06-27 15:52:18 -04:00
Leonid Ganeline
b64c4b4750 langchain: docstrings agents nested (#23598)
Added missed docstrings. Formatted docstrings to the consistent form.

---------

Co-authored-by: ccurme <chester.curme@gmail.com>
2024-06-27 19:49:41 +00:00
mackong
70834cd741 community[patch]: support convert FunctionMessage for Tongyi (#23569)
**Description:** For function call agent with Tongyi, cause the
AgentAction will be converted to FunctionMessage by

47f69fe0d8/libs/core/langchain_core/agents.py (L188)
But now Tongyi's *convert_message_to_dict* doesn't support
FunctionMessage

47f69fe0d8/libs/community/langchain_community/chat_models/tongyi.py (L184-L207)
Then next round conversation will be failed by the *TypeError*
exception.

This patch adds the support to convert FunctionMessage for Tongyi.

**Issue:** N/A
**Dependencies:** N/A
2024-06-27 15:49:26 -04:00
Bagatur
d45ece0e58 chroma[patch]: loosen py req (#23599)
currently causes issues if you try adding to a project that supports
py<4
2024-06-27 12:40:59 -07:00
Mohammad Mohtashim
4796b7eb15 [Community [HuggingFace]]: Small Fix for ChatHuggingFace. (#22925)
- **Description:** A small fix where I moved the `available_endpoints`
in order to avoid the token error in the below issue. Also I have added
conftest file and updated the `scripy`,`numpy` versions to support newer
python versions in poetry files.
- **Issue:** #22804

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
Co-authored-by: ccurme <chester.curme@gmail.com>
2024-06-27 19:37:20 +00:00
Jacob Lee
644723adda docs[patch]: Add search keyword, update contribution guide (#23602)
CC @vbarda @hinthornw
2024-06-27 12:36:02 -07:00
ccurme
bffc3c24a0 openai[patch]: release 0.1.11 (#23596) 2024-06-27 18:48:40 +00:00
ccurme
a1520357c8 openai[patch]: revert addition of "name" to supported properties for tool messages (#23600) 2024-06-27 18:40:04 +00:00
joshc-ai21
16a293cc3a Small bug fixes (#23353)
Small bug fixes according to your comments

---------

Signed-off-by: Joffref <mariusjoffre@gmail.com>
Signed-off-by: Rahul Tripathi <rauhl.psit.ec@gmail.com>
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
Co-authored-by: Baskar Gopinath <73015364+baskargopinath@users.noreply.github.com>
Co-authored-by: Chester Curme <chester.curme@gmail.com>
Co-authored-by: Mathis Joffre <51022808+Joffref@users.noreply.github.com>
Co-authored-by: Baur <baur.krykpayev@gmail.com>
Co-authored-by: Nuradil <nuradil.maksut@icloud.com>
Co-authored-by: Nuradil <133880216+yaksh0nti@users.noreply.github.com>
Co-authored-by: Jacob Lee <jacoblee93@gmail.com>
Co-authored-by: Rave Harpaz <rave.harpaz@oracle.com>
Co-authored-by: RHARPAZ <RHARPAZ@RHARPAZ-5750.us.oracle.com>
Co-authored-by: Arthur Cheng <arthur.cheng@oracle.com>
Co-authored-by: Tomaz Bratanic <bratanic.tomaz@gmail.com>
Co-authored-by: RUO <61719257+comsa33@users.noreply.github.com>
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
Co-authored-by: Luis Rueda <userlerueda@gmail.com>
Co-authored-by: Jib <Jibzade@gmail.com>
Co-authored-by: Eugene Yurtsev <eugene@langchain.dev>
Co-authored-by: S M Zia Ur Rashid <smziaurrashid@gmail.com>
Co-authored-by: Ikko Eltociear Ashimine <eltociear@gmail.com>
Co-authored-by: yuncliu <lyc1990@qq.com>
Co-authored-by: wenngong <76683249+wenngong@users.noreply.github.com>
Co-authored-by: gongwn1 <gongwn1@lenovo.com>
Co-authored-by: Mirna Wong <89008547+mirnawong1@users.noreply.github.com>
Co-authored-by: Rahul Triptahi <rahul.psit.ec@gmail.com>
Co-authored-by: Rahul Tripathi <rauhl.psit.ec@gmail.com>
Co-authored-by: maang-h <55082429+maang-h@users.noreply.github.com>
Co-authored-by: asafg <asafg@ai21.com>
Co-authored-by: Asaf Joseph Gardin <39553475+Josephasafg@users.noreply.github.com>
2024-06-27 17:58:22 +00:00
panwg3
9308bf32e5 spelling errors in words (#23559)
Thank you for contributing to LangChain!

- [ ] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
  - Example: "community: add foobar LLM"


- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
    - **Description:** a description of the change
    - **Issue:** the issue # it fixes, if applicable
    - **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!


- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.


- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.

If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.

---------

Co-authored-by: ccurme <chester.curme@gmail.com>
2024-06-27 17:16:22 +00:00
clement.l
182fc06769 docs: Fix typo in LLMChain tutorial (#23593)
When using `model_with_tools.invoke`, the `content` returns as an empty
string.
For more details, please refer to my [trace
log](https://smith.langchain.com/public/6fd24bc4-86c4-4627-8565-9a8adaf4ad7d/r).
2024-06-27 17:01:05 +00:00
ccurme
5536420bee openai[patch]: add comment (#23595)
Forgot to push this to
https://github.com/langchain-ai/langchain/pull/23551
2024-06-27 16:47:14 +00:00
andrewmjc
9f0f3c7e29 partners[openai]: Add name field to tool message to match OpenAI spec (#23551)
Discovered alongside @t968914

  - **Description:**
According to OpenAI docs, tool messages (response from calling tools)
must have a 'name' field.

https://cookbook.openai.com/examples/how_to_call_functions_with_chat_models

  - **Issue:** N/A (as of right now)
  - **Dependencies:** N/A
  - **Twitter handle:** N/A

Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.

If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
2024-06-27 12:42:36 -04:00
Krista Pratico
85e36b0f50 partners[openai]: only add stream_options to kwargs if requested (#23552)
- **Description:** This PR
https://github.com/langchain-ai/langchain/pull/22854 added the ability
to pass `stream_options` through to the openai service to get token
usage information in the response. Currently OpenAI supports this
parameter, but Azure OpenAI does not yet. For users who proxy their
calls to both services through ChatOpenAI, this breaks when targeting
Azure OpenAI (see related discussion opened in openai-python:
https://github.com/openai/openai-python/issues/1469#issuecomment-2192658630).

> Error code: 400 - {'error': {'code': None, 'message': 'Unrecognized
request argument supplied: stream_options', 'param': None, 'type':
'invalid_request_error'}}

This PR fixes the issue by only adding `stream_options` to the request
if it's actually requested by the user (i.e. set to True). If I'm not
mistaken, we have a test case that already covers this scenario:
https://github.com/langchain-ai/langchain/blob/master/libs/partners/openai/tests/integration_tests/chat_models/test_base.py#L398-L399

- **Issue:** Issue opened in openai-python:
https://github.com/openai/openai-python/issues/1469
  - **Dependencies:** N/A
  - **Twitter handle:** N/A

---------

Co-authored-by: Chester Curme <chester.curme@gmail.com>
2024-06-27 12:23:05 -04:00
Eugene Yurtsev
96b72edac8 core[minor]: Add optional ID field to Document schema (#23411)
This PR adds an optional ID field to the document schema.

# 1. Optional or Required

- An optional field will will requrie additional checking for the type
in user code (annoying).
- However, vectorstores currently don't respect this field. So if we
make it
required and start returning random UUIDs that might be even more
confusing
  to users.


**Proposal**: Start with Optional and convert to Required (with default
set to uuid4()) in 1-2 major releases.


# 2. Override __str__ or generic solution in prompts

Overriding __str__ as a simple way to avoid changing user code that
relies on
default str(document) in prompts. 


I considered rolling out a more general solution in prompts
(https://github.com/langchain-ai/langchain/pull/8685),
but to do that we need to:

1. Make things serializable
2. The more general solution would likely need to be backwards
compatible as well
3. It's unclear that one wants to format a List[int] in the same way as
List[Document]. The former should be `,` seperated (likely), the latter
   should be `---` separated (likely).


**Proposal** Start with __str__ override and focus on the vectorstore
APIs, we generalize prompts later
2024-06-27 12:15:58 -04:00
ccurme
5bfcb898ad openai[patch]: bump sdk version (#23592)
Tests failing with `TypeError: Completions.create() got an unexpected
keyword argument 'parallel_tool_calls'`
2024-06-27 11:57:24 -04:00
Jacob Lee
60fc15a56b docs[patch]: Update docs introduction and README (#23558)
CC @hwchase17 @baskaryan
2024-06-27 08:51:43 -07:00
panwg3
2445b997ee Correction of incorrect words (#23557)
Thank you for contributing to LangChain!

- [ ] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
  - Example: "community: add foobar LLM"


- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
    - **Description:** a description of the change
    - **Issue:** the issue # it fixes, if applicable
    - **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!


- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.


- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.

If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
2024-06-27 15:13:15 +00:00
Aditya
6721b991ab docs: realigned sections for langchain-google-vertexai (#23584)
- **Description:** Re-aligned sections in documentation of Vertex AI
LLMs
    - **Issue:** NA
    - **Dependencies:** NA
    - **Twitter handle:**NA

---------

Co-authored-by: adityarane@google.com <adityarane@google.com>
Co-authored-by: ccurme <chester.curme@gmail.com>
2024-06-27 10:42:32 -04:00
mackong
daf733b52e langchain[minor]: fix comment typo (#23564)
**Description:** fix typo of comment
**Issue:** N/A
**Dependencies:** N/A
2024-06-27 10:09:18 -04:00
Jacob Lee
47f69fe0d8 docs[patch]: Add ReAct agent conceptual guide, improve search (#23554)
@baskaryan
2024-06-26 19:02:03 -07:00
Jacob Lee
672fcbb8dc docs[patch]: Fix bad link format (#23553) 2024-06-26 16:43:26 -07:00
Jacob Lee
13254715a2 docs[patch]: Update installation guide with diagram (#23548)
CC @baskaryan
2024-06-26 15:10:22 -07:00
Leonid Ganeline
2c9b84c3a8 core[patch]: docstrings agents (#23502)
Added missed docstrings. Formatted docstrings to the consistent form.
2024-06-26 17:50:48 -04:00
Jacob Lee
79d8556c22 docs[patch]: Address feedback from docs users (#23550)
- Updates chat few shot prompt tutorial to show off a more cohesive
example
- Fix async Chromium loader guide
- Fix Excel loader install instructions
- Reformat Html2Text page
- Add install instructions to Azure OpenAI embeddings page
- Add missing dep install to SQL QA tutorial

@baskaryan
2024-06-26 14:47:01 -07:00
Leonid Ganeline
2a5d59b3d7 core[patch]: callbacks docstrings (#23375)
Added missed docstrings. Formatted docstrings to the consistent form.
2024-06-26 17:11:06 -04:00
Leonid Ganeline
1141b08eb8 core: docstrings example_selectors (#23542)
Added missed docstrings. Formatted docstrings to the consistent form.
2024-06-26 17:10:40 -04:00
wenngong
3bf1d98dbf langchain[patch]: update agent and chains modules root_validators (#23256)
Description: update agent and chains modules Pydantic root_validators.
Issue: the issue #22819

---------

Co-authored-by: gongwn1 <gongwn1@lenovo.com>
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
Co-authored-by: Eugene Yurtsev <eugene@langchain.dev>
2024-06-26 17:09:50 -04:00
Bagatur
a7ab93479b anthropic[patch]: Release 0.1.16 (#23549) 2024-06-26 20:49:13 +00:00
Jib
c0fcf76e93 LangChain-MongoDB: [Experimental] Driver-side index creation helper (#19359)
## Description
Created a helper method to make vector search indexes via client-side
pymongo.

**Recent Update** -- Removed error suppressing/overwriting layer in
favor of letting the original exception provide information.

## ToDo's
- [x] Make _wait_untils for integration test delete index
functionalities.
- [x] Add documentation for its use. Highlight it's experimental
- [x] Post Integration Test Results in a screenshot
- [x] Get review from MongoDB internal team (@shaneharvey, @blink1073 ,
@NoahStapp , @caseyclements)



- [x] **Add tests and docs**: If you're adding a new integration, please
include
1. Added new integration tests. Not eligible for unit testing since the
operation is Atlas Cloud specific.
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.

![image](https://github.com/langchain-ai/langchain/assets/2887713/a3fc8ee1-e04c-4976-accc-fea0eeae028a)


- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
2024-06-26 15:07:28 -04:00
Jacob Lee
b1dfb8ea1e docs[patch]: Update contribution guides (#23382)
CC @vbarda @hwchase17
2024-06-26 11:12:41 -07:00
maang-h
5070004e8a docs: Update Tongyi ChatModel docstring (#23540)
- **Description:** Update Tongyi ChatModel rich docstring
- **Issue:** the issue #22296
2024-06-26 13:07:13 -04:00
Nuradil
2f976c5174 community: fix code example in ZenGuard docs (#23541)
Thank you for contributing to LangChain!

- [X] **PR title**: "community: fix code example in ZenGuard docs"


- [X] **PR message**: 
- **Description:** corrected the docs by indicating in the code example
that the tool accepts a list of prompts instead of just one


- [X] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

Thank you for review

---------

Co-authored-by: Baur <baur.krykpayev@gmail.com>
2024-06-26 13:05:59 -04:00
yonarw
6d0ebbca1e community: SAP HANA Vector Engine fix for latest HANA release (#23516)
- **Description:** This PR fixes an issue with SAP HANA Cloud QRC03
version. In that version the number to indicate no length being set for
a vector column changed from -1 to 0. The change in this PR support both
behaviours (old/new).
- **Dependencies:** No dependencies have been introduced.

- **Tests**:  The change is covered by previous unit tests.
2024-06-26 13:15:51 +00:00
Roman Solomatin
1e3e05b0c3 openai[patch]: add support for extra_body (#23404)
**Description:** Add support passing extra_body parameter

Some OpenAI compatible API's have additional parameters (for example
[vLLM](https://docs.vllm.ai/en/latest/serving/openai_compatible_server.html#extra-parameters))
that can be passed thought `extra_body`. Same question in
https://github.com/openai/openai-python/issues/767

<!--
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
-->
2024-06-26 13:11:59 +00:00
Alireza Kashani
c39521b70d Update grobid.py (#23399)
fixed potential `IndexError: list index out of range` in case there is
no title

Thank you for contributing to LangChain!

- [ ] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
  - Example: "community: add foobar LLM"


- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
    - **Description:** a description of the change
    - **Issue:** the issue # it fixes, if applicable
    - **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!


- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.


- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.

If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
2024-06-26 09:11:02 -04:00
Qingchuan Hao
ee282a1d2e community: add missing link (#23526) 2024-06-26 09:06:28 -04:00
Lincoln Stein
c314222796 Add a conversation memory that combines a (optionally persistent) vectorstore history with a token buffer (#22155)
**langchain: ConversationVectorStoreTokenBufferMemory**

-**Description:** This PR adds ConversationVectorStoreTokenBufferMemory.
It is similar in concept to ConversationSummaryBufferMemory. It
maintains an in-memory buffer of messages up to a preset token limit.
After the limit is hit timestamped messages are written into a
vectorstore retriever rather than into a summary. The user's prompt is
then used to retrieve relevant fragments of the previous conversation.
By persisting the vectorstore, one can maintain memory from session to
session.
-**Issue:** n/a
-**Dependencies:** none
-**Twitter handle:** Please no!!!
- [X] **Add tests and docs**: I looked to see how the unit tests were
written for the other ConversationMemory modules, but couldn't find
anything other than a test for successful import. I need to know whether
you are using pytest.mock or another fixture to simulate the LLM and
vectorstore. In addition, I would like guidance on where to place the
documentation. Should it be a notebook file in docs/docs?

- [X] **Lint and test**: I am seeing some linting errors from a couple
of modules unrelated to this PR.

If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.

---------

Co-authored-by: Lincoln Stein <lstein@gmail.com>
Co-authored-by: isaac hershenson <ihershenson@hmc.edu>
2024-06-25 20:17:10 -07:00
Bagatur
32f8f39974 core[patch]: use args_schema doc for tool description (#23503) 2024-06-25 15:26:35 -07:00
ccurme
6f7fe82830 text-splitters: release 0.2.2 (#23508) 2024-06-25 18:26:05 -04:00
ccurme
62b16fcc6b experimental: release 0.0.62 (#23507) 2024-06-25 22:01:35 +00:00
ccurme
99ce84ef23 community: release 0.2.6 (#23501) 2024-06-25 21:29:52 +00:00
ccurme
03c41e725e langchain: release 0.2.6 (#23426) 2024-06-25 21:03:41 +00:00
ccurme
86ca44d451 core: release 0.2.10 (#23420) 2024-06-25 16:26:31 -04:00
Isaac Francisco
85f5d14cef [docs]: split up tool docs (#22919) 2024-06-25 13:15:08 -07:00
ccurme
f788d0982d docs: update trim messages guide (#23418)
- rerun to remove warnings following
https://github.com/langchain-ai/langchain/pull/23363
- `raise` -> `return`
2024-06-25 19:50:53 +00:00
ccurme
c9619349d6 docs: rerun chatbot tutorial to remove warnings (#23417) 2024-06-25 19:26:54 +00:00
Nuradil
c93d9e66e4 Community: Update and fix ZenGuardTool docs and add ZenguardTool to init files (#23415)
Thank you for contributing to LangChain!

- [x] **PR title**: "community: update docs and add tool to init.py"

- [x] **PR message**: 
- **Description:** Fixed some errors and comments in the docs and added
our ZenGuardTool and additional classes to init.py for easy access when
importing
- **Question:** when will you update the langchain-community package in
pypi to make our tool available?


- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

Thank you for review!

---------

Co-authored-by: Baur <baur.krykpayev@gmail.com>
2024-06-25 19:26:32 +00:00
William FH
8955bc1866 [Core] Logging: Suppress missing parent warning (#23363) 2024-06-25 14:57:23 -04:00
ccurme
730c551819 core[patch]: export tool output parsers from langchain_core.output_parsers (#23305)
These currently read off AIMessage.tool_calls, and only fall back to
OpenAI parsing if tool calls aren't populated.

Importing these from `openai_tools` (e.g., in our [tool calling
docs](https://python.langchain.com/v0.2/docs/how_to/tool_calling/#tool-calls))
can lead to confusion.

After landing, would need to release core and update docs.
2024-06-25 14:40:42 -04:00
Eugene Yurtsev
7e9e69c758 core[patch]: Add unit test for str and repr for Document (#23414) 2024-06-25 18:28:21 +00:00
383 changed files with 12515 additions and 5359 deletions

View File

@@ -547,6 +547,7 @@ if __name__ == "__main__":
"obi1kenobi",
"langchain-infra",
"jacoblee93",
"isahers1",
"dqbd",
"bracesproul",
"akira",

View File

@@ -135,6 +135,7 @@ jobs:
- release-notes
uses:
./.github/workflows/_test_release.yml
permissions: write-all
with:
working-directory: ${{ inputs.working-directory }}
dangerous-nonmaster-release: ${{ inputs.dangerous-nonmaster-release }}

View File

@@ -26,6 +26,11 @@ jobs:
python-version: '3.10'
- id: files
uses: Ana06/get-changed-files@v2.2.0
with:
filter: |
*.ipynb
*.md
*.mdx
- name: Check new docs
run: |
python docs/scripts/check_templates.py ${{ steps.files.outputs.added }}

View File

@@ -16,6 +16,7 @@ jobs:
langchain-people:
if: github.repository_owner == 'langchain-ai'
runs-on: ubuntu-latest
permissions: write-all
steps:
- name: Dump GitHub context
env:

View File

@@ -38,24 +38,25 @@ conda install langchain -c conda-forge
For these applications, LangChain simplifies the entire application lifecycle:
- **Open-source libraries**: Build your applications using LangChain's [modular building blocks](https://python.langchain.com/v0.2/docs/concepts/#langchain-expression-language-lcel) and [components](https://python.langchain.com/v0.2/docs/concepts/#components). Integrate with hundreds of [third-party providers](https://python.langchain.com/v0.2/docs/integrations/platforms/).
- **Open-source libraries**: Build your applications using LangChain's open-source [building blocks](https://python.langchain.com/v0.2/docs/concepts#langchain-expression-language-lcel), [components](https://python.langchain.com/v0.2/docs/concepts), and [third-party integrations](https://python.langchain.com/v0.2/docs/integrations/platforms/).
Use [LangGraph](/docs/concepts/#langgraph) to build stateful agents with first-class streaming and human-in-the-loop support.
- **Productionization**: Inspect, monitor, and evaluate your apps with [LangSmith](https://docs.smith.langchain.com/) so that you can constantly optimize and deploy with confidence.
- **Deployment**: Turn any chain into a REST API with [LangServe](https://python.langchain.com/v0.2/docs/langserve/).
- **Deployment**: Turn your LangGraph applications into production-ready APIs and Assistants with [LangGraph Cloud](https://langchain-ai.github.io/langgraph/cloud/).
### Open-source libraries
- **`langchain-core`**: Base abstractions and LangChain Expression Language.
- **`langchain-community`**: Third party integrations.
- Some integrations have been further split into **partner packages** that only rely on **`langchain-core`**. Examples include **`langchain_openai`** and **`langchain_anthropic`**.
- **`langchain`**: Chains, agents, and retrieval strategies that make up an application's cognitive architecture.
- **[`LangGraph`](https://langchain-ai.github.io/langgraph/)**: A library for building robust and stateful multi-actor applications with LLMs by modeling steps as edges and nodes in a graph.
- **[`LangGraph`](https://langchain-ai.github.io/langgraph/)**: A library for building robust and stateful multi-actor applications with LLMs by modeling steps as edges and nodes in a graph. Integrates smoothly with LangChain, but can be used without it.
### Productionization:
- **[LangSmith](https://docs.smith.langchain.com/)**: A developer platform that lets you debug, test, evaluate, and monitor chains built on any LLM framework and seamlessly integrates with LangChain.
### Deployment:
- **[LangServe](https://python.langchain.com/v0.2/docs/langserve/)**: A library for deploying LangChain chains as REST APIs.
- **[LangGraph Cloud](https://langchain-ai.github.io/langgraph/cloud/)**: Turn your LangGraph applications into production-ready APIs and Assistants.
![Diagram outlining the hierarchical organization of the LangChain framework, displaying the interconnected parts across multiple layers.](docs/static/svg/langchain_stack.svg "LangChain Architecture Overview")
![Diagram outlining the hierarchical organization of the LangChain framework, displaying the interconnected parts across multiple layers.](docs/static/svg/langchain_stack_062024.svg "LangChain Architecture Overview")
## 🧱 What can you build with LangChain?
@@ -106,7 +107,7 @@ Retrieval Augmented Generation involves [loading data](https://python.langchain.
**🤖 Agents**
Agents allow an LLM autonomy over how a task is accomplished. Agents make decisions about which Actions to take, then take that Action, observe the result, and repeat until the task is complete. LangChain provides a [standard interface for agents](https://python.langchain.com/v0.2/docs/concepts/#agents) along with the [LangGraph](https://github.com/langchain-ai/langgraph) extension for building custom agents.
Agents allow an LLM autonomy over how a task is accomplished. Agents make decisions about which Actions to take, then take that Action, observe the result, and repeat until the task is complete. LangChain provides a [standard interface for agents](https://python.langchain.com/v0.2/docs/concepts/#agents), along with [LangGraph](https://github.com/langchain-ai/langgraph) for building custom agents.
## 📖 Documentation
@@ -120,10 +121,9 @@ Please see [here](https://python.langchain.com) for full documentation, which in
## 🌐 Ecosystem
- [🦜🛠️ LangSmith](https://docs.smith.langchain.com/): Tracing and evaluating your language model applications and intelligent agents to help you move from prototype to production.
- [🦜🕸️ LangGraph](https://langchain-ai.github.io/langgraph/): Creating stateful, multi-actor applications with LLMs, built on top of (and intended to be used with) LangChain primitives.
- [🦜🏓 LangServe](https://python.langchain.com/docs/langserve): Deploying LangChain runnables and chains as REST APIs.
- [LangChain Templates](https://python.langchain.com/v0.2/docs/templates/): Example applications hosted with LangServe.
- [🦜🛠️ LangSmith](https://docs.smith.langchain.com/): Trace and evaluate your language model applications and intelligent agents to help you move from prototype to production.
- [🦜🕸️ LangGraph](https://langchain-ai.github.io/langgraph/): Create stateful, multi-actor applications with LLMs. Integrates smoothly with LangChain, but can be used without it.
- [🦜🏓 LangServe](https://python.langchain.com/docs/langserve): Deploy LangChain runnables and chains as REST APIs.
## 💁 Contributing

File diff suppressed because one or more lines are too long

View File

@@ -61,7 +61,7 @@ render:
$(PYTHON) scripts/notebook_convert.py $(INTERMEDIATE_DIR) $(OUTPUT_NEW_DOCS_DIR)
md-sync:
rsync -avm --include="*/" --include="*.mdx" --include="*.md" --include="*.png" --exclude="*" $(INTERMEDIATE_DIR)/ $(OUTPUT_NEW_DOCS_DIR)
rsync -avm --include="*/" --include="*.mdx" --include="*.md" --include="*.png" --include="*/_category_.yml" --exclude="*" $(INTERMEDIATE_DIR)/ $(OUTPUT_NEW_DOCS_DIR)
generate-references:
$(PYTHON) scripts/generate_api_reference_links.py --docs_dir $(OUTPUT_NEW_DOCS_DIR)

File diff suppressed because one or more lines are too long

View File

@@ -3,6 +3,7 @@
.. NOTE:: {{objname}} implements the standard :py:class:`Runnable Interface <langchain_core.runnables.base.Runnable>`. 🏃
The :py:class:`Runnable Interface <langchain_core.runnables.base.Runnable>` has additional methods that are available on runnables, such as :py:meth:`with_types <langchain_core.runnables.base.Runnable.with_types>`, :py:meth:`with_retry <langchain_core.runnables.base.Runnable.with_retry>`, :py:meth:`assign <langchain_core.runnables.base.Runnable.assign>`, :py:meth:`bind <langchain_core.runnables.base.Runnable.bind>`, :py:meth:`get_graph <langchain_core.runnables.base.Runnable.get_graph>`, and more.
.. currentmodule:: {{ module }}

View File

@@ -3,6 +3,8 @@
.. NOTE:: {{objname}} implements the standard :py:class:`Runnable Interface <langchain_core.runnables.base.Runnable>`. 🏃
The :py:class:`Runnable Interface <langchain_core.runnables.base.Runnable>` has additional methods that are available on runnables, such as :py:meth:`with_types <langchain_core.runnables.base.Runnable.with_types>`, :py:meth:`with_retry <langchain_core.runnables.base.Runnable.with_retry>`, :py:meth:`assign <langchain_core.runnables.base.Runnable.assign>`, :py:meth:`bind <langchain_core.runnables.base.Runnable.bind>`, :py:meth:`get_graph <langchain_core.runnables.base.Runnable.get_graph>`, and more.
.. currentmodule:: {{ module }}
.. autopydantic_model:: {{ objname }}
@@ -17,6 +19,6 @@
:member-order: groupwise
:show-inheritance: True
:special-members: __call__
:exclude-members: construct, copy, dict, from_orm, parse_file, parse_obj, parse_raw, schema, schema_json, update_forward_refs, validate, json, is_lc_serializable, to_json, to_json_not_implemented, lc_secrets, lc_attributes, lc_id, get_lc_namespace, invoke, ainvoke, batch, abatch, batch_as_completed, abatch_as_completed, astream_log, stream, astream, astream_events, transform, atransform, get_output_schema, get_prompts, configurable_fields, configurable_alternatives, config_schema, map, pick, pipe, with_listeners, with_alisteners, with_config, with_fallbacks, with_types, with_retry, InputType, OutputType, config_specs, output_schema, get_input_schema, get_graph, get_name, input_schema, name, bind, assign
:exclude-members: construct, copy, dict, from_orm, parse_file, parse_obj, parse_raw, schema, schema_json, update_forward_refs, validate, json, is_lc_serializable, to_json_not_implemented, lc_secrets, lc_attributes, lc_id, get_lc_namespace, astream_log, transform, atransform, get_output_schema, get_prompts, config_schema, map, pick, pipe, with_listeners, with_alisteners, with_config, with_fallbacks, with_types, with_retry, InputType, OutputType, config_specs, output_schema, get_input_schema, get_graph, get_name, input_schema, name, bind, assign
.. example_links:: {{ objname }}

File diff suppressed because it is too large Load Diff

View File

@@ -51,8 +51,8 @@ A developer platform that lets you debug, test, evaluate, and monitor LLM applic
<ThemedImage
alt="Diagram outlining the hierarchical organization of the LangChain framework, displaying the interconnected parts across multiple layers."
sources={{
light: useBaseUrl('/svg/langchain_stack.svg'),
dark: useBaseUrl('/svg/langchain_stack_dark.svg'),
light: useBaseUrl('/svg/langchain_stack_062024.svg'),
dark: useBaseUrl('/svg/langchain_stack_062024_dark.svg'),
}}
title="LangChain Framework Overview"
/>
@@ -89,7 +89,7 @@ With LCEL, **all** steps are automatically logged to [LangSmith](https://docs.sm
Any chain created with LCEL can be easily deployed using [LangServe](/docs/langserve).
### Runnable interface
<span data-heading-keywords="invoke"></span>
<span data-heading-keywords="invoke,runnable"></span>
To make it as easy as possible to create custom chains, we've implemented a ["Runnable"](https://api.python.langchain.com/en/stable/runnables/langchain_core.runnables.base.Runnable.html#langchain_core.runnables.base.Runnable) protocol. Many LangChain components implement the `Runnable` protocol, including chat models, LLMs, output parsers, retrievers, prompt templates, and more. There are also several useful primitives for working with runnables, which you can read about below.
@@ -550,6 +550,28 @@ If you are still using AgentExecutor, do not fear: we still have a guide on [how
It is recommended, however, that you start to transition to LangGraph.
In order to assist in this we have put together a [transition guide on how to do so](/docs/how_to/migrate_agent).
#### ReAct agents
<span data-heading-keywords="react,react agent"></span>
One popular architecture for building agents is [**ReAct**](https://arxiv.org/abs/2210.03629).
ReAct combines reasoning and acting in an iterative process - in fact the name "ReAct" stands for "Reason" and "Act".
The general flow looks like this:
- The model will "think" about what step to take in response to an input and any previous observations.
- The model will then choose an action from available tools (or choose to respond to the user).
- The model will generate arguments to that tool.
- The agent runtime (executor) will parse out the chosen tool and call it with the generated arguments.
- The executor will return the results of the tool call back to the model as an observation.
- This process repeats until the agent chooses to respond.
There are general prompting based implementations that do not require any model-specific features, but the most
reliable implementations use features like [tool calling](/docs/how_to/tool_calling/) to reliably format outputs
and reduce variance.
Please see the [LangGraph documentation](https://langchain-ai.github.io/langgraph/) for more information,
or [this how-to guide](/docs/how_to/migrate_agent/) for specific information on migrating to LangGraph.
### Callbacks
LangChain provides a callbacks system that allows you to hook into the various stages of your LLM application. This is useful for logging, monitoring, streaming, and other tasks.
@@ -875,7 +897,7 @@ The standard interface consists of:
The following how-to guides are good practical resources for using function/tool calling:
- [How to return structured data from an LLM](/docs/how_to/structured_output/)
- [How to use a model to call tools](/docs/how_to/tool_calling/)
- [How to use a model to call tools](/docs/how_to/tool_calling)
For a full list of model providers that support tool calling, [see this table](/docs/integrations/chat/#advanced-features).
@@ -1033,7 +1055,7 @@ See several videos and cookbooks showcasing RAG with LangGraph:
- [Cookbooks for RAG using LangGraph](https://github.com/langchain-ai/langgraph/tree/main/examples/rag)
See our LangGraph RAG recipes with partners:
- [Meta](https://github.com/meta-llama/llama-recipes/tree/main/recipes/use_cases/agents/langchain)
- [Meta](https://github.com/meta-llama/llama-recipes/tree/main/recipes/3p_integrations/langchain)
- [Mistral](https://github.com/mistralai/cookbook/tree/main/third_party/langchain)
:::
@@ -1079,3 +1101,13 @@ This process is vital for building reliable applications.
- It allows you to track results over time and automatically run your evaluators on a schedule or as part of CI/Code
To learn more, check out [this LangSmith guide](https://docs.smith.langchain.com/concepts/evaluation).
### Tracing
<span data-heading-keywords="trace,tracing"></span>
A trace is essentially a series of steps that your application takes to go from input to output.
Traces contain individual steps called `runs`. These can be individual calls from a model, retriever,
tool, or sub-chains.
Tracing gives you observability inside your chains and agents, and is vital in diagnosing issues.
For a deeper dive, check out [this LangSmith conceptual guide](https://docs.smith.langchain.com/concepts/tracing).

View File

@@ -0,0 +1,35 @@
# General guidelines
Here are some things to keep in mind for all types of contributions:
- Follow the ["fork and pull request"](https://docs.github.com/en/get-started/exploring-projects-on-github/contributing-to-a-project) workflow.
- Fill out the checked-in pull request template when opening pull requests. Note related issues and tag relevant maintainers.
- Ensure your PR passes formatting, linting, and testing checks before requesting a review.
- If you would like comments or feedback on your current progress, please open an issue or discussion and tag a maintainer.
- See the sections on [Testing](/docs/contributing/code/setup#testing) and [Formatting and Linting](/docs/contributing/code/setup#formatting-and-linting) for how to run these checks locally.
- Backwards compatibility is key. Your changes must not be breaking, except in case of critical bug and security fixes.
- Look for duplicate PRs or issues that have already been opened before opening a new one.
- Keep scope as isolated as possible. As a general rule, your changes should not affect more than one package at a time.
## Bugfixes
We encourage and appreciate bugfixes. We ask that you:
- Explain the bug in enough detail for maintainers to be able to reproduce it.
- If an accompanying issue exists, link to it. Prefix with `Fixes` so that the issue will close automatically when the PR is merged.
- Avoid breaking changes if possible.
- Include unit tests that fail without the bugfix.
If you come across a bug and don't know how to fix it, we ask that you open an issue for it describing in detail the environment in which you encountered the bug.
## New features
We aim to keep the bar high for new features. We generally don't accept new core abstractions, changes to infra, changes to dependencies,
or new agents/chains from outside contributors without an existing GitHub discussion or issue that demonstrates an acute need for them.
- New features must come with docs, unit tests, and (if appropriate) integration tests.
- New integrations must come with docs, unit tests, and (if appropriate) integration tests.
- See [this page](/docs/contributing/integrations) for more details on contributing new integrations.
- New functionality should not inherit from or use deprecated methods or classes.
- We will reject features that are likely to lead to security vulnerabilities or reports.
- Do not add any hard dependencies. Integrations may add optional dependencies.

View File

@@ -0,0 +1,6 @@
# Contribute Code
If you would like to add a new feature or update an existing one, please read the resources below before getting started:
- [General guidelines](/docs/contributing/code/guidelines/)
- [Setup](/docs/contributing/code/setup/)

View File

@@ -1,36 +1,9 @@
---
sidebar_position: 1
---
# Contribute Code
# Setup
To contribute to this project, please follow the ["fork and pull request"](https://docs.github.com/en/get-started/quickstart/contributing-to-projects) workflow.
Please do not try to push directly to this repo unless you are a maintainer.
Please follow the checked-in pull request template when opening pull requests. Note related issues and tag relevant
maintainers.
Pull requests cannot land without passing the formatting, linting, and testing checks first. See [Testing](#testing) and
[Formatting and Linting](#formatting-and-linting) for how to run these checks locally.
It's essential that we maintain great documentation and testing. If you:
- Fix a bug
- Add a relevant unit or integration test when possible. These live in `tests/unit_tests` and `tests/integration_tests`.
- Make an improvement
- Update any affected example notebooks and documentation. These live in `docs`.
- Update unit and integration tests when relevant.
- Add a feature
- Add a demo notebook in `docs/docs/`.
- Add unit and integration tests.
We are a small, progress-oriented team. If there's something you'd like to add or change, opening a pull request is the
best way to get our attention.
## 🚀 Quick Start
This quick start guide explains how to run the repository locally.
This guide walks through how to run the repository locally and check in your first code.
For a [development container](https://containers.dev/), see the [.devcontainer folder](https://github.com/langchain-ai/langchain/tree/master/.devcontainer).
### Dependency Management: Poetry and other env/dependency managers
## Dependency Management: Poetry and other env/dependency managers
This project utilizes [Poetry](https://python-poetry.org/) v1.7.1+ as a dependency manager.
@@ -41,7 +14,7 @@ Install Poetry: **[documentation on how to install it](https://python-poetry.org
❗Note: If you use `Conda` or `Pyenv` as your environment/package manager, after installing Poetry,
tell Poetry to use the virtualenv python environment (`poetry config virtualenvs.prefer-active-python true`)
### Different packages
## Different packages
This repository contains multiple packages:
- `langchain-core`: Base interfaces for key abstractions as well as logic for combining them in chains (LangChain Expression Language).
@@ -59,7 +32,7 @@ For this quickstart, start with langchain-community:
cd libs/community
```
### Local Development Dependencies
## Local Development Dependencies
Install langchain-community development requirements (for running langchain, running examples, linting, formatting, tests, and coverage):
@@ -79,9 +52,9 @@ If you are still seeing this bug on v1.6.1+, you may also try disabling "modern
(`poetry config installer.modern-installation false`) and re-installing requirements.
See [this `debugpy` issue](https://github.com/microsoft/debugpy/issues/1246) for more details.
### Testing
## Testing
_In `langchain`, `langchain-community`, and `langchain-experimental`, some test dependencies are optional; see section about optional dependencies_.
**Note:** In `langchain`, `langchain-community`, and `langchain-experimental`, some test dependencies are optional. See the following section about optional dependencies.
Unit tests cover modular logic that does not require calls to outside APIs.
If you add new logic, please add a unit test.
@@ -118,11 +91,11 @@ poetry install --with test
make test
```
### Formatting and Linting
## Formatting and Linting
Run these locally before submitting a PR; the CI system will check also.
#### Code Formatting
### Code Formatting
Formatting for this project is done via [ruff](https://docs.astral.sh/ruff/rules/).
@@ -174,7 +147,7 @@ This can be very helpful when you've made changes to only certain parts of the p
We recognize linting can be annoying - if you do not want to do it, please contact a project maintainer, and they can help you with it. We do not want this to be a blocker for good code getting contributed.
#### Spellcheck
### Spellcheck
Spellchecking for this project is done via [codespell](https://github.com/codespell-project/codespell).
Note that `codespell` finds common typos, so it could have false-positive (correctly spelled but rarely used) and false-negatives (not finding misspelled) words.

