Compare commits

...

121 Commits

Author SHA1 Message Date
Mason Daugherty
e98fc34203 Merge branch 'cc/1.0/standard_content' into mdrxy/invocation-version 2025-08-19 10:11:37 -04:00
Mason Daugherty
43b9d3d904 feat(core): implement dynamic translator registration for model providers (#32602)
Extensible registry system for translating AI message content blocks
from various model providers. Refactors the way provider-specific
content is handled, moving from hardcoded logic to a plugin-like
architecture.
2025-08-19 10:08:56 -04:00
Mason Daugherty
27d81cf3d9 test(openai): address some type issues in tests (#32601)
nits
2025-08-19 00:28:35 -04:00
Mason Daugherty
313ed7b401 Merge branch 'wip-v1.0' into cc/1.0/standard_content 2025-08-19 00:11:18 -04:00
Mason Daugherty
f0f1e28473 Merge branch 'master' of github.com:langchain-ai/langchain into wip-v1.0 2025-08-18 23:30:10 -04:00
Mason Daugherty
d204f0dd55 feat(infra): add skip-preview tag check in Vercel deployment script (#32600)
Having vercel attempt to deploy on each commit (even if unrelated to
docs) was getting annoying. Options:

- `[skip-preview]`
- `[no-preview]`
- `[skip-deploy]`

Full example: `fix(core): resolve memory leak [no-preview]`
2025-08-18 17:33:27 -04:00
Mason Daugherty
0e6c172893 refactor(core): prefixes, again (#32599)
Put in `core.utils` this time to prevent other circular import issues
present in the `normalize()` rfc:

`base` imports `content`
`content` imports `ensure_id()` from `base`
2025-08-18 17:24:57 -04:00
Mason Daugherty
8ee0cbba3c refactor(core): prefixes (#32597)
re: #32589 cc: @ccurme
- Rename namespace: `messages.content_blocks` -> `messages.content`
- Prefixes and ID logic are now in `messages.common` instead of
`AIMessage` since the logic is shared between messages and message
content. Did this instead of `utils` due to circular import problems
that were hairy
2025-08-18 16:33:12 -04:00
Mohammad Mohtashim
00259b0061 fix(deepseek): Deep Seek Model for LS Tracing (#32575)
- **Description:** Fix for LS Tracing for Provider for DeepSeek.
  - **Issue:** #32484

---------

Co-authored-by: Mason Daugherty <mason@langchain.dev>
2025-08-18 18:48:30 +00:00
Mohammad Mohtashim
4fb1132e30 docs: Classification Notebook Update (#32357)
- **Description:** Updating the Classification notebook which was raised
[here](https://github.com/langchain-ai/langchain/issues/32354)
- **Issue:** Fixes #32354

---------

Co-authored-by: Mason Daugherty <github@mdrxy.com>
2025-08-18 18:45:03 +00:00
Mason Daugherty
a6690eb9fd release(anthropic): 0.3.19 (#32595) 2025-08-18 14:25:03 -04:00
Mason Daugherty
f69f9598f5 chore: update references to use the latest version of Claude-3.5 Sonnet (#32594) 2025-08-18 14:11:15 -04:00
Mason Daugherty
8d0fb2d04b fix(anthropic): correct input_token count for streaming (#32591)
* Create usage metadata on
[`message_delta`](https://docs.anthropic.com/en/docs/build-with-claude/streaming#event-types)
instead of at the beginning. Consequently, token counts are not included
during streaming but instead at the end. This allows for accurate
reporting of server-side tool usage (important for billing)
* Add some clarifying comments
* Fix some outstanding Pylance warnings
* Remove unnecessary `text` popping in thinking blocks
* Also now correctly reports `input_cache_read`/`input_cache_creation`
as a result
2025-08-18 17:51:47 +00:00
Mason Daugherty
8042b04da6 fix(anthropic): clean up null file_id fields in citations during message formatting (#32592)
When citations are returned from streaming, they include a `file_id:
null` field in their `content_block_location` structure.

When these citations are passed back to the API in subsequent messages,
the API rejects them with "Extra inputs are not permitted" for the
`file_id` field.
2025-08-18 13:01:52 -04:00
ccurme
4790c7265a feat(core): lazy-load standard content (#32570) 2025-08-18 10:30:49 -04:00
Daehwi Kim
fb74265175 fix(docs): update LangGraph guides link and add JS how-to link (#32583)
**Description:**  
Corrected LangGraph documentation link (changed to “guides”), and added
a link to LangGraph JS how-to guides for clarity.

**Issue:**  
N/A  

**Dependencies:**  
None

---------

Co-authored-by: Mason Daugherty <mason@langchain.dev>
2025-08-18 14:27:37 +00:00
Oresztesz Margaritisz
21b61aaf9a fix(docs): Using appropriate argument name in ToolNode for error handling (#32586)
The appropriate `ToolNode` attribute for error handling is called
`handle_tool_errors` instead of `handle_tool_error`.

For further info see [ToolNode source code in
LangGraph](https://github.com/langchain-ai/langgraph/blob/main/libs/prebuilt/langgraph/prebuilt/tool_node.py#L255)

**Twitter handle:** gitaroktato

- [x] **Add tests and docs**: If you're adding a new integration, you
must include:
1. A test for the integration, preferably unit tests that do not rely on
network access,
2. An example notebook showing its use. It lives in
`docs/docs/integrations` directory.

- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. **We will not consider
a PR unless these three are passing in CI.** See [contribution
guidelines](https://python.langchain.com/docs/contributing/) for more.

Additional guidelines:

- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to `pyproject.toml` files (even
optional ones) unless they are **required** for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
2025-08-18 10:12:10 -04:00
Keyu Chen
03138f41a0 feat(text-splitters): add optional custom header pattern support (#31887)
## Description

This PR adds support for custom header patterns in
`MarkdownHeaderTextSplitter`, allowing users to define non-standard
Markdown header formats (like `**Header**`) and specify their hierarchy
levels.

**Issue:** Fixes #22738

**Dependencies:** None - this change has no new dependencies

**Key Changes:**
- Added optional `custom_header_patterns` parameter to support
non-standard header formats
- Enable splitting on patterns like `**Header**` and `***Header***`
- Maintain full backward compatibility with existing usage
- Added comprehensive tests for custom and mixed header scenarios

## Example Usage

```python
from langchain_text_splitters import MarkdownHeaderTextSplitter

headers_to_split_on = [
    ("**", "Chapter"),
    ("***", "Section"),
]

custom_header_patterns = {
    "**": 1,   # Level 1 headers
    "***": 2,  # Level 2 headers
}

splitter = MarkdownHeaderTextSplitter(
    headers_to_split_on=headers_to_split_on,
    custom_header_patterns=custom_header_patterns,
)

# Now **Chapter 1** is treated as a level 1 header
# And ***Section 1.1*** is treated as a level 2 header
```

## Testing

-  Added unit tests for custom header patterns
-  Added tests for mixed standard and custom headers
-  All existing tests pass (backward compatibility maintained)
-  Linting and formatting checks pass

---

The implementation provides a flexible solution while maintaining the
simplicity of the existing API. Users can continue using the splitter
exactly as before, with the new functionality being entirely opt-in
through the `custom_header_patterns` parameter.

---------

Co-authored-by: Mason Daugherty <mason@langchain.dev>
Co-authored-by: Claude <noreply@anthropic.com>
2025-08-18 10:10:49 -04:00
ccurme
aeea0e3ff8 fix(langchain): fix tests on standard content branch (#32590) 2025-08-18 09:49:01 -04:00
Mason Daugherty
fd891ee3d4 revert(anthropic): streaming token counting to defer input tokens until completion (#32587)
Reverts langchain-ai/langchain#32518
2025-08-18 09:48:33 -04:00
ccurme
aca7c1fe6a fix(core): temporarily fix tests (#32589) 2025-08-18 09:45:06 -04:00
ccurme
b8cdbc4eca fix(anthropic): sanitize tool use block when taking directly from content (#32574) 2025-08-18 09:06:57 -04:00
Christophe Bornet
791d309c06 chore(langchain): add mypy warn_unreachable setting (#32529)
See
https://mypy.readthedocs.io/en/stable/config_file.html#confval-warn_unreachable

---------

Co-authored-by: Mason Daugherty <github@mdrxy.com>
2025-08-15 23:03:53 +00:00
Mason Daugherty
d3d23e2372 fix(anthropic): streaming token counting to defer input tokens until completion (#32518)
Supersedes #32461

Fixed incorrect input token reporting during streaming when tools are
used. Previously, input tokens were counted at `message_start` before
tool execution, leading to inaccurate counts. Now input tokens are
properly deferred until `message_delta` (completion), aligning with
Anthropic's billing model and SDK expectations.

**Before Fix:**
- Streaming with tools: Input tokens = 0 
- Non-streaming with tools: Input tokens = 472 

**After Fix:**
- Streaming with tools: Input tokens = 472 
- Non-streaming with tools: Input tokens = 472 

Aligns with Anthropic's SDK expectations. The SDK handles input token
updates in `message_delta` events:

```python
# https://github.com/anthropics/anthropic-sdk-python/blob/main/src/anthropic/lib/streaming/_messages.py
if event.usage.input_tokens is not None:
      current_snapshot.usage.input_tokens = event.usage.input_tokens
```
2025-08-15 17:49:46 -04:00
Mason Daugherty
2375c3a4d0 add note 2025-08-15 16:39:36 -04:00
Mason Daugherty
0199b56bda rfc test_utils to make clearer what was existing before and after, and add comments 2025-08-15 16:37:39 -04:00
Mason Daugherty
00345c4de9 tests: add more data content block tests 2025-08-15 16:28:46 -04:00
Mason Daugherty
7f9727ee08 refactor: is_data_content_block 2025-08-15 16:28:33 -04:00
Mason Daugherty
08cd5bb9b4 clarify intent of extras under data blocks 2025-08-15 16:27:47 -04:00
Mason Daugherty
987031f86c fix: _LC_ID_PREFIX back 2025-08-15 16:27:08 -04:00
Mason Daugherty
7a8c6398a4 clarify: meaning of provider 2025-08-15 16:01:29 -04:00
Mason Daugherty
f691dc348f refactor: make ensure_id public 2025-08-15 15:42:17 -04:00
Mason Daugherty
86252d2ae6 refactor: move ID prefixes 2025-08-15 15:39:36 -04:00
Mason Daugherty
8bd2403518 fix: increase max_tokens limit to 64000 re: Anthropic dynamic tokens 2025-08-15 15:34:54 -04:00
Mason Daugherty
4dd9110424 Merge branch 'master' into wip-v1.0 2025-08-15 15:32:21 -04:00
Mason Daugherty
8fc1973bbf test: add note about for tuple conversion in ToolMessage 2025-08-15 15:30:51 -04:00
Mason Daugherty
a3b20b0ef5 clean up id test 2025-08-15 15:28:11 -04:00
Mason Daugherty
301a425151 snapshot 2025-08-15 15:16:07 -04:00
Mason Daugherty
3db8c60112 chore: more content block formatting 2025-08-15 15:01:07 -04:00
Mason Daugherty
8d110599cb chore: more content block docstring formatting 2025-08-15 14:39:13 -04:00
Mason Daugherty
c9e847fcb8 chore: format output_version docstring 2025-08-15 14:33:59 -04:00
Mohammad Mohtashim
174e685139 feat(anthropic): dynamic mapping of Max Tokens for Anthropic (#31946)
- **Description:** Dynamic mapping of `max_tokens` as per the choosen
anthropic model.
- **Issue:** Fixes #31605

@ccurme

---------

Co-authored-by: Caspar Broekhuizen <caspar@langchain.dev>
Co-authored-by: Mason Daugherty <mason@langchain.dev>
2025-08-15 11:33:51 -07:00
Mason Daugherty
601fa7d672 Merge branch 'wip-v1.0' into cc/1.0/standard_content 2025-08-15 14:31:50 -04:00
Mason Daugherty
7e39cd18c5 feat: allow kwargs on content block factories (#32568) 2025-08-15 14:30:32 -04:00
Mason Daugherty
2f32c444b8 docs: add details on message IDs and their assignment process (#32534) 2025-08-15 18:22:28 +00:00
Mason Daugherty
9721684501 Merge branch 'master' into wip-v1.0 2025-08-15 14:06:34 -04:00
Mason Daugherty
a4e135b508 fix: use .get() on image URL in ImagePromptValue.to_string() 2025-08-15 13:57:50 -04:00
Mason Daugherty
d111965448 Merge branch 'wip-v1.0' into cc/1.0/standard_content 2025-08-15 13:35:57 -04:00
Mason Daugherty
fe740a9397 fix(docs): chatbot.ipynb trimming regression (#32561)
Supersedes #32544

Changes to the `trimmer` behavior resulted in the call `"What math
problem was asked?"` to no longer see the relevant query due to the
number of the queries' tokens. Adjusted to not trigger trimming the
relevant part of the message history. Also, add print to the trimmer to
increase observability on what is leaving the context window.

Add note to trimming tut & format links as inline
2025-08-15 14:47:22 +00:00
Rostyslav Borovyk
b2b835cb36 docs(docs): add Oxylabs document loader (#32429)
Thank you for contributing to LangChain! Follow these steps to mark your
pull request as ready for review. **If any of these steps are not
completed, your PR will not be considered for review.**

- [x] **PR title**: Follows the format: {TYPE}({SCOPE}): {DESCRIPTION}
  - Examples:
    - feat(core): add multi-tenant support
    - fix(cli): resolve flag parsing error
    - docs(openai): update API usage examples
  - Allowed `{TYPE}` values:
- feat, fix, docs, style, refactor, perf, test, build, ci, chore,
revert, release
  - Allowed `{SCOPE}` values (optional):
- core, cli, langchain, standard-tests, docs, anthropic, chroma,
deepseek, exa, fireworks, groq, huggingface, mistralai, nomic, ollama,
openai, perplexity, prompty, qdrant, xai
  - Note: the `{DESCRIPTION}` must not start with an uppercase letter.
- Once you've written the title, please delete this checklist item; do
not include it in the PR.

- [x] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** a description of the change. Include a [closing
keyword](https://docs.github.com/en/issues/tracking-your-work-with-issues/using-issues/linking-a-pull-request-to-an-issue#linking-a-pull-request-to-an-issue-using-a-keyword)
if applicable to a relevant issue.
  - **Issue:** the issue # it fixes, if applicable (e.g. Fixes #123)
  - **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!

- [x] **Add tests and docs**: If you're adding a new integration, you
must include:
1. A test for the integration, preferably unit tests that do not rely on
network access,
2. An example notebook showing its use. It lives in
`docs/docs/integrations` directory.

- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. **We will not consider
a PR unless these three are passing in CI.** See [contribution
guidelines](https://python.langchain.com/docs/contributing/) for more.

Additional guidelines:

- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to `pyproject.toml` files (even
optional ones) unless they are **required** for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.

---------

Co-authored-by: Mason Daugherty <github@mdrxy.com>
2025-08-15 10:46:26 -04:00
Christophe Bornet
4656f727da chore(text-splitters): add mypy warn_unreachable (#32558) 2025-08-15 09:45:20 -04:00
Mason Daugherty
34800332bf chore: update integrations table (#32556)
Enhance the integrations table by adding the `js:
'@langchain/community'` reference for several packages and updating the
titles of specific integrations to avoid improper capitalization
2025-08-14 22:37:36 -04:00
Mason Daugherty
06ba80ff68 docs: formatting Tavily (#32555) 2025-08-14 23:41:37 +00:00
Mason Daugherty
2bd8096faa docs: add pre-commit setup instructions to the dev setup guide (#32553) 2025-08-14 20:35:57 +00:00
Mason Daugherty
a0331285d7 fix(core): Support no-args tools by defaulting args to empty dict (#32530)
Supersedes #32408

Description:  
This PR ensures that tool calls without explicitly provided `args` will
default to an empty dictionary (`{}`), allowing tools with no parameters
(e.g. `def foo() -> str`) to be registered and invoked without
validation errors. This change improves compatibility with agent
frameworks that may omit the `args` field when generating tool calls.

Issue:  
See
[langgraph#5722](https://github.com/langchain-ai/langgraph/issues/5722)
–
LangGraph currently emits tool calls without `args`, which leads to
validation errors
when tools with no parameters are invoked. This PR ensures compatibility
by defaulting
`args` to `{}` when missing.

Dependencies:  
None

---------

Thank you for contributing to LangChain! Follow these steps to mark your
pull request as ready for review. **If any of these steps are not
completed, your PR will not be considered for review.**

- [ ] **PR title**: Follows the format: {TYPE}({SCOPE}): {DESCRIPTION}
  - Examples:
    - feat(core): add multi-tenant support
    - fix(cli): resolve flag parsing error
    - docs(openai): update API usage examples
  - Allowed `{TYPE}` values:
- feat, fix, docs, style, refactor, perf, test, build, ci, chore,
revert, release
  - Allowed `{SCOPE}` values (optional):
- core, cli, langchain, standard-tests, docs, anthropic, chroma,
deepseek, exa, fireworks, groq, huggingface, mistralai, nomic, ollama,
openai, perplexity, prompty, qdrant, xai
  - Note: the `{DESCRIPTION}` must not start with an uppercase letter.
- Once you've written the title, please delete this checklist item; do
not include it in the PR.

- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** a description of the change. Include a [closing
keyword](https://docs.github.com/en/issues/tracking-your-work-with-issues/using-issues/linking-a-pull-request-to-an-issue#linking-a-pull-request-to-an-issue-using-a-keyword)
if applicable to a relevant issue.
  - **Issue:** the issue # it fixes, if applicable (e.g. Fixes #123)
  - **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!

- [ ] **Add tests and docs**: If you're adding a new integration, you
must include:
1. A test for the integration, preferably unit tests that do not rely on
network access,
2. An example notebook showing its use. It lives in
`docs/docs/integrations` directory.

- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. **We will not consider
a PR unless these three are passing in CI.** See [contribution
guidelines](https://python.langchain.com/docs/contributing/) for more.

Additional guidelines:

- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to `pyproject.toml` files (even
optional ones) unless they are **required** for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.

---------

Signed-off-by: jitokim <pigberger70@gmail.com>
Co-authored-by: jito <pigberger70@gmail.com>
Co-authored-by: Copilot <175728472+Copilot@users.noreply.github.com>
2025-08-14 20:28:36 +00:00
Mason Daugherty
8f68a08528 chore: add Chat LangChain to README.md (#32545) 2025-08-14 16:15:27 -04:00
Lauren Hirata Singh
71651c4a11 docs: update banner (#32552) 2025-08-14 10:54:29 -07:00
Lauren Hirata Singh
44ec1f32b2 docs: banner for academy course (#32550)
Publish at 10AM PT
2025-08-14 10:05:00 -07:00
Yoon
0c81499243 docs(ollama): update API usage examples (#32547)
**Description**  
Corrected a typo in the Ollama chatbot example output in  
`docs/docs/integrations/chat/ollama.ipynb` where `"got-oss"` was  
mistakenly used instead of `"gpt-oss"`.

No functional changes to code; documentation-only update.  
All notebook outputs were cleared to keep the diff minimal.

**Issue**  
N/A

**Dependencies**  
None

**Twitter handle**  
N/A
2025-08-14 12:57:38 -04:00
Chester Curme
624300cefa core: populate tool_call_chunks in content_blocks 2025-08-14 10:06:33 -04:00
Chester Curme
0aac20e655 openai: tool calls in progress 2025-08-14 09:55:20 -04:00
Mason Daugherty
2c9cfa8817 . 2025-08-14 03:56:35 -04:00
Mason Daugherty
397cd89988 docs: update outdated README.md content (#32540) 2025-08-13 22:19:38 +00:00
Chester Curme
153db48c92 openai: misc fixes for computer calls and custom tools 2025-08-13 15:32:02 -04:00
Mason Daugherty
527d62de3a fix: defaults 2025-08-13 15:00:45 -04:00
Mason Daugherty
80c595d7da feat(core): add output_version parameter to chat model methods 2025-08-13 14:48:54 -04:00
mishraravibhushan
db438d8dcc docs(docs): fixed additional grammar and style issues in how-to index (#32533)
- Fix 'few shot' → 'few-shot' (add hyphen for consistency)
- Fix 'over the database' → 'over a database' (add missing article)
- Fix 'run time' → 'runtime' (more consistent terminology)
- Fix 'in-sync' → 'in sync' (remove unnecessary hyphen)
2025-08-13 14:10:58 -04:00
Chester Curme
803d19f31e Merge branch 'wip-v1.0' into cc/1.0/standard_content 2025-08-13 11:33:31 -04:00
Chester Curme
2f604eb9a0 openai: carry over refusals fix 2025-08-13 11:23:54 -04:00
Chester Curme
3ae37b5987 openai: integration tests pass 2025-08-13 11:12:46 -04:00
RecallIO
4f71c35eb0 docs(docs): Add RecallIO.AI as a memory provider (#32331)
Add requested files to add RecallIO as a memory provider.

---------

Co-authored-by: Frey <gfreyburger@gmail.com>
Co-authored-by: Mason Daugherty <mason@langchain.dev>
2025-08-13 15:09:56 +00:00
Mason Daugherty
156ae2e69b fix(docs): resolve langchain-azure-ai conflict with langchain-core (#32528) 2025-08-13 14:47:23 +00:00
Shenghang Tsai
f4f919768e docs(langchain): create SiliconFlow provider entry (#32342)
SiliconFlow's provider integration will be maintained at
https://github.com/siliconflow/langchain-siliconflow
This PR introduce the basic instruction to make use of the pip package
2025-08-13 10:41:23 -04:00
Mason Daugherty
7932e1edd1 feat(docs): clarify structured output with tools ordering (#32527) 2025-08-13 10:40:48 -04:00
Chester Curme
0c7294f608 openai: pull in responses api integration tests from 0.4 branch 2025-08-13 10:08:37 -04:00
Mason Daugherty
024422e9b0 chore: update to use new LGP docs url (#32522) 2025-08-13 03:38:39 +00:00
Mason Daugherty
d52036accc chore: update README.md to use pepy downloads badge (#32521) 2025-08-13 03:23:11 +00:00
Mason Daugherty
5b701b5189 fix(tests): add anthropic_proxy to configurable test parameters (for v1) 2025-08-12 18:33:21 -04:00
Mason Daugherty
8848b3e018 fix(tests): add anthropic_proxy to configurable test parameters 2025-08-12 18:27:35 -04:00
Chester Curme
5c961ca4f6 update test_base 2025-08-12 18:10:20 -04:00
Chester Curme
c0e4361192 core: populate tool_calls when initializing AIMessage via content_blocks 2025-08-12 18:03:19 -04:00
Chester Curme
c1d65a7d7f x 2025-08-12 18:00:14 -04:00
Mason Daugherty
80068432ed chore(core): bump lock 2025-08-12 17:32:24 -04:00
Jack
b9dcce95be fix(anthropic): Add proxy (#32409)
Thank you for contributing to LangChain! Follow these steps to mark your
pull request as ready for review. **If any of these steps are not
completed, your PR will not be considered for review.**

- [x] **PR title**: Follows the format: {TYPE}({SCOPE}): {DESCRIPTION}
- [x] **PR message**: ***Delete this entire checklist*** and replace
with
fix #30146
- [x] **Add tests and docs**: If you're adding a new integration, you
must include:
- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. **We will not consider
a PR unless these three are passing in CI.** See [contribution
guidelines](https://python.langchain.com/docs/contributing/) for more.

Additional guidelines:

- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to `pyproject.toml` files (even
optional ones) unless they are **required** for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.

---------

Co-authored-by: Mason Daugherty <mason@langchain.dev>
Co-authored-by: Mason Daugherty <github@mdrxy.com>
2025-08-12 21:21:26 +00:00
ccurme
be83ce74a7 feat(anthropic): support cache_control as a kwarg (#31523)
```python
from langchain_anthropic import ChatAnthropic

llm = ChatAnthropic(model="claude-3-5-haiku-latest")
caching_llm = llm.bind(cache_control={"type": "ephemeral"})

caching_llm.invoke(
    [
        HumanMessage("..."),
        AIMessage("..."),
        HumanMessage("..."),  # <-- final message / content block gets cache annotation
    ]
)
```
Potentially useful given's Anthropic's [incremental
caching](https://docs.anthropic.com/en/docs/build-with-claude/prompt-caching#continuing-a-multi-turn-conversation)
capabilities:
> During each turn, we mark the final block of the final message with
cache_control so the conversation can be incrementally cached. The
system will automatically lookup and use the longest previously cached
prefix for follow-up messages.

---------

Co-authored-by: Mason Daugherty <mason@langchain.dev>
Co-authored-by: Mason Daugherty <github@mdrxy.com>
2025-08-12 16:18:24 -04:00
Mason Daugherty
1167e7458e fix(anthropic): update test model names and adjust token count assertions in integration tests (#32422) 2025-08-12 19:39:35 +00:00
Mason Daugherty
d5fd0bca35 docs(anthropic): add documentation for extended context windows in Claude Sonnet 4 (#32517) 2025-08-12 19:16:26 +00:00
Chester Curme
3ae7535f42 openai: pull in _compat from 0.4 branch 2025-08-12 15:15:57 -04:00
Chester Curme
6eaa17205c implement output_version on BaseChatModel 2025-08-12 15:04:21 -04:00
Narasimha Badrinath
30d646b576 docs(docs): remove redundant integration details from ChatGradient page. (#32514)
This commit removes redundant integration info from details page,
additionally, changing reference from "DigitalOcean GradientAI" to
"DigitalOcean Gradient™ AI" and updating the setup instructions
accordingly.
2025-08-12 16:14:18 +00:00
Mason Daugherty
262c83763f release(openai): 0.3.30 (#32515) 2025-08-12 16:06:17 +00:00
Mason Daugherty
0024dffa68 feat(openai): officially support verbosity (#32470) 2025-08-12 16:00:30 +00:00
Brody
98797f367a docs: fix broken links (#32513)
**Description:**

Two broken links were reported by another LangChain employee. This PR
fixes those links.

Fixed and tested locally.
  
**Dependencies:**

None
2025-08-12 15:55:37 +00:00
Christophe Bornet
1563099f3f chore(langchain): select ALL rules with exclusions (#31930)
Co-authored-by: Mason Daugherty <mason@langchain.dev>
2025-08-12 11:51:31 -04:00
Chester Curme
98d5f469e3 Revert "start on duplicate content"
This reverts commit 0ddab9ff20.
2025-08-12 11:00:02 -04:00
Chester Curme
0ddab9ff20 start on duplicate content 2025-08-12 10:59:50 -04:00
Chester Curme
91b2bb3417 Merge branch 'wip-v1.0' into cc/1.0/standard_content 2025-08-12 08:56:15 -04:00
rishiraj
7f259863e1 feat(docs): add truefoundry ai gateway (#32362)
This PR adds documentation for integrating [TrueFoundry’s AI
Gateway](https://www.truefoundry.com/ai-gateway) with Langfuse using the
Langraph OpenAI SDK.
The integration sends requests through TrueFoundry’s AI Gateway for
unified governance, observability, and routing, while Langraph runs on
the client side to capture execution traces and telemetry.
- Issue: N/A
- Dependencies: None
- Twitter - https://x.com/truefoundry


tests - Not applicable

---------

Co-authored-by: Mason Daugherty <mason@langchain.dev>
Co-authored-by: Mason Daugherty <github@mdrxy.com>
Co-authored-by: Copilot <175728472+Copilot@users.noreply.github.com>
2025-08-12 02:26:45 +00:00
Mason Daugherty
c8df6c7ec9 chore: update CONTRIBUTING.md to more clearly mention forum (#32509) 2025-08-11 23:02:21 +00:00
Christophe Bornet
cf2b4bbe09 chore(cli): select ALL rules with exclusions (#31936)
Co-authored-by: Mason Daugherty <mason@langchain.dev>
2025-08-11 22:43:11 +00:00
Christophe Bornet
09a616fe85 chore(standard-tests): add ruff rules D (#32347)
See https://docs.astral.sh/ruff/rules/#pydocstyle-d

Co-authored-by: Mason Daugherty <mason@langchain.dev>
2025-08-11 22:26:11 +00:00
Christophe Bornet
46bbd52e81 chore(cli): add ruff rules D1 (#32350)
Co-authored-by: Mason Daugherty <mason@langchain.dev>
2025-08-11 22:25:30 +00:00
Christophe Bornet
8b663ed6c6 chore(text-splitters): bump mypy version to 1.17 (#32387)
Co-authored-by: Mason Daugherty <mason@langchain.dev>
2025-08-11 22:24:49 +00:00
Anderson
166c027434 docs: add scrapeless integration documentation (#32081)
Thank you for contributing to LangChain! 
- [x] **PR title**: "package: description"
- Where "package" is whichever of langchain, core, etc. is being
modified. Use "docs: ..." for purely docs changes, "infra: ..." for CI
changes.
  - Example: "core: add foobar LLM"

- **Description:** Integrated the Scrapeless package to enable Langchain
users to seamlessly incorporate Scrapeless into their agents.
- **Dependencies:** None
- **Twitter handle:** [Scrapelessteam](https://x.com/Scrapelessteam)

- [x] **Add tests and docs**: If you're adding a new integration, you
must include:
1. A test for the integration, preferably unit tests that do not rely on
network access,
2. An example notebook showing its use. It lives in
`docs/docs/integrations` directory.

- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See [contribution
guidelines](https://python.langchain.com/docs/contributing/) for more.

Additional guidelines:

- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to `pyproject.toml` files (even
optional ones) unless they are **required** for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.

---------

Co-authored-by: Mason Daugherty <mason@langchain.dev>
Co-authored-by: Mason Daugherty <github@mdrxy.com>
2025-08-11 22:16:15 +00:00
Chester Curme
8426db47f1 update init on HumanMessage, SystemMessage, ToolMessage 2025-08-11 18:09:04 -04:00
GDanksAnchor
4a2a3fcd43 docs: add anchorbrowser (#32494)
# Description

This PR updates the docs for the
[langchain-anchorbrowser](https://pypi.org/project/langchain-anchorbrowser/)
package. It adds a few tools

[Anchor Browser](https://anchorbrowser.io/?utm=langchain) is the
platform for AI Agentic browser automation, which solves the challenge
of automating workflows for web applications that lack APIs or have
limited API coverage. It simplifies the creation, deployment, and
management of browser-based automations, transforming complex web
interactions into simple API endpoints.