View File

@@ -1,2 +0,0 @@
label: 'Documentation'
position: 3

View File

@@ -0,0 +1,7 @@
# Contribute Documentation
Documentation is a vital part of LangChain. We welcome both new documentation for new features and
community improvements to our current documentation. Please read the resources below before getting started:
- [Documentation style guide](/docs/contributing/documentation/style_guide/)
- [Setup](/docs/contributing/documentation/setup/)

View File

@@ -1,4 +1,8 @@
# Technical logistics
---
sidebar_class_name: "hidden"
---
# Setup
LangChain documentation consists of two components:
@@ -12,8 +16,6 @@ used to generate the externally facing [API Reference](https://api.python.langch
The content for the API reference is autogenerated by scanning the docstrings in the codebase. For this reason we ask that
developers document their code well.
The main documentation is built using [Quarto](https://quarto.org) and [Docusaurus 2](https://docusaurus.io/).
The `API Reference` is largely autogenerated by [sphinx](https://www.sphinx-doc.org/en/master/)
from the code and is hosted by [Read the Docs](https://readthedocs.org/).
@@ -29,7 +31,7 @@ The content for the main documentation is located in the `/docs` directory of th
The documentation is written using a combination of ipython notebooks (`.ipynb` files)
and markdown (`.mdx` files). The notebooks are converted to markdown
using [Quarto](https://quarto.org) and then built using [Docusaurus 2](https://docusaurus.io/).
and then built using [Docusaurus 2](https://docusaurus.io/).
Feel free to make contributions to the main documentation! 🥰
@@ -48,10 +50,6 @@ locally to ensure that it looks good and is free of errors.
If you're unable to build it locally that's okay as well, as you will be able to
see a preview of the documentation on the pull request page.
### Install dependencies
- [Quarto](https://quarto.org) - package that converts Jupyter notebooks (`.ipynb` files) into mdx files for serving in Docusaurus. [Download link](https://quarto.org/docs/download/).
From the **monorepo root**, run the following command to install the dependencies:
```bash
@@ -71,8 +69,6 @@ make docs_clean
make api_docs_clean
```
Next, you can build the documentation as outlined below:
```bash

View File

@@ -1,10 +1,8 @@
---
sidebar_label: "Style guide"
sidebar_class_name: "hidden"
---
# LangChain Documentation Style Guide
## Introduction
# Documentation Style Guide
As LangChain continues to grow, the surface area of documentation required to cover it continues to grow too.
This page provides guidelines for anyone writing documentation for LangChain, as well as some of our philosophies around
@@ -12,116 +10,137 @@ organization and structure.
## Philosophy
LangChain's documentation aspires to follow the [Diataxis framework](https://diataxis.fr).
Under this framework, all documentation falls under one of four categories:
LangChain's documentation follows the [Diataxis framework](https://diataxis.fr).
Under this framework, all documentation falls under one of four categories: [Tutorials](/docs/contributing/documentation/style_guide/#tutorials),
[How-to guides](/docs/contributing/documentation/style_guide/#how-to-guides),
[References](/docs/contributing/documentation/style_guide/#references), and [Explanations](/docs/contributing/documentation/style_guide/#conceptual-guide).
- **Tutorials**: Lessons that take the reader by the hand through a series of conceptual steps to complete a project.
- An example of this is our [LCEL streaming guide](/docs/how_to/streaming).
- Our guides on [custom components](/docs/how_to/custom_chat_model) is another one.
- **How-to guides**: Guides that take the reader through the steps required to solve a real-world problem.
- The clearest examples of this are our [Use case](/docs/how_to#use-cases) quickstart pages.
- **Reference**: Technical descriptions of the machinery and how to operate it.
- Our [Runnable interface](/docs/concepts#interface) page is an example of this.
- The [API reference pages](https://api.python.langchain.com/) are another.
- **Explanation**: Explanations that clarify and illuminate a particular topic.
- The [LCEL primitives pages](/docs/how_to/sequence) are an example of this.
### Tutorials
Tutorials are lessons that take the reader through a practical activity. Their purpose is to help the user
gain understanding of concepts and how they interact by showing one way to achieve some goal in a hands-on way. They should **avoid** giving
multiple permutations of ways to achieve that goal in-depth. Instead, it should guide a new user through a recommended path to accomplishing the tutorial's goal. While the end result of a tutorial does not necessarily need to
be completely production-ready, it should be useful and practically satisfy the the goal that you clearly stated in the tutorial's introduction. Information on how to address additional scenarios
belongs in how-to guides.
To quote the Diataxis website:
> A tutorial serves the users *acquisition* of skills and knowledge - their study. Its purpose is not to help the user get something done, but to help them learn.
In LangChain, these are often higher level guides that show off end-to-end use cases.
Some examples include:
- [Build a Simple LLM Application with LCEL](/docs/tutorials/llm_chain/)
- [Build a Retrieval Augmented Generation (RAG) App](/docs/tutorials/rag/)
Here are some high-level tips on writing a good tutorial:
- Focus on guiding the user to get something done, but keep in mind the end-goal is more to impart principles than to create a perfect production system.
- Be specific, not abstract and follow one path.
- No need to go deeply into alternative approaches, but its ok to reference them, ideally with a link to an appropriate how-to guide.
- Get "a point on the board" as soon as possible - something the user can run that outputs something.
- You can iterate and expand afterwards.
- Try to frequently checkpoint at given steps where the user can run code and see progress.
- Focus on results, not technical explanation.
- Crosslink heavily to appropriate conceptual/reference pages.
- The first time you mention a LangChain concept, use its full name (e.g. "LangChain Expression Language (LCEL)"), and link to its conceptual/other documentation page.
- It's also helpful to add a prerequisite callout that links to any pages with necessary background information.
- End with a recap/next steps section summarizing what the tutorial covered and future reading, such as related how-to guides.
### How-to guides
A how-to guide, as the name implies, demonstrates how to do something discrete and specific.
It should assume that the user is already familiar with underlying concepts, and is trying to solve an immediate problem, but
should still give some background or list the scenarios where the information contained within can be relevant.
They can and should discuss alternatives if one approach may be better than another in certain cases.
To quote the Diataxis website:
> A how-to guide serves the work of the already-competent user, whom you can assume to know what they want to do, and to be able to follow your instructions correctly.
Some examples include:
- [How to: return structured data from a model](/docs/how_to/structured_output/)
- [How to: write a custom chat model](/docs/how_to/custom_chat_model/)
Here are some high-level tips on writing a good how-to guide:
- Clearly explain what you are guiding the user through at the start.
- Assume higher intent than a tutorial and show what the user needs to do to get that task done.
- Assume familiarity of concepts, but explain why suggested actions are helpful.
- Crosslink heavily to conceptual/reference pages.
- Discuss alternatives and responses to real-world tradeoffs that may arise when solving a problem.
- Use lots of example code.
- Prefer full code blocks that the reader can copy and run.
- End with a recap/next steps section summarizing what the tutorial covered and future reading, such as other related how-to guides.
### Conceptual guide
LangChain's conceptual guide falls under the **Explanation** quadrant of Diataxis. They should cover LangChain terms and concepts
in a more abstract way than how-to guides or tutorials, and should be geared towards curious users interested in
gaining a deeper understanding of the framework. Try to avoid excessively large code examples - the goal here is to
impart perspective to the user rather than to finish a practical project. These guides should cover **why** things work they way they do.
This guide on documentation style is meant to fall under this category.
To quote the Diataxis website:
> The perspective of explanation is higher and wider than that of the other types. It does not take the users eye-level view, as in a how-to guide, or a close-up view of the machinery, like reference material. Its scope in each case is a topic - “an area of knowledge”, that somehow has to be bounded in a reasonable, meaningful way.
Some examples include:
- [Retrieval conceptual docs](/docs/concepts/#retrieval)
- [Chat model conceptual docs](/docs/concepts/#chat-models)
Here are some high-level tips on writing a good conceptual guide:
- Explain design decisions. Why does concept X exist and why was it designed this way?
- Use analogies and reference other concepts and alternatives
- Avoid blending in too much reference content
- You can and should reference content covered in other guides, but make sure to link to them
### References
References contain detailed, low-level information that describes exactly what functionality exists and how to use it.
In LangChain, this is mainly our API reference pages, which are populated from docstrings within code.
References pages are generally not read end-to-end, but are consulted as necessary when a user needs to know
how to use something specific.
To quote the Diataxis website:
> The only purpose of a reference guide is to describe, as succinctly as possible, and in an orderly way. Whereas the content of tutorials and how-to guides are led by needs of the user, reference material is led by the product it describes.
Many of the reference pages in LangChain are automatically generated from code,
but here are some high-level tips on writing a good docstring:
- Be concise
- Discuss special cases and deviations from a user's expectations
- Go into detail on required inputs and outputs
- Light details on when one might use the feature are fine, but in-depth details belong in other sections.
Each category serves a distinct purpose and requires a specific approach to writing and structuring the content.
## Taxonomy
Keeping the above in mind, we have sorted LangChain's docs into categories. It is helpful to think in these terms
when contributing new documentation:
### Getting started
The [getting started section](/docs/introduction) includes a high-level introduction to LangChain, a quickstart that
tours LangChain's various features, and logistical instructions around installation and project setup.
It contains elements of **How-to guides** and **Explanations**.
### Use cases
[Use cases](/docs/how_to#use-cases) are guides that are meant to show how to use LangChain to accomplish a specific task (RAG, information extraction, etc.).
The quickstarts should be good entrypoints for first-time LangChain developers who prefer to learn by getting something practical prototyped,
then taking the pieces apart retrospectively. These should mirror what LangChain is good at.
The quickstart pages here should fit the **How-to guide** category, with the other pages intended to be **Explanations** of more
in-depth concepts and strategies that accompany the main happy paths.
:::note
The below sections are listed roughly in order of increasing level of abstraction.
:::
### Expression Language
[LangChain Expression Language (LCEL)](/docs/concepts#langchain-expression-language-lcel) is the fundamental way that most LangChain components fit together, and this section is designed to teach
developers how to use it to build with LangChain's primitives effectively.
This section should contains **Tutorials** that teach how to stream and use LCEL primitives for more abstract tasks, **Explanations** of specific behaviors,
and some **References** for how to use different methods in the Runnable interface.
### Components
The [components section](/docs/concepts) covers concepts one level of abstraction higher than LCEL.
Abstract base classes like `BaseChatModel` and `BaseRetriever` should be covered here, as well as core implementations of these base classes,
such as `ChatPromptTemplate` and `RecursiveCharacterTextSplitter`. Customization guides belong here too.
This section should contain mostly conceptual **Tutorials**, **References**, and **Explanations** of the components they cover.
:::note
As a general rule of thumb, everything covered in the `Expression Language` and `Components` sections (with the exception of the `Composition` section of components) should
cover only components that exist in `langchain_core`.
:::
### Integrations
The [integrations](/docs/integrations/platforms/) are specific implementations of components. These often involve third-party APIs and services.
If this is the case, as a general rule, these are maintained by the third-party partner.
This section should contain mostly **Explanations** and **References**, though the actual content here is more flexible than other sections and more at the
discretion of the third-party provider.
:::note
Concepts covered in `Integrations` should generally exist in `langchain_community` or specific partner packages.
:::
### Guides and Ecosystem
The [Guides](/docs/tutorials) and [Ecosystem](https://docs.smith.langchain.com/) sections should contain guides that address higher-level problems than the sections above.
This includes, but is not limited to, considerations around productionization and development workflows.
These should contain mostly **How-to guides**, **Explanations**, and **Tutorials**.
### API references
LangChain's API references. Should act as **References** (as the name implies) with some **Explanation**-focused content as well.
## Sample developer journey
We have set up our docs to assist a new developer to LangChain. Let's walk through the intended path:
- The developer lands on https://python.langchain.com, and reads through the introduction and the diagram.
- If they are just curious, they may be drawn to the [Quickstart](/docs/tutorials/llm_chain) to get a high-level tour of what LangChain contains.
- If they have a specific task in mind that they want to accomplish, they will be drawn to the Use-Case section. The use-case should provide a good, concrete hook that shows the value LangChain can provide them and be a good entrypoint to the framework.
- They can then move to learn more about the fundamentals of LangChain through the Expression Language sections.
- Next, they can learn about LangChain's various components and integrations.
- Finally, they can get additional knowledge through the Guides.
This is only an ideal of course - sections will inevitably reference lower or higher-level concepts that are documented in other sections.
## Guidelines
## General guidelines
Here are some other guidelines you should think about when writing and organizing documentation.
### Linking to other sections
We generally do not merge new tutorials from outside contributors without an actue need.
We welcome updates as well as new integration docs, how-tos, and references.
### Avoid duplication
Multiple pages that cover the same material in depth are difficult to maintain and cause confusion. There should
be only one (very rarely two), canonical pages for a given concept or feature. Instead, you should link to other guides.
### Link to other sections
Because sections of the docs do not exist in a vacuum, it is important to link to other sections as often as possible
to allow a developer to learn more about an unfamiliar topic inline.
This includes linking to the API references as well as conceptual sections!
### Conciseness
### Be concise
In general, take a less-is-more approach. If a section with a good explanation of a concept already exists, you should link to it rather than
re-explain it, unless the concept you are documenting presents some new wrinkle.
@@ -130,9 +149,10 @@ Be concise, including in code samples.
### General style
- Use active voice and present tense whenever possible.
- Use examples and code snippets to illustrate concepts and usage.
- Use appropriate header levels (`#`, `##`, `###`, etc.) to organize the content hierarchically.
- Use bullet points and numbered lists to break down information into easily digestible chunks.
- Use tables (especially for **Reference** sections) and diagrams often to present information visually.
- Include the table of contents for longer documentation pages to help readers navigate the content, but hide it for shorter pages.
- Use active voice and present tense whenever possible
- Use examples and code snippets to illustrate concepts and usage
- Use appropriate header levels (`#`, `##`, `###`, etc.) to organize the content hierarchically
- Use fewer cells with more code to make copy/paste easier
- Use bullet points and numbered lists to break down information into easily digestible chunks
- Use tables (especially for **Reference** sections) and diagrams often to present information visually
- Include the table of contents for longer documentation pages to help readers navigate the content, but hide it for shorter pages

View File

@@ -12,8 +12,8 @@ As an open-source project in a rapidly developing field, we are extremely open t
There are many ways to contribute to LangChain. Here are some common ways people contribute:
- [**Documentation**](/docs/contributing/documentation/style_guide): Help improve our docs, including this one!
- [**Code**](./code.mdx): Help us write code, fix bugs, or improve our infrastructure.
- [**Documentation**](/docs/contributing/documentation/): Help improve our docs, including this one!
- [**Code**](/docs/contributing/code/): Help us write code, fix bugs, or improve our infrastructure.
- [**Integrations**](integrations.mdx): Help us integrate with your favorite vendors and tools.
- [**Discussions**](https://github.com/langchain-ai/langchain/discussions): Help answer usage questions and discuss issues with users.

View File

@@ -1,6 +1,7 @@
---
sidebar_position: 5
---
# Contribute Integrations
To begin, make sure you have all the dependencies outlined in guide on [Contributing Code](/docs/contributing/code/).

View File

@@ -7,6 +7,7 @@ If you plan on contributing to LangChain code or documentation, it can be useful
to understand the high level structure of the repository.
LangChain is organized as a [monorepo](https://en.wikipedia.org/wiki/Monorepo) that contains multiple packages.
You can check out our [installation guide](/docs/how_to/installation/) for more on how they fit together.
Here's the structure visualized as a tree:
@@ -51,7 +52,7 @@ There are other files in the root directory level, but their presence should be
The `/docs` directory contains the content for the documentation that is shown
at https://python.langchain.com/ and the associated API Reference https://api.python.langchain.com/en/latest/langchain_api_reference.html.
See the [documentation](/docs/contributing/documentation/style_guide) guidelines to learn how to contribute to the documentation.
See the [documentation](/docs/contributing/documentation/) guidelines to learn how to contribute to the documentation.
## Code
@@ -59,6 +60,6 @@ The `/libs` directory contains the code for the LangChain packages.
To learn more about how to contribute code see the following guidelines:
- [Code](./code.mdx) Learn how to develop in the LangChain codebase.
- [Integrations](./integrations.mdx) to learn how to contribute to third-party integrations to langchain-community or to start a new partner package.
- [Testing](./testing.mdx) guidelines to learn how to write tests for the packages.
- [Code](/docs/contributing/code/): Learn how to develop in the LangChain codebase.
- [Integrations](./integrations.mdx): Learn how to contribute to third-party integrations to `langchain-community` or to start a new partner package.
- [Testing](./testing.mdx): Guidelines to learn how to write tests for the packages.

View File

@@ -1,5 +1,5 @@
---
sidebar_position: 2
sidebar_position: 6
---
# Testing

View File

@@ -23,7 +23,7 @@
"This guide assumes familiarity with the following concepts:\n",
"- [LangChain Expression Language (LCEL)](/docs/concepts/#langchain-expression-language)\n",
"- [Chaining runnables](/docs/how_to/sequence/)\n",
"- [Tool calling](/docs/how_to/tool_calling/)\n",
"- [Tool calling](/docs/how_to/tool_calling)\n",
"\n",
":::\n",
"\n",
@@ -142,7 +142,7 @@
"\n",
"## Attaching OpenAI tools\n",
"\n",
"Another common use-case is tool calling. While you should generally use the [`.bind_tools()`](/docs/how_to/tool_calling/) method for tool-calling models, you can also bind provider-specific args directly if you want lower level control:"
"Another common use-case is tool calling. While you should generally use the [`.bind_tools()`](/docs/how_to/tool_calling) method for tool-calling models, you can also bind provider-specific args directly if you want lower level control:"
]
},
{

View File

@@ -23,12 +23,12 @@
"metadata": {},
"outputs": [],
"source": [
"%pip install \"unstructured[html]\""
"%pip install unstructured"
]
},
{
"cell_type": "code",
"execution_count": 1,
"execution_count": 2,
"id": "7d167ca3-c7c7-4ef0-b509-080629f0f482",
"metadata": {},
"outputs": [
@@ -36,14 +36,14 @@
"name": "stdout",
"output_type": "stream",
"text": [
"[Document(page_content='My First Heading\\n\\nMy first paragraph.', metadata={'source': '../../../docs/integrations/document_loaders/example_data/fake-content.html'})]\n"
"[Document(page_content='My First Heading\\n\\nMy first paragraph.', metadata={'source': '../../docs/integrations/document_loaders/example_data/fake-content.html'})]\n"
]
}
],
"source": [
"from langchain_community.document_loaders import UnstructuredHTMLLoader\n",
"\n",
"file_path = \"../../../docs/integrations/document_loaders/example_data/fake-content.html\"\n",
"file_path = \"../../docs/integrations/document_loaders/example_data/fake-content.html\"\n",
"\n",
"loader = UnstructuredHTMLLoader(file_path)\n",
"data = loader.load()\n",
@@ -73,7 +73,7 @@
},
{
"cell_type": "code",
"execution_count": 2,
"execution_count": 4,
"id": "0a2050a8-6df6-4696-9889-ba367d6f9caa",
"metadata": {},
"outputs": [
@@ -81,7 +81,7 @@
"name": "stdout",
"output_type": "stream",
"text": [
"[Document(page_content='\\nTest Title\\n\\n\\nMy First Heading\\nMy first paragraph.\\n\\n\\n', metadata={'source': '../../../docs/integrations/document_loaders/example_data/fake-content.html', 'title': 'Test Title'})]\n"
"[Document(page_content='\\nTest Title\\n\\n\\nMy First Heading\\nMy first paragraph.\\n\\n\\n', metadata={'source': '../../docs/integrations/document_loaders/example_data/fake-content.html', 'title': 'Test Title'})]\n"
]
}
],
@@ -111,7 +111,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.4"
"version": "3.10.5"
}
},
"nbformat": 4,

View File

@@ -21,12 +21,12 @@
},
{
"cell_type": "code",
"execution_count": 19,
"execution_count": null,
"id": "c8b147fb-6877-4f7a-b2ee-ee971c7bc662",
"metadata": {},
"outputs": [],
"source": [
"# !pip install \"unstructured[md]\""
"%pip install \"unstructured[md]\""
]
},
{
@@ -39,7 +39,7 @@
},
{
"cell_type": "code",
"execution_count": 1,
"execution_count": 4,
"id": "80c50cc4-7ce9-4418-81b9-29c52c7b3627",
"metadata": {},
"outputs": [
@@ -62,7 +62,7 @@
"from langchain_community.document_loaders import UnstructuredMarkdownLoader\n",
"from langchain_core.documents import Document\n",
"\n",
"markdown_path = \"../../../../README.md\"\n",
"markdown_path = \"../../../README.md\"\n",
"loader = UnstructuredMarkdownLoader(markdown_path)\n",
"\n",
"data = loader.load()\n",
@@ -84,7 +84,7 @@
},
{
"cell_type": "code",
"execution_count": 2,
"execution_count": 5,
"id": "a986bbce-7fd3-41d1-bc47-49f9f57c7cd1",
"metadata": {},
"outputs": [
@@ -92,11 +92,11 @@
"name": "stdout",
"output_type": "stream",
"text": [
"Number of documents: 65\n",
"Number of documents: 66\n",
"\n",
"page_content='🦜️🔗 LangChain' metadata={'source': '../../../../README.md', 'last_modified': '2024-04-29T13:40:19', 'page_number': 1, 'languages': ['eng'], 'filetype': 'text/markdown', 'file_directory': '../../../..', 'filename': 'README.md', 'category': 'Title'}\n",
"page_content='🦜️🔗 LangChain' metadata={'source': '../../../README.md', 'category_depth': 0, 'last_modified': '2024-06-28T15:20:01', 'languages': ['eng'], 'filetype': 'text/markdown', 'file_directory': '../../..', 'filename': 'README.md', 'category': 'Title'}\n",
"\n",
"page_content='⚡ Build context-aware reasoning applications ⚡' metadata={'source': '../../../../README.md', 'last_modified': '2024-04-29T13:40:19', 'page_number': 1, 'languages': ['eng'], 'parent_id': 'c3223b6f7100be08a78f1e8c0c28fde1', 'filetype': 'text/markdown', 'file_directory': '../../../..', 'filename': 'README.md', 'category': 'NarrativeText'}\n",
"page_content='⚡ Build context-aware reasoning applications ⚡' metadata={'source': '../../../README.md', 'last_modified': '2024-06-28T15:20:01', 'languages': ['eng'], 'parent_id': '200b8a7d0dd03f66e4f13456566d2b3a', 'filetype': 'text/markdown', 'file_directory': '../../..', 'filename': 'README.md', 'category': 'NarrativeText'}\n",
"\n"
]
}
@@ -121,7 +121,7 @@
},
{
"cell_type": "code",
"execution_count": 3,
"execution_count": 6,
"id": "75abc139-3ded-4e8e-9f21-d0c8ec40fdfc",
"metadata": {},
"outputs": [
@@ -129,13 +129,21 @@
"name": "stdout",
"output_type": "stream",
"text": [
"{'Title', 'NarrativeText', 'ListItem'}\n"
"{'ListItem', 'NarrativeText', 'Title'}\n"
]
}
],
"source": [
"print(set(document.metadata[\"category\"] for document in data))"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "223b4c11",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
@@ -154,7 +162,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.4"
"version": "3.10.5"
}
},
"nbformat": 4,

File diff suppressed because one or more lines are too long

View File

@@ -246,11 +246,11 @@
"examples = [\n",
" (\n",
" \"The ocean is vast and blue. It's more than 20,000 feet deep. There are many fish in it.\",\n",
" Person(name=None, height_in_meters=None, hair_color=None),\n",
" Data(people=[]),\n",
" ),\n",
" (\n",
" \"Fiona traveled far from France to Spain.\",\n",
" Person(name=\"Fiona\", height_in_meters=None, hair_color=None),\n",
" Data(people=[Person(name=\"Fiona\", height_in_meters=None, hair_color=None)]),\n",
" ),\n",
"]\n",
"\n",

View File

@@ -23,7 +23,7 @@
"- [Prompt templates](/docs/concepts/#prompt-templates)\n",
"- [Example selectors](/docs/concepts/#example-selectors)\n",
"- [LLMs](/docs/concepts/#llms)\n",
"- [Vectorstores](/docs/concepts/#vectorstores)\n",
"- [Vectorstores](/docs/concepts/#vector-stores)\n",
"\n",
":::\n",
"\n",

View File

@@ -23,7 +23,7 @@
"- [Prompt templates](/docs/concepts/#prompt-templates)\n",
"- [Example selectors](/docs/concepts/#example-selectors)\n",
"- [Chat models](/docs/concepts/#chat-model)\n",
"- [Vectorstores](/docs/concepts/#vectorstores)\n",
"- [Vectorstores](/docs/concepts/#vector-stores)\n",
"\n",
":::\n",
"\n",
@@ -51,7 +51,7 @@
"- `examples`: A list of dictionary examples to include in the final prompt.\n",
"- `example_prompt`: converts each example into 1 or more messages through its [`format_messages`](https://api.python.langchain.com/en/latest/prompts/langchain_core.prompts.chat.ChatPromptTemplate.html?highlight=format_messages#langchain_core.prompts.chat.ChatPromptTemplate.format_messages) method. A common example would be to convert each example into one human message and one AI message response, or a human message followed by a function call message.\n",
"\n",
"Below is a simple demonstration. First, define the examples you'd like to include:"
"Below is a simple demonstration. First, define the examples you'd like to include. Let's give the LLM an unfamiliar mathematical operator, denoted by the \"🦜\" emoji:"
]
},
{
@@ -59,17 +59,7 @@
"execution_count": 1,
"id": "5b79e400",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\u001b[33mWARNING: You are using pip version 22.0.4; however, version 24.0 is available.\n",
"You should consider upgrading via the '/Users/jacoblee/.pyenv/versions/3.10.5/bin/python -m pip install --upgrade pip' command.\u001b[0m\u001b[33m\n",
"\u001b[0mNote: you may need to restart the kernel to use updated packages.\n"
]
}
],
"outputs": [],
"source": [
"%pip install -qU langchain langchain-openai langchain-chroma\n",
"\n",
@@ -79,9 +69,50 @@
"os.environ[\"OPENAI_API_KEY\"] = getpass()"
]
},
{
"cell_type": "markdown",
"id": "30856d92",
"metadata": {},
"source": [
"If we try to ask the model what the result of this expression is, it will fail:"
]
},
{
"cell_type": "code",
"execution_count": 2,
"execution_count": 4,
"id": "174dec5b",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"AIMessage(content='The expression \"2 🦜 9\" is not a standard mathematical operation or equation. It appears to be a combination of the number 2 and the parrot emoji 🦜 followed by the number 9. It does not have a specific mathematical meaning.', response_metadata={'token_usage': {'completion_tokens': 54, 'prompt_tokens': 17, 'total_tokens': 71}, 'model_name': 'gpt-3.5-turbo-0125', 'system_fingerprint': None, 'finish_reason': 'stop', 'logprobs': None}, id='run-aad12dda-5c47-4a1e-9949-6fe94e03242a-0', usage_metadata={'input_tokens': 17, 'output_tokens': 54, 'total_tokens': 71})"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from langchain_openai import ChatOpenAI\n",
"\n",
"model = ChatOpenAI(model=\"gpt-3.5-turbo-0125\", temperature=0.0)\n",
"\n",
"model.invoke(\"What is 2 🦜 9?\")"
]
},
{
"cell_type": "markdown",
"id": "e6d58385",
"metadata": {},
"source": [
"Now let's see what happens if we give the LLM some examples to work with. We'll define some below:"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "0fc5a02a-6249-4e92-95c3-30fff9671e8b",
"metadata": {
"tags": []
@@ -91,8 +122,8 @@
"from langchain_core.prompts import ChatPromptTemplate, FewShotChatMessagePromptTemplate\n",
"\n",
"examples = [\n",
" {\"input\": \"2+2\", \"output\": \"4\"},\n",
" {\"input\": \"2+3\", \"output\": \"5\"},\n",
" {\"input\": \"2 🦜 2\", \"output\": \"4\"},\n",
" {\"input\": \"2 🦜 3\", \"output\": \"5\"},\n",
"]"
]
},
@@ -106,7 +137,7 @@
},
{
"cell_type": "code",
"execution_count": 3,
"execution_count": 6,
"id": "65e72ad1-9060-47d0-91a1-bc130c8b98ac",
"metadata": {
"tags": []
@@ -116,7 +147,7 @@
"name": "stdout",
"output_type": "stream",
"text": [
"[HumanMessage(content='2+2'), AIMessage(content='4'), HumanMessage(content='2+3'), AIMessage(content='5')]\n"
"[HumanMessage(content='2 🦜 2'), AIMessage(content='4'), HumanMessage(content='2 🦜 3'), AIMessage(content='5')]\n"
]
}
],
@@ -146,7 +177,7 @@
},
{
"cell_type": "code",
"execution_count": 4,
"execution_count": 7,
"id": "9f86d6d9-50de-41b6-b6c7-0f9980cc0187",
"metadata": {
"tags": []
@@ -162,9 +193,17 @@
")"
]
},
{
"cell_type": "markdown",
"id": "dd8029c5",
"metadata": {},
"source": [
"And now let's ask the model the initial question and see how it does:"
]
},
{
"cell_type": "code",
"execution_count": 5,
"execution_count": 8,
"id": "97d443b1-6fae-4b36-bede-3ff7306288a3",
"metadata": {
"tags": []
@@ -173,10 +212,10 @@
{
"data": {
"text/plain": [
"AIMessage(content='A triangle does not have a square. The square of a number is the result of multiplying the number by itself.', response_metadata={'token_usage': {'completion_tokens': 23, 'prompt_tokens': 52, 'total_tokens': 75}, 'model_name': 'gpt-3.5-turbo-0125', 'system_fingerprint': 'fp_c2295e73ad', 'finish_reason': 'stop', 'logprobs': None}, id='run-3456c4ef-7b4d-4adb-9e02-8079de82a47a-0')"
"AIMessage(content='11', response_metadata={'token_usage': {'completion_tokens': 1, 'prompt_tokens': 60, 'total_tokens': 61}, 'model_name': 'gpt-3.5-turbo-0125', 'system_fingerprint': None, 'finish_reason': 'stop', 'logprobs': None}, id='run-5ec4e051-262f-408e-ad00-3f2ebeb561c3-0', usage_metadata={'input_tokens': 60, 'output_tokens': 1, 'total_tokens': 61})"
]
},
"execution_count": 5,
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
@@ -184,9 +223,9 @@
"source": [
"from langchain_openai import ChatOpenAI\n",
"\n",
"chain = final_prompt | ChatOpenAI(model=\"gpt-3.5-turbo-0125\", temperature=0.0)\n",
"chain = final_prompt | model\n",
"\n",
"chain.invoke({\"input\": \"What's the square of a triangle?\"})"
"chain.invoke({\"input\": \"What is 2 🦜 9?\"})"
]
},
{
@@ -194,6 +233,8 @@
"id": "70ab7114-f07f-46be-8874-3705a25aba5f",
"metadata": {},
"source": [
"And we can see that the model has now inferred that the parrot emoji means addition from the given few-shot examples!\n",
"\n",
"## Dynamic few-shot prompting\n",
"\n",
"Sometimes you may want to select only a few examples from your overall set to show based on the input. For this, you can replace the `examples` passed into `FewShotChatMessagePromptTemplate` with an `example_selector`. The other components remain the same as above! Our dynamic few-shot prompt template would look like:\n",
@@ -208,7 +249,7 @@
},
{
"cell_type": "code",
"execution_count": 6,
"execution_count": 9,
"id": "ad66f06a-66fd-4fcc-8166-5d0e3c801e57",
"metadata": {
"tags": []
@@ -220,9 +261,9 @@
"from langchain_openai import OpenAIEmbeddings\n",
"\n",
"examples = [\n",
" {\"input\": \"2+2\", \"output\": \"4\"},\n",
" {\"input\": \"2+3\", \"output\": \"5\"},\n",
" {\"input\": \"2+4\", \"output\": \"6\"},\n",
" {\"input\": \"2 🦜 2\", \"output\": \"4\"},\n",
" {\"input\": \"2 🦜 3\", \"output\": \"5\"},\n",
" {\"input\": \"2 🦜 4\", \"output\": \"6\"},\n",
" {\"input\": \"What did the cow say to the moon?\", \"output\": \"nothing at all\"},\n",
" {\n",
" \"input\": \"Write me a poem about the moon\",\n",
@@ -247,7 +288,7 @@
},
{
"cell_type": "code",
"execution_count": 7,
"execution_count": 10,
"id": "7790303a-f722-452e-8921-b14bdf20bdff",
"metadata": {
"tags": []
@@ -257,10 +298,10 @@
"data": {
"text/plain": [
"[{'input': 'What did the cow say to the moon?', 'output': 'nothing at all'},\n",
" {'input': '2+4', 'output': '6'}]"
" {'input': '2 🦜 4', 'output': '6'}]"
]
},
"execution_count": 7,
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
@@ -287,7 +328,7 @@
},
{
"cell_type": "code",
"execution_count": 14,
"execution_count": 11,
"id": "253c255e-41d7-45f6-9d88-c7a0ced4b1bd",
"metadata": {
"tags": []
@@ -297,7 +338,7 @@
"name": "stdout",
"output_type": "stream",
"text": [
"[HumanMessage(content='2+3'), AIMessage(content='5'), HumanMessage(content='2+2'), AIMessage(content='4')]\n"
"[HumanMessage(content='2 🦜 3'), AIMessage(content='5'), HumanMessage(content='2 🦜 4'), AIMessage(content='6')]\n"
]
}
],
@@ -317,7 +358,7 @@
" ),\n",
")\n",
"\n",
"print(few_shot_prompt.invoke(input=\"What's 3+3?\").to_messages())"
"print(few_shot_prompt.invoke(input=\"What's 3 🦜 3?\").to_messages())"
]
},
{
@@ -330,7 +371,7 @@
},
{
"cell_type": "code",
"execution_count": 17,
"execution_count": 12,
"id": "e731cb45-f0ea-422c-be37-42af2a6cb2c4",
"metadata": {
"tags": []
@@ -340,7 +381,7 @@
"name": "stdout",
"output_type": "stream",
"text": [
"messages=[HumanMessage(content='2+3'), AIMessage(content='5'), HumanMessage(content='2+2'), AIMessage(content='4')]\n"
"messages=[HumanMessage(content='2 🦜 3'), AIMessage(content='5'), HumanMessage(content='2 🦜 4'), AIMessage(content='6')]\n"
]
}
],
@@ -353,7 +394,7 @@
" ]\n",
")\n",
"\n",
"print(few_shot_prompt.invoke(input=\"What's 3+3?\"))"
"print(few_shot_prompt.invoke(input=\"What's 3 🦜 3?\"))"
]
},
{
@@ -368,7 +409,7 @@
},
{
"cell_type": "code",
"execution_count": 18,
"execution_count": 13,
"id": "0568cbc6-5354-47f1-ab4d-dfcc616cf583",
"metadata": {
"tags": []
@@ -377,10 +418,10 @@
{
"data": {
"text/plain": [
"AIMessage(content='6', response_metadata={'token_usage': {'completion_tokens': 1, 'prompt_tokens': 51, 'total_tokens': 52}, 'model_name': 'gpt-3.5-turbo-0125', 'system_fingerprint': 'fp_c2295e73ad', 'finish_reason': 'stop', 'logprobs': None}, id='run-6bcbe158-a8e3-4a85-a754-1ba274a9f147-0')"
"AIMessage(content='6', response_metadata={'token_usage': {'completion_tokens': 1, 'prompt_tokens': 60, 'total_tokens': 61}, 'model_name': 'gpt-3.5-turbo-0125', 'system_fingerprint': None, 'finish_reason': 'stop', 'logprobs': None}, id='run-d1863e5e-17cd-4e9d-bf7a-b9f118747a65-0', usage_metadata={'input_tokens': 60, 'output_tokens': 1, 'total_tokens': 61})"
]
},
"execution_count": 18,
"execution_count": 13,
"metadata": {},
"output_type": "execute_result"
}
@@ -388,7 +429,7 @@
"source": [
"chain = final_prompt | ChatOpenAI(model=\"gpt-3.5-turbo-0125\", temperature=0.0)\n",
"\n",
"chain.invoke({\"input\": \"What's 3+3?\"})"
"chain.invoke({\"input\": \"What's 3 🦜 3?\"})"
]
},
{
@@ -428,7 +469,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.1"
"version": "3.10.5"
}
},
"nbformat": 4,

View File

@@ -21,7 +21,7 @@ For comprehensive descriptions of every class and function see the [API Referenc
This highlights functionality that is core to using LangChain.
- [How to: return structured data from a model](/docs/how_to/structured_output/)
- [How to: use a model to call tools](/docs/how_to/tool_calling/)
- [How to: use a model to call tools](/docs/how_to/tool_calling)
- [How to: stream runnables](/docs/how_to/streaming)
- [How to: debug your LLM apps](/docs/how_to/debugging/)
@@ -79,6 +79,12 @@ These are the core building blocks you can use when building applications.
- [How to: stream a response back](/docs/how_to/chat_streaming)
- [How to: track token usage](/docs/how_to/chat_token_usage_tracking)
- [How to: track response metadata across providers](/docs/how_to/response_metadata)
- [How to: let your end users choose their model](/docs/how_to/chat_models_universal_init/)
- [How to: use chat model to call tools](/docs/how_to/tool_calling)
- [How to: stream tool calls](/docs/how_to/tool_streaming)
- [How to: few shot prompt tool behavior](/docs/how_to/tools_few_shot)
- [How to: bind model-specific formated tools](/docs/how_to/tools_model_specific)
- [How to: force specific tool call](/docs/how_to/tool_choice)
- [How to: init any model in one line](/docs/how_to/chat_models_universal_init/)
### Messages
@@ -176,15 +182,17 @@ Indexing is the process of keeping your vectorstore in-sync with the underlying
### Tools
LangChain [Tools](/docs/concepts/#tools) contain a description of the tool (to pass to the language model) as well as the implementation of the function to call).
LangChain [Tools](/docs/concepts/#tools) contain a description of the tool (to pass to the language model) as well as the implementation of the function to call.
- [How to: create custom tools](/docs/how_to/custom_tools)
- [How to: use built-in tools and built-in toolkits](/docs/how_to/tools_builtin)
- [How to: use a chat model to call tools](/docs/how_to/tool_calling/)
- [How to: use chat model to call tools](/docs/how_to/tool_calling)
- [How to: pass tool results back to model](/docs/how_to/tool_results_pass_to_model)
- [How to: add ad-hoc tool calling capability to LLMs and chat models](/docs/how_to/tools_prompting)
- [How to: pass run time values to tools](/docs/how_to/tool_runtime)
- [How to: add a human in the loop to tool usage](/docs/how_to/tools_human)
- [How to: handle errors when calling tools](/docs/how_to/tools_error)
- [How to: disable parallel tool calling](/docs/how_to/tool_choice)
### Multimodal
@@ -309,7 +317,8 @@ LangSmith allows you to closely trace, monitor and evaluate your LLM application
It seamlessly integrates with LangChain and LangGraph, and you can use it to inspect and debug individual steps of your chains and agents as you build.
LangSmith documentation is hosted on a separate site.
You can peruse [LangSmith how-to guides here](https://docs.smith.langchain.com/how_to_guides/).
You can peruse [LangSmith how-to guides here](https://docs.smith.langchain.com/how_to_guides/), but we'll highlight a few sections that are particularly
relevant to LangChain below:
### Evaluation
<span data-heading-keywords="evaluation,evaluate"></span>
@@ -318,3 +327,13 @@ Evaluating performance is a vital part of building LLM-powered applications.
LangSmith helps with every step of the process from creating a dataset to defining metrics to running evaluators.
To learn more, check out the [LangSmith evaluation how-to guides](https://docs.smith.langchain.com/how_to_guides#evaluation).
### Tracing
<span data-heading-keywords="trace,tracing"></span>
Tracing gives you observability inside your chains and agents, and is vital in diagnosing issues.
- [How to: trace with LangChain](https://docs.smith.langchain.com/how_to_guides/tracing/trace_with_langchain)
- [How to: add metadata and tags to traces](https://docs.smith.langchain.com/how_to_guides/tracing/trace_with_langchain#add-metadata-and-tags-to-traces)
You can see general tracing-related how-tos [in this section of the LangSmith docs](https://docs.smith.langchain.com/how_to_guides/tracing).

View File

@@ -2,11 +2,14 @@
sidebar_position: 2
---
# Installation
# How to install LangChain packages
The LangChain ecosystem is split into different packages, which allow you to choose exactly which pieces of
functionality to install.
## Official release
To install LangChain run:
To install the main LangChain package, run:
import Tabs from '@theme/Tabs';
import TabItem from '@theme/TabItem';
@@ -21,11 +24,24 @@ import CodeBlock from "@theme/CodeBlock";
</TabItem>
</Tabs>
This will install the bare minimum requirements of LangChain.
A lot of the value of LangChain comes when integrating it with various model providers, datastores, etc.
While this package acts as a sane starting point to using LangChain,
much of the value of LangChain comes when integrating it with various model providers, datastores, etc.
By default, the dependencies needed to do that are NOT installed. You will need to install the dependencies for specific integrations separately.
We'll show how to do that in the next sections of this guide.
## From source
## Ecosystem packages
With the exception of the `langsmith` SDK, all packages in the LangChain ecosystem depend on `langchain-core`, which contains base
classes and abstractions that other packages use. The dependency graph below shows how the difference packages are related.
A directed arrow indicates that the source package depends on the target package:
![](/img/ecosystem_packages.png)
When installing a package, you do not need to explicitly install that package's explicit dependencies (such as `langchain-core`).
However, you may choose to if you are using a feature only available in a certain version of that dependency.
If you do, you should make sure that the installed or pinned version is compatible with any other integration packages you use.
### From source
If you want to install from source, you can do so by cloning the repo and be sure that the directory is `PATH/TO/REPO/langchain/libs/langchain` running:
@@ -33,21 +49,21 @@ If you want to install from source, you can do so by cloning the repo and be sur
pip install -e .
```
## LangChain core
### LangChain core
The `langchain-core` package contains base abstractions that the rest of the LangChain ecosystem uses, along with the LangChain Expression Language. It is automatically installed by `langchain`, but can also be used separately. Install with:
```bash
pip install langchain-core
```
## LangChain community
### LangChain community
The `langchain-community` package contains third-party integrations. Install with:
```bash
pip install langchain-community
```
## LangChain experimental
### LangChain experimental
The `langchain-experimental` package holds experimental LangChain code, intended for research and experimental uses.
Install with:
@@ -55,14 +71,15 @@ Install with:
pip install langchain-experimental
```
## LangGraph
`langgraph` is a library for building stateful, multi-actor applications with LLMs, built on top of (and intended to be used with) LangChain.
### LangGraph
`langgraph` is a library for building stateful, multi-actor applications with LLMs. It integrates smoothly with LangChain, but can be used without it.
Install with:
```bash
pip install langgraph
```
## LangServe
### LangServe
LangServe helps developers deploy LangChain runnables and chains as a REST API.
LangServe is automatically installed by LangChain CLI.
If not using LangChain CLI, install with:
@@ -80,9 +97,10 @@ Install with:
pip install langchain-cli
```
## LangSmith SDK
The LangSmith SDK is automatically installed by LangChain.
If not using LangChain, install with:
### LangSmith SDK
The LangSmith SDK is automatically installed by LangChain. However, it does not depend on
`langchain-core`, and can be installed and used independently if desired.
If you are not using LangChain, you can install it with:
```bash
pip install langsmith

View File

@@ -1,5 +1,19 @@
{
"cells": [
{
"cell_type": "raw",
"id": "adc7ee09",
"metadata": {
"vscode": {
"languageId": "raw"
}
},
"source": [
"---\n",
"keywords: [create_react_agent, create_react_agent()]\n",
"---"
]
},
{
"cell_type": "markdown",
"id": "457cdc67-1893-4653-8b0c-b185a5947e74",
@@ -7,9 +21,18 @@
"source": [
"# How to migrate from legacy LangChain agents to LangGraph\n",
"\n",
"Here we focus on how to move from legacy LangChain agents to LangGraph agents.\n",
":::info Prerequisites\n",
"\n",
"This guide assumes familiarity with the following concepts:\n",
"- [Agents](/docs/concepts/#agents)\n",
"- [LangGraph](https://langchain-ai.github.io/langgraph/)\n",
"- [Tool calling](/docs/how_to/tool_calling/)\n",
"\n",
":::\n",
"\n",
"Here we focus on how to move from legacy LangChain agents to more flexible [LangGraph](https://langchain-ai.github.io/langgraph/) agents.\n",
"LangChain agents (the [AgentExecutor](https://api.python.langchain.com/en/latest/agents/langchain.agents.agent.AgentExecutor.html#langchain.agents.agent.AgentExecutor) in particular) have multiple configuration parameters.\n",
"In this notebook we will show how those parameters map to the LangGraph [react agent executor](https://langchain-ai.github.io/langgraph/reference/prebuilt/#create_react_agent).\n",
"In this notebook we will show how those parameters map to the LangGraph react agent executor using the [create_react_agent](https://langchain-ai.github.io/langgraph/reference/prebuilt/#create_react_agent) prebuilt helper method.\n",
"\n",
"#### Prerequisites\n",
"\n",
@@ -195,7 +218,7 @@
"\n",
"Let's take a look at all of these below. We will pass in custom instructions to get the agent to respond in Spanish.\n",
"\n",
"First up, using AgentExecutor:"
"First up, using `AgentExecutor`:"
]
},
{
@@ -238,7 +261,16 @@
"id": "bd5f5500-5ae4-4000-a9fd-8c5a2cc6404d",
"metadata": {},
"source": [
"Now, let's pass a custom system message to [react agent executor](https://langchain-ai.github.io/langgraph/reference/prebuilt/#create_react_agent). This can either be a string or a LangChain SystemMessage."
"Now, let's pass a custom system message to [react agent executor](https://langchain-ai.github.io/langgraph/reference/prebuilt/#create_react_agent).\n",
"\n",
"LangGraph's prebuilt `create_react_agent` does not take a prompt template directly as a parameter, but instead takes a [`messages_modifier`](https://langchain-ai.github.io/langgraph/reference/prebuilt/#create_react_agent) parameter. This modifies messages before they are passed into the model, and can be one of four values:\n",
"\n",
"- A `SystemMessage`, which is added to the beginning of the list of messages.\n",
"- A `string`, which is converted to a `SystemMessage` and added to the beginning of the list of messages.\n",
"- A `Callable`, which should take in a list of messages. The output is then passed to the language model.\n",
"- Or a [`Runnable`](/docs/concepts/#langchain-expression-language-lcel), which should should take in a list of messages. The output is then passed to the language model.\n",
"\n",
"Here's how it looks in action:"
]
},
{
@@ -1212,6 +1244,18 @@
"except GraphRecursionError as e:\n",
" print(\"Stopping agent prematurely due to triggering stop condition\")"
]
},
{
"cell_type": "markdown",
"id": "41377eb8",
"metadata": {},
"source": [
"## Next steps\n",
"\n",
"You've now learned how to migrate your LangChain agent executors to LangGraph.\n",
"\n",
"Next, check out other [LangGraph how-to guides](https://langchain-ai.github.io/langgraph/how-tos/)."
]
}
],
"metadata": {

View File

@@ -351,7 +351,7 @@
"id": "ab1b2e7c-6ea8-4674-98eb-a43c69f5c19d",
"metadata": {},
"source": [
"To help enforce proper use of our Python tool, we'll using [tool calling](/docs/how_to/tool_calling/):"
"To help enforce proper use of our Python tool, we'll using [tool calling](/docs/how_to/tool_calling):"
]
},
{

View File

@@ -250,7 +250,7 @@
"id": "e28c14d3",
"metadata": {},
"source": [
"Alternatively, you can use tool calling directly to allow the model to choose between options, if your [chosen model supports it](/docs/integrations/chat/). This involves a bit more parsing and setup but in some instances leads to better performance because you don't have to use nested schemas. See [this how-to guide](/docs/how_to/tool_calling/) for more details."
"Alternatively, you can use tool calling directly to allow the model to choose between options, if your [chosen model supports it](/docs/integrations/chat/). This involves a bit more parsing and setup but in some instances leads to better performance because you don't have to use nested schemas. See [this how-to guide](/docs/how_to/tool_calling) for more details."
]
},
{

View File

@@ -1,5 +1,18 @@
{
"cells": [
{
"cell_type": "raw",
"metadata": {
"vscode": {
"languageId": "raw"
}
},
"source": [
"---\n",
"keywords: [tool calling, tool call]\n",
"---"
]
},
{
"cell_type": "markdown",
"metadata": {},
@@ -11,6 +24,7 @@
"This guide assumes familiarity with the following concepts:\n",
"- [Chat models](/docs/concepts/#chat-models)\n",
"- [LangChain Tools](/docs/concepts/#tools)\n",
"- [Output parsers](/docs/concepts/#output-parsers)\n",
"\n",
":::\n",
"\n",
@@ -38,6 +52,12 @@
"parameters matching the desired schema, then treat the generated output as your final \n",
"result.\n",
"\n",
":::note\n",
"\n",
"If you only need formatted values, try the [.with_structured_output()](/docs/how_to/structured_output/#the-with_structured_output-method) chat model method as a simpler entrypoint.\n",
"\n",
":::\n",
"\n",
"However, tool calling goes beyond [structured output](/docs/how_to/structured_output/)\n",
"since you can pass responses from called tools back to the model to create longer interactions.\n",
"For instance, given a search engine tool, an LLM might handle a \n",
@@ -52,8 +72,13 @@
"support variants of a tool calling feature.\n",
"\n",
"LangChain implements standard interfaces for defining tools, passing them to LLMs, \n",
"and representing tool calls. This guide will show you how to use them.\n",
"\n",
"and representing tool calls. This guide and the other How-to pages in the Tool section will show you how to use tools with LangChain."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Passing tools to chat models\n",
"\n",
"Chat models that support tool calling features implement a `.bind_tools` method, which \n",
@@ -153,7 +178,7 @@
"# | output: false\n",
"# | echo: false\n",
"\n",
"%pip install -qU langchain langchain_openai\n",
"%pip install -qU langchain_openai\n",
"\n",
"import os\n",
"from getpass import getpass\n",
@@ -167,81 +192,33 @@
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
"llm_with_tools = llm.bind_tools(tools)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We can also use the `tool_choice` parameter to ensure certain behavior. For example, we can force our tool to call the multiply tool by using the following code:"
]
},
{
"cell_type": "code",
"execution_count": 9,
"execution_count": 4,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"AIMessage(content='', additional_kwargs={'tool_calls': [{'id': 'call_9cViskmLvPnHjXk9tbVla5HA', 'function': {'arguments': '{\"a\":2,\"b\":4}', 'name': 'Multiply'}, 'type': 'function'}]}, response_metadata={'token_usage': {'completion_tokens': 9, 'prompt_tokens': 103, 'total_tokens': 112}, 'model_name': 'gpt-3.5-turbo-0125', 'system_fingerprint': None, 'finish_reason': 'stop', 'logprobs': None}, id='run-095b827e-2bdd-43bb-8897-c843f4504883-0', tool_calls=[{'name': 'Multiply', 'args': {'a': 2, 'b': 4}, 'id': 'call_9cViskmLvPnHjXk9tbVla5HA'}], usage_metadata={'input_tokens': 103, 'output_tokens': 9, 'total_tokens': 112})"
"AIMessage(content='', additional_kwargs={'tool_calls': [{'id': 'call_g4RuAijtDcSeM96jXyCuiLSN', 'function': {'arguments': '{\"a\":3,\"b\":12}', 'name': 'Multiply'}, 'type': 'function'}]}, response_metadata={'token_usage': {'completion_tokens': 18, 'prompt_tokens': 95, 'total_tokens': 113}, 'model_name': 'gpt-3.5-turbo-0125', 'system_fingerprint': None, 'finish_reason': 'tool_calls', 'logprobs': None}, id='run-5157d15a-7e0e-4ab1-af48-3d98010cd152-0', tool_calls=[{'name': 'Multiply', 'args': {'a': 3, 'b': 12}, 'id': 'call_g4RuAijtDcSeM96jXyCuiLSN'}], usage_metadata={'input_tokens': 95, 'output_tokens': 18, 'total_tokens': 113})"
]
},
"execution_count": 9,
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"llm_forced_to_multiply = llm.bind_tools(tools, tool_choice=\"Multiply\")\n",
"llm_forced_to_multiply.invoke(\"what is 2 + 4\")"
"llm_with_tools = llm.bind_tools(tools)\n",
"\n",
"query = \"What is 3 * 12?\"\n",
"\n",
"llm_with_tools.invoke(query)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Even if we pass it something that doesn't require multiplcation - it will still call the tool!"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We can also just force our tool to select at least one of our tools by passing in the \"any\" (or \"required\" which is OpenAI specific) keyword to the `tool_choice` parameter."
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"AIMessage(content='', additional_kwargs={'tool_calls': [{'id': 'call_mCSiJntCwHJUBfaHZVUB2D8W', 'function': {'arguments': '{\"a\":1,\"b\":2}', 'name': 'Add'}, 'type': 'function'}]}, response_metadata={'token_usage': {'completion_tokens': 15, 'prompt_tokens': 94, 'total_tokens': 109}, 'model_name': 'gpt-3.5-turbo-0125', 'system_fingerprint': None, 'finish_reason': 'stop', 'logprobs': None}, id='run-28f75260-9900-4bed-8cd3-f1579abb65e5-0', tool_calls=[{'name': 'Add', 'args': {'a': 1, 'b': 2}, 'id': 'call_mCSiJntCwHJUBfaHZVUB2D8W'}], usage_metadata={'input_tokens': 94, 'output_tokens': 15, 'total_tokens': 109})"
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"llm_forced_to_use_tool = llm.bind_tools(tools, tool_choice=\"any\")\n",
"llm_forced_to_use_tool.invoke(\"What day is today?\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"As we can see, even though the prompt didn't really suggest a tool call, our LLM made one since it was forced to do so. You can look at the docs for [`bind_tool`](https://api.python.langchain.com/en/latest/chat_models/langchain_openai.chat_models.base.BaseChatOpenAI.html#langchain_openai.chat_models.base.BaseChatOpenAI.bind_tools) to learn about all the ways to customize how your LLM selects tools."
"As we can see, even though the prompt didn't really suggest a tool call, our LLM made one since it was forced to do so. You can look at the docs for [bind_tools()](https://api.python.langchain.com/en/latest/chat_models/langchain_openai.chat_models.base.BaseChatOpenAI.html#langchain_openai.chat_models.base.BaseChatOpenAI.bind_tools) to learn about all the ways to customize how your LLM selects tools."
]
},
{
@@ -273,10 +250,10 @@
"text/plain": [
"[{'name': 'Multiply',\n",
" 'args': {'a': 3, 'b': 12},\n",
" 'id': 'call_KquHA7mSbgtAkpkmRPaFnJKa'},\n",
" 'id': 'call_TnadLbWJu9HwDULRb51RNSMw'},\n",
" {'name': 'Add',\n",
" 'args': {'a': 11, 'b': 49},\n",
" 'id': 'call_Fl0hQi4IBTzlpaJYlM5kPQhE'}]"
" 'id': 'call_Q9vt1up05sOQScXvUYWzSpCg'}]"
]
},
"execution_count": 5,
@@ -302,7 +279,8 @@
"a name, string arguments, identifier, and error message.\n",
"\n",
"If desired, [output parsers](/docs/how_to#output-parsers) can further \n",
"process the output. For example, we can convert back to the original Pydantic class:"
"process the output. For example, we can convert existing values populated on the `.tool_calls` attribute back to the original Pydantic class using the\n",
"[PydanticToolsParser](https://api.python.langchain.com/en/latest/output_parsers/langchain_core.output_parsers.openai_tools.PydanticToolsParser.html):"
]
},
{
@@ -322,443 +300,27 @@
}
],
"source": [
"from langchain_core.output_parsers.openai_tools import PydanticToolsParser\n",
"from langchain_core.output_parsers import PydanticToolsParser\n",
"\n",
"chain = llm_with_tools | PydanticToolsParser(tools=[Multiply, Add])\n",
"chain.invoke(query)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Streaming\n",
"\n",
"When tools are called in a streaming context, \n",
"[message chunks](https://api.python.langchain.com/en/latest/messages/langchain_core.messages.ai.AIMessageChunk.html#langchain_core.messages.ai.AIMessageChunk) \n",
"will be populated with [tool call chunk](https://api.python.langchain.com/en/latest/messages/langchain_core.messages.tool.ToolCallChunk.html#langchain_core.messages.tool.ToolCallChunk) \n",
"objects in a list via the `.tool_call_chunks` attribute. A `ToolCallChunk` includes \n",
"optional string fields for the tool `name`, `args`, and `id`, and includes an optional \n",
"integer field `index` that can be used to join chunks together. Fields are optional \n",
"because portions of a tool call may be streamed across different chunks (e.g., a chunk \n",
"that includes a substring of the arguments may have null values for the tool name and id).\n",
"\n",
"Because message chunks inherit from their parent message class, an \n",
"[AIMessageChunk](https://api.python.langchain.com/en/latest/messages/langchain_core.messages.ai.AIMessageChunk.html#langchain_core.messages.ai.AIMessageChunk) \n",
"with tool call chunks will also include `.tool_calls` and `.invalid_tool_calls` fields. \n",
"These fields are parsed best-effort from the message's tool call chunks.\n",
"\n",
"Note that not all providers currently support streaming for tool calls:"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[]\n",
"[{'name': 'Multiply', 'args': '', 'id': 'call_3aQwTP9CYlFxwOvQZPHDu6wL', 'index': 0}]\n",
"[{'name': None, 'args': '{\"a\"', 'id': None, 'index': 0}]\n",
"[{'name': None, 'args': ': 3, ', 'id': None, 'index': 0}]\n",
"[{'name': None, 'args': '\"b\": 1', 'id': None, 'index': 0}]\n",
"[{'name': None, 'args': '2}', 'id': None, 'index': 0}]\n",
"[{'name': 'Add', 'args': '', 'id': 'call_SQUoSsJz2p9Kx2x73GOgN1ja', 'index': 1}]\n",
"[{'name': None, 'args': '{\"a\"', 'id': None, 'index': 1}]\n",
"[{'name': None, 'args': ': 11,', 'id': None, 'index': 1}]\n",
"[{'name': None, 'args': ' \"b\": ', 'id': None, 'index': 1}]\n",
"[{'name': None, 'args': '49}', 'id': None, 'index': 1}]\n",
"[]\n"
]
}
],
"source": [
"async for chunk in llm_with_tools.astream(query):\n",
" print(chunk.tool_call_chunks)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Note that adding message chunks will merge their corresponding tool call chunks. This is the principle by which LangChain's various [tool output parsers](/docs/how_to/output_parser_structured) support streaming.\n",
"\n",
"For example, below we accumulate tool call chunks:"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[]\n",
"[{'name': 'Multiply', 'args': '', 'id': 'call_AkL3dVeCjjiqvjv8ckLxL3gP', 'index': 0}]\n",
"[{'name': 'Multiply', 'args': '{\"a\"', 'id': 'call_AkL3dVeCjjiqvjv8ckLxL3gP', 'index': 0}]\n",
"[{'name': 'Multiply', 'args': '{\"a\": 3, ', 'id': 'call_AkL3dVeCjjiqvjv8ckLxL3gP', 'index': 0}]\n",
"[{'name': 'Multiply', 'args': '{\"a\": 3, \"b\": 1', 'id': 'call_AkL3dVeCjjiqvjv8ckLxL3gP', 'index': 0}]\n",
"[{'name': 'Multiply', 'args': '{\"a\": 3, \"b\": 12}', 'id': 'call_AkL3dVeCjjiqvjv8ckLxL3gP', 'index': 0}]\n",
"[{'name': 'Multiply', 'args': '{\"a\": 3, \"b\": 12}', 'id': 'call_AkL3dVeCjjiqvjv8ckLxL3gP', 'index': 0}, {'name': 'Add', 'args': '', 'id': 'call_b4iMiB3chGNGqbt5SjqqD2Wh', 'index': 1}]\n",
"[{'name': 'Multiply', 'args': '{\"a\": 3, \"b\": 12}', 'id': 'call_AkL3dVeCjjiqvjv8ckLxL3gP', 'index': 0}, {'name': 'Add', 'args': '{\"a\"', 'id': 'call_b4iMiB3chGNGqbt5SjqqD2Wh', 'index': 1}]\n",
"[{'name': 'Multiply', 'args': '{\"a\": 3, \"b\": 12}', 'id': 'call_AkL3dVeCjjiqvjv8ckLxL3gP', 'index': 0}, {'name': 'Add', 'args': '{\"a\": 11,', 'id': 'call_b4iMiB3chGNGqbt5SjqqD2Wh', 'index': 1}]\n",
"[{'name': 'Multiply', 'args': '{\"a\": 3, \"b\": 12}', 'id': 'call_AkL3dVeCjjiqvjv8ckLxL3gP', 'index': 0}, {'name': 'Add', 'args': '{\"a\": 11, \"b\": ', 'id': 'call_b4iMiB3chGNGqbt5SjqqD2Wh', 'index': 1}]\n",
"[{'name': 'Multiply', 'args': '{\"a\": 3, \"b\": 12}', 'id': 'call_AkL3dVeCjjiqvjv8ckLxL3gP', 'index': 0}, {'name': 'Add', 'args': '{\"a\": 11, \"b\": 49}', 'id': 'call_b4iMiB3chGNGqbt5SjqqD2Wh', 'index': 1}]\n",
"[{'name': 'Multiply', 'args': '{\"a\": 3, \"b\": 12}', 'id': 'call_AkL3dVeCjjiqvjv8ckLxL3gP', 'index': 0}, {'name': 'Add', 'args': '{\"a\": 11, \"b\": 49}', 'id': 'call_b4iMiB3chGNGqbt5SjqqD2Wh', 'index': 1}]\n"
]
}
],
"source": [
"first = True\n",
"async for chunk in llm_with_tools.astream(query):\n",
" if first:\n",
" gathered = chunk\n",
" first = False\n",
" else:\n",
" gathered = gathered + chunk\n",
"\n",
" print(gathered.tool_call_chunks)"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"<class 'str'>\n"
]
}
],
"source": [
"print(type(gathered.tool_call_chunks[0][\"args\"]))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"And below we accumulate tool calls to demonstrate partial parsing:"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[]\n",
"[]\n",
"[{'name': 'Multiply', 'args': {}, 'id': 'call_4p0D4tHVXSiae9Mu0e8jlI1m'}]\n",
"[{'name': 'Multiply', 'args': {'a': 3}, 'id': 'call_4p0D4tHVXSiae9Mu0e8jlI1m'}]\n",
"[{'name': 'Multiply', 'args': {'a': 3, 'b': 1}, 'id': 'call_4p0D4tHVXSiae9Mu0e8jlI1m'}]\n",
"[{'name': 'Multiply', 'args': {'a': 3, 'b': 12}, 'id': 'call_4p0D4tHVXSiae9Mu0e8jlI1m'}]\n",
"[{'name': 'Multiply', 'args': {'a': 3, 'b': 12}, 'id': 'call_4p0D4tHVXSiae9Mu0e8jlI1m'}]\n",
"[{'name': 'Multiply', 'args': {'a': 3, 'b': 12}, 'id': 'call_4p0D4tHVXSiae9Mu0e8jlI1m'}, {'name': 'Add', 'args': {}, 'id': 'call_54Hx3DGjZitFlEjgMe1DYonh'}]\n",
"[{'name': 'Multiply', 'args': {'a': 3, 'b': 12}, 'id': 'call_4p0D4tHVXSiae9Mu0e8jlI1m'}, {'name': 'Add', 'args': {'a': 11}, 'id': 'call_54Hx3DGjZitFlEjgMe1DYonh'}]\n",
"[{'name': 'Multiply', 'args': {'a': 3, 'b': 12}, 'id': 'call_4p0D4tHVXSiae9Mu0e8jlI1m'}, {'name': 'Add', 'args': {'a': 11}, 'id': 'call_54Hx3DGjZitFlEjgMe1DYonh'}]\n",
"[{'name': 'Multiply', 'args': {'a': 3, 'b': 12}, 'id': 'call_4p0D4tHVXSiae9Mu0e8jlI1m'}, {'name': 'Add', 'args': {'a': 11, 'b': 49}, 'id': 'call_54Hx3DGjZitFlEjgMe1DYonh'}]\n",
"[{'name': 'Multiply', 'args': {'a': 3, 'b': 12}, 'id': 'call_4p0D4tHVXSiae9Mu0e8jlI1m'}, {'name': 'Add', 'args': {'a': 11, 'b': 49}, 'id': 'call_54Hx3DGjZitFlEjgMe1DYonh'}]\n"
]
}
],
"source": [
"first = True\n",
"async for chunk in llm_with_tools.astream(query):\n",
" if first:\n",
" gathered = chunk\n",
" first = False\n",
" else:\n",
" gathered = gathered + chunk\n",
"\n",
" print(gathered.tool_calls)"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"<class 'dict'>\n"
]
}
],
"source": [
"print(type(gathered.tool_calls[0][\"args\"]))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Passing tool outputs to the model\n",
"\n",
"If we're using the model-generated tool invocations to actually call tools and want to pass the tool results back to the model, we can do so using `ToolMessage`s."
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[HumanMessage(content='What is 3 * 12? Also, what is 11 + 49?'),\n",
" AIMessage(content='', additional_kwargs={'tool_calls': [{'id': 'call_svc2GLSxNFALbaCAbSjMI9J8', 'function': {'arguments': '{\"a\": 3, \"b\": 12}', 'name': 'Multiply'}, 'type': 'function'}, {'id': 'call_r8jxte3zW6h3MEGV3zH2qzFh', 'function': {'arguments': '{\"a\": 11, \"b\": 49}', 'name': 'Add'}, 'type': 'function'}]}, response_metadata={'token_usage': {'completion_tokens': 50, 'prompt_tokens': 105, 'total_tokens': 155}, 'model_name': 'gpt-3.5-turbo-0125', 'system_fingerprint': 'fp_d9767fc5b9', 'finish_reason': 'tool_calls', 'logprobs': None}, id='run-a79ad1dd-95f1-4a46-b688-4c83f327a7b3-0', tool_calls=[{'name': 'Multiply', 'args': {'a': 3, 'b': 12}, 'id': 'call_svc2GLSxNFALbaCAbSjMI9J8'}, {'name': 'Add', 'args': {'a': 11, 'b': 49}, 'id': 'call_r8jxte3zW6h3MEGV3zH2qzFh'}]),\n",
" ToolMessage(content='36', tool_call_id='call_svc2GLSxNFALbaCAbSjMI9J8'),\n",
" ToolMessage(content='60', tool_call_id='call_r8jxte3zW6h3MEGV3zH2qzFh')]"
]
},
"execution_count": 12,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from langchain_core.messages import HumanMessage, ToolMessage\n",
"\n",
"messages = [HumanMessage(query)]\n",
"ai_msg = llm_with_tools.invoke(messages)\n",
"messages.append(ai_msg)\n",
"for tool_call in ai_msg.tool_calls:\n",
" selected_tool = {\"add\": add, \"multiply\": multiply}[tool_call[\"name\"].lower()]\n",
" tool_output = selected_tool.invoke(tool_call[\"args\"])\n",
" messages.append(ToolMessage(tool_output, tool_call_id=tool_call[\"id\"]))\n",
"messages"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"AIMessage(content='3 * 12 is 36 and 11 + 49 is 60.', response_metadata={'token_usage': {'completion_tokens': 18, 'prompt_tokens': 171, 'total_tokens': 189}, 'model_name': 'gpt-3.5-turbo-0125', 'system_fingerprint': 'fp_d9767fc5b9', 'finish_reason': 'stop', 'logprobs': None}, id='run-20b52149-e00d-48ea-97cf-f8de7a255f8c-0')"
]
},
"execution_count": 13,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"llm_with_tools.invoke(messages)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Note that we pass back the same `id` in the `ToolMessage` as the what we receive from the model in order to help the model match tool responses with tool calls.\n",
"\n",
"## Few-shot prompting\n",
"\n",
"For more complex tool use it's very useful to add few-shot examples to the prompt. We can do this by adding `AIMessage`s with `ToolCall`s and corresponding `ToolMessage`s to our prompt.\n",
"\n",
"For example, even with some special instructions our model can get tripped up by order of operations:"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[{'name': 'Multiply',\n",
" 'args': {'a': 119, 'b': 8},\n",
" 'id': 'call_T88XN6ECucTgbXXkyDeC2CQj'},\n",
" {'name': 'Add',\n",
" 'args': {'a': 952, 'b': -20},\n",
" 'id': 'call_licdlmGsRqzup8rhqJSb1yZ4'}]"
]
},
"execution_count": 14,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"llm_with_tools.invoke(\n",
" \"Whats 119 times 8 minus 20. Don't do any math yourself, only use tools for math. Respect order of operations\"\n",
").tool_calls"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The model shouldn't be trying to add anything yet, since it technically can't know the results of 119 * 8 yet.\n",
"\n",
"By adding a prompt with some examples we can correct this behavior:"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[{'name': 'Multiply',\n",
" 'args': {'a': 119, 'b': 8},\n",
" 'id': 'call_9MvuwQqg7dlJupJcoTWiEsDo'}]"
]
},
"execution_count": 15,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from langchain_core.messages import AIMessage\n",
"from langchain_core.prompts import ChatPromptTemplate\n",
"from langchain_core.runnables import RunnablePassthrough\n",
"\n",
"examples = [\n",
" HumanMessage(\n",
" \"What's the product of 317253 and 128472 plus four\", name=\"example_user\"\n",
" ),\n",
" AIMessage(\n",
" \"\",\n",
" name=\"example_assistant\",\n",
" tool_calls=[\n",
" {\"name\": \"Multiply\", \"args\": {\"x\": 317253, \"y\": 128472}, \"id\": \"1\"}\n",
" ],\n",
" ),\n",
" ToolMessage(\"16505054784\", tool_call_id=\"1\"),\n",
" AIMessage(\n",
" \"\",\n",
" name=\"example_assistant\",\n",
" tool_calls=[{\"name\": \"Add\", \"args\": {\"x\": 16505054784, \"y\": 4}, \"id\": \"2\"}],\n",
" ),\n",
" ToolMessage(\"16505054788\", tool_call_id=\"2\"),\n",
" AIMessage(\n",
" \"The product of 317253 and 128472 plus four is 16505054788\",\n",
" name=\"example_assistant\",\n",
" ),\n",
"]\n",
"\n",
"system = \"\"\"You are bad at math but are an expert at using a calculator. \n",
"\n",
"Use past tool usage as an example of how to correctly use the tools.\"\"\"\n",
"few_shot_prompt = ChatPromptTemplate.from_messages(\n",
" [\n",
" (\"system\", system),\n",
" *examples,\n",
" (\"human\", \"{query}\"),\n",
" ]\n",
")\n",
"\n",
"chain = {\"query\": RunnablePassthrough()} | few_shot_prompt | llm_with_tools\n",
"chain.invoke(\"Whats 119 times 8 minus 20\").tool_calls"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"And we get the correct output this time.\n",
"\n",
"Here's what the [LangSmith trace](https://smith.langchain.com/public/f70550a1-585f-4c9d-a643-13148ab1616f/r) looks like."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Binding model-specific formats (advanced)\n",
"\n",
"Providers adopt different conventions for formatting tool schemas. \n",
"For instance, OpenAI uses a format like this:\n",
"\n",
"- `type`: The type of the tool. At the time of writing, this is always `\"function\"`.\n",
"- `function`: An object containing tool parameters.\n",
"- `function.name`: The name of the schema to output.\n",
"- `function.description`: A high level description of the schema to output.\n",
"- `function.parameters`: The nested details of the schema you want to extract, formatted as a [JSON schema](https://json-schema.org/) dict.\n",
"\n",
"We can bind this model-specific format directly to the model as well if preferred. Here's an example:"
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"AIMessage(content='', additional_kwargs={'tool_calls': [{'id': 'call_mn4ELw1NbuE0DFYhIeK0GrPe', 'function': {'arguments': '{\"a\":119,\"b\":8}', 'name': 'multiply'}, 'type': 'function'}]}, response_metadata={'token_usage': {'completion_tokens': 17, 'prompt_tokens': 62, 'total_tokens': 79}, 'model_name': 'gpt-3.5-turbo', 'system_fingerprint': 'fp_c2295e73ad', 'finish_reason': 'tool_calls', 'logprobs': None}, id='run-353e8a9a-7125-4f94-8c68-4f3da4c21120-0', tool_calls=[{'name': 'multiply', 'args': {'a': 119, 'b': 8}, 'id': 'call_mn4ELw1NbuE0DFYhIeK0GrPe'}])"
]
},
"execution_count": 18,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from langchain_openai import ChatOpenAI\n",
"\n",
"model = ChatOpenAI()\n",
"\n",
"model_with_tools = model.bind(\n",
" tools=[\n",
" {\n",
" \"type\": \"function\",\n",
" \"function\": {\n",
" \"name\": \"multiply\",\n",
" \"description\": \"Multiply two integers together.\",\n",
" \"parameters\": {\n",
" \"type\": \"object\",\n",
" \"properties\": {\n",
" \"a\": {\"type\": \"number\", \"description\": \"First integer\"},\n",
" \"b\": {\"type\": \"number\", \"description\": \"Second integer\"},\n",
" },\n",
" \"required\": [\"a\", \"b\"],\n",
" },\n",
" },\n",
" }\n",
" ]\n",
")\n",
"\n",
"model_with_tools.invoke(\"Whats 119 times 8?\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"This is functionally equivalent to the `bind_tools()` calls above."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Next steps\n",
"\n",
"Now you've learned how to bind tool schemas to a chat model and to call those tools. Next, check out some more specific uses of tool calling:\n",
"Now you've learned how to bind tool schemas to a chat model and to call those tools. Next, you can learn more about how to use tools:\n",
"\n",
"- Few shot promting [with tools](/docs/how_to/tools_few_shot/)\n",
"- Stream [tool calls](/docs/how_to/tool_streaming/)\n",
"- Bind [model-specific tools](/docs/how_to/tools_model_specific/)\n",
"- Pass [runtime values to tools](/docs/how_to/tool_runtime)\n",
"- Pass [tool results back to model](/docs/how_to/tool_results_pass_to_model)\n",
"\n",
"You can also check out some more specific uses of tool calling:\n",
"\n",
"- Building [tool-using chains and agents](/docs/how_to#tools)\n",
"- Getting [structured outputs](/docs/how_to/structured_output/) from models"
@@ -781,7 +343,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.9"
"version": "3.10.5"
}
},
"nbformat": 4,

View File

@@ -0,0 +1,108 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Disabling parallel tool calling (OpenAI only)\n",
"\n",
"OpenAI tool calling performs tool calling in parallel by default. That means that if we ask a question like \"What is the weather in Tokyo, New York, and Chicago?\" and we have a tool for getting the weather, it will call the tool 3 times in parallel. We can force it to call only a single tool once by using the ``parallel_tool_call`` parameter."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"First let's set up our tools and model:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from langchain_core.tools import tool\n",
"\n",
"\n",
"@tool\n",
"def add(a: int, b: int) -> int:\n",
" \"\"\"Adds a and b.\"\"\"\n",
" return a + b\n",
"\n",
"\n",
"@tool\n",
"def multiply(a: int, b: int) -> int:\n",
" \"\"\"Multiplies a and b.\"\"\"\n",
" return a * b\n",
"\n",
"\n",
"tools = [add, multiply]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"from getpass import getpass\n",
"\n",
"from langchain_openai import ChatOpenAI\n",
"\n",
"os.environ[\"OPENAI_API_KEY\"] = getpass()\n",
"\n",
"llm = ChatOpenAI(model=\"gpt-3.5-turbo-0125\", temperature=0)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Now let's show a quick example of how disabling parallel tool calls work:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[{'name': 'add',\n",
" 'args': {'a': 2, 'b': 2},\n",
" 'id': 'call_Hh4JOTCDM85Sm9Pr84VKrWu5'}]"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"llm_with_tools = llm.bind_tools(tools, parallel_tool_calls=False)\n",
"llm_with_tools.invoke(\"Please call the first tool two times\").tool_calls"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"As we can see, even though we explicitly told the model to call a tool twice, by disabling parallel tool calls the model was constrained to only calling one."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": []
}
],
"metadata": {
"language_info": {
"name": "python"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@@ -0,0 +1,126 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# How to force tool calling behavior\n",
"\n",
"In order to force our LLM to spelect a specific tool, we can use the `tool_choice` parameter to ensure certain behavior. First, let's define our model and tools:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from langchain_core.tools import tool\n",
"\n",
"\n",
"@tool\n",
"def add(a: int, b: int) -> int:\n",
" \"\"\"Adds a and b.\"\"\"\n",
" return a + b\n",
"\n",
"\n",
"@tool\n",
"def multiply(a: int, b: int) -> int:\n",
" \"\"\"Multiplies a and b.\"\"\"\n",
" return a * b\n",
"\n",
"\n",
"tools = [add, multiply]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# | output: false\n",
"# | echo: false\n",
"\n",
"%pip install -qU langchain langchain_openai\n",
"\n",
"import os\n",
"from getpass import getpass\n",
"\n",
"from langchain_openai import ChatOpenAI\n",
"\n",
"os.environ[\"OPENAI_API_KEY\"] = getpass()\n",
"\n",
"llm = ChatOpenAI(model=\"gpt-3.5-turbo-0125\", temperature=0)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"For example, we can force our tool to call the multiply tool by using the following code:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"AIMessage(content='', additional_kwargs={'tool_calls': [{'id': 'call_9cViskmLvPnHjXk9tbVla5HA', 'function': {'arguments': '{\"a\":2,\"b\":4}', 'name': 'Multiply'}, 'type': 'function'}]}, response_metadata={'token_usage': {'completion_tokens': 9, 'prompt_tokens': 103, 'total_tokens': 112}, 'model_name': 'gpt-3.5-turbo-0125', 'system_fingerprint': None, 'finish_reason': 'stop', 'logprobs': None}, id='run-095b827e-2bdd-43bb-8897-c843f4504883-0', tool_calls=[{'name': 'Multiply', 'args': {'a': 2, 'b': 4}, 'id': 'call_9cViskmLvPnHjXk9tbVla5HA'}], usage_metadata={'input_tokens': 103, 'output_tokens': 9, 'total_tokens': 112})"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"llm_forced_to_multiply = llm.bind_tools(tools, tool_choice=\"Multiply\")\n",
"llm_forced_to_multiply.invoke(\"what is 2 + 4\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Even if we pass it something that doesn't require multiplcation - it will still call the tool!"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We can also just force our tool to select at least one of our tools by passing in the \"any\" (or \"required\" which is OpenAI specific) keyword to the `tool_choice` parameter."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"AIMessage(content='', additional_kwargs={'tool_calls': [{'id': 'call_mCSiJntCwHJUBfaHZVUB2D8W', 'function': {'arguments': '{\"a\":1,\"b\":2}', 'name': 'Add'}, 'type': 'function'}]}, response_metadata={'token_usage': {'completion_tokens': 15, 'prompt_tokens': 94, 'total_tokens': 109}, 'model_name': 'gpt-3.5-turbo-0125', 'system_fingerprint': None, 'finish_reason': 'stop', 'logprobs': None}, id='run-28f75260-9900-4bed-8cd3-f1579abb65e5-0', tool_calls=[{'name': 'Add', 'args': {'a': 1, 'b': 2}, 'id': 'call_mCSiJntCwHJUBfaHZVUB2D8W'}], usage_metadata={'input_tokens': 94, 'output_tokens': 15, 'total_tokens': 109})"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"llm_forced_to_use_tool = llm.bind_tools(tools, tool_choice=\"any\")\n",
"llm_forced_to_use_tool.invoke(\"What day is today?\")"
]
}
],
"metadata": {
"language_info": {
"name": "python"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@@ -0,0 +1,127 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# How to pass tool outputs to the model\n",
"\n",
"If we're using the model-generated tool invocations to actually call tools and want to pass the tool results back to the model, we can do so using `ToolMessage`s. First, let's define our tools and our model."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from langchain_core.tools import tool\n",
"\n",
"\n",
"@tool\n",
"def add(a: int, b: int) -> int:\n",
" \"\"\"Adds a and b.\"\"\"\n",
" return a + b\n",
"\n",
"\n",
"@tool\n",
"def multiply(a: int, b: int) -> int:\n",
" \"\"\"Multiplies a and b.\"\"\"\n",
" return a * b\n",
"\n",
"\n",
"tools = [add, multiply]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"from getpass import getpass\n",
"\n",
"from langchain_openai import ChatOpenAI\n",
"\n",
"os.environ[\"OPENAI_API_KEY\"] = getpass()\n",
"\n",
"llm = ChatOpenAI(model=\"gpt-3.5-turbo-0125\", temperature=0)\n",
"llm_with_tools = llm.bind_tools(tools)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Now we can use ``ToolMessage`` to pass back the output of the tool calls to the model."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[HumanMessage(content='What is 3 * 12? Also, what is 11 + 49?'),\n",
" AIMessage(content='', additional_kwargs={'tool_calls': [{'id': 'call_svc2GLSxNFALbaCAbSjMI9J8', 'function': {'arguments': '{\"a\": 3, \"b\": 12}', 'name': 'Multiply'}, 'type': 'function'}, {'id': 'call_r8jxte3zW6h3MEGV3zH2qzFh', 'function': {'arguments': '{\"a\": 11, \"b\": 49}', 'name': 'Add'}, 'type': 'function'}]}, response_metadata={'token_usage': {'completion_tokens': 50, 'prompt_tokens': 105, 'total_tokens': 155}, 'model_name': 'gpt-3.5-turbo-0125', 'system_fingerprint': 'fp_d9767fc5b9', 'finish_reason': 'tool_calls', 'logprobs': None}, id='run-a79ad1dd-95f1-4a46-b688-4c83f327a7b3-0', tool_calls=[{'name': 'Multiply', 'args': {'a': 3, 'b': 12}, 'id': 'call_svc2GLSxNFALbaCAbSjMI9J8'}, {'name': 'Add', 'args': {'a': 11, 'b': 49}, 'id': 'call_r8jxte3zW6h3MEGV3zH2qzFh'}]),\n",
" ToolMessage(content='36', tool_call_id='call_svc2GLSxNFALbaCAbSjMI9J8'),\n",
" ToolMessage(content='60', tool_call_id='call_r8jxte3zW6h3MEGV3zH2qzFh')]"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"from langchain_core.messages import HumanMessage, ToolMessage\n",
"\n",
"query = \"What is 3 * 12? Also, what is 11 + 49?\"\n",
"\n",
"messages = [HumanMessage(query)]\n",
"ai_msg = llm_with_tools.invoke(messages)\n",
"messages.append(ai_msg)\n",
"for tool_call in ai_msg.tool_calls:\n",
" selected_tool = {\"add\": add, \"multiply\": multiply}[tool_call[\"name\"].lower()]\n",
" tool_output = selected_tool.invoke(tool_call[\"args\"])\n",
" messages.append(ToolMessage(tool_output, tool_call_id=tool_call[\"id\"]))\n",
"messages"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"AIMessage(content='3 * 12 is 36 and 11 + 49 is 60.', response_metadata={'token_usage': {'completion_tokens': 18, 'prompt_tokens': 171, 'total_tokens': 189}, 'model_name': 'gpt-3.5-turbo-0125', 'system_fingerprint': 'fp_d9767fc5b9', 'finish_reason': 'stop', 'logprobs': None}, id='run-20b52149-e00d-48ea-97cf-f8de7a255f8c-0')"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"llm_with_tools.invoke(messages)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Note that we pass back the same `id` in the `ToolMessage` as the what we receive from the model in order to help the model match tool responses with tool calls."
]
}
],
"metadata": {
"language_info": {
"name": "python"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@@ -12,7 +12,7 @@
"- [Chat models](/docs/concepts/#chat-models)\n",
"- [LangChain Tools](/docs/concepts/#tools)\n",
"- [How to create tools](/docs/how_to/custom_tools)\n",
"- [How to use a model to call tools](https://python.langchain.com/v0.2/docs/how_to/tool_calling/)\n",
"- [How to use a model to call tools](https://python.langchain.com/v0.2/docs/how_to/tool_calling)\n",
":::\n",
"\n",
":::{.callout-info} Supported models\n",
@@ -227,7 +227,7 @@
"\n",
"Chat models only output requests to invoke tools, they don't actually invoke the underlying tools.\n",
"\n",
"To see how to invoke the tools, please refer to [how to use a model to call tools](https://python.langchain.com/v0.2/docs/how_to/tool_calling/).\n",
"To see how to invoke the tools, please refer to [how to use a model to call tools](https://python.langchain.com/v0.2/docs/how_to/tool_calling).\n",
":::"
]
}

View File

@@ -0,0 +1,235 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# How to stream tool calls\n",
"\n",
"When tools are called in a streaming context, \n",
"[message chunks](https://api.python.langchain.com/en/latest/messages/langchain_core.messages.ai.AIMessageChunk.html#langchain_core.messages.ai.AIMessageChunk) \n",
"will be populated with [tool call chunk](https://api.python.langchain.com/en/latest/messages/langchain_core.messages.tool.ToolCallChunk.html#langchain_core.messages.tool.ToolCallChunk) \n",
"objects in a list via the `.tool_call_chunks` attribute. A `ToolCallChunk` includes \n",
"optional string fields for the tool `name`, `args`, and `id`, and includes an optional \n",
"integer field `index` that can be used to join chunks together. Fields are optional \n",
"because portions of a tool call may be streamed across different chunks (e.g., a chunk \n",
"that includes a substring of the arguments may have null values for the tool name and id).\n",
"\n",
"Because message chunks inherit from their parent message class, an \n",
"[AIMessageChunk](https://api.python.langchain.com/en/latest/messages/langchain_core.messages.ai.AIMessageChunk.html#langchain_core.messages.ai.AIMessageChunk) \n",
"with tool call chunks will also include `.tool_calls` and `.invalid_tool_calls` fields. \n",
"These fields are parsed best-effort from the message's tool call chunks.\n",
"\n",
"Note that not all providers currently support streaming for tool calls. Before we start let's define our tools and our model."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from langchain_core.tools import tool\n",
"\n",
"\n",
"@tool\n",
"def add(a: int, b: int) -> int:\n",
" \"\"\"Adds a and b.\"\"\"\n",
" return a + b\n",
"\n",
"\n",
"@tool\n",
"def multiply(a: int, b: int) -> int:\n",
" \"\"\"Multiplies a and b.\"\"\"\n",
" return a * b\n",
"\n",
"\n",
"tools = [add, multiply]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"from getpass import getpass\n",
"\n",
"from langchain_openai import ChatOpenAI\n",
"\n",
"os.environ[\"OPENAI_API_KEY\"] = getpass()\n",
"\n",
"llm = ChatOpenAI(model=\"gpt-3.5-turbo-0125\", temperature=0)\n",
"llm_with_tools = llm.bind_tools(tools)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Now let's define our query and stream our output:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[]\n",
"[{'name': 'Multiply', 'args': '', 'id': 'call_3aQwTP9CYlFxwOvQZPHDu6wL', 'index': 0}]\n",
"[{'name': None, 'args': '{\"a\"', 'id': None, 'index': 0}]\n",
"[{'name': None, 'args': ': 3, ', 'id': None, 'index': 0}]\n",
"[{'name': None, 'args': '\"b\": 1', 'id': None, 'index': 0}]\n",
"[{'name': None, 'args': '2}', 'id': None, 'index': 0}]\n",
"[{'name': 'Add', 'args': '', 'id': 'call_SQUoSsJz2p9Kx2x73GOgN1ja', 'index': 1}]\n",
"[{'name': None, 'args': '{\"a\"', 'id': None, 'index': 1}]\n",
"[{'name': None, 'args': ': 11,', 'id': None, 'index': 1}]\n",
"[{'name': None, 'args': ' \"b\": ', 'id': None, 'index': 1}]\n",
"[{'name': None, 'args': '49}', 'id': None, 'index': 1}]\n",
"[]\n"
]
}
],
"source": [
"query = \"What is 3 * 12? Also, what is 11 + 49?\"\n",
"\n",
"async for chunk in llm_with_tools.astream(query):\n",
" print(chunk.tool_call_chunks)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Note that adding message chunks will merge their corresponding tool call chunks. This is the principle by which LangChain's various [tool output parsers](/docs/how_to/output_parser_structured) support streaming.\n",
"\n",
"For example, below we accumulate tool call chunks:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[]\n",
"[{'name': 'Multiply', 'args': '', 'id': 'call_AkL3dVeCjjiqvjv8ckLxL3gP', 'index': 0}]\n",
"[{'name': 'Multiply', 'args': '{\"a\"', 'id': 'call_AkL3dVeCjjiqvjv8ckLxL3gP', 'index': 0}]\n",
"[{'name': 'Multiply', 'args': '{\"a\": 3, ', 'id': 'call_AkL3dVeCjjiqvjv8ckLxL3gP', 'index': 0}]\n",
"[{'name': 'Multiply', 'args': '{\"a\": 3, \"b\": 1', 'id': 'call_AkL3dVeCjjiqvjv8ckLxL3gP', 'index': 0}]\n",
"[{'name': 'Multiply', 'args': '{\"a\": 3, \"b\": 12}', 'id': 'call_AkL3dVeCjjiqvjv8ckLxL3gP', 'index': 0}]\n",
"[{'name': 'Multiply', 'args': '{\"a\": 3, \"b\": 12}', 'id': 'call_AkL3dVeCjjiqvjv8ckLxL3gP', 'index': 0}, {'name': 'Add', 'args': '', 'id': 'call_b4iMiB3chGNGqbt5SjqqD2Wh', 'index': 1}]\n",
"[{'name': 'Multiply', 'args': '{\"a\": 3, \"b\": 12}', 'id': 'call_AkL3dVeCjjiqvjv8ckLxL3gP', 'index': 0}, {'name': 'Add', 'args': '{\"a\"', 'id': 'call_b4iMiB3chGNGqbt5SjqqD2Wh', 'index': 1}]\n",
"[{'name': 'Multiply', 'args': '{\"a\": 3, \"b\": 12}', 'id': 'call_AkL3dVeCjjiqvjv8ckLxL3gP', 'index': 0}, {'name': 'Add', 'args': '{\"a\": 11,', 'id': 'call_b4iMiB3chGNGqbt5SjqqD2Wh', 'index': 1}]\n",
"[{'name': 'Multiply', 'args': '{\"a\": 3, \"b\": 12}', 'id': 'call_AkL3dVeCjjiqvjv8ckLxL3gP', 'index': 0}, {'name': 'Add', 'args': '{\"a\": 11, \"b\": ', 'id': 'call_b4iMiB3chGNGqbt5SjqqD2Wh', 'index': 1}]\n",
"[{'name': 'Multiply', 'args': '{\"a\": 3, \"b\": 12}', 'id': 'call_AkL3dVeCjjiqvjv8ckLxL3gP', 'index': 0}, {'name': 'Add', 'args': '{\"a\": 11, \"b\": 49}', 'id': 'call_b4iMiB3chGNGqbt5SjqqD2Wh', 'index': 1}]\n",
"[{'name': 'Multiply', 'args': '{\"a\": 3, \"b\": 12}', 'id': 'call_AkL3dVeCjjiqvjv8ckLxL3gP', 'index': 0}, {'name': 'Add', 'args': '{\"a\": 11, \"b\": 49}', 'id': 'call_b4iMiB3chGNGqbt5SjqqD2Wh', 'index': 1}]\n"
]
}
],
"source": [
"first = True\n",
"async for chunk in llm_with_tools.astream(query):\n",
" if first:\n",
" gathered = chunk\n",
" first = False\n",
" else:\n",
" gathered = gathered + chunk\n",
"\n",
" print(gathered.tool_call_chunks)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"<class 'str'>\n"
]
}
],
"source": [
"print(type(gathered.tool_call_chunks[0][\"args\"]))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"And below we accumulate tool calls to demonstrate partial parsing:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[]\n",
"[]\n",
"[{'name': 'Multiply', 'args': {}, 'id': 'call_4p0D4tHVXSiae9Mu0e8jlI1m'}]\n",
"[{'name': 'Multiply', 'args': {'a': 3}, 'id': 'call_4p0D4tHVXSiae9Mu0e8jlI1m'}]\n",
"[{'name': 'Multiply', 'args': {'a': 3, 'b': 1}, 'id': 'call_4p0D4tHVXSiae9Mu0e8jlI1m'}]\n",
"[{'name': 'Multiply', 'args': {'a': 3, 'b': 12}, 'id': 'call_4p0D4tHVXSiae9Mu0e8jlI1m'}]\n",
"[{'name': 'Multiply', 'args': {'a': 3, 'b': 12}, 'id': 'call_4p0D4tHVXSiae9Mu0e8jlI1m'}]\n",
"[{'name': 'Multiply', 'args': {'a': 3, 'b': 12}, 'id': 'call_4p0D4tHVXSiae9Mu0e8jlI1m'}, {'name': 'Add', 'args': {}, 'id': 'call_54Hx3DGjZitFlEjgMe1DYonh'}]\n",
"[{'name': 'Multiply', 'args': {'a': 3, 'b': 12}, 'id': 'call_4p0D4tHVXSiae9Mu0e8jlI1m'}, {'name': 'Add', 'args': {'a': 11}, 'id': 'call_54Hx3DGjZitFlEjgMe1DYonh'}]\n",
"[{'name': 'Multiply', 'args': {'a': 3, 'b': 12}, 'id': 'call_4p0D4tHVXSiae9Mu0e8jlI1m'}, {'name': 'Add', 'args': {'a': 11}, 'id': 'call_54Hx3DGjZitFlEjgMe1DYonh'}]\n",
"[{'name': 'Multiply', 'args': {'a': 3, 'b': 12}, 'id': 'call_4p0D4tHVXSiae9Mu0e8jlI1m'}, {'name': 'Add', 'args': {'a': 11, 'b': 49}, 'id': 'call_54Hx3DGjZitFlEjgMe1DYonh'}]\n",
"[{'name': 'Multiply', 'args': {'a': 3, 'b': 12}, 'id': 'call_4p0D4tHVXSiae9Mu0e8jlI1m'}, {'name': 'Add', 'args': {'a': 11, 'b': 49}, 'id': 'call_54Hx3DGjZitFlEjgMe1DYonh'}]\n"
]
}
],
"source": [
"first = True\n",
"async for chunk in llm_with_tools.astream(query):\n",
" if first:\n",
" gathered = chunk\n",
" first = False\n",
" else:\n",
" gathered = gathered + chunk\n",
"\n",
" print(gathered.tool_calls)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"<class 'dict'>\n"
]
}
],
"source": [
"print(type(gathered.tool_calls[0][\"args\"]))"
]
}
],
"metadata": {
"language_info": {
"name": "python"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@@ -0,0 +1,175 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# How to use few-shot prompting with tool calling\n",
"\n",
"For more complex tool use it's very useful to add few-shot examples to the prompt. We can do this by adding `AIMessage`s with `ToolCall`s and corresponding `ToolMessage`s to our prompt.\n",
"\n",
"First let's define our tools and model."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from langchain_core.tools import tool\n",
"\n",
"\n",
"@tool\n",
"def add(a: int, b: int) -> int:\n",
" \"\"\"Adds a and b.\"\"\"\n",
" return a + b\n",
"\n",
"\n",
"@tool\n",
"def multiply(a: int, b: int) -> int:\n",
" \"\"\"Multiplies a and b.\"\"\"\n",
" return a * b\n",
"\n",
"\n",
"tools = [add, multiply]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"from getpass import getpass\n",
"\n",
"from langchain_openai import ChatOpenAI\n",
"\n",
"os.environ[\"OPENAI_API_KEY\"] = getpass()\n",
"\n",
"llm = ChatOpenAI(model=\"gpt-3.5-turbo-0125\", temperature=0)\n",
"llm_with_tools = llm.bind_tools(tools)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Let's run our model where we can notice that even with some special instructions our model can get tripped up by order of operations. "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[{'name': 'Multiply',\n",
" 'args': {'a': 119, 'b': 8},\n",
" 'id': 'call_T88XN6ECucTgbXXkyDeC2CQj'},\n",
" {'name': 'Add',\n",
" 'args': {'a': 952, 'b': -20},\n",
" 'id': 'call_licdlmGsRqzup8rhqJSb1yZ4'}]"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"llm_with_tools.invoke(\n",
" \"Whats 119 times 8 minus 20. Don't do any math yourself, only use tools for math. Respect order of operations\"\n",
").tool_calls"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The model shouldn't be trying to add anything yet, since it technically can't know the results of 119 * 8 yet.\n",
"\n",
"By adding a prompt with some examples we can correct this behavior:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[{'name': 'Multiply',\n",
" 'args': {'a': 119, 'b': 8},\n",
" 'id': 'call_9MvuwQqg7dlJupJcoTWiEsDo'}]"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"from langchain_core.messages import AIMessage, HumanMessage, ToolMessage\n",
"from langchain_core.prompts import ChatPromptTemplate\n",
"from langchain_core.runnables import RunnablePassthrough\n",
"\n",
"examples = [\n",
" HumanMessage(\n",
" \"What's the product of 317253 and 128472 plus four\", name=\"example_user\"\n",
" ),\n",
" AIMessage(\n",
" \"\",\n",
" name=\"example_assistant\",\n",
" tool_calls=[\n",
" {\"name\": \"Multiply\", \"args\": {\"x\": 317253, \"y\": 128472}, \"id\": \"1\"}\n",
" ],\n",
" ),\n",
" ToolMessage(\"16505054784\", tool_call_id=\"1\"),\n",
" AIMessage(\n",
" \"\",\n",
" name=\"example_assistant\",\n",
" tool_calls=[{\"name\": \"Add\", \"args\": {\"x\": 16505054784, \"y\": 4}, \"id\": \"2\"}],\n",
" ),\n",
" ToolMessage(\"16505054788\", tool_call_id=\"2\"),\n",
" AIMessage(\n",
" \"The product of 317253 and 128472 plus four is 16505054788\",\n",
" name=\"example_assistant\",\n",
" ),\n",
"]\n",
"\n",
"system = \"\"\"You are bad at math but are an expert at using a calculator. \n",
"\n",
"Use past tool usage as an example of how to correctly use the tools.\"\"\"\n",
"few_shot_prompt = ChatPromptTemplate.from_messages(\n",
" [\n",
" (\"system\", system),\n",
" *examples,\n",
" (\"human\", \"{query}\"),\n",
" ]\n",
")\n",
"\n",
"chain = {\"query\": RunnablePassthrough()} | few_shot_prompt | llm_with_tools\n",
"chain.invoke(\"Whats 119 times 8 minus 20\").tool_calls"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"And we get the correct output this time.\n",
"\n",
"Here's what the [LangSmith trace](https://smith.langchain.com/public/f70550a1-585f-4c9d-a643-13148ab1616f/r) looks like."
]
}
],
"metadata": {
"language_info": {
"name": "python"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@@ -0,0 +1,79 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# How to bind model-specific tools\n",
"\n",
"Providers adopt different conventions for formatting tool schemas. \n",
"For instance, OpenAI uses a format like this:\n",
"\n",
"- `type`: The type of the tool. At the time of writing, this is always `\"function\"`.\n",
"- `function`: An object containing tool parameters.\n",
"- `function.name`: The name of the schema to output.\n",
"- `function.description`: A high level description of the schema to output.\n",
"- `function.parameters`: The nested details of the schema you want to extract, formatted as a [JSON schema](https://json-schema.org/) dict.\n",
"\n",
"We can bind this model-specific format directly to the model as well if preferred. Here's an example:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"AIMessage(content='', additional_kwargs={'tool_calls': [{'id': 'call_mn4ELw1NbuE0DFYhIeK0GrPe', 'function': {'arguments': '{\"a\":119,\"b\":8}', 'name': 'multiply'}, 'type': 'function'}]}, response_metadata={'token_usage': {'completion_tokens': 17, 'prompt_tokens': 62, 'total_tokens': 79}, 'model_name': 'gpt-3.5-turbo', 'system_fingerprint': 'fp_c2295e73ad', 'finish_reason': 'tool_calls', 'logprobs': None}, id='run-353e8a9a-7125-4f94-8c68-4f3da4c21120-0', tool_calls=[{'name': 'multiply', 'args': {'a': 119, 'b': 8}, 'id': 'call_mn4ELw1NbuE0DFYhIeK0GrPe'}])"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"from langchain_openai import ChatOpenAI\n",
"\n",
"model = ChatOpenAI()\n",
"\n",
"model_with_tools = model.bind(\n",
" tools=[\n",
" {\n",
" \"type\": \"function\",\n",
" \"function\": {\n",
" \"name\": \"multiply\",\n",
" \"description\": \"Multiply two integers together.\",\n",
" \"parameters\": {\n",
" \"type\": \"object\",\n",
" \"properties\": {\n",
" \"a\": {\"type\": \"number\", \"description\": \"First integer\"},\n",
" \"b\": {\"type\": \"number\", \"description\": \"Second integer\"},\n",
" },\n",
" \"required\": [\"a\", \"b\"],\n",
" },\n",
" },\n",
" }\n",
" ]\n",
")\n",
"\n",
"model_with_tools.invoke(\"Whats 119 times 8?\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"This is functionally equivalent to the `bind_tools()` method."
]
}
],
"metadata": {
"language_info": {
"name": "python"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@@ -19,7 +19,7 @@
"\n",
":::{.callout-caution}\n",
"\n",
"Some models have been fine-tuned for tool calling and provide a dedicated API for tool calling. Generally, such models are better at tool calling than non-fine-tuned models, and are recommended for use cases that require tool calling. Please see the [how to use a chat model to call tools](/docs/how_to/tool_calling/) guide for more information.\n",
"Some models have been fine-tuned for tool calling and provide a dedicated API for tool calling. Generally, such models are better at tool calling than non-fine-tuned models, and are recommended for use cases that require tool calling. Please see the [how to use a chat model to call tools](/docs/how_to/tool_calling) guide for more information.\n",
"\n",
":::\n",
"\n",
@@ -34,7 +34,7 @@
"\n",
":::\n",
"\n",
"In this guide, we'll see how to add **ad-hoc** tool calling support to a chat model. This is an alternative method to invoke tools if you're using a model that does not natively support [tool calling](/docs/how_to/tool_calling/).\n",
"In this guide, we'll see how to add **ad-hoc** tool calling support to a chat model. This is an alternative method to invoke tools if you're using a model that does not natively support [tool calling](/docs/how_to/tool_calling).\n",
"\n",
"We'll do this by simply writing a prompt that will get the model to invoke the appropriate tools. Here's a diagram of the logic:\n",
"\n",
@@ -87,7 +87,7 @@
"id": "7ec6409b-21e5-4d0a-8a46-c4ef0b055dd3",
"metadata": {},
"source": [
"You can select any of the given models for this how-to guide. Keep in mind that most of these models already [support native tool calling](/docs/integrations/chat/), so using the prompting strategy shown here doesn't make sense for these models, and instead you should follow the [how to use a chat model to call tools](/docs/how_to/tool_calling/) guide.\n",
"You can select any of the given models for this how-to guide. Keep in mind that most of these models already [support native tool calling](/docs/integrations/chat/), so using the prompting strategy shown here doesn't make sense for these models, and instead you should follow the [how to use a chat model to call tools](/docs/how_to/tool_calling) guide.\n",
"\n",
"```{=mdx}\n",
"import ChatModelTabs from \"@theme/ChatModelTabs\";\n",

View File

@@ -323,7 +323,7 @@
{
"data": {
"text/plain": [
"AIMessage(content='A \"polygon\"! Because it\\'s a \"poly-gone\" silent!', response_metadata={'token_usage': {'completion_tokens': 14, 'prompt_tokens': 32, 'total_tokens': 46}, 'model_name': 'gpt-4o-2024-05-13', 'system_fingerprint': 'fp_319be4768e', 'finish_reason': 'stop', 'logprobs': None}, id='run-64cc4575-14d1-4f3f-b4af-97f24758f703-0', usage_metadata={'input_tokens': 32, 'output_tokens': 14, 'total_tokens': 46})"
"AIMessage(content='A: A \"Polly-gone\"!', response_metadata={'token_usage': {'completion_tokens': 9, 'prompt_tokens': 32, 'total_tokens': 41}, 'model_name': 'gpt-4o-2024-05-13', 'system_fingerprint': 'fp_66b29dffce', 'finish_reason': 'stop', 'logprobs': None}, id='run-83e96ddf-bcaa-4f63-824c-98b0f8a0d474-0', usage_metadata={'input_tokens': 32, 'output_tokens': 9, 'total_tokens': 41})"
]
},
"execution_count": 7,
@@ -391,24 +391,17 @@
},
{
"cell_type": "code",
"execution_count": 14,
"execution_count": 9,
"id": "a9517858-fc2f-4dc3-898d-bf98a0e905a0",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Parent run c87e2f1b-81ad-4fa7-bfd9-ce6edb29a482 not found for run 7892ee8f-0669-4d6b-a2ca-ef8aae81042a. Treating as a root run.\n"
]
},
{
"data": {
"text/plain": [