---------

Co-authored-by: Mason Daugherty <mason@langchain.dev>
Co-authored-by: Mason Daugherty <github@mdrxy.com>
2025-08-11 21:48:10 +00:00
Anubhav Dhawan
d46dcf4a60 docs: add Google partner guide for MCP Toolbox (#32356)
This PR introduces a new Google partner guide for MCP Toolbox. The
primary goal of this new documentation is to enhance the discoverability
of MCP Toolbox for developers working within the Google ecosystem,
providing them with a clear and direct path to using our tools.

> [!IMPORTANT]
> This PR contains link to a page which is added in #32344. This will
cause deployment failure until that PR is merged.

---------

Co-authored-by: Mason Daugherty <mason@langchain.dev>
Co-authored-by: Mason Daugherty <github@mdrxy.com>
2025-08-11 21:34:12 +00:00
William Espegren
d2ac3b375c fix(docs): add Spider as a webpage loader (#32453)
[Spider](https://spider.cloud/) is a webpage loader and should be listed
under the
["Webpages"](https://python.langchain.com/docs/integrations/document_loaders/#webpages)
table on the Document loaders page.

Twitter: https://x.com/WilliamEspegren

---------

Co-authored-by: Mason Daugherty <mason@langchain.dev>
2025-08-11 21:23:03 +00:00
Anubhav Dhawan
1e38fd2ce3 docs: add integration guide for MCP Toolbox (#32344)
This PR introduces a new integration guide for MCP Toolbox. The primary
goal of this new documentation is to enhance the discoverability of MCP
Toolbox for developers working within the LangChain ecosystem, providing
them with a clear and direct path to using our tools.

This approach was chosen to provide users with a practical, hands-on
example that they can easily follow.

> [!NOTE]
> The page added in this PR is linked to from a section in Google
partners page added in #32356.

---------

Co-authored-by: Lauren Hirata Singh <lauren@langchain.dev>
Co-authored-by: Mason Daugherty <github@mdrxy.com>
Co-authored-by: Mason Daugherty <mason@langchain.dev>
2025-08-11 21:03:38 +00:00
Chester Curme
1b9ec25755 update init on aimessage 2025-08-11 16:52:08 -04:00
Chester Curme
f8244b9108 type required on tool_call_chunk; keep messages.tool.ToolCallChunk 2025-08-11 16:33:48 -04:00
Yasien Dwieb
155e3740bc fix(docs): handle collection not found error on RAG tutorial when qdrant is selected as vectorStore (#32099)
In [Rag Part 1
Tutorial](https://python.langchain.com/docs/tutorials/rag/), when QDrant
vector store is selected, the sample code does not work
It fails with error  `ValueError: Collection test not found`

So, this fix is creating that collection and ensuring its dimension size
is matching the selection the embedding size of the selected LLM Model

---------

Co-authored-by: Mason Daugherty <mason@langchain.dev>
Co-authored-by: Mason Daugherty <github@mdrxy.com>
Co-authored-by: Copilot <175728472+Copilot@users.noreply.github.com>
2025-08-11 20:31:24 +00:00
Deepesh Dhakal
f9b4e501a8 fix(docs): update llamacpp.ipynb for installation options on Mac (#32341)
The previous code generated data invalid error.

---------

Co-authored-by: Mason Daugherty <mason@langchain.dev>
Co-authored-by: Mason Daugherty <github@mdrxy.com>
Co-authored-by: Copilot <175728472+Copilot@users.noreply.github.com>
2025-08-11 20:25:35 +00:00
prem-sagar123
5a50802c9a docs: update prompt_templates.mdx (#32405)
```messages_to_pass = [
    HumanMessage(content="What's the capital of France?"),
    AIMessage(content="The capital of France is Paris."),
    HumanMessage(content="And what about Germany?")
]
formatted_prompt = prompt_template.invoke({"msgs": messages_to_pass})
print(formatted_prompt)```

---------

Co-authored-by: Mason Daugherty <mason@langchain.dev>
Co-authored-by: Mason Daugherty <github@mdrxy.com>
2025-08-11 20:16:30 +00:00
Mohammad Mohtashim
9a7e66be60 docs: put standard-tests before other packages (#32424)
- **Description:** Moving `standard-tests` to main ordered section
- **Issue:** #32395

---------

Co-authored-by: Mason Daugherty <mason@langchain.dev>
2025-08-11 20:05:24 +00:00
Mason Daugherty
5597b277c5 feat(docs): add subsection on Tool Artifacts vs. Injected State (#32468)
Clarify the differences between tool artifacts and injected state in
LangChain and LangGraph
2025-08-11 19:53:33 +00:00
Soham Sharma
a1da5697c6 docs: clarify how to get LangSmith API key (#32402)
**Description:**
I've added a small clarification to the chatbot tutorial. The tutorial
mentions setting the `LANGSMITH_API_KEY`, but doesn't explain how a new
user can get the key from the website. This change adds a brief note to
guide them to the Settings page.

P.S. This is my first pull request, so I'm excited to learn and
contribute!

**Issue:**
N/A

**Dependencies:**
N/A

**Twitter handle:**
@sohamactive

Co-authored-by: Mason Daugherty <mason@langchain.dev>
2025-08-11 19:52:05 +00:00
Divyanshu Gupta
11a54b1f1a docs: clarify SystemMessage usage in LangGraph agent notebook (#32320) (#32346)
Closes #32320

This PR updates the `langgraph_agentic_rag.ipynb` notebook to clarify
that LangGraph does not automatically prepend a `SystemMessage`. A
markdown note and an inline Python comment have been added to guide
users to explicitly include a `SystemMessage` when needed.

This improves documentation for developers working with LangGraph-based
agents and avoids confusion about system-level behavior not being
applied.

---------

Co-authored-by: Mason Daugherty <mason@langchain.dev>
2025-08-11 19:49:42 +00:00
Mason Daugherty
5ccdcd7b7b feat(ollama): docs updates (#32507) 2025-08-11 15:39:44 -04:00
Chester Curme
54a3c5f85c x 2025-08-11 14:53:12 -04:00
Chester Curme
7090060b68 select changes from wip-v0.4/core 2025-08-11 14:52:58 -04:00
216 changed files with 12401 additions and 3332 deletions

View File

@@ -7,4 +7,4 @@ To learn how to contribute to LangChain, please follow the [contribution guide h
## New features
For new features, please start a new [discussion](https://forum.langchain.com/), where the maintainers will help with scoping out the necessary changes.
For new features, please start a new [discussion on our forum](https://forum.langchain.com/), where the maintainers will help with scoping out the necessary changes.

View File

@@ -9,15 +9,13 @@
</div>
[![Release Notes](https://img.shields.io/github/release/langchain-ai/langchain?style=flat-square)](https://github.com/langchain-ai/langchain/releases)
[![CI](https://github.com/langchain-ai/langchain/actions/workflows/check_diffs.yml/badge.svg)](https://github.com/langchain-ai/langchain/actions/workflows/check_diffs.yml)
[![PyPI - License](https://img.shields.io/pypi/l/langchain-core?style=flat-square)](https://opensource.org/licenses/MIT)
[![PyPI - Downloads](https://img.shields.io/pypi/dm/langchain-core?style=flat-square)](https://pypistats.org/packages/langchain-core)
[![PyPI - Downloads](https://img.shields.io/pepy/dt/langchain)](https://pypistats.org/packages/langchain-core)
[![GitHub star chart](https://img.shields.io/github/stars/langchain-ai/langchain?style=flat-square)](https://star-history.com/#langchain-ai/langchain)
[![Open Issues](https://img.shields.io/github/issues-raw/langchain-ai/langchain?style=flat-square)](https://github.com/langchain-ai/langchain/issues)
[![Open in Dev Containers](https://img.shields.io/static/v1?label=Dev%20Containers&message=Open&color=blue&logo=visualstudiocode&style=flat-square)](https://vscode.dev/redirect?url=vscode://ms-vscode-remote.remote-containers/cloneInVolume?url=https://github.com/langchain-ai/langchain)
[<img src="https://github.com/codespaces/badge.svg" alt="Open in Github Codespace" title="Open in Github Codespace" width="150" height="20">](https://codespaces.new/langchain-ai/langchain)
[![Twitter](https://img.shields.io/twitter/url/https/twitter.com/langchainai.svg?style=social&label=Follow%20%40LangChainAI)](https://twitter.com/langchainai)
[![CodSpeed Badge](https://img.shields.io/endpoint?url=https://codspeed.io/badge.json)](https://codspeed.io/langchain-ai/langchain)
[![Twitter](https://img.shields.io/twitter/url/https/twitter.com/langchainai.svg?style=social&label=Follow%20%40LangChainAI)](https://twitter.com/langchainai)
> [!NOTE]
> Looking for the JS/TS library? Check out [LangChain.js](https://github.com/langchain-ai/langchainjs).
@@ -68,7 +66,7 @@ reliably handle complex tasks with LangGraph, our low-level agent orchestration
framework. LangGraph offers customizable architecture, long-term memory, and
human-in-the-loop workflows — and is trusted in production by companies like LinkedIn,
Uber, Klarna, and GitLab.
- [LangGraph Platform](https://langchain-ai.github.io/langgraph/concepts/langgraph_platform/) - Deploy
- [LangGraph Platform](https://docs.langchain.com/langgraph-platform) - Deploy
and scale agents effortlessly with a purpose-built deployment platform for long
running, stateful workflows. Discover, reuse, configure, and share agents across
teams — and iterate quickly with visual prototyping in
@@ -85,3 +83,4 @@ concepts behind the LangChain framework.
- [LangChain Forum](https://forum.langchain.com/): Connect with the community and share all of your technical questions, ideas, and feedback.
- [API Reference](https://python.langchain.com/api_reference/): Detailed reference on
navigating base packages and integrations for LangChain.
- [Chat LangChain](https://chat.langchain.com/): Ask questions & chat with our documentation

View File

@@ -79,6 +79,17 @@
"tool_executor = ToolExecutor(tools)"
]
},
{
"cell_type": "markdown",
"id": "168152fc",
"metadata": {},
"source": [
"📘 **Note on `SystemMessage` usage with LangGraph-based agents**\n",
"\n",
"When constructing the `messages` list for an agent, you *must* manually include any `SystemMessage`s.\n",
"Unlike some agent executors in LangChain that set a default, LangGraph requires explicit inclusion."
]
},
{
"cell_type": "markdown",
"id": "fe6e8f78-1ef7-42ad-b2bf-835ed5850553",

View File

@@ -545,7 +545,14 @@ def _build_index(dirs: List[str]) -> None:
"ai21": "AI21",
"ibm": "IBM",
}
ordered = ["core", "langchain", "text-splitters", "community", "experimental"]
ordered = [
"core",
"langchain",
"text-splitters",
"community",
"experimental",
"standard-tests",
]
main_ = [dir_ for dir_ in ordered if dir_ in dirs]
integrations = sorted(dir_ for dir_ in dirs if dir_ not in main_)
doc = """# LangChain Python API Reference

View File

@@ -147,7 +147,7 @@ An `AIMessage` has the following attributes. The attributes which are **standard
| `tool_calls` | Standardized | Tool calls associated with the message. See [tool calling](/docs/concepts/tool_calling) for details. |
| `invalid_tool_calls` | Standardized | Tool calls with parsing errors associated with the message. See [tool calling](/docs/concepts/tool_calling) for details. |
| `usage_metadata` | Standardized | Usage metadata for a message, such as [token counts](/docs/concepts/tokens). See [Usage Metadata API Reference](https://python.langchain.com/api_reference/core/messages/langchain_core.messages.ai.UsageMetadata.html). |
| `id` | Standardized | An optional unique identifier for the message, ideally provided by the provider/model that created the message. |
| `id` | Standardized | An optional unique identifier for the message, ideally provided by the provider/model that created the message. See [Message IDs](#message-ids) for details. |
| `response_metadata` | Raw | Response metadata, e.g., response headers, logprobs, token counts. |
#### content
@@ -243,3 +243,37 @@ At the moment, the output of the model will be in terms of LangChain messages, s
need OpenAI format for the output as well.
The [convert_to_openai_messages](https://python.langchain.com/api_reference/core/messages/langchain_core.messages.utils.convert_to_openai_messages.html) utility function can be used to convert from LangChain messages to OpenAI format.
## Message IDs
LangChain messages include an optional `id` field that serves as a unique identifier. Understanding when and how these IDs are assigned can be helpful for debugging, tracing, and working with message history.
### When Messages Get IDs
Messages receive IDs in the following scenarios:
**Automatically assigned by LangChain:**
- When generated through chat model invocation (`.invoke()`, `.stream()`, `.astream()`) with an active run manager/tracing context
- IDs follow the format:
- `run-$RUN_ID` (e.g., `run-ba48f958-6402-41a5-b461-5e250a4ebd36-0`)
- `run-$RUN_ID-$IDX` (e.g., `run-ba48f958-6402-41a5-b461-5e250a4ebd36-1`) when there are multiple generations from a single chat model invocation.
**Provider-assigned IDs (highest priority):**
- When the model provider assigns its own ID to the message
- These take precedence over LangChain-generated run IDs
- Format varies by provider
### When Messages Don't Get IDs
Messages will **not** receive IDs in these situations:
- **Manual message creation**: Messages created directly (e.g., `AIMessage(content="hello")`) without going through chat models
- **No run manager context**: When there's no active callback/tracing infrastructure
### ID Priority System
LangChain follows a clear precedence system for message IDs:
1. **Provider-assigned IDs** (highest priority): IDs from the model provider
2. **LangChain run IDs** (medium priority): IDs starting with `run-`
3. **Manual IDs** (lowest priority): IDs explicitly set by users

View File

@@ -53,17 +53,29 @@ This is how you use MessagesPlaceholder.
```python
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
from langchain_core.messages import HumanMessage
from langchain_core.messages import HumanMessage, AIMessage
prompt_template = ChatPromptTemplate([
("system", "You are a helpful assistant"),
MessagesPlaceholder("msgs")
])
# Simple example with one message
prompt_template.invoke({"msgs": [HumanMessage(content="hi!")]})
# More complex example with conversation history
messages_to_pass = [
HumanMessage(content="What's the capital of France?"),
AIMessage(content="The capital of France is Paris."),
HumanMessage(content="And what about Germany?")
]
formatted_prompt = prompt_template.invoke({"msgs": messages_to_pass})
print(formatted_prompt)
```
This will produce a list of two messages, the first one being a system message, and the second one being the HumanMessage we passed in.
This will produce a list of four messages total: the system message plus the three messages we passed in (two HumanMessages and one AIMessage).
If we had passed in 5 messages, then it would have produced 6 messages in total (the system message plus the 5 passed in).
This is useful for letting a list of messages be slotted into a particular spot.

View File

@@ -29,6 +29,22 @@ model_with_structure = model.with_structured_output(schema)
structured_output = model_with_structure.invoke(user_input)
```
:::warning[Tool Order Matters]
When combining structured output with additional tools, bind tools **first**, then apply structured output:
```python
# Correct
model_with_tools = model.bind_tools([tool1, tool2])
structured_model = model_with_tools.with_structured_output(schema)
# Incorrect - will cause tool resolution errors
structured_model = model.with_structured_output(schema)
broken_model = structured_model.bind_tools([tool1, tool2])
```
:::
## Schema definition
The central concept is that the output structure of model responses needs to be represented in some way.

View File

@@ -171,6 +171,26 @@ Please see the [InjectedState](https://langchain-ai.github.io/langgraph/referenc
Please see the [InjectedStore](https://langchain-ai.github.io/langgraph/reference/prebuilt/#langgraph.prebuilt.tool_node.InjectedStore) documentation for more details.
## Tool Artifacts vs. Injected State
Although similar conceptually, tool artifacts in LangChain and [injected state in LangGraph](https://langchain-ai.github.io/langgraph/reference/agents/#langgraph.prebuilt.tool_node.InjectedState) serve different purposes and operate at different levels of abstraction.
**Tool Artifacts**
- **Purpose:** Store and pass data between tool executions within a single chain/workflow
- **Scope:** Limited to tool-to-tool communication
- **Lifecycle:** Tied to individual tool calls and their immediate context
- **Usage:** Temporary storage for intermediate results that tools need to share
**Injected State (LangGraph)**
- **Purpose:** Maintain persistent state across the entire graph execution
- **Scope:** Global to the entire graph workflow
- **Lifecycle:** Persists throughout the entire graph execution and can be saved/restored
- **Usage:** Long-term state management, conversation memory, user context, workflow checkpointing
Tool artifacts are ephemeral data passed between tools, while injected state is persistent workflow-level state that survives across multiple steps, tool calls, and even execution sessions in LangGraph.
## Best practices
When designing tools to be used by models, keep the following in mind:

View File

@@ -223,6 +223,49 @@ If codespell is incorrectly flagging a word, you can skip spellcheck for that wo
ignore-words-list = 'momento,collison,ned,foor,reworkd,parth,whats,aapply,mysogyny,unsecure'
```
### Pre-commit
We use [pre-commit](https://pre-commit.com/) to ensure commits are formatted/linted.
#### Installing Pre-commit
First, install pre-commit:
```bash
# Option 1: Using uv (recommended)
uv tool install pre-commit
# Option 2: Using Homebrew (globally for macOS/Linux)
brew install pre-commit
# Option 3: Using pip
pip install pre-commit
```
Then install the git hook scripts:
```bash
pre-commit install
```
#### How Pre-commit Works
Once installed, pre-commit will automatically run on every `git commit`. Hooks are specified in `.pre-commit-config.yaml` and will:
- Format code using `ruff` for the specific library/package you're modifying
- Only run on files that have changed
- Prevent commits if formatting fails
#### Skipping Pre-commit
In exceptional cases, you can skip pre-commit hooks with:
```bash
git commit --no-verify
```
However, this is discouraged as the CI system will still enforce the same formatting rules.
## Working with optional dependencies
`langchain`, `langchain-community`, and `langchain-experimental` rely on optional dependencies to keep these packages lightweight.

View File

@@ -159,7 +159,7 @@
},
{
"cell_type": "code",
"execution_count": 8,
"execution_count": null,
"id": "321e3036-abd2-4e1f-bcc6-606efd036954",
"metadata": {
"execution": {
@@ -183,7 +183,7 @@
],
"source": [
"configurable_model.invoke(\n",
" \"what's your name\", config={\"configurable\": {\"model\": \"claude-3-5-sonnet-20240620\"}}\n",
" \"what's your name\", config={\"configurable\": {\"model\": \"claude-3-5-sonnet-latest\"}}\n",
")"
]
},
@@ -234,7 +234,7 @@
},
{
"cell_type": "code",
"execution_count": 7,
"execution_count": null,
"id": "6c8755ba-c001-4f5a-a497-be3f1db83244",
"metadata": {
"execution": {
@@ -261,7 +261,7 @@
" \"what's your name\",\n",
" config={\n",
" \"configurable\": {\n",
" \"first_model\": \"claude-3-5-sonnet-20240620\",\n",
" \"first_model\": \"claude-3-5-sonnet-latest\",\n",
" \"first_temperature\": 0.5,\n",
" \"first_max_tokens\": 100,\n",
" }\n",
@@ -336,7 +336,7 @@
},
{
"cell_type": "code",
"execution_count": 9,
"execution_count": null,
"id": "e57dfe9f-cd24-4e37-9ce9-ccf8daf78f89",
"metadata": {
"execution": {
@@ -368,14 +368,14 @@
"source": [
"llm_with_tools.invoke(\n",
" \"what's bigger in 2024 LA or NYC\",\n",
" config={\"configurable\": {\"model\": \"claude-3-5-sonnet-20240620\"}},\n",
" config={\"configurable\": {\"model\": \"claude-3-5-sonnet-latest\"}},\n",
").tool_calls"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "langchain",
"display_name": "langchain-monorepo",
"language": "python",
"name": "python3"
},
@@ -389,7 +389,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.16"
"version": "3.12.11"
}
},
"nbformat": 4,

View File

@@ -741,13 +741,13 @@
"\n",
"If you're using tools with agents, you will likely need an error handling strategy, so the agent can recover from the error and continue execution.\n",
"\n",
"A simple strategy is to throw a `ToolException` from inside the tool and specify an error handler using `handle_tool_error`. \n",
"A simple strategy is to throw a `ToolException` from inside the tool and specify an error handler using `handle_tool_errors`. \n",
"\n",
"When the error handler is specified, the exception will be caught and the error handler will decide which output to return from the tool.\n",
"\n",
"You can set `handle_tool_error` to `True`, a string value, or a function. If it's a function, the function should take a `ToolException` as a parameter and return a value.\n",
"You can set `handle_tool_errors` to `True`, a string value, or a function. If it's a function, the function should take a `ToolException` as a parameter and return a value.\n",
"\n",
"Please note that only raising a `ToolException` won't be effective. You need to first set the `handle_tool_error` of the tool because its default value is `False`."
"Please note that only raising a `ToolException` won't be effective. You need to first set the `handle_tool_errors` of the tool because its default value is `False`."
]
},
{
@@ -777,7 +777,7 @@
"id": "9d93b217-1d44-4d31-8956-db9ea680ff4f",
"metadata": {},
"source": [
"Here's an example with the default `handle_tool_error=True` behavior."
"Here's an example with the default `handle_tool_errors=True` behavior."
]
},
{
@@ -807,7 +807,7 @@
"source": [
"get_weather_tool = StructuredTool.from_function(\n",
" func=get_weather,\n",
" handle_tool_error=True,\n",
" handle_tool_errors=True,\n",
")\n",
"\n",
"get_weather_tool.invoke({\"city\": \"foobar\"})"
@@ -818,7 +818,7 @@
"id": "f91d6dc0-3271-4adc-a155-21f2e62ffa56",
"metadata": {},
"source": [
"We can set `handle_tool_error` to a string that will always be returned."
"We can set `handle_tool_errors` to a string that will always be returned."
]
},
{
@@ -848,7 +848,7 @@
"source": [
"get_weather_tool = StructuredTool.from_function(\n",
" func=get_weather,\n",
" handle_tool_error=\"There is no such city, but it's probably above 0K there!\",\n",
" handle_tool_errors=\"There is no such city, but it's probably above 0K there!\",\n",
")\n",
"\n",
"get_weather_tool.invoke({\"city\": \"foobar\"})"
@@ -893,7 +893,7 @@
"\n",
"get_weather_tool = StructuredTool.from_function(\n",
" func=get_weather,\n",
" handle_tool_error=_handle_error,\n",
" handle_tool_errors=_handle_error,\n",
")\n",
"\n",
"get_weather_tool.invoke({\"city\": \"foobar\"})"

View File

@@ -47,7 +47,7 @@ See [supported integrations](/docs/integrations/chat/) for details on getting st
- [How to: use chat model to call tools](/docs/how_to/tool_calling)
- [How to: stream tool calls](/docs/how_to/tool_streaming)
- [How to: handle rate limits](/docs/how_to/chat_model_rate_limiting)
- [How to: few shot prompt tool behavior](/docs/how_to/tools_few_shot)
- [How to: few-shot prompt tool behavior](/docs/how_to/tools_few_shot)
- [How to: bind model-specific formatted tools](/docs/how_to/tools_model_specific)
- [How to: force a specific tool call](/docs/how_to/tool_choice)
- [How to: pass multimodal data directly to models](/docs/how_to/multimodal_inputs/)
@@ -64,8 +64,8 @@ See [supported integrations](/docs/integrations/chat/) for details on getting st
[Prompt Templates](/docs/concepts/prompt_templates) are responsible for formatting user input into a format that can be passed to a language model.
- [How to: use few shot examples](/docs/how_to/few_shot_examples)
- [How to: use few shot examples in chat models](/docs/how_to/few_shot_examples_chat/)
- [How to: use few-shot examples](/docs/how_to/few_shot_examples)
- [How to: use few-shot examples in chat models](/docs/how_to/few_shot_examples_chat/)
- [How to: partially format prompt templates](/docs/how_to/prompts_partial)
- [How to: compose prompts together](/docs/how_to/prompts_composition)
- [How to: use multimodal prompts](/docs/how_to/multimodal_prompts/)
@@ -168,7 +168,7 @@ See [supported integrations](/docs/integrations/vectorstores/) for details on ge
Indexing is the process of keeping your vectorstore in-sync with the underlying data source.
- [How to: reindex data to keep your vectorstore in-sync with the underlying data source](/docs/how_to/indexing)
- [How to: reindex data to keep your vectorstore in sync with the underlying data source](/docs/how_to/indexing)
### Tools
@@ -178,7 +178,7 @@ LangChain [Tools](/docs/concepts/tools) contain a description of the tool (to pa
- [How to: use built-in tools and toolkits](/docs/how_to/tools_builtin)
- [How to: use chat models to call tools](/docs/how_to/tool_calling)
- [How to: pass tool outputs to chat models](/docs/how_to/tool_results_pass_to_model)
- [How to: pass run time values to tools](/docs/how_to/tool_runtime)
- [How to: pass runtime values to tools](/docs/how_to/tool_runtime)
- [How to: add a human-in-the-loop for tools](/docs/how_to/tools_human)
- [How to: handle tool errors](/docs/how_to/tools_error)
- [How to: force models to call a tool](/docs/how_to/tool_choice)
@@ -297,7 +297,7 @@ For a high-level tutorial, check out [this guide](/docs/tutorials/sql_qa/).
You can use an LLM to do question answering over graph databases.
For a high-level tutorial, check out [this guide](/docs/tutorials/graph/).
- [How to: add a semantic layer over the database](/docs/how_to/graph_semantic)
- [How to: add a semantic layer over a database](/docs/how_to/graph_semantic)
- [How to: construct knowledge graphs](/docs/how_to/graph_constructing)
### Summarization
@@ -345,7 +345,7 @@ LangGraph is an extension of LangChain aimed at
building robust and stateful multi-actor applications with LLMs by modeling steps as edges and nodes in a graph.
LangGraph documentation is currently hosted on a separate site.
You can peruse [LangGraph how-to guides here](https://langchain-ai.github.io/langgraph/how-tos/).
You can find the [LangGraph guides here](https://langchain-ai.github.io/langgraph/guides/).
## [LangSmith](https://docs.smith.langchain.com/)

View File

@@ -46,7 +46,7 @@
"\n",
"1. [`llama.cpp`](https://github.com/ggerganov/llama.cpp): C++ implementation of llama inference code with [weight optimization / quantization](https://finbarr.ca/how-is-llama-cpp-possible/)\n",
"2. [`gpt4all`](https://docs.gpt4all.io/index.html): Optimized C backend for inference\n",
"3. [`Ollama`](https://ollama.ai/): Bundles model weights and environment into an app that runs on device and serves the LLM\n",
"3. [`ollama`](https://github.com/ollama/ollama): Bundles model weights and environment into an app that runs on device and serves the LLM\n",
"4. [`llamafile`](https://github.com/Mozilla-Ocho/llamafile): Bundles model weights and everything needed to run the model in a single file, allowing you to run the LLM locally from this file without any additional installation steps\n",
"\n",
"In general, these frameworks will do a few things:\n",
@@ -74,12 +74,12 @@
"\n",
"## Quickstart\n",
"\n",
"[`Ollama`](https://ollama.ai/) is one way to easily run inference on macOS.\n",
"[Ollama](https://ollama.com/) is one way to easily run inference on macOS.\n",
" \n",
"The instructions [here](https://github.com/jmorganca/ollama?tab=readme-ov-file#ollama) provide details, which we summarize:\n",
"The instructions [here](https://github.com/ollama/ollama?tab=readme-ov-file#ollama) provide details, which we summarize:\n",
" \n",
"* [Download and run](https://ollama.ai/download) the app\n",
"* From command line, fetch a model from this [list of options](https://github.com/jmorganca/ollama): e.g., `ollama pull llama3.1:8b`\n",
"* From command line, fetch a model from this [list of options](https://ollama.com/search): e.g., `ollama pull gpt-oss:20b`\n",
"* When the app is running, all models are automatically served on `localhost:11434`\n"
]
},
@@ -95,7 +95,7 @@
},
{
"cell_type": "code",
"execution_count": 2,
"execution_count": null,
"id": "86178adb",
"metadata": {},
"outputs": [
@@ -111,11 +111,11 @@
}
],
"source": [
"from langchain_ollama import OllamaLLM\n",
"from langchain_ollama import ChatOllama\n",
"\n",
"llm = OllamaLLM(model=\"llama3.1:8b\")\n",
"llm = ChatOllama(model=\"gpt-oss:20b\", validate_model_on_init=True)\n",
"\n",
"llm.invoke(\"The first man on the moon was ...\")"
"llm.invoke(\"The first man on the moon was ...\").content"
]
},
{
@@ -200,7 +200,7 @@
"\n",
"### Running Apple silicon GPU\n",
"\n",
"`Ollama` and [`llamafile`](https://github.com/Mozilla-Ocho/llamafile?tab=readme-ov-file#gpu-support) will automatically utilize the GPU on Apple devices.\n",
"`ollama` and [`llamafile`](https://github.com/Mozilla-Ocho/llamafile?tab=readme-ov-file#gpu-support) will automatically utilize the GPU on Apple devices.\n",
" \n",
"Other frameworks require the user to set up the environment to utilize the Apple GPU.\n",
"\n",
@@ -212,15 +212,15 @@
"\n",
"In particular, ensure that conda is using the correct virtual environment that you created (`miniforge3`).\n",
"\n",
"E.g., for me:\n",
"e.g., for me:\n",
"\n",
"```\n",
"```shell\n",
"conda activate /Users/rlm/miniforge3/envs/llama\n",
"```\n",
"\n",
"With the above confirmed, then:\n",
"\n",
"```\n",
"```shell\n",
"CMAKE_ARGS=\"-DLLAMA_METAL=on\" FORCE_CMAKE=1 pip install -U llama-cpp-python --no-cache-dir\n",
"```"
]
@@ -236,20 +236,16 @@
"\n",
"1. [`HuggingFace`](https://huggingface.co/TheBloke) - Many quantized model are available for download and can be run with framework such as [`llama.cpp`](https://github.com/ggerganov/llama.cpp). You can also download models in [`llamafile` format](https://huggingface.co/models?other=llamafile) from HuggingFace.\n",
"2. [`gpt4all`](https://gpt4all.io/index.html) - The model explorer offers a leaderboard of metrics and associated quantized models available for download \n",
"3. [`Ollama`](https://github.com/jmorganca/ollama) - Several models can be accessed directly via `pull`\n",
"3. [`ollama`](https://github.com/jmorganca/ollama) - Several models can be accessed directly via `pull`\n",
"\n",
"### Ollama\n",
"\n",
"With [Ollama](https://github.com/jmorganca/ollama), fetch a model via `ollama pull <model family>:<tag>`:\n",
"\n",
"* E.g., for Llama 2 7b: `ollama pull llama2` will download the most basic version of the model (e.g., smallest # parameters and 4 bit quantization)\n",
"* We can also specify a particular version from the [model list](https://github.com/jmorganca/ollama?tab=readme-ov-file#model-library), e.g., `ollama pull llama2:13b`\n",
"* See the full set of parameters on the [API reference page](https://python.langchain.com/api_reference/community/llms/langchain_community.llms.ollama.Ollama.html)"
"With [Ollama](https://github.com/ollama/ollama), fetch a model via `ollama pull <model family>:<tag>`."
]
},
{
"cell_type": "code",
"execution_count": 42,
"execution_count": null,
"id": "8ecd2f78",
"metadata": {},
"outputs": [
@@ -265,7 +261,7 @@
}
],
"source": [
"llm = OllamaLLM(model=\"llama2:13b\")\n",
"llm = ChatOllama(model=\"gpt-oss:20b\")\n",
"llm.invoke(\"The first man on the moon was ... think step by step\")"
]
},
@@ -694,7 +690,7 @@
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"display_name": "langchain",
"language": "python",
"name": "python3"
},
@@ -708,7 +704,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.5"
"version": "3.12.11"
}
},
"nbformat": 4,

View File

@@ -998,6 +998,91 @@
"\n",
"chain.invoke({\"query\": query})"
]
},
{
"cell_type": "markdown",
"id": "xfejabhtn2",
"metadata": {},
"source": [
"## Combining with Additional Tools\n",
"\n",
"When you need to use both structured output and additional tools (like web search), note the order of operations:\n",
"\n",
"**Correct Order**:\n",
"```python\n",
"# 1. Bind tools first\n",
"llm_with_tools = llm.bind_tools([web_search_tool, calculator_tool])\n",
"\n",
"# 2. Apply structured output\n",
"structured_llm = llm_with_tools.with_structured_output(MySchema)\n",
"```\n",
"\n",
"**Incorrect Order**:\n",
"\n",
"```python\n",
"# This will fail with \"Tool 'MySchema' not found\" error\n",
"structured_llm = llm.with_structured_output(MySchema)\n",
"broken_llm = structured_llm.bind_tools([web_search_tool])\n",
"```"
]
},
{
"cell_type": "markdown",
"id": "653798ca",
"metadata": {},
"source": [
"**Why Order Matters:**\n",
"`with_structured_output()` internally uses tool calling to enforce the schema. When you bind additional tools afterward, it creates a conflict in the tool resolution system."
]
},
{
"cell_type": "markdown",
"id": "1345f4a4",
"metadata": {},
"source": [
"**Complete Example:**"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "0835637b",
"metadata": {},
"outputs": [],
"source": [
"from pydantic import BaseModel, Field\n",
"from langchain_openai import ChatOpenAI\n",
"\n",
"\n",
"class SearchResult(BaseModel):\n",
" \"\"\"Structured search result.\"\"\"\n",
"\n",
" query: str = Field(description=\"The search query\")\n",
" findings: str = Field(description=\"Summary of findings\")\n",
"\n",
"\n",
"# Define tools\n",
"search_tool = {\n",
" \"type\": \"function\",\n",
" \"function\": {\n",
" \"name\": \"web_search\",\n",
" \"description\": \"Search the web for information\",\n",
" \"parameters\": {\n",
" \"type\": \"object\",\n",
" \"properties\": {\"query\": {\"type\": \"string\", \"description\": \"Search query\"}},\n",
" \"required\": [\"query\"],\n",
" },\n",
" },\n",
"}\n",
"\n",
"# Correct approach\n",
"llm = ChatOpenAI()\n",
"llm_with_search = llm.bind_tools([search_tool])\n",
"structured_search_llm = llm_with_search.with_structured_output(SearchResult)\n",
"\n",
"# Now you can use both search and get structured output\n",
"result = structured_search_llm.invoke(\"Search for latest AI research and summarize\")"
]
}
],
"metadata": {

View File

@@ -147,7 +147,7 @@
},
{
"cell_type": "code",
"execution_count": 5,
"execution_count": null,
"id": "74de0286-b003-4b48-9cdd-ecab435515ca",
"metadata": {},
"outputs": [],
@@ -157,7 +157,7 @@
"\n",
"from langchain_anthropic import ChatAnthropic\n",
"\n",
"llm = ChatAnthropic(model=\"claude-3-5-sonnet-20240620\", temperature=0)"
"llm = ChatAnthropic(model=\"claude-3-5-sonnet-latest\", temperature=0)"
]
},
{

View File

@@ -38,7 +38,7 @@
},
{
"cell_type": "code",
"execution_count": 1,
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
@@ -53,7 +53,7 @@
"if \"ANTHROPIC_API_KEY\" not in os.environ:\n",
" os.environ[\"ANTHROPIC_API_KEY\"] = getpass()\n",
"\n",
"model = ChatAnthropic(model=\"claude-3-5-sonnet-20240620\", temperature=0)"
"model = ChatAnthropic(model=\"claude-3-5-sonnet-latest\", temperature=0)"
]
},
{

View File

@@ -53,7 +53,7 @@
"\n",
"To keep the most recent messages, we set `strategy=\"last\"`. We'll also set `include_system=True` to include the `SystemMessage`, and `start_on=\"human\"` to make sure the resulting chat history is valid. \n",
"\n",
"This is a good default configuration when using `trim_messages` based on token count. Remember to adjust `token_counter` and `max_tokens` for your use case.\n",
"This is a good default configuration when using `trim_messages` based on token count. Remember to adjust `token_counter` and `max_tokens` for your use case. Keep in mind that new queries added to the chat history will be included in the token count unless you trim prior to adding the new query.\n",
"\n",
"Notice that for our `token_counter` we can pass in a function (more on that below) or a language model (since language models have a message token counting method). It makes sense to pass in a model when you're trimming your messages to fit into the context window of that specific model:"
]
@@ -525,7 +525,7 @@
"id": "4d91d390-e7f7-467b-ad87-d100411d7a21",
"metadata": {},
"source": [
"Looking at the LangSmith trace we can see that before the messages are passed to the model they are first trimmed: https://smith.langchain.com/public/65af12c4-c24d-4824-90f0-6547566e59bb/r\n",
"Looking at [the LangSmith trace](https://smith.langchain.com/public/65af12c4-c24d-4824-90f0-6547566e59bb/r) we can see that before the messages are passed to the model they are first trimmed.\n",
"\n",
"Looking at just the trimmer, we can see that it's a Runnable object that can be invoked like all Runnables:"
]
@@ -620,7 +620,7 @@
"id": "556b7b4c-43cb-41de-94fc-1a41f4ec4d2e",
"metadata": {},
"source": [
"Looking at the LangSmith trace we can see that we retrieve all of our messages but before the messages are passed to the model they are trimmed to be just the system message and last human message: https://smith.langchain.com/public/17dd700b-9994-44ca-930c-116e00997315/r"
"Looking at [the LangSmith trace](https://smith.langchain.com/public/17dd700b-9994-44ca-930c-116e00997315/r) we can see that we retrieve all of our messages but before the messages are passed to the model they are trimmed to be just the system message and last human message."
]
},
{
@@ -630,7 +630,7 @@
"source": [
"## API reference\n",
"\n",
"For a complete description of all arguments head to the API reference: https://python.langchain.com/api_reference/core/messages/langchain_core.messages.utils.trim_messages.html"
"For a complete description of all arguments head to the [API reference](https://python.langchain.com/api_reference/core/messages/langchain_core.messages.utils.trim_messages.html)."
]
}
],

View File

@@ -124,7 +124,7 @@
},
{
"cell_type": "code",
"execution_count": 4,
"execution_count": null,
"id": "cb09c344-1836-4e0c-acf8-11d13ac1dbae",
"metadata": {},
"outputs": [],
@@ -132,7 +132,7 @@
"from langchain_anthropic import ChatAnthropic\n",
"\n",
"llm = ChatAnthropic(\n",
" model=\"claude-3-5-sonnet-20240620\",\n",
" model=\"claude-3-5-sonnet-latest\",\n",
" temperature=0,\n",
" max_tokens=1024,\n",
" timeout=None,\n",
@@ -1240,6 +1240,58 @@
"response = llm_with_tools.invoke(\"How do I update a web app to TypeScript 5.5?\")"
]
},
{
"cell_type": "markdown",
"id": "kloc4rvd1w",
"metadata": {},
"source": [
"#### Web search + structured output\n",
"\n",
"When combining web search tools with structured output, it's important to **bind the tools first and then apply structured output**:"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "rjjergy6ef",
"metadata": {},
"outputs": [],
"source": [
"from pydantic import BaseModel, Field\n",
"from langchain_anthropic import ChatAnthropic\n",
"\n",
"\n",
"# Define structured output schema\n",
"class ResearchResult(BaseModel):\n",
" \"\"\"Structured research result from web search.\"\"\"\n",
"\n",
" topic: str = Field(description=\"The research topic\")\n",
" summary: str = Field(description=\"Summary of key findings\")\n",
" key_points: list[str] = Field(description=\"List of important points discovered\")\n",
"\n",
"\n",
"# Configure web search tool\n",
"websearch_tools = [\n",
" {\n",
" \"type\": \"web_search_20250305\",\n",
" \"name\": \"web_search\",\n",
" \"max_uses\": 10,\n",
" }\n",
"]\n",
"\n",
"llm = ChatAnthropic(model=\"claude-3-5-sonnet-20241022\")\n",
"\n",
"# Correct order: bind tools first, then structured output\n",
"llm_with_search = llm.bind_tools(websearch_tools)\n",
"research_llm = llm_with_search.with_structured_output(ResearchResult)\n",
"\n",
"# Now you can use both web search and get structured output\n",
"result = research_llm.invoke(\"Research the latest developments in quantum computing\")\n",
"print(f\"Topic: {result.topic}\")\n",
"print(f\"Summary: {result.summary}\")\n",
"print(f\"Key Points: {result.key_points}\")"
]
},
{
"cell_type": "markdown",
"id": "1478cdc6-2e52-4870-80f9-b4ddf88f2db2",

View File

@@ -129,7 +129,7 @@
},
{
"cell_type": "code",
"execution_count": 1,
"execution_count": null,
"id": "cb09c344-1836-4e0c-acf8-11d13ac1dbae",
"metadata": {},
"outputs": [],
@@ -137,7 +137,7 @@
"from langchain_aws import ChatBedrockConverse\n",
"\n",
"llm = ChatBedrockConverse(\n",
" model_id=\"anthropic.claude-3-5-sonnet-20240620-v1:0\",\n",
" model_id=\"anthropic.claude-3-5-sonnet-latest-v1:0\",\n",
" # region_name=...,\n",
" # aws_access_key_id=...,\n",
" # aws_secret_access_key=...,\n",

View File

@@ -17,9 +17,9 @@
"source": [
"# ChatOllama\n",
"\n",
"[Ollama](https://ollama.ai/) allows you to run open-source large language models, such as Llama 2, locally.\n",
"[Ollama](https://ollama.com/) allows you to run open-source large language models, such as `gpt-oss`, locally.\n",
"\n",
"Ollama bundles model weights, configuration, and data into a single package, defined by a Modelfile.\n",
"`ollama` bundles model weights, configuration, and data into a single package, defined by a Modelfile.\n",
"\n",
"It optimizes setup and configuration details, including GPU usage.\n",
"\n",
@@ -28,14 +28,14 @@
"## Overview\n",
"### Integration details\n",
"\n",
"| Class | Package | Local | Serializable | [JS support](https://js.langchain.com/v0.2/docs/integrations/chat/ollama) | Package downloads | Package latest |\n",
"| Class | Package | Local | Serializable | [JS support](https://js.langchain.com/docs/integrations/chat/ollama) | Package downloads | Package latest |\n",
"| :--- | :--- | :---: | :---: | :---: | :---: | :---: |\n",
"| [ChatOllama](https://python.langchain.com/v0.2/api_reference/ollama/chat_models/langchain_ollama.chat_models.ChatOllama.html) | [langchain-ollama](https://python.langchain.com/v0.2/api_reference/ollama/index.html) | ✅ | ❌ | ✅ | ![PyPI - Downloads](https://img.shields.io/pypi/dm/langchain-ollama?style=flat-square&label=%20) | ![PyPI - Version](https://img.shields.io/pypi/v/langchain-ollama?style=flat-square&label=%20) |\n",
"| [ChatOllama](https://python.langchain.com/api_reference/ollama/chat_models/langchain_ollama.chat_models.ChatOllama.html#chatollama) | [langchain-ollama](https://python.langchain.com/api_reference/ollama/index.html) | ✅ | ❌ | ✅ | ![PyPI - Downloads](https://img.shields.io/pypi/dm/langchain-ollama?style=flat-square&label=%20) | ![PyPI - Version](https://img.shields.io/pypi/v/langchain-ollama?style=flat-square&label=%20) |\n",
"\n",
"### Model features\n",
"| [Tool calling](/docs/how_to/tool_calling/) | [Structured output](/docs/how_to/structured_output/) | JSON mode | [Image input](/docs/how_to/multimodal_inputs/) | Audio input | Video input | [Token-level streaming](/docs/how_to/chat_streaming/) | Native async | [Token usage](/docs/how_to/chat_token_usage_tracking/) | [Logprobs](/docs/how_to/logprobs/) |\n",
"| :---: |:----------------------------------------------------:| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |\n",
"| ✅ | ✅ | ✅ | | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ |\n",
"| ✅ | ✅ | ✅ | | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ |\n",
"\n",
"## Setup\n",
"\n",
@@ -45,17 +45,17 @@
" * macOS users can install via Homebrew with `brew install ollama` and start with `brew services start ollama`\n",
"* Fetch available LLM model via `ollama pull <name-of-model>`\n",
" * View a list of available models via the [model library](https://ollama.ai/library)\n",
" * e.g., `ollama pull llama3`\n",
" * e.g., `ollama pull gpt-oss:20b`\n",
"* This will download the default tagged version of the model. Typically, the default points to the latest, smallest sized-parameter model.\n",
"\n",
"> On Mac, the models will be download to `~/.ollama/models`\n",
">\n",
"> On Linux (or WSL), the models will be stored at `/usr/share/ollama/.ollama/models`\n",
"\n",
"* Specify the exact version of the model of interest as such `ollama pull vicuna:13b-v1.5-16k-q4_0` (View the [various tags for the `Vicuna`](https://ollama.ai/library/vicuna/tags) model in this instance)\n",
"* Specify the exact version of the model of interest as such `ollama pull gpt-oss:20b` (View the [various tags for the `Vicuna`](https://ollama.ai/library/vicuna/tags) model in this instance)\n",
"* To view all pulled models, use `ollama list`\n",
"* To chat directly with a model from the command line, use `ollama run <name-of-model>`\n",
"* View the [Ollama documentation](https://github.com/ollama/ollama/tree/main/docs) for more commands. You can run `ollama help` in the terminal to see available commands.\n"
"* View the [Ollama documentation](https://github.com/ollama/ollama/blob/main/docs/README.md) for more commands. You can run `ollama help` in the terminal to see available commands.\n"
]
},
{
@@ -102,7 +102,11 @@
"id": "b18bd692076f7cf7",
"metadata": {},
"source": [
"Make sure you're using the latest Ollama version for structured outputs. Update by running:"
":::warning\n",
"Make sure you're using the latest Ollama version!\n",
":::\n",
"\n",
"Update by running:"
]
},
{
@@ -257,10 +261,10 @@
"source": [
"## Tool calling\n",
"\n",
"We can use [tool calling](/docs/concepts/tool_calling/) with an LLM [that has been fine-tuned for tool use](https://ollama.com/search?&c=tools) such as `llama3.1`:\n",
"We can use [tool calling](/docs/concepts/tool_calling/) with an LLM [that has been fine-tuned for tool use](https://ollama.com/search?&c=tools) such as `gpt-oss`:\n",
"\n",
"```\n",
"ollama pull llama3.1\n",
"ollama pull gpt-oss:20b\n",
"```\n",
"\n",
"Details on creating custom tools are available in [this guide](/docs/how_to/custom_tools/). Below, we demonstrate how to create a tool using the `@tool` decorator on a normal python function."
@@ -268,7 +272,7 @@
},
{
"cell_type": "code",
"execution_count": 13,
"execution_count": null,
"id": "f767015f",
"metadata": {},
"outputs": [
@@ -300,7 +304,8 @@
"\n",
"\n",
"llm = ChatOllama(\n",
" model=\"llama3.1\",\n",
" model=\"gpt-oss:20b\",\n",
" validate_model_on_init=True,\n",
" temperature=0,\n",
").bind_tools([validate_user])\n",
"\n",
@@ -321,9 +326,7 @@
"source": [
"## Multi-modal\n",
"\n",
"Ollama has support for multi-modal LLMs, such as [bakllava](https://ollama.com/library/bakllava) and [llava](https://ollama.com/library/llava).\n",
"\n",
" ollama pull bakllava\n",
"Ollama has limited support for multi-modal LLMs, such as [gemma3](https://ollama.com/library/gemma3)\n",
"\n",
"Be sure to update Ollama so that you have the most recent version to support multi-modal."
]
@@ -518,7 +521,7 @@
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"display_name": "langchain",
"language": "python",
"name": "python3"
},
@@ -532,7 +535,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.4"
"version": "3.12.11"
}
},
"nbformat": 4,

View File

@@ -0,0 +1,334 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Oxylabs"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"[Oxylabs](https://oxylabs.io/) is a web intelligence collection platform that enables companies worldwide to unlock data-driven insights.\n",
"\n",
"## Overview\n",
"\n",
"Oxylabs document loader allows to load data from search engines, e-commerce sites, travel platforms, and any other website. It supports geolocation, browser rendering, data parsing, multiple user agents and many more parameters. Check out [Oxylabs documentation](https://developers.oxylabs.io/scraping-solutions/web-scraper-api) for more information.\n",
"\n",
"\n",
"### Integration details\n",
"\n",
"| Class | Package | Local | Serializable | Pricing |\n",
"|:--------------|:------------------------------------------------------------------|:-----:|:------------:|:-----------------------------:|\n",
"| OxylabsLoader | [langchain-oxylabs](https://github.com/oxylabs/langchain-oxylabs) | ✅ | ❌ | Free 5,000 results for 1 week |\n",
"\n",
"### Loader features\n",
"| Document Lazy Loading |\n",
"|:---------------------:|\n",
"| ✅ |\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Setup"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Install the required dependencies.\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"scrolled": true
},
"outputs": [],
"source": [
"%pip install -U langchain-oxylabs"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Credentials\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Set up the proper API keys and environment variables.\n",
"Create your API user credentials: Sign up for a free trial or purchase the product\n",
"in the [Oxylabs dashboard](https://dashboard.oxylabs.io/en/registration)\n",
"to create your API user credentials (OXYLABS_USERNAME and OXYLABS_PASSWORD)."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import getpass\n",
"import os\n",
"\n",
"os.environ[\"OXYLABS_USERNAME\"] = getpass.getpass(\"Enter your Oxylabs username: \")\n",
"os.environ[\"OXYLABS_PASSWORD\"] = getpass.getpass(\"Enter your Oxylabs password: \")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Initialization"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {
"ExecuteTime": {
"end_time": "2025-08-06T10:57:51.630011Z",
"start_time": "2025-08-06T10:57:51.623814Z"
}
},
"outputs": [],
"source": [
"from langchain_oxylabs import OxylabsLoader"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {
"ExecuteTime": {
"end_time": "2025-08-06T10:57:53.685413Z",
"start_time": "2025-08-06T10:57:53.628859Z"
}
},
"outputs": [],
"source": [
"loader = OxylabsLoader(\n",
" urls=[\n",
" \"https://sandbox.oxylabs.io/products/1\",\n",
" \"https://sandbox.oxylabs.io/products/2\",\n",
" ],\n",
" params={\"markdown\": True},\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": "## Load"
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {
"ExecuteTime": {
"end_time": "2025-08-06T10:59:51.487327Z",
"start_time": "2025-08-06T10:59:48.592743Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"2751\n",
"[![](data:image/svg+xml...)![logo](data:image/gif;base64...)![logo](/_next/image?url=%2F_next%2Fstatic%2Fmedia%2FnavLogo.a8764883.png&w=750&q=75)](/)\n",
"\n",
"Game platforms:\n",
"\n",
"* **All**\n",
"\n",
"* [Nintendo platform](/products/category/nintendo)\n",
"\n",
"+ wii\n",
"+ wii-u\n",
"+ nintendo-64\n",
"+ switch\n",
"+ gamecube\n",
"+ game-boy-advance\n",
"+ 3ds\n",
"+ ds\n",
"\n",
"* [Xbox platform](/products/category/xbox-platform)\n",
"\n",
"* **Dreamcast**\n",
"\n",
"* [Playstation platform](/products/category/playstation-platform)\n",
"\n",
"* **Pc**\n",
"\n",
"* **Stadia**\n",
"\n",
"Go Back\n",
"\n",
"Note!This is a sandbox website used for web scraping. Information listed in this website does not have any real meaning and should not be associated with the actual products.\n",
"\n",
"![The Legend of Zelda: Ocarina of Time](data:image/gif;base64...)![The Legend of Zelda: Ocarina of Time](/assets/action-adventure.svg)\n",
"\n",
"## The Legend of Zelda: Ocarina of Time\n",
"\n",
"**Developer:** Nintendo**Platform:****Type:** singleplayer\n",
"\n",
"As a young boy, Link is tricked by Ganondorf, the King of the Gerudo Thieves. The evil human uses Link to g\n",
"5542\n",
"[![](data:image/svg+xml...)![logo](data:image/gif;base64...)![logo](/_next/image?url=%2F_next%2Fstatic%2Fmedia%2FnavLogo.a8764883.png&w=750&q=75)](/)\n",
"\n",
"Game platforms:\n",
"\n",
"* **All**\n",
"\n",
"* [Nintendo platform](/products/category/nintendo)\n",
"\n",
"+ wii\n",
"+ wii-u\n",
"+ nintendo-64\n",
"+ switch\n",
"+ gamecube\n",
"+ game-boy-advance\n",
"+ 3ds\n",
"+ ds\n",
"\n",
"* [Xbox platform](/products/category/xbox-platform)\n",
"\n",
"* **Dreamcast**\n",
"\n",
"* [Playstation platform](/products/category/playstation-platform)\n",
"\n",
"* **Pc**\n",
"\n",
"* **Stadia**\n",
"\n",
"Go Back\n",
"\n",
"Note!This is a sandbox website used for web scraping. Information listed in this website does not have any real meaning and should not be associated with the actual products.\n",
"\n",
"![Super Mario Galaxy](data:image/gif;base64...)![Super Mario Galaxy](/assets/action.svg)\n",
"\n",
"## Super Mario Galaxy\n",
"\n",
"**Developer:** Nintendo**Platform:****Type:** singleplayer\n",
"\n",
"[Metacritic's 2007 Wii Game of the Year] The ultimate Nintendo hero is taking the ultimate step ... out into space. Join Mario as he ushers in a new era of video games, de\n"
]
}
],
"source": [
"for document in loader.load():\n",
" print(document.page_content[:1000])"
]
},
{
"metadata": {},
"cell_type": "markdown",
"source": "## Lazy Load"
},
{
"metadata": {},
"cell_type": "code",
"outputs": [],
"execution_count": null,
"source": [
"for document in loader.lazy_load():\n",
" print(document.page_content[:1000])"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Advanced examples\n",
"\n",
"The following examples show the usage of `OxylabsLoader` with geolocation, currency, pagination and user agent parameters for Amazon Search and Google Search sources."
]
},
{
"cell_type": "code",
"execution_count": 21,
"metadata": {
"ExecuteTime": {
"end_time": "2025-08-06T11:04:19.901122Z",
"start_time": "2025-08-06T11:04:19.838933Z"
}
},
"outputs": [],
"source": [
"loader = OxylabsLoader(\n",
" queries=[\"gaming headset\", \"gaming chair\", \"computer mouse\"],\n",
" params={\n",
" \"source\": \"amazon_search\",\n",
" \"parse\": True,\n",
" \"geo_location\": \"DE\",\n",
" \"currency\": \"EUR\",\n",
" \"pages\": 3,\n",
" },\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 23,
"metadata": {
"ExecuteTime": {
"end_time": "2025-08-06T11:07:17.648142Z",
"start_time": "2025-08-06T11:07:17.595629Z"
}
},
"outputs": [],
"source": [
"loader = OxylabsLoader(\n",
" queries=[\"europe gdp per capita\", \"us gdp per capita\"],\n",
" params={\n",
" \"source\": \"google_search\",\n",
" \"parse\": True,\n",
" \"geo_location\": \"Paris, France\",\n",
" \"user_agent_type\": \"mobile\",\n",
" },\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## API reference\n",
"\n",
"[More information about this package.](https://github.com/oxylabs/langchain-oxylabs)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.9"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@@ -44,9 +44,7 @@
"tags": []
},
"outputs": [],
"source": [
"%pip install --upgrade --quiet llama-cpp-python"
]
"source": "%pip install --upgrade --quiet llama-cpp-python"
},
{
"cell_type": "markdown",
@@ -64,9 +62,7 @@
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"!CMAKE_ARGS=\"-DGGML_CUDA=on\" FORCE_CMAKE=1 pip install llama-cpp-python"
]
"source": "!CMAKE_ARGS=\"-DGGML_CUDA=on\" FORCE_CMAKE=1 pip install llama-cpp-python"
},
{
"cell_type": "markdown",
@@ -80,9 +76,7 @@
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"!CMAKE_ARGS=\"-DGGML_CUDA=on\" FORCE_CMAKE=1 pip install --upgrade --force-reinstall llama-cpp-python --no-cache-dir"
]
"source": "!CMAKE_ARGS=\"-DGGML_CUDA=on\" FORCE_CMAKE=1 pip install --upgrade --force-reinstall llama-cpp-python --no-cache-dir"
},
{
"cell_type": "markdown",
@@ -100,9 +94,7 @@
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"!CMAKE_ARGS=\"-DLLAMA_METAL=on\" FORCE_CMAKE=1 pip install llama-cpp-python"
]
"source": "!CMAKE_ARGS=\"-DLLAMA_METAL=on\" FORCE_CMAKE=1 pip install llama-cpp-python"
},
{
"cell_type": "markdown",
@@ -116,9 +108,7 @@
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"!CMAKE_ARGS=\"-DLLAMA_METAL=on\" FORCE_CMAKE=1 pip install --upgrade --force-reinstall llama-cpp-python --no-cache-dir"
]
"source": "!CMAKE_ARGS=\"-DLLAMA_METAL=on\" FORCE_CMAKE=1 pip install llama-cpp-python --force-reinstall --no-binary :all: --no-cache-dir"
},
{
"cell_type": "markdown",
@@ -174,9 +164,7 @@
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"!python -m pip install -e . --force-reinstall --no-cache-dir"
]
"source": "!python -m pip install -e . --force-reinstall --no-cache-dir"
},
{
"cell_type": "markdown",
@@ -718,4 +706,4 @@
},
"nbformat": 4,
"nbformat_minor": 4
}
}

View File

@@ -0,0 +1,215 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# RecallioMemory + LangChain Integration Demo\n",
"A minimal notebook to show drop-in usage of RecallioMemory in LangChain (with scoped writes and recall)."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%pip install recallio langchain langchain-recallio openai"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Setup: API Keys & Imports"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from langchain_recallio.memory import RecallioMemory\n",
"from langchain_openai import ChatOpenAI\n",
"from langchain.prompts import ChatPromptTemplate\n",
"import os\n",
"\n",
"# Set your keys here or use environment variables\n",
"RECALLIO_API_KEY = os.getenv(\"RECALLIO_API_KEY\", \"YOUR_RECALLIO_API_KEY\")\n",
"OPENAI_API_KEY = os.getenv(\"OPENAI_API_KEY\", \"YOUR_OPENAI_API_KEY\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Initialize RecallioMemory"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"memory = RecallioMemory(\n",
" project_id=\"project_abc\",\n",
" api_key=RECALLIO_API_KEY,\n",
" session_id=\"demo-session-001\",\n",
" user_id=\"demo-user-42\",\n",
" default_tags=[\"test\", \"langchain\"],\n",
" return_messages=True,\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Build a LangChain ConversationChain with RecallioMemory"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# You can swap in any supported LLM here\n",
"llm = ChatOpenAI(api_key=OPENAI_API_KEY, temperature=0)\n",
"prompt = ChatPromptTemplate.from_messages(\n",
" [\n",
" (\n",
" \"system\",\n",
" \"The following is a friendly conversation between a human and an AI. \"\n",
" \"The AI is talkative and provides lots of specific details from its context. \"\n",
" \"If the AI does not know the answer to a question, it truthfully says it does not know.\",\n",
" ),\n",
" (\"placeholder\", \"{history}\"), # RecallioMemory will fill this slot\n",
" (\"human\", \"{input}\"),\n",
" ]\n",
")\n",
"\n",
"# LCEL chain that returns an AIMessage\n",
"base_chain = prompt | llm\n",
"\n",
"\n",
"# Create a stateful chain using RecallioMemory\n",
"def chat_with_memory(user_input: str):\n",
" # Load conversation history from memory\n",
" memory_vars = memory.load_memory_variables({\"input\": user_input})\n",
"\n",
" # Run the chain with history and user input\n",
" response = base_chain.invoke(\n",
" {\"input\": user_input, \"history\": memory_vars.get(\"history\", \"\")}\n",
" )\n",
"\n",
" # Save the conversation to memory\n",
" memory.save_context({\"input\": user_input}, {\"output\": response.content})\n",
"\n",
" return response"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example: Chat with Memory"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Bot: Hello Guillaume! It's nice to meet you. How can I assist you today?\n"
]
}
],
"source": [
"# First user message note the AI remembers the name\n",
"resp1 = chat_with_memory(\"Hi! My name is Guillaume. Remember that.\")\n",
"print(\"Bot:\", resp1.content)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Bot: Your name is Guillaume.\n"
]
}
],
"source": [
"# Second user message AI should recall the name from memory\n",
"resp2 = chat_with_memory(\"What is my name?\")\n",
"print(\"Bot:\", resp2.content)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## See What Is Stored in Recallio\n",
"This is for debugging/demo only; in production, you wouldn't do this on every run."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Current memory variables: {'history': [HumanMessage(content='Name is Guillaume', additional_kwargs={}, response_metadata={})]}\n"
]
}
],
"source": [
"print(\"Current memory variables:\", memory.load_memory_variables({}))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Clear Memory (Optional Cleanup - Requires Manager level Key)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# memory.clear()\n",
"# print(\"Memory cleared.\")"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"name": "python",
"version": "3.10"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@@ -0,0 +1,38 @@
# Anchor Browser
[Anchor](https://anchorbrowser.io?utm=langchain) is the platform for AI Agentic browser automation, which solves the challenge of automating workflows for web applications that lack APIs or have limited API coverage. It simplifies the creation, deployment, and management of browser-based automations, transforming complex web interactions into simple API endpoints.
`langchain-anchorbrowser` provides 3 main tools:
- `AnchorContentTool` - For web content extractions in Markdown or HTML format.
- `AnchorScreenshotTool` - For web page screenshots.
- `AnchorWebTaskTools` - To perform web tasks.
## Quickstart
### Installation
Install the package:
```bash
pip install langchain-anchorbrowser
```
### Usage
Import and utilize your intended tool. The full list of Anchor Browser available tools see **Tool Features** table in [Anchor Browser tool page](/docs/integrations/tools/anchor_browser)
```python
from langchain_anchorbrowser import AnchorContentTool
# Get Markdown Content for https://www.anchorbrowser.io
AnchorContentTool().invoke(
{"url": "https://www.anchorbrowser.io", "format": "markdown"}
)
```
## Additional Resources
- [PyPi](https://pypi.org/project/langchain-anchorbrowser)
- [Github](https://github.com/anchorbrowser/langchain-anchorbrowser)
- [Anchor Browser Docs](https://docs.anchorbrowser.io/introduction?utm=langchain)
- [Anchor Browser API Reference](https://docs.anchorbrowser.io/api-reference/ai-tools/perform-web-task?utm=langchain)

View File

@@ -929,6 +929,41 @@ from langchain_google_community.gmail.search import GmailSearch
from langchain_google_community.gmail.send_message import GmailSendMessage
```
### MCP Toolbox
[MCP Toolbox](https://github.com/googleapis/genai-toolbox) provides a simple and efficient way to connect to your databases, including those on Google Cloud like [Cloud SQL](https://cloud.google.com/sql/docs) and [AlloyDB](https://cloud.google.com/alloydb/docs/overview). With MCP Toolbox, you can seamlessly integrate your database with LangChain to build powerful, data-driven applications.
#### Installation
To get started, [install the Toolbox server and client](https://github.com/googleapis/genai-toolbox/releases/).
[Configure](https://googleapis.github.io/genai-toolbox/getting-started/configure/) a `tools.yaml` to define your tools, and then execute toolbox to start the server:
```bash
toolbox --tools-file "tools.yaml"
```
Then, install the Toolbox client:
```bash
pip install toolbox-langchain
```
#### Getting Started
Here is a quick example of how to use MCP Toolbox to connect to your database:
```python
from toolbox_langchain import ToolboxClient
async with ToolboxClient("http://127.0.0.1:5000") as client:
tools = client.load_toolset()
```
See [usage example and setup instructions](/docs/integrations/tools/toolbox).
### Memory
Store conversation history using Google Cloud databases.