"AIMessage(content=\"A polygon! Because it's a parrot gone quiet!\", response_metadata={'token_usage': {'completion_tokens': 11, 'prompt_tokens': 32, 'total_tokens': 43}, 'model_name': 'gpt-4o-2024-05-13', 'system_fingerprint': 'fp_319be4768e', 'finish_reason': 'stop', 'logprobs': None}, id='run-72dad96e-8b58-45f4-8c08-21f9f1a6b68f-0', usage_metadata={'input_tokens': 32, 'output_tokens': 11, 'total_tokens': 43})"
"AIMessage(content='A \"polly-no-wanna-cracker\"!', response_metadata={'token_usage': {'completion_tokens': 10, 'prompt_tokens': 32, 'total_tokens': 42}, 'model_name': 'gpt-4o-2024-05-13', 'system_fingerprint': 'fp_5bf7397cd3', 'finish_reason': 'stop', 'logprobs': None}, id='run-054dd309-3497-4e7b-b22a-c1859f11d32e-0', usage_metadata={'input_tokens': 32, 'output_tokens': 10, 'total_tokens': 42})"
]
},
"execution_count": 14,
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
@@ -422,7 +415,7 @@
"\n",
"def dummy_get_session_history(session_id):\n",
" if session_id != \"1\":\n",
" raise InMemoryChatMessageHistory()\n",
" return InMemoryChatMessageHistory()\n",
" return chat_history\n",
"\n",
"\n",
@@ -464,9 +457,9 @@
],
"metadata": {
"kernelspec": {
"display_name": "poetry-venv-2",
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "poetry-venv-2"
"name": "python3"
},
"language_info": {
"codemirror_mode": {
@@ -478,7 +471,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.1"
"version": "3.10.4"
}
},
"nbformat": 4,

View File

@@ -18,7 +18,9 @@
"# ChatAI21\n",
"\n",
"This notebook covers how to get started with AI21 chat models.\n",
"\n",
"Note that different chat models support different parameters. See the ",
"[AI21 documentation](https://docs.ai21.com/reference) to learn more about the parameters in your chosen model.\n",
"[See all AI21's LangChain components.](https://pypi.org/project/langchain-ai21/) \n",
"## Installation"
]
},
@@ -44,7 +46,8 @@
"source": [
"## Environment Setup\n",
"\n",
"We'll need to get a [AI21 API key](https://docs.ai21.com/) and set the `AI21_API_KEY` environment variable:\n"
"We'll need to get an [AI21 API key](https://docs.ai21.com/) and set the ",
"`AI21_API_KEY` environment variable:\n"
]
},
{

View File

@@ -36,7 +36,7 @@
"| [ChatAnthropic](https://api.python.langchain.com/en/latest/chat_models/langchain_anthropic.chat_models.ChatAnthropic.html) | [langchain-anthropic](https://api.python.langchain.com/en/latest/anthropic_api_reference.html) | ❌ | beta | ✅ | ![PyPI - Downloads](https://img.shields.io/pypi/dm/langchain-anthropic?style=flat-square&label=%20) | ![PyPI - Version](https://img.shields.io/pypi/v/langchain-anthropic?style=flat-square&label=%20) |\n",
"\n",
"### Model features\n",
"| [Tool calling](/docs/how_to/tool_calling/) | [Structured output](/docs/how_to/structured_output/) | JSON mode | [Image input](/docs/how_to/multimodal_inputs/) | Audio input | Video input | [Token-level streaming](/docs/how_to/chat_streaming/) | Native async | [Token usage](/docs/how_to/chat_token_usage_tracking/) | [Logprobs](/docs/how_to/logprobs/) |\n",
"| [Tool calling](/docs/how_to/tool_calling) | [Structured output](/docs/how_to/structured_output/) | JSON mode | [Image input](/docs/how_to/multimodal_inputs/) | Audio input | Video input | [Token-level streaming](/docs/how_to/chat_streaming/) | Native async | [Token usage](/docs/how_to/chat_token_usage_tracking/) | [Logprobs](/docs/how_to/logprobs/) |\n",
"| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |\n",
"| ✅ | ✅ | ❌ | ✅ | ❌ | ❌ | ✅ | ✅ | ✅ | ❌ | \n",
"\n",

View File

@@ -2,7 +2,7 @@
"cells": [
{
"cell_type": "raw",
"id": "641f8cb0",
"id": "afaf8039",
"metadata": {},
"source": [
"---\n",
@@ -12,20 +12,89 @@
},
{
"cell_type": "markdown",
"id": "38f26d7a",
"id": "e49f1e0d",
"metadata": {},
"source": [
"# AzureChatOpenAI\n",
"\n",
">[Azure OpenAI Service](https://learn.microsoft.com/en-us/azure/ai-services/openai/overview) provides REST API access to OpenAI's powerful language models including the GPT-4, GPT-3.5-Turbo, and Embeddings model series. These models can be easily adapted to your specific task including but not limited to content generation, summarization, semantic search, and natural language to code translation. Users can access the service through REST APIs, Python SDK, or a web-based interface in the Azure OpenAI Studio.\n",
"This guide will help you get started with AzureOpenAI [chat models](/docs/concepts/#chat-models). For detailed documentation of all AzureChatOpenAI features and configurations head to the [API reference](https://api.python.langchain.com/en/latest/chat_models/langchain_openai.chat_models.azure.AzureChatOpenAI.html).\n",
"\n",
"This notebook goes over how to connect to an Azure-hosted OpenAI endpoint. First, we need to install the `langchain-openai` package."
"Azure OpenAI has several chat models. You can find information about their latest models and their costs, context windows, and supported input types in the [Azure docs](https://learn.microsoft.com/en-us/azure/ai-services/openai/concepts/models).\n",
"\n",
":::info Azure OpenAI vs OpenAI\n",
"\n",
"Azure OpenAI refers to OpenAI models hosted on the [Microsoft Azure platform](https://azure.microsoft.com/en-us/products/ai-services/openai-service). OpenAI also provides its own model APIs. To access OpenAI services directly, use the [ChatOpenAI integration](/docs/integrations/chat/openai/).\n",
"\n",
":::\n",
"\n",
"## Overview\n",
"### Integration details\n",
"\n",
"| Class | Package | Local | Serializable | [JS support](https://js.langchain.com/v0.2/docs/integrations/chat/azure) | Package downloads | Package latest |\n",
"| :--- | :--- | :---: | :---: | :---: | :---: | :---: |\n",
"| [AzureChatOpenAI](https://api.python.langchain.com/en/latest/chat_models/langchain_openai.chat_models.azure.AzureChatOpenAI.html) | [langchain-openai](https://api.python.langchain.com/en/latest/openai_api_reference.html) | ❌ | beta | ✅ | ![PyPI - Downloads](https://img.shields.io/pypi/dm/langchain-openai?style=flat-square&label=%20) | ![PyPI - Version](https://img.shields.io/pypi/v/langchain-openai?style=flat-square&label=%20) |\n",
"\n",
"### Model features\n",
"| [Tool calling](/docs/how_to/tool_calling) | [Structured output](/docs/how_to/structured_output/) | JSON mode | [Image input](/docs/how_to/multimodal_inputs/) | Audio input | Video input | [Token-level streaming](/docs/how_to/chat_streaming/) | Native async | [Token usage](/docs/how_to/chat_token_usage_tracking/) | [Logprobs](/docs/how_to/logprobs/) |\n",
"| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |\n",
"| ✅ | ✅ | ✅ | ✅ | ❌ | ❌ | ✅ | ✅ | ✅ | ✅ | \n",
"\n",
"## Setup\n",
"\n",
"To access AzureOpenAI models you'll need to create an Azure account, create a deployment of an Azure OpenAI model, get the name and endpoint for your deployment, get an Azure OpenAI API key, and install the `langchain-openai` integration package.\n",
"\n",
"### Credentials\n",
"\n",
"Head to the [Azure docs](https://learn.microsoft.com/en-us/azure/ai-services/openai/chatgpt-quickstart?tabs=command-line%2Cpython-new&pivots=programming-language-python) to create your deployment and generate an API key. Once you've done this set the AZURE_OPENAI_API_KEY and AZURE_OPENAI_ENDPOINT environment variables:"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "d83ba7de",
"id": "433e8d2b-9519-4b49-b2c4-7ab65b046c94",
"metadata": {},
"outputs": [],
"source": [
"import getpass\n",
"import os\n",
"\n",
"os.environ[\"AZURE_OPENAI_API_KEY\"] = getpass.getpass(\"Enter your AzureOpenAI API key: \")\n",
"os.environ[\"AZURE_OPENAI_ENDPOINT\"] = \"https://YOUR-ENDPOINT.openai.azure.com/\""
]
},
{
"cell_type": "markdown",
"id": "72ee0c4b-9764-423a-9dbf-95129e185210",
"metadata": {},
"source": [
"If you want to get automated tracing of your model calls you can also set your [LangSmith](https://docs.smith.langchain.com/) API key by uncommenting below:"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "a15d341e-3e26-4ca3-830b-5aab30ed66de",
"metadata": {},
"outputs": [],
"source": [
"# os.environ[\"LANGSMITH_API_KEY\"] = getpass.getpass(\"Enter your LangSmith API key: \")\n",
"# os.environ[\"LANGSMITH_TRACING\"] = \"true\""
]
},
{
"cell_type": "markdown",
"id": "0730d6a1-c893-4840-9817-5e5251676d5d",
"metadata": {},
"source": [
"### Installation\n",
"\n",
"The LangChain AzureOpenAI integration lives in the `langchain-openai` package:"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "652d6238-1f87-422a-b135-f5abbb8652fc",
"metadata": {},
"outputs": [],
"source": [
@@ -34,65 +103,56 @@
},
{
"cell_type": "markdown",
"id": "e39133c8",
"metadata": {
"vscode": {
"languageId": "raw"
}
},
"id": "a38cde65-254d-4219-a441-068766c0d4b5",
"metadata": {},
"source": [
"Next, let's set some environment variables to help us connect to the Azure OpenAI service. You can find these values in the Azure portal."
"## Instantiation\n",
"\n",
"Now we can instantiate our model object and generate chat completions.\n",
"- Replace `azure_deployment` with the name of your deployment,\n",
"- You can find the latest supported `api_version` here: https://learn.microsoft.com/en-us/azure/ai-services/openai/reference."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "1d8d73bd",
"execution_count": 1,
"id": "cb09c344-1836-4e0c-acf8-11d13ac1dbae",
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"from langchain_openai import AzureChatOpenAI\n",
"\n",
"os.environ[\"AZURE_OPENAI_API_KEY\"] = \"...\"\n",
"os.environ[\"AZURE_OPENAI_ENDPOINT\"] = \"https://<your-endpoint>.openai.azure.com/\"\n",
"os.environ[\"AZURE_OPENAI_API_VERSION\"] = \"2023-06-01-preview\"\n",
"os.environ[\"AZURE_OPENAI_CHAT_DEPLOYMENT_NAME\"] = \"chat\""
"llm = AzureChatOpenAI(\n",
" azure_deployment=\"YOUR-DEPLOYMENT\",\n",
" api_version=\"2024-05-01-preview\",\n",
" temperature=0,\n",
" max_tokens=None,\n",
" timeout=None,\n",
" max_retries=2,\n",
" # other params...\n",
")"
]
},
{
"cell_type": "markdown",
"id": "e7b160f8",
"id": "2b4f3e15",
"metadata": {},
"source": [
"Next, let's construct our model and chat with it:"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "cbe4bb58-ba13-4355-8af9-cd990dc47a64",
"metadata": {},
"outputs": [],
"source": [
"from langchain_core.messages import HumanMessage\n",
"from langchain_openai import AzureChatOpenAI\n",
"\n",
"model = AzureChatOpenAI(\n",
" openai_api_version=os.environ[\"AZURE_OPENAI_API_VERSION\"],\n",
" azure_deployment=os.environ[\"AZURE_OPENAI_CHAT_DEPLOYMENT_NAME\"],\n",
")"
"## Invocation"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "99509140",
"metadata": {},
"id": "62e0dbc3",
"metadata": {
"tags": []
},
"outputs": [
{
"data": {
"text/plain": [
"AIMessage(content=\"J'adore programmer.\", response_metadata={'token_usage': {'completion_tokens': 6, 'prompt_tokens': 19, 'total_tokens': 25}, 'model_name': 'gpt-35-turbo', 'system_fingerprint': None, 'prompt_filter_results': [{'prompt_index': 0, 'content_filter_results': {'hate': {'filtered': False, 'severity': 'safe'}, 'self_harm': {'filtered': False, 'severity': 'safe'}, 'sexual': {'filtered': False, 'severity': 'safe'}, 'violence': {'filtered': False, 'severity': 'safe'}}}], 'finish_reason': 'stop', 'logprobs': None, 'content_filter_results': {'hate': {'filtered': False, 'severity': 'safe'}, 'self_harm': {'filtered': False, 'severity': 'safe'}, 'sexual': {'filtered': False, 'severity': 'safe'}, 'violence': {'filtered': False, 'severity': 'safe'}}}, id='run-25ed88db-38f2-4b0c-a943-a03f217711a9-0')"
"AIMessage(content=\"J'adore la programmation.\", response_metadata={'token_usage': {'completion_tokens': 8, 'prompt_tokens': 31, 'total_tokens': 39}, 'model_name': 'gpt-35-turbo', 'system_fingerprint': None, 'prompt_filter_results': [{'prompt_index': 0, 'content_filter_results': {'hate': {'filtered': False, 'severity': 'safe'}, 'self_harm': {'filtered': False, 'severity': 'safe'}, 'sexual': {'filtered': False, 'severity': 'safe'}, 'violence': {'filtered': False, 'severity': 'safe'}}}], 'finish_reason': 'stop', 'logprobs': None, 'content_filter_results': {'hate': {'filtered': False, 'severity': 'safe'}, 'self_harm': {'filtered': False, 'severity': 'safe'}, 'sexual': {'filtered': False, 'severity': 'safe'}, 'violence': {'filtered': False, 'severity': 'safe'}}}, id='run-a6a732c2-cb02-4e50-9a9c-ab30eab034fc-0', usage_metadata={'input_tokens': 31, 'output_tokens': 8, 'total_tokens': 39})"
]
},
"execution_count": 4,
@@ -101,95 +161,165 @@
}
],
"source": [
"message = HumanMessage(\n",
" content=\"Translate this sentence from English to French. I love programming.\"\n",
")\n",
"model.invoke([message])"
"messages = [\n",
" (\n",
" \"system\",\n",
" \"You are a helpful assistant that translates English to French. Translate the user sentence.\",\n",
" ),\n",
" (\"human\", \"I love programming.\"),\n",
"]\n",
"ai_msg = llm.invoke(messages)\n",
"ai_msg"
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "d86145b3-bfef-46e8-b227-4dda5c9c2705",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"J'adore la programmation.\n"
]
}
],
"source": [
"print(ai_msg.content)"
]
},
{
"cell_type": "markdown",
"id": "f27fa24d",
"id": "18e2bfc0-7e78-4528-a73f-499ac150dca8",
"metadata": {},
"source": [
"## Model Version\n",
"Azure OpenAI responses contain `model` property, which is name of the model used to generate the response. However unlike native OpenAI responses, it does not contain the version of the model, which is set on the deployment in Azure. This makes it tricky to know which version of the model was used to generate the response, which as result can lead to e.g. wrong total cost calculation with `OpenAICallbackHandler`.\n",
"## Chaining\n",
"\n",
"We can [chain](/docs/how_to/sequence/) our model with a prompt template like so:"
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "e197d1d7-a070-4c96-9f8a-a0e86d046e0b",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"AIMessage(content='Ich liebe das Programmieren.', response_metadata={'token_usage': {'completion_tokens': 6, 'prompt_tokens': 26, 'total_tokens': 32}, 'model_name': 'gpt-35-turbo', 'system_fingerprint': None, 'prompt_filter_results': [{'prompt_index': 0, 'content_filter_results': {'hate': {'filtered': False, 'severity': 'safe'}, 'self_harm': {'filtered': False, 'severity': 'safe'}, 'sexual': {'filtered': False, 'severity': 'safe'}, 'violence': {'filtered': False, 'severity': 'safe'}}}], 'finish_reason': 'stop', 'logprobs': None, 'content_filter_results': {'hate': {'filtered': False, 'severity': 'safe'}, 'self_harm': {'filtered': False, 'severity': 'safe'}, 'sexual': {'filtered': False, 'severity': 'safe'}, 'violence': {'filtered': False, 'severity': 'safe'}}}, id='run-084967d7-06f2-441f-b5c1-477e2a9e9d03-0', usage_metadata={'input_tokens': 26, 'output_tokens': 6, 'total_tokens': 32})"
]
},
"execution_count": 12,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from langchain_core.prompts import ChatPromptTemplate\n",
"\n",
"prompt = ChatPromptTemplate.from_messages(\n",
" [\n",
" (\n",
" \"system\",\n",
" \"You are a helpful assistant that translates {input_language} to {output_language}.\",\n",
" ),\n",
" (\"human\", \"{input}\"),\n",
" ]\n",
")\n",
"\n",
"chain = prompt | llm\n",
"chain.invoke(\n",
" {\n",
" \"input_language\": \"English\",\n",
" \"output_language\": \"German\",\n",
" \"input\": \"I love programming.\",\n",
" }\n",
")"
]
},
{
"cell_type": "markdown",
"id": "d1ee55bc-ffc8-4cfa-801c-993953a08cfd",
"metadata": {},
"source": [
"## Specifying model version\n",
"\n",
"Azure OpenAI responses contain `model_name` response metadata property, which is name of the model used to generate the response. However unlike native OpenAI responses, it does not contain the specific version of the model, which is set on the deployment in Azure. E.g. it does not distinguish between `gpt-35-turbo-0125` and `gpt-35-turbo-0301`. This makes it tricky to know which version of the model was used to generate the response, which as result can lead to e.g. wrong total cost calculation with `OpenAICallbackHandler`.\n",
"\n",
"To solve this problem, you can pass `model_version` parameter to `AzureChatOpenAI` class, which will be added to the model name in the llm output. This way you can easily distinguish between different versions of the model."
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "0531798a",
"execution_count": null,
"id": "04b36e75-e8b7-4721-899e-76301ac2ecd9",
"metadata": {},
"outputs": [],
"source": [
"from langchain_community.callbacks import get_openai_callback"
"%pip install -qU langchain-community"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "aceddb72",
"metadata": {
"scrolled": true
},
"execution_count": 5,
"id": "84c411b0-1790-4798-8bb7-47d8ece4c2dc",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Total Cost (USD): $0.000041\n"
"Total Cost (USD): $0.000063\n"
]
}
],
"source": [
"model = AzureChatOpenAI(\n",
" openai_api_version=os.environ[\"AZURE_OPENAI_API_VERSION\"],\n",
" azure_deployment=os.environ[\n",
" \"AZURE_OPENAI_CHAT_DEPLOYMENT_NAME\"\n",
" ], # in Azure, this deployment has version 0613 - input and output tokens are counted separately\n",
")\n",
"from langchain_community.callbacks import get_openai_callback\n",
"\n",
"with get_openai_callback() as cb:\n",
" model.invoke([message])\n",
" llm.invoke(messages)\n",
" print(\n",
" f\"Total Cost (USD): ${format(cb.total_cost, '.6f')}\"\n",
" ) # without specifying the model version, flat-rate 0.002 USD per 1k input and output tokens is used"
]
},
{
"cell_type": "markdown",
"id": "2e61eefd",
"metadata": {},
"source": [
"We can provide the model version to `AzureChatOpenAI` constructor. It will get appended to the model name returned by Azure OpenAI and cost will be counted correctly."
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "8d5e54e9",
"execution_count": 6,
"id": "21234693-d92b-4d69-8a7f-55aa062084bf",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Total Cost (USD): $0.000044\n"
"Total Cost (USD): $0.000078\n"
]
}
],
"source": [
"model0301 = AzureChatOpenAI(\n",
" openai_api_version=os.environ[\"AZURE_OPENAI_API_VERSION\"],\n",
" azure_deployment=os.environ[\"AZURE_OPENAI_CHAT_DEPLOYMENT_NAME\"],\n",
"llm_0301 = AzureChatOpenAI(\n",
" azure_deployment=\"YOUR-DEPLOYMENT\",\n",
" api_version=\"2024-05-01-preview\",\n",
" model_version=\"0301\",\n",
")\n",
"with get_openai_callback() as cb:\n",
" model0301.invoke([message])\n",
" llm_0301.invoke(messages)\n",
" print(f\"Total Cost (USD): ${format(cb.total_cost, '.6f')}\")"
]
},
{
"cell_type": "markdown",
"id": "3a5bb5ca-c3ae-4a58-be67-2cd18574b9a3",
"metadata": {},
"source": [
"## API reference\n",
"\n",
"For detailed documentation of all AzureChatOpenAI features and configurations head to the API reference: https://api.python.langchain.com/en/latest/chat_models/langchain_openai.chat_models.azure.AzureChatOpenAI.html"
]
}
],
"metadata": {
@@ -208,7 +338,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.4"
"version": "3.11.9"
}
},
"nbformat": 4,

View File

@@ -2,86 +2,125 @@
"cells": [
{
"cell_type": "raw",
"id": "fbc66410",
"metadata": {
"vscode": {
"languageId": "raw"
}
},
"id": "afaf8039",
"metadata": {},
"source": [
"---\n",
"sidebar_label: Bedrock\n",
"sidebar_label: AWS Bedrock\n",
"---"
]
},
{
"cell_type": "markdown",
"id": "bf733a38-db84-4363-89e2-de6735c37230",
"id": "e49f1e0d",
"metadata": {},
"source": [
"# ChatBedrock\n",
"\n",
">[Amazon Bedrock](https://aws.amazon.com/bedrock/) is a fully managed service that offers a choice of \n",
"> high-performing foundation models (FMs) from leading AI companies like `AI21 Labs`, `Anthropic`, `Cohere`, \n",
"> `Meta`, `Stability AI`, and `Amazon` via a single API, along with a broad set of capabilities you need to \n",
"> build generative AI applications with security, privacy, and responsible AI. Using `Amazon Bedrock`, \n",
"> you can easily experiment with and evaluate top FMs for your use case, privately customize them with \n",
"> your data using techniques such as fine-tuning and `Retrieval Augmented Generation` (`RAG`), and build \n",
"> agents that execute tasks using your enterprise systems and data sources. Since `Amazon Bedrock` is \n",
"> serverless, you don't have to manage any infrastructure, and you can securely integrate and deploy \n",
"> generative AI capabilities into your applications using the AWS services you are already familiar with.\n"
"This doc will help you get started with AWS Bedrock [chat models](/docs/concepts/#chat-models). Amazon Bedrock is a fully managed service that offers a choice of high-performing foundation models (FMs) from leading AI companies like AI21 Labs, Anthropic, Cohere, Meta, Stability AI, and Amazon via a single API, along with a broad set of capabilities you need to build generative AI applications with security, privacy, and responsible AI. Using Amazon Bedrock, you can easily experiment with and evaluate top FMs for your use case, privately customize them with your data using techniques such as fine-tuning and Retrieval Augmented Generation (RAG), and build agents that execute tasks using your enterprise systems and data sources. Since Amazon Bedrock is serverless, you don't have to manage any infrastructure, and you can securely integrate and deploy generative AI capabilities into your applications using the AWS services you are already familiar with.\n",
"\n",
"For more information on which models are accessible via Bedrock, head to the [AWS docs](https://docs.aws.amazon.com/bedrock/latest/userguide/models-features.html).\n",
"\n",
"For detailed documentation of all ChatBedrock features and configurations head to the [API reference](https://api.python.langchain.com/en/latest/chat_models/langchain_aws.chat_models.bedrock.ChatBedrock.html).\n",
"\n",
"## Overview\n",
"### Integration details\n",
"\n",
"| Class | Package | Local | Serializable | [JS support](https://js.langchain.com/v0.2/docs/integrations/chat/bedrock) | Package downloads | Package latest |\n",
"| :--- | :--- | :---: | :---: | :---: | :---: | :---: |\n",
"| [ChatBedrock](https://api.python.langchain.com/en/latest/chat_models/langchain_aws.chat_models.bedrock.ChatBedrock.html) | [langchain-aws](https://api.python.langchain.com/en/latest/aws_api_reference.html) | ❌ | beta | ✅ | ![PyPI - Downloads](https://img.shields.io/pypi/dm/langchain-aws?style=flat-square&label=%20) | ![PyPI - Version](https://img.shields.io/pypi/v/langchain-aws?style=flat-square&label=%20) |\n",
"\n",
"### Model features\n",
"| [Tool calling](/docs/how_to/tool_calling) | [Structured output](/docs/how_to/structured_output/) | JSON mode | [Image input](/docs/how_to/multimodal_inputs/) | Audio input | Video input | [Token-level streaming](/docs/how_to/chat_streaming/) | Native async | [Token usage](/docs/how_to/chat_token_usage_tracking/) | [Logprobs](/docs/how_to/logprobs/) |\n",
"| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |\n",
"| ✅ | ✅ | ❌ | ✅ | ❌ | ❌ | ✅ | ❌ | ✅ | ❌ | \n",
"\n",
"## Setup\n",
"\n",
"To access Bedrock models you'll need to create an AWS account, set up the Bedrock API service, get an access key ID and secret key, and install the `langchain-aws` integration package.\n",
"\n",
"### Credentials\n",
"\n",
"Head to the [AWS docs](https://docs.aws.amazon.com/bedrock/latest/userguide/setting-up.html) to sign up to AWS and setup your credentials. You'll also need to turn on model access for your account, which you can do by following [these instructions](https://docs.aws.amazon.com/bedrock/latest/userguide/model-access.html)."
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "d51edc81",
"cell_type": "markdown",
"id": "72ee0c4b-9764-423a-9dbf-95129e185210",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Note: you may need to restart the kernel to use updated packages.\n"
]
}
],
"source": [
"%pip install --upgrade --quiet langchain-aws"
"If you want to get automated tracing of your model calls you can also set your [LangSmith](https://docs.smith.langchain.com/) API key by uncommenting below:"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "d4a7c55d-b235-4ca4-a579-c90cc9570da9",
"metadata": {
"tags": []
},
"execution_count": null,
"id": "a15d341e-3e26-4ca3-830b-5aab30ed66de",
"metadata": {},
"outputs": [],
"source": [
"# os.environ[\"LANGSMITH_API_KEY\"] = getpass.getpass(\"Enter your LangSmith API key: \")\n",
"# os.environ[\"LANGSMITH_TRACING\"] = \"true\""
]
},
{
"cell_type": "markdown",
"id": "0730d6a1-c893-4840-9817-5e5251676d5d",
"metadata": {},
"source": [
"### Installation\n",
"\n",
"The LangChain Bedrock integration lives in the `langchain-aws` package:"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "652d6238-1f87-422a-b135-f5abbb8652fc",
"metadata": {},
"outputs": [],
"source": [
"%pip install -qU langchain-aws"
]
},
{
"cell_type": "markdown",
"id": "a38cde65-254d-4219-a441-068766c0d4b5",
"metadata": {},
"source": [
"## Instantiation\n",
"\n",
"Now we can instantiate our model object and generate chat completions:"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "cb09c344-1836-4e0c-acf8-11d13ac1dbae",
"metadata": {},
"outputs": [],
"source": [
"from langchain_aws import ChatBedrock\n",
"from langchain_core.messages import HumanMessage"
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "70cf04e8-423a-4ff6-8b09-f11fb711c817",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"chat = ChatBedrock(\n",
"\n",
"llm = ChatBedrock(\n",
" model_id=\"anthropic.claude-3-sonnet-20240229-v1:0\",\n",
" model_kwargs={\"temperature\": 0.1},\n",
" model_kwargs=dict(temperature=0),\n",
" # other params...\n",
")"
]
},
{
"cell_type": "markdown",
"id": "2b4f3e15",
"metadata": {},
"source": [
"## Invocation"
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "8199ef8f-eb8b-4253-9ea0-6c24a013ca4c",
"execution_count": 5,
"id": "62e0dbc3",
"metadata": {
"tags": []
},
@@ -89,38 +128,30 @@
{
"data": {
"text/plain": [
"AIMessage(content=\"Voici la traduction en français :\\n\\nJ'aime la programmation.\", additional_kwargs={'usage': {'prompt_tokens': 20, 'completion_tokens': 21, 'total_tokens': 41}}, response_metadata={'model_id': 'anthropic.claude-3-sonnet-20240229-v1:0', 'usage': {'prompt_tokens': 20, 'completion_tokens': 21, 'total_tokens': 41}}, id='run-994f0362-0e50-4524-afad-3c4f5bb11328-0')"
"AIMessage(content=\"Voici la traduction en français :\\n\\nJ'aime la programmation.\", additional_kwargs={'usage': {'prompt_tokens': 29, 'completion_tokens': 21, 'total_tokens': 50}, 'stop_reason': 'end_turn', 'model_id': 'anthropic.claude-3-sonnet-20240229-v1:0'}, response_metadata={'usage': {'prompt_tokens': 29, 'completion_tokens': 21, 'total_tokens': 50}, 'stop_reason': 'end_turn', 'model_id': 'anthropic.claude-3-sonnet-20240229-v1:0'}, id='run-fdb07dc3-ff72-430d-b22b-e7824b15c766-0', usage_metadata={'input_tokens': 29, 'output_tokens': 21, 'total_tokens': 50})"
]
},
"execution_count": 12,
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"messages = [\n",
" HumanMessage(\n",
" content=\"Translate this sentence from English to French. I love programming.\"\n",
" )\n",
" (\n",
" \"system\",\n",
" \"You are a helpful assistant that translates English to French. Translate the user sentence.\",\n",
" ),\n",
" (\"human\", \"I love programming.\"),\n",
"]\n",
"chat.invoke(messages)"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "a4a4f4d4",
"metadata": {},
"source": [
"### Streaming\n",
"\n",
"To stream responses, you can use the runnable `.stream()` method."
"ai_msg = llm.invoke(messages)\n",
"ai_msg"
]
},
{
"cell_type": "code",
"execution_count": 14,
"id": "d9e52838",
"execution_count": 6,
"id": "d86145b3-bfef-46e8-b227-4dda5c9c2705",
"metadata": {},
"outputs": [
{
@@ -129,84 +160,124 @@
"text": [
"Voici la traduction en français :\n",
"\n",
"J'aime la programmation."
"J'aime la programmation.\n"
]
}
],
"source": [
"for chunk in chat.stream(messages):\n",
" print(chunk.content, end=\"\", flush=True)"
"print(ai_msg.content)"
]
},
{
"cell_type": "markdown",
"id": "c36575b3",
"id": "18e2bfc0-7e78-4528-a73f-499ac150dca8",
"metadata": {},
"source": [
"### LLM Caching with OpenSearch Semantic Cache\n",
"## Chaining\n",
"\n",
"Use OpenSearch as a semantic cache to cache prompts and responses and evaluate hits based on semantic similarity.\n",
"\n"
"We can [chain](/docs/how_to/sequence/) our model with a prompt template like so:"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "375d4e56",
"execution_count": 7,
"id": "e197d1d7-a070-4c96-9f8a-a0e86d046e0b",
"metadata": {},
"outputs": [],
"outputs": [
{
"data": {
"text/plain": [
"AIMessage(content='Ich liebe Programmieren.', additional_kwargs={'usage': {'prompt_tokens': 23, 'completion_tokens': 11, 'total_tokens': 34}, 'stop_reason': 'end_turn', 'model_id': 'anthropic.claude-3-sonnet-20240229-v1:0'}, response_metadata={'usage': {'prompt_tokens': 23, 'completion_tokens': 11, 'total_tokens': 34}, 'stop_reason': 'end_turn', 'model_id': 'anthropic.claude-3-sonnet-20240229-v1:0'}, id='run-5ad005ce-9f31-4670-baa0-9373d418698a-0', usage_metadata={'input_tokens': 23, 'output_tokens': 11, 'total_tokens': 34})"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from langchain.globals import set_llm_cache\n",
"from langchain_aws import BedrockEmbeddings, ChatBedrock\n",
"from langchain_community.cache import OpenSearchSemanticCache\n",
"from langchain_core.messages import HumanMessage\n",
"from langchain_core.prompts import ChatPromptTemplate\n",
"\n",
"bedrock_embeddings = BedrockEmbeddings(\n",
" model_id=\"amazon.titan-embed-text-v1\", region_name=\"us-east-1\"\n",
"prompt = ChatPromptTemplate.from_messages(\n",
" [\n",
" (\n",
" \"system\",\n",
" \"You are a helpful assistant that translates {input_language} to {output_language}.\",\n",
" ),\n",
" (\"human\", \"{input}\"),\n",
" ]\n",
")\n",
"\n",
"chat = ChatBedrock(\n",
" model_id=\"anthropic.claude-3-haiku-20240307-v1:0\", model_kwargs={\"temperature\": 0.5}\n",
")\n",
"\n",
"# Enable LLM cache. Make sure OpenSearch is set up and running. Update URL accordingly.\n",
"set_llm_cache(\n",
" OpenSearchSemanticCache(\n",
" opensearch_url=\"http://localhost:9200\", embedding=bedrock_embeddings\n",
" )\n",
"chain = prompt | llm\n",
"chain.invoke(\n",
" {\n",
" \"input_language\": \"English\",\n",
" \"output_language\": \"German\",\n",
" \"input\": \"I love programming.\",\n",
" }\n",
")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "bb5d25bb",
"cell_type": "markdown",
"id": "d1ee55bc-ffc8-4cfa-801c-993953a08cfd",
"metadata": {},
"outputs": [],
"source": [
"%%time\n",
"# The first time, it is not yet in cache, so it should take longer\n",
"messages = [HumanMessage(content=\"tell me about Amazon Bedrock\")]\n",
"response_text = chat.invoke(messages)\n",
"## ***Beta***: Bedrock Converse API\n",
"\n",
"print(response_text)"
"AWS has recently recently the Bedrock Converse API which provides a unified conversational interface for Bedrock models. This API does not yet support custom models. You can see a list of all [models that are supported here](https://docs.aws.amazon.com/bedrock/latest/userguide/conversation-inference.html). To improve reliability the ChatBedrock integration will switch to using the Bedrock Converse API as soon as it has feature parity with the existing Bedrock API. Until then a separate [ChatBedrockConverse](https://api.python.langchain.com/en/latest/chat_models/langchain_aws.chat_models.bedrock_converse.ChatBedrockConverse.html#langchain_aws.chat_models.bedrock_converse.ChatBedrockConverse) integration has been released in beta for users who do not need to use custom models.\n",
"\n",
"You can use it like so:"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "6cfb3086",
"execution_count": 8,
"id": "ae728e59-94d4-40cf-9d24-25ad8723fc59",
"metadata": {},
"outputs": [],
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/Users/bagatur/langchain/libs/core/langchain_core/_api/beta_decorator.py:87: LangChainBetaWarning: The class `ChatBedrockConverse` is in beta. It is actively being worked on, so the API may change.\n",
" warn_beta(\n"
]
},
{
"data": {
"text/plain": [
"AIMessage(content=\"Voici la traduction en français :\\n\\nJ'aime la programmation.\", response_metadata={'ResponseMetadata': {'RequestId': '122fb1c8-c3c5-4b06-941e-c95d210bfbc7', 'HTTPStatusCode': 200, 'HTTPHeaders': {'date': 'Mon, 01 Jul 2024 21:48:25 GMT', 'content-type': 'application/json', 'content-length': '243', 'connection': 'keep-alive', 'x-amzn-requestid': '122fb1c8-c3c5-4b06-941e-c95d210bfbc7'}, 'RetryAttempts': 0}, 'stopReason': 'end_turn', 'metrics': {'latencyMs': 830}}, id='run-0e3df22f-fcd8-4fbb-a4fb-565227e7e430-0', usage_metadata={'input_tokens': 29, 'output_tokens': 21, 'total_tokens': 50})"
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"%%time\n",
"# The second time, while not a direct hit, the question is semantically similar to the original question,\n",
"# so it uses the cached result!\n",
"from langchain_aws import ChatBedrockConverse\n",
"\n",
"messages = [HumanMessage(content=\"what is amazon bedrock\")]\n",
"response_text = chat.invoke(messages)\n",
"llm = ChatBedrockConverse(\n",
" model=\"anthropic.claude-3-sonnet-20240229-v1:0\",\n",
" temperature=0,\n",
" max_tokens=None,\n",
" # other params...\n",
")\n",
"\n",
"print(response_text)"
"llm.invoke(messages)"
]
},
{
"cell_type": "markdown",
"id": "3a5bb5ca-c3ae-4a58-be67-2cd18574b9a3",
"metadata": {},
"source": [
"## API reference\n",
"\n",
"For detailed documentation of all ChatBedrock features and configurations head to the API reference: https://api.python.langchain.com/en/latest/chat_models/langchain_aws.chat_models.bedrock.ChatBedrock.html\n",
"\n",
"For detailed documentation of all ChatBedrockConverse features and configurations head to the API reference: https://api.python.langchain.com/en/latest/chat_models/langchain_aws.chat_models.bedrock_converse.ChatBedrockConverse.html"
]
}
],
@@ -226,7 +297,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.4"
"version": "3.11.9"
}
},
"nbformat": 4,

View File

@@ -2,7 +2,7 @@
"cells": [
{
"cell_type": "raw",
"id": "53fbf15f",
"id": "afaf8039",
"metadata": {},
"source": [
"---\n",
@@ -12,103 +12,129 @@
},
{
"cell_type": "markdown",
"id": "bf733a38-db84-4363-89e2-de6735c37230",
"id": "e49f1e0d",
"metadata": {},
"source": [
"# Cohere\n",
"# ChatCohere\n",
"\n",
"This notebook covers how to get started with [Cohere chat models](https://cohere.com/chat).\n",
"This doc will help you get started with Cohere [chat models](/docs/concepts/#chat-models). For detailed documentation of all ChatCohere features and configurations head to the [API reference](https://api.python.langchain.com/en/latest/chat_models/langchain_cohere.chat_models.ChatCohere.html).\n",
"\n",
"For an overview of all Cohere models head to the [Cohere docs](https://docs.cohere.com/docs/models).\n",
"\n",
"## Overview\n",
"### Integration details\n",
"\n",
"| Class | Package | Local | Serializable | [JS support](https://js.langchain.com/v0.2/docs/integrations/chat/cohere) | Package downloads | Package latest |\n",
"| :--- | :--- | :---: | :---: | :---: | :---: | :---: |\n",
"| [ChatCohere](https://api.python.langchain.com/en/latest/chat_models/langchain_cohere.chat_models.ChatCohere.html) | [langchain-cohere](https://api.python.langchain.com/en/latest/cohere_api_reference.html) | ❌ | beta | ✅ | ![PyPI - Downloads](https://img.shields.io/pypi/dm/langchain-cohere?style=flat-square&label=%20) | ![PyPI - Version](https://img.shields.io/pypi/v/langchain-cohere?style=flat-square&label=%20) |\n",
"\n",
"### Model features\n",
"| [Tool calling](/docs/how_to/tool_calling) | [Structured output](/docs/how_to/structured_output/) | JSON mode | [Image input](/docs/how_to/multimodal_inputs/) | Audio input | Video input | [Token-level streaming](/docs/how_to/chat_streaming/) | Native async | [Token usage](/docs/how_to/chat_token_usage_tracking/) | [Logprobs](/docs/how_to/logprobs/) |\n",
"| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |\n",
"| ✅ | ✅ | ❌ | ❌ | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | \n",
"\n",
"Head to the [API reference](https://api.python.langchain.com/en/latest/chat_models/langchain_community.chat_models.cohere.ChatCohere.html) for detailed documentation of all attributes and methods."
]
},
{
"cell_type": "markdown",
"id": "3607d67e-e56c-4102-bbba-df2edc0e109e",
"metadata": {},
"source": [
"## Setup\n",
"\n",
"The integration lives in the `langchain-cohere` package. We can install these with:\n",
"To access Cohere models you'll need to create a Cohere account, get an API key, and install the `langchain-cohere` integration package.\n",
"\n",
"```bash\n",
"pip install -U langchain-cohere\n",
"```\n",
"### Credentials\n",
"\n",
"We'll also need to get a [Cohere API key](https://cohere.com/) and set the `COHERE_API_KEY` environment variable:"
"Head to https://dashboard.cohere.com/welcome/login to sign up to Cohere and generate an API key. Once you've done this set the COHERE_API_KEY environment variable:"
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "2108b517-1e8d-473d-92fa-4f930e8072a7",
"execution_count": null,
"id": "433e8d2b-9519-4b49-b2c4-7ab65b046c94",
"metadata": {},
"outputs": [],
"source": [
"import getpass\n",
"import os\n",
"\n",
"os.environ[\"COHERE_API_KEY\"] = getpass.getpass()"
"os.environ[\"COHERE_API_KEY\"] = getpass.getpass(\"Enter your Cohere API key: \")"
]
},
{
"cell_type": "markdown",
"id": "cf690fbb",
"id": "72ee0c4b-9764-423a-9dbf-95129e185210",
"metadata": {},
"source": [
"It's also helpful (but not needed) to set up [LangSmith](https://smith.langchain.com/) for best-in-class observability"
"If you want to get automated tracing of your model calls you can also set your [LangSmith](https://docs.smith.langchain.com/) API key by uncommenting below:"
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "7f11de02",
"execution_count": null,
"id": "a15d341e-3e26-4ca3-830b-5aab30ed66de",
"metadata": {},
"outputs": [],
"source": [
"# os.environ[\"LANGCHAIN_TRACING_V2\"] = \"true\"\n",
"# os.environ[\"LANGCHAIN_API_KEY\"] = getpass.getpass()"
"# os.environ[\"LANGSMITH_API_KEY\"] = getpass.getpass(\"Enter your LangSmith API key: \")\n",
"# os.environ[\"LANGSMITH_TRACING\"] = \"true\""
]
},
{
"cell_type": "markdown",
"id": "4c26754b-b3c9-4d93-8f36-43049bd943bf",
"id": "0730d6a1-c893-4840-9817-5e5251676d5d",
"metadata": {},
"source": [
"## Usage\n",
"### Installation\n",
"\n",
"ChatCohere supports all [ChatModel](/docs/how_to#chat-models) functionality:"
"The LangChain Cohere integration lives in the `langchain-cohere` package:"
]
},
{
"cell_type": "code",
"execution_count": 13,
"id": "d4a7c55d-b235-4ca4-a579-c90cc9570da9",
"metadata": {
"tags": []
},
"execution_count": null,
"id": "652d6238-1f87-422a-b135-f5abbb8652fc",
"metadata": {},
"outputs": [],
"source": [
"%pip install -qU langchain-cohere"
]
},
{
"cell_type": "markdown",
"id": "a38cde65-254d-4219-a441-068766c0d4b5",
"metadata": {},
"source": [
"## Instantiation\n",
"\n",
"Now we can instantiate our model object and generate chat completions:"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "cb09c344-1836-4e0c-acf8-11d13ac1dbae",
"metadata": {},
"outputs": [],
"source": [
"from langchain_cohere import ChatCohere\n",
"from langchain_core.messages import HumanMessage"
"\n",
"llm = ChatCohere(\n",
" model=\"command-r-plus\",\n",
" temperature=0,\n",
" max_tokens=None,\n",
" timeout=None,\n",
" max_retries=2,\n",
" # other params...\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 14,
"id": "70cf04e8-423a-4ff6-8b09-f11fb711c817",
"metadata": {
"tags": []
},
"outputs": [],
"cell_type": "markdown",
"id": "2b4f3e15",
"metadata": {},
"source": [
"chat = ChatCohere(model=\"command\")"
"## Invocation"
]
},
{
"cell_type": "code",
"execution_count": 15,
"id": "8199ef8f-eb8b-4253-9ea0-6c24a013ca4c",
"execution_count": 2,
"id": "62e0dbc3",
"metadata": {
"tags": []
},
@@ -116,134 +142,110 @@
{
"data": {
"text/plain": [
"AIMessage(content='4 && 5 \\n6 || 7 \\n\\nWould you like to play a game of odds and evens?', additional_kwargs={'documents': None, 'citations': None, 'search_results': None, 'search_queries': None, 'is_search_required': None, 'generation_id': '2076b614-52b3-4082-a259-cc92cd3d9fea', 'token_count': {'prompt_tokens': 68, 'response_tokens': 23, 'total_tokens': 91, 'billed_tokens': 77}}, response_metadata={'documents': None, 'citations': None, 'search_results': None, 'search_queries': None, 'is_search_required': None, 'generation_id': '2076b614-52b3-4082-a259-cc92cd3d9fea', 'token_count': {'prompt_tokens': 68, 'response_tokens': 23, 'total_tokens': 91, 'billed_tokens': 77}}, id='run-3475e0c8-c89b-4937-9300-e07d652455e1-0')"
"AIMessage(content=\"J'adore programmer.\", additional_kwargs={'documents': None, 'citations': None, 'search_results': None, 'search_queries': None, 'is_search_required': None, 'generation_id': 'd84f80f3-4611-46e6-aed0-9d8665a20a11', 'token_count': {'input_tokens': 89, 'output_tokens': 5}}, response_metadata={'documents': None, 'citations': None, 'search_results': None, 'search_queries': None, 'is_search_required': None, 'generation_id': 'd84f80f3-4611-46e6-aed0-9d8665a20a11', 'token_count': {'input_tokens': 89, 'output_tokens': 5}}, id='run-514ab516-ed7e-48ac-b132-2598fb80ebef-0')"
]
},
"execution_count": 15,
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"messages = [HumanMessage(content=\"1\"), HumanMessage(content=\"2 3\")]\n",
"chat.invoke(messages)"
"messages = [\n",
" (\n",
" \"system\",\n",
" \"You are a helpful assistant that translates English to French. Translate the user sentence.\",\n",
" ),\n",
" (\"human\", \"I love programming.\"),\n",
"]\n",
"ai_msg = llm.invoke(messages)\n",
"ai_msg"
]
},
{
"cell_type": "code",
"execution_count": 16,
"id": "c5fac0e9-05a4-4fc1-a3b3-e5bbb24b971b",
"metadata": {
"tags": []
},
"outputs": [
{
"data": {
"text/plain": [
"AIMessage(content='4 && 5', additional_kwargs={'documents': None, 'citations': None, 'search_results': None, 'search_queries': None, 'is_search_required': None, 'generation_id': 'f0708a92-f874-46ee-9b93-334d616ad92e', 'token_count': {'prompt_tokens': 68, 'response_tokens': 3, 'total_tokens': 71, 'billed_tokens': 57}}, response_metadata={'documents': None, 'citations': None, 'search_results': None, 'search_queries': None, 'is_search_required': None, 'generation_id': 'f0708a92-f874-46ee-9b93-334d616ad92e', 'token_count': {'prompt_tokens': 68, 'response_tokens': 3, 'total_tokens': 71, 'billed_tokens': 57}}, id='run-1635e63e-2994-4e7f-986e-152ddfc95777-0')"
]
},
"execution_count": 16,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"await chat.ainvoke(messages)"
]
},
{
"cell_type": "code",
"execution_count": 17,
"id": "025be980-e50d-4a68-93dc-c9c7b500ce34",
"metadata": {
"tags": []
},
"execution_count": 3,
"id": "d86145b3-bfef-46e8-b227-4dda5c9c2705",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"4 && 5"
"J'adore programmer.\n"
]
}
],
"source": [
"for chunk in chat.stream(messages):\n",
" print(chunk.content, end=\"\", flush=True)"
]
},
{
"cell_type": "code",
"execution_count": 18,
"id": "064288e4-f184-4496-9427-bcf148fa055e",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[AIMessage(content='4 && 5', additional_kwargs={'documents': None, 'citations': None, 'search_results': None, 'search_queries': None, 'is_search_required': None, 'generation_id': '6770ca86-f6c3-4ba3-a285-c4772160612f', 'token_count': {'prompt_tokens': 68, 'response_tokens': 3, 'total_tokens': 71, 'billed_tokens': 57}}, response_metadata={'documents': None, 'citations': None, 'search_results': None, 'search_queries': None, 'is_search_required': None, 'generation_id': '6770ca86-f6c3-4ba3-a285-c4772160612f', 'token_count': {'prompt_tokens': 68, 'response_tokens': 3, 'total_tokens': 71, 'billed_tokens': 57}}, id='run-8d6fade2-1b39-4e31-ab23-4be622dd0027-0')]"
]
},
"execution_count": 18,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"chat.batch([messages])"
"print(ai_msg.content)"
]
},
{
"cell_type": "markdown",
"id": "f1c56460",
"id": "18e2bfc0-7e78-4528-a73f-499ac150dca8",
"metadata": {},
"source": [
"## Chaining\n",
"\n",
"You can also easily combine with a prompt template for easy structuring of user input. We can do this using [LCEL](/docs/concepts#langchain-expression-language-lcel)"
"We can [chain](/docs/how_to/sequence/) our model with a prompt template like so:"
]
},
{
"cell_type": "code",
"execution_count": 19,
"id": "0851b103",
"metadata": {},
"outputs": [],
"source": [
"from langchain_core.prompts import ChatPromptTemplate\n",
"\n",
"prompt = ChatPromptTemplate.from_template(\"Tell me a joke about {topic}\")\n",
"chain = prompt | chat"
]
},
{
"cell_type": "code",
"execution_count": 20,
"id": "ae950c0f-1691-47f1-b609-273033cae707",
"execution_count": 4,
"id": "e197d1d7-a070-4c96-9f8a-a0e86d046e0b",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"AIMessage(content='What color socks do bears wear?\\n\\nThey dont wear socks, they have bear feet. \\n\\nHope you laughed! If not, maybe this will help: laughter is the best medicine, and a good sense of humor is infectious!', additional_kwargs={'documents': None, 'citations': None, 'search_results': None, 'search_queries': None, 'is_search_required': None, 'generation_id': '6edccf44-9bc8-4139-b30e-13b368f3563c', 'token_count': {'prompt_tokens': 68, 'response_tokens': 51, 'total_tokens': 119, 'billed_tokens': 108}}, response_metadata={'documents': None, 'citations': None, 'search_results': None, 'search_queries': None, 'is_search_required': None, 'generation_id': '6edccf44-9bc8-4139-b30e-13b368f3563c', 'token_count': {'prompt_tokens': 68, 'response_tokens': 51, 'total_tokens': 119, 'billed_tokens': 108}}, id='run-ef7f9789-0d4d-43bf-a4f7-f2a0e27a5320-0')"
"AIMessage(content='Ich liebe Programmierung.', additional_kwargs={'documents': None, 'citations': None, 'search_results': None, 'search_queries': None, 'is_search_required': None, 'generation_id': '053bebde-4e1d-4d06-8ee6-3446e7afa25e', 'token_count': {'input_tokens': 84, 'output_tokens': 6}}, response_metadata={'documents': None, 'citations': None, 'search_results': None, 'search_queries': None, 'is_search_required': None, 'generation_id': '053bebde-4e1d-4d06-8ee6-3446e7afa25e', 'token_count': {'input_tokens': 84, 'output_tokens': 6}}, id='run-53700708-b7fb-417b-af36-1a6fcde38e7d-0')"
]
},
"execution_count": 20,
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"chain.invoke({\"topic\": \"bears\"})"
"from langchain_core.prompts import ChatPromptTemplate\n",
"\n",
"prompt = ChatPromptTemplate.from_messages(\n",
" [\n",
" (\n",
" \"system\",\n",
" \"You are a helpful assistant that translates {input_language} to {output_language}.\",\n",
" ),\n",
" (\"human\", \"{input}\"),\n",
" ]\n",
")\n",
"\n",
"chain = prompt | llm\n",
"chain.invoke(\n",
" {\n",
" \"input_language\": \"English\",\n",
" \"output_language\": \"German\",\n",
" \"input\": \"I love programming.\",\n",
" }\n",
")"
]
},
{
"cell_type": "markdown",
"id": "3a5bb5ca-c3ae-4a58-be67-2cd18574b9a3",
"metadata": {},
"source": [
"## API reference\n",
"\n",
"For detailed documentation of all ChatCohere features and configurations head to the API reference: https://api.python.langchain.com/en/latest/chat_models/langchain_cohere.chat_models.ChatCohere.html"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"display_name": "poetry-venv-2",
"language": "python",
"name": "python3"
"name": "poetry-venv-2"
},
"language_info": {
"codemirror_mode": {
@@ -255,7 +257,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.7"
"version": "3.11.9"
}
},
"nbformat": 4,

File diff suppressed because one or more lines are too long

View File

@@ -35,7 +35,7 @@
"| [ChatVertexAI](https://api.python.langchain.com/en/latest/chat_models/langchain_google_vertexai.chat_models.ChatVertexAI.html) | [langchain-google-vertexai](https://api.python.langchain.com/en/latest/google_vertexai_api_reference.html) | ❌ | beta | ✅ | ![PyPI - Downloads](https://img.shields.io/pypi/dm/langchain-google-vertexai?style=flat-square&label=%20) | ![PyPI - Version](https://img.shields.io/pypi/v/langchain-google-vertexai?style=flat-square&label=%20) |\n",
"\n",
"### Model features\n",
"| [Tool calling](/docs/how_to/tool_calling/) | [Structured output](/docs/how_to/structured_output/) | JSON mode | [Image input](/docs/how_to/multimodal_inputs/) | Audio input | Video input | [Token-level streaming](/docs/how_to/chat_streaming/) | Native async | [Token usage](/docs/how_to/chat_token_usage_tracking/) | [Logprobs](/docs/how_to/logprobs/) |\n",
"| [Tool calling](/docs/how_to/tool_calling) | [Structured output](/docs/how_to/structured_output/) | JSON mode | [Image input](/docs/how_to/multimodal_inputs/) | Audio input | Video input | [Token-level streaming](/docs/how_to/chat_streaming/) | Native async | [Token usage](/docs/how_to/chat_token_usage_tracking/) | [Logprobs](/docs/how_to/logprobs/) |\n",
"| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |\n",
"| ✅ | ✅ | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ | \n",
"\n",

View File

@@ -91,7 +91,7 @@
"\n",
"## Tool calling\n",
"\n",
"Groq chat models support [tool calling](/docs/how_to/tool_calling/) to generate output matching a specific schema. The model may choose to call multiple tools or the same tool multiple times if appropriate.\n",
"Groq chat models support [tool calling](/docs/how_to/tool_calling) to generate output matching a specific schema. The model may choose to call multiple tools or the same tool multiple times if appropriate.\n",
"\n",
"Here's an example:"
]

View File

@@ -0,0 +1,585 @@
{
"cells": [
{
"cell_type": "raw",
"id": "1c95cd76",
"metadata": {
"vscode": {
"languageId": "raw"
}
},
"source": [
"---\n",
"sidebar_label: IBM watsonx.ai\n",
"---"
]
},
{
"cell_type": "markdown",
"id": "70996d8a",
"metadata": {},
"source": [
"# ChatWatsonx\n",
"\n",
">ChatWatsonx is a wrapper for IBM [watsonx.ai](https://www.ibm.com/products/watsonx-ai) foundation models.\n",
"\n",
"The aim of these examples is to show how to communicate with `watsonx.ai` models using `LangChain` LLMs API."
]
},
{
"cell_type": "markdown",
"id": "ef7b088a",
"metadata": {},
"source": [
"## Overview\n",
"\n",
"### Integration details\n",