View File

@@ -2,17 +2,10 @@
This will help you getting started with DigitalOcean Gradient [chat models](/docs/concepts/chat_models).
## Overview
### Integration details
| Class | Package | Package downloads | Package latest |
| :--- | :--- | :---: | :---: |
| [ChatGradient](https://python.langchain.com/api_reference/langchain-gradient/chat_models/langchain_gradient.chat_models.ChatGradient.html) | [langchain-gradient](https://python.langchain.com/api_reference/langchain-gradient/) | ![PyPI - Downloads](https://img.shields.io/pypi/dm/langchain-gradient?style=flat-square&label=%20) | ![PyPI - Version](https://img.shields.io/pypi/v/langchain-gradient?style=flat-square&label=%20) |
## Setup
langchain-gradient uses DigitalOcean Gradient Platform.
langchain-gradient uses DigitalOcean's Gradient™ AI Platform.
Create an account on DigitalOcean, acquire a `DIGITALOCEAN_INFERENCE_KEY` API key from the Gradient Platform, and install the `langchain-gradient` integration package.

View File

@@ -1,14 +1,14 @@
# Ollama
>[Ollama](https://ollama.com/) allows you to run open-source large language models,
> such as [Llama3.1](https://ai.meta.com/blog/meta-llama-3-1/), locally.
> such as [gpt-oss](https://ollama.com/library/gpt-oss), locally.
>
>`Ollama` bundles model weights, configuration, and data into a single package, defined by a Modelfile.
>It optimizes setup and configuration details, including GPU usage.
>For a complete list of supported models and model variants, see the [Ollama model library](https://ollama.ai/library).
See [this guide](/docs/how_to/local_llms) for more details
on how to use `Ollama` with LangChain.
See [this guide](/docs/how_to/local_llms#ollama) for more details
on how to use `ollama` with LangChain.
## Installation and Setup
### Ollama installation
@@ -26,7 +26,7 @@ ollama serve
After starting ollama, run `ollama pull <name-of-model>` to download a model from the [Ollama model library](https://ollama.ai/library):
```bash
ollama pull llama3.1
ollama pull gpt-oss:20b
```
- This will download the default tagged version of the model. Typically, the default points to the latest, smallest sized-parameter model.

View File

@@ -0,0 +1,31 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Recallio\n",
"\n",
"[Recallio](https://recallio.ai/) is a powerfull API allowing to store, index, and retrieve application “memories” with built-in fact extraction, dynamic summaries, reranked recall, and a full knowledge-graph layer.\n",
"\n",
"\n",
"## Installation\n",
"\n",
"```bash\n",
"pip install langchain-recallio\n",
"```\n",
"\n",
"```python\n",
"from langchain_recallio.memory import RecallioMemory\n",
"```"
]
}
],
"metadata": {
"language_info": {
"name": "python"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@@ -0,0 +1,26 @@
# Scrapeless
[Scrapeless](https://scrapeless.com) offers flexible and feature-rich data acquisition services with extensive parameter customization and multi-format export support.
## Installation and Setup
```bash
pip install langchain-scrapeless
```
You'll need to set up your Scrapeless API key:
```python
import os
os.environ["SCRAPELESS_API_KEY"] = "your-api-key"
```
## Tools
The Scrapeless integration provides several tools:
- [ScrapelessDeepSerpGoogleSearchTool](/docs/integrations/tools/scrapeless_scraping_api) - Enables comprehensive extraction of Google SERP data across all result types.
- [ScrapelessDeepSerpGoogleTrendsTool](/docs/integrations/tools/scrapeless_scraping_api) - Retrieves keyword trend data from Google, including popularity over time, regional interest, and related searches.
- [ScrapelessUniversalScrapingTool](/docs/integrations/tools/scrapeless_universal_scraping) - Access and extract data from JS-Render websites that typically block bots.
- [ScrapelessCrawlerCrawlTool](/docs/integrations/tools/scrapeless_crawl) - Crawl a website and its linked pages to extract comprehensive data.
- [ScrapelessCrawlerScrapeTool](/docs/integrations/tools/scrapeless_crawl) - Extract information from a single webpage.

View File

@@ -0,0 +1,43 @@
# langchain-siliconflow
This package contains the LangChain integration with SiliconFlow
## Installation
```bash
pip install -U langchain-siliconflow
```
And you should configure credentials by setting the following environment variables:
```bash
export SILICONFLOW_API_KEY="your-api-key"
```
You can set the following environment variable to use the `.cn` endpoint:
```bash
export SILICONFLOW_BASE_URL="https://api.siliconflow.cn/v1"
```
## Chat Models
`ChatSiliconFlow` class exposes chat models from SiliconFlow.
```python
from langchain_siliconflow import ChatSiliconFlow
llm = ChatSiliconFlow()
llm.invoke("Sing a ballad of LangChain.")
```
## Embeddings
`SiliconFlowEmbeddings` class exposes embeddings from SiliconFlow.
```python
from langchain_siliconflow import SiliconFlowEmbeddings
embeddings = SiliconFlowEmbeddings()
embeddings.embed_query("What is the meaning of life?")
```

View File

@@ -0,0 +1,23 @@
# MCP Toolbox
The [MCP Toolbox](https://googleapis.github.io/genai-toolbox/getting-started/introduction/) in LangChain allows you to equip an agent with a set of tools. When the agent receives a query, it can intelligently select and use the most appropriate tool provided by MCP Toolbox to fulfill the request.
## What is it?
MCP Toolbox is essentially a container for your tools. Think of it as a multi-tool device for your agent; it can hold any tools you create. The agent then decides which specific tool to use based on the user's input.
This is particularly useful when you have an agent that needs to perform a variety of tasks that require different capabilities.
## Installation
To get started, you'll need to install the necessary package:
```bash
pip install toolbox-langchain
```
## Tutorial
For a complete, step-by-step guide on how to create, configure, and use MCP Toolbox with your agents, please refer to our detailed Jupyter notebook tutorial.
**[➡️ View the full tutorial here](/docs/integrations/tools/toolbox)**.

View File

@@ -0,0 +1,101 @@
# TrueFoundry
TrueFoundry provides an enterprise-ready [AI Gateway](https://www.truefoundry.com/ai-gateway) to provide governance and observability to agentic frameworks like LangChain. TrueFoundry AI Gateway serves as a unified interface for LLM access, providing:
- **Unified API Access**: Connect to 250+ LLMs (OpenAI, Claude, Gemini, Groq, Mistral) through one API
- **Low Latency**: Sub-3ms internal latency with intelligent routing and load balancing
- **Enterprise Security**: SOC 2, HIPAA, GDPR compliance with RBAC and audit logging
- **Quota and cost management**: Token-based quotas, rate limiting, and comprehensive usage tracking
- **Observability**: Full request/response logging, metrics, and traces with customizable retention
## Prerequisites
Before integrating LangChain with TrueFoundry, ensure you have:
1. **TrueFoundry Account**: A [TrueFoundry account](https://www.truefoundry.com/register) with at least one model provider configured. Follow quick start guide [here](https://docs.truefoundry.com/gateway/quick-start)
2. **Personal Access Token**: Generate a token by following the [TrueFoundry token generation guide](https://docs.truefoundry.com/gateway/authentication)
## Quickstart
You can connect to TrueFoundry's unified LLM gateway through the `ChatOpenAI` interface.
- Set the `base_url` to your TrueFoundry endpoint (explained below)
- Set the `api_key` to your TrueFoundry [PAT (Personal Access Token)](https://docs.truefoundry.com/gateway/authentication#personal-access-token-pat)
- Use the same `model-name` as shown in the unified code snippet
![TrueFoundry metrics](/img/unified-code-tfy.png)
### Installation
```bash
pip install langchain-openai
```
### Basic Setup
Connect to TrueFoundry by updating the `ChatOpenAI` model in LangChain:
```python
from langchain_openai import ChatOpenAI
llm = ChatOpenAI(
api_key=TRUEFOUNDRY_API_KEY,
base_url=TRUEFOUNDRY_GATEWAY_BASE_URL,
model="openai-main/gpt-4o" # Similarly you can call any model from any model provider
)
llm.invoke("What is the meaning of life, universe and everything?")
```
The request is routed through your TrueFoundry gateway to the specified model provider. TrueFoundry automatically handles rate limiting, load balancing, and observability.
### LangGraph Integration
```python
from langchain_openai import ChatOpenAI
from langgraph.graph import StateGraph, MessagesState
from langchain_core.messages import HumanMessage
# Define your LangGraph workflow
def call_model(state: MessagesState):
model = ChatOpenAI(
api_key=TRUEFOUNDRY_API_KEY,
base_url=TRUEFOUNDRY_GATEWAY_BASE_URL,
# Copy the exact model name from gateway
model="openai-main/gpt-4o"
)
response = model.invoke(state["messages"])
return {"messages": [response]}
# Build workflow
workflow = StateGraph(MessagesState)
workflow.add_node("agent", call_model)
workflow.set_entry_point("agent")
workflow.set_finish_point("agent")
app = workflow.compile()
# Run agent through TrueFoundry
result = app.invoke({"messages": [HumanMessage(content="Hello!")]})
```
## Observability and Governance
![TrueFoundry metrics](/img/gateway-metrics.png)
With the Metrics Dashboard, you can monitor and analyze:
- **Performance Metrics**: Track key latency metrics like Request Latency, Time to First Token (TTFS), and Inter-Token Latency (ITL) with P99, P90, and P50 percentiles
- **Cost and Token Usage**: Gain visibility into your application's costs with detailed breakdowns of input/output tokens and the associated expenses for each model
- **Usage Patterns**: Understand how your application is being used with detailed analytics on user activity, model distribution, and team-based usage
- **Rate Limiting & Load Balancing**: Configure limits, distribute traffic across models, and set up fallbacks
## Support
For questions, issues, or support:
- **Email**: [support@truefoundry.com](mailto:support@truefoundry.com)
- **Documentation**: [https://docs.truefoundry.com/](https://docs.truefoundry.com/)

View File

@@ -0,0 +1,307 @@
{
"cells": [
{
"cell_type": "raw",
"id": "2ce4bdbc",
"metadata": {
"vscode": {
"languageId": "raw"
}
},
"source": [
"---\n",
"sidebar_label: anchor_browser\n",
"---"
]
},
{
"cell_type": "markdown",
"id": "a6f91f20",
"metadata": {},
"source": [
"# Anchor Browser\n",
"\n",
"Anchor is a platform for AI Agentic browser automation, which solves the challenge of automating workflows for web applications that lack APIs or have limited API coverage. It simplifies the creation, deployment, and management of browser-based automations, transforming complex web interactions into simple API endpoints.\n",
"\n",
"This notebook provides a quick overview for getting started with Anchor Browser tools. For more information of Anchor Browser visit [Anchorbrowser.io](https://anchorbrowser.io?utm=langchain) or the [Anchor Browser Docs](https://docs.anchorbrowser.io?utm=langchain)\n",
"\n",
"## Overview\n",
"\n",
"### Integration details\n",
"\n",
"Anchor Browser package for LangChain is [langchain-anchorbrowser](https://pypi.org/project/langchain-anchorbrowser), and the current latest version is ![PyPI - Version](https://img.shields.io/pypi/v/langchain-anchorbrowser?style=flat-square&label=%20).\n",
"\n",
"\n",
"### Tool features\n",
"| Tool Name | Package | Description | Parameters |\n",
"| :--- | :--- | :--- | :---|\n",
"| `AnchorContentTool` | langchain-anchorbrowser | Extract text content from web pages | `url`, `format` |\n",
"| `AnchorScreenshotTool` | langchain-anchorbrowser | Take screenshots of web pages | `url`, `width`, `height`, `image_quality`, `wait`, `scroll_all_content`, `capture_full_height`, `s3_target_address` |\n",
"| `AnchorWebTaskToolKit` | langchain-anchorbrowser | Perform intelligent web tasks using AI (Simple & Advanced modes) | see below |\n",
"\n",
"The parameters allowed in `langchain-anchorbrowser` are only a subset of those listed in the Anchor Browser API reference respectively: [Get Webpage Content](https://docs.anchorbrowser.io/sdk-reference/tools/get-webpage-content?utm=langchain), [Screenshot Webpage](https://docs.anchorbrowser.io/sdk-reference/tools/screenshot-webpage?utm=langchain), and [Perform Web Task](https://docs.anchorbrowser.io/sdk-reference/ai-tools/perform-web-task?utm=langchain).\n",
"\n",
"**Info:** Anchor currently implements `SimpleAnchorWebTaskTool` and `AdvancedAnchorWebTaskTool` tools for langchain with `browser_use` agent. For \n",
"\n",
"#### AnchorWebTaskToolKit Tools\n",
"\n",
"The difference between each tool in this toolkit is the pydantic configuration structure.\n",
"| Tool Name | Package | Parameters |\n",
"| :--- | :--- | :--- |\n",
"| `SimpleAnchorWebTaskTool` | langchain-anchorbrowser | prompt, url |\n",
"| `AdvancedAnchorWebTaskTool` | langchain-anchorbrowser | prompt, url, output_schema |\n",
"\n",
"## Setup\n",
"\n",
"The integration lives in the `langchain-anchorbrowser` package."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "f85b4089",
"metadata": {},
"outputs": [],
"source": [
"%pip install --quiet -U langchain-anchorbrowser"
]
},
{
"cell_type": "markdown",
"id": "b15e9266",
"metadata": {},
"source": [
"### Credentials\n",
"\n",
"Use your Anchor Browser Credentials. Get them on Anchor Browser [API Keys page](https://app.anchorbrowser.io/api-keys?utm=langchain) as needed."
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "e0b178a2-8816-40ca-b57c-ccdd86dde9c9",
"metadata": {},
"outputs": [],
"source": [
"import getpass\n",
"import os\n",
"\n",
"if not os.environ.get(\"ANCHORBROWSER_API_KEY\"):\n",
" os.environ[\"ANCHORBROWSER_API_KEY\"] = getpass.getpass(\"ANCHORBROWSER API key:\\n\")"
]
},
{
"cell_type": "markdown",
"id": "1c97218f-f366-479d-8bf7-fe9f2f6df73f",
"metadata": {},
"source": [
"## Instantiation\n",
"\n",
"Instantiace easily Anchor Browser tools instances."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "8b3ddfe9-ca79-494c-a7ab-1f56d9407a64",
"metadata": {},
"outputs": [],
"source": [
"from langchain_anchorbrowser import (\n",
" AnchorContentTool,\n",
" AnchorScreenshotTool,\n",
" AdvancedAnchorWebTaskTool,\n",
")\n",
"\n",
"anchor_content_tool = AnchorContentTool()\n",
"anchor_screenshot_tool = AnchorScreenshotTool()\n",
"anchor_advanced_web_task_tool = AdvancedAnchorWebTaskTool()"
]
},
{
"cell_type": "markdown",
"id": "74147a1a",
"metadata": {},
"source": [
"## Invocation\n",
"\n",
"### [Invoke directly with args](/docs/concepts/tools/#use-the-tool-directly)\n",
"\n",
"The full available argument list appear above in the tool features table."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "65310a8b-eb0c-4d9e-a618-4f4abe2414fc",
"metadata": {},
"outputs": [],
"source": [
"# Get Markdown Content for https://www.anchorbrowser.io\n",
"anchor_content_tool.invoke(\n",
" {\"url\": \"https://www.anchorbrowser.io\", \"format\": \"markdown\"}\n",
")\n",
"\n",
"# Get a Screenshot for https://docs.anchorbrowser.io\n",
"anchor_screenshot_tool.invoke(\n",
" {\"url\": \"https://docs.anchorbrowser.io\", \"width\": 1280, \"height\": 720}\n",
")\n",
"\n",
"# Get a Screenshot for https://docs.anchorbrowser.io\n",
"anchor_advanced_web_task_tool.invoke(\n",
" {\n",
" \"prompt\": \"Collect the node names and their CPU average %\",\n",
" \"url\": \"https://play.grafana.org/a/grafana-k8s-app/navigation/nodes?from=now-1h&to=now&refresh=1m\",\n",
" \"output_schema\": {\n",
" \"nodes_cpu_usage\": [\n",
" {\"node\": \"string\", \"cluster\": \"string\", \"cpu_avg_percentage\": \"number\"}\n",
" ]\n",
" },\n",
" }\n",
")"
]
},
{
"cell_type": "markdown",
"id": "d6e73897",
"metadata": {},
"source": [
"### [Invoke with ToolCall](/docs/concepts/tool_calling/#tool-execution)\n",
"\n",
"We can also invoke the tool with a model-generated ToolCall, in which case a ToolMessage will be returned:"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "f90e33a7",
"metadata": {},
"outputs": [],
"source": [
"# This is usually generated by a model, but we'll create a tool call directly for demo purposes.\n",
"model_generated_tool_call = {\n",
" \"args\": {\"url\": \"https://www.anchorbrowser.io\", \"format\": \"markdown\"},\n",
" \"id\": \"1\",\n",
" \"name\": anchor_content_tool.name,\n",
" \"type\": \"tool_call\",\n",
"}\n",
"anchor_content_tool.invoke(model_generated_tool_call)"
]
},
{
"cell_type": "markdown",
"id": "659f9fbd-6fcf-445f-aa8c-72d8e60154bd",
"metadata": {},
"source": [
"## Chaining\n",
"\n",
"We can use our tool in a chain by first binding it to a [tool-calling model](/docs/how_to/tool_calling/) and then calling it:\n",
"## Use within an agent"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "c67bfd54",
"metadata": {},
"outputs": [],
"source": [
"%pip install -qU langchain langchain-openai"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "af3123ad-7a02-40e5-b58e-7d56e23e5830",
"metadata": {},
"outputs": [],
"source": [
"from langchain.chat_models import init_chat_model\n",
"\n",
"llm = init_chat_model(model=\"gpt-4o\", model_provider=\"openai\")"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "210511c8",
"metadata": {},
"outputs": [],
"source": [
"if not os.environ.get(\"OPENAI_API_KEY\"):\n",
" os.environ[\"OPENAI_API_KEY\"] = getpass.getpass(\"OPENAI API key:\\n\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "fdbf35b5-3aaf-4947-9ec6-48c21533fb95",
"metadata": {},
"outputs": [],
"source": [
"from langchain_core.prompts import ChatPromptTemplate\n",
"from langchain_core.runnables import RunnableConfig, chain\n",
"\n",
"prompt = ChatPromptTemplate(\n",
" [\n",
" (\"system\", \"You are a helpful assistant.\"),\n",
" (\"human\", \"{user_input}\"),\n",
" (\"placeholder\", \"{messages}\"),\n",
" ]\n",
")\n",
"\n",
"# specifying tool_choice will force the model to call this tool.\n",
"llm_with_tools = llm.bind_tools(\n",
" [anchor_content_tool], tool_choice=anchor_content_tool.name\n",
")\n",
"\n",
"llm_chain = prompt | llm_with_tools\n",
"\n",
"\n",
"@chain\n",
"def tool_chain(user_input: str, config: RunnableConfig):\n",
" input_ = {\"user_input\": user_input}\n",
" ai_msg = llm_chain.invoke(input_, config=config)\n",
" tool_msgs = anchor_content_tool.batch(ai_msg.tool_calls, config=config)\n",
" return llm_chain.invoke({**input_, \"messages\": [ai_msg, *tool_msgs]}, config=config)\n",
"\n",
"\n",
"tool_chain.invoke(input())"
]
},
{
"cell_type": "markdown",
"id": "4ac8146c",
"metadata": {},
"source": [
"## API reference\n",
"\n",
" - [PyPi](https://pypi.org/project/langchain-anchorbrowser)\n",
" - [Github](https://github.com/anchorbrowser/langchain-anchorbrowser)\n",
" - [Anchor Browser Docs](https://docs.anchorbrowser.io/introduction?utm=langchain)\n",
" - [Anchor Browser API Reference](https://docs.anchorbrowser.io/api-reference/ai-tools/perform-web-task?utm=langchain)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "langchain",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.11"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

View File

@@ -0,0 +1,339 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "a6f91f20",
"metadata": {},
"source": [
"# Scrapeless\n",
"\n",
"**Scrapeless** offers flexible and feature-rich data acquisition services with extensive parameter customization and multi-format export support. These capabilities empower LangChain to integrate and leverage external data more effectively. The core functional modules include:\n",
"\n",
"**DeepSerp**\n",
"- **Google Search**: Enables comprehensive extraction of Google SERP data across all result types.\n",
" - Supports selection of localized Google domains (e.g., `google.com`, `google.ad`) to retrieve region-specific search results.\n",
" - Pagination supported for retrieving results beyond the first page.\n",
" - Supports a search result filtering toggle to control whether to exclude duplicate or similar content.\n",
"- **Google Trends**: Retrieves keyword trend data from Google, including popularity over time, regional interest, and related searches.\n",
" - Supports multi-keyword comparison.\n",
" - Supports multiple data types: `interest_over_time`, `interest_by_region`, `related_queries`, and `related_topics`.\n",
" - Allows filtering by specific Google properties (Web, YouTube, News, Shopping) for source-specific trend analysis.\n",
"\n",
"**Universal Scraping**\n",
"- Designed for modern, JavaScript-heavy websites, allowing dynamic content extraction.\n",
" - Global premium proxy support for bypassing geo-restrictions and improving reliability.\n",
"\n",
"**Crawler**\n",
"- **Crawl**: Recursively crawl a website and its linked pages to extract site-wide content.\n",
" - Supports configurable crawl depth and scoped URL targeting.\n",
"- **Scrape**: Extract content from a single webpage with high precision.\n",
" - Supports \"main content only\" extraction to exclude ads, footers, and other non-essential elements.\n",
" - Allows batch scraping of multiple standalone URLs.\n",
"\n",
"## Overview\n",
"\n",
"### Integration details\n",
"\n",
"| Class | Package | Serializable | JS support | Package latest |\n",
"| :--- | :--- | :---: | :---: | :---: |\n",
"| [ScrapelessUniversalScrapingTool](https://pypi.org/project/langchain-scrapeless/) | [langchain-scrapeless](https://pypi.org/project/langchain-scrapeless/) | ✅ | ❌ | ![PyPI - Version](https://img.shields.io/pypi/v/langchain-scrapeless?style=flat-square&label=%20) |\n",
"\n",
"### Tool features\n",
"\n",
"|Native async|Returns artifact|Return data|\n",
"|:-:|:-:|:-:|\n",
"|✅|✅|html, markdown, links, metadata, structured content|\n",
"\n",
"\n",
"## Setup\n",
"\n",
"The integration lives in the `langchain-scrapeless` package."
]
},
{
"cell_type": "raw",
"id": "ca676665",
"metadata": {
"vscode": {
"languageId": "raw"
}
},
"source": [
"!pip install langchain-scrapeless"
]
},
{
"cell_type": "markdown",
"id": "b15e9266",
"metadata": {},
"source": [
"### Credentials\n",
"\n",
"You'll need a Scrapeless API key to use this tool. You can set it as an environment variable:"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "e0b178a2-8816-40ca-b57c-ccdd86dde9c9",
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"\n",
"os.environ[\"SCRAPELESS_API_KEY\"] = \"your-api-key\""
]
},
{
"cell_type": "markdown",
"id": "1c97218f-f366-479d-8bf7-fe9f2f6df73f",
"metadata": {},
"source": [
"## Instantiation\n",
"\n",
"Here we show how to instantiate an instance of the Scrapeless Universal Scraping Tool. This tool allows you to scrape any website using a headless browser with JavaScript rendering capabilities, customizable output types, and geo-specific proxy support.\n",
"\n",
"The tool accepts the following parameters during instantiation:\n",
"- `url` (required, str): The URL of the website to scrape.\n",
"- `headless` (optional, bool): Whether to use a headless browser. Default is True.\n",
"- `js_render` (optional, bool): Whether to enable JavaScript rendering. Default is True.\n",
"- `js_wait_until` (optional, str): Defines when to consider the JavaScript-rendered page ready. Default is `'domcontentloaded'`. Options include:\n",
" - `load`: Wait until the page is fully loaded.\n",
" - `domcontentloaded`: Wait until the DOM is fully loaded.\n",
" - `networkidle0`: Wait until the network is idle.\n",
" - `networkidle2`: Wait until the network is idle for 2 seconds.\n",
"- `outputs` (optional, str): The specific type of data to extract from the page. Options include:\n",
" - `phone_numbers`\n",
" - `headings`\n",
" - `images`\n",
" - `audios`\n",
" - `videos`\n",
" - `links`\n",
" - `menus`\n",
" - `hashtags`\n",
" - `emails`\n",
" - `metadata`\n",
" - `tables`\n",
" - `favicon`\n",
"- `response_type` (optional, str): Defines the format of the response. Default is `'html'`. Options include:\n",
" - `html`: Return the raw HTML of the page.\n",
" - `plaintext`: Return the plain text content.\n",
" - `markdown`: Return a Markdown version of the page.\n",
" - `png`: Return a PNG screenshot.\n",
" - `jpeg`: Return a JPEG screenshot.\n",
"- `response_image_full_page` (optional, bool): Whether to capture and return a full-page image when using screenshot output (png or jpeg). Default is False.\n",
"- `selector` (optional, str): A specific CSS selector to scope scraping within a part of the page. Default is `None`.\n",
"- `proxy_country` (optional, str): Two-letter country code for geo-specific proxy access (e.g., `'us'`, `'gb'`, `'de'`, `'jp'`). Default is `'ANY'`."
]
},
{
"cell_type": "markdown",
"id": "74147a1a",
"metadata": {},
"source": [
"## Invocation\n",
"\n",
"### Basic Usage"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "65310a8b-eb0c-4d9e-a618-4f4abe2414fc",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"<!DOCTYPE html><html><head>\n",
" <title>Example Domain</title>\n",
"\n",
" <meta charset=\"utf-8\">\n",
" <meta http-equiv=\"Content-type\" content=\"text/html; charset=utf-8\">\n",
" <meta name=\"viewport\" content=\"width=device-width, initial-scale=1\">\n",
" <style type=\"text/css\">\n",
" body {\n",
" background-color: #f0f0f2;\n",
" margin: 0;\n",
" padding: 0;\n",
" font-family: -apple-system, system-ui, BlinkMacSystemFont, \"Segoe UI\", \"Open Sans\", \"Helvetica Neue\", Helvetica, Arial, sans-serif;\n",
" \n",
" }\n",
" div {\n",
" width: 600px;\n",
" margin: 5em auto;\n",
" padding: 2em;\n",
" background-color: #fdfdff;\n",
" border-radius: 0.5em;\n",
" box-shadow: 2px 3px 7px 2px rgba(0,0,0,0.02);\n",
" }\n",
" a:link, a:visited {\n",
" color: #38488f;\n",
" text-decoration: none;\n",
" }\n",
" @media (max-width: 700px) {\n",
" div {\n",
" margin: 0 auto;\n",
" width: auto;\n",
" }\n",
" }\n",
" </style> \n",
"</head>\n",
"\n",
"<body>\n",
"<div>\n",
" <h1>Example Domain</h1>\n",
" <p>This domain is for use in illustrative examples in documents. You may use this\n",
" domain in literature without prior coordination or asking for permission.</p>\n",
" <p><a href=\"https://www.iana.org/domains/example\">More information...</a></p>\n",
"</div>\n",
"\n",
"\n",
"</body></html>\n"
]
}
],
"source": [
"from langchain_scrapeless import ScrapelessUniversalScrapingTool\n",
"\n",
"tool = ScrapelessUniversalScrapingTool()\n",
"\n",
"# Basic usage\n",
"result = tool.invoke(\"https://example.com\")\n",
"print(result)"
]
},
{
"cell_type": "markdown",
"id": "d6e73897",
"metadata": {},
"source": [
"### Advanced Usage with Parameters"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "f90e33a7",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"# Well hello there.\n",
"\n",
"Welcome to exmaple.com.\n",
"Chances are you got here by mistake (example.com, anyone?)\n"
]
}
],
"source": [
"from langchain_scrapeless import ScrapelessUniversalScrapingTool\n",
"\n",
"tool = ScrapelessUniversalScrapingTool()\n",
"\n",
"result = tool.invoke({\"url\": \"https://exmaple.com\", \"response_type\": \"markdown\"})\n",
"print(result)"
]
},
{
"cell_type": "markdown",
"id": "659f9fbd-6fcf-445f-aa8c-72d8e60154bd",
"metadata": {},
"source": [
"### Use within an agent"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "af3123ad-7a02-40e5-b58e-7d56e23e5830",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"================================\u001b[1m Human Message \u001b[0m=================================\n",
"\n",
"Use the scrapeless scraping tool to fetch https://www.scrapeless.com/en and extract the h1 tag.\n",
"==================================\u001b[1m Ai Message \u001b[0m==================================\n",
"Tool Calls:\n",
" scrapeless_universal_scraping (call_jBrvMVL2ixhvf6gklhi7Gqtb)\n",
" Call ID: call_jBrvMVL2ixhvf6gklhi7Gqtb\n",
" Args:\n",
" url: https://www.scrapeless.com/en\n",
" outputs: headings\n",
"=================================\u001b[1m Tool Message \u001b[0m=================================\n",
"Name: scrapeless_universal_scraping\n",
"\n",
"{\"headings\":[\"Effortless Web Scraping Toolkitfor Business and Developers\",\"4.8\",\"4.5\",\"8.5\",\"A Flexible Toolkit for Accessing Public Web Data\",\"Deep SerpApi\",\"Scraping Browser\",\"Universal Scraping API\",\"Customized Services\",\"From Simple Data Scraping to Complex Anti-Bot Challenges, Scrapeless Has You Covered.\",\"Fully Compatible with Key Programming Languages and Tools\",\"Enterprise-level Data Scraping Solution\",\"Customized Data Scraping Solutions\",\"High Concurrency and High-Performance Scraping\",\"Data Cleaning and Transformation\",\"Real-Time Data Push and API Integration\",\"Data Security and Privacy Protection\",\"Enterprise-level SLA\",\"Why Scrapeless: Simplify Your Data Flow Effortlessly.\",\"Articles\",\"Organized Fresh Data\",\"Prices\",\"No need to hassle with browser maintenance\",\"Reviews\",\"Only pay for successful requests\",\"Products\",\"Fully scalable\",\"Unleash Your Competitive Edgein Data within the Industry\",\"Regulate Compliance for All Users\",\"Web Scraping Blog\",\"Scrapeless MCP Server Is Officially Live! Build Your Ultimate AI-Web Connector\",\"Product Updates | New Profile Feature\",\"How to Track Your Ranking on ChatGPT?\",\"For Scraping\",\"For Data\",\"For AI\",\"Top Scraper API\",\"Learning Center\",\"Legal\"]}\n",
"==================================\u001b[1m Ai Message \u001b[0m==================================\n",
"\n",
"The h1 tag extracted from the website https://www.scrapeless.com/en is \"Effortless Web Scraping Toolkit for Business and Developers\".\n"
]
}
],
"source": [
"from langchain_openai import ChatOpenAI\n",
"from langchain_scrapeless import ScrapelessUniversalScrapingTool\n",
"from langgraph.prebuilt import create_react_agent\n",
"\n",
"llm = ChatOpenAI()\n",
"\n",
"tool = ScrapelessUniversalScrapingTool()\n",
"\n",
"# Use the tool with an agent\n",
"tools = [tool]\n",
"agent = create_react_agent(llm, tools)\n",
"\n",
"for chunk in agent.stream(\n",
" {\n",
" \"messages\": [\n",
" (\n",
" \"human\",\n",
" \"Use the scrapeless scraping tool to fetch https://www.scrapeless.com/en and extract the h1 tag.\",\n",
" )\n",
" ]\n",
" },\n",
" stream_mode=\"values\",\n",
"):\n",
" chunk[\"messages\"][-1].pretty_print()"
]
},
{
"cell_type": "markdown",
"id": "4ac8146c",
"metadata": {},
"source": [
"## API reference\n",
"\n",
"- [Scrapeless Documentation](https://docs.scrapeless.com/en/universal-scraping-api/quickstart/introduction/)\n",
"- [Scrapeless API Reference](https://apidocs.scrapeless.com/api-12948840)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "langchain",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.11"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -153,7 +153,7 @@
"from langgraph.prebuilt import create_react_agent\n",
"\n",
"llm = ChatAnthropic(\n",
" model=\"claude-3-5-sonnet-20240620\",\n",
" model=\"claude-3-5-sonnet-latest\",\n",
")\n",
"\n",
"langgraph_agent_executor = create_react_agent(llm, stripe_agent_toolkit.get_tools())\n",

File diff suppressed because one or more lines are too long

View File

@@ -73,8 +73,9 @@
]
},
{
"metadata": {},
"cell_type": "markdown",
"id": "72461be913bfaf2b",
"metadata": {},
"source": [
"## Instantiation\n",
"\n",
@@ -83,26 +84,26 @@
"Instantiation\n",
"The tool accepts various parameters during instantiation:\n",
"\n",
"- max_results (optional, int): Maximum number of search results to return. Default is 5.\n",
"- topic (optional, str): Category of the search. Can be \"general\", \"news\", or \"finance\". Default is \"general\".\n",
"- include_answer (optional, bool): Include an answer to original query in results. Default is False.\n",
"- include_raw_content (optional, bool): Include cleaned and parsed HTML of each search result. Default is False.\n",
"- include_images (optional, bool): Include a list of query related images in the response. Default is False.\n",
"- include_image_descriptions (optional, bool): Include descriptive text for each image. Default is False.\n",
"- search_depth (optional, str): Depth of the search, either \"basic\" or \"advanced\". Default is \"basic\".\n",
"- time_range (optional, str): The time range back from the current date to filter results - \"day\", \"week\", \"month\", or \"year\". Default is None.\n",
"- include_domains (optional, List[str]): List of domains to specifically include. Default is None.\n",
"- exclude_domains (optional, List[str]): List of domains to specifically exclude. Default is None.\n",
"- `max_results` (optional, int): Maximum number of search results to return. Default is 5.\n",
"- `topic` (optional, str): Category of the search. Can be `'general'`, `'news'`, or `'finance'`. Default is `'general'`.\n",
"- `include_answer` (optional, bool): Include an answer to original query in results. Default is False.\n",
"- `include_raw_content` (optional, bool): Include cleaned and parsed HTML of each search result. Default is False.\n",
"- `include_images` (optional, bool): Include a list of query related images in the response. Default is False.\n",
"- `include_image_descriptions` (optional, bool): Include descriptive text for each image. Default is False.\n",
"- `search_depth` (optional, str): Depth of the search, either `'basic'` or `'advanced'`. Default is `'basic'`.\n",
"- `time_range` (optional, str): The time range back from the current date to filter results - `'day'`, `'week'`, `'month'`, or `'year'`. Default is None.\n",
"- `include_domains` (optional, List[str]): List of domains to specifically include. Default is None.\n",
"- `exclude_domains` (optional, List[str]): List of domains to specifically exclude. Default is None.\n",
"\n",
"For a comprehensive overview of the available parameters, refer to the [Tavily Search API documentation](https://docs.tavily.com/documentation/api-reference/endpoint/search)"
],
"id": "72461be913bfaf2b"
]
},
{
"metadata": {},
"cell_type": "code",
"outputs": [],
"execution_count": null,
"id": "dc382e5426394836",
"metadata": {},
"outputs": [],
"source": [
"from langchain_tavily import TavilySearch\n",
"\n",
@@ -118,12 +119,12 @@
" # include_domains=None,\n",
" # exclude_domains=None\n",
")"
],
"id": "dc382e5426394836"
]
},
{
"metadata": {},
"cell_type": "markdown",
"id": "f997d2733b63f655",
"metadata": {},
"source": [
"## Invocation\n",
"\n",
@@ -134,18 +135,22 @@
"- The following arguments can also be set during invocation : `include_images`, `search_depth` , `time_range`, `include_domains`, `exclude_domains`, `include_images`\n",
"- For reliability and performance reasons, certain parameters that affect response size cannot be modified during invocation: `include_answer` and `include_raw_content`. These limitations prevent unexpected context window issues and ensure consistent results.\n",
"\n",
":::note\n",
"\n",
"NOTE: The optional arguments are available for agents to dynamically set, if you set an argument during instantiation and then invoke the tool with a different value, the tool will use the value you passed during invocation."
],
"id": "f997d2733b63f655"
"The optional arguments are available for agents to dynamically set, if you set an argument during instantiation and then invoke the tool with a different value, the tool will use the value you passed during invocation.\n",
"\n",
":::"
]
},
{
"metadata": {},
"cell_type": "code",
"outputs": [],
"execution_count": null,
"source": "tool.invoke({\"query\": \"What happened at the last wimbledon\"})",
"id": "5e75399230ab9fc1"
"id": "5e75399230ab9fc1",
"metadata": {},
"outputs": [],
"source": [
"tool.invoke({\"query\": \"What happened at the last wimbledon\"})"
]
},
{
"cell_type": "markdown",
@@ -154,7 +159,7 @@
"source": [
"### [Invoke with ToolCall](/docs/concepts/tools)\n",
"\n",
"We can also invoke the tool with a model-generated ToolCall, in which case a ToolMessage will be returned:"
"We can also invoke the tool with a model-generated `ToolCall`, in which case a `ToolMessage` will be returned:"
]
},
{
@@ -233,7 +238,7 @@
"id": "1020a506-473b-4e6a-a563-7aaf92c4d183",
"metadata": {},
"source": [
"We will need to install langgraph:"
"We will need to install `langgraph`:"
]
},
{
@@ -256,21 +261,21 @@
"name": "stdout",
"output_type": "stream",
"text": [
"================================\u001B[1m Human Message \u001B[0m=================================\n",
"================================\u001b[1m Human Message \u001b[0m=================================\n",
"\n",
"What nation hosted the Euro 2024? Include only wikipedia sources.\n",
"==================================\u001B[1m Ai Message \u001B[0m==================================\n",
"==================================\u001b[1m Ai Message \u001b[0m==================================\n",
"Tool Calls:\n",
" tavily_search (call_yxmR4K2uadsQ8LKoyi8JyoLD)\n",
" Call ID: call_yxmR4K2uadsQ8LKoyi8JyoLD\n",
" Args:\n",
" query: Euro 2024 host nation\n",
" include_domains: ['wikipedia.org']\n",
"=================================\u001B[1m Tool Message \u001B[0m=================================\n",
"=================================\u001b[1m Tool Message \u001b[0m=================================\n",
"Name: tavily_search\n",
"\n",
"{\"query\": \"Euro 2024 host nation\", \"follow_up_questions\": null, \"answer\": null, \"images\": [], \"results\": [{\"title\": \"UEFA Euro 2024 - Wikipedia\", \"url\": \"https://en.wikipedia.org/wiki/UEFA_Euro_2024\", \"content\": \"Tournament details Host country Germany Dates 14 June 14 July Teams 24 Venue(s) 10 (in 10 host cities) Final positions Champions Spain (4th title) Runners-up England Tournament statistics Matches played 51 Goals scored 117 (2.29 per match) Attendance 2,681,288 (52,574 per match) Top scorer(s) Harry Kane Georges Mikautadze Jamal Musiala Cody Gakpo Ivan Schranz Dani Olmo (3 goals each) Best player(s) Rodri Best young player Lamine Yamal ← 2020 2028 → The 2024 UEFA European Football Championship, commonly referred to as UEFA Euro 2024 (stylised as UEFA EURO 2024) or simply Euro 2024, was the 17th UEFA European Championship, the quadrennial international football championship organised by UEFA for the European men's national teams of their member associations. Germany hosted the tournament, which took place from 14 June to 14 July 2024. The tournament involved 24 teams, with Georgia making their European Championship debut. [4] Host nation Germany were eliminated by Spain in the quarter-finals; Spain went on to win the tournament for a record fourth time after defeating England 21 in the final.\", \"score\": 0.9104262, \"raw_content\": null}, {\"title\": \"UEFA Euro 2024 - Simple English Wikipedia, the free encyclopedia\", \"url\": \"https://simple.wikipedia.org/wiki/UEFA_Euro_2024\", \"content\": \"The 2024 UEFA European Football Championship, also known as UEFA Euro 2024 or simply Euro 2024, was the 17th edition of the UEFA European Championship. Germany was hosting the tournament. ... The UEFA Executive Committee voted for the host in a secret ballot, with only a simple majority (more than half of the valid votes) required to determine\", \"score\": 0.81418616, \"raw_content\": null}, {\"title\": \"Championnat d'Europe de football 2024 — Wikipédia\", \"url\": \"https://fr.wikipedia.org/wiki/Championnat_d'Europe_de_football_2024\", \"content\": \"Le Championnat d'Europe de l'UEFA de football 2024 est la 17 e édition du Championnat d'Europe de football, communément abrégé en Euro 2024, compétition organisée par l'UEFA et rassemblant les meilleures équipes nationales masculines européennes. L'Allemagne est désignée pays organisateur de la compétition le 27 septembre 2018. C'est la troisième fois que des matches du Championnat\", \"score\": 0.8055255, \"raw_content\": null}, {\"title\": \"UEFA Euro 2024 bids - Wikipedia\", \"url\": \"https://en.wikipedia.org/wiki/UEFA_Euro_2024_bids\", \"content\": \"The bidding process of UEFA Euro 2024 ended on 27 September 2018 in Nyon, Switzerland, when Germany was announced to be the host. [1] Two bids came before the deadline, 3 March 2017, which were Germany and Turkey as single bids. ... Press agencies revealed on 24 October 2013, that the European football governing body UEFA would have decided on\", \"score\": 0.7882741, \"raw_content\": null}, {\"title\": \"2024 UEFA European Under-19 Championship - Wikipedia\", \"url\": \"https://en.wikipedia.org/wiki/2024_UEFA_European_Under-19_Championship\", \"content\": \"The 2024 UEFA European Under-19 Championship (also known as UEFA Under-19 Euro 2024) was the 21st edition of the UEFA European Under-19 Championship (71st edition if the Under-18 and Junior eras are included), the annual international youth football championship organised by UEFA for the men's under-19 national teams of Europe. Northern Ireland hosted the tournament from 15 to 28 July 2024.\", \"score\": 0.7783298, \"raw_content\": null}], \"response_time\": 1.67}\n",
"==================================\u001B[1m Ai Message \u001B[0m==================================\n",
"==================================\u001b[1m Ai Message \u001b[0m==================================\n",
"\n",
"The nation that hosted Euro 2024 was Germany. You can find more information on the [Wikipedia page for UEFA Euro 2024](https://en.wikipedia.org/wiki/UEFA_Euro_2024).\n"
]
@@ -304,8 +309,14 @@
"source": [
"## API reference\n",
"\n",
"For detailed documentation of all Tavily Search API features and configurations head to the API reference: https://docs.tavily.com/documentation/api-reference/endpoint/search"
"For detailed documentation of all Tavily Search API features and configurations head to the [API reference](https://docs.tavily.com/documentation/api-reference/endpoint/search)."
]
},
{
"cell_type": "markdown",
"id": "589ff839",
"metadata": {},
"source": []
}
],
"metadata": {

View File

@@ -0,0 +1,378 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "554b9f85",
"metadata": {},
"source": [
"# MCP Toolbox for Databases\n",
"\n",
"Integrate your databases with LangChain agents using MCP Toolbox.\n",
"\n",
"## Overview\n",
"\n",
"[MCP Toolbox for Databases](https://github.com/googleapis/genai-toolbox) is an open source MCP server for databases. It was designed with enterprise-grade and production-quality in mind. It enables you to develop tools easier, faster, and more securely by handling the complexities such as connection pooling, authentication, and more.\n",
"\n",
"Toolbox Tools can be seemlessly integrated with Langchain applications. For more\n",
"information on [getting\n",
"started](https://googleapis.github.io/genai-toolbox/getting-started/local_quickstart/) or\n",
"[configuring](https://googleapis.github.io/genai-toolbox/getting-started/configure/)\n",
"MCP Toolbox, see the\n",
"[documentation](https://googleapis.github.io/genai-toolbox/getting-started/introduction/).\n",
"\n",
"![architecture](https://raw.githubusercontent.com/googleapis/genai-toolbox/refs/heads/main/docs/en/getting-started/introduction/architecture.png)"
]
},
{
"cell_type": "markdown",
"id": "788ff64c",
"metadata": {},
"source": [
"## Setup\n",
"\n",
"This guide assumes you have already done the following:\n",
"\n",
"1. Installed [Python 3.9+](https://wiki.python.org/moin/BeginnersGuide/Download) and [pip](https://pip.pypa.io/en/stable/installation/).\n",
"2. Installed [PostgreSQL 16+ and the `psql` command-line client](https://www.postgresql.org/download/)."
]
},
{
"cell_type": "markdown",
"id": "4847d196",
"metadata": {},
"source": [
"### 1. Setup your Database\n",
"\n",
"First, let's set up a PostgreSQL database. We'll create a new database, a dedicated user for MCP Toolbox, and a `hotels` table with some sample data.\n",
"\n",
"Connect to PostgreSQL using the `psql` command. You may need to adjust the command based on your PostgreSQL setup (e.g., if you need to specify a host or a different superuser).\n",
"\n",
"```bash\n",
"psql -U postgres\n",
"```\n",
"\n",
"Now, run the following SQL commands to create the user, database, and grant the necessary permissions:\n",
"\n",
"```sql\n",
"CREATE USER toolbox_user WITH PASSWORD 'my-password';\n",
"CREATE DATABASE toolbox_db;\n",
"GRANT ALL PRIVILEGES ON DATABASE toolbox_db TO toolbox_user;\n",
"ALTER DATABASE toolbox_db OWNER TO toolbox_user;\n",
"```\n",
"\n",
"Connect to your newly created database with the new user:\n",
"\n",
"```sql\n",
"\\c toolbox_db toolbox_user\n",
"```\n",
"\n",
"Finally, create the `hotels` table and insert some data:\n",
"\n",
"```sql\n",
"CREATE TABLE hotels(\n",
" id INTEGER NOT NULL PRIMARY KEY,\n",
" name VARCHAR NOT NULL,\n",
" location VARCHAR NOT NULL,\n",
" price_tier VARCHAR NOT NULL,\n",
" booked BIT NOT NULL\n",
");\n",
"\n",
"INSERT INTO hotels(id, name, location, price_tier, booked)\n",
"VALUES \n",
" (1, 'Hilton Basel', 'Basel', 'Luxury', B'0'),\n",
" (2, 'Marriott Zurich', 'Zurich', 'Upscale', B'0'),\n",
" (3, 'Hyatt Regency Basel', 'Basel', 'Upper Upscale', B'0');\n",
"```\n",
"You can now exit `psql` by typing `\\q`."
]
},
{
"cell_type": "markdown",
"id": "855133f8",
"metadata": {},
"source": [
"### 2. Install MCP Toolbox\n",
"\n",
"Next, we will install MCP Toolbox, define our tools in a `tools.yaml` configuration file, and run the MCP Toolbox server.\n",
"\n",
"For **macOS** users, the easiest way to install is with [Homebrew](https://formulae.brew.sh/formula/mcp-toolbox):\n",
"\n",
"```bash\n",
"brew install mcp-toolbox\n",
"```\n",
"\n",
"For other platforms, [download the latest MCP Toolbox binary for your operating system and architecture.](https://github.com/googleapis/genai-toolbox/releases)\n",
"\n",
"Create a `tools.yaml` file. This file defines the data sources MCP Toolbox can connect to and the tools it can expose to your agent. For production use, always use environment variables for secrets.\n",
"\n",
"```yaml\n",
"sources:\n",
" my-pg-source:\n",
" kind: postgres\n",
" host: 127.0.0.1\n",
" port: 5432\n",
" database: toolbox_db\n",
" user: toolbox_user\n",
" password: my-password\n",
"\n",
"tools:\n",
" search-hotels-by-location:\n",
" kind: postgres-sql\n",
" source: my-pg-source\n",
" description: Search for hotels based on location.\n",
" parameters:\n",
" - name: location\n",
" type: string\n",
" description: The location of the hotel.\n",
" statement: SELECT id, name, location, price_tier FROM hotels WHERE location ILIKE '%' || $1 || '%';\n",
" book-hotel:\n",
" kind: postgres-sql\n",
" source: my-pg-source\n",
" description: >-\n",
" Book a hotel by its ID. If the hotel is successfully booked, returns a confirmation message.\n",
" parameters:\n",
" - name: hotel_id\n",
" type: integer\n",
" description: The ID of the hotel to book.\n",
" statement: UPDATE hotels SET booked = B'1' WHERE id = $1;\n",
"\n",
"toolsets:\n",
" hotel_toolset:\n",
" - search-hotels-by-location\n",
" - book-hotel\n",
"```\n",
"\n",
"Now, in a separate terminal window, start the MCP Toolbox server. If you installed via Homebrew, you can just run `toolbox`. If you downloaded the binary manually, you'll need to run `./toolbox` from the directory where you saved it:\n",
"\n",
"```bash\n",
"toolbox --tools-file \"tools.yaml\"\n",
"```\n",
"\n",
"MCP Toolbox will start on `http://127.0.0.1:5000` by default and will hot-reload if you make changes to your `tools.yaml` file."
]
},
{
"cell_type": "markdown",
"id": "b9b2f041",
"metadata": {},
"source": [
"## Instantiation"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "d4c31f3b",
"metadata": {},
"outputs": [],
"source": [
"!pip install toolbox-langchain"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "14a68a49",
"metadata": {},
"outputs": [],
"source": [
"from toolbox_langchain import ToolboxClient\n",
"\n",
"with ToolboxClient(\"http://127.0.0.1:5000\") as client:\n",
" search_tool = await client.aload_tool(\"search-hotels-by-location\")"
]
},
{
"cell_type": "markdown",
"id": "95eec50c",
"metadata": {},
"source": [
"## Invocation\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "8e99351b",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[{\"id\":1,\"location\":\"Basel\",\"name\":\"Hilton Basel\",\"price_tier\":\"Luxury\"},{\"id\":3,\"location\":\"Basel\",\"name\":\"Hyatt Regency Basel\",\"price_tier\":\"Upper Upscale\"}]\n"
]
}
],
"source": [
"from toolbox_langchain import ToolboxClient\n",
"\n",
"with ToolboxClient(\"http://127.0.0.1:5000\") as client:\n",
" search_tool = await client.aload_tool(\"search-hotels-by-location\")\n",
" results = search_tool.invoke({\"location\": \"Basel\"})\n",
" print(results)"
]
},
{
"cell_type": "markdown",
"id": "9e8dbd39",
"metadata": {},
"source": [
"## Use within an agent\n",
"\n",
"Now for the fun part! We'll install the required LangChain packages and create an agent that can use the tools we defined in MCP Toolbox."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "9b716a84",
"metadata": {
"id": "install-packages"
},
"outputs": [],
"source": [
"%pip install -U --quiet toolbox-langchain langgraph langchain-google-vertexai"
]
},
{
"cell_type": "markdown",
"id": "affda34b",
"metadata": {},
"source": [
"With the packages installed, we can define our agent. We will use `ChatVertexAI` for the model and `ToolboxClient` to load our tools. The `create_react_agent` from `langgraph.prebuilt` creates a robust agent that can reason about which tools to call.\n",
"\n",
"**Note:** Ensure your MCP Toolbox server is running in a separate terminal before executing the code below."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "ddd82892",
"metadata": {},
"outputs": [],
"source": [
"from langgraph.prebuilt import create_react_agent\n",
"from langchain_google_vertexai import ChatVertexAI\n",
"from langgraph.checkpoint.memory import MemorySaver\n",
"from toolbox_langchain import ToolboxClient\n",
"\n",
"prompt = \"\"\"\n",
"You're a helpful hotel assistant. You handle hotel searching and booking.\n",
"When the user searches for a hotel, list the full details for each hotel found: id, name, location, and price tier.\n",
"Always use the hotel ID for booking operations.\n",
"For any bookings, provide a clear confirmation message.\n",
"Don't ask for clarification or confirmation from the user; perform the requested action directly.\n",
"\"\"\"\n",
"\n",
"\n",
"async def run_queries(agent_executor):\n",
" config = {\"configurable\": {\"thread_id\": \"hotel-thread-1\"}}\n",
"\n",
" # --- Query 1: Search for hotels ---\n",
" query1 = \"I need to find a hotel in Basel.\"\n",
" print(f'\\n--- USER: \"{query1}\" ---')\n",
" inputs1 = {\"messages\": [(\"user\", prompt + query1)]}\n",
" async for event in agent_executor.astream_events(\n",
" inputs1, config=config, version=\"v2\"\n",
" ):\n",
" if event[\"event\"] == \"on_chat_model_end\" and event[\"data\"][\"output\"].content:\n",
" print(f\"--- AGENT: ---\\n{event['data']['output'].content}\")\n",
"\n",
" # --- Query 2: Book a hotel ---\n",
" query2 = \"Great, please book the Hyatt Regency Basel for me.\"\n",
" print(f'\\n--- USER: \"{query2}\" ---')\n",
" inputs2 = {\"messages\": [(\"user\", query2)]}\n",
" async for event in agent_executor.astream_events(\n",
" inputs2, config=config, version=\"v2\"\n",
" ):\n",
" if event[\"event\"] == \"on_chat_model_end\" and event[\"data\"][\"output\"].content:\n",
" print(f\"--- AGENT: ---\\n{event['data']['output'].content}\")"
]
},
{
"cell_type": "markdown",
"id": "54552733",
"metadata": {},
"source": [
"## Run the agent"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "9f7c199b",
"metadata": {},
"outputs": [],
"source": [
"async def main():\n",
" await run_hotel_agent()\n",
"\n",
"\n",
"async def run_hotel_agent():\n",
" model = ChatVertexAI(model_name=\"gemini-2.5-flash\")\n",
"\n",
" # Load the tools from the running MCP Toolbox server\n",
" async with ToolboxClient(\"http://127.0.0.1:5000\") as client:\n",
" tools = await client.aload_toolset(\"hotel_toolset\")\n",
"\n",
" agent = create_react_agent(model, tools, checkpointer=MemorySaver())\n",
"\n",
" await run_queries(agent)\n",
"\n",
"\n",
"await main()"
]
},
{
"cell_type": "markdown",
"id": "79bce43d",
"metadata": {},
"source": [
"You've successfully connected a LangChain agent to a local database using MCP Toolbox! 🥳\n",
"\n",
"## API reference\n",
"\n",
"The primary class for this integration is `ToolboxClient`.\n",
"\n",
"For more information, see the following resources:\n",
"- [Toolbox Official Documentation](https://googleapis.github.io/genai-toolbox/)\n",
"- [Toolbox GitHub Repository](https://github.com/googleapis/genai-toolbox)\n",
"- [Toolbox LangChain SDK](https://github.com/googleapis/mcp-toolbox-python-sdk/tree/main/packages/toolbox-langchain)\n",
"\n",
"MCP Toolbox has a variety of features to make developing Gen AI tools for databases seamless:\n",
"- [Authenticated Parameters](https://googleapis.github.io/genai-toolbox/resources/tools/#authenticated-parameters): Bind tool inputs to values from OIDC tokens automatically, making it easy to run sensitive queries without potentially leaking data\n",
"- [Authorized Invocations](https://googleapis.github.io/genai-toolbox/resources/tools/#authorized-invocations): Restrict access to use a tool based on the users Auth token\n",
"- [OpenTelemetry](https://googleapis.github.io/genai-toolbox/how-to/export_telemetry/): Get metrics and tracing from MCP Toolbox with [OpenTelemetry](https://opentelemetry.io/docs/)\n",
"\n",
"# Community and Support\n",
"\n",
"We encourage you to get involved with the community:\n",
"- ⭐️ Head over to the [GitHub repository](https://github.com/googleapis/genai-toolbox) to get started and follow along with updates.\n",
"- 📚 Dive into the [official documentation](https://googleapis.github.io/genai-toolbox/getting-started/introduction/) for more advanced features and configurations.\n",
"- 💬 Join our [Discord server](https://discord.com/invite/a4XjGqtmnG) to connect with the community and ask questions."
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.13"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -11,7 +11,7 @@ LangChain simplifies every stage of the LLM application lifecycle:
- **Development**: Build your applications using LangChain's open-source [components](/docs/concepts) and [third-party integrations](/docs/integrations/providers/).
Use [LangGraph](/docs/concepts/architecture/#langgraph) to build stateful agents with first-class streaming and human-in-the-loop support.
- **Productionization**: Use [LangSmith](https://docs.smith.langchain.com/) to inspect, monitor and evaluate your applications, so that you can continuously optimize and deploy with confidence.
- **Deployment**: Turn your LangGraph applications into production-ready APIs and Assistants with [LangGraph Platform](https://langchain-ai.github.io/langgraph/cloud/).
- **Deployment**: Turn your LangGraph applications into production-ready APIs and Assistants with [LangGraph Platform](https://docs.langchain.com/langgraph-platform).
import ThemedImage from '@theme/ThemedImage';
import useBaseUrl from '@docusaurus/useBaseUrl';

View File

@@ -45,7 +45,7 @@
},
{
"cell_type": "code",
"execution_count": 5,
"execution_count": null,
"metadata": {},
"outputs": [
{
@@ -74,7 +74,7 @@
"\n",
"uncoercible_message = {\"role\": \"HumanMessage\", \"random_field\": \"random value\"}\n",
"\n",
"model = ChatAnthropic(model=\"claude-3-5-sonnet-20240620\")\n",
"model = ChatAnthropic(model=\"claude-3-5-sonnet-latest\")\n",
"\n",
"model.invoke([uncoercible_message])"
]