"| Class | Package | Local | Serializable | [JS support](https://js.langchain.com/v0.2/docs/integrations/chat/openai) | Package downloads | Package latest |\n",
"| :--- | :--- | :---: | :---: | :---: | :---: | :---: |\n",
"| [ChatWatsonx](https://api.python.langchain.com/en/latest/ibm_api_reference.html) | [langchain-ibm](https://api.python.langchain.com/en/latest/ibm_api_reference.html) | ❌ | ❌ | ❌ | ![PyPI - Downloads](https://img.shields.io/pypi/dm/langchain-ibm?style=flat-square&label=%20) | ![PyPI - Version](https://img.shields.io/pypi/v/langchain-ibm?style=flat-square&label=%20) |\n",
"\n",
"### Model features\n",
"| [Tool calling](/docs/how_to/tool_calling/) | [Structured output](/docs/how_to/structured_output/) | JSON mode | Image input | Audio input | Video input | [Token-level streaming](/docs/how_to/chat_streaming/) | Native async | [Token usage](/docs/how_to/chat_token_usage_tracking/) | [Logprobs](/docs/how_to/logprobs/) |\n",
"| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |\n",
"| ✅ | ✅ | ❌ | ❌ | ❌ | ❌ | ✅ | ❌ | ✅ | ❌ | "
]
},
{
"cell_type": "markdown",
"id": "f406e092",
"metadata": {},
"source": [
"## Setup\n",
"\n",
"To access IBM watsonx.ai models you'll need to create an IBM watsonx.ai account, get an API key, and install the `langchain-ibm` integration package.\n",
"\n",
"### Credentials\n",
"\n",
"The cell below defines the credentials required to work with watsonx Foundation Model inferencing.\n",
"\n",
"**Action:** Provide the IBM Cloud user API key. For details, see\n",
"[Managing user API keys](https://cloud.ibm.com/docs/account?topic=account-userapikey&interface=ui)."
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "11d572a1",
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"from getpass import getpass\n",
"\n",
"watsonx_api_key = getpass()\n",
"os.environ[\"WATSONX_APIKEY\"] = watsonx_api_key"
]
},
{
"cell_type": "markdown",
"id": "c59782a7",
"metadata": {},
"source": [
"Additionally you are able to pass additional secrets as an environment variable. "
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "f98c573c",
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"\n",
"os.environ[\"WATSONX_URL\"] = \"your service instance url\"\n",
"os.environ[\"WATSONX_TOKEN\"] = \"your token for accessing the CPD cluster\"\n",
"os.environ[\"WATSONX_PASSWORD\"] = \"your password for accessing the CPD cluster\"\n",
"os.environ[\"WATSONX_USERNAME\"] = \"your username for accessing the CPD cluster\"\n",
"os.environ[\"WATSONX_INSTANCE_ID\"] = \"your instance_id for accessing the CPD cluster\""
]
},
{
"cell_type": "markdown",
"id": "b3dc9176",
"metadata": {},
"source": [
"### Installation\n",
"\n",
"The LangChain IBM integration lives in the `langchain-ibm` package:"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "387eda86",
"metadata": {},
"outputs": [],
"source": [
"!pip install -qU langchain-ibm"
]
},
{
"cell_type": "markdown",
"id": "e36acbef",
"metadata": {},
"source": [
"## Instantiation\n",
"\n",
"You might need to adjust model `parameters` for different models or tasks. For details, refer to [Available MetaNames](https://ibm.github.io/watsonx-ai-python-sdk/fm_model.html#metanames.GenTextParamsMetaNames)."
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "407cd500",
"metadata": {},
"outputs": [],
"source": [
"parameters = {\n",
" \"decoding_method\": \"sample\",\n",
" \"max_new_tokens\": 100,\n",
" \"min_new_tokens\": 1,\n",
" \"stop_sequences\": [\".\"],\n",
"}"
]
},
{
"cell_type": "markdown",
"id": "2b586538",
"metadata": {},
"source": [
"Initialize the `WatsonxLLM` class with the previously set parameters.\n",
"\n",
"\n",
"**Note**: \n",
"\n",
"- To provide context for the API call, you must pass the `project_id` or `space_id`. To get your project or space ID, open your project or space, go to the **Manage** tab, and click **General**. For more information see: [Project documentation](https://www.ibm.com/docs/en/watsonx-as-a-service?topic=projects) or [Deployment space documentation](https://www.ibm.com/docs/en/watsonx/saas?topic=spaces-creating-deployment).\n",
"- Depending on the region of your provisioned service instance, use one of the urls listed in [watsonx.ai API Authentication](https://ibm.github.io/watsonx-ai-python-sdk/setup_cloud.html#authentication).\n",
"\n",
"In this example, well use the `project_id` and Dallas URL.\n",
"\n",
"\n",
"You need to specify the `model_id` that will be used for inferencing. You can find the list of all the available models in [Supported foundation models](https://ibm.github.io/watsonx-ai-python-sdk/fm_model.html#ibm_watsonx_ai.foundation_models.utils.enums.ModelTypes)."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "98371396",
"metadata": {},
"outputs": [],
"source": [
"from langchain_ibm import ChatWatsonx\n",
"\n",
"chat = ChatWatsonx(\n",
" model_id=\"ibm/granite-13b-chat-v2\",\n",
" url=\"https://us-south.ml.cloud.ibm.com\",\n",
" project_id=\"PASTE YOUR PROJECT_ID HERE\",\n",
" params=parameters,\n",
")"
]
},
{
"cell_type": "markdown",
"id": "2202f4e0",
"metadata": {},
"source": [
"Alternatively, you can use Cloud Pak for Data credentials. For details, see [watsonx.ai software setup](https://ibm.github.io/watsonx-ai-python-sdk/setup_cpd.html). "
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "243ecccb",
"metadata": {},
"outputs": [],
"source": [
"chat = ChatWatsonx(\n",
" model_id=\"ibm/granite-13b-chat-v2\",\n",
" url=\"PASTE YOUR URL HERE\",\n",
" username=\"PASTE YOUR USERNAME HERE\",\n",
" password=\"PASTE YOUR PASSWORD HERE\",\n",
" instance_id=\"openshift\",\n",
" version=\"4.8\",\n",
" project_id=\"PASTE YOUR PROJECT_ID HERE\",\n",
" params=parameters,\n",
")"
]
},
{
"cell_type": "markdown",
"id": "96ed13d4",
"metadata": {},
"source": [
"Instead of `model_id`, you can also pass the `deployment_id` of the previously tuned model. The entire model tuning workflow is described in [Working with TuneExperiment and PromptTuner](https://ibm.github.io/watsonx-ai-python-sdk/pt_working_with_class_and_prompt_tuner.html)."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "08e66c88",
"metadata": {},
"outputs": [],
"source": [
"chat = ChatWatsonx(\n",
" deployment_id=\"PASTE YOUR DEPLOYMENT_ID HERE\",\n",
" url=\"https://us-south.ml.cloud.ibm.com\",\n",
" project_id=\"PASTE YOUR PROJECT_ID HERE\",\n",
" params=parameters,\n",
")"
]
},
{
"cell_type": "markdown",
"id": "f571001d",
"metadata": {},
"source": [
"## Invocation\n",
"\n",
"To obtain completions, you can call the model directly using a string prompt."
]
},
{
"cell_type": "code",
"execution_count": 22,
"id": "beea2b5b",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"AIMessage(content=\"Je t'aime pour écouter la Rock.\", response_metadata={'token_usage': {'generated_token_count': 12, 'input_token_count': 28}, 'model_name': 'ibm/granite-13b-chat-v2', 'system_fingerprint': '', 'finish_reason': 'stop_sequence'}, id='run-05b305ce-5401-4a10-b557-41a4b15c7f6f-0')"
]
},
"execution_count": 22,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Invocation\n",
"\n",
"messages = [\n",
" (\"system\", \"You are a helpful assistant that translates English to French.\"),\n",
" (\n",
" \"human\",\n",
" \"I love you for listening to Rock.\",\n",
" ),\n",
"]\n",
"\n",
"chat.invoke(messages)"
]
},
{
"cell_type": "code",
"execution_count": 41,
"id": "8ab1a25a",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"AIMessage(content='Sure, I can help you with that! Horses are large, powerful mammals that belong to the family Equidae.', response_metadata={'token_usage': {'generated_token_count': 24, 'input_token_count': 24}, 'model_name': 'ibm/granite-13b-chat-v2', 'system_fingerprint': '', 'finish_reason': 'stop_sequence'}, id='run-391776ff-3b38-4768-91e8-ff64177149e5-0')"
]
},
"execution_count": 41,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Invocation multiple chat\n",
"from langchain_core.messages import (\n",
" HumanMessage,\n",
" SystemMessage,\n",
")\n",
"\n",
"system_message = SystemMessage(\n",
" content=\"You are a helpful assistant which telling short-info about provided topic.\"\n",
")\n",
"human_message = HumanMessage(content=\"horse\")\n",
"\n",
"chat.invoke([system_message, human_message])"
]
},
{
"cell_type": "markdown",
"id": "20e4b568",
"metadata": {},
"source": [
"## Chaining\n",
"Create `ChatPromptTemplate` objects which will be responsible for creating a random question."
]
},
{
"cell_type": "code",
"execution_count": 17,
"id": "dd919925",
"metadata": {},
"outputs": [],
"source": [
"from langchain_core.prompts import ChatPromptTemplate\n",
"\n",
"system = (\n",
" \"You are a helpful assistant that translates {input_language} to {output_language}.\"\n",
")\n",
"human = \"{input}\"\n",
"prompt = ChatPromptTemplate.from_messages([(\"system\", system), (\"human\", human)])"
]
},
{
"cell_type": "markdown",
"id": "1a013a53",
"metadata": {},
"source": [
"Provide a inputs and run the chain."
]
},
{
"cell_type": "code",
"execution_count": 18,
"id": "68160377",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"AIMessage(content='Ich liebe Python.', response_metadata={'token_usage': {'generated_token_count': 5, 'input_token_count': 23}, 'model_name': 'ibm/granite-13b-chat-v2', 'system_fingerprint': '', 'finish_reason': 'stop_sequence'}, id='run-1b1ccf5d-0e33-46f2-a087-e2a136ba1fb7-0')"
]
},
"execution_count": 18,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"chain = prompt | chat\n",
"chain.invoke(\n",
" {\n",
" \"input_language\": \"English\",\n",
" \"output_language\": \"German\",\n",
" \"input\": \"I love Python\",\n",
" }\n",
")"
]
},
{
"cell_type": "markdown",
"id": "d2c9da33",
"metadata": {},
"source": [
"## Streaming the Model output \n",
"\n",
"You can stream the model output."
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "3f63166a",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The moon is a natural satellite of the Earth, and it has been a source of fascination for humans for centuries."
]
}
],
"source": [
"system_message = SystemMessage(\n",
" content=\"You are a helpful assistant which telling short-info about provided topic.\"\n",
")\n",
"human_message = HumanMessage(content=\"moon\")\n",
"\n",
"for chunk in chat.stream([system_message, human_message]):\n",
" print(chunk.content, end=\"\")"
]
},
{
"cell_type": "markdown",
"id": "5a7a2aa1",
"metadata": {},
"source": [
"## Batch the Model output \n",
"\n",
"You can batch the model output."
]
},
{
"cell_type": "code",
"execution_count": 32,
"id": "9e948729",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[AIMessage(content='Cats are domestic animals that belong to the Felidae family.', response_metadata={'token_usage': {'generated_token_count': 13, 'input_token_count': 24}, 'model_name': 'ibm/granite-13b-chat-v2', 'system_fingerprint': '', 'finish_reason': 'stop_sequence'}, id='run-71a8bd7a-a1aa-497b-9bdd-a4d6fe1d471a-0'),\n",
" AIMessage(content='Dogs are domesticated mammals of the family Canidae, characterized by their adaptability to various environments and social structures.', response_metadata={'token_usage': {'generated_token_count': 24, 'input_token_count': 24}, 'model_name': 'ibm/granite-13b-chat-v2', 'system_fingerprint': '', 'finish_reason': 'stop_sequence'}, id='run-22b7a0cb-e44a-4b68-9921-872f82dcd82b-0')]"
]
},
"execution_count": 32,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"message_1 = [\n",
" SystemMessage(\n",
" content=\"You are a helpful assistant which telling short-info about provided topic.\"\n",
" ),\n",
" HumanMessage(content=\"cat\"),\n",
"]\n",
"message_2 = [\n",
" SystemMessage(\n",
" content=\"You are a helpful assistant which telling short-info about provided topic.\"\n",
" ),\n",
" HumanMessage(content=\"dog\"),\n",
"]\n",
"\n",
"chat.batch([message_1, message_2])"
]
},
{
"cell_type": "markdown",
"id": "c739e1fe",
"metadata": {},
"source": [
"## Tool calling\n",
"\n",
"### ChatWatsonx.bind_tools()\n",
"\n",
"Please note that `ChatWatsonx.bind_tools` is on beta state, so right now we only support `mistralai/mixtral-8x7b-instruct-v01` model.\n",
"\n",
"You should also redefine `max_new_tokens` parameter to get the entire model response. By default `max_new_tokens` is set ot 20."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "328fce76",
"metadata": {},
"outputs": [],
"source": [
"from langchain_ibm import ChatWatsonx\n",
"\n",
"parameters = {\"max_new_tokens\": 200}\n",
"\n",
"chat = ChatWatsonx(\n",
" model_id=\"mistralai/mixtral-8x7b-instruct-v01\",\n",
" url=\"https://us-south.ml.cloud.ibm.com\",\n",
" project_id=\"PASTE YOUR PROJECT_ID HERE\",\n",
" params=parameters,\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "e1633a73",
"metadata": {},
"outputs": [],
"source": [
"from langchain_core.pydantic_v1 import BaseModel, Field\n",
"\n",
"\n",
"class GetWeather(BaseModel):\n",
" \"\"\"Get the current weather in a given location\"\"\"\n",
"\n",
" location: str = Field(..., description=\"The city and state, e.g. San Francisco, CA\")\n",
"\n",
"\n",
"llm_with_tools = chat.bind_tools([GetWeather])"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "3bf9b8ab",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"AIMessage(content='', additional_kwargs={'function_call': {'type': 'function'}, 'tool_calls': [{'type': 'function', 'function': {'name': 'GetWeather', 'arguments': '{\"location\": \"Los Angeles\"}'}, 'id': None}, {'type': 'function', 'function': {'name': 'GetWeather', 'arguments': '{\"location\": \"New York\"}'}, 'id': None}]}, response_metadata={'token_usage': {'generated_token_count': 99, 'input_token_count': 320}, 'model_name': 'mistralai/mixtral-8x7b-instruct-v01', 'system_fingerprint': '', 'finish_reason': 'eos_token'}, id='run-38627104-f2ac-4edb-8390-d5425fb65979-0', tool_calls=[{'name': 'GetWeather', 'args': {'location': 'Los Angeles'}, 'id': None}, {'name': 'GetWeather', 'args': {'location': 'New York'}, 'id': None}])"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"ai_msg = llm_with_tools.invoke(\n",
" \"Which city is hotter today: LA or NY?\",\n",
")\n",
"ai_msg"
]
},
{
"cell_type": "markdown",
"id": "ba03dbf4",
"metadata": {},
"source": [
"### AIMessage.tool_calls\n",
"Notice that the AIMessage has a `tool_calls` attribute. This contains in a standardized ToolCall format that is model-provider agnostic."
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "38f10ba7",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[{'name': 'GetWeather', 'args': {'location': 'Los Angeles'}, 'id': None},\n",
" {'name': 'GetWeather', 'args': {'location': 'New York'}, 'id': None}]"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"ai_msg.tool_calls"
]
},
{
"cell_type": "markdown",
"id": "9ee72a59",
"metadata": {},
"source": [
"## API reference\n",
"\n",
"For detailed documentation of all IBM watsonx.ai features and configurations head to the API reference: https://api.python.langchain.com/en/latest/ibm_api_reference.html"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.13"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -21,7 +21,7 @@
"| [ChatLlamaCpp](https://api.python.langchain.com/en/latest/chat_models/langchain_community.chat_models.llamacpp.ChatLlamaCpp.html) | [langchain-community](https://api.python.langchain.com/en/latest/community_api_reference.html) | ✅ | ❌ | ❌ |\n",
"\n",
"### Model features\n",
"| [Tool calling](/docs/how_to/tool_calling/) | [Structured output](/docs/how_to/structured_output/) | JSON mode | Image input | Audio input | Video input | [Token-level streaming](/docs/how_to/chat_streaming/) | Native async | [Token usage](/docs/how_to/chat_token_usage_tracking/) | [Logprobs](/docs/how_to/logprobs/) |\n",
"| [Tool calling](/docs/how_to/tool_calling) | [Structured output](/docs/how_to/structured_output/) | JSON mode | Image input | Audio input | Video input | [Token-level streaming](/docs/how_to/chat_streaming/) | Native async | [Token usage](/docs/how_to/chat_token_usage_tracking/) | [Logprobs](/docs/how_to/logprobs/) |\n",
"| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |\n",
"| ✅ | ✅ | ❌ | ❌ | ❌ | ❌ | ✅ | ❌ | ❌ | ✅ | \n",
"\n",

View File

@@ -15,85 +15,85 @@
"source": [
"# OllamaFunctions\n",
"\n",
"This notebook shows how to use an experimental wrapper around Ollama that gives it the same API as OpenAI Functions.\n",
"This notebook shows how to use an experimental wrapper around Ollama that gives it [tool calling capabilities](https://python.langchain.com/v0.2/docs/concepts/#functiontool-calling).\n",
"\n",
"Note that more powerful and capable models will perform better with complex schema and/or multiple functions. The examples below use llama3 and phi3 models.\n",
"For a complete list of supported models and model variants, see the [Ollama model library](https://ollama.ai/library).\n",
"\n",
":::warning\n",
"\n",
"This is an experimental wrapper that attempts to bolt-on tool calling support to models that do not natively support it. Use with caution.\n",
"\n",
":::\n",
"## Overview\n",
"\n",
"### Integration details\n",
"\n",
"| Class | Package | Local | Serializable | JS support | Package downloads | Package latest |\n",
"|:-----------------------------------------------------------------------------------------------------------------------------------:|:-------:|:-----:|:------------:|:----------:|:-----------------:|:--------------:|\n",
"| [OllamaFunctions](https://api.python.langchain.com/en/latest/llms/langchain_experimental.llms.ollama_function.OllamaFunctions.html) | [langchain-experimental](https://api.python.langchain.com/en/latest/openai_api_reference.html) | ✅ | ❌ | ❌ | ![PyPI - Downloads](https://img.shields.io/pypi/dm/langchain-experimental?style=flat-square&label=%20) | ![PyPI - Version](https://img.shields.io/pypi/v/langchain-experimental?style=flat-square&label=%20) |\n",
"\n",
"### Model features\n",
"\n",
"| [Tool calling](/docs/how_to/tool_calling/) | [Structured output](/docs/how_to/structured_output/) | JSON mode | Image input | Audio input | Video input | [Token-level streaming](/docs/how_to/chat_streaming/) | Native async | [Token usage](/docs/how_to/chat_token_usage_tracking/) | [Logprobs](/docs/how_to/logprobs/) |\n",
"| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |\n",
"| ✅ | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ | ✅ | ❌ | ❌ |\n",
"\n",
"## Setup\n",
"\n",
"Follow [these instructions](https://github.com/jmorganca/ollama) to set up and run a local Ollama instance.\n",
"To access `OllamaFunctions` you will need to install `langchain-experimental` integration package.\n",
"Follow [these instructions](https://github.com/jmorganca/ollama) to set up and run a local Ollama instance as well as download and serve [supported models](https://ollama.com/library).\n",
"\n",
"## Usage\n",
"### Credentials\n",
"\n",
"You can initialize OllamaFunctions in a similar way to how you'd initialize a standard ChatOllama instance:"
"Credentials support is not present at this time.\n",
"\n",
"### Installation\n",
"\n",
"The `OllamaFunctions` class lives in the `langchain-experimental` package:\n"
]
},
{
"cell_type": "code",
"execution_count": 1,
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%pip install -qU langchain-experimental"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Instantiation\n",
"\n",
"`OllamaFunctions` takes the same init parameters as `ChatOllama`. \n",
"\n",
"In order to use tool calling, you must also specify `format=\"json\"`."
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"ExecuteTime": {
"end_time": "2024-04-28T00:53:25.276543Z",
"start_time": "2024-04-28T00:53:24.881202Z"
},
"scrolled": true
"end_time": "2024-06-23T15:20:21.818089Z",
"start_time": "2024-06-23T15:20:21.815759Z"
}
},
"outputs": [],
"source": [
"from langchain_experimental.llms.ollama_functions import OllamaFunctions\n",
"\n",
"model = OllamaFunctions(model=\"llama3\", format=\"json\")"
"llm = OllamaFunctions(model=\"phi3\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"You can then bind functions defined with JSON Schema parameters and a `function_call` parameter to force the model to call the given function:"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"ExecuteTime": {
"end_time": "2024-04-26T04:59:17.270931Z",
"start_time": "2024-04-26T04:59:17.263347Z"
}
},
"outputs": [],
"source": [
"model = model.bind_tools(\n",
" tools=[\n",
" {\n",
" \"name\": \"get_current_weather\",\n",
" \"description\": \"Get the current weather in a given location\",\n",
" \"parameters\": {\n",
" \"type\": \"object\",\n",
" \"properties\": {\n",
" \"location\": {\n",
" \"type\": \"string\",\n",
" \"description\": \"The city and state, \" \"e.g. San Francisco, CA\",\n",
" },\n",
" \"unit\": {\n",
" \"type\": \"string\",\n",
" \"enum\": [\"celsius\", \"fahrenheit\"],\n",
" },\n",
" },\n",
" \"required\": [\"location\"],\n",
" },\n",
" }\n",
" ],\n",
" function_call={\"name\": \"get_current_weather\"},\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Calling a function with this model then results in JSON output matching the provided schema:"
"## Invocation"
]
},
{
@@ -101,15 +101,15 @@
"execution_count": 3,
"metadata": {
"ExecuteTime": {
"end_time": "2024-04-26T04:59:26.092428Z",
"start_time": "2024-04-26T04:59:17.272627Z"
"end_time": "2024-06-23T15:20:46.794689Z",
"start_time": "2024-06-23T15:20:44.982632Z"
}
},
"outputs": [
{
"data": {
"text/plain": [
"AIMessage(content='', additional_kwargs={'function_call': {'name': 'get_current_weather', 'arguments': '{\"location\": \"Boston, MA\"}'}}, id='run-1791f9fe-95ad-4ca4-bdf7-9f73eab31e6f-0')"
"AIMessage(content=\"J'adore programmer.\", id='run-94815fcf-ae11-438a-ba3f-00819328b5cd-0')"
]
},
"execution_count": 3,
@@ -118,79 +118,55 @@
}
],
"source": [
"from langchain_core.messages import HumanMessage\n",
"\n",
"model.invoke(\"what is the weather in Boston?\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Structured Output\n",
"\n",
"One useful thing you can do with function calling using `with_structured_output()` function is extracting properties from a given input in a structured format:"
"messages = [\n",
" (\n",
" \"system\",\n",
" \"You are a helpful assistant that translates English to French. Translate the user sentence.\",\n",
" ),\n",
" (\"human\", \"I love programming.\"),\n",
"]\n",
"ai_msg = llm.invoke(messages)\n",
"ai_msg"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"ExecuteTime": {
"end_time": "2024-04-26T04:59:26.098828Z",
"start_time": "2024-04-26T04:59:26.094021Z"
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"\"J'adore programmer.\""
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
},
"outputs": [],
],
"source": [
"from langchain_core.prompts import PromptTemplate\n",
"from langchain_core.pydantic_v1 import BaseModel, Field\n",
"\n",
"\n",
"# Schema for structured response\n",
"class Person(BaseModel):\n",
" name: str = Field(description=\"The person's name\", required=True)\n",
" height: float = Field(description=\"The person's height\", required=True)\n",
" hair_color: str = Field(description=\"The person's hair color\")\n",
"\n",
"\n",
"# Prompt template\n",
"prompt = PromptTemplate.from_template(\n",
" \"\"\"Alex is 5 feet tall. \n",
"Claudia is 1 feet taller than Alex and jumps higher than him. \n",
"Claudia is a brunette and Alex is blonde.\n",
"\n",
"Human: {question}\n",
"AI: \"\"\"\n",
")\n",
"\n",
"# Chain\n",
"llm = OllamaFunctions(model=\"phi3\", format=\"json\", temperature=0)\n",
"structured_llm = llm.with_structured_output(Person)\n",
"chain = prompt | structured_llm"
"ai_msg.content"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Extracting data about Alex"
"## Chaining\n",
"\n",
"We can [chain](https://python.langchain.com/v0.2/docs/how_to/sequence/) our model with a prompt template like so:"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"ExecuteTime": {
"end_time": "2024-04-26T04:59:30.164955Z",
"start_time": "2024-04-26T04:59:26.099790Z"
}
},
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Person(name='Alex', height=5.0, hair_color='blonde')"
"AIMessage(content='Programmieren ist sehr verrückt! Es freut mich, dass Sie auf Programmierung so positiv eingestellt sind.', id='run-ee99be5e-4d48-4ab6-b602-35415f0bdbde-0')"
]
},
"execution_count": 5,
@@ -199,41 +175,123 @@
}
],
"source": [
"alex = chain.invoke(\"Describe Alex\")\n",
"alex"
"from langchain_core.prompts import ChatPromptTemplate\n",
"\n",
"prompt = ChatPromptTemplate.from_messages(\n",
" [\n",
" (\n",
" \"system\",\n",
" \"You are a helpful assistant that translates {input_language} to {output_language}.\",\n",
" ),\n",
" (\"human\", \"{input}\"),\n",
" ]\n",
")\n",
"\n",
"chain = prompt | llm\n",
"chain.invoke(\n",
" {\n",
" \"input_language\": \"English\",\n",
" \"output_language\": \"German\",\n",
" \"input\": \"I love programming.\",\n",
" }\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Extracting data about Claudia"
"## Tool Calling\n",
"\n",
"### OllamaFunctions.bind_tools()\n",
"\n",
"With `OllamaFunctions.bind_tools`, we can easily pass in Pydantic classes, dict schemas, LangChain tools, or even functions as tools to the model. Under the hood these are converted to a tool definition schemas, which looks like:"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"ExecuteTime": {
"end_time": "2024-04-26T04:59:31.509846Z",
"start_time": "2024-04-26T04:59:30.165662Z"
}
},
"execution_count": 7,
"metadata": {},
"outputs": [],
"source": [
"from langchain_core.pydantic_v1 import BaseModel, Field\n",
"\n",
"\n",
"class GetWeather(BaseModel):\n",
" \"\"\"Get the current weather in a given location\"\"\"\n",
"\n",
" location: str = Field(..., description=\"The city and state, e.g. San Francisco, CA\")\n",
"\n",
"\n",
"llm_with_tools = llm.bind_tools([GetWeather])"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Person(name='Claudia', height=6.0, hair_color='brunette')"
"AIMessage(content='', id='run-b9769435-ec6a-4cb8-8545-5a5035fc19bd-0', tool_calls=[{'name': 'GetWeather', 'args': {'location': 'San Francisco, CA'}, 'id': 'call_064c4e1cb27e4adb9e4e7ed60362ecc9'}])"
]
},
"execution_count": 6,
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"claudia = chain.invoke(\"Describe Claudia\")\n",
"claudia"
"ai_msg = llm_with_tools.invoke(\n",
" \"what is the weather like in San Francisco\",\n",
")\n",
"ai_msg"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### AIMessage.tool_calls\n",
"\n",
"Notice that the AIMessage has a `tool_calls` attribute. This contains in a standardized `ToolCall` format that is model-provider agnostic."
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[{'name': 'GetWeather',\n",
" 'args': {'location': 'San Francisco, CA'},\n",
" 'id': 'call_064c4e1cb27e4adb9e4e7ed60362ecc9'}]"
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"ai_msg.tool_calls"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": "For more on binding tools and tool call outputs, head to the [tool calling](docs/how_to/function_calling) docs."
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## API reference\n",
"\n",
"For detailed documentation of all ToolCallingLLM features and configurations head to the API reference: https://api.python.langchain.com/en/latest/llms/langchain_experimental.llms.ollama_functions.OllamaFunctions.html\n"
]
}
],
@@ -253,7 +311,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.1"
"version": "3.10.12"
}
},
"nbformat": 4,

View File

@@ -41,7 +41,7 @@
"| [ChatOpenAI](https://api.python.langchain.com/en/latest/chat_models/langchain_openai.chat_models.base.ChatOpenAI.html) | [langchain-openai](https://api.python.langchain.com/en/latest/openai_api_reference.html) | ❌ | beta | ✅ | ![PyPI - Downloads](https://img.shields.io/pypi/dm/langchain-openai?style=flat-square&label=%20) | ![PyPI - Version](https://img.shields.io/pypi/v/langchain-openai?style=flat-square&label=%20) |\n",
"\n",
"### Model features\n",
"| [Tool calling](/docs/how_to/tool_calling/) | [Structured output](/docs/how_to/structured_output/) | JSON mode | Image input | Audio input | Video input | [Token-level streaming](/docs/how_to/chat_streaming/) | Native async | [Token usage](/docs/how_to/chat_token_usage_tracking/) | [Logprobs](/docs/how_to/logprobs/) |\n",
"| [Tool calling](/docs/how_to/tool_calling) | [Structured output](/docs/how_to/structured_output/) | JSON mode | Image input | Audio input | Video input | [Token-level streaming](/docs/how_to/chat_streaming/) | Native async | [Token usage](/docs/how_to/chat_token_usage_tracking/) | [Logprobs](/docs/how_to/logprobs/) |\n",
"| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |\n",
"| ✅ | ✅ | ✅ | ✅ | ❌ | ❌ | ✅ | ✅ | ✅ | ✅ | \n",
"\n",
@@ -426,7 +426,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.1"
"version": "3.11.9"
}
},
"nbformat": 4,

View File

@@ -45,7 +45,7 @@
"The code provided assumes that your PPLX_API_KEY is set in your environment variables. If you would like to manually specify your API key and also choose a different model, you can use the following code:\n",
"\n",
"```python\n",
"chat = ChatPerplexity(temperature=0, pplx_api_key=\"YOUR_API_KEY\", model=\"pplx-70b-online\")\n",
"chat = ChatPerplexity(temperature=0, pplx_api_key=\"YOUR_API_KEY\", model=\"llama-3-sonar-small-32k-online\")\n",
"```\n",
"\n",
"You can check a list of available models [here](https://docs.perplexity.ai/docs/model-cards). For reproducibility, we can set the API key dynamically by taking it as an input in this notebook."
@@ -78,7 +78,7 @@
},
"outputs": [],
"source": [
"chat = ChatPerplexity(temperature=0, model=\"pplx-70b-online\")"
"chat = ChatPerplexity(temperature=0, model=\"llama-3-sonar-small-32k-online\")"
]
},
{
@@ -146,7 +146,7 @@
}
],
"source": [
"chat = ChatPerplexity(temperature=0, model=\"pplx-70b-online\")\n",
"chat = ChatPerplexity(temperature=0, model=\"llama-3-sonar-small-32k-online\")\n",
"prompt = ChatPromptTemplate.from_messages([(\"human\", \"Tell me a joke about {topic}\")])\n",
"chain = prompt | chat\n",
"response = chain.invoke({\"topic\": \"cats\"})\n",
@@ -195,7 +195,7 @@
}
],
"source": [
"chat = ChatPerplexity(temperature=0.7, model=\"pplx-70b-online\")\n",
"chat = ChatPerplexity(temperature=0.7, model=\"llama-3-sonar-small-32k-online\")\n",
"prompt = ChatPromptTemplate.from_messages(\n",
" [(\"human\", \"Give me a list of famous tourist attractions in Pakistan\")]\n",
")\n",

View File

@@ -13,7 +13,7 @@
"\n",
"Headless mode means that the browser is running without a graphical user interface.\n",
"\n",
"`AsyncChromiumLoader` loads the page, and then we use `Html2TextTransformer` to transform to text."
"In the below example we'll use the `AsyncChromiumLoader` to loads the page, and then the [`Html2TextTransformer`](/docs/integrations/document_transformers/html2text/) to strip out the HTML tags and other semantic information."
]
},
{
@@ -23,48 +23,22 @@
"metadata": {},
"outputs": [],
"source": [
"%pip install --upgrade --quiet playwright beautifulsoup4\n",
"%pip install --upgrade --quiet playwright beautifulsoup4 html2text\n",
"!playwright install"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "dd2cdea7",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'<!DOCTYPE html><html lang=\"en\"><head><script src=\"https://s0.2mdn.net/instream/video/client.js\" asyn'"
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from langchain_community.document_loaders import AsyncChromiumLoader\n",
"\n",
"urls = [\"https://www.wsj.com\"]\n",
"loader = AsyncChromiumLoader(urls, user_agent=\"MyAppUserAgent\")\n",
"docs = loader.load()\n",
"docs[0].page_content[0:100]"
]
},
{
"cell_type": "markdown",
"id": "c64e7df9",
"id": "00487c0f",
"metadata": {},
"source": [
"If you are using Jupyter notebooks, you might need to apply `nest_asyncio` before loading the documents."
"**Note:** If you are using Jupyter notebooks, you might also need to install and apply `nest_asyncio` before loading the documents like this:"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "5f2fe3c0",
"id": "d374eef4",
"metadata": {},
"outputs": [],
"source": [
@@ -74,6 +48,40 @@
"nest_asyncio.apply()"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "dd2cdea7",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'<!DOCTYPE html><html lang=\"en\" dir=\"ltr\" class=\"docs-wrapper docs-doc-page docs-version-2.0 plugin-d'"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from langchain_community.document_loaders import AsyncChromiumLoader\n",
"\n",
"urls = [\"https://docs.smith.langchain.com/\"]\n",
"loader = AsyncChromiumLoader(urls, user_agent=\"MyAppUserAgent\")\n",
"docs = loader.load()\n",
"docs[0].page_content[0:100]"
]
},
{
"cell_type": "markdown",
"id": "7eb5e6aa",
"metadata": {},
"source": [
"Now let's transform the documents into a more readable syntax using the transformer:"
]
},
{
"cell_type": "code",
"execution_count": 6,
@@ -83,7 +91,7 @@
{
"data": {
"text/plain": [
"\"Skip to Main ContentSkip to SearchSkip to... Select * Top News * What's News *\\nFeatured Stories * Retirement * Life & Arts * Hip-Hop * Sports * Video *\\nEconomy * Real Estate * Sports * CMO * CIO * CFO * Risk & Compliance *\\nLogistics Report * Sustainable Business * Heard on the Street * Barrons *\\nMarketWatch * Mansion Global * Penta * Opinion * Journal Reports * Sponsored\\nOffers Explore Our Brands * WSJ * * * * * Barron's * * * * * MarketWatch * * *\\n* * IBD # The Wall Street Journal SubscribeSig\""
"'Skip to main content\\n\\nGo to API Docs\\n\\nSearch`⌘``K`\\n\\nGo to App\\n\\n * Quick start\\n * Tutorials\\n\\n * How-to guides\\n\\n * Concepts\\n\\n * Reference\\n\\n * Pricing\\n * Self-hosting\\n\\n * LangGraph Cloud\\n\\n * * Quick start\\n\\nOn this page\\n\\n# Get started with LangSmith\\n\\n**LangSmith** is a platform for building production-grade LLM applications. It\\nallows you to closely monitor and evaluate your application, so you can ship\\nquickly and with confidence. Use of LangChain is not necessary - LangSmith\\nworks on it'"
]
},
"execution_count": 6,
@@ -116,7 +124,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.16"
"version": "3.10.5"
}
},
"nbformat": 4,

File diff suppressed because one or more lines are too long

View File

@@ -7,7 +7,9 @@
"source": [
"# Email\n",
"\n",
"This notebook shows how to load email (`.eml`) or `Microsoft Outlook` (`.msg`) files."
"This notebook shows how to load email (`.eml`) or `Microsoft Outlook` (`.msg`) files.\n",
"\n",
"Please see [this guide](/docs/integrations/providers/unstructured/) for more instructions on setting up Unstructured locally, including setting up required system dependencies."
]
},
{
@@ -27,49 +29,13 @@
},
"outputs": [],
"source": [
"%pip install --upgrade --quiet unstructured"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "40cd9806",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"from langchain_community.document_loaders import UnstructuredEmailLoader"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "2d20b852",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"loader = UnstructuredEmailLoader(\"example_data/fake-email.eml\")"
"%pip install --upgrade --quiet unstructured"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "579fa702",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"data = loader.load()"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "90c1d899",
"id": "2d20b852",
"metadata": {
"tags": []
},
@@ -77,15 +43,21 @@
{
"data": {
"text/plain": [
"[Document(page_content='This is a test email to use for unit tests.\\n\\nImportant points:\\n\\nRoses are red\\n\\nViolets are blue', metadata={'source': 'example_data/fake-email.eml'})]"
"[Document(page_content='This is a test email to use for unit tests.\\n\\nImportant points:\\n\\nRoses are red\\n\\nViolets are blue', metadata={'source': './example_data/fake-email.eml'})]"
]
},
"execution_count": 4,
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from langchain_community.document_loaders import UnstructuredEmailLoader\n",
"\n",
"loader = UnstructuredEmailLoader(\"./example_data/fake-email.eml\")\n",
"\n",
"data = loader.load()\n",
"\n",
"data"
]
},
@@ -101,42 +73,26 @@
},
{
"cell_type": "code",
"execution_count": 5,
"execution_count": 4,
"id": "b9592eaf",
"metadata": {},
"outputs": [],
"source": [
"loader = UnstructuredEmailLoader(\"example_data/fake-email.eml\", mode=\"elements\")"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "0b16d03f",
"metadata": {},
"outputs": [],
"source": [
"data = loader.load()"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "d7bdc5e5",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Document(page_content='This is a test email to use for unit tests.', metadata={'source': 'example_data/fake-email.eml', 'filename': 'fake-email.eml', 'file_directory': 'example_data', 'date': '2022-12-16T17:04:16-05:00', 'filetype': 'message/rfc822', 'sent_from': ['Matthew Robinson <mrobinson@unstructured.io>'], 'sent_to': ['Matthew Robinson <mrobinson@unstructured.io>'], 'subject': 'Test Email', 'category': 'NarrativeText'})"
"Document(page_content='This is a test email to use for unit tests.', metadata={'source': 'example_data/fake-email.eml', 'file_directory': 'example_data', 'filename': 'fake-email.eml', 'last_modified': '2022-12-16T17:04:16-05:00', 'sent_from': ['Matthew Robinson <mrobinson@unstructured.io>'], 'sent_to': ['Matthew Robinson <mrobinson@unstructured.io>'], 'subject': 'Test Email', 'languages': ['eng'], 'filetype': 'message/rfc822', 'category': 'NarrativeText'})"
]
},
"execution_count": 7,
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"loader = UnstructuredEmailLoader(\"example_data/fake-email.eml\", mode=\"elements\")\n",
"\n",
"data = loader.load()\n",
"\n",
"data[0]"
]
},
@@ -152,46 +108,30 @@
},
{
"cell_type": "code",
"execution_count": 8,
"execution_count": 5,
"id": "6539f166",
"metadata": {},
"outputs": [],
"source": [
"loader = UnstructuredEmailLoader(\n",
" \"example_data/fake-email.eml\",\n",
" mode=\"elements\",\n",
" process_attachments=True,\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "aebead38",
"metadata": {},
"outputs": [],
"source": [
"data = loader.load()"
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "ddeb60f4",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Document(page_content='This is a test email to use for unit tests.', metadata={'source': 'example_data/fake-email.eml', 'filename': 'fake-email.eml', 'file_directory': 'example_data', 'date': '2022-12-16T17:04:16-05:00', 'filetype': 'message/rfc822', 'sent_from': ['Matthew Robinson <mrobinson@unstructured.io>'], 'sent_to': ['Matthew Robinson <mrobinson@unstructured.io>'], 'subject': 'Test Email', 'category': 'NarrativeText'})"
"Document(page_content='This is a test email to use for unit tests.', metadata={'source': 'example_data/fake-email.eml', 'file_directory': 'example_data', 'filename': 'fake-email.eml', 'last_modified': '2022-12-16T17:04:16-05:00', 'sent_from': ['Matthew Robinson <mrobinson@unstructured.io>'], 'sent_to': ['Matthew Robinson <mrobinson@unstructured.io>'], 'subject': 'Test Email', 'languages': ['eng'], 'filetype': 'message/rfc822', 'category': 'NarrativeText'})"
]
},
"execution_count": 10,
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"loader = UnstructuredEmailLoader(\n",
" \"example_data/fake-email.eml\",\n",
" mode=\"elements\",\n",
" process_attachments=True,\n",
")\n",
"\n",
"data = loader.load()\n",
"\n",
"data[0]"
]
},
@@ -210,57 +150,33 @@
"metadata": {},
"outputs": [],
"source": [
"%pip install --upgrade --quiet extract_msg"
"%pip install --upgrade --quiet extract_msg"
]
},
{
"cell_type": "code",
"execution_count": 8,
"execution_count": 7,
"id": "1e7a8444",
"metadata": {},
"outputs": [],
"source": [
"from langchain_community.document_loaders import OutlookMessageLoader"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "77a055e6",
"metadata": {},
"outputs": [],
"source": [
"loader = OutlookMessageLoader(\"example_data/fake-email.msg\")"
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "789882de",
"metadata": {},
"outputs": [],
"source": [
"data = loader.load()"
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "46aa0632",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Document(page_content='This is a test email to experiment with the MS Outlook MSG Extractor\\r\\n\\r\\n\\r\\n-- \\r\\n\\r\\n\\r\\nKind regards\\r\\n\\r\\n\\r\\n\\r\\n\\r\\nBrian Zhou\\r\\n\\r\\n', metadata={'subject': 'Test for TIF files', 'sender': 'Brian Zhou <brizhou@gmail.com>', 'date': 'Mon, 18 Nov 2013 16:26:24 +0800'})"
"Document(page_content='This is a test email to experiment with the MS Outlook MSG Extractor\\r\\n\\r\\n\\r\\n-- \\r\\n\\r\\n\\r\\nKind regards\\r\\n\\r\\n\\r\\n\\r\\n\\r\\nBrian Zhou\\r\\n\\r\\n', metadata={'source': 'example_data/fake-email.msg', 'subject': 'Test for TIF files', 'sender': 'Brian Zhou <brizhou@gmail.com>', 'date': datetime.datetime(2013, 11, 18, 0, 26, 24, tzinfo=zoneinfo.ZoneInfo(key='America/Los_Angeles'))})"
]
},
"execution_count": 11,
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from langchain_community.document_loaders import OutlookMessageLoader\n",
"\n",
"loader = OutlookMessageLoader(\"example_data/fake-email.msg\")\n",
"\n",
"data = loader.load()\n",
"\n",
"data[0]"
]
},
@@ -289,7 +205,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.13"
"version": "3.10.5"
}
},
"nbformat": 4,

File diff suppressed because one or more lines are too long

Binary file not shown.

After

Width:  |  Height:  |  Size: 408 KiB

View File

@@ -0,0 +1,723 @@
Madam Speaker, Madam Vice President, our First Lady and Second Gentleman. Members of Congress and the Cabinet. Justices of the Supreme Court. My fellow Americans.
Last year COVID-19 kept us apart. This year we are finally together again.
Tonight, we meet as Democrats Republicans and Independents. But most importantly as Americans.
With a duty to one another to the American people to the Constitution.
And with an unwavering resolve that freedom will always triumph over tyranny.
Six days ago, Russias Vladimir Putin sought to shake the foundations of the free world thinking he could make it bend to his menacing ways. But he badly miscalculated.
He thought he could roll into Ukraine and the world would roll over. Instead he met a wall of strength he never imagined.
He met the Ukrainian people.
From President Zelenskyy to every Ukrainian, their fearlessness, their courage, their determination, inspires the world.
Groups of citizens blocking tanks with their bodies. Everyone from students to retirees teachers turned soldiers defending their homeland.
In this struggle as President Zelenskyy said in his speech to the European Parliament “Light will win over darkness.” The Ukrainian Ambassador to the United States is here tonight.
Let each of us here tonight in this Chamber send an unmistakable signal to Ukraine and to the world.
Please rise if you are able and show that, Yes, we the United States of America stand with the Ukrainian people.
Throughout our history weve learned this lesson when dictators do not pay a price for their aggression they cause more chaos.
They keep moving.
And the costs and the threats to America and the world keep rising.
Thats why the NATO Alliance was created to secure peace and stability in Europe after World War 2.
The United States is a member along with 29 other nations.
It matters. American diplomacy matters. American resolve matters.
Putins latest attack on Ukraine was premeditated and unprovoked.
He rejected repeated efforts at diplomacy.
He thought the West and NATO wouldnt respond. And he thought he could divide us at home. Putin was wrong. We were ready. Here is what we did.
We prepared extensively and carefully.
We spent months building a coalition of other freedom-loving nations from Europe and the Americas to Asia and Africa to confront Putin.
I spent countless hours unifying our European allies. We shared with the world in advance what we knew Putin was planning and precisely how he would try to falsely justify his aggression.
We countered Russias lies with truth.
And now that he has acted the free world is holding him accountable.
Along with twenty-seven members of the European Union including France, Germany, Italy, as well as countries like the United Kingdom, Canada, Japan, Korea, Australia, New Zealand, and many others, even Switzerland.
We are inflicting pain on Russia and supporting the people of Ukraine. Putin is now isolated from the world more than ever.
Together with our allies we are right now enforcing powerful economic sanctions.
We are cutting off Russias largest banks from the international financial system.
Preventing Russias central bank from defending the Russian Ruble making Putins $630 Billion “war fund” worthless.
We are choking off Russias access to technology that will sap its economic strength and weaken its military for years to come.
Tonight I say to the Russian oligarchs and corrupt leaders who have bilked billions of dollars off this violent regime no more.
The U.S. Department of Justice is assembling a dedicated task force to go after the crimes of Russian oligarchs.
We are joining with our European allies to find and seize your yachts your luxury apartments your private jets. We are coming for your ill-begotten gains.
And tonight I am announcing that we will join our allies in closing off American air space to all Russian flights further isolating Russia and adding an additional squeeze on their economy. The Ruble has lost 30% of its value.
The Russian stock market has lost 40% of its value and trading remains suspended. Russias economy is reeling and Putin alone is to blame.
Together with our allies we are providing support to the Ukrainians in their fight for freedom. Military assistance. Economic assistance. Humanitarian assistance.
We are giving more than $1 Billion in direct assistance to Ukraine.
And we will continue to aid the Ukrainian people as they defend their country and to help ease their suffering.
Let me be clear, our forces are not engaged and will not engage in conflict with Russian forces in Ukraine.
Our forces are not going to Europe to fight in Ukraine, but to defend our NATO Allies in the event that Putin decides to keep moving west.
For that purpose weve mobilized American ground forces, air squadrons, and ship deployments to protect NATO countries including Poland, Romania, Latvia, Lithuania, and Estonia.
As I have made crystal clear the United States and our Allies will defend every inch of territory of NATO countries with the full force of our collective power.
And we remain clear-eyed. The Ukrainians are fighting back with pure courage. But the next few days weeks, months, will be hard on them.
Putin has unleashed violence and chaos. But while he may make gains on the battlefield he will pay a continuing high price over the long run.
And a proud Ukrainian people, who have known 30 years of independence, have repeatedly shown that they will not tolerate anyone who tries to take their country backwards.
To all Americans, I will be honest with you, as Ive always promised. A Russian dictator, invading a foreign country, has costs around the world.
And Im taking robust action to make sure the pain of our sanctions is targeted at Russias economy. And I will use every tool at our disposal to protect American businesses and consumers.
Tonight, I can announce that the United States has worked with 30 other countries to release 60 Million barrels of oil from reserves around the world.
America will lead that effort, releasing 30 Million barrels from our own Strategic Petroleum Reserve. And we stand ready to do more if necessary, unified with our allies.
These steps will help blunt gas prices here at home. And I know the news about whats happening can seem alarming.
But I want you to know that we are going to be okay.
When the history of this era is written Putins war on Ukraine will have left Russia weaker and the rest of the world stronger.
While it shouldnt have taken something so terrible for people around the world to see whats at stake now everyone sees it clearly.
We see the unity among leaders of nations and a more unified Europe a more unified West. And we see unity among the people who are gathering in cities in large crowds around the world even in Russia to demonstrate their support for Ukraine.
In the battle between democracy and autocracy, democracies are rising to the moment, and the world is clearly choosing the side of peace and security.
This is a real test. Its going to take time. So let us continue to draw inspiration from the iron will of the Ukrainian people.
To our fellow Ukrainian Americans who forge a deep bond that connects our two nations we stand with you.
Putin may circle Kyiv with tanks, but he will never gain the hearts and souls of the Ukrainian people.
He will never extinguish their love of freedom. He will never weaken the resolve of the free world.
We meet tonight in an America that has lived through two of the hardest years this nation has ever faced.
The pandemic has been punishing.
And so many families are living paycheck to paycheck, struggling to keep up with the rising cost of food, gas, housing, and so much more.
I understand.
I remember when my Dad had to leave our home in Scranton, Pennsylvania to find work. I grew up in a family where if the price of food went up, you felt it.
Thats why one of the first things I did as President was fight to pass the American Rescue Plan.
Because people were hurting. We needed to act, and we did.
Few pieces of legislation have done more in a critical moment in our history to lift us out of crisis.
It fueled our efforts to vaccinate the nation and combat COVID-19. It delivered immediate economic relief for tens of millions of Americans.
Helped put food on their table, keep a roof over their heads, and cut the cost of health insurance.
And as my Dad used to say, it gave people a little breathing room.
And unlike the $2 Trillion tax cut passed in the previous administration that benefitted the top 1% of Americans, the American Rescue Plan helped working people—and left no one behind.
And it worked. It created jobs. Lots of jobs.