View File

@@ -85,7 +85,7 @@
"As these applications get more and more complex, it becomes crucial to be able to inspect what exactly is going on inside your chain or agent.\n",
"The best way to do this is with [LangSmith](https://smith.langchain.com).\n",
"\n",
"After you sign up at the link above, make sure to set your environment variables to start logging traces:\n",
"After you sign up at the link above, **(you'll need to create an API key from the Settings -> API Keys page on the LangSmith website)**, make sure to set your environment variables to start logging traces:\n",
"\n",
"```shell\n",
"export LANGSMITH_TRACING=\"true\"\n",
@@ -720,7 +720,7 @@
" AIMessage(content='yes!', additional_kwargs={}, response_metadata={})]"
]
},
"execution_count": 23,
"execution_count": 109,
"metadata": {},
"output_type": "execute_result"
}
@@ -771,8 +771,13 @@
"\n",
"\n",
"def call_model(state: State):\n",
" print(f\"Messages before trimming: {len(state['messages'])}\")\n",
" # highlight-start\n",
" trimmed_messages = trimmer.invoke(state[\"messages\"])\n",
" print(f\"Messages after trimming: {len(trimmed_messages)}\")\n",
" print(\"Remaining messages:\")\n",
" for msg in trimmed_messages:\n",
" print(f\" {type(msg).__name__}: {msg.content}\")\n",
" prompt = prompt_template.invoke(\n",
" {\"messages\": trimmed_messages, \"language\": state[\"language\"]}\n",
" )\n",
@@ -792,7 +797,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"Now if we try asking the model our name, it won't know it since we trimmed that part of the chat history:"
"Now if we try asking the model our name, it won't know it since we trimmed that part of the chat history. (By defining our trim stragegy as `'last'`, we are only keeping the most recent messages that fit within the `max_tokens`.)"
]
},
{
@@ -804,9 +809,20 @@
"name": "stdout",
"output_type": "stream",
"text": [
"Messages before trimming: 12\n",
"Messages after trimming: 8\n",
"Remaining messages:\n",
" SystemMessage: you're a good assistant\n",
" HumanMessage: whats 2 + 2\n",
" AIMessage: 4\n",
" HumanMessage: thanks\n",
" AIMessage: no problem!\n",
" HumanMessage: having fun?\n",
" AIMessage: yes!\n",
" HumanMessage: What is my name?\n",
"==================================\u001b[1m Ai Message \u001b[0m==================================\n",
"\n",
"I don't know your name. You haven't told me yet!\n"
"I don't know your name. If you'd like to share it, feel free!\n"
]
}
],
@@ -840,15 +856,27 @@
"name": "stdout",
"output_type": "stream",
"text": [
"Messages before trimming: 12\n",
"Messages after trimming: 8\n",
"Remaining messages:\n",
" SystemMessage: you're a good assistant\n",
" HumanMessage: whats 2 + 2\n",
" AIMessage: 4\n",
" HumanMessage: thanks\n",
" AIMessage: no problem!\n",
" HumanMessage: having fun?\n",
" AIMessage: yes!\n",
" HumanMessage: What math problem was asked?\n",
"==================================\u001b[1m Ai Message \u001b[0m==================================\n",
"\n",
"You asked what 2 + 2 equals.\n"
"The math problem that was asked was \"what's 2 + 2.\"\n"
]
}
],
"source": [
"config = {\"configurable\": {\"thread_id\": \"abc678\"}}\n",
"query = \"What math problem did I ask?\"\n",
"\n",
"query = \"What math problem was asked?\"\n",
"language = \"English\"\n",
"\n",
"input_messages = messages + [HumanMessage(query)]\n",
@@ -890,9 +918,9 @@
"text": [
"|Hi| Todd|!| Here|s| a| joke| for| you|:\n",
"\n",
"|Why| don|t| skeleton|s| fight| each| other|?\n",
"|Why| don't| scientists| trust| atoms|?\n",
"\n",
"|Because| they| don|t| have| the| guts|!||"
"|Because| they| make| up| everything|!||"
]
}
],

View File

@@ -49,7 +49,7 @@
"metadata": {},
"outputs": [],
"source": [
"pip install --upgrade --quiet langchain-core"
"pip install -U langchain-core"
]
},
{
@@ -89,7 +89,7 @@
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 3,
"id": "39f3ce3e",
"metadata": {},
"outputs": [],
@@ -124,7 +124,7 @@
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 4,
"id": "5509b6a6",
"metadata": {},
"outputs": [
@@ -134,7 +134,7 @@
"Classification(sentiment='positive', aggressiveness=1, language='Spanish')"
]
},
"execution_count": 8,
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
@@ -157,17 +157,17 @@
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 4,
"id": "9154474c",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'sentiment': 'enojado', 'aggressiveness': 8, 'language': 'es'}"
"{'sentiment': 'angry', 'aggressiveness': 8, 'language': 'Spanish'}"
]
},
"execution_count": 10,
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
@@ -218,7 +218,7 @@
},
{
"cell_type": "code",
"execution_count": 11,
"execution_count": 5,
"id": "6a5f7961",
"metadata": {},
"outputs": [],
@@ -237,7 +237,7 @@
},
{
"cell_type": "code",
"execution_count": 15,
"execution_count": 6,
"id": "e5a5881f",
"metadata": {},
"outputs": [],
@@ -268,17 +268,17 @@
},
{
"cell_type": "code",
"execution_count": 12,
"execution_count": 7,
"id": "d9b9d53d",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Classification(sentiment='positive', aggressiveness=1, language='Spanish')"
"Classification(sentiment='happy', aggressiveness=1, language='spanish')"
]
},
"execution_count": 12,
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
@@ -291,17 +291,17 @@
},
{
"cell_type": "code",
"execution_count": 13,
"execution_count": 8,
"id": "1c12fa00",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Classification(sentiment='enojado', aggressiveness=8, language='es')"
"Classification(sentiment='sad', aggressiveness=4, language='spanish')"
]
},
"execution_count": 13,
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
@@ -314,17 +314,17 @@
},
{
"cell_type": "code",
"execution_count": 14,
"execution_count": 9,
"id": "0bdfcb05",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Classification(sentiment='neutral', aggressiveness=1, language='English')"
"Classification(sentiment='happy', aggressiveness=1, language='english')"
]
},
"execution_count": 14,
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
@@ -359,7 +359,7 @@
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"display_name": "langchain-monorepo",
"language": "python",
"name": "python3"
},
@@ -373,7 +373,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.4"
"version": "3.12.11"
}
},
"nbformat": 4,

View File

@@ -192,7 +192,7 @@
"source": [
":::tip\n",
"\n",
"If we've enabled LangSmith, we can see that this run is logged to LangSmith, and can see the [LangSmith trace](https://smith.langchain.com/public/88baa0b2-7c1a-4d09-ba30-a47985dde2ea/r). The LangSmith trace reports [token](/docs/concepts/tokens/) usage information, latency, [standard model parameters](/docs/concepts/chat_models/#standard-parameters) (such as temperature), and other information.\n",
"If we've enabled LangSmith, we can see that this run is logged to LangSmith, and can see the [LangSmith trace](https://docs.smith.langchain.com/observability/concepts#traces). The LangSmith trace reports [token](/docs/concepts/tokens/) usage information, latency, [standard model parameters](/docs/concepts/chat_models/#standard-parameters) (such as temperature), and other information.\n",
"\n",
":::\n",
"\n",

View File

@@ -236,7 +236,7 @@
"We can use [create_stuff_documents_chain](https://python.langchain.com/api_reference/langchain/chains/langchain.chains.combine_documents.stuff.create_stuff_documents_chain.html), especially if using larger context window models such as:\n",
"\n",
"* 128k token OpenAI `gpt-4o` \n",
"* 200k token Anthropic `claude-3-5-sonnet-20240620`\n",
"* 200k token Anthropic `claude-3-5-sonnet-latest`\n",
"\n",
"The chain will take a list of documents, insert them all into a prompt, and pass that prompt to an LLM:"
]

View File

@@ -142,8 +142,7 @@ const config = {
respectPrefersColorScheme: true,
},
announcementBar: {
content:
'<strong>Our <a href="https://academy.langchain.com/courses/ambient-agents/?utm_medium=internal&utm_source=docs&utm_campaign=q2-2025_ambient-agents_co" target="_blank">Building Ambient Agents with LangGraph</a> course is now available on LangChain Academy!</strong>',
content: "Our new LangChain Academy Course Deep Research with LangGraph is now live! <a href='https://academy.langchain.com/courses/deep-research-with-langgraph/?utm_medium=internal&utm_source=docs&utm_campaign=q3-2025_deep-research-course_co' target='_blank'>Enroll for free</a>.",
backgroundColor: "#d0c9fe",
},
prism: {

View File

@@ -5,6 +5,14 @@ echo "VERCEL_GIT_COMMIT_REF: $VERCEL_GIT_COMMIT_REF"
echo "VERCEL_GIT_REPO_OWNER: $VERCEL_GIT_REPO_OWNER"
echo "VERCEL_GIT_REPO_SLUG: $VERCEL_GIT_REPO_SLUG"
echo "Checking for skip-preview tags..."
COMMIT_MESSAGE=$(git log -1 --pretty=%B)
echo "Commit message: $COMMIT_MESSAGE"
if [[ "$COMMIT_MESSAGE" == *"[skip-preview]"* ]] || [[ "$COMMIT_MESSAGE" == *"[no-preview]"* ]] || [[ "$COMMIT_MESSAGE" == *"[skip-deploy]"* ]]; then
echo "🛑 Skip-preview tag found in commit message - skipping preview deployment"
exit 0
fi
if { \
[ "$VERCEL_ENV" == "production" ] || \
@@ -13,10 +21,10 @@ if { \
[ "$VERCEL_GIT_COMMIT_REF" == "v0.2" ] || \
[ "$VERCEL_GIT_COMMIT_REF" == "v0.3rc" ]; \
} && [ "$VERCEL_GIT_REPO_OWNER" == "langchain-ai" ]
then
then
echo "✅ Production build - proceeding with build"
exit 1
fi
fi
echo "Checking for changes in docs/"

View File

@@ -182,6 +182,10 @@ DATABASE_TOOL_FEAT_TABLE = {
"link": "/docs/integrations/tools/cassandra_database",
"operations": "SELECT and schema introspection",
},
"MCP Toolbox": {
"link": "/docs/integrations/tools/toolbox",
"operations": "Any SQL operation",
},
}
FINANCE_TOOL_FEAT_TABLE = {

View File

@@ -27,7 +27,7 @@ module.exports = {
},
{
type: "category",
link: {type: 'doc', id: 'tutorials/index'},
link: { type: 'doc', id: 'tutorials/index' },
label: "Tutorials",
collapsible: false,
items: [{
@@ -38,7 +38,7 @@ module.exports = {
},
{
type: "category",
link: {type: 'doc', id: 'how_to/index'},
link: { type: 'doc', id: 'how_to/index' },
label: "How-to guides",
collapsible: false,
items: [{
@@ -49,7 +49,7 @@ module.exports = {
},
{
type: "category",
link: {type: 'doc', id: 'concepts/index'},
link: { type: 'doc', id: 'concepts/index' },
label: "Conceptual guide",
collapsible: false,
items: [{
@@ -103,7 +103,7 @@ module.exports = {
{
type: "category",
label: "Migrating from v0.0 chains",
link: {type: 'doc', id: 'versions/migrating_chains/index'},
link: { type: 'doc', id: 'versions/migrating_chains/index' },
collapsible: false,
collapsed: false,
items: [{
@@ -115,7 +115,7 @@ module.exports = {
{
type: "category",
label: "Upgrading to LangGraph memory",
link: {type: 'doc', id: 'versions/migrating_memory/index'},
link: { type: 'doc', id: 'versions/migrating_memory/index' },
collapsible: false,
collapsed: false,
items: [{
@@ -418,7 +418,7 @@ module.exports = {
},
],
},
],
link: {
type: "generated-index",
@@ -434,7 +434,7 @@ module.exports = {
},
{
type: "category",
link: {type: 'doc', id: 'contributing/tutorials/index'},
link: { type: 'doc', id: 'contributing/tutorials/index' },
label: "Tutorials",
collapsible: false,
items: [{
@@ -445,7 +445,7 @@ module.exports = {
},
{
type: "category",
link: {type: 'doc', id: 'contributing/how_to/index'},
link: { type: 'doc', id: 'contributing/how_to/index' },
label: "How-to guides",
collapsible: false,
items: [{
@@ -456,7 +456,7 @@ module.exports = {
},
{
type: "category",
link: {type: 'doc', id: 'contributing/reference/index'},
link: { type: 'doc', id: 'contributing/reference/index' },
label: "Reference & FAQ",
collapsible: false,
items: [{

View File

@@ -822,10 +822,17 @@ const FEATURE_TABLES = {
api: "Package",
apiLink: "https://python.langchain.com/api_reference/community/document_loaders/langchain_community.document_loaders.sitemap.SitemapLoader.html"
},
{
name: "Spider",
link: "spider",
source: "Crawler and scraper that returns LLM-ready data.",
api: "API",
apiLink: "https://python.langchain.com/api_reference/community/document_loaders/langchain_community.document_loaders.spider.SpiderLoader.html"
},
{
name: "Firecrawl",
link: "firecrawl",
source: "API service that can be deployed locally, hosted version has free credits.",
source: "API service that can be deployed locally.",
api: "API",
apiLink: "https://python.langchain.com/api_reference/community/document_loaders/langchain_community.document_loaders.firecrawl.FireCrawlLoader.html"
},
@@ -849,6 +856,13 @@ const FEATURE_TABLES = {
source: "Web interaction and structured data extraction from any web page using an AgentQL query or a Natural Language prompt",
api: "API",
apiLink: "https://python.langchain.com/docs/integrations/document_loaders/agentql/"
},
{
name: "Oxylabs",
link: "oxylabs",
source: "Web intelligence platform enabling the access to various data sources.",
api: "API",
apiLink: "https://github.com/oxylabs/langchain-oxylabs"
}
]
},

View File

@@ -77,7 +77,7 @@ export default function VectorStoreTabs(props) {
{
value: "Qdrant",
label: "Qdrant",
text: `from langchain_qdrant import QdrantVectorStore\nfrom qdrant_client import QdrantClient\n${useFakeEmbeddings ? fakeEmbeddingsString : ""}\nclient = QdrantClient(":memory:")\n${vectorStoreVarName} = QdrantVectorStore(\n client=client,\n collection_name="test",\n embedding=embeddings,\n)`,
text: `from qdrant_client.models import Distance, VectorParams\nfrom langchain_qdrant import QdrantVectorStore\nfrom qdrant_client import QdrantClient\n${useFakeEmbeddings ? fakeEmbeddingsString : ""}\nclient = QdrantClient(":memory:")\n\nvector_size = len(embeddings.embed_query("sample text"))\n\nif not client.collection_exists("test"):\n client.create_collection(\n collection_name="test",\n vectors_config=VectorParams(size=vector_size, distance=Distance.COSINE)\n )\n${vectorStoreVarName} = QdrantVectorStore(\n client=client,\n collection_name="test",\n embedding=embeddings,\n)`,
packageName: "langchain-qdrant",
default: false,
},

BIN
docs/static/img/gateway-metrics.png vendored Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 530 KiB

BIN
docs/static/img/unified-code-tfy.png vendored Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 408 KiB

View File

@@ -11,3 +11,5 @@ numpy>=1.26.0,<2.0.0
simsimd>=5.0.0
# Fix sentencepiece build error - use newer version that supports modern CMake
sentencepiece>=0.2.1
# Fix langchain-azure-ai dependency conflict with langchain-core
langchain-core @ file:///home/runner/work/langchain/langchain/langchain/libs/core

View File

@@ -1,3 +1,5 @@
"""LangChain CLI."""
from langchain_cli._version import __version__
__all__ = [

View File

@@ -1,3 +1,5 @@
"""LangChain CLI."""
from typing import Annotated, Optional
import typer
@@ -34,20 +36,21 @@ app.command(
)
def version_callback(show_version: bool) -> None: # noqa: FBT001
def _version_callback(*, show_version: bool) -> None:
if show_version:
typer.echo(f"langchain-cli {__version__}")
raise typer.Exit
@app.callback()
def main(
version: bool = typer.Option( # noqa: FBT001
def _main(
*,
version: bool = typer.Option(
False, # noqa: FBT003
"--version",
"-v",
help="Print the current CLI version.",
callback=version_callback,
callback=_version_callback,
is_eager=True,
),
) -> None:

View File

@@ -1,3 +1,5 @@
"""LangChain CLI constants."""
DEFAULT_GIT_REPO = "https://github.com/langchain-ai/langchain.git"
DEFAULT_GIT_SUBDIRECTORY = "templates"
DEFAULT_GIT_REF = "master"

View File

@@ -13,7 +13,7 @@ def create_demo_server(
*,
config_keys: Sequence[str] = (),
playground_type: Literal["default", "chat"] = "default",
):
) -> FastAPI:
"""Create a demo server for the current template."""
app = FastAPI()
package_root = get_package_root()
@@ -40,9 +40,11 @@ def create_demo_server(
return app
def create_demo_server_configurable():
def create_demo_server_configurable() -> FastAPI:
"""Create a configurable demo server."""
return create_demo_server(config_keys=["configurable"])
def create_demo_server_chat():
def create_demo_server_chat() -> FastAPI:
"""Create a chat demo server."""
return create_demo_server(playground_type="chat")

View File

@@ -0,0 +1 @@
"""Namespaces."""

View File

@@ -8,6 +8,7 @@ from pathlib import Path
from typing import Annotated, Optional
import typer
import uvicorn
from langchain_cli.utils.events import create_events
from langchain_cli.utils.git import (
@@ -261,7 +262,7 @@ def add(
cmd = ["pip", "install", "-e", *installed_destination_strs]
cmd_str = " \\\n ".join(installed_destination_strs)
typer.echo(f"Running: pip install -e \\\n {cmd_str}")
subprocess.run(cmd, cwd=cwd) # noqa: S603
subprocess.run(cmd, cwd=cwd, check=True) # noqa: S603
chain_names = []
for e in installed_exports:
@@ -367,8 +368,6 @@ def serve(
app_str = app if app is not None else "app.server:app"
host_str = host if host is not None else "127.0.0.1"
import uvicorn
uvicorn.run(
app_str,
host=host_str,

View File

@@ -15,6 +15,8 @@ integration_cli = typer.Typer(no_args_is_help=True, add_completion=False)
class Replacements(TypedDict):
"""Replacements."""
__package_name__: str
__module_name__: str
__ModuleName__: str
@@ -127,6 +129,7 @@ def new(
subprocess.run(
["poetry", "install", "--with", "lint,test,typing,test_integration"], # noqa: S607
cwd=destination_dir,
check=True,
)
else:
# confirm src and dst are the same length

View File

@@ -0,0 +1 @@
"""Migrations."""

View File

@@ -0,0 +1 @@
"""Generate migrations."""

View File

@@ -3,6 +3,7 @@
import importlib
import inspect
import pkgutil
from types import ModuleType
def generate_raw_migrations(
@@ -89,7 +90,7 @@ def generate_top_level_imports(pkg: str) -> list[tuple[str, str]]:
items = []
# Function to handle importing from modules
def handle_module(module, module_name) -> None:
def handle_module(module: ModuleType, module_name: str) -> None:
if hasattr(module, "__all__"):
all_objects = module.__all__
for name in all_objects:

View File

@@ -1,3 +1,6 @@
"""Migration as Grit file."""
def split_package(package: str) -> tuple[str, str]:
"""Split a package name into the containing package and the final name."""
parts = package.split(".")

View File

@@ -1,8 +1,11 @@
"""Generate migrations utilities."""
import ast
import inspect
import os
import pathlib
from pathlib import Path
from types import ModuleType
from typing import Any, Optional
HERE = Path(__file__).parent
@@ -15,12 +18,14 @@ PARTNER_PKGS = PKGS_ROOT / "partners"
class ImportExtractor(ast.NodeVisitor):
"""Import extractor."""
def __init__(self, *, from_package: Optional[str] = None) -> None:
"""Extract all imports from the given code, optionally filtering by package."""
self.imports: list = []
self.package = from_package
def visit_ImportFrom(self, node) -> None: # noqa: N802
def visit_ImportFrom(self, node: ast.ImportFrom) -> None: # noqa: N802
if node.module and (
self.package is None or str(node.module).startswith(self.package)
):
@@ -39,7 +44,7 @@ def _get_class_names(code: str) -> list[str]:
# Define a node visitor class to collect class names
class ClassVisitor(ast.NodeVisitor):
def visit_ClassDef(self, node) -> None: # noqa: N802
def visit_ClassDef(self, node: ast.ClassDef) -> None: # noqa: N802
class_names.append(node.name)
self.generic_visit(node)
@@ -58,7 +63,7 @@ def is_subclass(class_obj: Any, classes_: list[type]) -> bool:
)
def find_subclasses_in_module(module, classes_: list[type]) -> list[str]:
def find_subclasses_in_module(module: ModuleType, classes_: list[type]) -> list[str]:
"""Find all classes in the module that inherit from one of the classes."""
subclasses = []
# Iterate over all attributes of the module that are classes
@@ -70,8 +75,7 @@ def find_subclasses_in_module(module, classes_: list[type]) -> list[str]:
def _get_all_classnames_from_file(file: Path, pkg: str) -> list[tuple[str, str]]:
"""Extract all class names from a file."""
with open(file, encoding="utf-8") as f:
code = f.read()
code = Path(file).read_text(encoding="utf-8")
module_name = _get_current_module(file, pkg)
class_names = _get_class_names(code)
@@ -84,8 +88,7 @@ def identify_all_imports_in_file(
from_package: Optional[str] = None,
) -> list[tuple[str, str]]:
"""Let's also identify all the imports in the given file."""
with open(file, encoding="utf-8") as f:
code = f.read()
code = Path(file).read_text(encoding="utf-8")
return find_imports_from_package(code, from_package=from_package)
@@ -143,6 +146,7 @@ def find_imports_from_package(
*,
from_package: Optional[str] = None,
) -> list[tuple[str, str]]:
"""Find imports in code."""
# Parse the code into an AST
tree = ast.parse(code)
# Create an instance of the visitor
@@ -154,8 +158,7 @@ def find_imports_from_package(
def _get_current_module(path: Path, pkg_root: str) -> str:
"""Convert a path to a module name."""
path_as_pathlib = pathlib.Path(os.path.abspath(path))
relative_path = path_as_pathlib.relative_to(pkg_root).with_suffix("")
relative_path = path.relative_to(pkg_root).with_suffix("")
posix_path = relative_path.as_posix()
norm_path = os.path.normpath(str(posix_path))
fully_qualified_module = norm_path.replace("/", ".")

View File

@@ -7,7 +7,9 @@ from pathlib import Path
from typing import Annotated, Optional
import typer
import uvicorn
from langchain_cli.utils.github import list_packages
from langchain_cli.utils.packages import get_langserve_export, get_package_root
package_cli = typer.Typer(no_args_is_help=True, add_completion=False)
@@ -79,7 +81,7 @@ def new(
# poetry install
if with_poetry:
subprocess.run(["poetry", "install"], cwd=destination_dir) # noqa: S607
subprocess.run(["poetry", "install"], cwd=destination_dir, check=True) # noqa: S607
@package_cli.command()
@@ -128,8 +130,6 @@ def serve(
)
)
import uvicorn
uvicorn.run(
script,
factory=True,
@@ -142,8 +142,6 @@ def serve(
@package_cli.command()
def list(contains: Annotated[Optional[str], typer.Argument()] = None) -> None: # noqa: A001
"""List all or search for available templates."""
from langchain_cli.utils.github import list_packages
packages = list_packages(contains=contains)
for package in packages:
typer.echo(package)

View File

@@ -0,0 +1 @@
"""Utilities."""

View File

@@ -1,3 +1,5 @@
"""Events utilities."""
import http.client
import json
from typing import Any, Optional, TypedDict
@@ -8,11 +10,19 @@ WRITE_KEY = "310apTK0HUFl4AOv"
class EventDict(TypedDict):
"""Event data structure for analytics tracking.
Attributes:
event: The name of the event.
properties: Optional dictionary of event properties.
"""
event: str
properties: Optional[dict[str, Any]]
def create_events(events: list[EventDict]) -> Optional[Any]:
"""Create events."""
try:
data = {
"events": [

View File

@@ -1,7 +1,10 @@
"""Find and replace text in files."""
from pathlib import Path
def find_and_replace(source: str, replacements: dict[str, str]) -> str:
"""Find and replace text in a string."""
rtn = source
# replace keys in deterministic alphabetical order
@@ -13,6 +16,7 @@ def find_and_replace(source: str, replacements: dict[str, str]) -> str:
def replace_file(source: Path, replacements: dict[str, str]) -> None:
"""Replace text in a file."""
try:
content = source.read_text()
except UnicodeDecodeError:
@@ -24,6 +28,7 @@ def replace_file(source: Path, replacements: dict[str, str]) -> None:
def replace_glob(parent: Path, glob: str, replacements: dict[str, str]) -> None:
"""Replace text in files matching a glob pattern."""
for file in parent.glob(glob):
if not file.is_file():
continue

View File

@@ -1,4 +1,7 @@
"""Git utilities."""
import hashlib
import logging
import re
import shutil
from collections.abc import Sequence
@@ -13,8 +16,12 @@ from langchain_cli.constants import (
DEFAULT_GIT_SUBDIRECTORY,
)
logger = logging.getLogger(__name__)
class DependencySource(TypedDict):
"""Dependency source information."""
git: str
ref: Optional[str]
subdirectory: Optional[str]
@@ -29,6 +36,7 @@ def parse_dependency_string(
branch: Optional[str],
api_path: Optional[str],
) -> DependencySource:
"""Parse a dependency string into a DependencySource."""
if dep is not None and dep.startswith("git+"):
if repo is not None or branch is not None:
msg = (
@@ -121,6 +129,7 @@ def parse_dependencies(
branch: list[str],
api_path: list[str],
) -> list[DependencySource]:
"""Parse dependencies."""
num_deps = max(
len(dependencies) if dependencies is not None else 0,
len(repo),
@@ -168,22 +177,22 @@ def _get_repo_path(gitstring: str, ref: Optional[str], repo_dir: Path) -> Path:
def update_repo(gitstring: str, ref: Optional[str], repo_dir: Path) -> Path:
"""Update a git repository to the specified ref."""
# see if path already saved
repo_path = _get_repo_path(gitstring, ref, repo_dir)
if repo_path.exists():
# try pulling
try:
repo = Repo(repo_path)
if repo.active_branch.name != ref:
raise ValueError
repo.remotes.origin.pull()
if repo.active_branch.name == ref:
repo.remotes.origin.pull()
return repo_path
except Exception:
# if it fails, delete and clone again
shutil.rmtree(repo_path)
Repo.clone_from(gitstring, repo_path, branch=ref, depth=1)
else:
Repo.clone_from(gitstring, repo_path, branch=ref, depth=1)
logger.exception("Failed to pull existing repo")
# if it fails, delete and clone again
shutil.rmtree(repo_path)
Repo.clone_from(gitstring, repo_path, branch=ref, depth=1)
return repo_path
@@ -196,7 +205,7 @@ def copy_repo(
Raises FileNotFound error if it can't find source
"""
def ignore_func(_, files):
def ignore_func(_: str, files: list[str]) -> list[str]:
return [f for f in files if f == ".git"]
shutil.copytree(source, destination, ignore=ignore_func)

View File

@@ -1,9 +1,12 @@
"""GitHub utilities."""
import http.client
import json
from typing import Optional
def list_packages(*, contains: Optional[str] = None) -> list[str]:
"""List all packages in the langchain repository templates directory."""
conn = http.client.HTTPSConnection("api.github.com")
try:
headers = {

View File

@@ -1,3 +1,5 @@
"""Packages utilities."""
from pathlib import Path
from typing import Any, Optional, TypedDict
@@ -5,6 +7,7 @@ from tomlkit import load
def get_package_root(cwd: Optional[Path] = None) -> Path:
"""Get package root directory."""
# traverse path for routes to host (any directory holding a pyproject.toml file)
package_root = Path.cwd() if cwd is None else cwd
visited: set[Path] = set()
@@ -35,7 +38,8 @@ class LangServeExport(TypedDict):
def get_langserve_export(filepath: Path) -> LangServeExport:
with open(filepath) as f:
"""Get LangServe export information from a pyproject.toml file."""
with filepath.open() as f:
data: dict[str, Any] = load(f)
try:
module = data["tool"]["langserve"]["export_module"]

View File

@@ -1,3 +1,5 @@
"""Pyproject.toml utilities."""
import contextlib
from collections.abc import Iterable
from pathlib import Path
@@ -18,7 +20,7 @@ def add_dependencies_to_pyproject_toml(
local_editable_dependencies: Iterable[tuple[str, Path]],
) -> None:
"""Add dependencies to pyproject.toml."""
with open(pyproject_toml, encoding="utf-8") as f:
with pyproject_toml.open(encoding="utf-8") as f:
# tomlkit types aren't amazing - treat as Dict instead
pyproject: dict[str, Any] = load(f)
pyproject["tool"]["poetry"]["dependencies"].update(
@@ -27,7 +29,7 @@ def add_dependencies_to_pyproject_toml(
for name, loc in local_editable_dependencies
},
)
with open(pyproject_toml, "w", encoding="utf-8") as f:
with pyproject_toml.open("w", encoding="utf-8") as f:
dump(pyproject, f)
@@ -36,12 +38,13 @@ def remove_dependencies_from_pyproject_toml(
local_editable_dependencies: Iterable[str],
) -> None:
"""Remove dependencies from pyproject.toml."""
with open(pyproject_toml, encoding="utf-8") as f:
with pyproject_toml.open(encoding="utf-8") as f:
pyproject: dict[str, Any] = load(f)
# tomlkit types aren't amazing - treat as Dict instead
dependencies = pyproject["tool"]["poetry"]["dependencies"]
for name in local_editable_dependencies:
with contextlib.suppress(KeyError):
del dependencies[name]
with open(pyproject_toml, "w", encoding="utf-8") as f:
with pyproject_toml.open("w", encoding="utf-8") as f:
dump(pyproject, f)

View File

@@ -48,58 +48,41 @@ exclude = [
]
[tool.ruff.lint]
select = [
"A", # flake8-builtins
"B", # flake8-bugbear
"ARG", # flake8-unused-arguments
"ASYNC", # flake8-async
"C4", # flake8-comprehensions
"COM", # flake8-commas
"D", # pydocstyle
"E", # pycodestyle error
"EM", # flake8-errmsg
"F", # pyflakes
"FA", # flake8-future-annotations
"FBT", # flake8-boolean-trap
"FLY", # flake8-flynt
"I", # isort
"ICN", # flake8-import-conventions
"INT", # flake8-gettext
"ISC", # isort-comprehensions
"N", # pep8-naming
"PT", # flake8-pytest-style
"PGH", # pygrep-hooks
"PIE", # flake8-pie
"PERF", # flake8-perf
"PYI", # flake8-pyi
"Q", # flake8-quotes
"RET", # flake8-return
"RSE", # flake8-rst-docstrings
"RUF", # ruff
"S", # flake8-bandit
"SLF", # flake8-self
"SLOT", # flake8-slots
"SIM", # flake8-simplify
"T10", # flake8-debugger
"T20", # flake8-print
"TID", # flake8-tidy-imports
"UP", # pyupgrade
"W", # pycodestyle warning
"YTT", # flake8-2020
]
select = [ "ALL",]
ignore = [
"D100", # pydocstyle: Missing docstring in public module
"D101", # pydocstyle: Missing docstring in public class
"D102", # pydocstyle: Missing docstring in public method
"D103", # pydocstyle: Missing docstring in public function
"D104", # pydocstyle: Missing docstring in public package
"D105", # pydocstyle: Missing docstring in magic method
"D107", # pydocstyle: Missing docstring in __init__
"D407", # pydocstyle: Missing-dashed-underline-after-section
"C90", # McCabe complexity
"COM812", # Messes with the formatter
"FIX002", # Line contains TODO
"PERF203", # Rarely useful
"PLR09", # Too many something (arg, statements, etc)
"RUF012", # Doesn't play well with Pydantic
"TC001", # Doesn't play well with Pydantic
"TC002", # Doesn't play well with Pydantic
"TC003", # Doesn't play well with Pydantic
"TD002", # Missing author in TODO
"TD003", # Missing issue link in TODO
# TODO rules
"ANN401",
"BLE",
"D1",
]
unfixable = [
"B028", # People should intentionally tune the stacklevel
"PLW1510", # People should intentionally set the check argument
]
flake8-annotations.allow-star-arg-any = true
flake8-annotations.mypy-init-return = true
flake8-type-checking.runtime-evaluated-base-classes = ["pydantic.BaseModel","langchain_core.load.serializable.Serializable","langchain_core.runnables.base.RunnableSerializable"]
pep8-naming.classmethod-decorators = [ "classmethod", "langchain_core.utils.pydantic.pre_init", "pydantic.field_validator", "pydantic.v1.root_validator",]
pydocstyle.convention = "google"
pyupgrade.keep-runtime-typing = true
[tool.ruff.lint.per-file-ignores]
"tests/**" = [ "D1", "S", "SLF",]
"scripts/**" = [ "INP", "S",]
[tool.mypy]
exclude = [
"langchain_cli/integration_template",

View File

@@ -0,0 +1 @@
"""Scripts."""

View File

@@ -1,8 +1,8 @@
"""Script to generate migrations for the migration script."""
import json
import os
import pkgutil
from pathlib import Path
from typing import Optional
import click
@@ -73,19 +73,18 @@ def generic(
else:
dumped = dump_migrations_as_grit(name, migrations)
with open(output, "w") as f:
f.write(dumped)
Path(output).write_text(dumped)
def handle_partner(pkg: str, output: Optional[str] = None) -> None:
"""Handle partner package migrations."""
migrations = get_migrations_for_partner_package(pkg)
# Run with python 3.9+
name = pkg.removeprefix("langchain_")
data = dump_migrations_as_grit(name, migrations)
output_name = f"{name}.grit" if output is None else output
if migrations:
with open(output_name, "w") as f:
f.write(data)
Path(output_name).write_text(data)
click.secho(f"LangChain migration script saved to {output_name}")
else:
click.secho(f"No migrations found for {pkg}", fg="yellow")
@@ -104,13 +103,13 @@ def partner(pkg: str, output: str) -> None:
@click.argument("json_file")
def json_to_grit(json_file: str) -> None:
"""Generate a Grit migration from an old JSON migration file."""
with open(json_file) as f:
file = Path(json_file)
with file.open() as f:
migrations = json.load(f)
name = os.path.basename(json_file).removesuffix(".json").removesuffix(".grit")
name = file.stem
data = dump_migrations_as_grit(name, migrations)
output_name = f"{name}.grit"
with open(output_name, "w") as f:
f.write(data)
Path(output_name).write_text(data)
click.secho(f"GritQL migration script saved to {output_name}")

View File

@@ -14,3 +14,6 @@ class File:
return False
return self.content == __value.content
def __hash__(self) -> int:
return hash((self.name, self.content))

View File

@@ -57,3 +57,6 @@ class Folder:
return False
return True
def __hash__(self) -> int:
return hash((self.name, tuple(self.files)))

View File

@@ -21,13 +21,13 @@ For full documentation see the [API reference](https://python.langchain.com/api_
## 1⃣ Core Interface: Runnables
The concept of a Runnable is central to LangChain Core it is the interface that most LangChain Core components implement, giving them
The concept of a `Runnable` is central to LangChain Core it is the interface that most LangChain Core components implement, giving them
- a common invocation interface (invoke, batch, stream, etc.)
- a common invocation interface (`invoke()`, `batch()`, `stream()`, etc.)
- built-in utilities for retries, fallbacks, schemas and runtime configurability
- easy deployment with [LangServe](https://github.com/langchain-ai/langserve)
- easy deployment with [LangGraph](https://github.com/langchain-ai/langgraph)
For more check out the [runnable docs](https://python.langchain.com/docs/expression_language/interface). Examples of components that implement the interface include: LLMs, Chat Models, Prompts, Retrievers, Tools, Output Parsers.
For more check out the [runnable docs](https://python.langchain.com/docs/concepts/runnables/). Examples of components that implement the interface include: LLMs, Chat Models, Prompts, Retrievers, Tools, Output Parsers.
You can use LangChain Core objects in two ways:
@@ -51,7 +51,7 @@ LangChain Expression Language (LCEL) is a _declarative language_ for composing L
LangChain Core compiles LCEL sequences to an _optimized execution plan_, with automatic parallelization, streaming, tracing, and async support.
For more check out the [LCEL docs](https://python.langchain.com/docs/expression_language/).
For more check out the [LCEL docs](https://python.langchain.com/docs/concepts/lcel/).
![Diagram outlining the hierarchical organization of the LangChain framework, displaying the interconnected parts across multiple layers.](https://raw.githubusercontent.com/langchain-ai/langchain/master/docs/static/svg/langchain_stack_112024.svg "LangChain Framework Overview")
@@ -59,8 +59,6 @@ For more advanced use cases, also check out [LangGraph](https://github.com/langc
## 📕 Releases & Versioning
`langchain-core` is currently on version `0.1.x`.
As `langchain-core` contains the base abstractions and runtime for the whole LangChain ecosystem, we will communicate any breaking changes with advance notice and version bumps. The exception for this is anything in `langchain_core.beta`. The reason for `langchain_core.beta` is that given the rate of change of the field, being able to move quickly is still a priority, and this module is our attempt to do so.
Minor version increases will occur for:

View File

@@ -36,16 +36,17 @@ from langchain_core.language_models.base import (
from langchain_core.load import dumpd, dumps
from langchain_core.messages import (
AIMessage,
AIMessageChunk,
AnyMessage,
BaseMessage,
BaseMessageChunk,
HumanMessage,
convert_to_messages,
convert_to_openai_data_block,
convert_to_openai_image_block,
is_data_content_block,
message_chunk_to_message,
)
from langchain_core.messages.ai import _LC_ID_PREFIX
from langchain_core.outputs import (
ChatGeneration,
ChatGenerationChunk,
@@ -65,6 +66,7 @@ from langchain_core.utils.function_calling import (
convert_to_openai_tool,
)
from langchain_core.utils.pydantic import TypeBaseModel, is_basemodel_subclass
from langchain_core.utils.utils import LC_ID_PREFIX
if TYPE_CHECKING:
import uuid
@@ -130,6 +132,19 @@ def _format_for_tracing(messages: list[BaseMessage]) -> list[BaseMessage]:
message_to_trace.content[idx] = ( # type: ignore[index] # mypy confused by .model_copy
convert_to_openai_image_block(block)
)
elif (
block.get("type") == "file"
and is_data_content_block(block)
and "base64" in block
):
if message_to_trace is message:
# Shallow copy
message_to_trace = message.model_copy()
message_to_trace.content = list(message_to_trace.content)
message_to_trace.content[idx] = convert_to_openai_data_block( # type: ignore[index]
block
)
elif len(block) == 1 and "type" not in block:
# Tracing assumes all content blocks have a "type" key. Here
# we add this key if it is missing, and there's an obvious
@@ -320,6 +335,21 @@ class BaseChatModel(BaseLanguageModel[BaseMessage], ABC):
"""
output_version: str = "v0"
"""Version of ``AIMessage`` output format to use.
This field is used to roll-out new output formats for chat model ``AIMessage``s
in a backwards-compatible way.
``'v1'`` standardizes output format using a list of typed ContentBlock dicts. We
recommend this for new applications.
All chat models currently support the default of ``'v0'``.
.. versionadded:: 1.0
"""
@model_validator(mode="before")
@classmethod
def raise_deprecation(cls, values: dict) -> Any:
@@ -380,9 +410,29 @@ class BaseChatModel(BaseLanguageModel[BaseMessage], ABC):
config: Optional[RunnableConfig] = None,
*,
stop: Optional[list[str]] = None,
output_version: Optional[str] = None,
**kwargs: Any,
) -> BaseMessage:
"""Invoke the chat model.
Args:
input: The input to the chat model.
config: The config to use for this run.
stop: Stop words to use when generating.
output_version: Override the model's ``output_version`` for this invocation.
If None, uses the model's configured ``output_version``.
**kwargs: Additional keyword arguments.
Returns:
The model's response message.
"""
config = ensure_config(config)
effective_output_version = (
output_version if output_version is not None else self.output_version
)
kwargs["_output_version"] = effective_output_version
return cast(
"ChatGeneration",
self.generate_prompt(
@@ -404,9 +454,29 @@ class BaseChatModel(BaseLanguageModel[BaseMessage], ABC):
config: Optional[RunnableConfig] = None,
*,
stop: Optional[list[str]] = None,
output_version: Optional[str] = None,
**kwargs: Any,
) -> BaseMessage:
"""Asynchronously invoke the chat model.
Args:
input: The input to the chat model.
config: The config to use for this run.
stop: Stop words to use when generating.
output_version: Override the model's ``output_version`` for this invocation.
If None, uses the model's configured ``output_version``.
**kwargs: Additional keyword arguments.
Returns:
The model's response message.
"""
config = ensure_config(config)
effective_output_version = (
output_version if output_version is not None else self.output_version
)
kwargs["_output_version"] = effective_output_version
llm_result = await self.agenerate_prompt(
[self._convert_input(input)],
stop=stop,
@@ -461,13 +531,38 @@ class BaseChatModel(BaseLanguageModel[BaseMessage], ABC):
config: Optional[RunnableConfig] = None,
*,
stop: Optional[list[str]] = None,
output_version: Optional[str] = None,
**kwargs: Any,
) -> Iterator[BaseMessageChunk]:
"""Stream responses from the chat model.
Args:
input: The input to the chat model.
config: The config to use for this run.
stop: Stop words to use when generating.
output_version: Override the model's ``output_version`` for this invocation.
If None, uses the model's configured ``output_version``.
**kwargs: Additional keyword arguments.
Returns:
Iterator of message chunks.
"""
effective_output_version = (
output_version if output_version is not None else self.output_version
)
kwargs["_output_version"] = effective_output_version
if not self._should_stream(async_api=False, **{**kwargs, "stream": True}):
# model doesn't implement streaming, so use default implementation
yield cast(
"BaseMessageChunk",
self.invoke(input, config=config, stop=stop, **kwargs),
self.invoke(
input,
config=config,
stop=stop,
output_version=effective_output_version,
**kwargs,
),
)
else:
config = ensure_config(config)
@@ -511,11 +606,19 @@ class BaseChatModel(BaseLanguageModel[BaseMessage], ABC):
try:
input_messages = _normalize_messages(messages)
run_id = "-".join((_LC_ID_PREFIX, str(run_manager.run_id)))
for chunk in self._stream(input_messages, stop=stop, **kwargs):
run_id = "-".join((LC_ID_PREFIX, str(run_manager.run_id)))
for chunk in self._stream(
input_messages,
stop=stop,
output_version=kwargs["_output_version"],
**kwargs,
):
if chunk.message.id is None:
chunk.message.id = run_id
chunk.message.response_metadata = _gen_info_and_msg_metadata(chunk)
output_version = kwargs["_output_version"]
if isinstance(chunk.message, (AIMessage, AIMessageChunk)):
chunk.message.additional_kwargs["output_version"] = output_version
run_manager.on_llm_new_token(
cast("str", chunk.message.content), chunk=chunk
)
@@ -552,13 +655,38 @@ class BaseChatModel(BaseLanguageModel[BaseMessage], ABC):
config: Optional[RunnableConfig] = None,
*,
stop: Optional[list[str]] = None,
output_version: Optional[str] = None,
**kwargs: Any,
) -> AsyncIterator[BaseMessageChunk]:
"""Asynchronously stream responses from the chat model.
Args:
input: The input to the chat model.
config: The config to use for this run.
stop: Stop words to use when generating.
output_version: Override the model's ``output_version`` for this invocation.
If None, uses the model's configured ``output_version``.
**kwargs: Additional keyword arguments.
Returns:
Async iterator of message chunks.
"""
effective_output_version = (
output_version if output_version is not None else self.output_version
)
kwargs["_output_version"] = effective_output_version
if not self._should_stream(async_api=True, **{**kwargs, "stream": True}):
# No async or sync stream is implemented, so fall back to ainvoke
yield cast(
"BaseMessageChunk",
await self.ainvoke(input, config=config, stop=stop, **kwargs),
await self.ainvoke(
input,
config=config,
stop=stop,
output_version=effective_output_version,
**kwargs,
),
)
return
@@ -604,15 +732,19 @@ class BaseChatModel(BaseLanguageModel[BaseMessage], ABC):
try:
input_messages = _normalize_messages(messages)
run_id = "-".join((_LC_ID_PREFIX, str(run_manager.run_id)))
run_id = "-".join((LC_ID_PREFIX, str(run_manager.run_id)))
async for chunk in self._astream(
input_messages,
stop=stop,
output_version=kwargs["_output_version"],
**kwargs,
):
if chunk.message.id is None:
chunk.message.id = run_id
chunk.message.response_metadata = _gen_info_and_msg_metadata(chunk)
output_version = kwargs["_output_version"]
if isinstance(chunk.message, (AIMessage, AIMessageChunk)):
chunk.message.additional_kwargs["output_version"] = output_version
await run_manager.on_llm_new_token(
cast("str", chunk.message.content), chunk=chunk
)
@@ -622,7 +754,10 @@ class BaseChatModel(BaseLanguageModel[BaseMessage], ABC):
generations_with_error_metadata = _generate_response_from_error(e)
chat_generation_chunk = merge_chat_generation_chunks(chunks)
if chat_generation_chunk:
generations = [[chat_generation_chunk], generations_with_error_metadata]
generations = [
[chat_generation_chunk],
generations_with_error_metadata,
]
else:
generations = [generations_with_error_metadata]
await run_manager.on_llm_error(
@@ -1058,6 +1193,8 @@ class BaseChatModel(BaseLanguageModel[BaseMessage], ABC):
if self.rate_limiter:
self.rate_limiter.acquire(blocking=True)
output_version = kwargs.pop("_output_version", self.output_version)
# If stream is not explicitly set, check if implicitly requested by
# astream_events() or astream_log(). Bail out if _stream not implemented
if self._should_stream(
@@ -1066,11 +1203,15 @@ class BaseChatModel(BaseLanguageModel[BaseMessage], ABC):
**kwargs,
):
chunks: list[ChatGenerationChunk] = []
for chunk in self._stream(messages, stop=stop, **kwargs):
for chunk in self._stream(
messages, stop=stop, output_version=output_version, **kwargs
):
chunk.message.response_metadata = _gen_info_and_msg_metadata(chunk)
if isinstance(chunk.message, (AIMessage, AIMessageChunk)):
chunk.message.additional_kwargs["output_version"] = output_version
if run_manager:
if chunk.message.id is None:
chunk.message.id = f"{_LC_ID_PREFIX}-{run_manager.run_id}"
chunk.message.id = f"{LC_ID_PREFIX}-{run_manager.run_id}"
run_manager.on_llm_new_token(
cast("str", chunk.message.content), chunk=chunk
)
@@ -1078,18 +1219,26 @@ class BaseChatModel(BaseLanguageModel[BaseMessage], ABC):
result = generate_from_stream(iter(chunks))
elif inspect.signature(self._generate).parameters.get("run_manager"):
result = self._generate(
messages, stop=stop, run_manager=run_manager, **kwargs
messages,
stop=stop,
run_manager=run_manager,
output_version=output_version,
**kwargs,
)
else:
result = self._generate(messages, stop=stop, **kwargs)
result = self._generate(
messages, stop=stop, output_version=output_version, **kwargs
)
# Add response metadata to each generation
for idx, generation in enumerate(result.generations):
if run_manager and generation.message.id is None:
generation.message.id = f"{_LC_ID_PREFIX}-{run_manager.run_id}-{idx}"
generation.message.id = f"{LC_ID_PREFIX}-{run_manager.run_id}-{idx}"
generation.message.response_metadata = _gen_info_and_msg_metadata(
generation
)
if isinstance(generation.message, (AIMessage, AIMessageChunk)):
generation.message.additional_kwargs["output_version"] = output_version
if len(result.generations) == 1 and result.llm_output is not None:
result.generations[0].message.response_metadata = {
**result.llm_output,
@@ -1131,6 +1280,8 @@ class BaseChatModel(BaseLanguageModel[BaseMessage], ABC):
if self.rate_limiter:
await self.rate_limiter.aacquire(blocking=True)
output_version = kwargs.pop("_output_version", self.output_version)
# If stream is not explicitly set, check if implicitly requested by
# astream_events() or astream_log(). Bail out if _astream not implemented
if self._should_stream(
@@ -1139,11 +1290,15 @@ class BaseChatModel(BaseLanguageModel[BaseMessage], ABC):
**kwargs,
):
chunks: list[ChatGenerationChunk] = []
async for chunk in self._astream(messages, stop=stop, **kwargs):
async for chunk in self._astream(
messages, stop=stop, output_version=output_version, **kwargs
):
chunk.message.response_metadata = _gen_info_and_msg_metadata(chunk)
if isinstance(chunk.message, (AIMessage, AIMessageChunk)):
chunk.message.additional_kwargs["output_version"] = output_version
if run_manager:
if chunk.message.id is None:
chunk.message.id = f"{_LC_ID_PREFIX}-{run_manager.run_id}"
chunk.message.id = f"{LC_ID_PREFIX}-{run_manager.run_id}"
await run_manager.on_llm_new_token(
cast("str", chunk.message.content), chunk=chunk
)
@@ -1151,18 +1306,26 @@ class BaseChatModel(BaseLanguageModel[BaseMessage], ABC):
result = generate_from_stream(iter(chunks))
elif inspect.signature(self._agenerate).parameters.get("run_manager"):
result = await self._agenerate(
messages, stop=stop, run_manager=run_manager, **kwargs
messages,
stop=stop,
run_manager=run_manager,
output_version=output_version,
**kwargs,
)
else:
result = await self._agenerate(messages, stop=stop, **kwargs)
result = await self._agenerate(
messages, stop=stop, output_version=output_version, **kwargs
)
# Add response metadata to each generation
for idx, generation in enumerate(result.generations):
if run_manager and generation.message.id is None:
generation.message.id = f"{_LC_ID_PREFIX}-{run_manager.run_id}-{idx}"
generation.message.id = f"{LC_ID_PREFIX}-{run_manager.run_id}-{idx}"
generation.message.response_metadata = _gen_info_and_msg_metadata(
generation
)
if isinstance(generation.message, (AIMessage, AIMessageChunk)):
generation.message.additional_kwargs["output_version"] = output_version
if len(result.generations) == 1 and result.llm_output is not None:
result.generations[0].message.response_metadata = {
**result.llm_output,
@@ -1178,15 +1341,20 @@ class BaseChatModel(BaseLanguageModel[BaseMessage], ABC):
messages: list[BaseMessage],
stop: Optional[list[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
*,
output_version: str = "v0",
**kwargs: Any,
) -> ChatResult:
"""Top Level call."""
# Concrete implementations should override this method and use the same params
async def _agenerate(
self,
messages: list[BaseMessage],
stop: Optional[list[str]] = None,
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
*,
output_version: str = "v0",
**kwargs: Any,
) -> ChatResult:
"""Top Level call."""
@@ -1196,6 +1364,7 @@ class BaseChatModel(BaseLanguageModel[BaseMessage], ABC):
messages,
stop,
run_manager.get_sync() if run_manager else None,
output_version=output_version,
**kwargs,
)
@@ -1204,6 +1373,8 @@ class BaseChatModel(BaseLanguageModel[BaseMessage], ABC):
messages: list[BaseMessage],
stop: Optional[list[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
*,
output_version: str = "v0",
**kwargs: Any,
) -> Iterator[ChatGenerationChunk]:
raise NotImplementedError
@@ -1213,6 +1384,8 @@ class BaseChatModel(BaseLanguageModel[BaseMessage], ABC):
messages: list[BaseMessage],
stop: Optional[list[str]] = None,
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
*,
output_version: str = "v0",
**kwargs: Any,
) -> AsyncIterator[ChatGenerationChunk]:
iterator = await run_in_executor(
@@ -1221,6 +1394,7 @@ class BaseChatModel(BaseLanguageModel[BaseMessage], ABC):
messages,
stop,
run_manager.get_sync() if run_manager else None,
output_version=output_version,
**kwargs,
)
done = object()
@@ -1567,6 +1741,9 @@ class SimpleChatModel(BaseChatModel):
messages: list[BaseMessage],
stop: Optional[list[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
*,
# For backward compatibility
output_version: str = "v0", # noqa: ARG002
**kwargs: Any,
) -> ChatResult:
output_str = self._call(messages, stop=stop, run_manager=run_manager, **kwargs)
@@ -1589,6 +1766,8 @@ class SimpleChatModel(BaseChatModel):
messages: list[BaseMessage],
stop: Optional[list[str]] = None,
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
*,
output_version: str = "v0",
**kwargs: Any,
) -> ChatResult:
return await run_in_executor(
@@ -1597,6 +1776,7 @@ class SimpleChatModel(BaseChatModel):
messages,
stop=stop,
run_manager=run_manager.get_sync() if run_manager else None,
output_version=output_version,
**kwargs,
)

View File

@@ -18,6 +18,7 @@
from typing import TYPE_CHECKING
from langchain_core._import_utils import import_attr
from langchain_core.utils.utils import LC_AUTO_PREFIX, LC_ID_PREFIX, ensure_id
if TYPE_CHECKING:
from langchain_core.messages.ai import (
@@ -32,10 +33,32 @@ if TYPE_CHECKING:
messages_to_dict,
)
from langchain_core.messages.chat import ChatMessage, ChatMessageChunk
from langchain_core.messages.content_blocks import (
from langchain_core.messages.content import (
Annotation,
AudioContentBlock,
Citation,
CodeInterpreterCall,
CodeInterpreterOutput,
CodeInterpreterResult,
ContentBlock,
DataContentBlock,
FileContentBlock,
ImageContentBlock,
NonStandardAnnotation,
NonStandardContentBlock,
PlainTextContentBlock,
ReasoningContentBlock,
TextContentBlock,
VideoContentBlock,
WebSearchCall,
WebSearchResult,
convert_to_openai_data_block,
convert_to_openai_image_block,
is_data_content_block,
is_reasoning_block,
is_text_block,
is_tool_call_block,
is_tool_call_chunk,
)
from langchain_core.messages.function import FunctionMessage, FunctionMessageChunk
from langchain_core.messages.human import HumanMessage, HumanMessageChunk
@@ -63,34 +86,59 @@ if TYPE_CHECKING:
)
__all__ = (
"LC_AUTO_PREFIX",
"LC_ID_PREFIX",
"AIMessage",
"AIMessageChunk",
"Annotation",
"AnyMessage",
"AudioContentBlock",
"BaseMessage",
"BaseMessageChunk",
"ChatMessage",
"ChatMessageChunk",
"Citation",
"CodeInterpreterCall",
"CodeInterpreterOutput",
"CodeInterpreterResult",
"ContentBlock",
"DataContentBlock",
"FileContentBlock",
"FunctionMessage",
"FunctionMessageChunk",
"HumanMessage",
"HumanMessageChunk",
"ImageContentBlock",
"InvalidToolCall",
"MessageLikeRepresentation",
"NonStandardAnnotation",
"NonStandardContentBlock",
"PlainTextContentBlock",
"ReasoningContentBlock",
"RemoveMessage",
"SystemMessage",
"SystemMessageChunk",
"TextContentBlock",
"ToolCall",
"ToolCallChunk",
"ToolMessage",
"ToolMessageChunk",
"VideoContentBlock",
"WebSearchCall",
"WebSearchResult",
"_message_from_dict",
"convert_to_messages",
"convert_to_openai_data_block",
"convert_to_openai_image_block",
"convert_to_openai_messages",
"ensure_id",
"filter_messages",
"get_buffer_string",
"is_data_content_block",
"is_reasoning_block",
"is_text_block",
"is_tool_call_block",
"is_tool_call_chunk",
"merge_content",
"merge_message_runs",
"message_chunk_to_message",
@@ -103,35 +151,57 @@ __all__ = (
_dynamic_imports = {
"AIMessage": "ai",
"AIMessageChunk": "ai",
"Annotation": "content",
"AudioContentBlock": "content",
"BaseMessage": "base",
"BaseMessageChunk": "base",
"merge_content": "base",
"message_to_dict": "base",
"messages_to_dict": "base",
"Citation": "content",
"ContentBlock": "content",
"ChatMessage": "chat",
"ChatMessageChunk": "chat",
"CodeInterpreterCall": "content",
"CodeInterpreterOutput": "content",
"CodeInterpreterResult": "content",
"DataContentBlock": "content",
"FileContentBlock": "content",
"FunctionMessage": "function",
"FunctionMessageChunk": "function",
"HumanMessage": "human",
"HumanMessageChunk": "human",
"NonStandardAnnotation": "content",
"NonStandardContentBlock": "content",
"PlainTextContentBlock": "content",
"ReasoningContentBlock": "content",
"RemoveMessage": "modifier",
"SystemMessage": "system",
"SystemMessageChunk": "system",
"WebSearchCall": "content",
"WebSearchResult": "content",
"ImageContentBlock": "content",
"InvalidToolCall": "tool",
"TextContentBlock": "content",
"ToolCall": "tool",
"ToolCallChunk": "tool",
"ToolMessage": "tool",
"ToolMessageChunk": "tool",
"VideoContentBlock": "content",
"AnyMessage": "utils",
"MessageLikeRepresentation": "utils",
"_message_from_dict": "utils",
"convert_to_messages": "utils",
"convert_to_openai_data_block": "content_blocks",
"convert_to_openai_image_block": "content_blocks",
"convert_to_openai_data_block": "content",
"convert_to_openai_image_block": "content",
"convert_to_openai_messages": "utils",
"filter_messages": "utils",
"get_buffer_string": "utils",
"is_data_content_block": "content_blocks",
"is_data_content_block": "content",
"is_reasoning_block": "content",
"is_text_block": "content",
"is_tool_call_block": "content",
"is_tool_call_chunk": "content",
"merge_message_runs": "utils",
"message_chunk_to_message": "utils",
"messages_from_dict": "utils",