In fact—our economy created over 6.5 Million new jobs just last year, more jobs created in one year
than ever before in the history of America.
Our economy grew at a rate of 5.7% last year, the strongest growth in nearly 40 years, the first step in bringing fundamental change to an economy that hasnt worked for the working people of this nation for too long.
For the past 40 years we were told that if we gave tax breaks to those at the very top, the benefits would trickle down to everyone else.
But that trickle-down theory led to weaker economic growth, lower wages, bigger deficits, and the widest gap between those at the top and everyone else in nearly a century.
Vice President Harris and I ran for office with a new economic vision for America.
Invest in America. Educate Americans. Grow the workforce. Build the economy from the bottom up
and the middle out, not from the top down.
Because we know that when the middle class grows, the poor have a ladder up and the wealthy do very well.
America used to have the best roads, bridges, and airports on Earth.
Now our infrastructure is ranked 13th in the world.
We wont be able to compete for the jobs of the 21st Century if we dont fix that.
Thats why it was so important to pass the Bipartisan Infrastructure Law—the most sweeping investment to rebuild America in history.
This was a bipartisan effort, and I want to thank the members of both parties who worked to make it happen.
Were done talking about infrastructure weeks.
Were going to have an infrastructure decade.
It is going to transform America and put us on a path to win the economic competition of the 21st Century that we face with the rest of the world—particularly with China.
As Ive told Xi Jinping, it is never a good bet to bet against the American people.
Well create good jobs for millions of Americans, modernizing roads, airports, ports, and waterways all across America.
And well do it all to withstand the devastating effects of the climate crisis and promote environmental justice.
Well build a national network of 500,000 electric vehicle charging stations, begin to replace poisonous lead pipes—so every child—and every American—has clean water to drink at home and at school, provide affordable high-speed internet for every American—urban, suburban, rural, and tribal communities.
4,000 projects have already been announced.
And tonight, Im announcing that this year we will start fixing over 65,000 miles of highway and 1,500 bridges in disrepair.
When we use taxpayer dollars to rebuild America we are going to Buy American: buy American products to support American jobs.
The federal government spends about $600 Billion a year to keep the country safe and secure.
Theres been a law on the books for almost a century
to make sure taxpayers dollars support American jobs and businesses.
Every Administration says theyll do it, but we are actually doing it.
We will buy American to make sure everything from the deck of an aircraft carrier to the steel on highway guardrails are made in America.
But to compete for the best jobs of the future, we also need to level the playing field with China and other competitors.
Thats why it is so important to pass the Bipartisan Innovation Act sitting in Congress that will make record investments in emerging technologies and American manufacturing.
Let me give you one example of why its so important to pass it.
If you travel 20 miles east of Columbus, Ohio, youll find 1,000 empty acres of land.
It wont look like much, but if you stop and look closely, youll see a “Field of dreams,” the ground on which Americas future will be built.
This is where Intel, the American company that helped build Silicon Valley, is going to build its $20 billion semiconductor “mega site”.
Up to eight state-of-the-art factories in one place. 10,000 new good-paying jobs.
Some of the most sophisticated manufacturing in the world to make computer chips the size of a fingertip that power the world and our everyday lives.
Smartphones. The Internet. Technology we have yet to invent.
But thats just the beginning.
Intels CEO, Pat Gelsinger, who is here tonight, told me they are ready to increase their investment from
$20 billion to $100 billion.
That would be one of the biggest investments in manufacturing in American history.
And all theyre waiting for is for you to pass this bill.
So lets not wait any longer. Send it to my desk. Ill sign it.
And we will really take off.
And Intel is not alone.
Theres something happening in America.
Just look around and youll see an amazing story.
The rebirth of the pride that comes from stamping products “Made In America.” The revitalization of American manufacturing.
Companies are choosing to build new factories here, when just a few years ago, they would have built them overseas.
Thats what is happening. Ford is investing $11 billion to build electric vehicles, creating 11,000 jobs across the country.
GM is making the largest investment in its history—$7 billion to build electric vehicles, creating 4,000 jobs in Michigan.
All told, we created 369,000 new manufacturing jobs in America just last year.
Powered by people Ive met like JoJo Burgess, from generations of union steelworkers from Pittsburgh, whos here with us tonight.
As Ohio Senator Sherrod Brown says, “Its time to bury the label “Rust Belt.”
Its time.
But with all the bright spots in our economy, record job growth and higher wages, too many families are struggling to keep up with the bills.
Inflation is robbing them of the gains they might otherwise feel.
I get it. Thats why my top priority is getting prices under control.
Look, our economy roared back faster than most predicted, but the pandemic meant that businesses had a hard time hiring enough workers to keep up production in their factories.
The pandemic also disrupted global supply chains.
When factories close, it takes longer to make goods and get them from the warehouse to the store, and prices go up.
Look at cars.
Last year, there werent enough semiconductors to make all the cars that people wanted to buy.
And guess what, prices of automobiles went up.
So—we have a choice.
One way to fight inflation is to drive down wages and make Americans poorer.
I have a better plan to fight inflation.
Lower your costs, not your wages.
Make more cars and semiconductors in America.
More infrastructure and innovation in America.
More goods moving faster and cheaper in America.
More jobs where you can earn a good living in America.
And instead of relying on foreign supply chains, lets make it in America.
Economists call it “increasing the productive capacity of our economy.”
I call it building a better America.
My plan to fight inflation will lower your costs and lower the deficit.
17 Nobel laureates in economics say my plan will ease long-term inflationary pressures. Top business leaders and most Americans support my plan. And heres the plan:
First cut the cost of prescription drugs. Just look at insulin. One in ten Americans has diabetes. In Virginia, I met a 13-year-old boy named Joshua Davis.
He and his Dad both have Type 1 diabetes, which means they need insulin every day. Insulin costs about $10 a vial to make.
But drug companies charge families like Joshua and his Dad up to 30 times more. I spoke with Joshuas mom.
Imagine what its like to look at your child who needs insulin and have no idea how youre going to pay for it.
What it does to your dignity, your ability to look your child in the eye, to be the parent you expect to be.
Joshua is here with us tonight. Yesterday was his birthday. Happy birthday, buddy.
For Joshua, and for the 200,000 other young people with Type 1 diabetes, lets cap the cost of insulin at $35 a month so everyone can afford it.
Drug companies will still do very well. And while were at it let Medicare negotiate lower prices for prescription drugs, like the VA already does.
Look, the American Rescue Plan is helping millions of families on Affordable Care Act plans save $2,400 a year on their health care premiums. Lets close the coverage gap and make those savings permanent.
Second cut energy costs for families an average of $500 a year by combatting climate change.
Lets provide investments and tax credits to weatherize your homes and businesses to be energy efficient and you get a tax credit; double Americas clean energy production in solar, wind, and so much more; lower the price of electric vehicles, saving you another $80 a month because youll never have to pay at the gas pump again.
Third cut the cost of child care. Many families pay up to $14,000 a year for child care per child.
Middle-class and working families shouldnt have to pay more than 7% of their income for care of young children.
My plan will cut the cost in half for most families and help parents, including millions of women, who left the workforce during the pandemic because they couldnt afford child care, to be able to get back to work.
My plan doesnt stop there. It also includes home and long-term care. More affordable housing. And Pre-K for every 3- and 4-year-old.
All of these will lower costs.
And under my plan, nobody earning less than $400,000 a year will pay an additional penny in new taxes. Nobody.
The one thing all Americans agree on is that the tax system is not fair. We have to fix it.
Im not looking to punish anyone. But lets make sure corporations and the wealthiest Americans start paying their fair share.
Just last year, 55 Fortune 500 corporations earned $40 billion in profits and paid zero dollars in federal income tax.
Thats simply not fair. Thats why Ive proposed a 15% minimum tax rate for corporations.
We got more than 130 countries to agree on a global minimum tax rate so companies cant get out of paying their taxes at home by shipping jobs and factories overseas.
Thats why Ive proposed closing loopholes so the very wealthy dont pay a lower tax rate than a teacher or a firefighter.
So thats my plan. It will grow the economy and lower costs for families.
So what are we waiting for? Lets get this done. And while youre at it, confirm my nominees to the Federal Reserve, which plays a critical role in fighting inflation.
My plan will not only lower costs to give families a fair shot, it will lower the deficit.
The previous Administration not only ballooned the deficit with tax cuts for the very wealthy and corporations, it undermined the watchdogs whose job was to keep pandemic relief funds from being wasted.
But in my administration, the watchdogs have been welcomed back.
Were going after the criminals who stole billions in relief money meant for small businesses and millions of Americans.
And tonight, Im announcing that the Justice Department will name a chief prosecutor for pandemic fraud.
By the end of this year, the deficit will be down to less than half what it was before I took office.
The only president ever to cut the deficit by more than one trillion dollars in a single year.
Lowering your costs also means demanding more competition.
Im a capitalist, but capitalism without competition isnt capitalism.
Its exploitation—and it drives up prices.
When corporations dont have to compete, their profits go up, your prices go up, and small businesses and family farmers and ranchers go under.
We see it happening with ocean carriers moving goods in and out of America.
During the pandemic, these foreign-owned companies raised prices by as much as 1,000% and made record profits.
Tonight, Im announcing a crackdown on these companies overcharging American businesses and consumers.
And as Wall Street firms take over more nursing homes, quality in those homes has gone down and costs have gone up.
That ends on my watch.
Medicare is going to set higher standards for nursing homes and make sure your loved ones get the care they deserve and expect.
Well also cut costs and keep the economy going strong by giving workers a fair shot, provide more training and apprenticeships, hire them based on their skills not degrees.
Lets pass the Paycheck Fairness Act and paid leave.
Raise the minimum wage to $15 an hour and extend the Child Tax Credit, so no one has to raise a family in poverty.
Lets increase Pell Grants and increase our historic support of HBCUs, and invest in what Jill—our First Lady who teaches full-time—calls Americas best-kept secret: community colleges.
And lets pass the PRO Act when a majority of workers want to form a union—they shouldnt be stopped.
When we invest in our workers, when we build the economy from the bottom up and the middle out together, we can do something we havent done in a long time: build a better America.
For more than two years, COVID-19 has impacted every decision in our lives and the life of the nation.
And I know youre tired, frustrated, and exhausted.
But I also know this.
Because of the progress weve made, because of your resilience and the tools we have, tonight I can say
we are moving forward safely, back to more normal routines.
Weve reached a new moment in the fight against COVID-19, with severe cases down to a level not seen since last July.
Just a few days ago, the Centers for Disease Control and Prevention—the CDC—issued new mask guidelines.
Under these new guidelines, most Americans in most of the country can now be mask free.
And based on the projections, more of the country will reach that point across the next couple of weeks.
Thanks to the progress we have made this past year, COVID-19 need no longer control our lives.
I know some are talking about “living with COVID-19”. Tonight I say that we will never just accept living with COVID-19.
We will continue to combat the virus as we do other diseases. And because this is a virus that mutates and spreads, we will stay on guard.
Here are four common sense steps as we move forward safely.
First, stay protected with vaccines and treatments. We know how incredibly effective vaccines are. If youre vaccinated and boosted you have the highest degree of protection.
We will never give up on vaccinating more Americans. Now, I know parents with kids under 5 are eager to see a vaccine authorized for their children.
The scientists are working hard to get that done and well be ready with plenty of vaccines when they do.
Were also ready with anti-viral treatments. If you get COVID-19, the Pfizer pill reduces your chances of ending up in the hospital by 90%.
Weve ordered more of these pills than anyone in the world. And Pfizer is working overtime to get us 1 Million pills this month and more than double that next month.
And were launching the “Test to Treat” initiative so people can get tested at a pharmacy, and if theyre positive, receive antiviral pills on the spot at no cost.
If youre immunocompromised or have some other vulnerability, we have treatments and free high-quality masks.
Were leaving no one behind or ignoring anyones needs as we move forward.
And on testing, we have made hundreds of millions of tests available for you to order for free.
Even if you already ordered free tests tonight, I am announcing that you can order more from covidtests.gov starting next week.
Second we must prepare for new variants. Over the past year, weve gotten much better at detecting new variants.
If necessary, well be able to deploy new vaccines within 100 days instead of many more months or years.
And, if Congress provides the funds we need, well have new stockpiles of tests, masks, and pills ready if needed.
I cannot promise a new variant wont come. But I can promise you well do everything within our power to be ready if it does.
Third we can end the shutdown of schools and businesses. We have the tools we need.
Its time for Americans to get back to work and fill our great downtowns again. People working from home can feel safe to begin to return to the office.
Were doing that here in the federal government. The vast majority of federal workers will once again work in person.
Our schools are open. Lets keep it that way. Our kids need to be in school.
And with 75% of adult Americans fully vaccinated and hospitalizations down by 77%, most Americans can remove their masks, return to work, stay in the classroom, and move forward safely.
We achieved this because we provided free vaccines, treatments, tests, and masks.
Of course, continuing this costs money.
I will soon send Congress a request.
The vast majority of Americans have used these tools and may want to again, so I expect Congress to pass it quickly.
Fourth, we will continue vaccinating the world.
Weve sent 475 Million vaccine doses to 112 countries, more than any other nation.
And we wont stop.
We have lost so much to COVID-19. Time with one another. And worst of all, so much loss of life.
Lets use this moment to reset. Lets stop looking at COVID-19 as a partisan dividing line and see it for what it is: A God-awful disease.
Lets stop seeing each other as enemies, and start seeing each other for who we really are: Fellow Americans.
We cant change how divided weve been. But we can change how we move forward—on COVID-19 and other issues we must face together.
I recently visited the New York City Police Department days after the funerals of Officer Wilbert Mora and his partner, Officer Jason Rivera.
They were responding to a 9-1-1 call when a man shot and killed them with a stolen gun.
Officer Mora was 27 years old.
Officer Rivera was 22.
Both Dominican Americans whod grown up on the same streets they later chose to patrol as police officers.
I spoke with their families and told them that we are forever in debt for their sacrifice, and we will carry on their mission to restore the trust and safety every community deserves.
Ive worked on these issues a long time.
I know what works: Investing in crime prevention and community police officers wholl walk the beat, wholl know the neighborhood, and who can restore trust and safety.
So lets not abandon our streets. Or choose between safety and equal justice.
Lets come together to protect our communities, restore trust, and hold law enforcement accountable.
Thats why the Justice Department required body cameras, banned chokeholds, and restricted no-knock warrants for its officers.
Thats why the American Rescue Plan provided $350 Billion that cities, states, and counties can use to hire more police and invest in proven strategies like community violence interruption—trusted messengers breaking the cycle of violence and trauma and giving young people hope.
We should all agree: The answer is not to Defund the police. The answer is to FUND the police with the resources and training they need to protect our communities.
I ask Democrats and Republicans alike: Pass my budget and keep our neighborhoods safe.
And I will keep doing everything in my power to crack down on gun trafficking and ghost guns you can buy online and make at home—they have no serial numbers and cant be traced.
And I ask Congress to pass proven measures to reduce gun violence. Pass universal background checks. Why should anyone on a terrorist list be able to purchase a weapon?
Ban assault weapons and high-capacity magazines.
Repeal the liability shield that makes gun manufacturers the only industry in America that cant be sued.
These laws dont infringe on the Second Amendment. They save lives.
The most fundamental right in America is the right to vote and to have it counted. And its under assault.
In state after state, new laws have been passed, not only to suppress the vote, but to subvert entire elections.
We cannot let this happen.
Tonight. I call on the Senate to: Pass the Freedom to Vote Act. Pass the John Lewis Voting Rights Act. And while youre at it, pass the Disclose Act so Americans can know who is funding our elections.
Tonight, Id like to honor someone who has dedicated his life to serve this country: Justice Stephen Breyer—an Army veteran, Constitutional scholar, and retiring Justice of the United States Supreme Court. Justice Breyer, thank you for your service.
One of the most serious constitutional responsibilities a President has is nominating someone to serve on the United States Supreme Court.
And I did that 4 days ago, when I nominated Circuit Court of Appeals Judge Ketanji Brown Jackson. One of our nations top legal minds, who will continue Justice Breyers legacy of excellence.
A former top litigator in private practice. A former federal public defender. And from a family of public school educators and police officers. A consensus builder. Since shes been nominated, shes received a broad range of support—from the Fraternal Order of Police to former judges appointed by Democrats and Republicans.
And if we are to advance liberty and justice, we need to secure the Border and fix the immigration system.
We can do both. At our border, weve installed new technology like cutting-edge scanners to better detect drug smuggling.
Weve set up joint patrols with Mexico and Guatemala to catch more human traffickers.
Were putting in place dedicated immigration judges so families fleeing persecution and violence can have their cases heard faster.
Were securing commitments and supporting partners in South and Central America to host more refugees and secure their own borders.
We can do all this while keeping lit the torch of liberty that has led generations of immigrants to this land—my forefathers and so many of yours.
Provide a pathway to citizenship for Dreamers, those on temporary status, farm workers, and essential workers.
Revise our laws so businesses have the workers they need and families dont wait decades to reunite.
Its not only the right thing to do—its the economically smart thing to do.
Thats why immigration reform is supported by everyone from labor unions to religious leaders to the U.S. Chamber of Commerce.
Lets get it done once and for all.
Advancing liberty and justice also requires protecting the rights of women.
The constitutional right affirmed in Roe v. Wade—standing precedent for half a century—is under attack as never before.
If we want to go forward—not backward—we must protect access to health care. Preserve a womans right to choose. And lets continue to advance maternal health care in America.
And for our LGBTQ+ Americans, lets finally get the bipartisan Equality Act to my desk. The onslaught of state laws targeting transgender Americans and their families is wrong.
As I said last year, especially to our younger transgender Americans, I will always have your back as your President, so you can be yourself and reach your God-given potential.
While it often appears that we never agree, that isnt true. I signed 80 bipartisan bills into law last year. From preventing government shutdowns to protecting Asian-Americans from still-too-common hate crimes to reforming military justice.
And soon, well strengthen the Violence Against Women Act that I first wrote three decades ago. It is important for us to show the nation that we can come together and do big things.
So tonight Im offering a Unity Agenda for the Nation. Four big things we can do together.
First, beat the opioid epidemic.
There is so much we can do. Increase funding for prevention, treatment, harm reduction, and recovery.
Get rid of outdated rules that stop doctors from prescribing treatments. And stop the flow of illicit drugs by working with state and local law enforcement to go after traffickers.
If youre suffering from addiction, know you are not alone. I believe in recovery, and I celebrate the 23 million Americans in recovery.
Second, lets take on mental health. Especially among our children, whose lives and education have been turned upside down.
The American Rescue Plan gave schools money to hire teachers and help students make up for lost learning.
I urge every parent to make sure your school does just that. And we can all play a part—sign up to be a tutor or a mentor.
Children were also struggling before the pandemic. Bullying, violence, trauma, and the harms of social media.
As Frances Haugen, who is here with us tonight, has shown, we must hold social media platforms accountable for the national experiment theyre conducting on our children for profit.
Its time to strengthen privacy protections, ban targeted advertising to children, demand tech companies stop collecting personal data on our children.
And lets get all Americans the mental health services they need. More people they can turn to for help, and full parity between physical and mental health care.
Third, support our veterans.
Veterans are the best of us.
Ive always believed that we have a sacred obligation to equip all those we send to war and care for them and their families when they come home.
My administration is providing assistance with job training and housing, and now helping lower-income veterans get VA care debt-free.
Our troops in Iraq and Afghanistan faced many dangers.
One was stationed at bases and breathing in toxic smoke from “burn pits” that incinerated wastes of war—medical and hazard material, jet fuel, and more.
When they came home, many of the worlds fittest and best trained warriors were never the same.
Headaches. Numbness. Dizziness.
A cancer that would put them in a flag-draped coffin.
I know.
One of those soldiers was my son Major Beau Biden.
We dont know for sure if a burn pit was the cause of his brain cancer, or the diseases of so many of our troops.
But Im committed to finding out everything we can.
Committed to military families like Danielle Robinson from Ohio.
The widow of Sergeant First Class Heath Robinson.
He was born a soldier. Army National Guard. Combat medic in Kosovo and Iraq.
Stationed near Baghdad, just yards from burn pits the size of football fields.
Heaths widow Danielle is here with us tonight. They loved going to Ohio State football games. He loved building Legos with their daughter.
But cancer from prolonged exposure to burn pits ravaged Heaths lungs and body.
Danielle says Heath was a fighter to the very end.
He didnt know how to stop fighting, and neither did she.
Through her pain she found purpose to demand we do better.
Tonight, Danielle—we are.
The VA is pioneering new ways of linking toxic exposures to diseases, already helping more veterans get benefits.
And tonight, Im announcing were expanding eligibility to veterans suffering from nine respiratory cancers.
Im also calling on Congress: pass a law to make sure veterans devastated by toxic exposures in Iraq and Afghanistan finally get the benefits and comprehensive health care they deserve.
And fourth, lets end cancer as we know it.
This is personal to me and Jill, to Kamala, and to so many of you.
Cancer is the #2 cause of death in Americasecond only to heart disease.
Last month, I announced our plan to supercharge
the Cancer Moonshot that President Obama asked me to lead six years ago.
Our goal is to cut the cancer death rate by at least 50% over the next 25 years, turn more cancers from death sentences into treatable diseases.
More support for patients and families.
To get there, I call on Congress to fund ARPA-H, the Advanced Research Projects Agency for Health.
Its based on DARPA—the Defense Department project that led to the Internet, GPS, and so much more.
ARPA-H will have a singular purpose—to drive breakthroughs in cancer, Alzheimers, diabetes, and more.
A unity agenda for the nation.
We can do this.
My fellow Americans—tonight , we have gathered in a sacred space—the citadel of our democracy.
In this Capitol, generation after generation, Americans have debated great questions amid great strife, and have done great things.
We have fought for freedom, expanded liberty, defeated totalitarianism and terror.
And built the strongest, freest, and most prosperous nation the world has ever known.
Now is the hour.
Our moment of responsibility.
Our test of resolve and conscience, of history itself.
It is in this moment that our character is formed. Our purpose is found. Our future is forged.
Well I know this nation.
We will meet the test.
To protect freedom and liberty, to expand fairness and opportunity.
We will save democracy.
As hard as these times have been, I am more optimistic about America today than I have been my whole life.
Because I see the future that is within our grasp.
Because I know there is simply nothing beyond our capacity.
We are the only nation on Earth that has always turned every crisis we have faced into an opportunity.
The only nation that can be defined by a single word: possibilities.
So on this night, in our 245th year as a nation, I have come to report on the State of the Union.
And my report is this: the State of the Union is strong—because you, the American people, are strong.
We are stronger today than we were a year ago.
And we will be stronger a year from now than we are today.
Now is our moment to meet and overcome the challenges of our time.
And we will, as one people.
One America.
The United States of America.
May God bless you all. May God protect our troops.

View File

@@ -7,7 +7,9 @@
"source": [
"# Images\n",
"\n",
"This covers how to load images such as `JPG` or `PNG` into a document format that we can use downstream."
"This covers how to load images into a document format that we can use downstream with other LangChain modules.\n",
"\n",
"It uses [Unstructured](https://unstructured.io/) to handle a wide variety of image formats, such as `.jpg` and `.png`. Please see [this guide](/docs/integrations/providers/unstructured/) for more instructions on setting up Unstructured locally, including setting up required system dependencies."
]
},
{
@@ -27,63 +29,35 @@
},
"outputs": [],
"source": [
"%pip install --upgrade --quiet pdfminer"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "0cc0cd42",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"from langchain_community.document_loaders.image import UnstructuredImageLoader"
"%pip install --upgrade --quiet \"unstructured[all-docs]\""
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "082d557c",
"id": "0cc0cd42",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"loader = UnstructuredImageLoader(\"layout-parser-paper-fast.jpg\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "df11c953",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"data = loader.load()"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "4284d44c",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Document(page_content=\"LayoutParser: A Unified Toolkit for Deep\\nLearning Based Document Image Analysis\\n\\n\\nZxjiang Shen' (F3}, Ruochen Zhang, Melissa Dell*, Benjamin Charles Germain\\nLeet, Jacob Carlson, and Weining LiF\\n\\n\\nsugehen\\n\\nshangthrows, et\\n\\nAbstract. Recent advanocs in document image analysis (DIA) have been\\npimarliy driven bythe application of neural networks dell roar\\n{uteomer could be aly deployed in production and extended fo farther\\n[nvetigtion. However, various factory ke lcely organize codebanee\\nsnd sophisticated modal cnigurations compat the ey ree of\\nerin! innovation by wide sence, Though there have been sng\\nHors to improve reuablty and simplify deep lees (DL) mode\\naon, sone of them ae optimized for challenge inthe demain of DIA,\\nThis roprscte a major gap in the extng fol, sw DIA i eal to\\nscademic research acon wie range of dpi in the social ssencee\\n[rary for streamlining the sage of DL in DIA research and appicn\\ntons The core LayoutFaraer brary comes with a sch of simple and\\nIntative interfaee or applying and eutomiing DI. odel fr Inyo de\\npltfom for sharing both protrined modes an fal document dist\\n{ation pipeline We demonutate that LayootPareer shea fr both\\nlightweight and lrgeseledgtieation pipelines in eal-word uae ces\\nThe leary pblely smal at Btspe://layost-pareergsthab So\\n\\n\\n\\nKeywords: Document Image Analysis» Deep Learning Layout Analysis\\nCharacter Renguition - Open Serres dary « Tol\\n\\n\\nIntroduction\\n\\n\\nDeep Learning(DL)-based approaches are the state-of-the-art for a wide range of\\ndoctiment image analysis (DIA) tea including document image clasiffeation [I]\\n\", lookup_str='', metadata={'source': 'layout-parser-paper-fast.jpg'}, lookup_index=0)"
"Document(page_content='2021\\n\\n2103.15348v2 [cs.CV] 21 Jun\\n\\narXiv\\n\\nLayoutParser: A Unified Toolkit for Deep Learning Based Document Image Analysis\\n\\nZejiang Shen! (&4), Ruochen Zhang?, Melissa Dell?, Benjamin Charles Germain Lee*, Jacob Carlson?, and Weining Li?\\n\\n1\\n\\nAllen Institute for AI shannons@allenai.org ? Brown University ruochen_zhang@brown. edu 3 Harvard University {melissadell, jacob_carlson}@fas.harvard.edu 4 University of Washington begl@cs.washington.edu 5 University of Waterloo w4221i@uwaterloo.ca\\n\\nAbstract. Recent advances in document image analysis (DIA) have been primarily driven by the application of neural networks. Ideally, research outcomes could be easily deployed in production and extended for further investigation. However, various factors like loosely organized codebases and sophisticated model configurations complicate the easy reuse of im- portant innovations by a wide audience. Though there have been on-going efforts to improve reusability and simplify deep learning (DL) model development in disciplines like natural language processing and computer vision, none of them are optimized for challenges in the domain of DIA. This represents a major gap in the existing toolkit, as DIA is central to academic research across a wide range of disciplines in the social sciences and humanities. This paper introduces LayoutParser, an open-source library for streamlining the usage of DL in DIA research and applica- tions. The core LayoutParser library comes with a set of simple and intuitive interfaces for applying and customizing DL models for layout de- tection, character recognition, and many other document processing tasks. To promote extensibility, LayoutParser also incorporates a community platform for sharing both pre-trained models and full document digiti- zation pipelines. We demonstrate that LayoutParser is helpful for both lightweight and large-scale digitization pipelines in real-word use cases. The library is publicly available at https: //layout-parser.github. io.\\n\\nKeywords: Document Image Analysis - Deep Learning - Layout Analysis - Character Recognition - Open Source library - Toolkit.\\n\\n1 Introduction\\n\\nDeep Learning(DL)-based approaches are the state-of-the-art for a wide range of document image analysis (DIA) tasks including document image classification [11,', metadata={'source': './example_data/layout-parser-paper-screenshot.png'})"
]
},
"execution_count": 4,
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from langchain_community.document_loaders.image import UnstructuredImageLoader\n",
"\n",
"loader = UnstructuredImageLoader(\"./example_data/layout-parser-paper-screenshot.png\")\n",
"\n",
"data = loader.load()\n",
"\n",
"data[0]"
]
},
@@ -94,47 +68,33 @@
"source": [
"### Retain Elements\n",
"\n",
"Under the hood, Unstructured creates different \"elements\" for different chunks of text. By default we combine those together, but you can easily keep that separation by specifying `mode=\"elements\"`."
"Under the hood, Unstructured creates different \"elements\" for different chunks of text. By default we combine those together, but you can keep that separation by specifying `mode=\"elements\"`."
]
},
{
"cell_type": "code",
"execution_count": 5,
"execution_count": 3,
"id": "0fab833b",
"metadata": {},
"outputs": [],
"source": [
"loader = UnstructuredImageLoader(\"layout-parser-paper-fast.jpg\", mode=\"elements\")"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "c3e8ff1b",
"metadata": {},
"outputs": [],
"source": [
"data = loader.load()"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "43c23d2d",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Document(page_content='LayoutParser: A Unified Toolkit for Deep\\nLearning Based Document Image Analysis\\n', lookup_str='', metadata={'source': 'layout-parser-paper-fast.jpg', 'filename': 'layout-parser-paper-fast.jpg', 'page_number': 1, 'category': 'Title'}, lookup_index=0)"
"Document(page_content='2021', metadata={'source': './example_data/layout-parser-paper-screenshot.png', 'coordinates': {'points': ((47.0, 492.0), (47.0, 591.0), (83.0, 591.0), (83.0, 492.0)), 'system': 'PixelSpace', 'layout_width': 1624, 'layout_height': 1920}, 'last_modified': '2024-07-01T10:38:29', 'filetype': 'PNG', 'languages': ['eng'], 'page_number': 1, 'file_directory': './example_data', 'filename': 'layout-parser-paper-screenshot.png', 'category': 'UncategorizedText'})"
]
},
"execution_count": 7,
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"loader = UnstructuredImageLoader(\n",
" \"./example_data/layout-parser-paper-screenshot.png\", mode=\"elements\"\n",
")\n",
"\n",
"data = loader.load()\n",
"\n",
"data[0]"
]
}
@@ -155,7 +115,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.6"
"version": "3.10.5"
}
},
"nbformat": 4,

View File

@@ -7,17 +7,19 @@
"source": [
"# Microsoft Excel\n",
"\n",
"The `UnstructuredExcelLoader` is used to load `Microsoft Excel` files. The loader works with both `.xlsx` and `.xls` files. The page content will be the raw text of the Excel file. If you use the loader in `\"elements\"` mode, an HTML representation of the Excel file will be available in the document metadata under the `text_as_html` key."
"The `UnstructuredExcelLoader` is used to load `Microsoft Excel` files. The loader works with both `.xlsx` and `.xls` files. The page content will be the raw text of the Excel file. If you use the loader in `\"elements\"` mode, an HTML representation of the Excel file will be available in the document metadata under the `text_as_html` key.\n",
"\n",
"Please see [this guide](/docs/integrations/providers/unstructured/) for more instructions on setting up Unstructured locally, including setting up required system dependencies."
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "e6616e3a",
"execution_count": null,
"id": "0b01ee46",
"metadata": {},
"outputs": [],
"source": [
"from langchain_community.document_loaders import UnstructuredExcelLoader"
"%pip install --upgrade --quiet langchain-community unstructured openpyxl"
]
},
{
@@ -26,10 +28,20 @@
"id": "a654e4d9",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"4\n"
]
},
{
"data": {
"text/plain": [
"Document(page_content='\\n \\n \\n Team\\n Location\\n Stanley Cups\\n \\n \\n Blues\\n STL\\n 1\\n \\n \\n Flyers\\n PHI\\n 2\\n \\n \\n Maple Leafs\\n TOR\\n 13\\n \\n \\n', metadata={'source': 'example_data/stanley-cups.xlsx', 'filename': 'stanley-cups.xlsx', 'file_directory': 'example_data', 'filetype': 'application/vnd.openxmlformats-officedocument.spreadsheetml.sheet', 'page_number': 1, 'page_name': 'Stanley Cups', 'text_as_html': '<table border=\"1\" class=\"dataframe\">\\n <tbody>\\n <tr>\\n <td>Team</td>\\n <td>Location</td>\\n <td>Stanley Cups</td>\\n </tr>\\n <tr>\\n <td>Blues</td>\\n <td>STL</td>\\n <td>1</td>\\n </tr>\\n <tr>\\n <td>Flyers</td>\\n <td>PHI</td>\\n <td>2</td>\\n </tr>\\n <tr>\\n <td>Maple Leafs</td>\\n <td>TOR</td>\\n <td>13</td>\\n </tr>\\n </tbody>\\n</table>', 'category': 'Table'})"
"[Document(page_content='Stanley Cups', metadata={'source': './example_data/stanley-cups.xlsx', 'file_directory': './example_data', 'filename': 'stanley-cups.xlsx', 'last_modified': '2023-12-19T13:42:18', 'page_name': 'Stanley Cups', 'page_number': 1, 'languages': ['eng'], 'filetype': 'application/vnd.openxmlformats-officedocument.spreadsheetml.sheet', 'category': 'Title'}),\n",
" Document(page_content='\\n\\n\\nTeam\\nLocation\\nStanley Cups\\n\\n\\nBlues\\nSTL\\n1\\n\\n\\nFlyers\\nPHI\\n2\\n\\n\\nMaple Leafs\\nTOR\\n13\\n\\n\\n', metadata={'source': './example_data/stanley-cups.xlsx', 'file_directory': './example_data', 'filename': 'stanley-cups.xlsx', 'last_modified': '2023-12-19T13:42:18', 'page_name': 'Stanley Cups', 'page_number': 1, 'text_as_html': '<table border=\"1\" class=\"dataframe\">\\n <tbody>\\n <tr>\\n <td>Team</td>\\n <td>Location</td>\\n <td>Stanley Cups</td>\\n </tr>\\n <tr>\\n <td>Blues</td>\\n <td>STL</td>\\n <td>1</td>\\n </tr>\\n <tr>\\n <td>Flyers</td>\\n <td>PHI</td>\\n <td>2</td>\\n </tr>\\n <tr>\\n <td>Maple Leafs</td>\\n <td>TOR</td>\\n <td>13</td>\\n </tr>\\n </tbody>\\n</table>', 'languages': ['eng'], 'parent_id': '17e9a90f9616f2abed8cf32b5bd3810d', 'filetype': 'application/vnd.openxmlformats-officedocument.spreadsheetml.sheet', 'category': 'Table'}),\n",
" Document(page_content='Stanley Cups Since 67', metadata={'source': './example_data/stanley-cups.xlsx', 'file_directory': './example_data', 'filename': 'stanley-cups.xlsx', 'last_modified': '2023-12-19T13:42:18', 'page_name': 'Stanley Cups Since 67', 'page_number': 2, 'languages': ['eng'], 'filetype': 'application/vnd.openxmlformats-officedocument.spreadsheetml.sheet', 'category': 'Title'}),\n",
" Document(page_content='\\n\\n\\nTeam\\nLocation\\nStanley Cups\\n\\n\\nBlues\\nSTL\\n1\\n\\n\\nFlyers\\nPHI\\n2\\n\\n\\nMaple Leafs\\nTOR\\n0\\n\\n\\n', metadata={'source': './example_data/stanley-cups.xlsx', 'file_directory': './example_data', 'filename': 'stanley-cups.xlsx', 'last_modified': '2023-12-19T13:42:18', 'page_name': 'Stanley Cups Since 67', 'page_number': 2, 'text_as_html': '<table border=\"1\" class=\"dataframe\">\\n <tbody>\\n <tr>\\n <td>Team</td>\\n <td>Location</td>\\n <td>Stanley Cups</td>\\n </tr>\\n <tr>\\n <td>Blues</td>\\n <td>STL</td>\\n <td>1</td>\\n </tr>\\n <tr>\\n <td>Flyers</td>\\n <td>PHI</td>\\n <td>2</td>\\n </tr>\\n <tr>\\n <td>Maple Leafs</td>\\n <td>TOR</td>\\n <td>0</td>\\n </tr>\\n </tbody>\\n</table>', 'languages': ['eng'], 'parent_id': 'ee34bd8c186b57e3530d5443ffa58122', 'filetype': 'application/vnd.openxmlformats-officedocument.spreadsheetml.sheet', 'category': 'Table'})]"
]
},
"execution_count": 2,
@@ -38,9 +50,14 @@
}
],
"source": [
"loader = UnstructuredExcelLoader(\"example_data/stanley-cups.xlsx\", mode=\"elements\")\n",
"from langchain_community.document_loaders import UnstructuredExcelLoader\n",
"\n",
"loader = UnstructuredExcelLoader(\"./example_data/stanley-cups.xlsx\", mode=\"elements\")\n",
"docs = loader.load()\n",
"docs[0]"
"\n",
"print(len(docs))\n",
"\n",
"docs"
]
},
{
@@ -76,7 +93,7 @@
"metadata": {},
"outputs": [],
"source": [
"%pip install --upgrade --quiet langchain langchain-community azure-ai-documentintelligence"
"%pip install --upgrade --quiet langchain langchain-community azure-ai-documentintelligence"
]
},
{
@@ -115,7 +132,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.13"
"version": "3.10.5"
}
},
"nbformat": 4,

View File

@@ -9,7 +9,9 @@
"\n",
">[Microsoft PowerPoint](https://en.wikipedia.org/wiki/Microsoft_PowerPoint) is a presentation program by Microsoft.\n",
"\n",
"This covers how to load `Microsoft PowerPoint` documents into a document format that we can use downstream."
"This covers how to load `Microsoft PowerPoint` documents into a document format that we can use downstream.\n",
"\n",
"Please see [this guide](/docs/integrations/providers/unstructured/) for more instructions on setting up Unstructured locally, including setting up required system dependencies."
]
},
{
@@ -25,46 +27,10 @@
"%pip install python-pptx"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "721c48aa",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"from langchain_community.document_loaders import UnstructuredPowerPointLoader"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "9d3d0e35",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"loader = UnstructuredPowerPointLoader(\"example_data/fake-power-point.pptx\")"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "06073f91",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"data = loader.load()"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "c9adc5cb",
"id": "721c48aa",
"metadata": {
"tags": []
},
@@ -72,15 +38,21 @@
{
"data": {
"text/plain": [
"[Document(page_content='Adding a Bullet Slide\\n\\nFind the bullet slide layout\\n\\nUse _TextFrame.text for first bullet\\n\\nUse _TextFrame.add_paragraph() for subsequent bullets\\n\\nHere is a lot of text!\\n\\nHere is some text in a text box!', metadata={'source': 'example_data/fake-power-point.pptx'})]"
"[Document(page_content='Adding a Bullet Slide\\n\\nFind the bullet slide layout\\n\\nUse _TextFrame.text for first bullet\\n\\nUse _TextFrame.add_paragraph() for subsequent bullets\\n\\nHere is a lot of text!\\n\\nHere is some text in a text box!', metadata={'source': './example_data/fake-power-point.pptx'})]"
]
},
"execution_count": 4,
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from langchain_community.document_loaders import UnstructuredPowerPointLoader\n",
"\n",
"loader = UnstructuredPowerPointLoader(\"./example_data/fake-power-point.pptx\")\n",
"\n",
"data = loader.load()\n",
"\n",
"data"
]
},
@@ -94,38 +66,16 @@
"Under the hood, `Unstructured` creates different \"elements\" for different chunks of text. By default we combine those together, but you can easily keep that separation by specifying `mode=\"elements\"`."
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "064f9162",
"metadata": {},
"outputs": [],
"source": [
"loader = UnstructuredPowerPointLoader(\n",
" \"example_data/fake-power-point.pptx\", mode=\"elements\"\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "abefbbdb",
"metadata": {},
"outputs": [],
"source": [
"data = loader.load()"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "a547c534",
"id": "064f9162",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Document(page_content='Adding a Bullet Slide', lookup_str='', metadata={'source': 'example_data/fake-power-point.pptx'}, lookup_index=0)"
"Document(page_content='Adding a Bullet Slide', metadata={'source': './example_data/fake-power-point.pptx', 'category_depth': 0, 'file_directory': './example_data', 'filename': 'fake-power-point.pptx', 'last_modified': '2023-12-19T13:42:18', 'page_number': 1, 'languages': ['eng'], 'filetype': 'application/vnd.openxmlformats-officedocument.presentationml.presentation', 'category': 'Title'})"
]
},
"execution_count": 4,
@@ -134,6 +84,12 @@
}
],
"source": [
"loader = UnstructuredPowerPointLoader(\n",
" \"./example_data/fake-power-point.pptx\", mode=\"elements\"\n",
")\n",
"\n",
"data = loader.load()\n",
"\n",
"data[0]"
]
},
@@ -209,7 +165,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.6"
"version": "3.10.5"
}
},
"nbformat": 4,

View File

@@ -24,7 +24,7 @@
},
{
"cell_type": "code",
"execution_count": 2,
"execution_count": null,
"id": "7b80ea891",
"metadata": {},
"outputs": [],
@@ -34,52 +34,28 @@
},
{
"cell_type": "code",
"execution_count": 3,
"execution_count": 2,
"id": "7b80ea89",
"metadata": {},
"outputs": [],
"source": [
"from langchain_community.document_loaders import Docx2txtLoader"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "99a12031",
"metadata": {},
"outputs": [],
"source": [
"loader = Docx2txtLoader(\"example_data/fake.docx\")"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "b92f68b0",
"metadata": {},
"outputs": [],
"source": [
"data = loader.load()"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "d83dd755",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[Document(page_content='Lorem ipsum dolor sit amet.', metadata={'source': 'example_data/fake.docx'})]"
"[Document(page_content='Lorem ipsum dolor sit amet.', metadata={'source': './example_data/fake.docx'})]"
]
},
"execution_count": 7,
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from langchain_community.document_loaders import Docx2txtLoader\n",
"\n",
"loader = Docx2txtLoader(\"./example_data/fake.docx\")\n",
"\n",
"data = loader.load()\n",
"\n",
"data"
]
},
@@ -88,57 +64,35 @@
"id": "8d40727d",
"metadata": {},
"source": [
"## Using Unstructured"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "721c48aa",
"metadata": {},
"outputs": [],
"source": [
"from langchain_community.document_loaders import UnstructuredWordDocumentLoader"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "9d3d0e35",
"metadata": {},
"outputs": [],
"source": [
"loader = UnstructuredWordDocumentLoader(\"example_data/fake.docx\")"
"## Using Unstructured\n",
"\n",
"Please see [this guide](/docs/integrations/providers/unstructured/) for more instructions on setting up Unstructured locally, including setting up required system dependencies."
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "06073f91",
"metadata": {},
"outputs": [],
"source": [
"data = loader.load()"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "c9adc5cb",
"id": "721c48aa",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[Document(page_content='Lorem ipsum dolor sit amet.', lookup_str='', metadata={'source': 'fake.docx'}, lookup_index=0)]"
"[Document(page_content='Lorem ipsum dolor sit amet.', metadata={'source': 'example_data/fake.docx'})]"
]
},
"execution_count": 4,
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from langchain_community.document_loaders import UnstructuredWordDocumentLoader\n",
"\n",
"loader = UnstructuredWordDocumentLoader(\"example_data/fake.docx\")\n",
"\n",
"data = loader.load()\n",
"\n",
"data"
]
},
@@ -157,39 +111,23 @@
"execution_count": 5,
"id": "064f9162",
"metadata": {},
"outputs": [],
"source": [
"loader = UnstructuredWordDocumentLoader(\"example_data/fake.docx\", mode=\"elements\")"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "abefbbdb",
"metadata": {},
"outputs": [],
"source": [
"data = loader.load()"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "a547c534",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Document(page_content='Lorem ipsum dolor sit amet.', lookup_str='', metadata={'source': 'fake.docx', 'filename': 'fake.docx', 'category': 'Title'}, lookup_index=0)"
"Document(page_content='Lorem ipsum dolor sit amet.', metadata={'source': './example_data/fake.docx', 'category_depth': 0, 'file_directory': './example_data', 'filename': 'fake.docx', 'last_modified': '2023-12-19T13:42:18', 'languages': ['por', 'cat'], 'filetype': 'application/vnd.openxmlformats-officedocument.wordprocessingml.document', 'category': 'Title'})"