View File

@@ -3,11 +3,12 @@
import json
import logging
import operator
from typing import Any, Literal, Optional, Union, cast
from typing import Any, Literal, Optional, Union, cast, overload
from pydantic import model_validator
from typing_extensions import NotRequired, Self, TypedDict, override
from langchain_core.messages import content as types
from langchain_core.messages.base import (
BaseMessage,
BaseMessageChunk,
@@ -20,25 +21,17 @@ from langchain_core.messages.tool import (
default_tool_chunk_parser,
default_tool_parser,
)
from langchain_core.messages.tool import (
invalid_tool_call as create_invalid_tool_call,
)
from langchain_core.messages.tool import (
tool_call as create_tool_call,
)
from langchain_core.messages.tool import (
tool_call_chunk as create_tool_call_chunk,
)
from langchain_core.messages.tool import invalid_tool_call as create_invalid_tool_call
from langchain_core.messages.tool import tool_call as create_tool_call
from langchain_core.messages.tool import tool_call_chunk as create_tool_call_chunk
from langchain_core.utils._merge import merge_dicts, merge_lists
from langchain_core.utils.json import parse_partial_json
from langchain_core.utils.usage import _dict_int_op
from langchain_core.utils.utils import LC_AUTO_PREFIX, LC_ID_PREFIX
logger = logging.getLogger(__name__)
_LC_ID_PREFIX = "run-"
class InputTokenDetails(TypedDict, total=False):
"""Breakdown of input token counts.
@@ -180,16 +173,42 @@ class AIMessage(BaseMessage):
type: Literal["ai"] = "ai"
"""The type of the message (used for deserialization). Defaults to "ai"."""
@overload
def __init__(
self, content: Union[str, list[Union[str, dict]]], **kwargs: Any
) -> None:
"""Pass in content as positional arg.
self,
content: Union[str, list[Union[str, dict]]],
**kwargs: Any,
) -> None: ...
Args:
content: The content of the message.
kwargs: Additional arguments to pass to the parent class.
"""
super().__init__(content=content, **kwargs)
@overload
def __init__(
self,
content: Optional[Union[str, list[Union[str, dict]]]] = None,
content_blocks: Optional[list[types.ContentBlock]] = None,
**kwargs: Any,
) -> None: ...
def __init__(
self,
content: Optional[Union[str, list[Union[str, dict]]]] = None,
content_blocks: Optional[list[types.ContentBlock]] = None,
**kwargs: Any,
) -> None:
"""Specify ``content`` as positional arg or ``content_blocks`` for typing."""
if content_blocks is not None:
# If there are tool calls in content_blocks, but not in tool_calls, add them
content_tool_calls = [
block for block in content_blocks if block.get("type") == "tool_call"
]
if content_tool_calls and "tool_calls" not in kwargs:
kwargs["tool_calls"] = content_tool_calls
super().__init__(
content=cast("Union[str, list[Union[str, dict]]]", content_blocks),
**kwargs,
)
else:
super().__init__(content=content, **kwargs)
@property
def lc_attributes(self) -> dict:
@@ -199,6 +218,46 @@ class AIMessage(BaseMessage):
"invalid_tool_calls": self.invalid_tool_calls,
}
@property
def content_blocks(self) -> list[types.ContentBlock]:
"""Return content blocks of the message."""
if self.response_metadata.get("output_version") == "v1":
return cast("list[types.ContentBlock]", self.content)
model_provider = self.response_metadata.get("model_provider")
if model_provider:
from langchain_core.messages.block_translators import get_translator
translator = get_translator(model_provider)
if translator:
return translator["translate_content"](self)
# Otherwise, use best-effort parsing
blocks = super().content_blocks
if self.tool_calls:
# Add from tool_calls if missing from content
content_tool_call_ids = {
block.get("id")
for block in self.content
if isinstance(block, dict) and block.get("type") == "tool_call"
}
for tool_call in self.tool_calls:
if (id_ := tool_call.get("id")) and id_ not in content_tool_call_ids:
tool_call_block: types.ToolCall = {
"type": "tool_call",
"id": id_,
"name": tool_call["name"],
"args": tool_call["args"],
}
if "index" in tool_call:
tool_call_block["index"] = tool_call["index"]
if "extras" in tool_call:
tool_call_block["extras"] = tool_call["extras"]
blocks.append(tool_call_block)
return blocks
# TODO: remove this logic if possible, reducing breaking nature of changes
@model_validator(mode="before")
@classmethod
@@ -227,7 +286,9 @@ class AIMessage(BaseMessage):
# Ensure "type" is properly set on all tool call-like dicts.
if tool_calls := values.get("tool_calls"):
values["tool_calls"] = [
create_tool_call(**{k: v for k, v in tc.items() if k != "type"})
create_tool_call(
**{k: v for k, v in tc.items() if k not in ("type", "extras")}
)
for tc in tool_calls
]
if invalid_tool_calls := values.get("invalid_tool_calls"):
@@ -306,6 +367,42 @@ class AIMessageChunk(AIMessage, BaseMessageChunk):
"invalid_tool_calls": self.invalid_tool_calls,
}
@property
def content_blocks(self) -> list[types.ContentBlock]:
"""Return content blocks of the message."""
if self.response_metadata.get("output_version") == "v1":
return cast("list[types.ContentBlock]", self.content)
model_provider = self.response_metadata.get("model_provider")
if model_provider:
from langchain_core.messages.block_translators import get_translator
translator = get_translator(model_provider)
if translator:
return translator["translate_content_chunk"](self)
# Otherwise, use best-effort parsing
blocks = super().content_blocks
if self.tool_call_chunks and not self.content:
blocks = [
block
for block in blocks
if block["type"] not in ("tool_call", "invalid_tool_call")
]
for tool_call_chunk in self.tool_call_chunks:
tc: types.ToolCallChunk = {
"type": "tool_call_chunk",
"id": tool_call_chunk.get("id"),
"name": tool_call_chunk.get("name"),
"args": tool_call_chunk.get("args"),
}
if (idx := tool_call_chunk.get("index")) is not None:
tc["index"] = idx
blocks.append(tc)
return blocks
@model_validator(mode="after")
def init_tool_calls(self) -> Self:
"""Initialize tool calls from tool call chunks.
@@ -358,7 +455,10 @@ class AIMessageChunk(AIMessage, BaseMessageChunk):
for chunk in self.tool_call_chunks:
try:
args_ = parse_partial_json(chunk["args"]) if chunk["args"] != "" else {} # type: ignore[arg-type]
if chunk["args"] is not None and chunk["args"] != "":
args_ = parse_partial_json(chunk["args"])
else:
args_ = {}
if isinstance(args_, dict):
tool_calls.append(
create_tool_call(
@@ -428,17 +528,27 @@ def add_ai_message_chunks(
chunk_id = None
candidates = [left.id] + [o.id for o in others]
# first pass: pick the first non-run-* id
# first pass: pick the first provider-assigned id (non-run-* and non-lc_*)
for id_ in candidates:
if id_ and not id_.startswith(_LC_ID_PREFIX):
if (
id_
and not id_.startswith(LC_ID_PREFIX)
and not id_.startswith(LC_AUTO_PREFIX)
):
chunk_id = id_
break
else:
# second pass: no provider-assigned id found, just take the first non-null
# second pass: prefer lc_run-* ids over lc_* ids
for id_ in candidates:
if id_:
if id_ and id_.startswith(LC_ID_PREFIX):
chunk_id = id_
break
else:
# third pass: take any remaining id (auto-generated lc_* ids)
for id_ in candidates:
if id_:
chunk_id = id_
break
return left.__class__(
example=left.example,

View File

@@ -2,7 +2,7 @@
from __future__ import annotations
from typing import TYPE_CHECKING, Any, Optional, Union, cast
from typing import TYPE_CHECKING, Any, Optional, Union, cast, overload
from pydantic import ConfigDict, Field
@@ -14,6 +14,7 @@ from langchain_core.utils.interactive_env import is_interactive_env
if TYPE_CHECKING:
from collections.abc import Sequence
from langchain_core.messages import content as types
from langchain_core.prompts.chat import ChatPromptTemplate
@@ -61,15 +62,32 @@ class BaseMessage(Serializable):
extra="allow",
)
@overload
def __init__(
self, content: Union[str, list[Union[str, dict]]], **kwargs: Any
) -> None:
"""Pass in content as positional arg.
self,
content: Union[str, list[Union[str, dict]]],
**kwargs: Any,
) -> None: ...
Args:
content: The string contents of the message.
"""
super().__init__(content=content, **kwargs)
@overload
def __init__(
self,
content: Optional[Union[str, list[Union[str, dict]]]] = None,
content_blocks: Optional[list[types.ContentBlock]] = None,
**kwargs: Any,
) -> None: ...
def __init__(
self,
content: Optional[Union[str, list[Union[str, dict]]]] = None,
content_blocks: Optional[list[types.ContentBlock]] = None,
**kwargs: Any,
) -> None:
"""Specify ``content`` as positional arg or ``content_blocks`` for typing."""
if content_blocks is not None:
super().__init__(content=content_blocks, **kwargs)
else:
super().__init__(content=content, **kwargs)
@classmethod
def is_lc_serializable(cls) -> bool:
@@ -88,6 +106,47 @@ class BaseMessage(Serializable):
"""
return ["langchain", "schema", "messages"]
@property
def content_blocks(self) -> list[types.ContentBlock]:
"""Return the content as a list of standard ``ContentBlock``s.
To use this property, the corresponding chat model must support
``message_version='v1'`` or higher:
.. code-block:: python
from langchain.chat_models import init_chat_model
llm = init_chat_model("...", message_version="v1")
Otherwise, does best-effort parsing to standard types.
"""
from langchain_core.messages import content as types
blocks: list[types.ContentBlock] = []
content = (
[self.content]
if isinstance(self.content, str) and self.content
else self.content
)
for item in content:
if isinstance(item, str):
blocks.append({"type": "text", "text": item})
elif isinstance(item, dict):
item_type = item.get("type")
if item_type not in types.KNOWN_BLOCK_TYPES:
msg = (
f"Non-standard content block type '{item_type}'. Ensure "
"the model supports `output_version='v1'` or higher and "
"that this attribute is set on initialization."
)
raise ValueError(msg)
blocks.append(cast("types.ContentBlock", item))
else:
pass
return blocks
def text(self) -> str:
"""Get the text content of the message.

View File

@@ -0,0 +1,81 @@
"""Derivations of standard content blocks from provider content."""
from __future__ import annotations
from typing import TYPE_CHECKING, Callable
if TYPE_CHECKING:
from langchain_core.messages import AIMessage, AIMessageChunk
from langchain_core.messages import content as types
# Provider to translator mapping
PROVIDER_TRANSLATORS: dict[str, dict[str, Callable[..., list[types.ContentBlock]]]] = {}
def register_translator(
provider: str,
translate_content: Callable[[AIMessage], list[types.ContentBlock]],
translate_content_chunk: Callable[[AIMessageChunk], list[types.ContentBlock]],
) -> None:
"""Register content translators for a provider.
Args:
provider: The model provider name (e.g. ``'openai'``, ``'anthropic'``).
translate_content: Function to translate ``AIMessage`` content.
translate_content_chunk: Function to translate ``AIMessageChunk`` content.
"""
PROVIDER_TRANSLATORS[provider] = {
"translate_content": translate_content,
"translate_content_chunk": translate_content_chunk,
}
def get_translator(
provider: str,
) -> dict[str, Callable[..., list[types.ContentBlock]]] | None:
"""Get the translator functions for a provider.
Args:
provider: The model provider name.
Returns:
Dictionary with ``'translate_content'`` and ``'translate_content_chunk'``
functions, or None if no translator is registered for the provider.
"""
return PROVIDER_TRANSLATORS.get(provider)
def _auto_register_translators() -> None:
"""Automatically register all available block translators."""
import contextlib
import importlib
import pkgutil
from pathlib import Path
package_path = Path(__file__).parent
# Discover all sub-modules
for module_info in pkgutil.iter_modules([str(package_path)]):
module_name = module_info.name
# Skip the __init__ module and any private modules
if module_name.startswith("_"):
continue
if module_info.ispkg:
# For subpackages, discover their submodules
subpackage_path = package_path / module_name
for submodule_info in pkgutil.iter_modules([str(subpackage_path)]):
submodule_name = submodule_info.name
if not submodule_name.startswith("_"):
with contextlib.suppress(ImportError, AttributeError):
importlib.import_module(
f".{module_name}.{submodule_name}", package=__name__
)
else:
# Import top-level translator modules
with contextlib.suppress(ImportError, AttributeError):
importlib.import_module(f".{module_name}", package=__name__)
_auto_register_translators()

View File

@@ -0,0 +1 @@
"""Derivations of standard content blocks from Amazon content."""

View File

@@ -0,0 +1,29 @@
"""Derivations of standard content blocks from Amazon (Bedrock) content."""
from langchain_core.messages import AIMessage, AIMessageChunk
from langchain_core.messages import content as types
def translate_content(message: AIMessage) -> list[types.ContentBlock]:
"""Derive standard content blocks from a message with Bedrock content."""
raise NotImplementedError
def translate_content_chunk(message: AIMessageChunk) -> list[types.ContentBlock]:
"""Derive standard content blocks from a chunk with Bedrock content."""
raise NotImplementedError
def _register_bedrock_translator() -> None:
"""Register the Bedrock translator with the central registry.
Run automatically when the module is imported.
"""
from langchain_core.messages.block_translators import register_translator
register_translator(
"amazon_bedrock_chat", translate_content, translate_content_chunk
)
_register_bedrock_translator()

View File

@@ -0,0 +1,29 @@
"""Derivations of standard content blocks from Amazon (Bedrock Converse) content."""
from langchain_core.messages import AIMessage, AIMessageChunk
from langchain_core.messages import content as types
def translate_content(message: AIMessage) -> list[types.ContentBlock]:
"""Derive standard content blocks from a message with Bedrock Converse content."""
raise NotImplementedError
def translate_content_chunk(message: AIMessageChunk) -> list[types.ContentBlock]:
"""Derive standard content blocks from a chunk with Bedrock Converse content."""
raise NotImplementedError
def _register_bedrock_converse_translator() -> None:
"""Register the Bedrock Converse translator with the central registry.
Run automatically when the module is imported.
"""
from langchain_core.messages.block_translators import register_translator
register_translator(
"amazon_bedrock_converse_chat", translate_content, translate_content_chunk
)
_register_bedrock_converse_translator()

View File

@@ -0,0 +1,27 @@
"""Derivations of standard content blocks from Anthropic content."""
from langchain_core.messages import AIMessage, AIMessageChunk
from langchain_core.messages import content as types
def translate_content(message: AIMessage) -> list[types.ContentBlock]:
"""Derive standard content blocks from a message with Anthropic content."""
raise NotImplementedError
def translate_content_chunk(message: AIMessageChunk) -> list[types.ContentBlock]:
"""Derive standard content blocks from a message chunk with Anthropic content."""
raise NotImplementedError
def _register_anthropic_translator() -> None:
"""Register the Anthropic translator with the central registry.
Run automatically when the module is imported.
"""
from langchain_core.messages.block_translators import register_translator
register_translator("anthropic", translate_content, translate_content_chunk)
_register_anthropic_translator()

View File

@@ -0,0 +1,27 @@
"""Derivations of standard content blocks from Chroma content."""
from langchain_core.messages import AIMessage, AIMessageChunk
from langchain_core.messages import content as types
def translate_content(message: AIMessage) -> list[types.ContentBlock]:
"""Derive standard content blocks from a message with Chroma content."""
raise NotImplementedError
def translate_content_chunk(message: AIMessageChunk) -> list[types.ContentBlock]:
"""Derive standard content blocks from a message chunk with Chroma content."""
raise NotImplementedError
def _register_chroma_translator() -> None:
"""Register the Chroma translator with the central registry.
Run automatically when the module is imported.
"""
from langchain_core.messages.block_translators import register_translator
register_translator("chroma", translate_content, translate_content_chunk)
_register_chroma_translator()

View File

@@ -0,0 +1 @@
"""Derivations of standard content blocks from Google content."""

View File

@@ -0,0 +1,27 @@
"""Derivations of standard content blocks from Google (GenAI) content."""
from langchain_core.messages import AIMessage, AIMessageChunk
from langchain_core.messages import content as types
def translate_content(message: AIMessage) -> list[types.ContentBlock]:
"""Derive standard content blocks from a message with Google (GenAI) content."""
raise NotImplementedError
def translate_content_chunk(message: AIMessageChunk) -> list[types.ContentBlock]:
"""Derive standard content blocks from a chunk with Google (GenAI) content."""
raise NotImplementedError
def _register_google_genai_translator() -> None:
"""Register the Google (GenAI) translator with the central registry.
Run automatically when the module is imported.
"""
from langchain_core.messages.block_translators import register_translator
register_translator("google_genai", translate_content, translate_content_chunk)
_register_google_genai_translator()

View File

@@ -0,0 +1,27 @@
"""Derivations of standard content blocks from Google (VertexAI) content."""
from langchain_core.messages import AIMessage, AIMessageChunk
from langchain_core.messages import content as types
def translate_content(message: AIMessage) -> list[types.ContentBlock]:
"""Derive standard content blocks from a message with Google (VertexAI) content."""
raise NotImplementedError
def translate_content_chunk(message: AIMessageChunk) -> list[types.ContentBlock]:
"""Derive standard content blocks from a chunk with Google (VertexAI) content."""
raise NotImplementedError
def _register_google_vertexai_translator() -> None:
"""Register the Google (VertexAI) translator with the central registry.
Run automatically when the module is imported.
"""
from langchain_core.messages.block_translators import register_translator
register_translator("google_vertexai", translate_content, translate_content_chunk)
_register_google_vertexai_translator()

View File

@@ -0,0 +1,27 @@
"""Derivations of standard content blocks from Groq content."""
from langchain_core.messages import AIMessage, AIMessageChunk
from langchain_core.messages import content as types
def translate_content(message: AIMessage) -> list[types.ContentBlock]:
"""Derive standard content blocks from a message with Groq content."""
raise NotImplementedError
def translate_content_chunk(message: AIMessageChunk) -> list[types.ContentBlock]:
"""Derive standard content blocks from a message chunk with Groq content."""
raise NotImplementedError
def _register_groq_translator() -> None:
"""Register the Groq translator with the central registry.
Run automatically when the module is imported.
"""
from langchain_core.messages.block_translators import register_translator
register_translator("groq", translate_content, translate_content_chunk)
_register_groq_translator()

View File

@@ -0,0 +1,27 @@
"""Derivations of standard content blocks from Ollama content."""
from langchain_core.messages import AIMessage, AIMessageChunk
from langchain_core.messages import content as types
def translate_content(message: AIMessage) -> list[types.ContentBlock]:
"""Derive standard content blocks from a message with Ollama content."""
raise NotImplementedError
def translate_content_chunk(message: AIMessageChunk) -> list[types.ContentBlock]:
"""Derive standard content blocks from a message chunk with Ollama content."""
raise NotImplementedError
def _register_ollama_translator() -> None:
"""Register the Ollama translator with the central registry.
Run automatically when the module is imported.
"""
from langchain_core.messages.block_translators import register_translator
register_translator("ollama", translate_content, translate_content_chunk)
_register_ollama_translator()

View File

@@ -0,0 +1,358 @@
"""Derivations of standard content blocks from OpenAI content."""
from collections.abc import Iterable
from typing import Any, Optional, Union, cast
from langchain_core.messages import AIMessage, AIMessageChunk
from langchain_core.messages import content as types
# v1 / Chat Completions
def _convert_to_v1_from_chat_completions(
message: AIMessage,
) -> list[types.ContentBlock]:
"""Mutate a Chat Completions message to v1 format."""
content_blocks: list[types.ContentBlock] = []
if isinstance(message.content, str):
if message.content:
content_blocks = [{"type": "text", "text": message.content}]
else:
content_blocks = []
for tool_call in message.tool_calls:
content_blocks.append(tool_call)
return content_blocks
def _convert_to_v1_from_chat_completions_chunk(
chunk: AIMessageChunk,
) -> list[types.ContentBlock]:
"""Mutate a Chat Completions chunk to v1 format."""
content_blocks: list[types.ContentBlock] = []
if isinstance(chunk.content, str):
if chunk.content:
content_blocks = [{"type": "text", "text": chunk.content}]
else:
content_blocks = []
for tool_call_chunk in chunk.tool_call_chunks:
tc: types.ToolCallChunk = {
"type": "tool_call_chunk",
"id": tool_call_chunk.get("id"),
"name": tool_call_chunk.get("name"),
"args": tool_call_chunk.get("args"),
}
if (idx := tool_call_chunk.get("index")) is not None:
tc["index"] = idx
content_blocks.append(tc)
return content_blocks
def _convert_from_v1_to_chat_completions(message: AIMessage) -> AIMessage:
"""Convert a v1 message to the Chat Completions format."""
if isinstance(message.content, list):
new_content: list = []
for block in message.content:
if isinstance(block, dict):
block_type = block.get("type")
if block_type == "text":
# Strip annotations
new_content.append({"type": "text", "text": block["text"]})
elif block_type in ("reasoning", "tool_call"):
pass
else:
new_content.append(block)
else:
new_content.append(block)
return message.model_copy(update={"content": new_content})
return message
# v1 / Responses
def _convert_annotation_to_v1(annotation: dict[str, Any]) -> types.Annotation:
annotation_type = annotation.get("type")
if annotation_type == "url_citation":
known_fields = {
"type",
"url",
"title",
"cited_text",
"start_index",
"end_index",
}
url_citation = cast("types.Citation", {})
for field in ("end_index", "start_index", "title"):
if field in annotation:
url_citation[field] = annotation[field]
url_citation["type"] = "citation"
url_citation["url"] = annotation["url"]
for field, value in annotation.items():
if field not in known_fields:
if "extras" not in url_citation:
url_citation["extras"] = {}
url_citation["extras"][field] = value
return url_citation
if annotation_type == "file_citation":
known_fields = {
"type",
"title",
"cited_text",
"start_index",
"end_index",
"filename",
}
document_citation: types.Citation = {"type": "citation"}
if "filename" in annotation:
document_citation["title"] = annotation["filename"]
for field, value in annotation.items():
if field not in known_fields:
if "extras" not in document_citation:
document_citation["extras"] = {}
document_citation["extras"][field] = value
return document_citation
# TODO: standardise container_file_citation?
non_standard_annotation: types.NonStandardAnnotation = {
"type": "non_standard_annotation",
"value": annotation,
}
return non_standard_annotation
def _explode_reasoning(block: dict[str, Any]) -> Iterable[types.ReasoningContentBlock]:
if "summary" not in block:
yield cast("types.ReasoningContentBlock", block)
return
known_fields = {"type", "reasoning", "id", "index"}
unknown_fields = [
field for field in block if field != "summary" and field not in known_fields
]
if unknown_fields:
block["extras"] = {}
for field in unknown_fields:
block["extras"][field] = block.pop(field)
if not block["summary"]:
# [{'id': 'rs_...', 'summary': [], 'type': 'reasoning', 'index': 0}]
block = {k: v for k, v in block.items() if k != "summary"}
if "index" in block:
meaningful_idx = f"{block['index']}_0"
block["index"] = f"lc_rs_{meaningful_idx.encode().hex()}"
yield cast("types.ReasoningContentBlock", block)
return
# Common part for every exploded line, except 'summary'
common = {k: v for k, v in block.items() if k in known_fields}
# Optional keys that must appear only in the first exploded item
first_only = block.pop("extras", None)
for idx, part in enumerate(block["summary"]):
new_block = dict(common)
new_block["reasoning"] = part.get("text", "")
if idx == 0 and first_only:
new_block.update(first_only)
if "index" in new_block:
summary_index = part.get("index", 0)
meaningful_idx = f"{new_block['index']}_{summary_index}"
new_block["index"] = f"lc_rs_{meaningful_idx.encode().hex()}"
yield cast("types.ReasoningContentBlock", new_block)
def _convert_to_v1_from_responses(message: AIMessage) -> list[types.ContentBlock]:
"""Convert a Responses message to v1 format."""
def _iter_blocks() -> Iterable[types.ContentBlock]:
for raw_block in message.content:
if not isinstance(raw_block, dict):
continue
block = raw_block.copy()
block_type = block.get("type")
if block_type == "text":
if "text" not in block:
block["text"] = ""
if "annotations" in block:
block["annotations"] = [
_convert_annotation_to_v1(a) for a in block["annotations"]
]
if "index" in block:
block["index"] = f"lc_txt_{block['index']}"
yield cast("types.TextContentBlock", block)
elif block_type == "reasoning":
yield from _explode_reasoning(block)
elif block_type == "image_generation_call" and (
result := block.get("result")
):
new_block = {"type": "image", "base64": result}
if output_format := block.get("output_format"):
new_block["mime_type"] = f"image/{output_format}"
if "id" in block:
new_block["id"] = block["id"]
if "index" in block:
new_block["index"] = f"lc_img_{block['index']}"
for extra_key in (
"status",
"background",
"output_format",
"quality",
"revised_prompt",
"size",
):
if extra_key in block:
if "extras" not in new_block:
new_block["extras"] = {}
new_block["extras"][extra_key] = block[extra_key]
yield cast("types.ImageContentBlock", new_block)
elif block_type == "function_call":
tool_call_block: Optional[
Union[types.ToolCall, types.InvalidToolCall, types.ToolCallChunk]
] = None
call_id = block.get("call_id", "")
if (
isinstance(message, AIMessageChunk)
and len(message.tool_call_chunks) == 1
):
tool_call_block = message.tool_call_chunks[0].copy() # type: ignore[assignment]
elif call_id:
for tool_call in message.tool_calls or []:
if tool_call.get("id") == call_id:
tool_call_block = tool_call.copy()
break
else:
for invalid_tool_call in message.invalid_tool_calls or []:
if invalid_tool_call.get("id") == call_id:
tool_call_block = invalid_tool_call.copy()
break
else:
pass
if tool_call_block:
if "id" in block:
if "extras" not in tool_call_block:
tool_call_block["extras"] = {}
tool_call_block["extras"]["item_id"] = block["id"]
if "index" in block:
tool_call_block["index"] = f"lc_tc_{block['index']}"
yield tool_call_block
elif block_type == "web_search_call":
web_search_call = {"type": "web_search_call", "id": block["id"]}
if "index" in block:
web_search_call["index"] = f"lc_wsc_{block['index']}"
if (
"action" in block
and isinstance(block["action"], dict)
and block["action"].get("type") == "search"
and "query" in block["action"]
):
web_search_call["query"] = block["action"]["query"]
for key in block:
if key not in ("type", "id", "index"):
web_search_call[key] = block[key]
yield cast("types.WebSearchCall", web_search_call)
# If .content already has web_search_result, don't add
if not any(
isinstance(other_block, dict)
and other_block.get("type") == "web_search_result"
and other_block.get("id") == block["id"]
for other_block in message.content
):
web_search_result = {"type": "web_search_result", "id": block["id"]}
if "index" in block and isinstance(block["index"], int):
web_search_result["index"] = f"lc_wsr_{block['index'] + 1}"
yield cast("types.WebSearchResult", web_search_result)
elif block_type == "code_interpreter_call":
code_interpreter_call = {
"type": "code_interpreter_call",
"id": block["id"],
}
if "code" in block:
code_interpreter_call["code"] = block["code"]
if "index" in block:
code_interpreter_call["index"] = f"lc_cic_{block['index']}"
known_fields = {"type", "id", "language", "code", "extras", "index"}
for key in block:
if key not in known_fields:
if "extras" not in code_interpreter_call:
code_interpreter_call["extras"] = {}
code_interpreter_call["extras"][key] = block[key]
code_interpreter_result = {
"type": "code_interpreter_result",
"id": block["id"],
}
if "outputs" in block:
code_interpreter_result["outputs"] = block["outputs"]
for output in block["outputs"]:
if (
isinstance(output, dict)
and (output_type := output.get("type"))
and output_type == "logs"
):
if "output" not in code_interpreter_result:
code_interpreter_result["output"] = []
code_interpreter_result["output"].append(
{
"type": "code_interpreter_output",
"stdout": output.get("logs", ""),
}
)
if "status" in block:
code_interpreter_result["status"] = block["status"]
if "index" in block and isinstance(block["index"], int):
code_interpreter_result["index"] = f"lc_cir_{block['index'] + 1}"
yield cast("types.CodeInterpreterCall", code_interpreter_call)
yield cast("types.CodeInterpreterResult", code_interpreter_result)
elif block_type in types.KNOWN_BLOCK_TYPES:
yield cast("types.ContentBlock", block)
else:
new_block = {"type": "non_standard", "value": block}
if "index" in new_block["value"]:
new_block["index"] = f"lc_ns_{new_block['value'].pop('index')}"
yield cast("types.NonStandardContentBlock", new_block)
return list(_iter_blocks())
def translate_content(message: AIMessage) -> list[types.ContentBlock]:
"""Derive standard content blocks from a message with OpenAI content."""
if isinstance(message.content, str):
return _convert_to_v1_from_chat_completions(message)
return _convert_to_v1_from_responses(message)
def translate_content_chunk(message: AIMessageChunk) -> list[types.ContentBlock]:
"""Derive standard content blocks from a message chunk with OpenAI content."""
if isinstance(message.content, str):
return _convert_to_v1_from_chat_completions_chunk(message)
return _convert_to_v1_from_responses(message)
def _register_openai_translator() -> None:
"""Register the OpenAI translator with the central registry.
Run automatically when the module is imported.
"""
from langchain_core.messages.block_translators import register_translator
register_translator("openai", translate_content, translate_content_chunk)
_register_openai_translator()

File diff suppressed because it is too large Load Diff

View File

@@ -1,155 +0,0 @@
"""Types for content blocks."""
import warnings
from typing import Any, Literal, Union
from pydantic import TypeAdapter, ValidationError
from typing_extensions import NotRequired, TypedDict
class BaseDataContentBlock(TypedDict, total=False):
"""Base class for data content blocks."""
mime_type: NotRequired[str]
"""MIME type of the content block (if needed)."""
class URLContentBlock(BaseDataContentBlock):
"""Content block for data from a URL."""
type: Literal["image", "audio", "file"]
"""Type of the content block."""
source_type: Literal["url"]
"""Source type (url)."""
url: str
"""URL for data."""
class Base64ContentBlock(BaseDataContentBlock):
"""Content block for inline data from a base64 string."""
type: Literal["image", "audio", "file"]
"""Type of the content block."""
source_type: Literal["base64"]
"""Source type (base64)."""
data: str
"""Data as a base64 string."""
class PlainTextContentBlock(BaseDataContentBlock):
"""Content block for plain text data (e.g., from a document)."""
type: Literal["file"]
"""Type of the content block."""
source_type: Literal["text"]
"""Source type (text)."""
text: str
"""Text data."""
class IDContentBlock(TypedDict):
"""Content block for data specified by an identifier."""
type: Literal["image", "audio", "file"]
"""Type of the content block."""
source_type: Literal["id"]
"""Source type (id)."""
id: str
"""Identifier for data source."""
DataContentBlock = Union[
URLContentBlock,
Base64ContentBlock,
PlainTextContentBlock,
IDContentBlock,
]
_DataContentBlockAdapter: TypeAdapter[DataContentBlock] = TypeAdapter(DataContentBlock)
def is_data_content_block(
content_block: dict,
) -> bool:
"""Check if the content block is a standard data content block.
Args:
content_block: The content block to check.
Returns:
True if the content block is a data content block, False otherwise.
"""
try:
_ = _DataContentBlockAdapter.validate_python(content_block)
except ValidationError:
return False
else:
return True
def convert_to_openai_image_block(content_block: dict[str, Any]) -> dict:
"""Convert image content block to format expected by OpenAI Chat Completions API."""
if content_block["source_type"] == "url":
return {
"type": "image_url",
"image_url": {
"url": content_block["url"],
},
}
if content_block["source_type"] == "base64":
if "mime_type" not in content_block:
error_message = "mime_type key is required for base64 data."
raise ValueError(error_message)
mime_type = content_block["mime_type"]
return {
"type": "image_url",
"image_url": {
"url": f"data:{mime_type};base64,{content_block['data']}",
},
}
error_message = "Unsupported source type. Only 'url' and 'base64' are supported."
raise ValueError(error_message)
def convert_to_openai_data_block(block: dict) -> dict:
"""Format standard data content block to format expected by OpenAI."""
if block["type"] == "image":
formatted_block = convert_to_openai_image_block(block)
elif block["type"] == "file":
if block["source_type"] == "base64":
file = {"file_data": f"data:{block['mime_type']};base64,{block['data']}"}
if filename := block.get("filename"):
file["filename"] = filename
elif (metadata := block.get("metadata")) and ("filename" in metadata):
file["filename"] = metadata["filename"]
else:
warnings.warn(
"OpenAI may require a filename for file inputs. Specify a filename "
"in the content block: {'type': 'file', 'source_type': 'base64', "
"'mime_type': 'application/pdf', 'data': '...', "
"'filename': 'my-pdf'}",
stacklevel=1,
)
formatted_block = {"type": "file", "file": file}
elif block["source_type"] == "id":
formatted_block = {"type": "file", "file": {"file_id": block["id"]}}
else:
error_msg = "source_type base64 or id is required for file blocks."
raise ValueError(error_msg)
elif block["type"] == "audio":
if block["source_type"] == "base64":
audio_format = block["mime_type"].split("/")[-1]
formatted_block = {
"type": "input_audio",
"input_audio": {"data": block["data"], "format": audio_format},
}
else:
error_msg = "source_type base64 is required for audio blocks."
raise ValueError(error_msg)
else:
error_msg = f"Block of type {block['type']} is not supported."
raise ValueError(error_msg)
return formatted_block

Some files were not shown because too many files have changed in this diff Show More