]
},
"execution_count": 7,
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"loader = UnstructuredWordDocumentLoader(\"./example_data/fake.docx\", mode=\"elements\")\n",
"\n",
"data = loader.load()\n",
"\n",
"data[0]"
]
},
@@ -263,7 +201,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.6"
"version": "3.10.5"
}
},
"nbformat": 4,

View File

@@ -19,29 +19,21 @@
"execution_count": 1,
"id": "e6616e3a",
"metadata": {},
"outputs": [],
"source": [
"from langchain_community.document_loaders import UnstructuredODTLoader"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "a654e4d9",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Document(page_content='Lorem ipsum dolor sit amet.', metadata={'source': 'example_data/fake.odt', 'filename': 'example_data/fake.odt', 'category': 'Title'})"
"Document(page_content='Lorem ipsum dolor sit amet.', metadata={'source': 'example_data/fake.odt', 'category_depth': 0, 'file_directory': 'example_data', 'filename': 'fake.odt', 'last_modified': '2023-12-19T13:42:18', 'languages': ['por', 'cat'], 'filetype': 'application/vnd.oasis.opendocument.text', 'category': 'Title'})"
]
},
"execution_count": 2,
"execution_count": 1,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from langchain_community.document_loaders import UnstructuredODTLoader\n",
"\n",
"loader = UnstructuredODTLoader(\"example_data/fake.odt\", mode=\"elements\")\n",
"docs = loader.load()\n",
"docs[0]"
@@ -72,7 +64,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.6"
"version": "3.10.5"
}
},
"nbformat": 4,

View File

@@ -22,35 +22,23 @@
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"from langchain_community.document_loaders import UnstructuredOrgModeLoader"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"loader = UnstructuredOrgModeLoader(file_path=\"example_data/README.org\", mode=\"elements\")\n",
"docs = loader.load()"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"page_content='Example Docs' metadata={'source': 'example_data/README.org', 'filename': 'README.org', 'file_directory': 'example_data', 'filetype': 'text/org', 'page_number': 1, 'category': 'Title'}\n"
"page_content='Example Docs' metadata={'source': './example_data/README.org', 'category_depth': 0, 'last_modified': '2023-12-19T13:42:18', 'languages': ['eng'], 'filetype': 'text/org', 'file_directory': './example_data', 'filename': 'README.org', 'category': 'Title'}\n"
]
}
],
"source": [
"from langchain_community.document_loaders import UnstructuredOrgModeLoader\n",
"\n",
"loader = UnstructuredOrgModeLoader(\n",
" file_path=\"./example_data/README.org\", mode=\"elements\"\n",
")\n",
"docs = loader.load()\n",
"\n",
"print(docs[0])"
]
},
@@ -78,7 +66,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.13"
"version": "3.10.5"
}
},
"nbformat": 4,

View File

@@ -22,35 +22,21 @@
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"from langchain_community.document_loaders import UnstructuredRSTLoader"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"loader = UnstructuredRSTLoader(file_path=\"example_data/README.rst\", mode=\"elements\")\n",
"docs = loader.load()"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"page_content='Example Docs' metadata={'source': 'example_data/README.rst', 'filename': 'README.rst', 'file_directory': 'example_data', 'filetype': 'text/x-rst', 'page_number': 1, 'category': 'Title'}\n"
"page_content='Example Docs' metadata={'source': './example_data/README.rst', 'category_depth': 0, 'last_modified': '2023-12-19T13:42:18', 'languages': ['eng'], 'filetype': 'text/x-rst', 'file_directory': './example_data', 'filename': 'README.rst', 'category': 'Title'}\n"
]
}
],
"source": [
"from langchain_community.document_loaders import UnstructuredRSTLoader\n",
"\n",
"loader = UnstructuredRSTLoader(file_path=\"./example_data/README.rst\", mode=\"elements\")\n",
"docs = loader.load()\n",
"\n",
"print(docs[0])"
]
},
@@ -78,7 +64,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.3"
"version": "3.10.5"
}
},
"nbformat": 4,

View File

@@ -22,27 +22,6 @@
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"from langchain_community.document_loaders.tsv import UnstructuredTSVLoader"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"loader = UnstructuredTSVLoader(\n",
" file_path=\"example_data/mlb_teams_2012.csv\", mode=\"elements\"\n",
")\n",
"docs = loader.load()"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"name": "stdout",
@@ -51,6 +30,9 @@
"<table border=\"1\" class=\"dataframe\">\n",
" <tbody>\n",
" <tr>\n",
" <td>Team, \"Payroll (millions)\", \"Wins\"</td>\n",
" </tr>\n",
" <tr>\n",
" <td>Nationals, 81.34, 98</td>\n",
" </tr>\n",
" <tr>\n",
@@ -146,6 +128,13 @@
}
],
"source": [
"from langchain_community.document_loaders.tsv import UnstructuredTSVLoader\n",
"\n",
"loader = UnstructuredTSVLoader(\n",
" file_path=\"./example_data/mlb_teams_2012.csv\", mode=\"elements\"\n",
")\n",
"docs = loader.load()\n",
"\n",
"print(docs[0].metadata[\"text_as_html\"])"
]
},
@@ -173,7 +162,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.13"
"version": "3.10.5"
}
},
"nbformat": 4,

View File

@@ -7,18 +7,31 @@
"source": [
"# Unstructured File\n",
"\n",
"This notebook covers how to use `Unstructured` package to load files of many types. `Unstructured` currently supports loading of text files, powerpoints, html, pdfs, images, and more."
"This notebook covers how to use `Unstructured` package to load files of many types. `Unstructured` currently supports loading of text files, powerpoints, html, pdfs, images, and more.\n",
"\n",
"Please see [this guide](/docs/integrations/providers/unstructured/) for more instructions on setting up Unstructured locally, including setting up required system dependencies."
]
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 1,
"id": "2886982e",
"metadata": {},
"outputs": [],
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m A new release of pip is available: \u001b[0m\u001b[31;49m24.0\u001b[0m\u001b[39;49m -> \u001b[0m\u001b[32;49m24.1.1\u001b[0m\n",
"\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m To update, run: \u001b[0m\u001b[32;49mpip install --upgrade pip\u001b[0m\n",
"Note: you may need to restart the kernel to use updated packages.\n"
]
}
],
"source": [
"# # Install package\n",
"%pip install --upgrade --quiet \"unstructured[all-docs]\""
"%pip install --upgrade --quiet \"unstructured[all-docs]\""
]
},
{
@@ -51,39 +64,9 @@
},
{
"cell_type": "code",
"execution_count": 2,
"execution_count": 3,
"id": "79d3e549",
"metadata": {},
"outputs": [],
"source": [
"from langchain_community.document_loaders import UnstructuredFileLoader"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "2593d1dc",
"metadata": {},
"outputs": [],
"source": [
"loader = UnstructuredFileLoader(\"./example_data/state_of_the_union.txt\")"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "fe34e941",
"metadata": {},
"outputs": [],
"source": [
"docs = loader.load()"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "ee449788",
"metadata": {},
"outputs": [
{
"data": {
@@ -91,12 +74,18 @@
"'Madam Speaker, Madam Vice President, our First Lady and Second Gentleman. Members of Congress and the Cabinet. Justices of the Supreme Court. My fellow Americans.\\n\\nLast year COVID-19 kept us apart. This year we are finally together again.\\n\\nTonight, we meet as Democrats Republicans and Independents. But most importantly as Americans.\\n\\nWith a duty to one another to the American people to the Constit'"
]
},
"execution_count": 7,
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from langchain_community.document_loaders import UnstructuredFileLoader\n",
"\n",
"loader = UnstructuredFileLoader(\"./example_data/state_of_the_union.txt\")\n",
"\n",
"docs = loader.load()\n",
"\n",
"docs[0].page_content[:400]"
]
},
@@ -110,41 +99,28 @@
},
{
"cell_type": "code",
"execution_count": 1,
"execution_count": 4,
"id": "092d9a0b",
"metadata": {},
"outputs": [],
"source": [
"files = [\"./example_data/whatsapp_chat.txt\", \"./example_data/layout-parser-paper.pdf\"]"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "f841c4f8",
"metadata": {},
"outputs": [],
"source": [
"loader = UnstructuredFileLoader(files)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "993c240b",
"metadata": {},
"outputs": [],
"source": [
"docs = loader.load()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "5ce4ff07",
"metadata": {},
"outputs": [],
"outputs": [
{
"data": {
"text/plain": [
"'1/22/23, 6:30 PM - User 1: Hi! Im interested in your bag. Im offering $50. Let me know if you are interested. Thanks!\\n\\n1/22/23, 8:24 PM - User 2: Goodmorning! $50 is too low.\\n\\n1/23/23, 2:59 AM - User 1: How much do you want?\\n\\n1/23/23, 3:00 AM - User 2: Online is at least $100\\n\\n1/23/23, 3:01 AM - User 2: Here is $129\\n\\n1/23/23, 3:01 AM - User 2: <Media omitted>\\n\\n1/23/23, 3:01 AM - User 1: Im not int'"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"files = [\"./example_data/whatsapp_chat.txt\", \"./example_data/layout-parser-paper.pdf\"]\n",
"\n",
"loader = UnstructuredFileLoader(files)\n",
"\n",
"docs = loader.load()\n",
"\n",
"docs[0].page_content[:400]"
]
},
@@ -160,48 +136,32 @@
},
{
"cell_type": "code",
"execution_count": 8,
"execution_count": 5,
"id": "ff5b616d",
"metadata": {},
"outputs": [],
"source": [
"loader = UnstructuredFileLoader(\n",
" \"./example_data/state_of_the_union.txt\", mode=\"elements\"\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "feca3b6c",
"metadata": {},
"outputs": [],
"source": [
"docs = loader.load()"
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "fec5bbac",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[Document(page_content='Madam Speaker, Madam Vice President, our First Lady and Second Gentleman. Members of Congress and the Cabinet. Justices of the Supreme Court. My fellow Americans.', lookup_str='', metadata={'source': '../../state_of_the_union.txt'}, lookup_index=0),\n",
" Document(page_content='Last year COVID-19 kept us apart. This year we are finally together again.', lookup_str='', metadata={'source': '../../state_of_the_union.txt'}, lookup_index=0),\n",
" Document(page_content='Tonight, we meet as Democrats Republicans and Independents. But most importantly as Americans.', lookup_str='', metadata={'source': '../../state_of_the_union.txt'}, lookup_index=0),\n",
" Document(page_content='With a duty to one another to the American people to the Constitution.', lookup_str='', metadata={'source': '../../state_of_the_union.txt'}, lookup_index=0),\n",
" Document(page_content='And with an unwavering resolve that freedom will always triumph over tyranny.', lookup_str='', metadata={'source': '../../state_of_the_union.txt'}, lookup_index=0)]"
"[Document(page_content='Madam Speaker, Madam Vice President, our First Lady and Second Gentleman. Members of Congress and the Cabinet. Justices of the Supreme Court. My fellow Americans.', metadata={'source': './example_data/state_of_the_union.txt', 'file_directory': './example_data', 'filename': 'state_of_the_union.txt', 'last_modified': '2024-07-01T11:18:22', 'languages': ['eng'], 'filetype': 'text/plain', 'category': 'NarrativeText'}),\n",
" Document(page_content='Last year COVID-19 kept us apart. This year we are finally together again.', metadata={'source': './example_data/state_of_the_union.txt', 'file_directory': './example_data', 'filename': 'state_of_the_union.txt', 'last_modified': '2024-07-01T11:18:22', 'languages': ['eng'], 'filetype': 'text/plain', 'category': 'NarrativeText'}),\n",
" Document(page_content='Tonight, we meet as Democrats Republicans and Independents. But most importantly as Americans.', metadata={'source': './example_data/state_of_the_union.txt', 'file_directory': './example_data', 'filename': 'state_of_the_union.txt', 'last_modified': '2024-07-01T11:18:22', 'languages': ['eng'], 'filetype': 'text/plain', 'category': 'NarrativeText'}),\n",
" Document(page_content='With a duty to one another to the American people to the Constitution.', metadata={'source': './example_data/state_of_the_union.txt', 'file_directory': './example_data', 'filename': 'state_of_the_union.txt', 'last_modified': '2024-07-01T11:18:22', 'languages': ['eng'], 'filetype': 'text/plain', 'category': 'UncategorizedText'}),\n",
" Document(page_content='And with an unwavering resolve that freedom will always triumph over tyranny.', metadata={'source': './example_data/state_of_the_union.txt', 'file_directory': './example_data', 'filename': 'state_of_the_union.txt', 'last_modified': '2024-07-01T11:18:22', 'languages': ['eng'], 'filetype': 'text/plain', 'category': 'NarrativeText'})]"
]
},
"execution_count": 12,
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"loader = UnstructuredFileLoader(\n",
" \"./example_data/state_of_the_union.txt\", mode=\"elements\"\n",
")\n",
"\n",
"docs = loader.load()\n",
"\n",
"docs[:5]"
]
},
@@ -217,59 +177,35 @@
},
{
"cell_type": "code",
"execution_count": 1,
"execution_count": 9,
"id": "767238a4",
"metadata": {},
"outputs": [],
"source": [
"from langchain_community.document_loaders import UnstructuredFileLoader"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "9518b425",
"metadata": {},
"outputs": [],
"source": [
"loader = UnstructuredFileLoader(\n",
" \"layout-parser-paper-fast.pdf\", strategy=\"fast\", mode=\"elements\"\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "645f29e9",
"metadata": {},
"outputs": [],
"source": [
"docs = loader.load()"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "60685353",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[Document(page_content='1', lookup_str='', metadata={'source': 'layout-parser-paper-fast.pdf', 'filename': 'layout-parser-paper-fast.pdf', 'page_number': 1, 'category': 'UncategorizedText'}, lookup_index=0),\n",
" Document(page_content='2', lookup_str='', metadata={'source': 'layout-parser-paper-fast.pdf', 'filename': 'layout-parser-paper-fast.pdf', 'page_number': 1, 'category': 'UncategorizedText'}, lookup_index=0),\n",
" Document(page_content='0', lookup_str='', metadata={'source': 'layout-parser-paper-fast.pdf', 'filename': 'layout-parser-paper-fast.pdf', 'page_number': 1, 'category': 'UncategorizedText'}, lookup_index=0),\n",
" Document(page_content='2', lookup_str='', metadata={'source': 'layout-parser-paper-fast.pdf', 'filename': 'layout-parser-paper-fast.pdf', 'page_number': 1, 'category': 'UncategorizedText'}, lookup_index=0),\n",
" Document(page_content='n', lookup_str='', metadata={'source': 'layout-parser-paper-fast.pdf', 'filename': 'layout-parser-paper-fast.pdf', 'page_number': 1, 'category': 'Title'}, lookup_index=0)]"
"[Document(page_content='2 v 8 4 3 5 1 . 3 0 1 2 : v i X r a', metadata={'source': './example_data/layout-parser-paper.pdf', 'coordinates': {'points': ((16.34, 393.9), (16.34, 560.0), (36.34, 560.0), (36.34, 393.9)), 'system': 'PixelSpace', 'layout_width': 612, 'layout_height': 792}, 'file_directory': './example_data', 'filename': 'layout-parser-paper.pdf', 'languages': ['eng'], 'last_modified': '2023-12-19T13:42:18', 'page_number': 1, 'parent_id': '89565df026a24279aaea20dc08cedbec', 'filetype': 'application/pdf', 'category': 'UncategorizedText'}),\n",
" Document(page_content='LayoutParser: A Unified Toolkit for Deep Learning Based Document Image Analysis', metadata={'source': './example_data/layout-parser-paper.pdf', 'coordinates': {'points': ((157.62199999999999, 114.23496279999995), (157.62199999999999, 146.5141628), (457.7358962799999, 146.5141628), (457.7358962799999, 114.23496279999995)), 'system': 'PixelSpace', 'layout_width': 612, 'layout_height': 792}, 'file_directory': './example_data', 'filename': 'layout-parser-paper.pdf', 'languages': ['eng'], 'last_modified': '2023-12-19T13:42:18', 'page_number': 1, 'filetype': 'application/pdf', 'category': 'Title'}),\n",
" Document(page_content='Zejiang Shen1 ((cid:0)), Ruochen Zhang2, Melissa Dell3, Benjamin Charles Germain Lee4, Jacob Carlson3, and Weining Li5', metadata={'source': './example_data/layout-parser-paper.pdf', 'coordinates': {'points': ((134.809, 168.64029940800003), (134.809, 192.2517444), (480.5464199080001, 192.2517444), (480.5464199080001, 168.64029940800003)), 'system': 'PixelSpace', 'layout_width': 612, 'layout_height': 792}, 'file_directory': './example_data', 'filename': 'layout-parser-paper.pdf', 'languages': ['eng'], 'last_modified': '2023-12-19T13:42:18', 'page_number': 1, 'parent_id': 'bde0b230a1aa488e3ce837d33015181b', 'filetype': 'application/pdf', 'category': 'UncategorizedText'}),\n",
" Document(page_content='1 Allen Institute for AI shannons@allenai.org 2 Brown University ruochen zhang@brown.edu 3 Harvard University {melissadell,jacob carlson}@fas.harvard.edu 4 University of Washington bcgl@cs.washington.edu 5 University of Waterloo w422li@uwaterloo.ca', metadata={'source': './example_data/layout-parser-paper.pdf', 'coordinates': {'points': ((207.23000000000002, 202.57205439999996), (207.23000000000002, 311.8195408), (408.12676, 311.8195408), (408.12676, 202.57205439999996)), 'system': 'PixelSpace', 'layout_width': 612, 'layout_height': 792}, 'file_directory': './example_data', 'filename': 'layout-parser-paper.pdf', 'languages': ['eng'], 'last_modified': '2023-12-19T13:42:18', 'page_number': 1, 'parent_id': 'bde0b230a1aa488e3ce837d33015181b', 'filetype': 'application/pdf', 'category': 'UncategorizedText'}),\n",
" Document(page_content='Abstract. Recent advances in document image analysis (DIA) have been primarily driven by the application of neural networks. Ideally, research outcomes could be easily deployed in production and extended for further investigation. However, various factors like loosely organized codebases and sophisticated model configurations complicate the easy reuse of im- portant innovations by a wide audience. Though there have been on-going efforts to improve reusability and simplify deep learning (DL) model development in disciplines like natural language processing and computer vision, none of them are optimized for challenges in the domain of DIA. This represents a major gap in the existing toolkit, as DIA is central to academic research across a wide range of disciplines in the social sciences and humanities. This paper introduces LayoutParser, an open-source library for streamlining the usage of DL in DIA research and applica- tions. The core LayoutParser library comes with a set of simple and intuitive interfaces for applying and customizing DL models for layout de- tection, character recognition, and many other document processing tasks. To promote extensibility, LayoutParser also incorporates a community platform for sharing both pre-trained models and full document digiti- zation pipelines. We demonstrate that LayoutParser is helpful for both lightweight and large-scale digitization pipelines in real-word use cases. The library is publicly available at https://layout-parser.github.io.', metadata={'source': './example_data/layout-parser-paper.pdf', 'coordinates': {'points': ((162.779, 338.45008160000003), (162.779, 566.8455408), (454.0372021523199, 566.8455408), (454.0372021523199, 338.45008160000003)), 'system': 'PixelSpace', 'layout_width': 612, 'layout_height': 792}, 'file_directory': './example_data', 'filename': 'layout-parser-paper.pdf', 'languages': ['eng'], 'last_modified': '2023-12-19T13:42:18', 'links': [{'text': ':// layout - parser . github . io', 'url': 'https://layout-parser.github.io', 'start_index': 1477}], 'page_number': 1, 'parent_id': 'bde0b230a1aa488e3ce837d33015181b', 'filetype': 'application/pdf', 'category': 'NarrativeText'})]"
]
},
"execution_count": 4,
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"docs[:5]"
"from langchain_community.document_loaders import UnstructuredFileLoader\n",
"\n",
"loader = UnstructuredFileLoader(\n",
" \"./example_data/layout-parser-paper.pdf\", strategy=\"fast\", mode=\"elements\"\n",
")\n",
"\n",
"docs = loader.load()\n",
"\n",
"docs[5:10]"
]
},
{
@@ -287,59 +223,33 @@
},
{
"cell_type": "code",
"execution_count": 1,
"id": "8ca8a648",
"metadata": {},
"outputs": [],
"source": [
"!wget https://raw.githubusercontent.com/Unstructured-IO/unstructured/main/example-docs/layout-parser-paper.pdf -P \"../../\""
]
},
{
"cell_type": "code",
"execution_count": 7,
"execution_count": 12,
"id": "686e5eb4",
"metadata": {},
"outputs": [],
"source": [
"loader = UnstructuredFileLoader(\n",
" \"./example_data/layout-parser-paper.pdf\", mode=\"elements\"\n",
")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "c90f0e94",
"metadata": {},
"outputs": [],
"source": [
"docs = loader.load()"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "6ec859d8",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[Document(page_content='LayoutParser : A Unified Toolkit for Deep Learning Based Document Image Analysis', lookup_str='', metadata={'source': '../../layout-parser-paper.pdf'}, lookup_index=0),\n",
" Document(page_content='Zejiang Shen 1 ( (ea)\\n ), Ruochen Zhang 2 , Melissa Dell 3 , Benjamin Charles Germain Lee 4 , Jacob Carlson 3 , and Weining Li 5', lookup_str='', metadata={'source': '../../layout-parser-paper.pdf'}, lookup_index=0),\n",
" Document(page_content='Allen Institute for AI shannons@allenai.org', lookup_str='', metadata={'source': '../../layout-parser-paper.pdf'}, lookup_index=0),\n",
" Document(page_content='Brown University ruochen zhang@brown.edu', lookup_str='', metadata={'source': '../../layout-parser-paper.pdf'}, lookup_index=0),\n",
" Document(page_content='Harvard University { melissadell,jacob carlson } @fas.harvard.edu', lookup_str='', metadata={'source': '../../layout-parser-paper.pdf'}, lookup_index=0)]"
"[Document(page_content='2 v 8 4 3 5 1 . 3 0 1 2 : v i X r a', metadata={'source': './example_data/layout-parser-paper.pdf', 'coordinates': {'points': ((16.34, 393.9), (16.34, 560.0), (36.34, 560.0), (36.34, 393.9)), 'system': 'PixelSpace', 'layout_width': 612, 'layout_height': 792}, 'file_directory': './example_data', 'filename': 'layout-parser-paper.pdf', 'languages': ['eng'], 'last_modified': '2023-12-19T13:42:18', 'page_number': 1, 'parent_id': '89565df026a24279aaea20dc08cedbec', 'filetype': 'application/pdf', 'category': 'UncategorizedText'}),\n",
" Document(page_content='LayoutParser: A Unified Toolkit for Deep Learning Based Document Image Analysis', metadata={'source': './example_data/layout-parser-paper.pdf', 'coordinates': {'points': ((157.62199999999999, 114.23496279999995), (157.62199999999999, 146.5141628), (457.7358962799999, 146.5141628), (457.7358962799999, 114.23496279999995)), 'system': 'PixelSpace', 'layout_width': 612, 'layout_height': 792}, 'file_directory': './example_data', 'filename': 'layout-parser-paper.pdf', 'languages': ['eng'], 'last_modified': '2023-12-19T13:42:18', 'page_number': 1, 'filetype': 'application/pdf', 'category': 'Title'}),\n",
" Document(page_content='Zejiang Shen1 ((cid:0)), Ruochen Zhang2, Melissa Dell3, Benjamin Charles Germain Lee4, Jacob Carlson3, and Weining Li5', metadata={'source': './example_data/layout-parser-paper.pdf', 'coordinates': {'points': ((134.809, 168.64029940800003), (134.809, 192.2517444), (480.5464199080001, 192.2517444), (480.5464199080001, 168.64029940800003)), 'system': 'PixelSpace', 'layout_width': 612, 'layout_height': 792}, 'file_directory': './example_data', 'filename': 'layout-parser-paper.pdf', 'languages': ['eng'], 'last_modified': '2023-12-19T13:42:18', 'page_number': 1, 'parent_id': 'bde0b230a1aa488e3ce837d33015181b', 'filetype': 'application/pdf', 'category': 'UncategorizedText'}),\n",
" Document(page_content='1 Allen Institute for AI shannons@allenai.org 2 Brown University ruochen zhang@brown.edu 3 Harvard University {melissadell,jacob carlson}@fas.harvard.edu 4 University of Washington bcgl@cs.washington.edu 5 University of Waterloo w422li@uwaterloo.ca', metadata={'source': './example_data/layout-parser-paper.pdf', 'coordinates': {'points': ((207.23000000000002, 202.57205439999996), (207.23000000000002, 311.8195408), (408.12676, 311.8195408), (408.12676, 202.57205439999996)), 'system': 'PixelSpace', 'layout_width': 612, 'layout_height': 792}, 'file_directory': './example_data', 'filename': 'layout-parser-paper.pdf', 'languages': ['eng'], 'last_modified': '2023-12-19T13:42:18', 'page_number': 1, 'parent_id': 'bde0b230a1aa488e3ce837d33015181b', 'filetype': 'application/pdf', 'category': 'UncategorizedText'}),\n",
" Document(page_content='Abstract. Recent advances in document image analysis (DIA) have been primarily driven by the application of neural networks. Ideally, research outcomes could be easily deployed in production and extended for further investigation. However, various factors like loosely organized codebases and sophisticated model configurations complicate the easy reuse of im- portant innovations by a wide audience. Though there have been on-going efforts to improve reusability and simplify deep learning (DL) model development in disciplines like natural language processing and computer vision, none of them are optimized for challenges in the domain of DIA. This represents a major gap in the existing toolkit, as DIA is central to academic research across a wide range of disciplines in the social sciences and humanities. This paper introduces LayoutParser, an open-source library for streamlining the usage of DL in DIA research and applica- tions. The core LayoutParser library comes with a set of simple and intuitive interfaces for applying and customizing DL models for layout de- tection, character recognition, and many other document processing tasks. To promote extensibility, LayoutParser also incorporates a community platform for sharing both pre-trained models and full document digiti- zation pipelines. We demonstrate that LayoutParser is helpful for both lightweight and large-scale digitization pipelines in real-word use cases. The library is publicly available at https://layout-parser.github.io.', metadata={'source': './example_data/layout-parser-paper.pdf', 'coordinates': {'points': ((162.779, 338.45008160000003), (162.779, 566.8455408), (454.0372021523199, 566.8455408), (454.0372021523199, 338.45008160000003)), 'system': 'PixelSpace', 'layout_width': 612, 'layout_height': 792}, 'file_directory': './example_data', 'filename': 'layout-parser-paper.pdf', 'languages': ['eng'], 'last_modified': '2023-12-19T13:42:18', 'links': [{'text': ':// layout - parser . github . io', 'url': 'https://layout-parser.github.io', 'start_index': 1477}], 'page_number': 1, 'parent_id': 'bde0b230a1aa488e3ce837d33015181b', 'filetype': 'application/pdf', 'category': 'NarrativeText'})]"
]
},
"execution_count": 1,
"execution_count": 12,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"docs[:5]"
"loader = UnstructuredFileLoader(\n",
" \"./example_data/layout-parser-paper.pdf\", mode=\"elements\"\n",
")\n",
"\n",
"docs = loader.load()\n",
"\n",
"docs[5:10]"
]
},
{
@@ -352,62 +262,38 @@
},
{
"cell_type": "code",
"execution_count": 2,
"execution_count": 14,
"id": "112e5538",
"metadata": {},
"outputs": [],
"source": [
"from langchain_community.document_loaders import UnstructuredFileLoader\n",
"from unstructured.cleaners.core import clean_extra_whitespace"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "b9c5ac8d",
"metadata": {},
"outputs": [],
"source": [
"loader = UnstructuredFileLoader(\n",
" \"./example_data/layout-parser-paper.pdf\",\n",
" mode=\"elements\",\n",
" post_processors=[clean_extra_whitespace],\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "c44d5def",
"metadata": {},
"outputs": [],
"source": [
"docs = loader.load()"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "b6f27929",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[Document(page_content='LayoutParser: A Unified Toolkit for Deep Learning Based Document Image Analysis', metadata={'source': './example_data/layout-parser-paper.pdf', 'coordinates': {'points': ((157.62199999999999, 114.23496279999995), (157.62199999999999, 146.5141628), (457.7358962799999, 146.5141628), (457.7358962799999, 114.23496279999995)), 'system': 'PixelSpace', 'layout_width': 612, 'layout_height': 792}, 'filename': 'layout-parser-paper.pdf', 'file_directory': './example_data', 'filetype': 'application/pdf', 'page_number': 1, 'category': 'Title'}),\n",
" Document(page_content='Zejiang Shen1 ((cid:0)), Ruochen Zhang2, Melissa Dell3, Benjamin Charles Germain Lee4, Jacob Carlson3, and Weining Li5', metadata={'source': './example_data/layout-parser-paper.pdf', 'coordinates': {'points': ((134.809, 168.64029940800003), (134.809, 192.2517444), (480.5464199080001, 192.2517444), (480.5464199080001, 168.64029940800003)), 'system': 'PixelSpace', 'layout_width': 612, 'layout_height': 792}, 'filename': 'layout-parser-paper.pdf', 'file_directory': './example_data', 'filetype': 'application/pdf', 'page_number': 1, 'category': 'UncategorizedText'}),\n",
" Document(page_content='1 Allen Institute for AI shannons@allenai.org 2 Brown University ruochen zhang@brown.edu 3 Harvard University {melissadell,jacob carlson}@fas.harvard.edu 4 University of Washington bcgl@cs.washington.edu 5 University of Waterloo w422li@uwaterloo.ca', metadata={'source': './example_data/layout-parser-paper.pdf', 'coordinates': {'points': ((207.23000000000002, 202.57205439999996), (207.23000000000002, 311.8195408), (408.12676, 311.8195408), (408.12676, 202.57205439999996)), 'system': 'PixelSpace', 'layout_width': 612, 'layout_height': 792}, 'filename': 'layout-parser-paper.pdf', 'file_directory': './example_data', 'filetype': 'application/pdf', 'page_number': 1, 'category': 'UncategorizedText'}),\n",
" Document(page_content='1 2 0 2', metadata={'source': './example_data/layout-parser-paper.pdf', 'coordinates': {'points': ((16.34, 213.36), (16.34, 253.36), (36.34, 253.36), (36.34, 213.36)), 'system': 'PixelSpace', 'layout_width': 612, 'layout_height': 792}, 'filename': 'layout-parser-paper.pdf', 'file_directory': './example_data', 'filetype': 'application/pdf', 'page_number': 1, 'category': 'UncategorizedText'}),\n",
" Document(page_content='n u J', metadata={'source': './example_data/layout-parser-paper.pdf', 'coordinates': {'points': ((16.34, 258.36), (16.34, 286.14), (36.34, 286.14), (36.34, 258.36)), 'system': 'PixelSpace', 'layout_width': 612, 'layout_height': 792}, 'filename': 'layout-parser-paper.pdf', 'file_directory': './example_data', 'filetype': 'application/pdf', 'page_number': 1, 'category': 'Title'})]"
"[Document(page_content='2 v 8 4 3 5 1 . 3 0 1 2 : v i X r a', metadata={'source': './example_data/layout-parser-paper.pdf', 'coordinates': {'points': ((16.34, 393.9), (16.34, 560.0), (36.34, 560.0), (36.34, 393.9)), 'system': 'PixelSpace', 'layout_width': 612, 'layout_height': 792}, 'file_directory': './example_data', 'filename': 'layout-parser-paper.pdf', 'languages': ['eng'], 'last_modified': '2023-12-19T13:42:18', 'page_number': 1, 'parent_id': '89565df026a24279aaea20dc08cedbec', 'filetype': 'application/pdf', 'category': 'UncategorizedText'}),\n",
" Document(page_content='LayoutParser: A Unified Toolkit for Deep Learning Based Document Image Analysis', metadata={'source': './example_data/layout-parser-paper.pdf', 'coordinates': {'points': ((157.62199999999999, 114.23496279999995), (157.62199999999999, 146.5141628), (457.7358962799999, 146.5141628), (457.7358962799999, 114.23496279999995)), 'system': 'PixelSpace', 'layout_width': 612, 'layout_height': 792}, 'file_directory': './example_data', 'filename': 'layout-parser-paper.pdf', 'languages': ['eng'], 'last_modified': '2023-12-19T13:42:18', 'page_number': 1, 'filetype': 'application/pdf', 'category': 'Title'}),\n",
" Document(page_content='Zejiang Shen1 ((cid:0)), Ruochen Zhang2, Melissa Dell3, Benjamin Charles Germain Lee4, Jacob Carlson3, and Weining Li5', metadata={'source': './example_data/layout-parser-paper.pdf', 'coordinates': {'points': ((134.809, 168.64029940800003), (134.809, 192.2517444), (480.5464199080001, 192.2517444), (480.5464199080001, 168.64029940800003)), 'system': 'PixelSpace', 'layout_width': 612, 'layout_height': 792}, 'file_directory': './example_data', 'filename': 'layout-parser-paper.pdf', 'languages': ['eng'], 'last_modified': '2023-12-19T13:42:18', 'page_number': 1, 'parent_id': 'bde0b230a1aa488e3ce837d33015181b', 'filetype': 'application/pdf', 'category': 'UncategorizedText'}),\n",
" Document(page_content='1 Allen Institute for AI shannons@allenai.org 2 Brown University ruochen zhang@brown.edu 3 Harvard University {melissadell,jacob carlson}@fas.harvard.edu 4 University of Washington bcgl@cs.washington.edu 5 University of Waterloo w422li@uwaterloo.ca', metadata={'source': './example_data/layout-parser-paper.pdf', 'coordinates': {'points': ((207.23000000000002, 202.57205439999996), (207.23000000000002, 311.8195408), (408.12676, 311.8195408), (408.12676, 202.57205439999996)), 'system': 'PixelSpace', 'layout_width': 612, 'layout_height': 792}, 'file_directory': './example_data', 'filename': 'layout-parser-paper.pdf', 'languages': ['eng'], 'last_modified': '2023-12-19T13:42:18', 'page_number': 1, 'parent_id': 'bde0b230a1aa488e3ce837d33015181b', 'filetype': 'application/pdf', 'category': 'UncategorizedText'}),\n",
" Document(page_content='Abstract. Recent advances in document image analysis (DIA) have been primarily driven by the application of neural networks. Ideally, research outcomes could be easily deployed in production and extended for further investigation. However, various factors like loosely organized codebases and sophisticated model configurations complicate the easy reuse of im- portant innovations by a wide audience. Though there have been on-going efforts to improve reusability and simplify deep learning (DL) model development in disciplines like natural language processing and computer vision, none of them are optimized for challenges in the domain of DIA. This represents a major gap in the existing toolkit, as DIA is central to academic research across a wide range of disciplines in the social sciences and humanities. This paper introduces LayoutParser, an open-source library for streamlining the usage of DL in DIA research and applica- tions. The core LayoutParser library comes with a set of simple and intuitive interfaces for applying and customizing DL models for layout de- tection, character recognition, and many other document processing tasks. To promote extensibility, LayoutParser also incorporates a community platform for sharing both pre-trained models and full document digiti- zation pipelines. We demonstrate that LayoutParser is helpful for both lightweight and large-scale digitization pipelines in real-word use cases. The library is publicly available at https://layout-parser.github.io.', metadata={'source': './example_data/layout-parser-paper.pdf', 'coordinates': {'points': ((162.779, 338.45008160000003), (162.779, 566.8455408), (454.0372021523199, 566.8455408), (454.0372021523199, 338.45008160000003)), 'system': 'PixelSpace', 'layout_width': 612, 'layout_height': 792}, 'file_directory': './example_data', 'filename': 'layout-parser-paper.pdf', 'languages': ['eng'], 'last_modified': '2023-12-19T13:42:18', 'links': [{'text': ':// layout - parser . github . io', 'url': 'https://layout-parser.github.io', 'start_index': 1477}], 'page_number': 1, 'parent_id': 'bde0b230a1aa488e3ce837d33015181b', 'filetype': 'application/pdf', 'category': 'NarrativeText'})]"
]
},
"execution_count": 5,
"execution_count": 14,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"docs[:5]"
"from langchain_community.document_loaders import UnstructuredFileLoader\n",
"from unstructured.cleaners.core import clean_extra_whitespace\n",
"\n",
"loader = UnstructuredFileLoader(\n",
" \"./example_data/layout-parser-paper.pdf\",\n",
" mode=\"elements\",\n",
" post_processors=[clean_extra_whitespace],\n",
")\n",
"\n",
"docs = loader.load()\n",
"\n",
"docs[5:10]"
]
},
{
@@ -420,39 +306,6 @@
"If you want to get up and running with less set up, you can simply run `pip install unstructured` and use `UnstructuredAPIFileLoader` or `UnstructuredAPIFileIOLoader`. That will process your document using the hosted Unstructured API. You can generate a free Unstructured API key [here](https://www.unstructured.io/api-key/). The [Unstructured documentation](https://unstructured-io.github.io/unstructured/) page will have instructions on how to generate an API key once theyre available. Check out the instructions [here](https://github.com/Unstructured-IO/unstructured-api#dizzy-instructions-for-using-the-docker-image) if youd like to self-host the Unstructured API or run it locally."
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "b50c70bc",
"metadata": {},
"outputs": [],
"source": [
"from langchain_community.document_loaders import UnstructuredAPIFileLoader"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "12b6d2cf",
"metadata": {},
"outputs": [],
"source": [
"filenames = [\"example_data/fake.docx\", \"example_data/fake-email.eml\"]"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "39a9894d",
"metadata": {},
"outputs": [],
"source": [
"loader = UnstructuredAPIFileLoader(\n",
" file_path=filenames[0],\n",
" api_key=\"FAKE_API_KEY\",\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 4,
@@ -471,6 +324,15 @@
}
],
"source": [
"from langchain_community.document_loaders import UnstructuredAPIFileLoader\n",
"\n",
"filenames = [\"example_data/fake.docx\", \"example_data/fake-email.eml\"]\n",
"\n",
"loader = UnstructuredAPIFileLoader(\n",
" file_path=filenames[0],\n",
" api_key=\"FAKE_API_KEY\",\n",
")\n",
"\n",
"docs = loader.load()\n",
"docs[0]"
]
@@ -483,19 +345,6 @@
"You can also batch multiple files through the Unstructured API in a single API using `UnstructuredAPIFileLoader`."
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "79a18e7e",
"metadata": {},
"outputs": [],
"source": [
"loader = UnstructuredAPIFileLoader(\n",
" file_path=filenames,\n",
" api_key=\"FAKE_API_KEY\",\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 6,
@@ -514,6 +363,11 @@
}
],
"source": [
"loader = UnstructuredAPIFileLoader(\n",
" file_path=filenames,\n",
" api_key=\"FAKE_API_KEY\",\n",
")\n",
"\n",
"docs = loader.load()\n",
"docs[0]"
]
@@ -543,7 +397,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.0"
"version": "3.10.5"
}
},
"nbformat": 4,

File diff suppressed because one or more lines are too long

View File

@@ -17,29 +17,10 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain_community.document_loaders import UnstructuredXMLLoader"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "a654e4d9",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Document(page_content='United States\\n\\nWashington, DC\\n\\nJoe Biden\\n\\nBaseball\\n\\nCanada\\n\\nOttawa\\n\\nJustin Trudeau\\n\\nHockey\\n\\nFrance\\n\\nParis\\n\\nEmmanuel Macron\\n\\nSoccer\\n\\nTrinidad & Tobado\\n\\nPort of Spain\\n\\nKeith Rowley\\n\\nTrack & Field', metadata={'source': 'example_data/factbook.xml'})"
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from langchain_community.document_loaders import UnstructuredXMLLoader\n",
"\n",
"loader = UnstructuredXMLLoader(\n",
" \"example_data/factbook.xml\",\n",
" \"./example_data/factbook.xml\",\n",
")\n",
"docs = loader.load()\n",
"docs[0]"

View File

@@ -19,12 +19,12 @@
"metadata": {},
"outputs": [],
"source": [
"%pip install --upgrade --quiet html2text"
"%pip install --upgrade --quiet html2text"
]
},
{
"cell_type": "code",
"execution_count": 4,
"execution_count": 2,
"id": "8ca0974b",
"metadata": {},
"outputs": [
@@ -32,7 +32,8 @@
"name": "stderr",
"output_type": "stream",
"text": [
"Fetching pages: 100%|############| 2/2 [00:00<00:00, 10.75it/s]\n"
"USER_AGENT environment variable not set, consider setting it to identify your requests.\n",
"Fetching pages: 100%|##########| 2/2 [00:00<00:00, 14.74it/s]\n"
]
}
],
@@ -46,66 +47,107 @@
},
{
"cell_type": "code",
"execution_count": 1,
"id": "ddf2be97",
"metadata": {},
"outputs": [],
"source": [
"from langchain_community.document_transformers import Html2TextTransformer"
]
},
{
"cell_type": "code",
"execution_count": 5,
"execution_count": 3,
"id": "a95a928c",
"metadata": {},
"outputs": [],
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"## Fantasy\n",
"\n",
" * Football\n",
"\n",
" * Baseball\n",
"\n",
" * Basketball\n",
"\n",
" * Hockey\n",
"\n",
"## ESPN Sites\n",
"\n",
" * ESPN Deportes\n",
"\n",
" * Andscape\n",
"\n",
" * espnW\n",
"\n",
" * ESPNFC\n",
"\n",
" * X Games\n",
"\n",
" * SEC Network\n",
"\n",
"## ESPN Apps\n",
"\n",
" * ESPN\n",
"\n",
" * ESPN Fantasy\n",
"\n",
" * Tournament Challenge\n",
"\n",
"## Follow ESPN\n",
"\n",
" * Facebook\n",
"\n",
" * X/Twitter\n",
"\n",
" * Instagram\n",
"\n",
" * Snapchat\n",
"\n",
" * TikTok\n",
"\n",
" * YouTube\n",
"\n",
"## Fresh updates to our NBA mock draft: Everything we're hearing hours before\n",
"Round 1\n",
"\n",
"With hours until Round 1 begins (8 p.m. ET on ESPN and ABC), ESPN draft\n",
"insiders Jonathan Givony and Jeremy Woo have new intel on lottery picks and\n",
"more.\n",
"\n",
"2hJonathan Givony and Jeremy Woo\n",
"\n",
"Illustration by ESPN\n",
"\n",
"## From No. 1 to 100: Ranking the 2024 NBA draft prospects\n",
"\n",
"Who's No. 1? Where do the Kentucky, Duke and UConn players rank? Here's our\n",
"final Top 100 Big Board.\n",
"\n",
"6hJonathan Givony and Jeremy Woo\n",
"\n",
" * Full draft order: All 58 picks over two rounds\n",
" * Trade tracker: Details for all deals\n",
"\n",
" * Betting buzz: Lakers favorites to draft Bronny\n",
" * Use our NBA draft simu\n",
"ent system, LLM functions as the agent's brain,\n",
"complemented by several key components:\n",
"\n",
" * **Planning**\n",
" * Subgoal and decomposition: The agent breaks down large tasks into smaller, manageable subgoals, enabling efficient handling of complex tasks.\n",
" * Reflection and refinement: The agent can do self-criticism and self-reflection over past actions, learn from mistakes and refine them for future steps, thereby improving the quality of final results.\n",
" * **Memory**\n",
" * Short-term memory: I would consider all the in-context learning (See Prompt Engineering) as utilizing short-term memory of the model to learn.\n",
" * Long-term memory: This provides the agent with the capability to retain and recall (infinite) information over extended periods, often by leveraging an external vector store and fast retrieval.\n",
" * **Tool use**\n",
" * The agent learns to call external APIs for extra information that is missing from the model weights (often hard to change after pre-training), including \n"
]
}
],
"source": [
"from langchain_community.document_transformers import Html2TextTransformer\n",
"\n",
"urls = [\"https://www.espn.com\", \"https://lilianweng.github.io/posts/2023-06-23-agent/\"]\n",
"html2text = Html2TextTransformer()\n",
"docs_transformed = html2text.transform_documents(docs)"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "18ef9fe9",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"\" * ESPNFC\\n\\n * X Games\\n\\n * SEC Network\\n\\n## ESPN Apps\\n\\n * ESPN\\n\\n * ESPN Fantasy\\n\\n## Follow ESPN\\n\\n * Facebook\\n\\n * Twitter\\n\\n * Instagram\\n\\n * Snapchat\\n\\n * YouTube\\n\\n * The ESPN Daily Podcast\\n\\n2023 FIFA Women's World Cup\\n\\n## Follow live: Canada takes on Nigeria in group stage of Women's World Cup\\n\\n2m\\n\\nEPA/Morgan Hancock\\n\\n## TOP HEADLINES\\n\\n * Snyder fined $60M over findings in investigation\\n * NFL owners approve $6.05B sale of Commanders\\n * Jags assistant comes out as gay in NFL milestone\\n * O's alone atop East after topping slumping Rays\\n * ACC's Phillips: Never condoned hazing at NU\\n\\n * Vikings WR Addison cited for driving 140 mph\\n * 'Taking his time': Patient QB Rodgers wows Jets\\n * Reyna got U.S. assurances after Berhalter rehire\\n * NFL Future Power Rankings\\n\\n## USWNT AT THE WORLD CUP\\n\\n### USA VS. VIETNAM: 9 P.M. ET FRIDAY\\n\\n## How do you defend against Alex Morgan? Former opponents sound off\\n\\nThe U.S. forward is unstoppable at this level, scoring 121 goals and adding 49\""
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"docs_transformed[0].page_content[1000:2000]"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "6045d660",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"\"t's brain,\\ncomplemented by several key components:\\n\\n * **Planning**\\n * Subgoal and decomposition: The agent breaks down large tasks into smaller, manageable subgoals, enabling efficient handling of complex tasks.\\n * Reflection and refinement: The agent can do self-criticism and self-reflection over past actions, learn from mistakes and refine them for future steps, thereby improving the quality of final results.\\n * **Memory**\\n * Short-term memory: I would consider all the in-context learning (See Prompt Engineering) as utilizing short-term memory of the model to learn.\\n * Long-term memory: This provides the agent with the capability to retain and recall (infinite) information over extended periods, often by leveraging an external vector store and fast retrieval.\\n * **Tool use**\\n * The agent learns to call external APIs for extra information that is missing from the model weights (often hard to change after pre-training), including current information, code execution c\""
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"docs_transformed[1].page_content[1000:2000]"
"docs_transformed = html2text.transform_documents(docs)\n",
"\n",
"print(docs_transformed[0].page_content[1000:2000])\n",
"\n",
"print(docs_transformed[1].page_content[1000:2000])"
]
}
],
@@ -125,7 +167,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.12"
"version": "3.10.5"
}
},
"nbformat": 4,

View File

@@ -17,7 +17,9 @@
"source": [
"# AI21LLM\n",
"\n",
"This example goes over how to use LangChain to interact with `AI21` models.\n",
"This example goes over how to use LangChain to interact with `AI21` Jurassic models. To use the Jamba model, use the [ChatAI21 object](https://python.langchain.com/v0.2/docs/integrations/chat/ai21/) instead.\n",
"\n",
"[See a full list of AI21 models and tools on LangChain.](https://pypi.org/project/langchain-ai21/)\n",
"\n",
"## Installation"
]

View File

@@ -34,7 +34,7 @@
"metadata": {},
"outputs": [],
"source": [
"%pip install --upgrade --quiet boto3"
"%pip install --upgrade --quiet langchain_aws"
]
},
{
@@ -45,9 +45,9 @@
},
"outputs": [],
"source": [
"from langchain_community.llms import Bedrock\n",
"from langchain_aws import BedrockLLM\n",
"\n",
"llm = Bedrock(\n",
"llm = BedrockLLM(\n",
" credentials_profile_name=\"bedrock-admin\", model_id=\"amazon.titan-text-express-v1\"\n",
")"
]
@@ -65,7 +65,7 @@
"metadata": {},
"outputs": [],
"source": [
"custom_llm = Bedrock(\n",
"custom_llm = BedrockLLM(\n",
" credentials_profile_name=\"bedrock-admin\",\n",
" provider=\"cohere\",\n",
" model_id=\"<Custom model ARN>\", # ARN like 'arn:aws:bedrock:...' obtained via provisioning the custom model\n",
@@ -108,7 +108,7 @@
"\n",
"\n",
"# Guardrails for Amazon Bedrock with trace\n",
"llm = Bedrock(\n",
"llm = BedrockLLM(\n",
" credentials_profile_name=\"bedrock-admin\",\n",
" model_id=\"<Model_ID>\",\n",
" model_kwargs={},\n",
@@ -134,7 +134,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.7"
"version": "3.10.5"
}
},
"nbformat": 4,

File diff suppressed because one or more lines are too long

View File

@@ -18,16 +18,6 @@ pip install langchain-community boto3
### Bedrock Chat
See a [usage example](/docs/integrations/chat/bedrock).
```python
from langchain_aws import ChatBedrock
```
## LLMs
### Bedrock
>[Amazon Bedrock](https://aws.amazon.com/bedrock/) is a fully managed service that offers a choice of
> high-performing foundation models (FMs) from leading AI companies like `AI21 Labs`, `Anthropic`, `Cohere`,
> `Meta`, `Stability AI`, and `Amazon` via a single API, along with a broad set of capabilities you need to
@@ -38,6 +28,15 @@ from langchain_aws import ChatBedrock
> serverless, you don't have to manage any infrastructure, and you can securely integrate and deploy
> generative AI capabilities into your applications using the AWS services you are already familiar with.
See a [usage example](/docs/integrations/chat/bedrock).
```python
from langchain_aws import ChatBedrock
```
## LLMs
### Bedrock
See a [usage example](/docs/integrations/llms/bedrock).

View File

@@ -223,9 +223,15 @@ See a [usage example](/docs/integrations/document_loaders/microsoft_onenote).
from langchain_community.document_loaders.onenote import OneNoteLoader
```
## Vector stores
## AI Agent Memory System
### Azure Cosmos DB MongoDB vCore
[AI agent](https://learn.microsoft.com/en-us/azure/cosmos-db/ai-agents) needs robust memory systems that support multi-modality, offer strong operational performance, and enable agent memory sharing as well as separation.
AI agents can rely on Azure Cosmos DB as a unified [memory system](https://learn.microsoft.com/en-us/azure/cosmos-db/ai-agents#memory-can-make-or-break-agents) solution, enjoying speed, scale, and simplicity. This service successfully [enabled OpenAI's ChatGPT service](https://www.youtube.com/watch?v=6IIUtEFKJec&t) to scale dynamically with high reliability and low maintenance. Powered by an atom-record-sequence engine, it is the world's first globally distributed [NoSQL](https://learn.microsoft.com/en-us/azure/cosmos-db/distributed-nosql), [relational](https://learn.microsoft.com/en-us/azure/cosmos-db/distributed-relational), and [vector database](https://learn.microsoft.com/en-us/azure/cosmos-db/vector-database) service that offers a serverless mode.
Below are two available Azure Cosmos DB APIs that can provide vector store functionalities.
### Azure Cosmos DB for MongoDB (vCore)
>[Azure Cosmos DB for MongoDB vCore](https://learn.microsoft.com/en-us/azure/cosmos-db/mongodb/vcore/) makes it easy to create a database with full native MongoDB support.
> You can apply your MongoDB experience and continue to use your favorite MongoDB drivers, SDKs, and tools by pointing your application to the API for MongoDB vCore account's connection string.

View File

@@ -28,6 +28,16 @@ import os
os.environ["WATSONX_APIKEY"] = "your IBM watsonx.ai api key"
```
## Chat Model
### ChatWatsonx
See a [usage example](/docs/integrations/chat/ibm_watsonx).
```python
from langchain_ibm import ChatWatsonx
```
## LLMs
### WatsonxLLM

View File

@@ -14,14 +14,18 @@ its dependencies running locally.
- Install the Python SDK with `pip install unstructured`.
- You can install document specific dependencies with extras, i.e. `pip install "unstructured[docx]"`.
- To install the dependencies for all document types, use `pip install "unstructured[all-docs]"`.
- Install the following system dependencies if they are not already available on your system.
- Install the following system dependencies if they are not already available on your system with e.g. `brew install` for Mac.
Depending on what document types you're parsing, you may not need all of these.
- `libmagic-dev` (filetype detection)
- `poppler-utils` (images and PDFs)
- `tesseract-ocr`(images and PDFs)
- `qpdf` (PDFs)
- `libreoffice` (MS Office docs)
- `pandoc` (EPUBs)
When running locally, Unstructured also recommends using Docker [by following this guide](https://docs.unstructured.io/open-source/installation/docker-installation)
to ensure all system dependencies are installed correctly.
If you want to get up and running with less set up, you can
simply run `pip install unstructured` and use `UnstructuredAPIFileLoader` or
`UnstructuredAPIFileIOLoader`. That will process your document using the hosted Unstructured API.

View File

@@ -20,6 +20,16 @@
"Let's load the Azure OpenAI Embedding class with environment variables set to indicate to use Azure endpoints."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "228faf0c",
"metadata": {},
"outputs": [],
"source": [
"%pip install --upgrade --quiet langchain_openai"
]
},
{
"cell_type": "code",
"execution_count": 1,
@@ -180,9 +190,9 @@
],
"metadata": {
"kernelspec": {
"display_name": "poetry-venv",
"display_name": "Python 3",
"language": "python",
"name": "poetry-venv"
"name": "python3"
},
"language_info": {
"codemirror_mode": {
@@ -194,12 +204,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.1"
},
"vscode": {
"interpreter": {
"hash": "7377c2ccc78bc62c2683122d48c8cd1fb85a53850a1b1fc29736ed39852c9885"
}
"version": "3.10.5"
}
},
"nbformat": 4,

View File

@@ -5,9 +5,15 @@
"id": "1c0cf975",
"metadata": {},
"source": [
"# Jina\n",
"\n",
"Let's load the Jina Embedding class."
"# Jina"
]
},
{
"cell_type": "markdown",
"id": "da922b13-eaa8-4cdc-98dd-cf8f3d2e6ffa",
"metadata": {},
"source": [
"Install requirements"
]
},
{
@@ -20,6 +26,14 @@
"pip install -U langchain-community"
]
},
{
"cell_type": "markdown",
"id": "7911b286-130d-4971-b77c-7c7a077115b6",
"metadata": {},
"source": [
"Import libraries"
]
},
{
"cell_type": "code",
"execution_count": null,
@@ -34,6 +48,14 @@
"from PIL import Image"
]
},
{
"cell_type": "markdown",
"id": "59aa1c02-1216-43eb-8473-8e0468f0ddb6",
"metadata": {},
"source": [
"## Embed text and queries with Jina embedding models through JinaAI API"
]
},
{
"cell_type": "code",
"execution_count": null,
@@ -43,9 +65,7 @@
"source": [
"text_embeddings = JinaEmbeddings(\n",
" jina_api_key=\"jina_*\", model_name=\"jina-embeddings-v2-base-en\"\n",
")\n",
"\n",
"image_embeddings = JinaEmbeddings(jina_api_key=\"jina_*\", model_name=\"jina-clip-v1\")"
")"
]
},
{
@@ -55,15 +75,7 @@
"metadata": {},
"outputs": [],
"source": [
"text = \"This is a test document.\"\n",
"\n",
"image = \"https://avatars.githubusercontent.com/u/126733545?v=4\"\n",
"\n",
"description = \"Logo of a parrot and a chain on green background\"\n",
"\n",
"im = Image.open(requests.get(image, stream=True).raw)\n",
"print(\"Image:\")\n",
"display(im)"
"text = \"This is a test document.\""
]
},
{
@@ -106,6 +118,40 @@
"print(doc_result)"
]
},
{
"cell_type": "markdown",
"id": "338ea747-040e-4ed4-8ddf-9b2285987885",
"metadata": {},
"source": [
"## Embed images and queries with Jina CLIP through JinaAI API"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "575b5867-59fb-4fd1-911b-afee2eaca088",
"metadata": {},
"outputs": [],
"source": [
"multimodal_embeddings = JinaEmbeddings(jina_api_key=\"jina_*\", model_name=\"jina-clip-v1\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "a9b335f5-fa99-4931-95f6-7b187c0e2f30",
"metadata": {},
"outputs": [],
"source": [
"image = \"https://avatars.githubusercontent.com/u/126733545?v=4\"\n",
"\n",
"description = \"Logo of a parrot and a chain on green background\"\n",
"\n",
"im = Image.open(requests.get(image, stream=True).raw)\n",
"print(\"Image:\")\n",
"display(im)"
]
},
{
"cell_type": "code",
"execution_count": null,
@@ -113,7 +159,7 @@
"metadata": {},
"outputs": [],
"source": [
"image_result = image_embeddings.embed_images([image])"
"image_result = multimodal_embeddings.embed_images([image])"
]
},
{
@@ -133,7 +179,7 @@
"metadata": {},
"outputs": [],
"source": [
"description_result = image_embeddings.embed_documents([description])"
"description_result = multimodal_embeddings.embed_documents([description])"
]
},
{
@@ -167,14 +213,6 @@
"source": [
"print(cosine_similarity)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "7f280807-a02b-4d4e-8ebd-01be33117999",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
@@ -193,7 +231,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.2"
"version": "3.9.13"
}
},
"nbformat": 4,

View File

@@ -26,7 +26,7 @@
"metadata": {},
"outputs": [],
"source": [
"%pip install --upgrade --quiet ain-py"
"%pip install --upgrade --quiet ain-py langchain-community"
]
},
{

View File

@@ -11,6 +11,15 @@
"Vectorstores often have a hard time answering questions that requires computing, grouping and filtering structured data so the high level idea is to use a `pandas` dataframe to help with these types of questions. "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%pip install -qU langchain-community"
]
},
{
"attachments": {},
"cell_type": "markdown",

View File

@@ -24,6 +24,15 @@
"%pip install --upgrade --quiet amadeus > /dev/null"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%pip install -qU langchain-community"
]
},
{
"cell_type": "markdown",
"metadata": {},

View File

@@ -34,7 +34,8 @@
"%pip install --upgrade --quiet azure-ai-formrecognizer > /dev/null\n",
"%pip install --upgrade --quiet azure-cognitiveservices-speech > /dev/null\n",
"%pip install --upgrade --quiet azure-ai-textanalytics > /dev/null\n",
"%pip install --upgrade --quiet azure-ai-vision-imageanalysis > /dev/null"
"%pip install --upgrade --quiet azure-ai-vision-imageanalysis > /dev/null\n",
"%pip install -qU langchain-community"
]
},
{

View File

@@ -39,6 +39,15 @@
"%pip install --upgrade --quiet azure-ai-vision > /dev/null"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%pip install -qU langchain-community"
]
},
{
"cell_type": "code",
"execution_count": null,

View File

@@ -11,6 +11,15 @@
">It is a cloud-based project management solution for businesses of all sizes featuring communication and collaboration tools to help achieve organizational goals."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%pip install -qU langchain-community"
]
},
{
"cell_type": "code",
"execution_count": 1,

View File

@@ -45,6 +45,16 @@
"- You will get the answer from your knowledge as the response. \n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "bfe4510e",
"metadata": {},
"outputs": [],
"source": [
"%pip install -qU langchain-community"
]
},
{
"cell_type": "markdown",
"id": "1435b193",

View File

@@ -43,6 +43,15 @@
"You can see a LangSmith trace of this example [here](https://smith.langchain.com/public/4af5385a-afe9-46f6-8a53-57fe2d63c5bc/r)."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%pip install -qU langchain-community"
]
},
{
"cell_type": "code",
"execution_count": 1,

View File

@@ -12,6 +12,16 @@
"The high level idea is we will create a question-answering chain for each document, and then use that "
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "0dae50f1",
"metadata": {},
"outputs": [],
"source": [
"%pip install -qU langchain-community"
]
},
{
"cell_type": "code",
"execution_count": 1,

View File

@@ -60,7 +60,7 @@
},
"outputs": [],
"source": [
"%pip install --upgrade --quiet pygithub"
"%pip install --upgrade --quiet pygithub langchain-community"
]
},
{

View File

@@ -59,7 +59,7 @@
},
"outputs": [],
"source": [
"%pip install --upgrade --quiet python-gitlab"
"%pip install --upgrade --quiet python-gitlab langchain-community"
]
},
{

View File

@@ -34,6 +34,15 @@
"```"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%pip install -qU langchain-community"
]
},
{
"cell_type": "markdown",
"metadata": {},

View File

@@ -35,6 +35,20 @@
"%pip install --upgrade --quiet atlassian-python-api"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "e84d425c",
"metadata": {
"vscode": {
"languageId": "shellscript"
}
},
"outputs": [],
"source": [
"%pip install -qU langchain-community"
]
},
{
"cell_type": "code",
"execution_count": 2,

View File

@@ -15,6 +15,16 @@
"We will use the JSON agent to answer some questions about the API spec."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "dc11cb15",
"metadata": {},
"outputs": [],
"source": [
"%pip install -qU langchain-community"
]
},
{
"cell_type": "markdown",
"id": "893f90fd-f8f6-470a-a76d-1f200ba02e2f",

Some files were not shown because too many files have changed in this diff Show More